<u>An Assessment of the Anatomical and Genetic Diversity of Themeda</u> <u>triandra Forssk.</u>

By

Sinethemba Nombulelo Ntshangase

A Dissertation

Submitted to the Department of Plant and Soil Sciences

University of Pretoria

In Fulfilment of the Requirements

For the Degree of Master of Science in Plant Sciences

2021

Contents

A	n Asses	ssment of the Anatomical and Genetic Diversity of <i>Themeda triandra</i> Forssk
A	bstract	
A	cknowl	edgements 5
1	Cha	pter 1: General Introduction <i>Themeda triandra</i> 6
	1.1	Themeda triandra and T. australis: One species or two
	1.2	The ecological and economic importance of T. triandra7
	1.3	Morphological variation
	1.4	Cytological variation
	1.5	Ecological variation
	1.6	Seed biology11
	1.7	Growth physiology13
	1.8	Variability in Genetic diversity13
	1.9	Scope of this Study14
	1.10	Overview of the dissertation structure15
2	Cha	pter 2: Assessment of leaf anatomical variation16
	2.1	Introduction
	2.2	Materials and Methods
	2.2.	1 Selection of samples18
	2.2.	2 Character selection for numerical taxonomic analyses: Scanning Electron Microscopy24
	2.2	3 Selection of characters for Light Microscopy of Themeda triandra leaves
	2.2.	4 Numerical taxonomic analyses
	2.3	Results and Discussion
	2.3.	1 Scanning Electron Microscopy Data Sets
	2.3.	2 Light Microscopy
	2.3	3 Scanning Electron Microscopy and Light Microscopy
	2.4	Conclusion

3	Cha	pter 3: Anal	lysis of genetic diversity	60
	3.1	Introductio	on	60
	3.2	Materials a	and methods	64
	3.2.	1 Samp	ling and DNA extraction	64
	3.2.	2 DNA	amplification	67
	3.2.	3 Analy	sis	68
	3.3	Results		70
	3.3.	1 Netwo	ork Analyses	70
	3.3.	2 Bayes	sian analyses	75
	3.4	Discussion	1	79
	3.5	Conclusion	n	80
4	Cha	pter 4: Synt	hesis	81
	4.1	Interpretati	ion of these findings:	82
5	Ref	erences		88
6	App	endix		

<u>Abstract</u>

Themeda triandra Forssk. (Poaceae) is a polymorphic species, with some forms that grow to heights of over 2m and others that grow only up to 30cm. They have leaf colours varying from yellow-green to blue-green and even brown. These morphological differences extend to the differences in basal and culm tiller development patterns observed in different parts of South Africa. These differences are a result of light availability and competition, and frost. Nutrient availability in the soil also has a great influence on the morphology and growth of the species. Due to this variation in morphology and development, studies have been conducted on the ecology, physiology and cytology of the species, in an effort to understand underlying causes of this polymorphism.

Cytological studies done on *T. triandra* have shown ploidy levels varying from 2n=20 to 2n=80. The eastern and southern parts of southern Africa have diploid (2n=20) specimens while the species on the Highveld of South Africa appear to be hexaploids (2n=60), with tetraploids and pentaploids occurring in the intermediate regions. The variation in ploidy levels is a result of possible hybridization between diploids, tetraploids and hexaploids that co-occur. This may also lead to apomixis. Studies have also shown that *T. triandra* is a decreaser, i.e. a species whose abundance decreases with over-grazing and underutilization. *T. triandra* has large seeds compared to other grasses as a result dispersal is slow and has low colonization abilities.

The main aims of the study were to evaluate leaf anatomical diversity using Scanning Electron Microscopy (SEM) and Light Microscopy (LM), to evaluate genetic diversity within the species and to assess the species limits between South African *T. triandra* and the Australian *T. australis* (also considered by some to be *T. triandra*). One hundred and twenty six herbarium specimens were used for SEM, as well as 92 freshly collected specimens which were used for SEM and LM.

The results from leaf anatomy are presented as UPGMA phenograms obtained using Simple Matching (SM) and Euclidean Distance (ED) measures. These showed no geographic pattern among the specimens, and none of the characters showed taxonomic significance.

Genetic diversity was assessed from 85 specimens using DNA sequences from the nuclear Internal Transcribed Spacer Region and 84 specimens using DNA sequences from nuclear External Transcribed Spacer Region. Genetic diversity analyses are presented in TCS networks and Mr Bayes phylogenetic trees. The DNA data also showed no infra-specific groups and therefore no geographic pattern. The inclusion of Australian specimens indicated that there was no clear differentiation within the Australian samples and some differentiation between these samples and those from southern Africa.

All the results (anatomical and genetic) showed no grouping within the species. This lead to the conclusion that *T. triandra* is an ochlospecies, with its morphological diversity driven by the environmental differences in areas where it occurs. These results of this study are motivation for further studying of *Themeda triandra* to further confirm the current findings.

Acknowledgements

I would like to thank my supervisor Prof. Nigel P. Barker for his continuous support and guidance during the study, NRF for Scarce skills development fund (CPR14080687756), Dr Cunningham and Prof Van Wyk for collections, Sue van Rensberg for continued support and assisting with the write-up, my colleagues Conny Mothwa and Dalton Masia for assisting with field work and lab work and the lastly, the University of Pretoria. Funding for lab and field work was made available by the National Research Foundation of South Africa (NRF) through a grant to N.P. Barker (Grant Unique Number 93587; Ref. CPRR14080687756).

1 Chapter 1: General Introduction Themeda triandra

The grass family (Poaceae), with approximately 800 genera and 12,000 species globally, is one of the most important plant families (Ellis 1981, Clayton and Renvoize 1986, Fish *et al.* 2015, Cabi *et al.* 2017). It is the fifth largest plant family in the world (after Asteraceae, Leguminosae, Orchidaceae and Rubiaceae; (Clayton and Renvoize 1986, Fish *et al.* 2015). In South Africa the family is very important economically and ecologically. Grasses contribute into the economy of the country in terms of land management, especially in ensuring the long-term survival of the land, the ecosystem and those who use it for commercial purposes (Ellis 1981). Grasses also provide cereal crops on which most of the world's population depend for food (Clayton and Renvoize 1986). Grasses occupy over 75% of South African land surface (Ellis 1981). There are about 10,000 grass species in the world (Fish *et al.* 2015) and about 1,050 species and subspecies in southern Africa (Ellis 1981).

Themeda Forssk. is a genus in the grass family, tribe Andropogonae, subtribe Anthistiriinae and contains about 27 species (Veldkamp 2016, Dunning et al. 2017). It consists of annual and perennial forms that are bisexual with spikelets that are male, neuter and hermaphrodite on the same plant (Gibbs Russell et al. 1991). T. triandra Forssk. is commonly known as Red Grass or Rooigras. It is a blue-green tufted perennial grass that can grow to height of about 2m (Fish 2004). This is one of the most complex and least clearly understood species of grasses in southern Africa (Gibbs Russell et al. 1991). The species is widely distributed and abundant in Africa (eastern and southern), Asia, India, Middle-East, China and Australia (Liebenberg et al. 1993, Dell'Acqua et al. 2013, Dunning et al. 2017, Godfree et al. 2017). Within these regions it is found in grasslands and savannas that receive an annual rainfall of 500-1400mm (O'Connor and Bredenkamp 1997, Godfree et al. 2017). It has also been found to grow in a wide range of climates, topography and substrates (O'Connor and Bredenkamp 1997, Godfree et al. 2017). A phylogenetic study by Dunning et al. (2017) shows that T. triandra emerged in Asia about 1.5 million years ago (Ma), and then spread to Australia 1.3 Ma and to Africa 0.5Ma. This shows a recent spread of the species. The success and spread of T. triandra cannot only be based on one aspect, but rather a combination of multiple traits that favour dispersal and survival (such as fires, grazing and even polyploidy; (Dunning et al. 2017).

