
University of Pretoria

Department of Chemical Engineering

Masters dissertation

GPGPU-accelerated nonlinear state estimators:

Application to MPC-controlled bioreactor performance

Author:

Darren Craig Roos

Student Number:

u15041604

Co-Supervisor:

Mr. C Sandrock

University of Pretoria:

Chemical Engineering

Co-Supervisor:

Dr. JP de Villiers

University of Pretoria:

Electrical, Electronic and Computer

Engineering

Co-Supervisor:

Ms. Esin Iplik

Mälardalen University:

Business, Society and Engineering

Submitted in partial fulfilment of the requirements for the degree

Master of Control Engineering in the Faculty of Chemical engineering, University of Pretoria

2021-05-17



Ethics statement

The author, whose name appears on the title page of this dissertation, has obtained, for

the research described in this work, the applicable research ethics approval. The author

declares that he/she has observed the ethical standards required in terms of the Univer-

sity of Pretoria’s Code of ethics for researchers and the Policy guidelines for responsible

research.

i



GPGPU-accelerated nonlinear state estimators:

Application to MPC-controlled bioreactor performance

Abstract

Practical control problems are subject to dealing with instrumentation noise and inac-

curate models. These can be modelled as measurement and state noise, respectively.

Nonlinear state estimators, for example a particle filter, can be used to mitigate these

effects. However, they are usually computationally expensive which makes them imprac-

tical for industrial use. This text investigates using General Purpose Graphics Processing

Units (GPGPU) to improve the performance particle and Gaussian sum filters by par-

allelizing their prediction, update and resampling steps. GPGPU accelerated filters are

found to outperform non-accelerated filters as the number of particle increases. GPGPU

acceleration also allows particle filters with 219.5 particles to be used on systems with dy-

namic time constants on the order of 0.1 s and for Gaussian sum filters with 218.5 particles

to be used with time constants on the order of 1 s.

The filters are applied to a bioreactor system containing R. Oryzae, where MPC control is

applied to the production phase fumaric acid and glucose concentrations. The bioreactor

is modelled using results from Iplik (2017) and Swart (2019). It is found that the GPGPU

filters’ improved run times allow for more particles to be used which provides increased

filter accuracy and thus better performance. This improved performance comes at the

cost of consuming more energy. Thus, it is believed that the GPGPU implementations

should be used for applications with complex dynamics/noise that require large numbers

of particles and/or high sampling rates.
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Nomenclature

The nomenclature contains symbols that are used but not defined in immediate surround-

ing text.

p(X = x) The probability density function of a random variable X evaluated

at x. It is written p(x) when X is clear from the context

p(x|y) The conditional probability of X given y

p(x1, ..., xn) The joint probability between multiple random variables X1, ..., Xn

N (x|µ,Σ) A multivariate normal distribution with mean µ and covariance Σ

NΣ(x|µ,Σ) A Gaussian sum distribution with means µ and covariances Σ

PISE Sum of the integral of the squared error between the set point and

the process outputs

qk|j,i A particle point estimate for the i’th particle at time step k given

the measurement at the j’th time step

wk|j,i A particle weight for the i’th particle at time step k given the

measurement at the j’th time step

σlk|j,i The l’th sigma point estimate for the i’th particle at time step k

given the measurement at the j’th time step

δ(x) The Dirac delta function at x

xi



1 Introduction

This chapter gives context to this work. It contains information about the project back-

ground, aims and scope.

1.1 Background

Industrial and chemical processes make use of automatic controllers to keep controlled

variables at their set points. Correcting and maintaining set points costs energy. Thus,

proper control is of paramount importance to the energy efficiency of a process.

Controllers are designed to use measurements from the system as well as a model of

the system. Information from sensors is noisy (Seborg and Mellichamp, 2006), and it is

possible to represent model inaccuracies as noise (Skogestad and Postlethwaite, 2005).

State estimators aim to filter out these noise components and provide an estimate of the

true state of the system. They are finding increasing industrial applications due to their

ability to increase energy efficiency (Flemming and Sonner, 2006).

The pioneering work done by Kalman (1960) saw the creation of what is now known as

the Kalman filter. The Kalman filter provided a closed form optimal solution to the state

estimation problem when the system is linear and the noise is Gaussian. Since then much

work has been done to find solutions to the more difficult cases where the assumptions

do not hold.

The Extended Kalman Filter (EKF) developed by Gee et al. (1962) overcomes the re-

quirement of the system to be linear by using a linear Taylor series approximation of

the nonlinear model. The Unscented Kalman Filter (UKF) makes provisions for nonlin-

ear systems by using weighted points which are propagated through the system’s model

and used to reconstruct a Gaussian estimation (Julier and Uhlmann, 2004). Quadrature

approximation Kalman filters (QKF) use suitably chosen multi-dimensional quadrature
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points of the random variable to approximate the expected value of the application of

the non-linear system equation on the random variable (Arasarathnam et al., 2007).

The greatest drawback to the use of the EKF, UKF and QKF is that the posterior

estimate is always reformulated to be Gaussian. This is obviously not the case, since

passing a Gaussian through a nonlinear function is unlikely to yield a Gaussian result.

Gaussian sum filters represent the distributions as Gaussian mixtures, thus allowing any

distribution to be approximated since any probability density function can be described

as a (potentially infinite) sum of Gaussian distributions (Sorenson and Alspach, 1971).

This has lead to Gaussian Sum Extended Kalman Filters (GS-EKF), Gaussian Sum

Unscented Kalman Filters (GS-UKF), Gaussian Sum Quadrature approximation Kalman

Filters (GS-QKF), and many other variations which can be applied to nonlinear systems

with non-Gaussian noise.

Particle filters use weighted Monte Carlo samples to represent the distributions, thus also

allowing their application to cases with nonlinear systems and non-Gaussian noise. The

distribution is sampled randomly and weighted according to their probability and then

the samples (called particles) are propagated through the system’s model.

The disadvantage of particle filters and Gaussian sum filters is the curse of dimensionality:

as the number of state dimensions increase, the number of samples/Gaussian distributions

(both known as particles) needs to increase drastically to maintain the same accuracy.

This either limits the size of the problem that can be solved or it limits the frequency of

the control cycle. Both of these problems lead to less optimal use of energy resources in

the system.

General Purpose computing on Graphical Processing Units (GPGPU) allow the same

operation to be performed on different data simultaneously. This can be used to alleviate

the aforementioned disadvantages, thereby improving energy efficiency for high dimen-

sional systems. For example, in the particle filter’s prediction step, all the particles need

to be passed through the state transition function. This operation can be done on all the

particles simultaneously as there are no dependencies between the data or the operation.

This work analyses the particle filter and Gaussian sum unscented Kalman filter for

aspects that would receive significant speed-up from GPGPU. The accelerated and non-

accelerated algorithms are implemented in Python and performance is measured on their

application to a MPC controlled bioreactor model.

This project is done in the context of intradepartmental collaboration between the Process

Modelling and Control group and the Bioreaction Engineering group within the chemical

engineering faculty, as well as inter-university collaboration between the University of

2



Pretoria and Mälardalen University. It is in this context that the bioreactor model was

chosen for investigation.

1.2 Deliverables

This work aims to identify aspects of the particle filter and Gaussian sum unscented

Kalman filter for GPGPU acceleration. Next, it aims to deliver the accelerated and

non-accelerated algorithms in Python. The open loop performance for the filters is in-

vestigated. The effect of GPGPU acceleration on the closed loop performance of the

simulated bioreactor model is also investigated. To this end, the work aims to develop

a bioreactor model for the purpose of closed loop simulation performance testing, using

the results from Swart (2019). A model predictive controller is developed and used for

control.

1.3 Research questions

1. Where could GPGPU be used in the nonlinear filtering algorithms to improve per-

formance?

2. How much efficiency/performance can be gained by using GPGPU on these filters?

3. What effect does the aforementioned efficiency improvement have on the perfor-

mance of a modelled bioreactor?

1.4 Scope and deliverables

The limiting factors of this project are: cooperation — the project needed to allow for

interdepartmental collaboration between the Process Modelling and Control group and

the Bioreaction Engineering group, as well as the inter-university cooperation between

the University of Pretoria and Mälardalen University; time — the project could only run

for 10 months; availability — only the hardware available to Professor Pieter de Villiers

at the University of Pretoria was used.

This work’s results focus on the application specific results of the GPGPU accelerated

filters to the performance of a bioreactor with a single type and instance of state and

3



measurement noise. For time reasons, the work also only aims to compare performance

between GPU and CPU implementations, as opposed to other variables, for example the

performance differences between numbers of particles. Further delimitations are clearly

shown throughout the text as for example in Delimitation 1.1. They will frequently show

the fixation of some experimental variable, for example the programming language.

Delimitation 1.1. Only Python: All code is written in Python. This includes GPGPU

kernels which are compiled from Python code using the library numba and by using the

CUDA enabled libraries cupy and pytorch. This allows for faster development in the

limited time.

The following outputs are delivered: a code library containing GPGPU accelerated

and non-accelerated implementations of a particle filter and a Gaussian sum unscented

Kalman filter, a model predictive controller implementation, and a model of a bioreactor;

a dissertation containing the relevant theory and background on the topic, as well as

discussion of the results obtained by using the code library’s simulations; and a journal

article submission on the work of the GPGPU accelerated filters.

1.5 Implementation

This document outlines the theoretical and practical methods of the investigation. The

results shown in this document are generated from a library of code found at https:

//github.com/darren-roos/gpu_se. Installation instructions for the source code can

be found in the README.md file of the code library.

A cache of the results can be found at https://github.com/darren-roos/picklejar.

The results available in the cache are from runs performed on a machine with an AMD

Ryzen 5 2400G, 32 GB of RAM, using only one core with a clock speed of 3.2 GHz. As

well as a GeForce GTX 1070 with 8 GB of on board memory, 1920 cores with a clock

speed of 1.683 GHz. The machine was running Ubuntu 18.04.4 LTS with a Python 3.8.2

and CUDA 10.2 environment.

Further details about the Python environment can be found in the environment.yml file

in the code repository.

4
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Literature review
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2 Theoretical background

This literature review consists of two parts. The first part introduces the relevant theory

required for an understanding of the work presented in the rest of the dissertation. A basic

and limited introduction of relevant topics in measure theory, topology, graph theory and

probability theory is followed by a detailed discussion on dynamic Bayesian networks. The

section concludes by reintroducing the reader to model predictive control and covering

the relevant computer science theory; most notably, big O notation and the idea of

parallelization. It contains mostly “low-order thinking” referencing that quotes sources

without critical discussion.

The part concludes with a review of literature on the current state-of-the-art in GPGPU

accelerated state estimators. This section aims to contain “high-order thinking” compar-

ison of reference results and methodologies.

2.1 Measure theory and topology

This work introduces probability theory using the background of measure theory. Readers

who are unfamiliar with measure theory, but are comfortable with probability theory

should feel free to skip this section as well as later measure theory based derivations

of common probability theory topics. All derivations directly linked to the application

of state estimators are understandable for readers with an axiomatic probability theory

background.

Measure theory aims to generalize concepts of length, area, and volume so that they

can be applied on more general spaces. The following terms are defined: σ-algebra,

measurable space, measure, measure space, topological space, and Borel σ-algebra.

Definition 2.1. σ-algebra A collection S of subsets on a set S is called a σ-algebra on

S iff:

6



1. ∅ ∈ S

2. If s ∈ S, then S \ s ∈ S

3. If si ∈ S, i ∈ N, then
∞⋃
i=0

si ∈ S

where ∅ is the empty set. The most trivial σ-algebras are P(S) (the power set on S)

and {∅, S}. Sets in S are called S-measurable.

σ(T ) is the σ-algebra generated by a collection of subsets of S called T , and is defined

as the smallest σ-algebra that contains all elements of T (Tao, 2011). A σ-algebra is a

formal concept for a mathematical object that can be measured. For example, if parts

of a piece of string were to be painted, one could measure the length of string that is

painted. It is possible for none of the string to be coloured and for the painted length

to be zero (corresponding to point one above). The length of the unpainted parts of the

string is equal to the total length of the string minus the painted length. This corresponds

to the second point from above. Finally, the third point corresponds to the case when

non-contiguous parts of the string are painted. In this case, the total painted length

would be the sum of all the painted sections.

The σ-algebra (painted parts of the string) and the set on which it is formed (the string

itself) forms a measurable space. Formally, this is defined as:

Definition 2.2. Measurable space The tuple (S,S) containing the set S and a σ-

algebra S on S

The length measurement in the string example is an example of a real measure. Real

measures are formally defined as:

Definition 2.3. Real measure (Bogachev, 2007) A function µ on a measurable space

(S,S) with the following properties:

1. µ : S → [0,∞)

2. µ(∅) = 0

3. µ (
⋃∞
i=0Ai) =

∑∞
i=0 µ(Ai) for all countably infinite, pairwise disjoint collections

{Ai : Ai ∈ S}

A measurable space and a measure can be combined to form a measure space. The string

example is an illustration of a measure space.
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Definition 2.4. Measure spaces consist of a tuple (S,S, µ), where µ is a measure on

the measurable space (S,S).

Measurable functions, of which random variables are an example, are abstractions of the

concept of continuous functions in calculus.

Definition 2.5. Measurable functions are functions f : X → Y , where X and Y are

sets belonging to two measurable spaces (X,Σ) and (Y, T ), such that

f−1(E) , x ∈ X|f(x) ∈ E ∈ Σ ∀E ∈ T

Push-forward measures transfer a measure from one measurable space to another using

a measurable function.

Definition 2.6. Push-forward measures Given two measurable spaces (X,Σ) and

(Y, T ); a measure µ : Σ → [0,∞]; and a measurable function f : X → Y , the push-

forward measure is µ∗ , µ ◦ f−1.

For the purposes of this text, we will use a specific category of measurable spaces known

as topological spaces. They are the same as measurable spaces, but have the additional

quality that they are also closed under infinite intersections.

Definition 2.7. Topological spaces are measurable spaces (S, T ), where S is a set and

T is a collection of subsets of S, with the following properties:

1. ∅ ∈ T

2. S ∈ T

3. T is closed under infinite unions

4. T is closed under finite intersections

Sets in T are known as the open sets (Folland, 1999).

A base B of a topology T , is a collection of open sets such that t =
⋃
bi ∀t ∈ T,∀bi ∈ B.

For example, a base on Rn is the collection of all open balls in Rn.

Definition 2.8. Borel σ-algebra (Folland, 1999) For a topological space (S, T ), B =

σ(T ) is defined as the Borel σ-algebra on the topological space. This is sometimes written

B(S) when the open sets T are known or obvious from context. Elements of B(S) are

called Borel sets of S.

For more detailed coverage please see Folland (1999), Bogachev (2007), or Tao (2011).
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2.2 Graph theory

This text discusses graphs as seen in Figure 2.1 and 2.2. Chartrand and P Zhang (2012)

state that graphs are mathematical abstractions that are used to show connections and

relationships between objects. Figure 2.1 and Figure 2.2 show labelled circles (letters

in Figure 2.1 and numbers in Figure 2.1) called vertices. The lines or arrows that join

vertices are called edges. Figure 2.1 shows edges that are arrows and thus have a direction,

while and Figure 2.2 shows edges that do not have a direction.

