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ABSTRACT

This paper proposes a Bayesian regression model for nonlinear zero-inflated longitudinal count
data that models the median count as an alternative to the mean count. The nonlinear model gener-
alizes a recently introduced linear mixed-effects model based on the zero-inflated discrete Weibull
(ZIDW) distribution. The ZIDW distribution is more robust to severe skewness in the data than
conventional zero-inflated count distributions such as the zero-inflated negative binomial (ZINB)
distribution. Moreover, the ZIDW distribution is attractive because of its convenience to model the
median counts given its closed-form quantile function. The median is a more robust measure of
central tendency than the mean when the data, for instance, zero-inflated counts, are right-skewed.
In an application of the model we consider a biphasic mixed-effects model consisting of an inter-
cept term and two slope terms. Conventionally, the ZIDW model separately specifies the predictors
for the zero-inflation probability and the counting process’s median count. In our application, the
two latent class interpretations are not clinically plausible. Therefore, we propose a marginal ZIDW
(MZIDW) model that directly models the biphasic median counts marginally. We also consider the
marginal ZINB (MZINB) model to make inferences about the nonlinear mean counts over time.
Our simulation study shows that the models have good properties in terms of accuracy and confi-
dence interval coverage.

KEYWORDS: Bayesian; marginal zero-inflated discrete Weibull; marginal zero-inflated negative
binomial; median counts; nonlinear mixed-effects
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1 INTRODUCTION

Longitudinal data in applications such as virology, psychopathology, and neurology follow, in some
cases, nonlinear trends.1 For example, in human immunodeficiency virus (HIV) clinical trials, vi-
ral decay over time after antiviral therapy initiation is often associated with two phases.2 Other
examples include nonlinear data from depression and Alzheimer’s disease studies. In depression
studies, the change in depressive symptoms over time occasionally has two distinct phases.3 An
example of nonlinear data relevant to Alzheimer’s disease trials is that of Li et al. 4: These authors
characterized the rate and timing of cognitive decline among Alzheimer’s disease patients using a
hierarchical change-point model by regressing composite cognitive measure scores against time.
Therefore, nonlinear longitudinal data need to be modeled using nonlinear mixed-effects regres-
sion models rather than conventional linear mixed-effects models. Nonlinear models may include
biphasic, bilinear, and change-point models as special cases. For example, biphasic and bilinear
models consist of two distinct slopes over time, therefore describing the data’s initial and terminal
decline rates.

To model count data, log-linear models based on the Poisson and negative binomial (NB) dis-
tributions are typically used. In some applications, longitudinal count data on the log-scale are
nonlinear. Hence it becomes necessary to replace the usual log-linear count model with nonlinear
count models. The zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) distri-
butions can be considered when the data contain excess zeros.5 Applications of nonlinear modeling
of zero-inflated count data can be found in econometrics and biological experiments. For example,
Klein et al. 6 fitted a Bayesian generalized additive model (containing nonlinear smooth functions)
based on the ZIP and ZINB distributions to analyze the number of citations of patents granted by
the European Patent Office and insurance claims in Belgium during 1997. In a heritability study
for tick counts on lambs, Sae-Lim et al. 7 fitted a nonlinear mixed-effects regression model to the
tick counts based on the ZIP and ZINB distributions.

Longitudinal models for count data are routinely used to model the mean count, usually using the
log-link function to specify the relationship between the mean counts and time. Zero-inflated count
data are typically right-skewed,8 implying that the mean count is greater than the median count.
In the presence of skewness, the median count is argued to be a more appropriate characteristic of
central tendency than the mean count.9 Widely-used methods for modeling the median response
are quantile regression techniques that specifically model the 50th percentile of the data. Limited
literature exists on quantile regression modeling of zero-inflated count data. Examples of quantile
regression models for zero-inflated count data include the two-part quantile regression model of
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King and Song 10 and the linear mixed-effects zero-inflated discrete Weibull (ZIDW) model of
Burger et al. 11 Burger et al. 11 demonstrated in a data contamination simulation study that the
ZIDW distribution better accommodates excessive skewness and outliers in the data than the ZINB
distribution. Therefore, the ZIDW model is more robust to severe skewness in the data than the
ZINB model and is convenient to implement since the ZIDW distribution’s quantile function is
available in closed form. To the best of the authors’ knowledge, no literature exists on nonlinear
mixed-effects quantile regression modeling of zero-inflated count data.

In this paper we propose a Bayesian regression model for nonlinear zero-inflated longitudinal
count data that models the median count rather than the mean count. As a motivating example,
data from a recently published extended bactericidal activity tuberculosis (TB) trial are consid-
ered. As a special case of nonlinear mixed-effects models, we consider a biphasic mixed-effects
model consisting of an intercept term and two slope terms. Conventionally, ZINB models sepa-
rately specify linear predictors for the zero-inflation probability and the counting process’s mean
count. In our application of nonlinear longitudinal modeling, the two latent class interpretations are
not clinically plausible.12 As an alternative, Preisser et al. 13 proposed a marginal ZINB (MZINB)
model to model the marginal mean count directly. The current manuscript uses an approach simi-
lar to that of Preisser et al. 13 by reparameterizing the ZIDW model in such a way as to model the
median count directly (i.e., obtain marginal interpretations); hence, the so-called marginal ZIDW
(MZIDW) model. Furthermore, we also consider the MZINB model to make inferences about the
nonlinear mean counts over time (i.e., modeling both the mean and median counts marginally)
which allows us to compare the two sets of results. The application of the MZINB distribution in a
nonlinear mixed-effects modeling context has also not yet been explored in previous literature.

The paper is organized as follows: Section 2 motivates our methodology using data from a lon-
gitudinal bactericidal activity TB trial. Section 3 gives an overview of the conventional ZIDW
distribution, whereas Section 4 provides an overview of the MZINB and MZIDW distributions.
More specifically, in Section 4, we reparameterize the conventional ZINB and ZIDW distributions
to obtain the MZINB and MZIDW distributions. Section 5 introduces the nonlinear mixed-effects
regression model that assumes the MZINB and MZIDW distributions for longitudinal counts. Sec-
tion 6 applies the mixed-effects models to the longitudinal TB dataset. Section 7 presents a simu-
lation study to assess the performance, identifiability and robustness of the MZINB and MZIDW
models. Section 8 presents a discussion of the results and findings of the paper.
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2 MOTIVATING DATA AND PREVIOUS WORK

This paper’s methods are motivated by colony-forming unit (CFU) count data in extended bacte-
ricidal activity TB trials.14 Burger and Schall 15 discuss the biological concepts involving bacte-
ricidal activity and sterilization of TB drugs, suggesting that the CFU counts on the logarithmic
scale typically decline throughout treatment biphasically.14–17 Furthermore, the CFU counts are
usually zero-inflated towards the end of treatment (zero-inflation increases as the anti-TB drugs
eliminate CFUs). Firstly, we introduce the TB dataset of Tweed et al.,18 which is our motivating
dataset. Secondly, Burger and Schall’s15 biphasic mixed-effects regression model, which was orig-
inally used to fit the data, is discussed. Thirdly, extensions of the previous model15 are discussed,
together with points where improvements can be made to existing models in light of the current
manuscript’s objectives.

2.1 TB dataset

We consider the data of Tweed et al. 18 who performed a multicentre, open-label, phase 2b bacte-
ricidal activity TB trial where a total of 180 eligible patients with newly diagnosed, smear-positive
drug-sensitive pulmonary TB were randomized to one of the following three treatment regimens:

• J(loading dose/t.i.w.)PaZ: Bedaquiline 400 mg once daily (QD) on Days 1 to 14, 200 mg three
times per week on Days 15 to 56; plus pretomanid 200 mg QD on Days 1 to 56; plus pyraz-
inamide 1500 mg QD on Days 1 to 56.

• J(200 mg)PaZ: Bedaquiline 200 mg QD on Days 1 to 56; plus pretomanid 200 mg QD on
Days 1 to 56; plus pyrazinamide 1500 mg QD from Day 1 to Day 56.

• HRZE: Isoniazid 75 mg, rifampicin 150 mg, pyrazinamide 400 mg and ethambutol 275 mg
on Days 1 to 56. The number of tablets the patients received depended on their weight.

Overnight sputum samples were collected before randomization (Days -2 and -1) and post-randomization
(Days 3, 7, 14, 21, 28, 35, 42, 49, and 56). CFU counts on solid media were measured on each
sputum sample collected. The CFU counts were calculated as:

CFU =
1
n

n

∑
x=1

CFUx× factor×10dilution (1)
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where CFUx is the count of culture plate x (from n replicate plates in total), and “factor×10dilution”
compensates for the counting process’s dilution.