1.1 Themeda triandra and T. australis: One species or two

Over the last two decades *T. australis* from Australia has been referred to as a synonym for *T. triandra*. This is mainly as a result of an informally hypothesized colonization of Australia by the species through the importation of camels from Asia and Africa in the 19th century (McCarthy 1980). This is supported by Peart (1979) showing that the seed morphology of *T. triandra* also suggests an epizoochoric dispersal strategy. However, there has not been any formal experimental data to clarify this theory, but studies have been conducted to determine similarities and differences between the two supposed species.

Lock and Milburn (1971) and Groves *et al.* (1973) found a number of similarities between what was considered different species, *T. triandra* and *T. australis* and therefore concluded that it is one species where *T. australis* is a synonym of *T. triandra*. The conditions under which they grow and flower are similar, providing more evidence that the two are conspecific (Groves *et al.* 1973). As a result, the Australian National Herbarium (A. Whelan. Pers. Comm.) and the Food and Agriculture Grassland Index (2005a and b) consider them a single species – *T. triandra*. However, molecular studies are currently being conducted to further compare this species across its distribution range. These studies include the current study.

1.2 The ecological and economic importance of T. triandra

T. triandra is of great importance economically and ecologically. This is because it forms a part of livestock and wildlife diet, as it is highly palatable and nutritious (Snyman *et al.* 2013). It has also been found to be of value for roof thatching in rural areas, and thus is of great importance to rural livelihoods. It is also used as a reference species to measure the quality of grasslands (Baxter 1996) and as an indicator of the quality of the ecosystem function and soil quality (Dunning *et al.* 2017). Because of the species' value to the economy and livelihoods, the management of the species in rangelands is considered to be of great importance. However, a

detailed analysis of the ecological importance of the species and genus (*Themeda*) is still lacking (Dunning *et al.* 2017).

1.3 <u>Morphological variation</u>

Morphologically the structure of *T. triandra* consists of roots, tillers (consisting of phytomers from the base of the tuft) and spikelet inflorescences (Briske 1993). Each of these units has been shown to have varying sizes which may be affected by environmental conditions (Briske 1993). Phytomers comprise the leaf blade, ligule, intercalary meristem, the sheath, the node, internode and the auxiliary bud (Briske 1993). Phytomers are units in plants that are continuously produced by the root and shoot meristems throughout the plant's vegetative life cycle (McMaster 2005). Tillers and leaves are produced in spring and summer, during which the spring and summer rains fall (Danckwerts 1987). This production is commonly initiated after 12mm of rain (Bridgens 1968). *T. triandra* has two types of tillers, i.e. basal and culm tillers (Tainton and Booysen. 1965). Basal tillers are those that develop from closely spaced basal nodes and culm tillers develop from nodes above the internodes (Tainton and Booysen. 1965).

A number of studies have been conducted on the ecology, management, and the taxonomy of the species (Glover *et al.* 1962, Heady 1966, Baxter *et al.* 1994, Morgan 1999, Morgan and Lunt 1999, Van Rensburg 2003). A number of studies have also been conducted to understand the morphological variation on the species. Meredith *et al.* (1955) showed that some forms of *T. triandra* are shorter, grow in temperate regions and grow and flower in spring. The taller forms of the species grow in tropical regions and grow and flower at a later stage, i.e. summer (Meredith *et al.* 1955). Gibbs Russell *et al.* (1991) and Fish (2004) showed that *T.triandra* grows and flowers from spring to mid-winter (September to July), with varying flowering times, differing from region to region. According to Tainton and Booysen (1965) the flowering period can be extended to almost any season depending on the locality and environment of the population.

Van Rensburg (2003) found significant differences in the basal versus culm tiller patterns in different populations of *T. triandra* in South Africa, both in the field and in seedlings germinated under controlled conditions. These differences were attributed to light competition strategies interlinked with the presence or absence of frost. In mesic areas with frost, basal tillering was dominant, with culm tillers only emerging in response to increased light competition through self-shading after two or more seasons of growth. Plants from regions without frost (but that experience periodic drought) displayed an inherent tendency to immediately extend the node and produce culm tillers following rainfall, giving them an early season competitive advantage to access light under favourable rainfall conditions (Van Rensburg 2003).

Elberse and Berendse (1993) found that nutrient availability in the soil had an effect on the morphology of *T. triandra*, particularly the tussock and height size. Plants from nutrient-rich habitats have higher leaf area, but lower root length while nutrient-poor habitats have a higher root length, but lower leaf area. This is mainly because plant roots are responsible for transporting nutrients to the rest of the plant, so if the soil is nutrient-poor the roots penetrate deeper into the ground to get more nutrients. These observed differences in growing and flowering times may create an impression of a change in species composition within an environment (Meredith *et al.* 1955).

1.4 Cytological variation

Cytologically, the species has been found to have varying ploidy levels ranging from 2n=20 to 2n=80 (Brown and Emery 1957, Birari 1981, Fossey and Liebenberg 1992, Liebenberg *et al.* 1993, Godfree *et al.* 2017). Polyploidy is said to have a positive role in the success of the species following dispersal, where the species is viewed as having a number of populations of varying ploidy levels (Hayman 1960, Soltis *et al.* 2009, Linder *et al.* 2014, Godfree *et al.* 2017, Cai *et al.* 2019, Lavania 2020). Polypliody also plays a role in improving the species' ability to colonise and adapt to new and varying environments (Dunning *et al.* 2017, Godfree *et al.* 2017). It has been observed that in the eastern and southern areas of southern Africa diploid (2n=20) species

occur. In the Highveld of South Africa hexaploids (2n=60) occur and the tetraploids and pentaploids occur in the intermediate regions (Fossey and Liebenberg 1992). The diploids, tetraploids and hexaploids can co-occur and thus can hybridize and sexual segregation can occur resulting in apomictic plants (Fossey and Liebenberg 1992). Tetraploids appear more successful in high-stress environments (Godfree *et al.* 2017). According to Liebenberg *et al.* (1993) pentaploids observed in the Magaliesberg mountain range, near Pretoria, undergo chromosome doubling which result in decaploids (Liebenberg *et al.* 1993). In India Birari (1981) showed that *T. triandra* appeared to be tetraploid with 2n=40 chromosomes. Brown and Emery (1957) showed that the species in India can be diploid (2n=20), aneuploid and octoploid, and found that *T. triandra* shows a polyploid chromosome series and irregular meiotic divisions, resulting on the species being of great taxonomic complexity. Similar studies have also been conducted in Australia on *T. australis (T. triandra)* (Hayman 1960, Carnahan and Hill 1961). These have shown chromosome numbers ranging from 2n=20 to 2n=60 (Hayman 1960, Carnahan and Hill 1961). The variation in the ploidy levels and increased apomixis of the species have shown no clear geographical and/or other pattern (Liebenberg 1986).

Studies done on *T. triandra* have shown that it forms an agamic complex (Brown and Emery 1957, Liebenberg 1986). An agamic complex refers to a species that can reproduce without the union of male and female cells. This is also termed apomixis. According to Stebbins (1950) terminology, *T. triandra* is referred to as an aposporic apomict. This is the type of apomixis where gametophytes are formed directly from the diploid cells. *T. triandra* has been defined as a polyploid complex and this is a characteristic of most agamic complexes (Gluckmann 1951 and Birari 1981).

1.5 <u>Ecological variation</u>

Most studies on the ecology of *T. triandra* have been based on its management regimes (Everson 1994, Everson and Everson 2016). *T. triandra* is considered to be a decreaser species as its abundance decreases when overgrazed or underutilised (Everson *et al.* 1985, Theunissen 1992).