Figure 2.1: Directed graph. Figure 2.2: Undirected graph.

The following are taken from Trudeau (1993). Please refer to that text for more in depth

coverage.

Definition 2.9. Graphs are discrete mathematical objects comprised of a pair of sets

(V,E). A set of vertices V and a set edges E.

Definition 2.10. Directed/Undirected graph Directed graphs have a set of edges

E that contains ordered pairs of vertices of the form (Vi, Vj). This means that the edge

(Vi, Vj) is not the same as the edge (Vj, Vi) An undirected graph contains unordered pairs

of vertices, such that the edge (Vi, Vj) is the same as the edge (Vj, Vi).

Definition 2.11. Paths P in a graph G are sequences of vertices V1, V2, ..., Vn ∈ V , such

that (Vi, Vj) ∈ E for each consecutive pair of vertices Vi and Vj in P .

Example 2.1. Paths Consider Figure 2.1. According to Definition 2.11, B,C,D,C

is a path in this graph because (B,C), (C,D), and (D,C) are all edges in the graph.

However, A,D,C,B is not a path because while there is an edge (B,C), there is no edge

(C,B).

Definition 2.12. Directed Acyclic Graphs (DAG) A common subset of directed

graphs are acyclic graphs. A graph is acyclic iff there exists no path P in G such that

the first vertex in the path is the same as the last vertex in the path.
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Common relationships between vertices arise when designing algorithms that operate

on DAGs as described by West (1996). Defining these relationships is useful as they

frequently simplify the algorithms.

Definition 2.13. Parents of a vertex Vi in a directed graph are all vertices Vj such that

(Vj, Vi) ∈ E

Definition 2.14. Children of a vertex Vi in a directed graph are all vertices Vj such

that (Vi, Vj) ∈ E

Definition 2.15. Ancestors in a DAG of a vertex Vi is the set of vertices that contains

all vertices Vj that have a path from Vj to Vi.

Definition 2.16. Descendants in a DAG of Vi is the set of vertices that contains all

vertices Vj that have a path from Vi to Vj.

2.3 Probability theory

Definition 2.17. Probability spaces (Durrett, 1996) are measure spaces defined by

a tuple (Ω,F , P ). Ω is the sample space and contains the set of all possible outcomes.

F ⊆ 2Ω is the σ-algebra on Ω containing the set of events. In addition to being a σ-

algebra Ω ∈ F . (Ω,F) forms a measurable space, and P is a measure on that space,

known as the probability measure. In addition to being a measure function, P must also

satisfy:

1. P : F → [0, 1]

2. P (∅) = 0

3. P (Ω) = 1

Definition 2.18. Random variable Given a probability space (Ω,F , P ) and a measur-

able space (E, E), a (E, E)-valued random variable is a measurable function X : Ω→ E.

Papoulis (1965) states that random variables can be described by probability distribu-

tions, which are push-forward measures µX = P ◦ X−1. Note that while X : Ω → E,

that X−1 : E → F . Without this, µX : E → F → [0, 1] would not be possible since

P : F → [0, 1].

The class of (R,B)-valued random variables — also known as real valued random variables

— are considered. The topology for the real space is selected to be the set of semi-infinite
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intervals T = {(−∞, x) : x ∈ R}, and thus B = σ(T ). In this text, the phrase “random

variable” refers to a real valued random variable unless otherwise stated.

Definition 2.19. Cumulative Distribution Function (CDF) is an alternate way of

defining a random variable. It is mathematically related to the probability distribution

by

FX(x) = µX((−∞, x]) (2.1)

Definition 2.20. Probability density functions (PDF) also describe random vari-

ables:

fX(x) =
dFx
dx

(2.2)

PDFs are often also written as p(X = x) or most frequently p(x). The last notation is

the preferred notation for this text.

While the last notation is simple, it carries a lot of information behind it: It refers to

the derivative of a CDF of a probability distribution from −∞ to x, where a probability

distribution is a push-forward measure of a probability measure P through the random

variable X, which is a measurable real valued function on an event space Ω of a probability

triple (Ω,F , P ).

2.3.1 Joints

The following discussion is taken from Papoulis (1965) and Blitzstein and Hwang (2014).

Given the vector of random variables X = [X1, X2, ..., Xn] : Ω→ Rn, the joint probability

measure is

P (X1, X2, ..., Xn) = P (X1 ∩X2 ∩ ... ∩Xn) (2.3)

When it is clear from the context, this text refers to both multidimensional and unidi-

mensional random variables as random variables. The probability distribution is given

by µX : Rn → F → [0, 1] = P ◦X−1. From this, the CDF

FX(x1, x2, ..., xn) = µX((−∞, x1], ..., (−∞, xn]) (2.4)

is similar to Equation 2.1. The PDF is given by
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fX(x1, x2, ..., xn) = p(x1, x2, ..., xn)

= p(x1:n)

=
∂nFX(x1, ..., xn)

∂x1∂x2...∂xn

(2.5)

Definition 2.21. Marginal distributions are probability distributions containing sub-

sets of random variables, called the marginal variables. The other variables are said to

have been marginalized out. Given the joint p(x1:n), the marginal that has marginalized

out x1 is given by

p(x2:n) =

∫ ∞
−∞

p(x1:n)dx1 (2.6)

similarly, the marginal of xm, where 1 ≤ m ≤ n is given by

p(xm) =

∫ ∞
−∞

...

∫ ∞
−∞

p(x1:m−1, xm+1:n)dx1...dxm−1dxm+1...dxn (2.7)

Definition 2.22. Conditional probability distribution is the distribution of a joint

distribution given information about one or more of the variables. For example, given

the joint p(x, y, z), the distribution of x and y given z can be written as p(x, y|z). Math-

ematically, it is defined as

p(x, y|z) =
p(x, y, z)

p(z)
(2.8)

Similarly,

p(x|y, z) =
p(x, y, z)

p(y, z)
(2.9)

Theorem 2.1. Chain rule The joint p(x1:n) can be factorized

p(x1:n) = p(x1)p(x2|x1)p(x3|x1:2)...p(xn|x1:n−1) (2.10)

Proof. Substituting in Definition 2.22 into Equation 2.10 gives

p(x1:n) = p(x1)
p(x1:2)

p(x1)

p(x1:3)

p(x1:2)
...

p(x1:n)

p(x1:n−1)
(2.11)

which clearly shows how terms cancel to give the desired result

Theorem 2.2. Bayes’ theorem allows a prior distribution p(x) to be updated given

new information y, where the support that y provides for x is known. This allows the

posterior p(x|y) to be calculated, without having to know the joint. It is formally stated

as

p(x|y) =
p(y|x)p(x)

p(y)
(2.12)
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Proof.

p(x, y) = p(x, y)

p(x|y)p(y) = p(y|x)p(x)
(2.13)

Definition 2.23. Independence implies that a joint distribution factorizes as the prod-

uct of the marginal distributions of the individual variables

p(x1:n) =
n∏
i=1

p(xi) (2.14)

Definition 2.24. Conditional independence of a joint works the same way as inde-

pendence, but with a certain given random variable z.

p(x1:n|z) =
n∏
i=1

p(xi|z) (2.15)

2.3.2 Moments

Definition 2.25. Expectation of a function of a random vector (Jaynes et al.,

2003) shows that the expectation E(·) of a function f(X) : Rn → R of a random variable

X, is given by

E(f(X)) =

∫
Ω

f(X(ω))dP (ω)

=

∫
R
f(x)dFX(x)

=

∫
R
f(x)p(x)dx

(2.16)

where the second equality is found using the Law of the Unconscious Statistician (LO-

TUS), which allows the variable of integration to be changed using a push-forward mea-

sure. In this case the push-forward measure is the probability distribution µX . The third

equality is found by using a change of variables with the PDF in Equation 2.2.

Definition 2.26. Covariance measures how much two random variables vary against

one another. Jaynes et al. (2003) show that if both variables tend to have larger and

smaller values at the same points, then the covariance is positive. Similarly, if they have

their large and small values at opposite points, then the covariance is negative. The

covariance matrix is calculated for two random column vectors X and Y as

cov(X, Y ) = E(XY T )− E(X)E(Y )T (2.17)
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Moments (sometimes called raw moments) are quantitative measures of the shape of a

function. The n-th moment of a random variable about a point c is defined to be

µn(X) = E((X − c)n) (2.18)

If c = 0 and n = 1 then µ1 = E(X) = µ which is the mean of the random variable.

Central moments are measures of the shape of a random variable about the mean. Thus,

the n-th central moment is defined as

µ′n = E((X − E(X))n) (2.19)

The second central moment is called the variance and is also equal to the covariance of a

random variable with respect to itself.

Definition 2.27. Gaussian random variables or normally distributed random vari-

ables are d-dimensional real-valued random vectors that have a PDF of the form

p(x|µ,Σ) =
exp
(
−1

2
(x− µ)TΣ(x− µ)

)√
(2π)d det(Σ)

= N (x|µ,Σ)

(2.20)

where µ is called the mean/average and is also the first moment, and Σ is called the

covariance matrix/covariance and is also the second central moment.

A random variable X described by a PDF that is Gaussian with mean µ and covariance

Σ is written X ∼ N (µ,Σ).

2.3.3 Stochastic processes

Gallager (2013) defines a stochastic process to be a collection of related random variables.

The random variables are indexed by some set known as the index set. Often this set is

used to indicate time, which leads to the interpretation that a stochastic process models

the evolution of a probability distribution over time. There are numerous examples of

stochastic processes in science and engineering, for example the Poisson process and the

Wiener process.

Definition 2.28. Stochastic processes are sequences of random variables from the

same probability space (Ω,F , P ) to the same measure space, known as the state space
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(only the real space (Rn,B) is considered in this text), indexed by some set T . This is

denoted {Xt}t∈T

Stochastic processes are often grouped by their properties. Frequent qualities used are

the cardinality of the index set, cardinality of the state space, and relationship between

variables in the sequence. The cardinality generally refers to whether the space is discrete

or continuous. Due to the index set frequently representing time, discrete time stochastic

processes refer to processes with an index set containing a finite or countably infinite

number of elements. Conversely, if the index set contains an infinite number of elements,

the process is said to be a continuous time stochastic process. Similarly, discrete-valued

and continuous-valued processes refer to stochastic processes with finite (or countably

infinite) or infinite state spaces, respectively. Differences between sequences with different

relationships between elements generally form different classes of random variables.

Definition 2.29. Markov property (Durrett, 2012) A property of a stochastic process

where Xt is conditionally independent of Xs given Xr, where s < r < t. This means that

the current state contains all the required information about the future behaviour of the

stochastic process.

Discrete time processes with the Markov property are called Markov chains, while con-

tinuous time processes with the Markov property are called Markov processes.

Definition 2.30. Hidden Markov Model (HMM) (Bishop, 2013) Consider two

stochastic processes {Xt}t∈T and {Yt}t∈T on the same probability space (Ω,F , P ) and

indexed by the same set T . (Note: they need not map to real spaces of the same dimen-

sion as each other). The pair ({Xt}, {Yt})t∈T is called a HMM iff

1. {Xt}t∈T is an unobservable Markov chain with the transition PDF p(xt|xt−1)

2. Yn is conditionally independent on all previous states X1:n−1 given Xn.

p(yn|x1:n) = p(yn|xn) is known as the emission/observation PDF

2.4 Dynamic Bayesian network

This discussion is taken from Bishop (2013). Dynamic Bayesian Networks (DBNs) result

from the combination of probability theory and graph theory. This text uses them as a

useful tool to help the reader gain a better understanding of HMMs and the probability

calculations that follow from their filtering.
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Definition 2.31. Bayesian networks are probabilistic graphical models that repre-

sent conditional probability relationships between random variables using DAGs. In a

Bayesian network with variables x1:n where the joint would normally factorize using the

chain rule (see Equation 2.10), the Bayesian network specifies the factorization

p(x1:n) =
n∏
i=1

p(xi|Parents(xi)) (2.21)

where Parents(xi) represents a function that returns all random variables that are parents

of xi in the DAG. Often, Bayesian networks are sparse, thus this factorization is frequently

simpler than the chain rule alternative.

A recurring problem arises when using Bayesian networks of how to determine condi-

tional independence relationships. A method known as d-separation is the most common

method used to determine this (Koski and Noble, 2011). There are various ways of defin-

ing and describing d-separation. The method presented here comes from Scutari and

Denis (2014).

Definition 2.32. Conditional independence in Bayesian networks between a set

of nodes X and Y given a set of nodes Z implies ∃z ∈ Z such that

p(x, y|z) = p(x|z)p(y|z) ∀x ∈ X ∀y ∈ Y (2.22)

It is said that Z d-separates X and Y .

Definition 2.33. Colliding node Consider any three consecutive nodes a, b, and c on

a path P between two nodes x and y. b is a colliding node iff the nodes are configured:

a→ b← c

Definition 2.34. Blocked node Consider again any three consecutive nodes a, b, and

c on a path P between two nodes x and y. Also consider the set of given nodes Z. The

node b is said to be blocked iff

1. (b∪ descendant(b))∩Z = ∅ and b is a collider on P . Stated in words: that neither

b nor any descendant of b in Z and b is a collider on the path between x and y

2. b ∈ Z and b is not a collider on P

where descendant(b) is a function that returns the descendants of b.

Definition 2.35. Blocked path Consider a path P between two nodes x and y. P is

said to be blocked iff it contains any blocked nodes.
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Definition 2.36. d-separation Z d-separates X and Y iff every path from every node

in X to every node in Y is blocked by any node in Z.

Now that a firm foundation has been laid about Bayesian networks, it is possible to intro-

duce dynamic Bayseian networks. Dynamic Bayesian networks relate a set of stochastic

processes.

Example 2.2. Consider the dynamic Bayesian network seen in Figure 2.3. Notice that

this network shows three links of the relation between the three stochastic processes

{At}t∈N, {Bt}t∈N0 and {Ct}t∈N0 .

Figure 2.3: Three links in a dynamic Bayesian network (Lozenguez, 2016).

It is possible to simplify this diagram down to its most essential parts as seen in Figure 2.4.

This diagram contains all the required dependence relationships, without cluttering up

the diagram.

Figure 2.4: Simplified dynamic Bayesian network (Lozenguez, 2016).

Definition 2.37. Dynamic Bayesian Networks are defined by the tuple (GS, G→),

where GS = {{X(t,s)}(t,s)∈T×S} is the set of n stochastic processes indexed over S and

G→ is the set of conditional probability relations of the form p(x(t+1,i)|x(1:t,1:n)). If the

network obeys the Markov principle, then the probability relations are of the form:

p(x(t+1,i)|x(t,1:n)).

This text considers dynamic Bayesian network representations of an HMM that has been

adapted to have a deterministic input into the hidden states. The simplified dynamic

Bayesian network is shown in Figure 2.5.
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Figure 2.5: Dynamic Bayesian network of an adapted HMM. The diamond shape, indicates
that the variable is deterministic; clear circles indicate the hidden variables; and
the coloured circles indicate the observable variables. Adapted from Wilken
(2015).