A total of 172 patients were included in the efficacy analysis. Supplementary Figure 1 shows
profile plots of the observed log10(CFU) counts collected from the overnight sputum samples,
by treatment group. The profile plot suggests that most profiles decline faster (on the log-scale)
during the first few days than in the latter part of the curve. Summary statistics of the observed
CFU counts over time are presented in Supplementary Table 1. Note that the counts’ variance is
considerably larger than the mean, and the percentage of zero counts significantly increases over
time. These observations suggest that the CFU counts may be overdispersed relative to the Poisson
distribution and, over time, zero-inflated relative to the negative binomial distribution. Furthermore,
the mean counts are generally much larger than the median counts, implying that making inferences
about the median counts may be more suitable than about the mean counts. Therefore, it might be
preferable to use a method that models the median as a function of covariates (hence, quantile
regression), while accounting for overdispersion and zero-inflation in the data.

2.2 Previous data analysis

The clinical trial’s efficacy endpoints included the bactericidal activity of the three treatments quan-
tified by overnight sputum samples. The bactericidal activity of anti-TB drugs was characterized
by the rate of decline in log10(CFU) count.19,20 In particular, the bactericidal activity over a certain
time interval, calculated from a log10(CFU) vs. time profile, was expressed as follows21:

BA(t1–t2) =−
f̂ (t2)− f̂ (t1)

t2− t1
(2)

where f (t) is the regression function for log10(CFU) count vs. time, and f̂ (t1) & f̂ (t2) are the
corresponding fitted values at Day t1 & Day t2, respectively.

The regression model by Burger and Schall 15 was fitted to analyze the bactericidal activity of
the three anti-TB treatments. More specifically, the following regression model was fitted to the
log10(CFU) counts collected from overnight sputum samples, observed from Day 0 to Day 5615,22:

yi jk = αi j−θ1i jti jk−θ2i jγ j log

e
ti jk−κ j

γ j + e
−

ti jk−κ j
γ j

e
κ j
γ j + e

−
κ j
γ j

+ εi jk (3)
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where αi j = α j +u0i j, θ1i j = θ1 j +u1i j, θ2i j = θ2 j +u2i j. yi jk is the log10(CFU) count for patient
i= 1, . . . ,N j in treatment group j = 1, . . . ,J at timepoint k = 1, . . . ,Ki j, and ti jk is the corresponding
measurement time. u0i j, u1i j, and u2i j denote random coefficients for patient i assigned to treatment
j, and εi jk is the residual at time ti jk of patient i assigned to treatment group j. αi j are the random
intercepts, whereas β1i j =

(
θ1i j−θ2i j

)
and β2i j =

(
θ1i j +θ2i j

)
are the random slopes respectively

during the treatment period’s initial and terminal phase. κ j are the nodes at which the regression
functions transition from one slope to another, whereas γ j govern the “smoothness” or “speed”
of the transition from one slope to another. The residuals and random effects were respectively
assumed to follow normal and multivariate normal distributions.

Supplementary Figure 2 shows examples of the regression curve for log10 (CFU) count over time.
For this example, Equation (3) is reparameterized in terms of β1i j and β2i j. The regression parame-
ters αi j = 5, κ j = 14, and γ j = 2 are kept fixed, but showed for different values of β1i j and β2i j, i.e.,
(i) β1i j = 0.05 & β2i j = 0.15, (ii) β1i j = 0.25 & β2i j = 0.05, and (iii) β1i j = 0.15 & β2i j = 0.15.

2.3 Extensions of the basic model

Burger and Schall 23 extended the previous model15 (i.e., Equation (3)) by replacing the normal
distributions for residuals and random effects with skew-t distributions to accommodate outliers
and skewness in log10(CFU) counts (often due to data contamination).24 The model based on the
skew-t distribution makes inferences about the mean log10(CFU) count over time. However, due to
skewness in the data, it would seem more appropriate to model the median count over time rather
than the mean count.

In order to accommodate potential zero-inflation in CFU counts, Burger et al. 20 extended the
previous model15 by modeling the CFU counts on the original scale based on the ZINB distribution
rather than modeling the logarithmic counts. The ZINB model of Burger et al. 20 was applied to
the CFU dataset of Dawson et al. 25 However, the ZINB distribution also models the bactericidal
activity of TB treatments based on the mean count. To model the median count, replacing the ZINB
distribution with the ZIDW distribution can be considered.11,26

The ZINB model by Burger et al. 20 assumed that the mean of the “count” counterpart of the ZINB
distribution, i.e., the NB counterpart, is biphasic over time. However, biologically, the marginal

mean count is assumed to follow a biphasic trend over time.14 In order to model the marginal
mean and median, the conventional ZINB and ZIDW models can be replaced by marginal count
models such as the marginal ZINB (MZINB) and marginal ZIDW (MZIDW) models.13,27
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In summary, the data of Tweed et al. 18 motivated the fit of a biphasic regression model based on
the MZINB and MZIDW distributions to make inferences about the mean and median CFU counts
over time collected from overnight sputum samples.

3 CONVENTIONAL ZERO-INFLATED DISCRETE WEIBULL DISTRIBUTION

The conventional discrete Weibull distribution’s key properties, including its dispersion, zero-
inflation, and heavy-tail indices, can be found in Luyts et al. 8 Burger et al. 11 present an extension
of the DW distribution by adding a zero-inflation parameter; hence, the so-called ZIDW distribu-
tion. The remainder of this section provides a summary of the ZIDW distribution.

If Yi follows a ZIDW distribution, then the probability mass function (PMF) of Yi is given by:

f (yi) = πI (yi = 0)+(1−π)
[
qyφ

i −q(yi+1)φ
]

where yi ∈ {0,1,2, . . .}. Here, 0 < q < 1 and φ > 0 denote the shape parameters, and 0 < π <

1 is the zero-inflation probability of the ZIDW distribution. I (a) denotes an indicator function
taking the value 1 if condition a is true, and 0 otherwise. Supplementary Figure 3 shows examples
of the ZIDW distribution’s PMF for various values of q, φ , and π . This figure suggests that the
distribution’s tail becomes longer for larger values of q and smaller values of φ .

The mean and variance of Yi are written as:

E (Yi) =(1−π)
∞

∑
n=1

qnφ

Var (Yi) =(1−π)

(
2

∞

∑
n=1

nqnφ

−
∞

∑
n=1

qnφ

)
− (1−π)2

(
∞

∑
n=1

qnφ

)2

The cumulative distribution function of Yi is given by:

F (yi) =
yi

∑
xi=0

f (xi) = (π−1)q(yi+1)φ

+1

The τ-quantile function of Yi is written as11:

Q(τ) =

(
log
(

τ−1
π−1

)
log(q)

) 1
φ

−1 (4)
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The dispersion, zero-inflation, and heavy-tail indices of Luyts et al.,8 show that the ZIDW dis-
tribution can accommodate zero-inflation, zero-deflation, over- and underdispersion, and severe
skewness in the data (depending on the parameter combinations). Furthermore, the quantile func-
tion of the ZIDW distribution (Equation (4)) is available in closed form, making it convenient to
model the distribution’s quantiles, of which the median is a special case. Unlike the ZIDW distri-
bution, the ZINB distribution’s median cannot be written in closed form and lacks robustness to
zero-deflation, underdispersion, and excessive skewness data. In this regard, the ZIDW distribution
is considered more flexible than the ZINB distribution.

4 MARGINAL ZERO-INFLATED COUNT DISTRIBUTIONS

This section provides the key properties of the marginal count distribution. In particular, we repa-
rameterize the zero-inflated negative binomial (ZINB) and zero-inflated discrete Weibull (ZIDW)
distributions to model the marginal mean and median counts.

4.1 Marginal zero-inflated negative binomial distribution

The PMF of the conventional ZINB distribution for a given count yi is written as:

f (yi|µ,φ ,π) = πI (yi = 0)+(1−π)

(
yi +φ −1

yi

)(
φ

µ +φ

)φ (
µ

µ +φ

)yi

Here, φ and π are respectively the dispersion parameter and zero-inflation probability, and µ is the
mean of the conventional NB distribution. The mean of the yi under the ZINB distribution is given
by:

E (yi) = λ = (1−π)µ

Usually, the log-link function is used to model µ . Preisser et al. 13 considered modeling λ instead
of µ . Therefore, the ZINB distribution is reparameterized in terms of λ to obtain the marginal
ZINB (MZINB) distribution as follows:

f (yi|λ ,φ ,π) = πI (yi = 0)+(1−π)

(
yi +φ −1

yi

)(
φ (1−π)

λ +φ (1−π)

)φ (
λ

λ +φ (1−π)

)yi
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Alternatively one can use the log-link function to model the marginal mean counts as a function of
covariates as follows:

E (yi) = λ
∗
i = ezzz′iηηη

where zzzi and ηηη are respectively a set of covariates and regression coefficients.