Smit *et al.* (1992) found it to be a climax or subclimax species. It is therefore important to manage its abundance in grasslands and savannas. Fire and grazing are the two commonly used management tools that have been proposed as important for maintaining healthy Themeda grasslands in sourveld mesic grasslands (Everson 1994, Everson and Everson 2016). In areas with high rainfall *T. triandra* cannot thrive successfully in the absence of fire (Tainton 1981). Grazers help in distributing the species and in promoting germination of the seeds, but the greatest impact of grazing is the removal of materials that may cause self-shading of the grass (Tainton 1981). In high rainfall areas, grazing coupled with fire plays an important role in preventing self-shading. Fire is important in maintaining the species in mesic areas through preventing plants from becoming moribund (Everson and Everson 2016). However, burning after growth has begun (in spring) has proven to be detrimental to the species because it reduces the species' ability to produce seeds (Tainton 1981). In contrast, in arid areas in South Africa such as the sweet veld in the Trompsberg area of the Free State, fire is considered by farmers to be detrimental to the *Themeda* veld (Van Rensburg 2003). Fire frequency and fire season are thus important considerations in management and seem to differ in what might be appropriate depending on the local conditions, despite this apparently being a single species. Without efficient and effective management the species abundance is reduced (Everson 1994). However, the management regimes practiced in one area for *Themeda* may not be suitable to populations occurring under different conditions. Proper management also helps protect the environment from soil erosion, improves air and water quality and promotes plant diversity (Tainton 1981). As a result, understanding the diversity of *T. triandra* from both the ecological and taxonomic perspective will aid the application of appropriate management strategies.

1.6 Seed biology

Studies done on the species' seed biology show that *T. triandra* seeds mature from the inflorescence apex downwards (Everson 1994). Seed production is also affected by the occurrence of fire and on the type of fire regime, and seed dispersal appears to be slow in populations from high rainfall mesic grasslands and results in a low probability of disturbed areas being colonised by *T. triandra* (Everson 1994). However, Van Rensburg (2003) found significantly higher seed production, seed weights and

germination success in populations from Zululand, compared to other *T. triandra* populations studied, including the mesic grassland form studied by Everson (1994). High reliance on seed production and germination rates with low dormancy in the Zululand population was attributed to an ecological adaptation to the sub-tropical frost free climate in Zululand combined with high rainfall variability (Everson 1994).

The seeds of *T. triandra* are large and the occurrence of an awn serves as an advantage in seed dispersal (through zoochory) and burying the seed underground (by twisting when it lands on soft ground) due to its hygroscopic movements (Lock and Milburn 1971). Heavy seeds and long awns are said to be advantageous in adapting to arid environments (Godfree *et al.* 2017). Once seeds are dispersed and on the ground, they may be prone to granivory (Everson 1994). Seed germination is influenced by temperature, soil moisture, space between seeds and the amount of time the seeds are stored (Saleem *et al.* 2009). High temperatures promote seed germination and the narrower the space between seeds provides a better rate of soil moisture utilization (Saleem *et al.* 2009). The period over which *T. triandra* seeds can stay dormant is 12 months and any longer than that may result in seeds rotting (Cresswell and Nelson 1972, Baskin and Baskin 1973, Martin 1975, Saleem *et al.* 2009). Once the seeds have germinated, the plumules come out in a vertical orientation due to the awn which orients the seed in a standing position (Peart 1984).

Van Rensburg (2003) found significant differences in germination rates and dormancy levels in seeds from different populations within South Africa, sampled from over a variety of rainfall gradients. She proposed that populations from subtropical regions that experience a high coefficient of variation in rainfall with periodic droughts (Northern KwaZulu-Natal) relied more on seedling recruitment to sustain populations with high seed production, low dominancy and high germination rates. In contrast populations from mesic areas with predictable rainfall relied more on vegetative reproduction as they had lower seed production, high dormancy and low germination rates. Seedling re-establishment is also affected by fire treatments and the time of the fire, as winter burns result in lower seedling establishment as compared to summer burns (Everson 1994).

1.7 Growth physiology

In addition to the above mentioned aspects of *T. triandra*, there have been studies conducted on the effect of inorganic nitrogen ions on photosynthesis and the availability of carbohydrates in the species (Weinmann and Reinhold 1946, Weinmann 1961, Amory and Cresswell 1984). The inorganic nitrogen ions infiltrated into the leaves of *T. triandra* are said to have a great influence on photosynthesis (Amory and Cresswell 1984). Weinmann and Reinhold (1946) found that the most important carbohydrate reserves in grasses are sugar and starch, and in *T. triandra* they are found mainly in the underground parts (roots and rhizomes). There appears to be a gap in the literature on the physiology of the species, and how this might differ with respect to geographical location.

1.8 Variability in Genetic diversity

Forage species have been largely ignored in molecular biology studies and there have not been many published molecular studies on *T. triandra* (Dell'Acqua *et al.* 2013). However, Taylor and Barker (unpublished) assessed the genetic diversity of a few samples using Inter Simple Sequence Repeats (ISSR). However, due to a small number of specimens sampled during the study, the results were not conclusive as they were not representative enough of the wide range and variability of the species. Another study which looked at Kenyan *T. triandra* populations using 366 Amplified Fragment Length Polymorphism (AFLP) markers showed that the African and Australian genotypes to be similar, and that there is sexual recombination which appears to play a major role in the species reproduction (Dell'Acqua *et al.* 2014). However, the study also showed that the environmental characteristics of the collection sites may affect the distribution of different alleles (Dell'Acqua *et al.* 2014).

1.9 Scope of this Study

Despite the range of ecological and cytological studies done on *T. triandra* (Liebenberg 1986, 1990, Fossey and Liebenberg 1992, Liebenberg *et al.* 1993, O'Connor 1993), the question remains as to whether the observed variability is a result of the species consisting of varieties or subspecies, or simply local adaptation. These morphological differences may be due to environmental differences caused by the responses to environmental changes (i.e. phenotypic plasticity) or ecotypes. Phenotypic plasticity is quite common in immobile organisms (plants) as a means of surviving the environmental changes (Schlichting 1986). The ecotype concept can be used to accommodate any genetic differences that may occur within a polymorphic species (Quinn 1978). Another possibility is that *T. triandra* may be an ochlospecies complex. This is a species concept applied to some morphologically variable (polymorphic), but not widely polytypic species (Cronk 1998, Barbosa *et al.* 2012). The variation in ochlospecies is usually correlated to the geography and ecology of the species. Therefore it is important to understand the environmental differences and all other factors that may influence the variation (Cronk 1998). It has also been hypothesized that the ochlospecies concept can be paralleled with phenotypic plasticity (Cronk 1998).

This study thus aims to investigate anatomical and genetic variability within *T. triandra* using samples from a wide range of environmental and geographical locations. The anatomy of the species has not received much attention in the past, and studies have shown that studying the leaf anatomy of the tribe Andropogonae is beneficial in understanding species taxonomy and classifying them (Dávila and Clark 1990).

Specific aims are:

1: Evaluate the leaf anatomical diversity of *T. triandra* from different regions of South Africa by means of Scanning Electron Microscopy (SEM) and Light Microscopy (LM).

2: To use DNA sequence data to evaluate the genetic diversity between the individuals of the species found in different regions of southern Africa.

3: To use DNA sequence data to assess species limits between specimens of *T. triandra* from South Africa and Australia.

1.10 Overview of the dissertation structure

In order to test the above hypotheses, genetic and anatomical analyses were conducted on specimens from a wide distribution range in southern Africa. Each component of the study has a separate chapter. Chapter 2 deals with the topic of leaf anatomical analyses (both scanning electron microscopy and light microscopy). Chapter 3 is genetic diversity study. Chapter 4 is the general discussion (synthesis), taxonomic implications and conclusions.

2 Chapter 2: Assessment of leaf anatomical variation

2.1 Introduction

Plant anatomy is an important tool in the classification/taxonomy and systematics of plants, especially if combined with cellular studies (Cutler *et al.* 2008). Correct/accurate identification and classification of plants has great economic and ecological value and correct classification in the food industry, ecology, medicinal industry (chemists, microbiologists and pharmacologists), genetics (Heywood 1976, Calisher and Mahy 2003, Cutler *et al.* 2008, Bennett and Balick 2014) and conservation is essential. In the past Poaceae taxonomy was only based on reproductive characters, but should also be expanded to anatomical characters (Leandro *et al.* 2016).