2.5 Model predictive control

Figure 2.6: Example of MPC receding horizon approach. Adapted with permission from Yang,
Liu, et al. (2017).

Model predictive control (MPC) is a well-established for advanced process control tech-

nique. Kouvaritakis and Cannon (2015) define MPC to use a dynamic model of the

process, set point information and measurements from the system in an optimization

process to find the optimal future inputs to the system that obey specified constraints

on the system. MPC uses a receding horizon approach, so it only implements the first

optimal control step and then recomputes another set of optimal future inputs at the next
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control step (Seborg and Mellichamp, 2006). This is seen in Figure 2.6. MPC technology

has the ability to be used in multivariable systems with constraints, delays, interaction

and in cases where feedforward is needed.

ABB (2019) mentions several advantages of MPC controllers such as their ability to

reduce variation in the controlled variables. This allows operators to select set points

that are closer to the operation constraints, which usually results in a larger profit. It

also has the advantage of being able to control several interacting variables that would

otherwise have needed complex feedforward or decoupling technology, and it can work in

cascade with existing base-layer PID control. Using MPC allows operators to think about

the process on a higher level and allows them to interact with the system more intuitively

(ABB, 2019). The main advantage of MPC is its receding horizon approach. It optimizes

not only for the current time but also future times. MPC control also interacts very well

with state estimators in the implementation of Stochastic MPC (SMPC), and it is for

this reason — and those mentioned above — that MPC control is used in this project.

A linear MPC is used as the controller. The optimization problem is similar to the one

developed by Wilken (2015) and is stated as

min
u

P−1∑
i=0

(
eTi Qei + fTi Rfi

)
xk+1 = Axk +Buk

yk = Cxk +Duk

ek = r − yk
fk = usp − ui

Dyk + e ≥ 0 ∀ 0 ≤ k < P

(2.23)

where u is the vector of all input values uk; Q and R are diagonal tuning matrices that

allow relative weighting between the error vector of the outputs ek and the “error” vector

of the inputs fk; xk is the vector of internal system states at the k-th instant; yk is the

vector of system outputs at the k-th instant; A, B, C, and D are linear time-invariant

state space matrices for the system model; r and usp are the output and input reference

vectors, respectively; Dyk + e ≥ 0 ∀ 0 ≤ k < N is the set of linear constraints on the

output vectors defined by the constant matrix D and the constant vector e.

The structure of the problem in Equation 2.23 allows it to be formulated and solved as a

quadratic programming (QP) problem. Edgar et al. (2001) define QP problems to have

the structure:
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min
u

1

2
uTPu+ cTu

Hu+ b ≤ 0
(2.24)

where P , and H are constant matrices and c, and b are constant vectors. If P is positive

definite, then the QP problem becomes convex. It is no accident that Equation 2.23 can

be reformulated as a convex QP problem. Since, although convex QP problems are non-

linear, they have very efficient solvers because of the convexity. Convexity of Equation

2.23 is guaranteed if Q and R are positive definite, and since these are design variables,

they can be chosen as such (Edgar et al., 2001).

2.6 Algorithmic complexity and parallelization

This section by no means gives the reader a complete picture of the field of computer

science. It aims to give the reader enough knowledge on the specific aspects that interact

with this work. It is assumed that the reader is familiar with programming. Code

examples use the Python programming language.

2.6.1 Big O notation

Cormen et al. (2009) describe the commonly used method for defining the upper-limiting

behaviour/growth-rate of a function known as Big O notation. Its name comes from the

fact that the growth rate of a function is sometimes called the order of the function. The

notation used is: f(n) = O(g(n)), which means that the function f limits the function g

for large values of n.

Definition 2.38. Big O notation f(n) = O(g(n)) iff ∃M ∈ R, c ∈ R such that

|f(n)| ≤M(g(n)) ∀n ≥ c

From this definition, Lundqvist (2013) derives the following identities:

1. Constant identity : If g(n) = c; c ∈ R, then f(n) = 1

2. Product identity : If f1 = O(g1) and f2 = O(g2), then f1f2 = O(g1g2)
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When g consists of a sum of different terms, the one that grows the fastest will determine

f . The following list from Lundqvist (2013) shows common terms that appear in order

from fastest to slowest:

Table 2.1: Common terms, their names and Big O notation.

Name O(g)

Constant O(1)

Logarithmic O(log(n))

Linear O(n)

Quadratic O(n2)

Polynomial O(nc)

Exponential O(cn)

Factorial O(n!)

Example 2.3. Consider a function

g(n) = n+ 6 + 3n log
(
n7
)

One can firstly use the logarithm law log(nc) = c log(n) to get

O(g(n)) = n+ 6 + 21n log(n)

Then one can use the constant identity

O(g(n)) = n+ 1 + n log(n)

Using Table 2.1, one can then see that 1 is definitely not the fastest growing term. It is

also not possible for n to grow faster than n log(n), since the latter term is the product

of the former term with another expression that grows with n. Thus,

O(g(n)) = n log(n)

2.6.2 Complexity

When dealing with a computational problem, it is common to have different solutions.

It is often very helpful to be able to choose which solution/algorithm is best to solve

a particular problem. In computer science, algorithms are usually compared by the

resources required.

Computational devices usually have two main kinds of resources: processing power and
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memory. Processing power affects how much time the program will run for, and is

thus called the time complexity. The amount of memory the program need to do its

calculations determines how much space it needs and it thus called the space complexity.

Consider, for example, the task of sorting a list, and two sorting algorithms: bubble sort

and merge sort. Imagine using bubble sort on a list of numbers with 10 elements, and

using merge sort on a list of numbers with 100 elements. It would obviously be unfair

to compare the time or space complexity of the two algorithms in this case. Thus, when

comparing algorithms it makes sense to set a standard.

A commonly used standard characterizes the performance by the smallest worst-case big

O time/space the algorithm uses for a problem with size n. This method prevents bias in

the form of problem size, and allows the growth rate of required resources to be compared.

It does not allow one to trade-off the programming complexity of the algorithms with

the algorithms time/space performance. Also, big O complexity can often give distorted

results for small problem sizes. However, for most practical cases and for the cases in

this work, big O complexity is a suitable means of comparison.

Unit operations and unit space

Before a formal definition of complexity can be given, one first needs to define the smallest

amounts of computation and space. Unit space is the easier to measure since the problem

size n serves as a good metric.

Definition 2.39. Unit space Given an algorithm with input size n, we define unit space

as the amount of space that is as large as 1
n

of the input size

For example, if given a list of integers to sort, then the unit space would be the size of

an integer. Unit time is more complicated to define.

Definition 2.40. Unit time is the time taken to do an operation that could not be

divided up into smaller operations. For example, an arithmetic operation between two

operands, a boolean operation between two operands, an execution branch, or a memory

access.

Using Definition 2.39 and Definition 2.40, it becomes possible to formalize the concept

of time and space complexity.

Definition 2.41. Time complexity Given a function g(n) that counts the number of

unit operations an algorithm A performs in the worst-case run with problem size n, the
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time complexity TA(n) (or just T (n) when A is clear form the context) is defined to be

the smallest O(g).

It is important to note that it is the worst-case that is considered. It is also important

that one considers the smallest O(g), because as seen in Example 2.3, if g(n) = n + 6 +

21n log(n), then both f1(n) = n + 1 + n log(n) and f2(n) = n log(n) bound g, but the

smallest one is f2.

Definition 2.42. Space complexity Given a function g(n) that counts the number of

additional unit spaces an algorithm A requires in the worst-case run with problem size

n, the space complexity SA(n) (or just S(n) when A is clear form the context) is defined

to be the smallest O(g).

Note that space complexity looks for the smallest worst-case O(g), and also that it only

looks at the additional space required by the algorithm: the initial space taken up by the

arguments to the algorithm is not counted.

2.7 Parallel computing

Flynn (1972) designed a taxonomy of computer architectures based on how they handle

instructions and data. The taxonomy divides systems into four types: Single-Instruction

Single-Data (SISD), Single-Instruction Multiple-Data (SIMD), Multiple-Instruction Single-

Data (MISD), and Multiple-Instruction Multiple-Data (MIMD).

SISD architectures are the classic serial design where one instruction is executed on one

piece of data at a time. SISD corresponds to the architecture described by Neumann

(1945). This kind of architecture is often called a single-core processor.

MISD systems execute multiple instructions on a single piece of data. These architectures

make use of a pipeline. It is also used when a signal needs to be passed through multiple

frequency filters. MISD finds common use in systems that require high degrees of fault

tolerance, where the same instructions are executed on one piece of data so that any

computing faults are detected.

MIMD systems are the modern standard of computer hardware and is commonly called

multi-core architectures. In this architecture each core can execute different instructions

on different data sets. Most personal computers use this architecture. They have the

advantage over multiple SISD systems in that MIMD systems can readily share memory

space and thus can cooperate more effectively to solve a problem.
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SIMD systems perform the same instruction on multiple sets of data. GPGPUs are ex-

amples of SIMD systems. SIMD developed naturally from the repetitive linear algebra

operations required for graphics processing. Alternate applications of the SIMD architec-

ture have been found in biotechnology, finance and data science, where GPGPU is used to

speed-up the performance of computationally expensive calculations. The performance

improvement from parallelization is limited by Amdahl’s law.

Definition 2.43. Amdahl’s law (Amdahl, 1967) Given a program which allows a frac-

tion p to be parallelized and a system with n processors, the maximum speed-up S that

can be achieved is given by

S =
1

p
n

+ 1− p
(2.25)

2.7.1 CUDA

CUDA is a parallel computing API that gives users the ability to write programs that can

execute on Nvidia’s GPU architectures — which are SIMD systems (Tuomanen, 2018).

It is written for the C++ programming language, but has many wrappers that allow it to

be used in other programming languages. Numba is a Python library that contains one

such wrapping. Understanding CUDA’s programming model is important when designing

algorithms for this architecture.

Sanders and Kandrot (2010) describes the CUDA architecture in terms of ”kernels”,

which are functions that can be called numerous times (single-instruction) with different

parameters (multiple-data) and executed in parallel. Each instance of a running kernel

is called a thread. Each thread has its own section of memory. Threads are grouped

into ”thread blocks” or just ”blocks”. Thread blocks can be structured to be 1-, 2-, or

3-dimensional. For example, a 2-dimensional thread block with shape (4, 9) will have

36 threads running the same kernel with different data in parallel. Each thread in a

block is executed simultaneously on the same streaming multiprocessor. Depending on

the specific hardware implementation, the maximum number of threads that can run

simultaneously in a block may differ. Each block also has an amount of memory that is

shared between all threads in that block.

Sanders and Kandrot (2010) states that one can also have multiple thread blocks, which

form a ”block grid” or just a ”grid”. This grid can also be 1-, 2-, or 3-dimensional, but

all blocks in the grid must have the same shape as each other. Blocks in the grid are

executed on different GPU multiprocessors. All threads in a grid execute the same kernel.

There can be multiple grids awaiting execution on the GPU each with a different kernel

to be executed.
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All threads across all grids have access to a global memory space. However, it is important

to note that repeated accessing of this memory by kernels can reduce the performance of

the program (Sanders and Kandrot, 2010). There is a section of memory that all threads

can read, but not write to. This section of memory can only be written to using the

CUDA API outside of a kernel function. Using this memory over global memory can

improve the performance of a program. Figure 2.7 provides a useful visualization of the

above concepts.

Figure 2.7: Thread, block and grid structure together with the memory hierarchy (Nvidia,
2019).

2.7.2 Algorithmic complexity

Definition 2.39 and Definition 2.40 are defined generally enough that they can be used

for both SISD systems and SIMD systems. Kruskal et al. (1990) find that it is frequently

useful to introduce a second free parameter for the number of processors running in

parallel p, giving the problem-independent time/space complexity T (n, p)/S(n, p). The
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problem-dependant time/space complexity is derived by finding the function p(n), which

frequently has the property

O(p(n)) =

1 if n ≤ pmax

n otherwise
(2.26)

where pmax is the maximum number of processors that can run in parallel. Speed-up SR
is defined to be the ratio between the runtime for the serial algorithm and the runtime for

the parallel algorithm. The theoretical speed-up SO is defined as the ratio between the

time complexity of the serial algorithm and the time complexity of the parallel algorithm.
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3 State-of-the-art: Parallelized state

estimation

This section aims to give an overview of what has been done in this field and to give high-

order synthesis of the current research landscape. This process allows the identification

of potential research avenues for this work and also allows this work to be contextualized

by what has been done.

3.1 Kalman filter

A linear state space model with additive Gaussian state and measurement noise is given

by

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(3.1)

such that wk ∼ N (0,W ) and vk ∼ N (0, V ), and W and V are the state and measure-

ment covariance respectively. Welch and G Bishop (2001) states that the estimator that

minimizes the expected value of the error covariance

E(eke
T
k )

ek = xk − x̂k
(3.2)

where xk is the true state and x̂k is the predicted state, has a closed form solution, known

as the Kalman filter (Kalman, 1960). It uses recursive Bayesian prediction and update

steps to track the states. It models the estimate as a Gaussian distribution with mean

µk = x̂k and covariance Σk. The prediction step moves the state estimate through one

discrete time step given no new measurement information:
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µk+1 = Aµk +Buk

Σk+1 = AΣkA
T +W

(3.3)

The update step compares the likelihood of current state estimate against new measure-

ment information yk to correct the estimate:

Kk = ΣkC
T (CΣkC

T + V )−1

µk+1 = µk +Kk(yk − Cµk)

Σk+1 = (T −KkC)Σk

(3.4)

where Kk is commonly known as the Kalman gain and is intuitively represents how much

more the measurement is trusted over the model at a particular time step.

Cisneros-Magana, Medina, and Dinavahi (2013) use a parallel Kalman filter implemented

on CUDA and CUDA BLAS to solve a state estimation of harmonics in power generation

systems. They test their system against a simulated power system and analysed the

accuracy by comparing the discrete Fourier transforms of both the true signal and the

estimated one. Their results show that their GPGPU accelerated algorithm speeds up

the computational time taken by the state estimation algorithm. They use the GPGPU

algorithm developed by Huang et al. (2011). The algorithm makes use of the fact that the

Kalman filter requires 18 matrix operations to be performed on the prediction and update

steps. They found that the matrix inversion and matrix multiplication steps take the most

time on CPU architectures and sought of overcome this bottleneck, and use the fact that

GPU architectures are designed to perform fast linear algebra calculations to speed up this

filter. They report that the computation time of the Kalman filter increases linearly on

CPU architectures and increases sub-linearly with GPU acceleration. Zhaofeng Bai and

Yuehong Qiu (2015) come to similar conclusions and Xu et al. (2016) further optimizes

their technique. Xu et al. (2016) use GPGPU to speed up Kalman filters for systems

with up to five hundred states. They also perform similar analysis using a time domain

state estimation filter and find similar results (Cisneros-Magana, Medina, Dinavahi, and

Ramos-Paz, 2018).