4.2 Marginal zero-inflated discrete Weibull distribution

The PMF of the ZIDW distribution, using the parameterization of Burger et al. 11 for a given count
yi, is written as:

f (yi|µ,φ ,π) = πI (yi = 0)+(1−π)

[
exp

(
− log(2)

[
yi

µ

]φ
)
− exp

(
− log(2)

[
yi +1

µ

]φ
)]

Here, φ and π are respectively the shape parameter and zero-inflation probability, and µ is the
median of the conventional discrete Weibull distribution. The median of the yi under the ZIDW
distribution is given by:

M (yi) = λ =

(
log
[ 0.5

1−π

]
log(0.5)

) 1
φ

µ

Recently, Burger et al. 11 suggested the use of the log-link function to model µ . Taking an approach
similar to that of Preisser et al.,13 λ ’s modeling is suggested instead of µ . The reparameterization
results in the marginal ZIDW (MZIDW) distribution:

f (yi|λ ,φ ,π) = πI (yi = 0)+0.5(
yi
λ
)

φ

(1−π)1−( yi
λ
)

φ

−0.5
(

yi+1
λ

)φ

(1−π)
1−
(

yi+1
λ

)φ

Again, one can alternatively use the log-link function to model the marginal median counts as a
function of covariates as follows:

M (yi) = λ
∗
i = ezzz′iηηη

where zzzi and ηηη are respectively a set of covariates and regression coefficients.
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5 BAYESIAN MIXED-EFFECTS REGRESSION MODELS

5.1 Biphasic mixed-effects regression model

Suppose that yi jk is the observed count for patient i = 1, . . . ,N j in treatment group j = 1, . . . ,J at
timepoint k = 1, . . . ,Ti j (or T ), and ti jk ≥ 0 are the corresponding measurement times. Furthermore,
assume that λi jk are the patient-specific regression functions that describe the counts’ biphasic
trend over time. A slightly different parameterization of the regression function by Burger and
Schall 15 is chosen as:

λi jk = exp

αi j−
β1i j +β2i j

2
ti jk−

β1i j−β2i j

2
γ j log

e
ti jk−κ j

γ j + e
−

ti jk−κ j
γ j

e
κ j
γ j + e

−
κ j
γ j

−oi jk

 (5)

where αi j are the random intercepts, β1i j & β2i j the two random slopes, κ j the change-points
(or “nodes”), γ j the smoothness parameters, and oi jk are offset constants.15,20 Like conventional
Poisson and negative binomial regression, the offset constants oi jk are implemented should it be
more relevant to model the mean or median “rates” instead of the counts. In the context of our
motivating dataset, an offset function may be necessary to account for the dilution of sputum
samples that may have been required to count the bacteria (i.e., CFU counts; see Section 6 for
more details).

The multivariate normal distribution is assumed to model the correlation among the random co-
efficients. Let δδδ i j =

(
αi j,β1i j,β2i j

)′ and δδδ j =
(
α j,β1 j,β2 j

)′ respectively represent the vectors of
random and fixed intercepts and slopes. Therefore, δδδ i j are normally distributed as follows:

δδδ i j ∼ Normal
(

δδδ j,ΣΣΣδδδ j

)
where

ΣΣΣδδδ j
=


σ2

α j
σα jβ1 j σα jβ2 j

σα jβ1 j σ2
β1 j

σβ1 jβ2 j

σα jβ2 j σβ1 jβ2 j σ2
β2 j


are the covariance matrices of δδδ i j.
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5.2 MZINB regression model

The PMF of the MZINB regression model for a given count yi jk (i.e., for patient i, treatment j, and
timepoint k) is written as:

f
(
yi jk|λi jk,φ j,π jk

)
=π jkI

(
yi jk = 0

)
+
(
1−π jk

)(yi jk +φ j−1

yi jk

)(
φ j
(
1−π jk

)
λi jk +φ j

(
1−π jk

))φ j
(

λi jk

λi jk +φ j
(
1−π jk

))yi jk

where λi jk are the patient-specific biphasic regression functions in Equation (5), and φ j & π jk are
respectively the dispersion parameter and zero-inflation probability of the MZINB distribution.
The conditional mean of yi jk under the MZINB regression model is given by E

(
yi jk
)
= λi jk.

5.3 MZIDW regression model

The PMF of the MZIDW regression model for a given count yi jk (i.e., for patient i, treatment j,
and timepoint k) is written as:

f
(
yi jk|λi jk,φ j,π jk

)
= π jkI

(
yi jk = 0

)
+0.5

(
yi jk
λi jk

)φ j (
1−π jk

)1−
(

yi jk
λi jk

)φ j

−0.5

(
yi jk+1

λi jk

)φ j (
1−π jk

)1−
(

yi jk+1
λi jk

)φ j

where λi jk are the patient-specific biphasic regression functions in Equation (5), and φ j & π jk are
respectively the shape parameter and zero-inflation probability of the MZIDW distribution. The
conditional median of yi jk under the MZIDW regression model is given by M

(
yi jk
)
= λi jk.

6 DATA ANALYSIS

Details on the Bayesian model specification of the MZINB and MZIDW models are presented in
the supplementary material of this paper. In summary, we specified vague prior distributions for the
model parameters, i.e., normal distributions for the fixed intercepts & slopes, matrix-generalized
half-t distributions for the random effects covariance matrices,28 uniform distributions for the node,
smoothness & zero-inflation parameters, and gamma distributions for the dispersion & shape pa-
rameters.
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6.1 Model implementation and computational issues

The MZINB and MZIDW regression models were implemented according to the model speci-
fications discussed in Section 5. In Equation (5), yi jk = ∑

ni jk
l=1 CFUi jkl is the total of ni jk bacte-

rial plate counts for patient i, treatment group j, and timepoint k. The offsets are expressed as
oi jk = log

(
ci jk10di jk/ni jk

)
, where ni jk, ci jk & di jk are respectively n, “factor” and “dilution” as per

Equation (1). The CFU counts collected before randomization (Days -2 and -1) were considered

as Day 0 collections (i.e., ti jk = 0). The posterior estimate of
log(λi jk)+oi jk

log(10) can be interpreted as the
“fitted” log10 (CFU) count for patient i, treatment j, and timepoint k.

The R code for implementing the MZINB and MZIDW models is presented in the supplementary
material of this manuscript.

The bactericidal activity of treatment group j is expressed as the daily rate of change in log10 (CFU)

count over timepoints k1 and k2, namely (see Equation (2)):

BA j (tk1–tk2) =−
log
[
M j (tk2)

]
− log

[
M j (tk1)

]
log(10)(tk2− tk1)

(6)

where

M j (tk) = exp

α j−
β1 j +β2 j

2
tk−

β1 j−β2 j

2
γ j log

e
tk−κ j

γ j + e
−

tk−κ j
γ j

e
κ j
γ j + e

−
κ j
γ j

 (7)

Here, log10
(
M j (tk)

)
derived by regression models MZINB and MZIDW is respectively the mean

and median log10 (CFU) count at time tk of treatment group j. For our analysis, BA j (0–56) was of
primary interest.

In order to avoid numerical overflow, the regression models were fitted with the times ti jk expressed
in weeks instead of days. In order to avoid non-identifiability of the parameters κ j and γ j, the lower
and upper bounds of κ j and γ j were set to Lκ = 3, Uκ = 11, Lγ = 0.05, and Uγ = 2 (see Section 3.1
of Burger and Schall 15). It should be noted that the median of the MZIDW distribution exists only
for 0 < π jk < 0.5. Therefore, the MZINB and MZIDW regression models’ upper bound of π jk was
respectively set to 1 and 0.5.

The regression models were fitted using JAGS29 via the package runjags30 of the R project.31

The convergence of posterior samples was confirmed using trace plots and Brooks-Gelman-Rubin
statistics.32
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Starting values for the random effects were derived by fitting the model as a linear mixed-effects
regression model under the assumption that the node and smoothness parameters are respectively
fixed at κ j = (Lκ +Uκ)/2 = 7 and γ j =

(
Lγ +Uγ

)
/2 = 1.025. The linear mixed-effects regression

model was fitted to the log10 (CFU) counts using the R project’s lmec library,33,34 where on the
log-10 scale, the zero counts were specified as left-censored values of 1.