The use of microscopic techniques in grass taxonomy is said to provide a different perspective than the traditional morphological view and can be used to quantify morphological and structural changes (Akin 1979, Torre *et al.* 2003). Traditional morphology studies lengths and widths of all the characters that can be seen with a naked eye. These include leaf lengths, inflorescences and roots (Akin 1979). The application of Scanning Electron Microscopy (SEM) in plant taxonomy has grown over time because it is very easy to operate, can be performed quickly and no extensive training is required (Stant 1973, Cole and Behnke 1975). Images obtained from SEM can be viewed on any television or computer screen using a computer display unit (Stant 1973, Cole and Behnke 1975). The images are also said to be more easily understood as opposed to images of sectioned specimens (Stant 1973). Other advantages of using SEM include that the depth of focus is 500 times greater than that of a light microscope, the specimen can be magnified up to 2,000,00X, SEM gives a resolution of about 150Å and the specimen can be viewed in more than one angle on the stage (Stant 1973). However, the number and size of samples examined using SEM is usually limited due to the lengthy preparation periods (Cole and Behnke 1975).

Anatomical features of the leaf blade have been found to be of great value in Poaceae taxonomy (Brown 1958, Ellis 1981, Hilu 1984, Dávila and Clark 1990, Vieira *et al.* 2002, Leandro *et al.* 2016). Leandro *et al.* (2016) showed that leaf blade anatomy is of great importance in grass systematics, and can provide diagnostic characters for some taxa (Soreng *et al.* 2015). Soreng *et al.* (2015) studied a new species of *Dupontiopsis* (Koidz.) Soreng, L.J. Gillespie & Koba where they used Scanning Electron Microscopy and Light Microscopy. Different characters were selected to distinguish between *Dupontia* R. Br. and *Arctophila* Rupr. Ex Andersson. Certain characters of *Dupontia* also appeared to be similar to those of the genus *Poa* L. (Soreng *et al.* 2015).

To study the leaf epidermis, the most commonly used technique is Scanning Electron Microscopy (SEM), which is extremely useful in studying the three-dimensional structure of the leaf epidermis in extant and extinct grasses (Dávila and Clark 1990). A far older but just as important tool in understanding the anatomy of grass leaves is their structure as seen in cross section using a light microscope (Cutler *et al.* 2008). Different characters are observed from the abaxial and adaxial surfaces of the leaf blades as well as cross sections. These characters can be used to identify and distinguish different taxa (Ellis 1981).

According to Dávila and Clark (1990), surveying the leaf epidermis by means of SEM appears to be very useful in understanding the taxonomy of species in the Andropogonae (the tribe in which *T. triandra* is placed). Leaf epidermal anatomical characters such as trichomes and stomata are very useful for identification and classification of plants including grasses at species level, especially for the problematic species such as *Aristida stricta* Michx (Stant 1973, Kesler *et al.* 2003). Brown (1958) found the presence or absence of bicellular (micro) hairs to be a major character in grass systematics. Characters such as size, number and position of stomata can give an idea of the environment where the specimens are found i.e. rainfall, humidity etc. (Torre *et al.* 2003). According to Christin and Osborne (2014), high densities of minor veins (secondary vascular bundles) enable high rates of photosynthesis and are advantageous in productive environments.

T. triandra, as a morphologically variable species, has not received much attention in terms of leaf anatomy (Botha 1992, Botha *et al.* 1993). The studies so far only focused on the kranz-mesophyll bundle sheath, not on the anatomical diversity within the species leaves.

Considering the importance of leaf anatomy in Poaceae taxonomy, this chapter describes the leaf anatomical diversity within *T. triandra*. Abaxial and adaxial leaf anatomy was examined with Scanning Electron Microscopy (SEM) and transverse leaf blade sections examined using Light Microscopy (LM). The diversity of anatomical features were then coded and analysed using numerical taxonomic methods ("phenetics"; Sokal (1963)) to determine if the specimens can be grouped according to anatomical differences and similarities and to see if there are any geographical patterns in the anatomical variation.

2.2 <u>Materials and Methods</u>

2.2.1 <u>Selection of samples</u>

One hundred and twenty six specimens from two herbaria were surveyed: 66 from the Selmar Schonland herbarium (GRA) in Grahamstown and 60 from H.G.R.J. Schweickerdt herbarium (PRU) at the University of Pretoria. The specimens are from a wide range of regions in South Africa as well as countries outside of South Africa.

In addition 92 freshly collected specimens from southern Africa were also used. According to Ellis (1980) when sampling plant material one needs to standardise the leaf samples for all plants and which part of the leaf is being sampled. For the current study, the most mature leaves were sampled mid-blade. The fresh material was fixed as soon after collection as possible in Formalin-Acetic acid-Alcohol (FAA), [50% ethanol: 36% Formaldehyde: 14% Glacial Acetic Acid]. Where possible, Specimens were also removed from the wild and planted in the greenhouse at the University of Pretoria experimental farm. These were grown and used to make herbarium

specimens once they flowered. For SEM both fresh and herbarium specimens were used, but only fresh specimens were used for LM. This was mainly because for herbarium specimens to be used in light microscopy, re-hydration was required and this process is time consuming and would have delayed the study. The diagram below summarises how the study was structured and the resultant analyses of the data sets.

Figure 2.1: A summarised structure of how the anatomical survey was conducted.

Figure 2.2: Map of the locations of the specimens (both herbarium and fresh specimens) used in the study

Figure 2.3: Different forms of *T. triandra* collected from KwaZulu-Natal. (a) from the Lowlands (short and thinner tuft, with a yellowish colour); (b) and (d) from the midlands (1.3m tall, thick tuft and bluish-green colour), (c) from the coastal area, near St. Lucia (with a big tuft, about 40cm tall and a bright green colour), (e) from Warden (1.5m tall, brownish-green colour, with a thin tuft) and (f) from Harrismith (35cm tall, yellowish-green colour and a thin tuft).

Herbarium material was already dry, and therefore did not require dehydration. However, the fresh material that had been fixed in FAA required dehydration. The procedure used was as follows:

- 1. The leaf samples were cut small pieces (±5mm long).
- 2. They were then rinsed in 1M Na₂PO₄ buffer three times for five minutes each time.
- 3. They were transferred into a dehydration series of ethanol (30%, 50%, 70% and 90%) for 10 minutes in each concentration.
- 4. They were then transferred into absolute ethanol for 30 minutes.
- 5. Specimens were transferred into a 50/50 solution of absolute ethanol and 100% Hexamethyldisilazane (HMDS) for an hour.
- 6. The specimens were then transferred into 100% HMDS overnight then removed and allowed to dry overnight.

Once the specimens were dried, they were coated with carbon (University of Pretoria) or gold (Rhodes University) before viewing using a JEOL JSM-7001F Scanning Electron Microscope at Rhodes University and a Zeiss Field Emission Electron Microscope at the University of Pretoria.

Twelve micrographs were taken per specimen, i.e. six for the abaxial surface and six for the adaxial surface of the leaf. The magnifications used for the micrographs were standardised at 50X, 150X, 250X, 500X, 1000X and 2000X magnification. Specific features were sought out and photographed at the relevant magnification.

2.2.1.2 Light microscopy

As a consequence of their age and the time consuming nature of the rehydration process, herbarium material was not prepared for light microscopy. The following procedure was followed during the preparation and analysis of the transverse sections from fresh material.