Several methods exist for reducing the complexity of large-scale dynamic state estimation

according to Karimipour and Dinavahi (2015). For example, Jalili-Marandi and Dinavahi

(2010), Gomez-Quiles et al. (2012), and Xie et al. (2012) use dimensionality reduction

and/or decoupling methods. However, Karimipour and Dinavahi (2015) finds that these

techniques sacrifice accuracy for computational speed and suggest using a GPGPU ac-

celerated extended Kalman filter to combat the issues relating to accuracy and compu-
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tational speed. Extended Kalman filters offer improved accuracy over Kalman filters

because they make use of a non-linear model of the system which can better describe the

dynamics compared to a linear model.

Karimipour and Dinavahi (2015) describe their filtering process as

1. Linearize the nonlinear model

xk+1 = f(xk) + wk

yk = h(xk) + vk
(3.5)

about the initial operating point x0 to obtain

xk+1 = Fkxk + akwk

yk = Hkxk + bk + vk
(3.6)

2. Identify the parameters using Holt’s exponential smoothing technique

Fk = α(1 + β)I

ak = (1 + β)(1− α)x̄k − βγk−1 + (1 + β)ξk−1

γk = αx̂k + (1− α)x̄k

ξk = β(γk − γk−1) + (1− β)ξk−1

(3.7)

where α and β are smoothing parameters and x̄k and x̂k are the predicted and

updated state estimates respectively. A similar process is followed for Hk and bk.

3. Use the regular Kalman filter method to predict and update the state estimates

They use the GPGPU to perform parameter updates and the regular Kalman prediction

and updates in parallel, and to perform many of the required linear algebra operations

to further speed-up their algorithm. Their results show an up to 15 times speed-up for

a power system with 4992 buses. They find that their method has a 99.9 % accuracy

for voltage states and a 85 % accuracy for phase angle states. They do not compare this

accuracy with a method that uses a complexity reduction technique.

3.2 Weighted least squares

Weighted least squares estimators are popular in state estimation of power systems.

They are different from the other estimators that are considered, because they are static
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estimators. This means that they attempt to estimate the state of a system at steady

state. The relationship between the Kalman filter and the weighted least squares filter is

that in Equation 3.1 (Namrata, 2005):

A = I

B = 0

D = 0

(3.8)

this effectively means that the state does not change over time and that inputs are

constant or have no effect on the system.

Xia et al. (2017) observe that typical SCADA systems have an update time in the order

of milliseconds, while typical state estimation systems have update times in the order of a

second. They find that improving the state estimation update time improves performance.

Numerous algorithmic techniques have been developed to lower the computational load

of state estimation on CPU systems as found by Guo et al. (2013); Gol and Abur (2015);

and Garcia et al. (1979).

Gomez-Exposito et al. (2011) and Korres (2011) use a method similar to system decou-

pling mentioned for Kalman filters. They, along with Xiong and Grijalva (2016) and

Minot et al. (2016), break the model up into relatively independent parts. Zheng et al.

(2017) and Kekatos and Giannakis (2013) use a similar method and perform distributed

state estimation on a multi-core computing architecture. However, the speed is still lim-

ited by the state estimation subsystems and these methods do not improve performance

on computational level.

Jalili-Marandi and Dinavahi (2010) and Debnath et al. (2011) have had success with using

GPGPU computational architectures for problems with similar levels of computational

load. While, Xia et al. (2017) develop a GPGPU accelerated weighted least squares state

estimator that decouples some Jacobian calculations such that they can be parallelized.

They also parallelize the large matrix multiplication operations for power systems with

as many as 147841 nodes. They also parallelize the back-substitution operations after

an LU-decomposition by using a dependency DAG to identify independent parallelizable

subtasks. They make use of the CUDA architecture and report that GPU acceleration

performance increases as problem size increases. This is due to the extra load of copying

data to the GPU having less of an effect.

The use of GPGPU on a weighted least squares state estimator with a dishonest Gauss-

Newton evaluation is investigated by Rahman and Venayagamoorthy (2016). Dishonest

30



Gauss-Newton evaluation keeps the Jacobian matrix constant, which significantly speeds

up the processing time at the cost of reduced accuracy. They use CUDA BLAS to perform

matrix multiplications for a system with 599 states. They test their state estimator on

a 68-bus and 118-bus non-linear model of a power system. Their state estimator runs in

the order of 200 ms per iteration and observe that the method is 97 % – 99 % accurate

this result is comparable to the result stated earlier for the EKF by Karimipour and

Dinavahi (2015) who had a similar accuracy for voltage measurements for a 4992-bus

system. However, Rahman and Venayagamoorthy (2016) do not give the model of the

power system they use and so it is not possible to determine the level of non-linearity in

their model. They also do not give the parameters for the noise.

3.3 Particle filter

Particle filters attempt to track the distribution p(xk|y0:k) by using samples of estimated

distribution p(x̂k|y0:k). Particle filters can filter nonlinear multi-modal systems with any

kind of noise distributions. The system description is given by:

xk+1 = f(xk, uk) + wk

yk = g(xk, uk) + vk
(3.9)

such that wk and vk are drawn from the state p(wk) and measurement p(vk) noise dis-

tributions respectively. The particle filter relies on knowing the observation distribution

p(yk|xk) and the initial distribution p(x0).

Tulsyan et al. (2016) explain that in order to maintain the same level of accuracy, par-

ticle filters require significantly more particles as the number of state dimensions or the

distribution complexity increases. However, increasing the number of particles increases

the computational load which makes real-time applications difficult.

Particle filters operate by performing prediction, update and resampling steps as follows

(Ristic et al., 2003):

1. Generate N samples q0,i with equal weights w0,i = 1
N

from the initial distribution

p(x0)

2. Proceed to Prediction (step 3) if no measurements are available or Update (step 6)

if there are measurements
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3. Prediction aims to transform the current estimate p(x̂k|y0:k) to the future estimate

p(x̂k+1|y0:k)

4. Update the samples:

qk+1,i = f(qk,i, uk) (3.10)

Go to step 2

5. Update aims to transform the prior p(x̂k|y0:k−1) into the posterior p(x̂k|y0:k)

6. Given the measurement yk, compute new unnormalized weights

vk,i = wk,ip(yk|qk,i) (3.11)

7. Normalize the weights

v =
∑
i

vk,i

wk+1,i =
vk,i
v

(3.12)

8. If the particles are degenerating, go to Resampling (step 9) otherwise go to step 2.

9. Resampling is important to prevent particle weight degeneration, which is when a

few particles have high weights and most of the particles have low weights (Nicely

and Wells, 2019).

10. Draw N particles rk,i from the current set of particles qk,i according to their weights

wk,i

11. Set qk,i = rk,i and wk,i = 1
N

Go to step 2

Sowman et al. (2016) use GPGPU to accelerate a particle filter that tracks the NOx

and NH3 concentrations inside a selective catalytic reduction reactor of a diesel exhaust

system. Hsieh and Wang (2010a), Hsieh and Wang (2010b), and H Zhang et al. (2015)

have implemented an extended Kalman filter to solve the same problem, but they all

assume that ammonia sensors are available, however, according to Sowman et al. (2016),

ammonia sensors are both very expensive and not production ready. Also, the current

CNOx sensors are cross-sensitive to ammonia and this cross-sensitivity is affected by cat-

alyst age/degradation and highly sensitive to catalyst temperature. This means that the

ammonia effect cannot be measured nor ignored. Thus, Sowman et al. (2016) propose
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the use of a particle filter. This requires the filter to be run in real-time applications,

which is solved by the use of GPGPU.

Distributed particle filtering techniques for multi-core architectures are developed by

Chitchian et al. (2013). It is important to note that unlike Sowman et al. (2016), they

are not parallelizing a particle filter, but instead designing a particle filtering algorithm

that is able to run on a distributed system. They do this by having each core run a small

particle filter called a sub-filter and then investigate ways for the cores to share particles.

They do get up to 64 times speed-up for filters with 4 million particles.

A GPGPU accelerated particle filter that uses measurements from a depth sensor is de-

scribed by Ikoma (2014) to detect the location the hands and arms of a driver in a car.

They require the speed-up for a real-time implementation of the detection algorithm for

use in the design of safety support systems. They observe that the GPU based-particle

filter can achieve a similar frame rate as its CPU counterpart, but with 65 times more

particles. This allows their filter’s accuracy to improve dramatically. Their implementa-

tion runs on CUDA. They use a particle filter because it has a constant time complexity

update step and because many operations in a particle filter are performed on each parti-

cle independently. This makes parallelization straightforward and very beneficial. They

find that after parallelization the resampling step poses the biggest bottleneck, since it

cannot be parallelized easily.

Nicely and Wells (2019) explore the parallelization of the resampling step. The need for

particle resampling occurs because during each update step, the covariance of the particle

weights increases, leading to situations described above where most particles have very

low weights. This problem was first solved by Gordon et al. (1993). Resampling removes

particles with low weights and replaces them with particles with higher weights. This

does however create a problem of sample impoverishment (where most particles are in

the same states) when the process and measurement noise covariances are low.

Nicely and Wells (2019) look into parallelizing the stratified and systematic resampling

approaches. They prefer these over the more easily parallelizable Metropolis algorithm

because they are unbiased. It is important to note that these algorithms are not purely

random, but do provide a more uniform distribution of random numbers (Hol et al.,

2004).

Algorithm 3.1. Stratified resampling

def stratified_resample(weights):

N = len(weights)

c = numpy.cumsum(weights)
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indx = []

k = 0

for i in range(N):

u = (i + numpy.random.rand())/N

while c[k] < u:

k += 1

indx.append(k)

return indx

Algorithm 3.1 shows the stratified sampling algorithm by Nicely and Wells (2019). It

runs in linear time (O(n)) due to the numpy.cumsum and for-loop both being O(n). The

systematic resampling technique shown in Algorithm 3.2 is very similar, except only one

random number is generated.

Algorithm 3.2. Systematic resampling

def systematic_resample(weights):

N = len(weights)

c = numpy.cumsum(weights)

indx = []

k = 0

r = numpy.random.rand()

for i in range(N):

u = (i + r)/N

while c[k] < u:

k += 1

indx.append(k)

return indx

Their parallel algorithm is work efficient, and they report up to 32 times speed-up using

the parallel algorithm compared with the serial implementation, and at least 12 times

faster than naive Metropolis resampling. However, it is at least twice as slow as a well-

designed coalesced Metropolis filter with the same accuracy.
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3.4 Progressive Gaussian filter

The progressive Gaussian filter relies on preforming recursive Bayesian updates to esti-

mate hidden states in a hidden Markov model. The filter approximates the prior and

posterior as Gaussian distributions. From the work of Yang, Zhao, et al. (2019), this

implies that the filter can only maintain a unimodal approximation of the distribution,

unlike particle filters and Gaussian sum based filters which can handle multimodal dis-

tributions. The filter uses a particle-based homotopy continuation approach for update

step.

The description of the operation of a progressive Gaussian filter is built from Hanebeck

(2013), Steinbring and Hanebeck (2015) and Yang, Zhao, et al. (2019). Given the prior

p(xk|y1:k−1) ∼ N (µk,Σk), the current measurement yk and the likelihood p(yk|xk), the

posterior p(xk|y1:k) can be determined using Bayes’ rule as follows:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1) (3.13)

However, doing this with particles samples from the prior can lead to a posterior approx-

imation with low weights. Thus, a homotopy continuation is used. For this, Equation

3.13 is modified to

p(xk|y1:k, γ) ∝ p(yk|xk)γp(xk|y1:k−1) (3.14)

From this, one can derive a recursive formula for p(xk|y1:k, γ+∆γ) in terms of p(xk|y1:k, γ)

to be

p(xk|y1:k, γ + ∆γ) ∝ p(yk|xk)∆γp(xk|y1:k, γ) (3.15)

It is important to note that when γ = 0 that the new measurement is not taken into

account at all, but when γ = 1, then we get Equation 3.13. We then proceed with the

homotopy continuation by following steps:

1. Set γ = 0

2. Sample p(xk|y1:k, γ) ∼ N (µk,γ,Σk,γ) with N equally weighted samples xk,iγ to form

a Dirac mixture approximation
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p(xk|y1:k, γ) ≈ 1

N

∑
δ(xk − xk,iγ ) (3.16)

3. Update the weights of the new approximation to γ + ∆γ using Equation 3.15 by

multiplying them by p(yk|xk,iγ )∆γ, where ∆ is a tuning parameter.

4. Calculate the mean and sample covariance of the samples

µk,γ+∆γ =
1

N

∑
i

p(yk|xk,iγ )∆γxk,iγ

Σk,γ+∆γ =
1

N − 1

∑
i

(xk,iγ − µk,γ+∆γ)(xk,iγ − µk,γ+∆γ)
T

(3.17)

5. Repeat Step 2 with the new Gaussian parameters (µk,γ+∆γ,Σk,γ+∆γ) and γ until

γ = 1.

This method prevents the problem of particle weight degradation, by applying the update

slowly.

Steinbring and Hanebeck (2015) uses GPGPU to accelerate a progressive Gaussian filter

with application to object tracking with multiple sensory devices. They detail the need

to use GPGPU due to the fact that modern object tracking uses measurements from

multiple depth sensing devices. This creates problems because multiple update steps are

done at once. For linear estimators, like Kalman filters, this can be parallelized very

easily due to the nature of the estimator. However, several nonlinear estimators have the

problem of a collapsing covariance matrix when multiple update steps are performed in

parallel. They considered particle filters, but believed that the resampling step as well

as the need for large amounts of particles to avoid divergence would be too slow. This

result is also found by Hendeby et al. (2010), who also stated that particle filters require

parallel random number generation which is slow. This has since been alleviated by

Nvidia’s cuRAND, which allows the generation of random numbers in parallel (Nvidia,

2015). However, results by L Zhang et al. (2012) still find that for a state space with 22

dimensions that particle filter is too slow for real time image tracking applications. Thus,

Steinbring and Hanebeck (2015) opted to use the progressive Gaussian filter described

by Hanebeck (2013), which also uses a particle based approach, but is a bit more robust.

They found that the GPGPU accelerated progressive Gaussian filter allowed for real time

tracking.
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Methods
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4 Bioreactor model
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Figure 4.1: Closed loop code simulation: A diagram showing how the various parts of the
simulation work together.

This part guides the reader through the method that is followed to develop the parts of

the closed loop simulation shown in Figure 4.1. It begins by describing and justifying the

bioreactor model that is used in the closed loop simulation, and then the MPC controller

is defined. The part concludes by describing the GPGPU accelerated state estimation

algorithm.

The bioreactor has two code aspects: the state transition function (f); and the state

observation function (g). Noise generation code is used by both the model and the filter.

Later sections will detail the code implementations of the state estimators.

Delimitation 4.1. Bioreactor: System models can be quantified according to the sys-

tem’s complexity C and dynamics {τi}. An all-encompassing investigation would ideally

sweep across the entire domains of these parameters. In this text, only a single system is

analysed. This makes the results application specific, but allows the investigation to be

completed in the limited time.
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Delimitation 4.2. Simulated model: While the model is based on real world exper-

imentation, this texts only considers the use of a simulated model. This speeds up the

gathering of results and allows for faster testing of the software.

4.1 Model description

The bioreactor is modelled using results from Swart (2019) and the model developed by

Iplik (2017). Swart (2019) performed experiments on a lab-scale fermenter that ferments

glucose to fumaric acid using immobilized Rhizopus Oryzae. The fungus also produces

unwanted ethanol if it needs to remove large amounts of glucose. A dynamic model of

the system is derived by using first principles modelling, and by selecting kinetics based

on the results found by Swart (2019).