The R project was called remotely from SAS®,35 and accordingly, posterior samples were exported
back to SAS® for further computation. For each regression model, 82500 samples were simulated
from the joint posterior distribution for 7 parallel chains. Among those 82500 samples (per chain),
the initial 15000 samples were discarded (burn-in). High autocorrelation in the posterior samples
was present. We therefore used a thinning factor of 450 to reduce autocorrelation among the sam-
ples. We ran our models on a desktop computer with a 3.00 GHz Intel® CoreTM i9-10980XE
processor and 64 GB installed memory (RAM). The MZINB and MZIDW models, respectively,
took approximately 45 and 60 minutes to run.

We calculated the compound Laplace-Metropolis marginal likelihood (CLMML)36,37 to discrim-
inate between the candidate models. The CLMML compares the candidate models based on their
marginal likelihood, therefore, not conditional on the random effects. Thus, the CLMML is more
appropriate than the widely used deviance information criterion statistic conditional on the random
effects.38 Details on the calculation of the CLMML are presented in the supplementary material
of this paper. The multidimensional integration library cubature of the R project was used to
approximate the Laplace integrals.39

6.2 Results

Plots of the observed log10 (CFU) counts together with fits of regression models MZINB and
MZIDW are included in Figure 1 for eight randomly selected patients. The two regression models
fit the data of these profiles well.

Table 1 presents the posterior estimates (PEs) and 95% highest posterior density (HPD) intervals
of the bactericidal activity (BA j (0–56); see Equation (6)) and the regression model parameters.
The PEs and 95% HPD intervals of the mean and median log10 (CFU) counts (see Equation (7))
are shown in Figure 2 by treatment group and day. As expected (due to skewness in the data), the
median counts are smaller than the mean counts. The PEs and 95% HPD intervals of each treat-
ment’s mean and median bactericidal activity are similar. J(loading dose/t.i.w.)PaZ shows the highest
mean and median bactericidal activity, followed by J(200 mg)PaZ and HRZE; the difference between
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the latter two treatments is negligible.

The log-CLMML for models MZINB and MZIDW is respectively−9906.12 and−9932.15. Hence,
the CLMML favors the MZINB model over the MZIDW model. Since the two models are struc-
tured differently (i.e., modeling the mean vs. the median), one should not discriminate between
models solely based on model comparison statistics (such as the CLMML); one should also con-
sider the models’ goodness of fit. As previously indicated, the profile plots in Figure 1 suggest that
both models fit the data adequately.

7 SIMULATION STUDY

7.1 Model performance

We assessed the performance and the identifiability of regression models MZINB and MZIDW
outlined in Section 5 in a simulation study. Datasets were simulated from regression models MZ-
INB and MZIDW, where the model parameters were chosen to mimic the CFU count vs. time
profiles of moderately and highly efficacious anti-TB drugs, respectively, each with and without
zero-inflation in CFU count during the second phase of treatment.

Each fit was considered for a single treatment group separately (i.e., j = 1). Data on the follow-
ing days were considered: ti jk ∈ {0,1,3,7,14,21,28,35,42,49,56}. The offset, intercept, node,
smoothness parameter, variance components, and dispersion/shape parameter for both models
were chosen as oi jk = 5.063315552 (i.e., ni jk = 4, ci jk = 20, di jk = 1.5), α1 = 12.65, κ1 = 5.25,
γ1 = 1.25, σ2

α1
= 0.95, σ2

β11
= 0.85, σ2

β21
= 0.80, σα1β11 = 0.25, σα1β21 = 0.35, σβ11β21 = −0.15,

and φ1 = 0.70. For simplicity, the zero-inflation probabilities were pooled by (i) Days 0, 1, 3, 7
(k = 1), and (ii) Days 14, 21, 28, 35, 42, 49, 56 (k = 2). The parameter scenarios were investigated
for the following sets of slope terms: (i) β11 = 3.95, β21 = 1.35, and (ii) β11 = 4.20, β21 = 1.80.
Both parameter scenarios were investigated for the following two sets of zero-inflation probabili-
ties (k = 1,2): (i) π11 = 0.01, π12 = 0.01 (without zero-inflation), and (ii) π11 = 0.01, π12 = 0.12
(with zero-inflation). The regression models were fitted to 500 simulated datasets, each dataset
consisting of 15 patient profiles (i = 1, . . . ,15).

The bias and root mean square error (RMSE) of the PEs were calculated, as was the average length
and empirical coverage probability of the associated 95% HPD intervals. For simplicity, the re-
gression models fitted the node and smoothness parameters as fixed values. The autorun.jags
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function of the runjags package30 was used to guarantee the successful convergence of the
posterior samples for each fitted dataset.

From Table 2, we observe the following:

• Under each parameter scenario, the bias of the estimates of the fixed effects (i.e., α1, β11,
and β21) and dispersion/shape parameters (i.e., φ1) from both regression models is small. In
contrast, those of the variance components (i.e., ΣΣΣδδδ j

) are somewhat large.

• The zero-inflation probability estimates of the second phase (i.e., π12) are (i) biased upwards
when there is no zero-inflation present in the second phase and (ii) less biased when there
is zero-inflation present in the second phase. We note that our parameter scenarios mimic
data where the counts during the second phase of treatment are primarily zero due to the
treatment effect (as governed by the regression slopes; for example, CFU counts typically
approach zero closer to the end of treatment). The latter is the case regardless of the presence
of zero-inflation in the data. Therefore, it seems that adding a zero-inflation parameter for the
second phase of treatment, in the absence of zero-inflation, may cause identifiability issues
when the counts are inherently zero (such as “late phase” CFU counts in TB trials). We note
that the zero-inflation probability estimates’ bias of the first phase (i.e., π11) is small under
each parameter scenario.

• Under each parameter scenario, both regression models yield HPD interval coverage prob-
abilities close to or slightly higher than the nominal value, except for the variance compo-
nents’ coverage of the first slope (i.e., σ2

β11
, σα1β11 , and σβ11β21) that is too conservative (equal

to 100%).

We repeated the simulation study of the third parameter scenario (β11 = 4.20, β21 = 1.80, π11 =

0.01, π12 = 0.01) by simulating 100 datasets for a sample size of 50 patients (i = 1, . . . ,50). The
corresponding results are presented in Supplementary Table 2. We observe that the bias and HPD
interval coverage under the larger and smaller sample size settings are similar. The PEs’ RMSE
and the associated average HPD interval length increase under the larger sample size setting.

7.2 Data contamination

We assessed the impact of the misspecification of the random effects distribution on the inferences
of the fixed effects. Here, we considered the second parameter scenario in Section 7.2 (β11 = 3.95,
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β21 = 1.35, π11 = 0.01, π12 = 0.12). We generated the random effects δδδ i j in Section 5.1 from the
skew-normal distribution of Sahu et al. 40 We reparameterized the skew-normal distribution such
that E

(
δδδ i j
)
= δδδ j and Var

(
δδδ i j
)
= Σδδδ j

+
(
1− 2

π

)
Ψ2

δδδ j
. Here, Σδδδ j

are the scale matrices of the skew-
normal distribution. Ψδδδ j

denote diagonal matrices with ψα j ,ψβ1 j ,ψβ2 j on the diagonal, i.e., the
skewness parameters of the random intercepts and two random slopes. We introduced skewness
to the random intercepts only (i.e., ψβ1 j = ψβ2 j = 0). We considered the following three levels of
skewness under the skew-normal distribution: ψα j ∈ {−2,−3,−4}. The corresponding results are
presented in Supplementary Table 3 (fixed effects only). The bias and HPD interval coverage are
adequate under each level of skewness. Table 3 presents the percentage difference in the RMSEs
and HPD interval lengths between the contaminated and uncontaminated groups for each skewness
level (ψα j). Both models’ RMSE and HPD interval length increase under higher contamination
rates (skewness levels). However, the increase in these characteristics under the MZINB model is
higher than that of the MZIDW model, most notably the fixed intercept term. The latter suggests
that the MZIDW model is more robust to model misspecifications than the MZINB model.

8 DISCUSSION

This paper proposed a biphasic regression model for zero-inflated longitudinal counts based on
the MZINB and MZIDW distributions. The current approach draws on existing literature while
presenting an extension for Bayesian inference of biphasic median counts over time.