- <u>Dehydration</u>: The dehydration method followed that described by Ellis (1981). The fixed material was cut into small sections (±5mm) and placed into polytops with 70% ethanol for 30 minutes. The specimens were then transferred into 90% ethanol for six hours. This was repeated twice. They were then transferred into absolute ethanol for six hours and this was also repeated twice. They were then transferred into 50/50 ethanol/xylene for three hours, after which the specimens were transferred into 100% xylene for three hours.
- 2. <u>Infiltration:</u> After dehydration specimens were transferred into 100% xylene and two scoops (±1.5g per scoop) of paraffin wax were added into the polytops. These were put on the slide warmer for overnight. The following day three scoops (±1.5g per scoop) were added and left on the slide warmer overnight again. The following day these were left in the oven set at 60°C overnight. The following day this wax and xylene mixture was poured out and fresh molten wax was poured into the specimens. The specimens were left in the oven overnight. This was repeated twice.
- 3. <u>Wax embedding:</u> An embedding mould long enough to hold two to three ±5mm long specimens was made with tough paper. The mould was labelled at the bottom with a pencil. Molten wax was then poured into the mould which had been in the oven at 60°C. Before the wax could set, two or three leaf pieces were removed from the polytops and placed in the moulds with heated forceps. These were placed at the centre and vertically, to allow for better cutting position. Once the samples had been positioned, the mould was placed in cold water to solidify the wax.
- 4. <u>Sectioning:</u> The wax blocks were removed from the moulds and trimmed, with care taken to ensure that the material did not get damaged. These trimmed blocks of wax were mounted on wooden microtome discs using wax and a heated spatula. The discs were then left in the fridge overnight. They were placed on the microtome and ribbons of 8µm serial sections were cut. These ribbons were then placed in cold water to allow for debris to be removed. They were then transferred into a warm bath at 60°C for about 5 minutes and then transferred into cold distilled water to cool. They were then transferred onto the slides to be made into permanent slides. They were dried on the slide warmer for about 30 minutes, and then cooled for 10 minutes.

5. <u>Staining</u>: Once the slides with wax ribbons had cooled, they were put into xylene for 10 minutes (twice). They were then dried on the slide warmer for 30 minutes and again cooled for 10 minutes. The sections on the slides were stained in Safranin for 15 minutes, and then transferred into 70% ethanol for a few seconds, then 90% ethanol for a few seconds. They were then transferred into fast-green for 1-2 minutes, after which they were transferred into 100% ethanol, then into 50/50 ethanol/xylene and lastly 100% xylene. The slides are then dried with a paper towel then a mountant (Entellen) was used to mount the cover slip, making permanent slides. The slides were then observed under the Nikon Eclipse E200 light microscope and photographed using a Nikon digital camera Coolpix 950 at 40X, 100X and 400X magnifications.

2.2.2 Character selection for numerical taxonomic analyses: Scanning Electron Microscopy

From the micrographs 27 characters were selected from the abaxial side of the leaf epidermis and 27 characters from the adaxial side. The characters and their states are described in the table below (descriptions and terminology as per Ellis (1981). Each specimen was coded for each character and the data was recorded in an Excel spread sheet. In instances where a character did not exist and therefore there was no data, a code 999 was used. The codes were chosen using a criteria indicated in Sokal (1963).

 Table 2.2: Table of characters for numerical taxonomic analyses derived from Scanning Electron

 Microscopy survey of the abaxial and adaxial surface of *Themeda triandra* leaves.

Character	Character	Character states
	number	
Macro-Hairs: These are unicellular, long trichomes (longer than the micro-hairs	1	Macro-hairs:
and prickles).		Absent $= 0;$
		Present = 1
The same and the same and	2	Macro-hair
A COLORED TOTAL COLORED TOTAL		frequency:
		Dense = 0 ;
		Occasional = 1
and the state of the second state of the secon	3	Macro-hair length:
Ban an attacked and a state and		(numerical value
the second second second second		in µm)
A DE PARTIE A DE PARTIE A DE PARTIE		
A TOP AND A REAL PARTY AND A REAL PROPERTY AND		
A REAL PROPERTY AND A REAL		
the same is the same the two and the		
TIME IN ST ATTAC		
Constant of the second se		
<u>Micro-hairs:</u> These are bicellular trichomes (sometimes unicellular hairs occur,	4	Micro-hairs:
but are homologous with the bicellular hairs).		Absent $= 0;$
		Present = 1
	5	Micro hair
	5	fraguanau
		frequency:
		Dense $= 0;$
		Occasional = 1

	6	Micro-hair length:
		(numerical value
		in µm)
A C Y U A		
Section (4) (1) and the sector of the sector		
Prickle hairs: These are robust, pointed structures of varying sizes and shapes.	7	Large prickles:
Themeda triandra was found to have two types of these prickle hairs. They are		Absent $= 0;$
large prickles (with bases at least twice as large as the stomata) and long barb		present = 1
prickles (thinner than the large prickles and barb as long as, or longer than the		-
base).		
the second second second		
and the second of the		
the second second		
Contraction of the second second	8	Large prickles
		density:
Large prickles		Dense $= 0$:
		Occasional = 1

A REAL PROPERTY AND A REAL	9	Large prickles
		base structure:
		with a collar $= 0;$
		without a collar =
and the second states of		1
	10	Large prickles
		length: (numerical
barb prickles		value in µm)
	11	Large prickles size
		uniformity
		(whether the large
		prickles on one
		leaf epidermis are
		of the same sizes
		or not):
		Not uniform = 0:
A STATE OF A		Uniform = 1
	12	Large prickles
		orientation:
		Erect = 0;
		not erect = 1
	13	Large prickles
		distribution:
		On all 1° and/or 2°
		bundles, but not
		the midrib $= 0;$
		on 1° ° and
		011, 2 and $midrib = 1$
Leaf		munu – 1
margin prickles	14	Long barb
		prickles:
		Absent $= 0$

		Present = 1
	15	Long barb prickles
		length: (numerical
		value in µm)
	16	Long barb prickles
		density:
		Dense $= 0;$
		Occasional = 1
	17	Leaf margin
		prickles:
		Absent $= 0;$
		Present = 1
	18	Leaf margin
		prickles length:
		(numerical value
		in µm)
Silice bodies: These are silice calls found in the gross leaves. They some in	10	Dumbhall shaped
<u>Sinca bodies.</u> These are sinca cens found in the grass leaves. They come in different shapes. T. trianduc consists of the dumbhall shaped silice bodies.	17	silian bodian
different shapes. 1. manara consists of the dumoben-shaped sinca bodies		(DSSD):
WILL /BALL F7 NILLO		(DSSB):
		Not visible $= 0;$
		Visible = 1
$\mathbf{b} = \mathbf{b} = $		
P/10 / 2 / 0/ 1 / 5/7 6/		
01 00 . 00 . 40 A M		
01 101 - 01 01 01 01 01 01 01 01 01 01 01 01 01		
10, 10, 00, 0, 0, 0, 0, 0		
	1	

Papillae: These are variously shaped protrusions from the leaf epidermis. T.	20	Papillae:
triandra has circular-shaped papillae.		
		Absent = 0;
513333 616 616 61 C 61 C 61		Present = 1
	21	Papillae diameter:
		(numerical value
All a start of the first		in µm)
Participation of the second of		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
12 303 all 51 66		
- 10 k & a may _ # 1 5 "00		
Stomate (Singular stome). These are structures on the loof anidomnis that are	22	Stomator
<u>Stomata-(Singular-stoma)</u> : These are structures on the leaf epidemiis that are	22	Stomata:
used for gas-exchange. They comprise of two guard cells that form a tiny		Absent/not visible
opening. They are normally found on the abaxial side, but sometimes do occur on		= 0;
the adaxial side.		Present/visible = 1
	23	Stomata length
		(L): (numerical
		value in µm)
	24	Stomata width
		(W): (numerical
A NOP PARA		value in um)
A MALING AND		
A NAO AL ATAN		

Epidermal cells: These occur on the epidermis of the leaf. They may be	25	Intercostal cells:
intercostal or costal. Themeda triandra consists of costal and intercostal cells,		Absent/not visible
mostly visible on the adaxial side of the leaf, with a few occurrences on the		= 0;
abaxial side.		Present/visible = 1
	26	Cell length: (numerical value in µm) Cell width: (numerical value in µm) Cell shape (within one leaf epidermis): Varying shapes = 0; constant shapes = 1

2.2.3 <u>Selection of characters for Light Microscopy of Themeda triandra leaves</u>

Forty four characters were derived from the light micrographs (Table 2.3). The specimens were scored for each of the characters and the data recorded in an Excel spread sheet.