The model’s kinetics have two different forms to represent the two regimes of operation:

a high nitrogen batch environment for the growth of the biomass, and a low nitrogen

continuous production phase. For the growth phase, Swart (2019) reports: complete

consumption of 3.00 g L−1 glucose in 25 h; with a biomass yield of 0.20 g g−1; a fumaric

acid yield of 0.06 g g−1; and an ethanol yield of 0.20 g g−1.

Swart (2019) reports that for the production phase: glucose concentration tends to sta-

bilize around 0.280 g L−1; fumaric acid production rate remains more or less constant at

0.250 grams of fumaric acid per gram of biomass per hour; maximum ethanol production

is 0.025 grams ethanol per gram biomass per hour; the fungus can consume 0.400 grams

of glucose per gram of biomass per hour before ethanol overflow occurs; the fungus can

consume 0.500 grams of glucose per gram of biomass per hour before glucose overflow

occurs.

These results will be used to develop the kinetics for the model, with the change that

the times will be sped up by a factor of 60 so that the dynamics are faster. This gives

a better system to compare CPU and GPU performance on since the time scale of the

control calculations is on the order of seconds.
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4.2 Nonlinear model

This section refers to the equations found in Table 4.1. Equation #1 through Equation #5 1 represent ordinary CSTR concentration

balances with the relevant terms set to zero for glucose (G), biomass (X), fumaric acid (FA), ethanol (E), and the homoeostasis

enzyme (H), respectively. The symbols CM and rM refer to the concentration and rate of formation of compound M , respectively. All

concentrations are in mol L−1, and all rates are in mol L−1 min−1. FG,in, CG,in, Fout and V refer to the glucose feed rate, glucose feed

concentration, flow rate out of the reactor, and volume of the reactor (L), respectively. All feed rates are in L min−1. Equation #6 is so

defined because the volume of the system is kept constant. Fm is the mineral solution feed rate.

Table 4.1: Model equations.

# Equations Inputs Outputs Parameters

Mole balances

1) dCG
dt

= (FG,inCG,in − FoutCG + rG)/V FG,in Fout, CG, rG CG,in, V

2) dCX
dt

= rX/V CX , rX

3) dCFA
dt

= (−FoutCFA + rFA)/V CFA, rFA

4) dCE
dt

= (−FoutCE + rE)/V CE, rE

5) dCh
dt

= rh/V Ch, rh

6) Fout = Fm + FG,in Fm

Five bacterial reactions are modelled. These reactions are seen in Equation 4.1 through Equation 4.5. The first two reactions (Equation

4.1 and Equation 4.2) are fermentation reactions and show the incomplete breakdown of glucose to fermentation products. The third

reaction (Equation 4.3) condenses the relevant reactants and product of the TCA cycle into a single reaction. The fourth reaction

1#n is used to represent equations from Table 4.1
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(Equation 4.4) takes place in the mitochondria of the bacteria where cellular respiration occurs. The last reaction (Equation 4.5) shows

how the bacteria produces more of itself by combining smaller molecules into larger ones that allow it to undergo mitosis.

Glucose + 2 CO2 + 6 ATP→ 2 FA + 2 H2O (Fermenetation) (4.1)

Glucose→ 2 Ethanol + 2 CO2 + 2 ATP (Fermenetation) (4.2)

Glucose→ 6 CO2 + 12 NADH + 4 ATP (TCA cycle) (4.3)

NADH +
1

2
O2 →

7

3
ATP (Resperation) (4.4)

Glucose + γ ATP→ 6 Biomass + αCO2 + β NADH (Anabolism) (4.5)

Equation #7 through Equation #17 define the rates for these reactions for the batch phase of the reactor. The CG
k+CG

terms in Equation

#7 through Equation #10 are Monod terms for substrate inhibition. Biomass requires energy/ATP to reproduce, and it also requires

energy to maintain its current state. This maintenance energy requirement θ is dependent on the concentrations and other factors in the

cell. The cell also makes use of NAD+ and NADH for charge transfer. The cell does not allow the build up of energy or charged molecules

which are consumed and produced as seen in Equation 4.1 through Equation 4.5. Equation #11 and Equation #12 are the energy/ATP

and redox/NADH balances, respectively.
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# Equations Inputs Outputs Parameters

Batch rates

7) rFA,f = kFA,max( CG
kFA+CG

) rFA,f kFA,max, kFA

8) rE,f = kE,max( CG
kE+CG

) rE,f kE,max, kE

9) rX,f = kX,max( CG
kX+CG

) rX,f kX,max, kX

10) rθ = kθ,max( CG
kθ+CG

) rθ kθ,max, kθ

11) 6rFA,f + 6γrX,f = 4rt + 7
3
rr + 2rE,f rt, rr γ

12) rr = 12rt + 6βrX,f β

13) rG,b = −(rFA,f + rE,f + rX,f + rt)CxV rG,b

14) rX,b = 6rX,fCxV rX,b

15) rFA,b = 2rFA,fCxV rFA,b

16) rE,b = 2rE,fCxV rE,b

17) rh,b = 0 rh,b

Equation #18 through Equation #24 show the homoeostatic rates in the low nitrogen environment. The biomass production rate in this

phase is assumed to be zero as not enough nitrogen is present to allow growth of the biomass. The cell is modelled to attempt to keep

the glucose concentration at 0.28 g L−1. It operates similar to a PI controller. This idea has been investigated by Mairet (2018) and Veen

et al. (2019). The concentration of an enzyme h acts as the integral of the error. Equation #19 shows this by defining the rate to be the

current error between the current glucose concentration and the desired homoeostatic concentration Chs. Using this, the model has the

ability to determine the desired glucose consumption rate to bring the cell into homoeostasis.

The required glucose consumption rate is given by Equation #20. Depending on how large this rate is, the cell uses various mechanisms to

consume glucose. The first mechanism is through fumaric acid production. Equation #21 shows the fumaric acid production rate, which

is constant at high enough glucose concentrations. The second mechanism is a cellular maintenance mechanism rθ = rtheta,r + rtheta,q(the
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cell changes how efficient it is at consuming glucose thus changing this rate). Equation #22 shows this mechanism. These two mechanisms

are only able to consume 0.4 grams of glucose per gram of biomass per hour, as found by Swart (2019).

Once this limit is reached the cell begins producing ethanol to dissipate the glucose (Equation #23). The rate at which the cell can

produce ethanol is limited as well, and once this limit rE,max, the cell further adapts its maintenance dissipation rate to consume glucose

as seen in Equation #24. This is limited as well as found by Swart (2019), and all these mechanisms can only consume 0.5 grams of

glucose per gram of biomass per hour. Once this limit is reached glucose overflow begins, which means that rG, h in Equation #25 is

smaller than the rate of glucose addition and the cell is no longer able to maintain homoeostasis.

Equation #26 through Equation #30 serve to select the regime (growth or production) and is based on a fictitious input B to the model.
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# Equations Inputs Outputs Parameters

Homoeostatic rates

18) rX,h = 0 rX,h

19) rh,h = Chs − CG rh,h Chs

20) rG,r = θr,maxCxV − (Kprh,h +KICh) rG,r θr,max, Kp, KI

21) rFA,h = rFA,h,maxCxV ( CG
kFA,h+CG

) rFA,h rFA,h,max, kFA,h

22) rθ,r = bounded [rG,r; 0; θr,maxCxV ] rθ,r

23) rE,h = bounded [rθ,r − θr,maxCxV ; 0; rE,h,maxCxV ] rE,h rE,h,max

24) rθ,q = bounded [rθ,r − θr,maxCxV − rE,h; 0; θq,maxCxV ] rθ,q θq,max

25) rG,h = −(rFA,h
MMFA

MMG
+ rE,h

MME

MMG
+ rθ,r + rθ,q) rG,h MMFA, MMG, MME

where bounded [e; l; u] takes the value of e provided that l < e < u, otherwise, it takes the value of l if e < l or u if e > u

Rate switching

26) rG =

rG,b if B

rG,h otherwise
B

27) rX =

rX,b if B

rX,h otherwise

28) rFA =

rFA,b if B

rFA,h otherwise

29) rE =

rE,b if B

rE,h otherwise

30) rh =

rh,b if B

rh,h otherwise
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Table 4.2: Values for model parameters.

Parameter Parameter

Cg,in
5

180
mol L−1 V 1 L

kFA,max
1

230
mol L−1 min−1 kFA 1× 10−3 mol L−1

kE,max
1
12

mol L−1 min−1 kE 1× 10−3 mol L−1

kX,max
1
21

mol L−1 min−1 kX 1× 10−3 mol L−1

kθ,max 1.1 mol L−1 min−1 kθ 1× 10−3 mol L−1

γ 1.8 β 0.1

Chs
0.28
180

mol L−1 θr,max 0.0205 mol L−1 min−1

Kp
369
56

KI 1× 10−2 min−1

rFA,h,max
123
2320

mol L−1 min−1 kFA,h 1× 10−5 mol L−1

rE,h,max
123
9200

mol L−1 min−1 θq,max 0.010 25 mol L−1 min−1

MMFA 116 g mol−1 MMG 180 g mol−1

MME 46 g mol−1

4.3 Noise

In order to take into account modelling inaccuracies and instrumentation noise, state and

measurement noise are added to the differentials and outputs, respectively.

Delimitation 4.3. Gaussian sum noise: Many distributions can be chosen to rep-

resent the noise distributions. This text uses the Gaussian sum distribution, because

any distribution can be approximated with arbitrary accuracy by using a Gaussian sum

distribution.

The Gaussian sum noise distributions take the form of ε-mixture distributions described

by Plataniotis et al. (1997):

wk, vk ∼ NΣ(x|µε,Σε)

= (1− ε)N (x|µ1,Σ1) + εN (x|µ2,Σ2)

λ =
σ̄(Σ2)

σ̄(Σ1)

(4.6)

where ε ∈ [0, 0.25] and λ ∈ [10, 10000]. The state noise for the model given by
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µ1 = µ2 = 0

Σ1 = diag
([

1.0 · 10−4 1.0 · 10−7 1.0 · 10−3 1.0 · 10−3 1.0 · 10−7
])

Σ2 = λΣ1

ε = 0.25

λ = 100

(4.7)

Delimitation 4.4. Noise complexity: Given a measure of complexity for random

variables E, for example Kullback—Leibler divergence or differential entropy, one could

investigate how distributions with different values for E affects the results. Varying noise

complexity serves to demonstrate performance differences of filters with varying numbers

of particles. Due to this not being a focus of this investigation, this text only deals with

a single noise distribution instance.

The measurement noise for the model is given by

µ1 =
[
0.0001 0.0

]
µ2 =

[
0.0 −0.0001

]
Σ1 = diag

([
6.0 · 10−2 8.0 · 10−2

])
Σ2 = diag

([
500 700

])
ε = 0.15

(4.8)
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5 Model predictive control

The MPC will be modelled after a deterministic reformulation of a stochastic MPC de-

veloped by Wilken (2015). Given the chance constrained formulation

min
u

E

[
1

2

P∑
k=1

(
xTkQxk + uTkRuk

)]
xk+1 = Axk +Buk

E [Dxk + e] ≥ 0

P [Dxk + e ≥ 0] ≥ pl

(5.1)

where P [condition] is the probability that condition evaluates as true. Using the principle

of separation, Gaussian identities and the Mahalanobis distance (which measures how

many standard deviations a point P is from a distribution D), Wilken (2015) shows that

the stochastic MPC can be reformulated into a state estimator and a deterministic MPC:

min
u

1

2

P∑
k=1

(
µTkQµk + uTkRuk

)
µk+1 = Aµk +Buk

Σk+1 = AΣkA
T +W

Dµk + e ≥ c
√

diag (DΣkDT )

(5.2)

where µ0 and Σ0 are the mean and covariance from the state estimator; W is the covari-

ance of the state noise; diag (M) pulls a n× 1 vector m from the n× n matrix M , that

consists of the main diagonal elements of M ; the square root is performed element-wise;

and c is a constant such that P
[
χ2
No
≤ c2

]
= pl where χ2

Nx
is the chi squared distribution

with No degrees of freedom and No is the number of outputs.
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5.1 Linearisation

Equation 5.1 shows that a linear model of the system is needed. To this end, nonlinear

models can be linearized around an operating point Wop = (Xop, Uop) made up of a state

and an input vector around which the linearisation should take place. A system of the

form

ẋ = f(x, u)

y = g(x, u)
(5.3)

can be linearized using a first order Taylor series approximation:

ẋ = Jf (x)

∣∣∣∣
Wop

(x−Xop) + Jf (u)

∣∣∣∣
Wop

(u− Uop) + f(Xop, Uop)

y = Jg(x)

∣∣∣∣
Wop

(x−Xop) + Jg(u)

∣∣∣∣
Wop

(u− Uop) + g(Xop, Uop)

(5.4)

where

Jh(w) =


∂h1
∂w1

∣∣∣
Wop

· · · ∂h1
∂wm

∣∣∣
Wop

...
...

∂hn
∂w1

∣∣∣
Wop

· · · ∂hn
∂wm

∣∣∣
Wop

 (5.5)

In order to obtain a state space description, we choose Wop to be at a steady state of the

system Wss such that

f(Xop, Uop) = ẋ

∣∣∣∣
Wss

= 0 (5.6)

After noting that Yop = g(Xop, Uop), the above can be rewritten in terms of deviation

variables
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ẋ′ = Acx
′ +Bcu

′

y′ = Ccx
′ +Dcu

′

x′ = x−Xop

u′ = u− Uop
y′ = y − Yop

(5.7)

However, this is a continuous system and a discrete linear approximation is required. To

complete the process, a zero order hold is applied using scipy.signal.cont2discrete,

this gives the state space equations in terms of deviation variables as:

xk+1 = Axk +Buk

yk = Cxk +Duk
(5.8)

5.2 Changes to the Wilken (2015) implementation

This section documents improvements to the reformulated MPC implementation by

Wilken (2015). MPC formulations by Rawlings and Mayne (2009) and Seborg and Mel-

lichamp (2006) are used to guide the design.

5.2.1 Outputs

The implementation by Wilken (2015) forces the user to control all the states, which

— given that there are often more states than inputs — makes the control problem ill-

posed. Introducing the output equation for the state space model allows the outputs to

be tracked (Rawlings and Mayne, 2009). This requires the following equality constraints

to be implemented

yk = Cµk +Duk

ek = r − yk
(5.9)

where r is the set point.
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5.2.2 Prediction and control horizons

It is often useful to have a separate control horizon M and prediction horizon P as it

gives better control over the aggressiveness of the controller: the closer M is to P , the

more aggressive the controller is (Seborg and Mellichamp, 2006).

5.2.3 Expectation and chance constraints

For the purpose of this investigation, the expectation and chance constraints will be

removed to make the implementation simpler. They offer no value to answering any of

the research questions of this investigation, and they slow down the simulations due to

the calculation of Σk.