We demonstrated our methods through a reanalysis of the TB dataset of Tweed et al. 18 The non-
linear log10 (CFU) vs. time profiles indicate that one should preferably fit nonlinear zero-inflated
models to accommodate zero counts toward the end of the treatment period. Therefore, we chose to
model the data using biphasic models based on the MZINB and MZIDW distributions. The bipha-
sic model consists of an intercept term, two regression slopes, an unknown change-point (at which
the slope transitions from one rate of decline to another), and a smoothness parameter governing
the transition speed from one slope to another. The biphasic MZIDW model extends the conven-
tional linear mixed-effects ZIDW model of Burger et al. 11 to describe the overall median counts
over time instead of the subpopulation’s latent median, that is, that of the uncured TB patients (i.e.,
the “at-risk” subpopulation). Similarly, the MZINB model models the biphasic mean counts on a
marginal basis. In the case of modeling CFU counts in anti-TB trials such as our application, the
median counts can be considered more informative than the mean count, given the data’s severe
skewness. For our application, the bactericidal activity of each treatment (i.e., the rate of decline
in CFU counts) characterized by the mean and median counts is similar.
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While the coverage of the HPD intervals for the variance components is generally very conserva-
tive, the coverage for the fixed effects is in most cases good (that is, close to the nominal coverage).
We note that the bias of the zero-inflation probabilities increases over time when the counts are zero
due to steep regression slopes without the presence of zero-inflation. Such instances may result in
an overparameterized model, causing some parameters to become nonidentifiable. Care should,
therefore, be taken to avoid such overparameterizations which potentially may yield biased esti-
mates for the zero-inflation probabilities. The implementation of the MZINB and MZIDW models
as hurdle models41 may potentially circumvent such identifiability issues. Overall, the simulation
study suggests that the proposed biphasic regression models have adequate properties in terms of
accuracy and confidence interval coverage.

The “robustness” simulation study suggests that the inference about the mean counts (MZINB
model) is more sensitive to model misspecifications compared to the median (MZIDW model).
Extended versions of the discrete Weibull distribution may be considered for more flexibility con-
cerning the distribution’s tails.

The proposed mixed-effects MZINB and MZIDW regression models can be further extended to
investigate the association between biphasic longitudinal counts and time-to-event outcomes,42

for example, in the context of TB trials, performing biomarker analyses to assess the association
between CFU counts and “time to sputum culture conversion.”25,43 The quantile function of the
discrete Weibull distribution is available in closed form, making it possible to model quantiles of
counts other than the median.44

We note that the interpretation of the models’ fixed effects is not globally marginal (over all the
random effects) but instead conditional on the random effects. To enable interpreting the fixed
effects on a truly marginal basis, one must first integrate over the likelihood function’s random
effects before specifying it in the Gibbs sampling algorithm. As a subject of future research, the
methods proposed by Heagerty and Zeger 45 & Geraci and Bottai 9 can be considered to perform
such “marginal” analyses.

The proposed regression models treat the treatment-specific node parameters as fixed effects. As
was initially done by Burger and Schall,15 the models can treat the nodes as random effects to
accommodate individual variation in the nodes (hence random change-point models46). The model
can also be generalized to model the median counts of zero-inflated longitudinal counts based on
nonlinear functions other than biphasic curves, i.e., nonlinear mixed-effect regression models in
the general case.

17



Even though the median is a more robust measure of central tendency than the mean when the data,
for instance, zero-inflated counts, are right-skewed, it may also be of clinical interest to report
the mean of longitudinal count data together with the median. Therefore, we recommend fitting
both the MZINB and MZIDW distributions to yield inferences about the two central tendency
characteristics: the mean and median.
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Figure 1: TB dataset: observed and fitted log10(CFU) vs. time profiles
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CFU: Colony-forming unit. MZIDW: Marginal zero-inflated discrete Weibull. MZINB: Marginal zero-
inflated negative binomial. aThe log-link function is used to describe the biphasic relationship between
the mean CFU count and time. bThe log-link function is used to describe the biphasic relationship between
the median CFU count and time. CFU counts of zero are displayed on the log-10 scale as 1.
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Figure 2: TB dataset: PEs and 95% HPD intervals of mean and median log10(CFU) count
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CFU: Colony-forming unit. HPD: Highest posterior density. MZIDW: Marginal zero-inflated discrete
Weibull. MZINB: Marginal zero-inflated negative binomial. PE: Posterior estimate. aThe log-link function
is used to describe the biphasic relationship between the mean CFU count and time. bThe log-link function
is used to describe the biphasic relationship between the median CFU count and time.
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Table 3: Simulation study: percentage difference in RMSEs and HPD interval lengths between
“skew-normal” contamination and no contamination (15 patients)

RMSE Interval Lengtha

MZINBb MZIDWc MZINBb MZIDWc

ψψψααα1
d ψψψααα1

d ψψψααα1
d ψψψααα1

d

Parametere -2 -3 -4 -2 -3 -4 -2 -3 -4 -2 -3 -4

α1 36.3 61.9 102.2 25.1 49.1 86.9 39.8 76.7 115.9 35.0 66.9 102.8
β11 2.0 4.4 4.0 1.3 -4.8 1.0 5.0 7.7 9.8 5.1 7.0 9.4
β21 3.9 8.2 8.1 1.1 5.0 3.5 3.9 6.2 10.1 3.9 7.2 11.6

HPD: Highest posterior density. MZIDW: Marginal zero-inflated discrete Weibull. MZ-
INB: Marginal zero-inflated negative binomial. RMSE: Root mean square error. a95% HPD inter-
val average length. bThe log-link function is used to describe the biphasic relationship between
the mean count and time. cThe log-link function is used to describe the biphasic relationship be-
tween the median count and time. dPercentage difference between “skew-normal” contamination
(with skewness parameter ψα1) and no contamination. eFor the prevention of numerical overflow,
the models were fitted with time expressed in weeks.
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NONLINEAR MIXED-EFFECTS MODELING OF LONGITU-
DINAL COUNT DATA: BAYESIAN INFERENCE ABOUT ME-
DIAN COUNTS BASED ON THE MARGINAL ZERO-INFLATED
DISCRETE WEIBULL DISTRIBUTION

Divan Aristo Burger and Emmanuel Lesaffre
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PROFILE PLOT

Figure 1: TB dataset: observed log10(CFU) counts over time
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(c) HRZE
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CFU: Colony-forming unit. CFU counts of zero are displayed on the log-10 scale as 1.
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SUMMARY STATISTICS

Table 1: Summary statistics of observed CFU count over time

Treatment Day n Mean SD CV Minimum Median Maximum Zeros (%)

J(loading dose)PaZ Day 0 162 5728792 9343449 163 0 1441000 40000000 1.9
Day 3 55 3315936 12627118 381 0 679250 92400000 1.8
Day 7 52 343078 1038131 303 0 22850 6765000 7.7
Day 14 48 28087 87399 311 0 1788 525250 6.3
Day 21 48 8768 24204 276 0 568 130000 6.3
Day 28 48 8776 32969 376 0 73 188100 37.5
Day 35 41 4257 21558 506 0 0 136950 53.7
Day 42 49 5737 29068 507 0 0 196625 61.2
Day 49 43 6256 27312 437 0 0 132000 72.1
Day 56 48 1278 4682 366 0 0 22667 81.3

J(200 mg)PaZ Day 0 157 5127638 10585053 206 0 770000 68200000 1.9
Day 3 52 2024968 5999341 296 0 176700 40000000 3.8
Day 7 51 574902 2226334 387 0 42000 14750000 2.0
Day 14 51 94971 499563 526 0 4015 3550000 9.8
Day 21 47 22015 116787 530 0 270 800000 29.8
Day 28 42 9833 53110 540 0 72 345000 23.8
Day 35 41 1768 6979 395 0 15 42900 39.0
Day 42 44 2821 17849 633 0 0 118500 54.5
Day 49 46 4583 30960 676 0 0 210000 71.7
Day 56 45 1174 7674 654 0 0 51500 77.8

HRZE Day 0 167 6618662 12675684 192 0 1595000 102300000 0.6
Day 3 55 778651 1184944 152 550 212500 5637500 0.0
Day 7 55 193311 356931 185 248 45000 1806750 0.0
Day 14 53 63521 179552 283 0 6600 1210000 5.7
Day 21 51 34406 126824 369 0 1172 880000 9.8
Day 28 52 26171 126473 483 0 312 885000 23.1
Day 35 48 2816 11172 397 0 55 73150 33.3
Day 42 50 997 5861 588 0 1 41525 50.0
Day 49 46 1118 5781 517 0 0 38500 65.2
Day 56 45 27 89 335 0 0 413 82.2

n = Number of CFU counts. CFU: Colony-forming unit. CV: Coefficient of variation. SD: Standard deviation.
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REGRESSION CURVE

Figure 2: Example plot of regression curve for log10 (CFU) count over time
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ZERO-INFLATED DISCRETE WEIBULL DISTRIBUTION

Figure 3: Probability mass function of zero-inflated discrete Weibull distribution
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(b) q = 0.99
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BAYESIAN MODEL SPECIFICATION

The Bayesian estimation procedures proposed in this manuscript are based on vague prior distri-
butions as follows:

Multivariate normal prior distributions are specified for δδδ j, namely:

δδδ j ∼ Normal
(
000,104× III

)
where 000 and III respectively denote the corresponding vector of zeros and identity matrix.