Table 2.3: Table of characters for numerical taxonomic analyses derived from Light Microscopy survey of the leaf transverse sections of *Themeda triandra*.

Anatomical feature	Character number	Character states and coding
Outline of open leaves: T. triandra leaves are not	1	V-shaped (0)
permanently infolded, but due to different		
environmental conditions their shapes may differ.		U-shaped (1)
V-shaped U-shaped		Wide open – almost 180° (2)
11 6		Folded (3)
		Concave (4)
Wide-open Narrow Concave Convex		Convex (5)
Ribs: These are all the longitudinal ribs/ridges and	2	Ribs on the adaptial side:
<u>Kibs.</u> These are an the folgetudinal hos/hdges and	2	About 0:
furrows/grooves that commonly occur on the		Absent = 0;
adaxial side and seldom occur on the abaxial side		Present = 1
of the leaf.	3	Dibe on the abovial side:
		Absent = 0;
Ribs		Present = 1
	4	On the adaxial side:
		Ribs only over the 1° and 2°
		bundles $= 0;$
		Over only 1° or 2° bundles = 1
	5	On the abaxial side:
		Ribs opposite 1° bundles = 0;
		Opposite both 1° and 2° bundles

		= 1
Vascular bundle arrangement: Measured on one	6	Total number of 1° vascular
half of the leaf expanding from the midrib. The two halves of the leaf are of the same length and		bundles
thickness.	7	Total number of 2° vascular
		bundles
	8	Total number of 3° vascular
		bundles
	9	1° bundles fewer than 2° and 3°
		bundles $= 0;$
		They are an equal number = 1
	10	Two 3° bundles occur between
		the larger bundles $= 0;$
		More than two 3° bundles occur
		between larger bundles = 1
	11	Two 2° bundles occur between
		$1^{\circ} = 0;$
		More than two 2° bundles occur
		between 1° bundles = 1
	12	Vascular bundles:
		Positioned at the centre of the blade $= 0;$
		They are closer to either the
		abaxial = 1;
		The adaxial side of the leaf $= 2$
Vascular bundle description:	13	3° bundles:
		With a circular shape $= 0$;
		With an elliptical shape $= 1$

a so so to the second	14	2° bundles:
		With an circular shape $= 0$;
T T I'VB		With an elliptical shape = 1
3°VB ^{2°VB1} VB	15	l° bundles:
		With an egg-shape, i.e. broad on the adaxial side $= 0$;
		With a circular shape $= 1$
	16	Phloem of the 1° bundle: Completely surrounded by thick- walled fibres = 0;
		Divided by the intrusion of small fibres = 1
	17	Lysigenous cavity:
		Absent on the 1° bundles = 0; Present = 1
Vascular hundle sheath:	18	Vascular bundle sheath:
- Abeddar Bundle Sheath.		incomplete due to slight
		interruptions from narrow/ wide
		girders of 1-3 or more fibres $= 0;$
Girders		Sheath complete, i.e. completely surrounds the 1° bundle = 1
	19	Length of extension of sheath:
		1-2 cells long = 0;
		2-5 cells long = 1
	20	Number of cells comprising the l° bundle sheath.
	21	Number of cells comprising the

		2° bundle sheath.
	22	Number of cells comprising the
		3° bundle sheath.
Sclerenchyma of the leaf:	23	Sclerenchyma:
TELGAN E LAN		
		Associated with I vascular
		bundles only $= 0;$
		Associated with either 2° or 3°
		bundles $= 1$
A CONTRACT OF A		
LOTIN STREET	24	On the adaxial side
		sclerenchyma:
		Narrow, with only 2-4 fibres
		wide $= 0;$
Sclerenchyma		
		With more than 4 fibres $= 1$
No and Decision	25	1° vascular bundle girders on the
A DESCRIPTION OF THE OWNER		adaxial side:
		Well developed, conspicuous
		and narrowing towards the 1°
		bundle = 0 :
		Summe o,
		They form a straight/horizontal
		band towards the 1° bundle = 1
		build towards the F buildle – F
	26	2° vascular bundle girders on the
		adaxial side:
		Well developed, conspicuous
		and narrowing towards the Z
		oundle = 0;
		They form a straight/horizontal
		band towards the 2° bundle = 1
	27	
	21	Girder fibres of the adaxial and the abayial side:
		In contact with the cells of the
		single or outer 1° bundle sheath =

	0;
	Fibres interrupt the cells of the
	single or outer 1° bundle sheath = 1
29	
28	the abaxial side:
	In contact with the cells of the
	single or outer 2 bundle sheath =
	0;
	Fibres interrupt the cells of the
	single or outer 2 bundle sheath = 1
29	Sclerenchyma of the abayial
27	side:
	Deep and wide than that of the
	adaxial side $= 0;$
	Is the same size as that of the
	adaxial side $= 1$
30	Girder on the abaxial side:
	Narrowing towards the 1°
	vascular bundle, i.e. triangular/trapezoidal = 0;
	Forms a straight/horizontal hand
	= 1
31	Sclerenchyma in leaf margins:
	Absent $= 0$;
	Present comprising a couple of
	fibres = 1; or
	Present, with a width less than 3°
	bundle = 2
32	The marginal cap:
	Pointed $= 0;$
	Round = 1;

		Crescent-shaped, i.e.
		sclerenchyma extends shortly
		along both the abaxial and
		adaxial sides of the leaf $= 2$
Mesophyll of the leaf:	33	Chlorenchyma:
NAM MY TOOLOGY		Radiate $= 0;$
		Irregular = 1
	34	One layer of Chlorenchyma cells around bundles = 0;
Je Cho		More than one layers = 1
	35	Radiating mesophyll groups:
		Separated by irregular
		air-spaces $= 0;$
Mesophyll		Separated by bulliform and
		colouriess cell groups – 1
	36	Radiating cells:
		Reduced to two strips of
		Chlorenchyma by large girders or colourless parenchyma $= 0$;
		Completely surrounding the bundles = 1
	37	Colourless cells:
		Absent = 0 ;
		Present = 1
	38	Colourless cells:
		Closely associated with
		bulliform cells $= 0;$
		Not closely associated with
		bulliform cells $= 1$
	39	Colourless cells:
		Smaller than bulliform cells; are uninflated, often the same size as
		the Chlorenchyma cells $= 0;$
---------------------------	----	--
		Have similar size or shape as the bulliform cells, and are inflated $=$ 1
	40	Colourless cells:
		Narrower than the bulliform cells $= 0;$
		Are the same width as the bulliform cells = 1
	41	Only one extension of colourless cells from each bulliform cell group = 0;
		Two extensions, one on either side = 1
Epidermal cells	42	Bulliform cells:
Epidermal cells		Absent = 0; Present in groups = 1; Present, but not in groups = 2
Bulliform cells	43	Bulliform cells occupy less than $\frac{1}{4}$ of the leaf thickness = 0;
		Occupy more than $\frac{1}{4}$ of the leaf thickness = 1
Contraction in the second	44	Outer walls of typical epidermal cells:
		Slightly thickened or with a thin cuticle = 0;
		Not thickened with a very thin cuticle = 1

2.2.4 <u>Numerical taxonomic analyses</u>

To analyse the data, Numerical Taxonomy and Multivariate Analysis System (NTSys) V. 2.2 (Rohlf 2009) was used. This software was used to create Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phenograms and Principal Component Analysis (PCA). The data consists of a combination of quantitative and qualitative characters, therefore both Simple Matching (SM) and Euclidean Distance (ED) measures of similarity were used when creating the UPGMAs. SM is suited for qualitative data and Euclidean distance suited for quantitative data. As the data consists mostly of qualitative characters, the best option was considered to be SM. Phenograms from both SM and Euclidean distance measures were compared to see if there are specimens from similar localities on the same clusters. Visual comparisons of SM and ED phenograms were undertaken to observe similarities in the results. Similarly, PCA data was analysed and the Eigen values were recorded along with percentage and cumulative percentages.