5.2.4 Disturbances

Disturbances cause steady state offset. These disturbances can be uncontrolled inputs or

model error. Similarly, to the method followed by Seborg and Mellichamp (2006), a bias

term is added to the outputs to remove steady state offset

yk = Cµk +Duk + b

b = y0 − ypredicted

(5.10)

where y0 is the latest measurement ypredicted is the output that the controller predicted

for this time step in the previous control calculation.

5.2.5 Limiting constraints

It is often required to restrict the movement of the inputs or to constrain the desired

output. For this reason, the following inequality constraints are added to the formulation

ymin ≤yk ≤ ymax

∆umin ≤∆uk ≤ ∆umax

umin ≤uk ≤ umax

(5.11)
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5.2.6 Inputs

For this implementation, the state space description is rewritten so that the optimizer

has ∆uk = uk − uk−1 as variables instead of the inputs uk themselves. This allows the

optimizer to better solve for steady state solutions where ∆uk = 0. The new state space

equations are derived as follows:

∆xk+1 = xk+1 − xk
= A(xk − xk−1) +B(uk − uk−1)

= A∆xk +B∆uk

∆yk = yk − yk−1

= C∆xk +D∆uk

=⇒ yk = yk−1 + C∆xk +D∆uk

(5.12)

Thus, the implemented statement of the optimization problem is

min
∆u

1

2

P∑
k=1

(
eTkQek

)
+

1

2

M−1∑
k=0

(
∆uTkR∆uk

)
∆µ1 = Ax0 +B(u−1 + ∆u0)− x0

∆µk+1 = A∆µk +B∆uk

y0 = Cµ0 +D(u−1 + ∆u0) + b

yk = yk−1 + C∆xk +D∆uk + b

ek = r − yk
ymin ≤yk ≤ ymax

∆umin ≤∆uk ≤ ∆umax

umin ≤uk ≤ umax

(5.13)

5.3 Standard QP formulation

The OSQP solver (Stellato et al., 2017) is used for the MPC implementation. It requires

the problem to be in the standard form shown in Equation 2.24. To this end, Equation

5.13 is reformulated into the standard form. The optimization variables x are chosen to

be

51



[
µ0 ∆µ1 · · · ∆µP y1 · · · yP u−1 ∆u0 · · · ∆uM−1

]
(5.14)

where u−1 is most recent control input.

5.3.1 Objective function

Looking at the term 1
2
eTkQek the following can be shown 1

1

2
eTkQek =

1

2
(r − yk)TQ(r − yk)

=
1

2
(rTQr − rTQyk − yTkQr + yTkQyk)

=
1

2
(rTQr − 2rTQyk + yTkQyk)

(5.15)

The rTQr term can be dropped because it is a constant. The remaining two terms can

be placed easily into the H and qT matrices:

H = diag
([

0(P+1)Nx×(P+1)Nx Qy 0Ni×Ni R∆u

])
Qy = IP ⊗Q

R∆u = IM+1 ⊗R

(5.16)

where diag(list) forms a matrix consisting of the blocks in list along the diagonal; 0m×n

is a m× n matrix of zeros; Nx is the number of states; Ni is the number of inputs; In is

the n× n identity matrix; and ⊗ is the Kronecker product. The qT matrix is given by

qT =
[
01×(P+1)Nx 11×P ⊗ (−rTQ) 01×(M+2)Ni

]
(5.17)

where 1m×n is a m× n matrix of ones; and No is the number of outputs.

5.3.2 Equality constraints

The constraints matrices A, l, and u are constructed in pieces to simplify the reasoning.

1rTQyk is a scalar and thus (rTQyk)T = rTQyk =⇒ rTQyk = yTk Qr because Q is symmetric by
definition
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Initial input value

The variable u−1 must be fixed to the value given to the optimizer 2. This is done using

Ainit =
[
0Ni×((P+1)Nx+PNo) INi 0Ni×(M+1)Ni

]
lTinit = uTinit =

[
u−1

] (5.18)

State equations

The equality constraints set out in

µ0 = µinit

∆µ1 = Ax0 +B(u−1 + ∆u0)− x0

∆µk+1 = A∆µk +B∆uk

(5.19)

are transformed into the relevant matrices

Astate =
[
Astate,x 0(P+1)Nx×PNo Astate,u

]
Astate,x =

 −INx 0Nx×PNx

A− INx
(I

(−1)
P ⊗ A)− IPNx

0(P−1)Nx×Nx



Astate,u =


0Nx×(M+2)Ni

B ⊗
[

0M×1

∣∣
(1,0,0)

IM 0M×1

]
0(P−M)Nx×(M+2)Ni


(5.20)

where I
(−k)
n is an n×n identity matrix with the diagonal of ones moved down k diagonals,

and 0x×y
∣∣
(v,r,c)

is a x× y matrix with the value v in row r and column c and zeros

everywhere else. The bounds matrices are given by

lTstate = uTstate =
[
−µinit 01×PNx

]
(5.21)

2The OSQP library allows the user to update the matrices using the update function
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Output equations

The output equalities

y0 = Cµ0 +D(u−1 + ∆u0) + b

yk = yk−1 + C∆xk +D∆uk + b
(5.22)

are transformed into the matrices

Aoutput =
[
Aoutput,x Aoutput,y Aoutput,u

]
Aoutput,x = C ⊗

[
0P×1

∣∣
(1,0,0)

IP

]
Aoutput,y = −IPNo + I

(−No)
PNo

Aoutput,u =

[
D ⊗

[
0M×2

∣∣
(1,0,0),(1,0,1)

IM

]
0(P−M)No×(M+2)Ni

]
lToutput = uToutput = 11×P ⊗−b

(5.23)

5.3.3 Inequality constraints

The inequality constraints

ymin ≤yk ≤ ymax

∆umin ≤∆uk ≤ ∆umax

umin ≤uk ≤ umax

(5.24)

also need to be cast into the required format. A similar strategy of splitting the problem

into parts is used.

Output

Aoutput ineq =
[
0PNo×(P+1)Nx IPNo 0PNo×(M+2)Ni

]
lToutput ineq = 11×P ⊗ ymin

uToutput ineq = 11×P ⊗ ymax

(5.25)
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5.3.4 Input steps

Ainput steps =
[
0(M+1)Ni×((P+1)Nx+PNo+Ni) I(M+1)Ni

]
lTinput steps = 11×(M+1) ⊗∆umin

uTinput steps = 11×(M+1) ⊗∆umax

(5.26)

5.3.5 Inputs

In order to constrain the total inputs, the input steps must be summed, this is done by

using the matrix

Ainput ineq =
[
0MNi×((P+1)Nx+PNo) 1M×1 ⊗ INi T

(1,L)
M ⊗ INi

]
lTinput ineq = 11×M ⊗ umin

uTinput ineq = 11×M ⊗ umax

(5.27)

where T
(m,L)
n is a n× n lower triangular matrix filled with the number m.

5.3.6 All constraints

Putting all the previous matrices together gives

A =
[
Ainit Astate Aoutput Aoutput ineq Ainput steps Ainput ineq

]T
l =

[
linit lstate loutput loutput ineq linput steps linput ineq

]T
u =

[
uinit ustate uoutput uoutput ineq uinput steps uinput ineq

]T (5.28)

5.4 Performance

Performance for the operation is determined using the sum of the ISE (Integral Squared

Error) performance measures for the controller variables. The IAE (Integral Absolute

Error) could also be used to measure performance without changing the comparative

results between different runs drastically. The calculation is given by
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PISE =
No∑
i=0

∫ tend

0

(yi(t)− ri(t))2dt (5.29)

This performance is related to energy efficiency by considering that improved performance

implies more product that is on specification. This in turn means that less down stream

processing is required to correct the off specification outputs and the energy used in

delivering the product is used efficiently.
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6 Filters

This chapter details GPGPU accelerated nonlinear filters.

6.1 Particle filter

Assume that the system can be represented by a dynamic Bayesian network of the form

seen in Figure 2.5 along with the system description given in Equation 3.9. Where

the state transition function f(xk, uk) is similar to an Euler integration step from the

bioreactor model set up in Section 4.2. The state observation function g(xk, uk) is taken

almost directly from the model set up in Section 4.2. Assume also that

x0 ∼ NΣ(x|µ0,Σ0)

=

Nd∑
i=0

wi N (x|µi,Σi)

wk ∼ NΣ(x|µw,Σw)

vk ∼ NΣ(x|µv,Σv)

(6.1)

where NΣ(x|µ,Σ) is a Gaussian sum distribution. The choice of Gaussian mixtures

comes from the computational ease from which they can be sampled. Drawing from

the Gaussian sum is done by drawing a sample from the weighted distribution defined

by the weights {wi|i = 1, ..., Nd} using numpy.random.choice or cupy.random.choice

for the serial and parallel implementations, respectively. This selects which Gaussian

should be drawn from. The Python functions numpy.random.multivariate normal or

cupy.random.multivariate normal are used to draw samples from the Gaussian for the

serial and parallel implementations, respectively. This method is used to draw samples

for x0, wk, and vk.

This above assumption is not limiting because given any arbitrary random variable X :
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Ω→ Rn with probability distribution µX : RN → [0, 1] can be represented with accuracy

c ∈ [0, 1) by NΣ(x|µ,Σ). This can be done by solving the regression

arg min
µ,Σ

∫
Rn
‖f(x, µ,Σ)− fX(x)‖dx

f(x, µ,Σ) =
m∑
i=0

wi g(x, µi,Σi)

g(x, µi,Σi) =
exp
(
−1

2
(x− µi)TΣi(x− µi)

)√
(2π)d det(Σi)

fX(x) =
d

dx
µX((−∞, x))

(6.2)

where ‖·‖ is some suitable norm and as the accuracy c is controlled by m and c → 1 as

m→∞ as shown by Barcharoglou (2010).

Delimitation 6.1. Known noise: The noise model is assumed to be completely known.

That is, for the purposes of the simulation, the bioreactor model draws noise measure-

ments from the same distributions as the state estimator methods.

The particle filter approximates prior and posterior distributions with Dirac mixture

approximations. These approximations consist of Np particles (qk|j,i, wk|j,i) which are

made up of a point estimate qk|j,i and a weight wk|j,i for each particle i at the k’th time

step given the measurement at the j’th time step.

δ(x|qk|j,wk|j) =

Np∑
i=1

wk|j,iδ(x− qk|j,i) (6.3)

where δ(x) is the Dirac delta function at x. Initially, samples q0|0,i are drawn from x0 are

all assigned equal weights w0|0,i = 1
Np

. These form a Dirac mixture approximation

x0 ∼ NΣ(x|µ,Σ)

≈ δ(x|q0,w0)

=

Np∑
i=1

w0|0,iδ(x− q0|0,i)

(6.4)

From the Law of large numbers, we know that δ(x|q,w) → x0 as Np → ∞. Thus, the

particles approximate x0.
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6.1.1 Code diagram

Predict
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Copying
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Figure 6.1: Particle filter code diagram. The top right show an example particle distribution
diagram.

Figure 6.1 shows the algorithm for the particle filter. Once again, the blue ‖ symbols

indicate areas where GPGPU parallelization is implemented.

Delimitation 6.2. Floating point precision: All computations (for the CPU and

GPGPU implementations) use single precision for particles. This is chosen because single

precision offers better performance over double precision and because based on the values

required for the model (see Table 4.2) double precision is not required.

However, all weights are calculated using double precision to prevent a loss of accuracy

if the weights become small.

6.1.2 Prediction

Prediction involves finding the prior distribution p(xk+1|y0:k) (and in the case of the

particle filter the approximation δ(x|qk+1|k,wk+1|k)), where, by convention, p(x0|y0) =

p(x0). The a priori is found as
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p(xk+1|y0:k) =

∫
xk

p(xk+1, xk|y0:k)dxk

=

∫
xk

p(xk+1|xk, y0:k)p(xk|y0:k)dxk

=

∫
xk

p(xk+1|xk)p(xk|y0:k)dxk

(6.5)

In particle filters, Equation 6.3 gives an approximation for the posterior p(xk|y0:k). Sub-

stituting this in gives

p(xk+1|y0:k) =

∫
xk

p(xk+1|xk)
Np∑
i=0

wk|k,iδ(xk − qk|k,i)dxk

=

∫
xk

Np∑
i=1

p(xk+1|xk)wk|k,iδ(xk − qk|k,i)dxk

(6.6)

Ideally, the new particles would be drawn from the distribution shown in Equation 6.6,

however, this is too computationally expensive. Rather, one sample qk+1|k,i is drawn from

each of the Np distributions

ck|k,i

∫
xk

p(xk+1|xk)wk|k,iδ(xk − qk|k,i)dxk (6.7)

for i ∈ 1, ..., Np, where ck|k,i is a normalization constant needed to ensure that

∫
xk

p(xk+1|xk)wk|k,iδ(xk − qk|k,i)dxk = 1 (6.8)

Closer examination shows that ck|k,i = 1
wk|k,i

. Also, considering the nature of δ(xk−qk|k,i),
this means that a particle is drawn from

∫
xk

p(xk+1|xk)δ(xk − qk|k,i)dxk =

∫
xk

p(xk+1|qk|k,i)dxk

= p(xk+1|qk|k,i)
(6.9)

As Figure 6.1 shows, this is implemented by passing each qk|k,i to f(xk, uk) along with the

current input uk from the MPC. From there Np samples from wk are drawn and added

to each result from the state transition function to get qk+1|k,i. The weights remain the

same wk+1|k,i = wk|k,i. This gives the prior distribution δ(x|qk+1|k,wk+1|k)
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For the serial case, this is done sequentially in a for loop. While for the parallel case,

the function f(particle, u, dt) is vectorized using the numba.guvectorize decorator

with the parameter target=’cuda’. This creates a generalized vector function that runs

on the GPU.

6.1.3 Update

When a new measurement yk+1 is available, the particle filter distribution is updated to

the posterior estimate δ(x|qk+1|k+1,wk+1|k+1) according to

p(xk+1|y0:k+1) = p(xk+1|y0:k, yk+1)

=
p(yk+1|xk+1, y0:k)p(xk+1|y0:k)

p(yk+1)

=
p(yk+1|xk+1)p(xk+1|y0:k)

p(yk+1)

(6.10)

Again substituting in Equation 6.3 gives

p(xk+1|y0:k+1) =
p(yk+1|xk+1)

∑Np
i=0wk+1|k,iδ(xk+1 − qk+1|k,i)

p(yk+1)
(6.11)

Similar to the prediction step, the new particles would ideally be drawn from the distribu-

tion shown in Equation 6.11, however, this is too computationally expensive. 1 Rather,

the weights wk+1|k,i are updated from each of the Np distributions

ck+1,ip(yk+1|xk+1)wk+1|k,iδ(xk+1 − qk+1|k,i)

p(yk+1)
=
p(yk+1|xk+1)δ(xk+1 − qk+1|k,i)

p(yk+1)

=
p(yk+1|qk+1|k,i)

p(yk+1)

∝ p(yk+1|qk+1|k,i)

(6.12)

for i ∈ 1, ..., Np, where ck+1,i the normalization constant and the method followed is

similar to that followed in Equation 6.9.