The matrix-generalized half-t (MGH-t) prior distribution for the random effects covariance matrix
is specified instead of the widely used Wishart prior distribution, since the latter often results
in poor confidence interval coverage, especially when the variance components are small.47 The
MGH-t prior distribution for ΣΣΣ

−1
δδδ j

is hierarchically specified by Wishart and gamma distributions

as28:

ΣΣΣ
−1
δδδ j
|ΩΩΩ j ∼Wishart

(
v+2,2vΩΩΩ j

)
ω jz ∼ Gamma

(
0.5,1/A2)

where ΩΩΩ j denote diagonal matrices with ω jz on the diagonal (z = 1,2,3). Here, v+ 2 and 2vΩΩΩ j

are respectively the degrees of freedom and inverse scale matrices of the Wishart distribution. The
conditional density functions of ΣΣΣδδδ j

and ω jz are written as:

P
(

ΣΣΣ
−1
δδδ j
|ΩΩΩ j

)
∝

∣∣∣ΣΣΣδδδ j

∣∣∣ v
2−1

exp
[
−v · tr

(
ΩΩΩ jΣΣΣ

−1
δδδ j

)]
; ΩΩΩ j = diag

(
ω j1,ω j2,ω j3

)
P
(
ω jz
)

∝ ω
− 1

2
jz exp

(
− 1

A2 ω jz

)
From the law of total probability, the set of nuisance parameters ΩΩΩ j integrated out results in the
MGH-t prior distribution, namely:

f
(

ΣΣΣδδδ j

)
∝

∣∣∣ΣΣΣδδδ j

∣∣∣− v+6
2

3

∏
z=1

[
v
(

ΣΣΣ
−1
δδδ j

)
zz
+1/A2

]− v+3
2

where ΣΣΣδδδ j
> 000, and

(
ΣΣΣ
−1
δδδ j

)
zz

is the zth diagonal entry of ΣΣΣ
−1
δδδ j

. This mixture representation results
in the half-t prior distribution, namely half-t (v,A), for the standard deviation terms in ΣΣΣδδδ j

, and the
uniform prior distribution, namely U (−1,1), for the correlation terms in ΣΣΣδδδ j

. The corresponding
quantities are set to A = 50 and v = 2. Therefore, this specification results in a weakly informative
(heavy-tailed) prior for the standard deviation terms.
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BAYESIAN MODEL SPECIFICATION

The parameters κ j and γ j are assumed to follow uniform prior distributions, namely:

κ j ∼ Uniform(Lκ ,Uκ)

γ j ∼ Uniform
(
Lγ ,Uγ

)
where Lκ , Uκ , Lγ , and Uγ are the pre-specified lower and upper bounds for κ j and γ j, respectively.

The dispersion & shape parameters φ j and zero-inflation probabilities π jk are assumed to follow
vague gamma and uniform prior distributions, namely:

φ j ∼ Gamma(0.5,0.5) (8)

π jk ∼ Uniform(0,Uπ)

where Uπ is the upper bound for π jk. Here, φ j’s prior variance is 2. Assuming the gamma prior
distribution in Equation (8) is reasonable if the data are believed to be overdispersed (i.e., small
values of φ j).

The resulting joint posterior distribution of the model parameters is written as:

P
(

δδδ i j,δδδ j,ΣΣΣδδδ j
,ω jz,κ j,γ j,φ j,π jk, j = 1, . . . ,J, i = 1, . . . ,N j,k = 1, . . . ,T |yyy

)
∝

(
J

∏
j=1

N j

∏
i=1

T

∏
k=1

f
(
yi jk|λi jk,φ j,π jk

))( J

∏
j=1

N j

∏
i=1

P
(

δδδ i j|δδδ j,ΣΣΣδδδ j

))( J

∏
j=1

P
(
δδδ j
)

P
(

ΣΣΣ
−1
δδδ j
|ΩΩΩ j

))
×(

J

∏
j=1

3

∏
z=1

P
(
ω jz
))( J

∏
j=1

P
(
κ j
)

P
(
γ j
)

P
(
φ j
))( J

∏
j=1

T

∏
k=1

P
(
π jk
))

where yyy is the vector containing yi jk for all j = 1, . . . ,J, i = 1, . . . ,N j, and k = 1, . . . ,T . The MCMC
Gibbs sampling algorithm is used to draw samples from the joint posterior distribution of the
model parameters.48 Software such as JAGS29 can be employed to carry out the Gibbs sampling
procedure.
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1   library(Rfast)
2   library(runjags)
3   library(parallel)
4   library(coda)
5   setwd('C:/Program Files/R/R-3.5.1/bin')
6   NCORES <- detectCores() - 1 ###7 Cores
7   
8   DATA1 <- read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZINB_DATA.csv')
9   attach(DATA1) #See below.

10   DATA2 <- read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZINB_PATKVT.csv') #Dataset 
containing the patient IDs the treatment groups to which the patients were assigned.

11   attach(DATA2)
12   
13   ###Notes:###
14   #Initially, we wrote our program to accommodate multiple longitudinal outcomes. For the 

current manuscript, only one longitudinal outcome was used. Hence, JVINDEX = 1.
15   #NSUBJID: Patient ID.
16   #KVTRTN: Treatment group.
17   #TIME: Observed time.
18   #PROTTIMC: Protocol timepoint.
19   #SUMCFU: Sum of the CFU counts (all plates).
20   #OFFSET: Offset constant.
21   #PATKVT: Patient ID.
22   
23   DATA <- list(JVINDEX = JVINDEX, NSUBJID = NSUBJID, KVTRTN = KVTRTN, TIME = TIME, 

PROTTIMC = PROTTIMC, SUMCFU = SUMCFU, OFFSET = OFFSET, PATKVT = PATKVT, ZEROVEC =
rep(0, 3), IDENMAT = diag(rep(0.0001, 3)))

24   
25   BAYESMODEL <- '
26   data {
27       C <- 10000
28       for (i in 1:1792) {
29           ONES[i] <- 1
30       }
31   }
32   model {
33       for (i in 1:1792) {
34           LIKE[i] <- (PI[JVINDEX[i], KVTRTN[i], PROTTIMC[i]]*equals(SUMCFU[i], 0) + (1 - 

PI[JVINDEX[i], KVTRTN[i], PROTTIMC[i]])*(exp(loggam(SUMCFU[i] + PHI[JVINDEX[i], 
KVTRTN[i]]) - loggam(SUMCFU[i] + 1) - loggam(PHI[JVINDEX[i], 
KVTRTN[i]]))*(PHI[JVINDEX[i], KVTRTN[i]]/(PHI[JVINDEX[i], KVTRTN[i]] + 
LAMBDA[i]/(1 - PI[JVINDEX[i], KVTRTN[i], PROTTIMC[i]])))^PHI[JVINDEX[i], 
KVTRTN[i]]*(LAMBDA[i]/(1 - PI[JVINDEX[i], KVTRTN[i], 
PROTTIMC[i]])/(PHI[JVINDEX[i], KVTRTN[i]] + LAMBDA[i]/(1 - PI[JVINDEX[i], 
KVTRTN[i], PROTTIMC[i]])))^SUMCFU[i]))/C

35           ONES[i] ~ dbern(LIKE[i])
36           LINK[i] <- SALPHA[JVINDEX[i], NSUBJID[i]] - (SBETA2[JVINDEX[i], NSUBJID[i]] + 