Data obtained from the SEM survey was divided into three datasets, i.e. data from fresh specimens, herbarium specimens and combined fresh and herbarium specimens. Phenograms were created for each of the data sets. For light microscopy, phenograms were only created for fresh specimens, because only fresh specimens were used in light microscopy analysis. Finally scanning electron microscopy and light microscopy characters were combined to create phenograms that consisted of specimens common to both analyses, but this was only done for fresh specimens. Cophenetic Correlation Values (CCVs) were obtained for each analysis. The CCVs were used to compare the fit of the phenogram to the triangular matrix of similarities. CCV were also used to compare the similarities between the two triangular matrices from the phenograms obtained from the SM and ED analyses of the data. In addition, CCV's were obtained from direct comparison of the two matrices of similarity (i.e. SM and ED).

2.3 <u>Results and Discussion</u>

2.3.1 Scanning Electron Microscopy Data Sets

UPGMA phenograms were created using two different distance measures, i.e. Simple Matching (clusters labelled with letters) and Euclidean Distance (clusters labelled with roman numerals). These are presented below (Figures 2.7, 2.9 and 2.11), separately, with distribution maps showing where specimens from each cluster are located (Figures 2.8, 2.10 and 2.12). Furthermore, the two phenograms were compared and the results of the comparison are shown below. Figure 2.7 presents the results obtained from the analysis of SEM of fresh specimens data set, Figure 2.9 is the results from the analysis of SEM of herbarium specimens data set and Figure 2.11 shows results from the analysis of SEM of the combined fresh and herbarium specimens data sets.

Figure 2.7: UPGMA phenograms from (a) SM coefficient (CCV = 0.61) and (b) ED coefficient (CCV = 0.43) applied to data obtained from SEM survey of fresh specimens. The number of specimens shared between the clusters is indicated by the lines inbetween the phenograms.

Figure 2.8: Maps showing the distribution of specimens in the clusters obtained from the SEM data of fresh material (a) UPGMA-SM and (b) UPGMA-ED analyses.

 Table 2.4: The CCVs obtained from tree to matrix comparison, tree-tree comparison and matrix

 to matrix comparison for both SM and ED analyses of SEM - fresh specimens

	Simple Matching	Euclidean Distance
Tree – Matrix	0.61	0.43
SM Tree – ED Tree	0.0)23
SM Matrix – ED Matrix	-0.	068

The anatomical diversity of the leaf abaxial and adaxial surfaces does not show any correlation of clusters with the specimens' geography.

SM and ED phenograms are shown in Figure 2.7. SM has five clusters (labelled A to E) with two big clusters (A and C), and ED also has five clusters (labelled I to V) with two big clusters (II and III). Table 2.4 shows the CCV values. The value obtained from the comparison of SM matrix to tree (0.61) shows that the phenogram is a fair representation of the data matrix. The value obtained from ED matrix to tree (0.43), indicates that the tree does not represent the matrix of similarity very well. The value obtained from comparing the CCVs of the tree matrices (0.023) show that there is no correspondence between the trees. Lastly, the value obtained from comparing the CCVs of the two matrices (-0.068) shows no correspondence between the SM and ED matrices. These poor correlations between SM and ED are probably because SM is suited to qualitative data and ED is suited to quantitative data. The data analysed in the current study is mainly qualitative with only 11 quantitative characters out of 27 characters.

In order to determine which characters and states were specific to each cluster, the data sets were examined to assess the character state distribution per cluster observed. The analysis of the clusters (as shown in Appendix 2.1) shows that two characters out of the 27 characters played a role in clustering. On the ED phenogram specimens in cluster IV all had **Dumbbell-shaped silica bodies** present and the specimens in cluster V all had DSSBs absent. One cluster differed from the rest (cluster I of ED) which had the specimens with **stomata** on the abaxial side only.

Figure 2.9: UPGMA phenograms from (a) SM coefficient (CCV = 0.75) and (b) ED coefficient (CCV = 0.31) applied to data obtained from SEM survey of herbarium specimens with the number of shared specimens between the clusters.

Figure 2.10: Maps showing the distribution of specimens in the clusters obtained from (a) the UPGMA-SM and (b) the UPGMA-ED SEM analyses of herbarium specimens.

Table 2.5: The CCVs obtained from tree to matrix comparison, tree-tree comparison and matrix to matrix comparison for both SM and ED analyses of SEM – herbarium specimens.

	Simple Matching	Euclidean Distance
Tree – Matrix	0.75	0.31
SM Tree – ED Tree	-0.	05
SM Matrix – ED Matrix	-0.076	

SM and ED phenograms are shown in Figure 2.9. The SM phenogram has three clusters (labelled A to C) with one big cluster (B), and ED has four clusters (labelled I to IV) with one big cluster (II). Table 2.5 shows the CCVs obtained from the data set derived from SEM of herbarium materials. The value obtained from the comparison of SM matrix to tree (0.75) shows that the phenogram is a good representation of the similarity matrix. The value obtained from ED matrix to tree comparison is low (0.31) indicating that the tree does not represent the matrix of similarity well. The value obtained from comparing the CCVs of the tree matrices (-0.05) show that there is no correspondence between the trees, and the value obtained from comparing the CCVs of the two matrices (-0.076) also shows no correspondence between the SM and ED matrices.

In order to determine which characters and states were specific to each cluster, the data sets were examined to check the character state distribution per cluster observed. The analysis of the clusters (as shown in Appendix 2.2) shows that out of the 27 chosen characters not a single one may have shaped clustering of the specimens on both SM and ED phenograms.

Figure 2.11: UPGMA phenograms from (a) SM coefficient (CCV = 0.65) and (b) ED coefficient (CCV = 0.054) applied to data obtained from SEM survey of fresh and herbarium specimens with the number of shared specimens between the clusters.

Figure 2.12: Maps showing the distribution of specimens in the clusters obtained from (a) the UPGMA-SM and (b) the UPGMA-ED SEM analyses of fresh (Fr) and herbarium (He) specimens.

<u>Table 2.6: The CCVs obtained from tree to matrix comparison, tree-tree comparison and matrix</u> to matrix comparison for both SM and ED analyses of SEM – data set from fresh and herbarium <u>specimens.</u>

	Simple Matching	Euclidean Distance
Tree – Matrix	0.65	0.54
SM Tree – ED Tree	0.0	33
SM Matrix – ED Matrix	0.0	07

SM and ED phenograms are shown in Figure 2.11. SM has four clusters (labelled A to D) with two big clusters (B and C), and ED has four clusters (labelled I to IV) with one big cluster (II). Table 2.6 shows the CCVs obtained from the data analysed from SEM of fresh and herbarium materials. The value obtained from the comparison of SM matrix to tree (0.65) shows that the phenogram is a fair representation of the data matrix. The value obtained from ED matrix to tree (0.54), indicates that the tree fairly represents the matrix of similarity well. The value obtained from comparing the CCVs of the tree matrices (0.033) show that there is no correspondence between the trees. Lastly, the value obtained from comparing the CCVs of the two matrices (0.07) shows no correspondence between the SM and ED matrices.

In order to determine which characters and states were specific to each cluster, the data sets were examined to check the character state distribution per cluster observed. The analysis of the clusters (as shown in Appendix 2.3) shows that out of the 27 chosen characters the presence/absence of DSSBs may have shaped clustering of the specimens on both SM and ED phenograms, especially cluster I of the ED phenogram.

2.3.2 Light Microscopy

UPGMA phenograms were created for Light Microscopy using two different distance measures, i.e. Simple Matching (clusters labelled with letters) and Euclidean Distance (clusters labelled with roman numerals). Figure 2.13 presents the results obtained from the analysis of LM of fresh specimens data set and Figure 2.14 shows the distribution maps from where the specimens were collected.

Figure 2.13: UPGMA phenograms from (a) SM coefficient (CCV = 58%) and (b) ED coefficient (CCV = 75%) applied to data obtained from LM survey of fresh specimens with the number of shared specimens between the clusters.