1Readers familiar with particle filters will note that sampling from Equation 6.6 and Equation 6.11
resembles a simultaneous normal particle filter prediction/update and resampling.
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Figure 6.1 depicts this implementation. Each qk+1|k,i to g(xk, uk) along with the current

input uk+1 from the MPC to get yk+1,i. This is then subtracted from the measurement

dk+1,i = yk+1 − yk+1,i (6.13)

The measurement noise probability density function fvk(x) is then evaluated at dk+1,i,

the particle weights are updated with this value

wk+1|k+1,i = wk+1|k,ifvk(dk+1,i) (6.14)

and the point estimates remain the same qk+1|k+1,i = qk+1|k,i to get δ(x|qk+1|k+1,wk+1|k+1).

The serial version does each particle sequentially. The parallel version vectorizes the

function g(particle, u) using the numba.guvectorize decorator with the parameter

target=’cuda’. It also used cupy.ndarray for the data so that the mathematical oper-

ations can be executed in parallel on the GPU as well.

6.1.4 Resampling

Figure 6.1 depicts the entire resampling process. At the heart of the process is the

systematic resampling algorithm. For the parallel version, the algorithm designed by

Nicely and Wells (2019) for systematic resampling is used. It performs very badly on

very non-uniform weight distributions, but it performs better for more uniform weight

distributions. The algorithm has a worst case time complexity of T (n, p) = n2

p
and an

average time complexity of T (n, p) = n
p
. The algorithm is found to be work efficient.

Algorithm 6.1 details the procedure. The premise is to generate the uniform random

sampling sequence and then guess the particle that should be sampled by assuming a

uniform distribution. The algorithm then increments and decrements its guesses until it

has found the correct particle. It uses the cuda.jit decorator to compile it to code that

is executable on the GPU. The cumulative cum parameter c is also calculated on the

GPU using torch.cumsum.

Algorithm 6.1. Nicely and Wells (2019) systematic resampling

@cuda.jit

def parallel_resample(c, sample_index, r, N):
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tx = cuda.threadIdx.x

bx = cuda.blockIdx.x

bw = cuda.blockDim.x

i = bw * bx + tx

if i >= N:

return

u = (i + r) / N

k = i

while c[k] < u:

k += 1

cuda.syncthreads()

while c[k] > u and k >= 0:

k -= 1

cuda.syncthreads()

sample_index[i] = k + 1

Once the sample indices have been generated, all that remains is to copy the desired

particles to form the new distribution.

6.2 Gaussian sum filter

This section describes the algorithm for the Gaussian Sum Unscented Kalman Filter

(GS-UKF or GSF) adapted from Kottakki et al. (2014). This implementation corrects

errors in the sigma point weight calculations as well as to the local update step. The GSF

draws Np particles similar to the particle filter. However, where the particle filter uses a

Dirac mixture approximation for the prior and posteriors, the GSF uses a Gaussian sum

distribution:

NΣ(x|µk|j,Σk|j) =

Np∑
i=0

wk|j,iDk|j,i

Dk|j,i = N (qk|j,i,Σk|j,i)

(6.15)
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(Dk|j,i, wk|j,i) denotes the i’th particle at the k|j’th time step. The initial distribution is

formed as follows:

q0|0,i ← x0 ∼ NΣ(x|µ0,Σ0)

Σ0|0,i = average(Σ0)

w0|0,i =
1

Np

(6.16)

where x ← y indicated that x is drawn from distribution y; and average(Σ0) is formed

by multiplying the covariances from the Gaussian sum distribution element-wise and

then dividing by the number of distributions. The multivariate Gaussian sum dis-

tribution NΣ(x|q0|0,i,Σ0|0,i) formed by the particles (D0|0,i, w0|0,i) then approximates

p(x0) = p(x0|y0).

6.2.1 Code diagram
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Figure 6.2: Gaussian sum filter code diagram.
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Figure 6.2 shows the algorithm for the Gaussian sum filter. The blue ‖ symbols indicate

areas where GPGPU parallelization is implemented. The sections below describe the

derivation of this algorithm.

6.2.2 σ-points

An important subtask of the GSF is obtaining sigma points from a multivariable Gaussian

distribution. These points serve to aid in representing the Gaussian distribution so that it

can be transformed through the nonlinear state observation and state transition functions.

This section will outline the algorithm used to obtain them. Figure 6.2 depicts how the

Nσ = (2Nx + 1) sigma points for the distribution Dk|j,i are generated. Mathematically it

is stated as:

σ
(0)
k|j,i = qk|j,i

σ
(l)
k|j,i = qk|j,i + [

√
Σk|j,i]l ∀ l ∈ [1, Nx]

σ
(l)
k|j,i = qk|j,i − [

√
Σk|j,i]l−Nx ∀ l ∈ [Nx + 1, Nσ]

(6.17)

where [M ]l selects the l’th column of matrix M ; and
√
M is the Cholesky decomposition

of matrix M . It can happen that, during the running of the filter, the Cholesky decom-

position fails. This is a common occurrence and occurs due to numerical inaccuracies.

The solution implemented is to then compute
√

Σk|j,i + εI, where ε is a small positive

number. For the CPU implementation, the numpy library is used for the decomposition

and matrix additions. The GPU implementation uses cupy.

Each sigma point has an associated weight wσk|j,i, defined as:

wµk|j,i = w
(0)
k|j,0

wηk|j,i = w
(l)
k|j,i∀ l ∈ [1, Nσ]

wµk|j,i + 2Nxw
η
k|j,i = 1

wµk|j,i
wηk|j,i

=
8

5

≈ fN (0|0, 1)

fN (1|0, 1)

(6.18)

where fN (x|0, 1) is the value of the normal distribution’s probability density function at

x. This simplifies to:
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w
(0)
k|j,i =

8

8 + 10Nx

w
(l)
k|j,i =

5

8 + 10Nx

∀ l ∈ [1, Nσ]
(6.19)

The sigma points can be packed into a Nσ×Nx matrix σk|j,i. The weights can be packed

into a Nσ × 1 matrix wk|j,i. The sigma point weight vector is a constant throughout the

filter’s runtime and is only generated once.

6.2.3 Prediction

Similar to the particle filter, the prediction algorithm for the particle filter, the Gaussian

sum filter substitutes Equation 6.15 into Equation 6.5.

p(xk+1|y0:k) =

∫
xk

p(xk+1|xk)p(xk|y0:k)dxk

=

∫
xk

p(xk+1|xk)
Np∑
i=0

wk|K,iDk|k,idxk

=

∫
xk

Np∑
i=1

p(xk+1|xk)wk|k,iN (xk|qk|k,i,Σk|k,i)dxk

(6.20)

As with the particle filter, a Gaussian sum distribution would ideally be fit to this, but

due to the complexity, a simplified approximation is used. A single Gaussian is fit to each

of the Np distributions:

ck|k,i

∫
xk

p(xk+1|xk)wk|k,iN (xk|qk|k,i,Σk|k,i)dxk (6.21)

for i ∈ 1, ..., Np, where ck|k,i is a normalization constant. Drawing a Gaussian from Equa-

tion 6.21 is done using the unscented Kalman filter prediction algorithm. The algorithm

generates sigma points σk|k,i with weights w
(l)
k|k,i and then passes them through the state

transition function (see Figure 6.2) to get the transformed sigma points σk+1|k,i:

σk+1|k,i = f(σk|k,i, uk) + w∗k

w∗k ← wk
(6.22)
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The CPU implementation does each transformation sequentially, while the GPU imple-

mentation does them in parallel. The new Gaussian Dk+1|k,i = N (x|qk+1|k,i,Σk+1|k,i) is

then given by:

qk+1|k,i = wσ
k|k,i

Tσk+1|k,i

Σk+1|k,i = (σk+1|k,i − qk+1|k,i)
T (wσ

k|k,i � (σk+1|k,i − qk+1|k,i))
(6.23)

where� performs an element-wise multiplication. The weights remain the same wk+1|k,i =

wk|k,i. This gives the prior distribution p(xk+1|y0:k) ≈ NΣ(x|qk+1|k,Σk+1|k) as desired.

Both the CPU implementation and GPU implementation perform Equation 6.23 using

array broadcasting and vectorization. However, the GPU implementation makes use of

cupy arrays which allow the operations to be done on the GPU.

6.2.4 Update

Given a new measurement yk+1, the GSF distribution is updated to the posterior estimate

p(xk+1|y0:k+1) ≈ NΣ(x|qk+1|k+1,Σk+1|k+1) according to Equation 6.10. Substituting in

Equation 6.15 gives

p(xk+1|y0:k+1) =
p(yk+1|xk+1)

∑Np
i=0wk+1|k,iNΣ(x|µk+1|k,Σk+1|k)

p(yk+1)
(6.24)

Similar to the prediction step, the new prior would ideally be fit to Equation 6.24. How-

ever, this is too computationally expensive and so it is approximated by performing local

unscented Kalman filter updates on each particle, and performing a global update on the

collection.

Local Update

The local update is an update unscented Kalman filter performed on each particle. As

seen in Figure 6.2, the update begins by drawing sigma points σk+1|k,i with weights

w
(l)
k+1|k,i and then passing these through the state observation function g(xk, uk) to get

the transformed points ηk+1|k,i. From these, the Kalman gain is determined as:
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η̂k+1|k,i = wk+1|k,i
Tηk+1|k,i

σ̂k+1|k,i = wk+1|k,i
Tσk+1|k,i

Σηη
k+1|k,i = (ηk+1|k,i − η̂k+1|k,i)

T (wk|k,i � (ηk+1|k,i − η̂k+1|k,i))

Σση
k+1|k,i = (σk+1|k,i − σ̂k+1|k,i)

T (wk|k,i � (ηk+1|k,i − η̂k+1|k,i))

Kk+1|k,i = Σση
k+1|k,i(Σ

ηη
k+1|k,i)

−1

(6.25)

Using the Kalman gain, the distribution Dk+1|k,i is updated:

Dk+1|k+1,i = N (x|qk+1|k+1,i,Σk+1|k+1,i)

qk+1|k+1,i = qk+1|k,i +Kk+1|k,i(yk+1 − η̂k+1|k)

Σk+1|k+1,i = Σk+1|k,i −Kk+1|k,iΣ
ηη
k+1|k,iK

T
k+1|k,i

(6.26)

Both the CPU and GPU implementations use vectorized array operations, but the GPU’s

operations benefit from being run on the GPU and thus receive some parallelization. The

CPU implementation must transform each sigma point through the state observation

function sequentially, while the GPU implementation can parallelize the operation.

Global Update

The local update saw the updating of the distribution of each particle. The global update

uses the current measurement yk+1 to update the weights of each particle (see Figure 6.2).

The weights are updated as follows:

wk+1|k+1,i = wk+1|k,i
[
fvk(yk+1 − yk+1,i)

]
yk+1,i = g(qk+1|k+1,i, uk+1)

(6.27)

6.2.5 Resampling

As seen in Figure 6.2, the resampling method for the GSF is exactly the same as for

the particle filter. The parallel algorithm uses the method designed by Nicely and Wells

(2019) for systematic resampling.
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Part III

Results and discussion
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7 Model

This chapter shows important open and closed loop results for bioreactor and MPC

combination. These results are used to confirm proper implementation of their methods

as well as to lay the required foundation on which the filtering results are built.

7.1 Open loop

This section shows the results of the open loop bioreactor model. Three important results

are shown, the first is seen in Figure 7.1. The step tests show the dynamics of the system

around the relevant operating point. The system’s dynamics give direction to the scale

of the fast and slow elements of the system. The slowest dynamics take around 300 min

to settle out completely, and the fastest dynamics happen on the order of 5 min. Based

on this, the following parameters are chosen for future closed loop filtered simulations:

integration time step — suitable at 0.1 min; MPC prediction horizon — 300 min; MPC

control horizon — 200 min; smallest required control horizon — 0.1 min. The prediction

and control horizons allow the controller to anticipate future dynamics sufficiently, and

the low control, integration and prediction times occur fast enough that the controller

and filters can react and the simulation is accurate enough.
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Figure 7.1: Open loop step tests of the system around the point (CFA =640 mg L−1,
CG =280 mg L−1) with inputs (Fm,in =0.200 L min−1, FG,in =0.060 L min−1). The
tests are found by varying the inputs to 70 %, 50 %, 80 %, 120 %, 130 % and 150 %
of their steady state values. The simulation’s integration time step is 0.1 min. It
is important to note that only the general shapes of the curves are relevant, and
thus, labels of individual lines have been omitted.

The next result is seen in Figure 7.2. This figure shows the following results from Swart

(2019) are emulated by the model: the 300 mg L−1 glucose is completely consumed in

the first 25 min which is the batch run; before glucose overflow, the cell maintains ho-

moeostasis (280 mg L−1 Glucose), but cannot maintain homoeostasis after glucose over-

flow; ethanol overflow occurs after the ethanol overflow point as predicted. The steady

state CFA changes due to the increased dilution rate of the reactor caused by increasing

the glucose feed rate.
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Figure 7.2: Open loop bioreactor showing both the growth and production phases. The grey
vertical lines show the times when the glucose feed rate is changed. The lower
and upper green horizontal lines mark the glucose feed rates at which ethanol and
glucose overflow occur, respectively.
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The final result seen in Figure 7.3 shows how the reactor moves from a steady state oper-

ating point at (CFA =640 mg L−1, CG =280 mg L−1) with inputs (Fm,in =0.2 L min−1,

FG,in =0.06 L min−1) to a new steady state operating point at (CFA =1150 mg L−1,

CG =280 mg L−1) with inputs (Fm,in =0.1 L min−1, FG,in =0.04 L min−1).

This is an important result, because the closed loop tests for the remainder of this dis-

cussion will move between these two operating points. The model is linearized around

the second operating point to give the linear model for the MPC.
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Figure 7.3: Open loop bioreactor transition between steady states. The grey vertical lines
show the times when the glucose and mineral feed rates are changed.

7.2 Closed loop

This section shows the results of using the MPC to move the system between the two

operating points. The result shown in Figure 7.4 shows that the MPC can move an ideal

noiseless system to the desired operating point and maintain it. The result comes from

using tuning parameters

Q =

[
100 0

0 1000

]

R =

[
1 0

0 1

]
P = 200

M = 160

0 ≤ Fm,in

0 ≤ FG,in

(7.1)
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and the control period is 1 min. The controller’s outputs (Fm,in and FG,in) show the classic

MPC shapes, with large moves in the beginning that overshoot the final output value,

followed by correction moves and smaller moves to take the output to its final steady

value. The bias reaches a steady value which also shows good controller operation.
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Figure 7.4: Closed loop bioreactor simulation transitioning between steady states (no noise).
The red lines are the set points for the fumaric acid (solid red line) and glucose
(dashed red line) concentrations.

Figure 7.5 shows that the controller can also maintain set point for a system with noise.

The noise causes the outputs to no longer show the ideal MPC outputs as before. The

run below exhibits worse performance than the noiseless case. This is to be expected,

since the controller needs to reject disturbances caused by plant–model mismatch and

measurement noise.
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Figure 7.5: Closed loop bioreactor transition between steady states. The red lines are the set
points for the fumaric acid (solid red line) and glucose (dashed red line) concen-
trations.