SBETA1[JVINDEX[i], NSUBJID[i]])/2*TIME[i]/7 - (SBETA2[JVINDEX[i], NSUBJID[i]] - 
SBETA1[JVINDEX[i], NSUBJID[i]])/2*MGAMMA[JVINDEX[i], 
KVTRTN[i]]*log((exp((TIME[i]/7 - MKAPPA[JVINDEX[i], 
KVTRTN[i]])/MGAMMA[JVINDEX[i], KVTRTN[i]]) + exp(-(TIME[i]/7 - 
MKAPPA[JVINDEX[i], KVTRTN[i]])/MGAMMA[JVINDEX[i], 
KVTRTN[i]]))/(exp(MKAPPA[JVINDEX[i], KVTRTN[i]]/MGAMMA[JVINDEX[i], KVTRTN[i]]) 
+ exp(-MKAPPA[JVINDEX[i], KVTRTN[i]]/MGAMMA[JVINDEX[i], KVTRTN[i]])))

37           log(LAMBDA[i]) <- LINK[i] + OFFSET[i]
38       }
39       for (i in 1:172) {
40           SALPHA[1, i] <- SDELTA[i, 1]
41           SBETA1[1, i] <- SDELTA[i, 2]
42           SBETA2[1, i] <- SDELTA[i, 3]
43           SDELTA[i, 1:3] ~ dmnorm(MDELTA[PATKVT[i], 1:3], SGINV[PATKVT[i], 1:3, 1:3])
44       }
45       for (i in 1:3) {
46           MALPHA[1, i] <- MDELTA[i, 1]
47           MBETA1[1, i] <- MDELTA[i, 2]
48           MBETA2[1, i] <- MDELTA[i, 3]
49           OMEGA[i, 1, 1] ~ dgamma(0.5, 0.0004)
50           for (x in 2:3) {
51               OMEGA[i, x, x] ~ dgamma(0.5, 0.0004)

PROGRAMMING CODE: MZINB MODEL
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52               for (y in 1:(x - 1)) {
53                   OMEGA[i, x, y] <- 0
54                   OMEGA[i, y, x] <- OMEGA[i, x, y]
55               }
56           }
57           SGINV[i, 1:3, 1:3] ~ dwish(2*2*OMEGA[i, 1:3, 1:3], 4)
58           SIGMA[i, 1:3, 1:3] <- inverse(SGINV[i, 1:3, 1:3])
59           ALPSIGSQ[i] <- SIGMA[i, 1, 1]
60           BT1SIGSQ[i] <- SIGMA[i, 2, 2]
61           BT2SIGSQ[i] <- SIGMA[i, 3, 3]
62           ALPBT1SIGSQ[i] <- SIGMA[i, 1, 2]
63           ALPBT2SIGSQ[i] <- SIGMA[i, 1, 3]
64           BT1BT2SIGSQ[i] <- SIGMA[i, 2, 3]
65           MDELTA[i, 1:3] ~ dmnorm(ZEROVEC[1:3], IDENMAT[1:3, 1:3])
66           for (k in 1:1) {
67               MKAPPA[k, i] ~ dunif(0.4285714286, 1.5714285714)
68               MGAMMA[k, i] ~ dunif(0.05, 2)
69               PHI[k, i] ~ dgamma(0.5, 0.5)
70               for (j in 1:10) {
71                   PI[k, i, j] ~ dunif(0, 1)
72               }
73           }
74       }
75   }'
76   OMEGA <- array(NA, dim = c(3, 3, 3))
77   for (k in 1:3) {
78   OMEGA[k, 1, 1] <- 1
79   for (i in 2:3) {
80   OMEGA[k, i, i] <- 1
81   }
82   }
83   ORIGPARMS <- c('SALPHA', 'SBETA1', 'SBETA2', 'MALPHA', 'MBETA1', 'MBETA2', 'MKAPPA', 

'MGAMMA', 'PHI', 'PI', 'ALPSIGSQ', 'BT1SIGSQ', 'BT2SIGSQ', 'ALPBT1SIGSQ', 
'ALPBT2SIGSQ', 'BT1BT2SIGSQ')

84   ORIGPARMS
85   NEWPARAMS <- c('LAMBDA')
86   NEWPARAMS
87   ALLPARAMS <- c(ORIGPARMS, NEWPARAMS)
88   ALLPARAMS
89   SDELTA =

as.matrix(read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZINB_Initial_SDELTA.csv'))
#Dataset containing initial values.

90   MDELTA = t(matrix(c(colmeans(SDELTA), colmeans(SDELTA), colmeans(SDELTA)), ncol = 3))
91   INITIAL <- replicate(NCORES, list(list(PHI = array(rep(0.1, 3), dim = c(1, 3)), OMEGA =

OMEGA, SDELTA = SDELTA, .RNG.name = 'base::Mersenne-Twister', .RNG.seed = sample.int(n
= 100000, size = 1))))

92   TIME <- proc.time()
93   SAMPLE <- run.jags(model = BAYESMODEL, data = DATA, inits = INITIAL, monitor =

ALLPARAMS, n.chains = NCORES, burnin = 15000, thin = 450, sample = 150, summarise =
FALSE, method = 'parallel', modules = 'glm', factories = 'bugs::MNormal sampler off')

94   proc.time() - TIME
95   READ1 <- as.matrix(as.mcmc(SAMPLE, vars = c(ORIGPARMS)))
96   READ2 <- as.matrix(as.mcmc(SAMPLE, vars = c(NEWPARAMS)))
97   write.csv(READ1, 'FIVE_CFU_O_MZINB_CODA1.csv')
98   write.csv(t(READ2), 'FIVE_CFU_O_MZINB_CODA2.csv')
99   SUMMARY <- summary(SAMPLE, confidence = c(0.95))

100   write.csv(SUMMARY, 'FIVE_CFU_O_MZINB_LOG.csv')
101   pdf('FIVE_CFU_O_MZINB_DIAGN.pdf')
102   plot(SAMPLE, vars = c(ORIGPARMS), plot.type = c('trace'), new.window = FALSE)
103   plot(SAMPLE, vars = c(ORIGPARMS), plot.type = c('autocorr'), new.window = FALSE)
104   dev.off()
105   extract(SAMPLE, what = 'samplers')
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1   library(Rfast)
2   library(runjags)
3   library(parallel)
4   library(coda)
5   setwd('C:/Program Files/R/R-3.5.1/bin')
6   NCORES <- detectCores() - 1 ###7 Cores
7   
8   DATA1 <- read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZIDW_DATA.csv')
9   attach(DATA1) #See below.

10   DATA2 <- read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZIDW_PATKVT.csv') #Dataset 
containing the patient IDs the treatment groups to which the patients were assigned.

11   attach(DATA2)
12   
13   ###Notes:###
14   #Initially, we wrote our program to accommodate multiple longitudinal outcomes. For the 

current manuscript, only one longitudinal outcome was used. Hence, JVINDEX = 1.
15   #NSUBJID: Patient ID.
16   #KVTRTN: Treatment group.
17   #TIME: Observed time.
18   #PROTTIMC: Protocol timepoint.
19   #SUMCFU: Sum of the CFU counts (all plates).
20   #OFFSET: Offset constant.
21   #PATKVT: Patient ID.
22   
23   DATA <- list(JVINDEX = JVINDEX, NSUBJID = NSUBJID, KVTRTN = KVTRTN, TIME = TIME, 

PROTTIMC = PROTTIMC, SUMCFU = SUMCFU, OFFSET = OFFSET, PATKVT = PATKVT, ZEROVEC =
rep(0, 3), IDENMAT = diag(rep(0.0001, 3)))

24   
25   BAYESMODEL <- '
26   data {
27       C <- 10000
28       for (i in 1:1792) {
29           ONES[i] <- 1
30       }
31   }
32   model {
33       for (i in 1:1792) {
34           LIKE[i] <- (PI[JVINDEX[i], KVTRTN[i], PROTTIMC[i]]*equals(SUMCFU[i], 0) + (1 - 

PI[JVINDEX[i], KVTRTN[i], 
PROTTIMC[i]])*(exp(log(0.5)*(SUMCFU[i]/MU[i])^PHI[JVINDEX[i], KVTRTN[i]]) - 
exp(log(0.5)*((SUMCFU[i] + 1)/MU[i])^PHI[JVINDEX[i], KVTRTN[i]])))/C

35           ONES[i] ~ dbern(LIKE[i])
36           MU[i] <- LAMBDA[i]*(log(0.5/(1 - PI[JVINDEX[i], KVTRTN[i], 

PROTTIMC[i]]))/log(0.5))^(-1/PHI[JVINDEX[i], KVTRTN[i]])
37           LINK[i] <- SALPHA[JVINDEX[i], NSUBJID[i]] - (SBETA2[JVINDEX[i], NSUBJID[i]] + 