Figure 7.6 shows a Monte Carlo simulation indicating the effect of control period on

control performance. Each point in the figure shows the PISE value for some control

period. The figure shows how increasing control period decreases performance. However,

it also requires the use of better and faster hardware which is often unnecessary depending
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on the system’s dynamics. Thus, taking into consideration the result found in Section

7.1 for the system’s time constant, the lowest control period considered for this work is

chosen to be 0.1 min.

The figure also shows that as the control period increases the variance in performance

increases as well. This is due to the increased effect of state noise between control

calculations.
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Figure 7.6: Effect of control period on ISE performance (PISE).

The run time of the MPC is benchmarked. The benchmarking process involves running

the MPC code multiple times to get a run sequence. An example run sequence for the

no-op and timing method are shown in the left plots of Figure 7.7. The no-op function

(top row) is a method that does nothing and the timing function (bottom row) makes a

call to the function that does the timing for the other run sequences. The first graphs

show the run sequence plots for 100 runs.

Further analysis is done on the run sequence plots to determine if there is any statistical

correlation between the times of successive runs. The second plots show the −1 lag plot.

It is constructed by lagging consecutive run times by −1. The last plot is known as an

autocorrelation plot. It measures the autocorrelation for different lag plots. This is the

most useful in determining patterns amongst the times. An autocorrelation of less than

0.2 is chosen to mean that there is no statistical significance between run times.
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Figure 7.7: Benchmarking for no-op and time.time().

The MPC benchmarking is shown in Figure 7.8. The figure shows little statistically

significant correlation between points for most lag configurations. For this reason the

median run time of 0.03 s is an accurate representation of the runtime of the MPC code.

0 250 500 750 1000
Iterations

0.03

0.04

0.05

0.06

Ti
m

e 
(s

)

Run sequence

0.03 0.04 0.05 0.06
Xi 1

0.03

0.04

0.05

0.06

X i

Lag chart

0 2 4 6 8
Lag

0.0

0.1

0.2

Au
to

co
rre

la
tio

n

Autocorrelation graph

Figure 7.8: Benchmarking for MPC step function.
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8 Filters

Open and closed loop results for the particle and Gaussian sum filters.

8.1 Open loop

Analysis, using Section 2.6, of the algorithms for the parallel prediction and update

routines (for both filters) gives

T‖predict(n, p) = T‖update(n, p)

=
n

p

O(p(n)) =

n if n ≤ pmax

1 otherwise

=⇒ T‖predict(n) = T‖update(n)

=

1 if n ≤ pmax

n otherwise

(8.1)

and for the serial algorithms for prediction and updates:

T⊥predict = T⊥update = n (8.2)

In order to test this if these results agree with the implementations, the prediction, update

and resampling methods are benchmarked. A run sequence is done for each method for

both the CPU and GPU implementations. Maximum autocorrelation values for each

filter size is shown in Figure 8.1 for the particle filter and Figure 8.2 for the GSF. The

figures show that the autocorrelation between runs is statistically significant. The cause
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of this is beyond the scope of this work. It is conjectured that the cause is internal to

Python (e.g. garbage collection). This significance is investigated in later results.

Due to memory constraints, the maximum number of particles for the particle filter is

219.5, and is 218.5 for the Gaussian sum filter.
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Figure 8.1: Maximum autocorrelation plot for each method for the particle filter. Done for
both the CPU and GPU implementations.
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Figure 8.2: Maximum autocorrelation plot for each method for the Gaussian sum filter. Done
for both the CPU and GPU implementations.
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The run time results in Figure 8.3 and Figure 8.4 are in line with the complexity results

shown earlier. 1. The difference in pmax between the different methods is accounted for

by internal effects on the GPU like multi-threading and memory caching. The GPGPU

particle filter with 219.5 particles has prediction, update and resampling run times of

0.011 s, 0.065 s, 0.0013 s, respectively. These times imply that the filter can easily be used

in real time applications on systems with dynamic time constants on the order of 0.1 s

(assuming that it is desired for the control period to be around ten times faster that the

fastest dynamics). This is compared to the prediction, update and resampling step times

of 176 s, 32 s, 0.55 s, respectively, for the CPU particle filter.

The GPGPU Gaussian sum filter with 218.5 particles has prediction, update and resam-

pling step times of 0.087 s, 0.1 s, 0.0024 s, respectively. These times would allow the filter

to be used on systems with dynamic time constants on the order of 1 s. This is compared

to the prediction, update and resampling step times of 240 s, 38 s, 0.27 s, respectively, for

the CPU Gaussian sum filter.

Figure 8.3 and Figure 8.4 use error bars to show the range of data between the 10th and

90th percentiles. Outliers are plotted separately in blue. For most points, most of the

data lies very closely grouped between the 10th and 90th percentiles. For this reason,

the median value for run sequences is assumed to be a good representative for the data.

1If log(Time) = log2(Nparticles)+c, then Time = kNparticles =⇒ T (n) = n. Similarly, if log(Time) =
c, then Time = kNparticles =⇒ T (n) = 1
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Figure 8.3: Run times of CPU and GPU particle filters. The red error bars show the 10th to
90th percentile. The blue points show the outliers.
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Figure 8.4: Run times of CPU and GPU Gaussian sum filters. The red error bars show the 10th
to 90th percentile. The blue points show the outliers.
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Figure 8.5 and Figure 8.6 allows better comparison between the GPU and CPU imple-

mentations. They show the median speed-up for each method for various numbers of

particles. Figure 8.5 shows that for smaller numbers of particles (up to 24.5 for update,

23 for prediction, and 210 for resampling) the CPU implementation is between 5 and 40

times faster. This is to be expected because GPU code has more overhead than CPU

code 2. This apparent advantage of the CPU code over the GPU code is further di-

minished when one considers that for most practical implementations one requires high

numbers of particles for even the most basic systems to get an accurate representation of

the distribution.

For larger particle numbers (219.5), the GPU implementation is up to 104.2 times faster

for prediction, 102.7 times faster for updating, and up to 102.6 times faster for resampling.

The resampling result is in line with the results found by Nicely and Wells (2019) in their

implementation of their resampling algorithm.
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Figure 8.5: Median GPU speed-up of particle filter. Calculated as TimeCPU
TimeGPU

from the times
in Figure 8.3. The horizontal line at 1 marks where the filters have equal perfor-
mance.

2Overhead is the amount of time taken to set-up the memory and threads before the program can
execute.
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For the GSF, Figure 8.6 shows that for smaller numbers of particles (up to 25 for update,

22.5 for prediction, and 210 for resampling) the CPU implementation is between 4 and 45

times faster. For larger particle numbers (218.5), the GPU implementation is up to 103.44

times faster for prediction, 102.6 times faster for updating and up to 102.06 times faster

for resampling.
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Figure 8.6: Median GPU speed-up of Gaussian sum filter. Calculated as TimeCPU
TimeGPU

from the
times in Figure 8.3. The horizontal line at 1 marks where the filters have equal
performance.

As stated in Section 1.5, the GPGPU has 1920 cores while the CPU only uses a single

core. However the GPGPU clock speed is 53 % of the CPU clock speed. If one assumes

that the computation time of the algorithm is directly proportional to clock speed, then

the differences between the devices would give a speed-up of approximately 103.01 for the

GPGPU over the CPU. However, as seen in Figure 8.5 and Figure 8.6, this speed-up is

only obtained for the prediction step with higher numbers of particles. The cause for

this is potentially attributed to factors like not all of the GPGPU cores being used and

GPGPU overheads.
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In order to evaluate the effectiveness of the GPU implementation, each of the three

methods were subdivided and the subroutines were timed. Figure 8.7 shows the results

for the particle filter. It can be seen that memory copying between the CPU and GPU

takes negligible time and does not form a bottleneck. For the prediction and update steps,

the noise function dominates the runtime for larger numbers of particles. This indicates

that future work could focus on improving the performance of the noise distribution

code. For resampling, the Nicely algorithm dominates the runtime for lower numbers of

particles, but cumsum method grows faster once pmax is reached.
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Figure 8.7: Subroutine breakdown for the GPU particle filter implementation.
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Figure 8.8: Subroutine breakdown for the GPU Gaussian sum filter implementation.
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For the GSF, Figure 8.8 shows the results. It can be seen that memory copying also

does not bottleneck the process. For the prediction and update steps, the noise func-

tion dominates the runtime for larger numbers of particles. This again indicates that

improvement of the multivariate Gaussian distribution code should be investigated. For

resampling, the Nicely algorithm dominates the runtime for lower numbers of particles,

but cumsum method grows faster once pmax is reached. Overall, the graphs show that

memory operations are not the limiting factor.

Another important aspect related to efficiency is the energy usage of the filters. The

median energy used per run for each method is shown in Figure 8.9 and Figure 8.10. For

the particle filter, the CPU implementation starts out using between 135 and 1240 times

less energy than the GPU implementation. However, for larger numbers of particles, the

GPU implementation uses between 20 and 135 times less energy. The trends on this graph

are similar to the trends in Figure 8.3. This is to be expected because energy usage is

calculated as
∫ tend

0
power(t)dt, and thus a smaller tend would contribute to a lower energy

cost.

The results for the GSF take a similar form as seen in Figure 8.10. For each method,

the CPU implementation starts out using between 61 and 885 times less power than the

GPU implementation. However, for larger numbers of particle, the GPU implementation

uses between 8 and 85 times less energy.
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Figure 8.9: Median energy per run for particle filter methods.
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Figure 8.10: Median energy per run for Gaussian sum filter methods.
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8.2 Closed loop

Closed loop simulations are performed in the set-up shown in Figure 4.1. For each closed

loop simulation, the variable is the number of particles and whether the CPU or GPU

filter is used. The value for the control period is taken from the time scales shown in

Figure 7.1 to be 0.1 min. The utilization fraction is defined to be the ratio between the

control period and the filters’ run times:

tsum = tpredict + tupdate + tresample + tresample

u =
tsum

tcontrol

(8.3)

For runs with u > 1, are physically unrealizable, but are shown for purposes of complete-

ness. Figure 8.11 and Figure 8.12 plot the closed loop error versus the utilization. The

red lines separate physically unrealizable runs. Note that all GPGPU accelerated runs

fall within the physically realizable zone. Lowering the control period would shift the

points to the right. The figures show that for the GPGPU accelerated runs, the sampling

rate of a physically realizable system can be increased by at least a factor of 100. For

both the particle filter and the Gaussian sum filter, the physically realizable run with the

lowest error uses the GPGPU accelerated filter. Although, the CPU filters do provide

similar performance.
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Figure 8.11: Particle filter performance versus utilization.

The colour bar adds the energy consumption axis to the figures. Both figures show a

trend that increasing the energy reduces the error. Figure 8.9 and Figure 8.10 give more

insight into the energy aspect of the analysis.

The clustering of many GPU points around a single utilization value is caused by the

constant run times of the GPU filter methods seen in Figure 8.3 and Figure 8.4.
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Figure 8.12: Gaussian sum filter performance versus utilization.

Error per watt plots are shown in Figure 8.13 and Figure 8.14 for the closed loop simu-

lations.

The low energy cost of the CPU implementation for low numbers of particles contributes

to the low power values as well as the moderate performance seen in the figure. The

performance increases as the number of particles increases, as expected.
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Figure 8.13: Particle filter closed loop performance versus power. Crosses indicate that u > 1
for a CPU run.

For the GPU implementations, the constant energy costs for low particle values, results in

the clustering of power values. For higher numbers of particles, the increased performance

gained by capturing more of the noise complexity, results in decreased error values.

From these results, it can be seen that the GPU implementation is more beneficial when

a high sampling rate is needed. It would also find use in cases when high numbers of

particles are needed for the system.
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Figure 8.14: GSF closed loop performance versus power. Crosses indicate that u > 1 for a
CPU run.

It is also important to ensure that the filter is not diverging. For this reason, the maximum

singular value of the particle filter’s covariance is plotted in Figure 8.15. The colour of

the line indicates how many particles are in the filter.
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Figure 8.15: Particle filter covariance convergence.

It can be seen that for all particle filters, the covariance appears to be bounded. This

indicates that the filter is not diverging. The convergences for the GSF are plotted

in Figure 8.16. The covariance of a few of the filters appear to increase initially, but

then quickly decrease. The reason for this is unclear and warrants further investigation.

However, none of the filters appear to diverge over time, which is the desired result.
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Figure 8.16: GSF covariance convergence.
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9 Conclusion and future work

This section uses the results and critical discussion of the previous sections to formulate

conclusive answers to the research questions posed in Section 1.3. It also critically analyses

these conclusions and gives suggestions for future work.

9.1 Conclusion

The first research questions asks where GPGPU could be used to improve performance

of filtering algorithms. It is found that there are several places where the particle and

Gaussian sum filters are ideal candidates for such improvements due to the parallel nature

of the individual particles. This is detailed in Section 3.3 and Chapter 6. Section 6.1

and Section 6.2 shows how the filters’ predict and update steps are embarrassingly par-

allelizable, and that the resample step can be made work efficient by using a resampling

algorithm from Nicely and Wells (2019). Figure 6.1 and Figure 6.2 show a summary of

where GPGPU can be used to improve performance.

The second research question seeks to determine how much performance/efficiency is

improved by using GPGPU on the filters. Section 8.1 shows the GPGPU particle filter is

faster in the prediction, update and resampling steps for filters with more than 23, 24.5,

and 210 particles, respectively. Similarly, the GPGPU Gaussian sum filter is faster in

the prediction, update and resampling steps for filters with more than 22.5, 25, and 210

particles, respectively.

The run times for both filters also indicate that the GPGPU filters can be used for real

time systems with fast dynamics. It is also found that, for higher numbers of particles,

the GPGPU filters are more energy efficient. These results for the particle and Gaussian

sum filters show an improvement to the efficiency and a performance increase for the

accelerated filters.

The third research question aims to find out what effect the aforementioned efficiency
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improvement has on a modelled bioreactor system. It is seen that it can improve the

performance of the bioreactor control. This is seen in Figure 8.11 and Figure 8.12 where

the GPGPU filters offer the lowest realizable error. Figure 8.13 and Figure 8.14 indicate

a trade off between using the CPU implementation with a lower energy cost to get lower

performance, or using the GPGPU implementation with a higher energy cost to get better

performance.

These results lead to the conclusion that the GPGPU implementation should be used for

applications that have fast dynamics and require more particles (i.e. more complex noise

or dynamics).

9.2 Future work

Future work should be aimed at strengthening and furthering the results found in this

work, as well as investigating situations where the delimitations used here are removed.

Investigation into systems with faster dynamics would reveal the extent of the perfor-

mance improvements the speed-up of the GPGPU accelerated filters offers. A formalized

investigation into the effects of noise complexity on that system would allow better un-

derstanding of the types and complexity that can be handled in real time.

Different non-linear filters can be investigated for possible GPGPU improvement. The re-

sults from different filters should be compared in terms of which gives better performance

with respect to computational resources.

Similarly, a nonlinear MPC implementation might be useful to investigate. The use

of NMPC with linear and nonlinear filters might yield insights into the best way to

optimize computational resources. For instance, it might be found that NMPC offers

similar performance as MPC with a filter, but it might use less or more energy to do so.
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