SBETA1[JVINDEX[i], NSUBJID[i]])/2*TIME[i]/7 - (SBETA2[JVINDEX[i], NSUBJID[i]] - 
SBETA1[JVINDEX[i], NSUBJID[i]])/2*MGAMMA[JVINDEX[i], 
KVTRTN[i]]*log((exp((TIME[i]/7 - MKAPPA[JVINDEX[i], 
KVTRTN[i]])/MGAMMA[JVINDEX[i], KVTRTN[i]]) + exp(-(TIME[i]/7 - 
MKAPPA[JVINDEX[i], KVTRTN[i]])/MGAMMA[JVINDEX[i], 
KVTRTN[i]]))/(exp(MKAPPA[JVINDEX[i], KVTRTN[i]]/MGAMMA[JVINDEX[i], KVTRTN[i]]) 
+ exp(-MKAPPA[JVINDEX[i], KVTRTN[i]]/MGAMMA[JVINDEX[i], KVTRTN[i]])))

38           log(LAMBDA[i]) <- LINK[i] + OFFSET[i]
39       }
40       for (i in 1:172) {
41           SALPHA[1, i] <- SDELTA[i, 1]
42           SBETA1[1, i] <- SDELTA[i, 2]
43           SBETA2[1, i] <- SDELTA[i, 3]
44           SDELTA[i, 1:3] ~ dmnorm(MDELTA[PATKVT[i], 1:3], SGINV[PATKVT[i], 1:3, 1:3])
45       }
46       for (i in 1:3) {
47           MALPHA[1, i] <- MDELTA[i, 1]
48           MBETA1[1, i] <- MDELTA[i, 2]
49           MBETA2[1, i] <- MDELTA[i, 3]
50           OMEGA[i, 1, 1] ~ dgamma(0.5, 0.0004)
51           for (x in 2:3) {
52               OMEGA[i, x, x] ~ dgamma(0.5, 0.0004)
53               for (y in 1:(x - 1)) {
54                   OMEGA[i, x, y] <- 0
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55                   OMEGA[i, y, x] <- OMEGA[i, x, y]
56               }
57           }
58           SGINV[i, 1:3, 1:3] ~ dwish(2*2*OMEGA[i, 1:3, 1:3], 4)
59           SIGMA[i, 1:3, 1:3] <- inverse(SGINV[i, 1:3, 1:3])
60           ALPSIGSQ[i] <- SIGMA[i, 1, 1]
61           BT1SIGSQ[i] <- SIGMA[i, 2, 2]
62           BT2SIGSQ[i] <- SIGMA[i, 3, 3]
63           ALPBT1SIGSQ[i] <- SIGMA[i, 1, 2]
64           ALPBT2SIGSQ[i] <- SIGMA[i, 1, 3]
65           BT1BT2SIGSQ[i] <- SIGMA[i, 2, 3]
66           MDELTA[i, 1:3] ~ dmnorm(ZEROVEC[1:3], IDENMAT[1:3, 1:3])
67           for (k in 1:1) {
68               MKAPPA[k, i] ~ dunif(0.4285714286, 1.5714285714)
69               MGAMMA[k, i] ~ dunif(0.05, 2)
70               PHI[k, i] ~ dgamma(0.5, 0.5)
71               for (j in 1:10) {
72                   PI[k, i, j] ~ dunif(0, 0.5)
73               }
74           }
75       }
76   }'
77   OMEGA <- array(NA, dim = c(3, 3, 3))
78   for (k in 1:3) {
79   OMEGA[k, 1, 1] <- 1
80   for (i in 2:3) {
81   OMEGA[k, i, i] <- 1
82   }
83   }
84   ORIGPARMS <- c('SALPHA', 'SBETA1', 'SBETA2', 'MALPHA', 'MBETA1', 'MBETA2', 'MKAPPA', 

'MGAMMA', 'PHI', 'PI', 'ALPSIGSQ', 'BT1SIGSQ', 'BT2SIGSQ', 'ALPBT1SIGSQ', 
'ALPBT2SIGSQ', 'BT1BT2SIGSQ')

85   ORIGPARMS
86   NEWPARAMS <- c('LAMBDA')
87   NEWPARAMS
88   ALLPARAMS <- c(ORIGPARMS, NEWPARAMS)
89   ALLPARAMS
90   SDELTA =

as.matrix(read.csv('C:/Progra~1/R/R-3.5.1/bin/FIVE_CFU_O_MZIDW_Initial_SDELTA.csv'))
#Dataset containing initial values.

91   MDELTA = t(matrix(c(colmeans(SDELTA), colmeans(SDELTA), colmeans(SDELTA)), ncol = 3))
92   INITIAL <- replicate(NCORES, list(list(PHI = array(rep(0.1, 3), dim = c(1, 3)), OMEGA =

OMEGA, SDELTA = SDELTA, .RNG.name = 'base::Mersenne-Twister', .RNG.seed = sample.int(n
= 100000, size = 1))))

93   TIME <- proc.time()
94   SAMPLE <- run.jags(model = BAYESMODEL, data = DATA, inits = INITIAL, monitor =

ALLPARAMS, n.chains = NCORES, burnin = 15000, thin = 450, sample = 150, summarise =
FALSE, method = 'parallel', modules = 'glm', factories = 'bugs::MNormal sampler off')

95   proc.time() - TIME
96   READ1 <- as.matrix(as.mcmc(SAMPLE, vars = c(ORIGPARMS)))
97   READ2 <- as.matrix(as.mcmc(SAMPLE, vars = c(NEWPARAMS)))
98   write.csv(READ1, 'FIVE_CFU_O_MZIDW_CODA1.csv')
99   write.csv(t(READ2), 'FIVE_CFU_O_MZIDW_CODA2.csv')

100   SUMMARY <- summary(SAMPLE, confidence = c(0.95))
101   write.csv(SUMMARY, 'FIVE_CFU_O_MZIDW_LOG.csv')
102   pdf('FIVE_CFU_O_MZIDW_DIAGN.pdf')
103   plot(SAMPLE, vars = c(ORIGPARMS), plot.type = c('trace'), new.window = FALSE)
104   plot(SAMPLE, vars = c(ORIGPARMS), plot.type = c('autocorr'), new.window = FALSE)
105   dev.off()
106   extract(SAMPLE, what = 'samplers')
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COMPOUND LAPLACE-METROPOLIS MARGINAL LIKELIHOOD

The Laplace-Metropolis approximation of log( f [yyy|M]) (that is, CLMML) under Model M can be
written as:

log( f [yyy|M]) =
1
2

log(2π) pJ+
1
2

log
∣∣∣R(δδδ j,κ j,γ j,φ j,π jk, j=1,...,J,k=1,...,T)

∣∣∣+ s(δδδ j,κ j,γ j,φ j,π jk, j=1,...,J,k=1,...,T)+

J

∑
j=1

N j

∑
i=1

(
log

[∫ ( T

∏
k=1

f
(
yi jk|δδδ i j, κ̂ j, γ̂ j, φ̂ j, π̂ jk

))
P
(

δδδ i j|δ̂δδ j, Σ̂ΣΣδδδ j

)
dδδδ i j

])
+

J

∑
j=1

log
[
P
(

δ̂δδ j

)
P
(
κ̂ j
)

P
(
γ̂ j
)

P
(
φ̂ j
)

P
(

Σ̂ΣΣδδδ j

)]
+

J

∑
j=1

T

∑
k=1

log
[
P
(
π̂ jk
)]

where p is the number of parameters among δδδ j, κ j, γ j, φ j, ΣΣΣδδδ j
, π jk of treatment group j. Here,

δ̂δδ j, κ̂ j, γ̂ j, φ̂ j, Σ̂ΣΣδδδ j
, π̂ jk are respectively the mean of the posterior distribution of δδδ j, κ j, γ j, φ j, ΣΣΣδδδ j

,

π jk.
∣∣∣R(δδδ j,κ j,γ j,φ j,π jk, j=1,...,J,k=1,...,T)

∣∣∣ and s(δδδ j,κ j,γ j,φ j,π jk, j=1,...,J,k=1,...,T) respectively denote the de-
terminant of the correlation matrix and the sum of the logarithm of the standard deviations of the
posterior distributions of δδδ j, κ j, γ j, φ j, π jk. The model with the largest CLMML is favored.
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