Figure 2.14: Maps showing the distribution of specimens in the clusters obtained from (a) the UPGMA-SM and (b) the UPGMA-ED LM analyses of fresh specimens

Table 2.7: The CCVs obtained b	etween tree to matrix comparisor	n, tree-tree comparison and
matrix to matrix comparison for	both SM and ED analyses of LM	- fresh specimens

	Simple Matching	Euclidean Distance
Tree – Matrix	0.58	0.75
SM Tree – ED Tree	-0.	20
SM Matrix – ED Matrix	-0.	33

SM and ED phenograms from LM analysis are shown in Figure 2.13. SM has three clusters (labelled A to C) with one big cluster (A), and ED also has three clusters (labelled I to III) with one big cluster (I). Table 2.7 shows the CCVs obtained from the data analysed from LM of fresh materials. The value obtained from the comparison of SM matrix to tree (0.58) shows that the phenogram is a fair representation of the data matrix. With regards to the value obtained from ED matrix to tree (0.75), it is clearly shown that the tree is a good representation of the similarity matrix. The value obtained from comparing the CCVs of the tree matrices (-0.20) show that there is no correspondence between the trees. Lastly, the value obtained from comparing the CCVs of the two matrices (-0.33) shows no correspondence between the SM and ED matrices.

In order to determine which characters and states were specific to each cluster, the data sets were examined to check states distribution per cluster observed. There were 47 characters measured from the light microscopy micrographs. None of these characters appeared to have a role in clustering. The table with all the characters and character states is found in Appendix 2.4.

2.3.3 Scanning Electron Microscopy and Light Microscopy

The following UPGMA phenograms (Figure 2.15) were created for Scanning Electron Microscopy and Light Microscopy combined using two different distance measures, i.e. Simple Matching (clusters labelled with letters) and Euclidean Distance (clusters labelled with roman numerals), Figure 2.16 shows the distribution maps from where the specimens were collected.

Figure 2.15: UPGMA phenograms from (a) SM coefficient (CCV = 65%) and (b) ED coefficient (CCV = 43%) applied to data obtained from LM and SEM survey of fresh specimens with the number of shared specimens between the clusters.

Figure 2.16: Maps showing the distribution of specimens in the clusters obtained from (a) the UPGMA-SM and (b) the UPGMA-ED LM and SEM analyses of fresh specimens.

Table 2.8: The CCVs obtained from tree to matrix comparison, tree-tree comparison and matrix to matrix comparison for both SM and ED analyses of SEM and LM combined - fresh specimens.

	Simple Matching	Euclidean Distance
Tree – Matrix	0.65	0.43
SM Tree – ED Tree	0.	13
SM Matrix – ED Matrix	0.0)38

SM and ED phenograms from a combined SEM and LM analysis are shown in Figure 2.15. SM has three clusters (labelled A to C) of equal sizes, and ED also has five clusters (labelled I to V) with one big cluster (II). Table 2.8 shows the CCVs obtained from the data analysed from combined SEM and LM of fresh materials. The value obtained from the comparison of SM matrix to tree (0.65) shows that the phenogram is a fair representation of the data matrix. The value obtained from ED matrix to tree (0.43), shows a poor correspondence between the tree and the similarity matrix. The value obtained from comparing the CCVs of the tree matrices (0.13) show that there is no correspondence between the trees. Lastly, the value obtained from comparing the CCVs of the two matrices (0.038) shows no correspondence between the SM and ED matrices. The combined SEM and LM data did not show any characters influencing the clustering among the trees.

2.3.4 Principal Component Analysis

2.17 PCA of Herbarium specimens SEM data set. The first two axes shown here accounts for 78.7% of the variation in the data.

2.18 PCA of Fresh specimens SEM data set. The first two axes shown here accounts for 59.9% of the variation in the data.

2.19 PCA of Fresh and Herbarium specimens SEM data set. The first two axes shown here accounts for 18.4% of the variation in the data.

2.20 PCA of Fresh specimens LM data set. The first two axes shown here accounts for 17.5% of the variation in the data.

2.21 PCA of Fresh specimens SEM and LM data sets. The first two axes shown here accounts for 78.7% of the variation in the data.

Table 2.4: A summar	y of the PCA results from	m SEM and LM data sets
	•	

Specimens	Eigen Values	Percentage (%)	Cumulative
			percentage (%)
Herbarium SEM	85.43938057	67.8090	67.8090%,
	13.66386362	10.8443%	78.6534% and
	10.09903855	8.0151%	86.6685%
Fresh SEM	of 42.50149248,	46.1973%,	46.1973%,
	12.61348267, and	13.7103%,	59.9076% and
	10.37461988	11.2768%	71.1843%
Herbarium and	23.95107388,	10.9867%, 7.4307%	10.9867%,
Fresh SEM	16.19900541 and	and 6.1934%;	18.4175% and
	13.50171877		24.6109%

Fresh LM	6.26819433,	9.4973%, 8.0334%,	9.4973%, 17.5306%
	5.30203452, and	7.2344%	and 24.7651%
	4.77473360;		
Fresh LM and SEM	33.74147327,	51.1234%,	51.1234%,
	9.55823055 and	14.4822%,	65.6056% and
	6.97738247;	10.5718%	76.1774%

The above results from PCA show that there is no signal in the data. The three values shown above (for each analysis) indicate very poor variation and therefore support the findings of the phenograms and cophenetic correlations.

2.4 <u>Conclusion</u>

The above results show very little variation within the sampled specimens to provide a hierarchical structure to the phenogram. These characters are the presence or absence of stomata on the abaxial or adaxial side; stomata length and width; presence or absence of the dumbbell-shaped silica bodies (DSSBs); length of DSSBs and the presence or absence of micro-hairs. According to Prychid *et al.* 2004, the shape and size of silica bodies can be diagnostic of a species. They can be used to distinguish between Poaceae subfamilies and below (Piperno and Pearsall, 1984). The results of the current chapter show that there was anatomical diversity among the specimens, although some of the characters may have been affected by the handling of specimens in herbaria over the years. Micro-hairs are one of the characters that are easily affected by the handling of specimens in herbaria. Fresh specimens were sampled from the mature leaves about 7cm from the collar. However, the specimens were collected at different season of the year, which may have an effect on the age of the specimen and its anatomy.

Irrespective of the data set, the specimens cannot be grouped according to anatomical differences and similarities. The results indicated that no consistent groups within *Themeda triandra* were retrieved. This means that there was no anatomical variability to explain the morphological variation observed within the species. This shows that the morphological variation is random or possibly due to adaptation to the environmental conditions where the species is found within South Africa. A similar observation was found in a study by Faria *et al.* (2012) where the differences in stomata structure of the genus *Aechmea* Ruiz & Pav. (Bromeliaceae) were due to adaptations to water availability within a region. Another study on the grass genus *Festuca* showed that the differences in appearance are a result of ecological factors and phenotypic plasticity (Martínez-Sagarra *et al.* 2017).

Even though the data shows no hierarchical taxonomic or geographic pattern based on the species leaf anatomy (SEM and LM), it has contributed to a better understanding of the anatomy of *T. triandra* species in South Africa. Further studies may be required with different anatomical and/or morphological characters that could potentially result in a clearer pattern or further confirm the above results.

3 <u>Chapter 3: An analysis of the genetic variation in the nuclear Internal</u> <u>Transcribed Spacer (ITS) and External Transcribed Spacer (ETS)</u> <u>sequences from southern African samples of *Themeda triandra*</u>

3.1 Introduction

Plant genetics plays an important role in plant classification (Hörandl 1998, Van Belkum *et al.* 2001). Molecular phylogenetic studies have become one of the essential tools in describing the phylogeny and evolution of plant species (Hörandl 1998, Raja *et al.* 2017) and advances in molecular techniques have provided a better understanding of species relationships (Ainouche and Bayer 1997). However, very few of these studies have resulted in new/revised classifications. Van Belkum *et al.* (2001) showed that studying the genetics of species also aids in understanding the different phenotypes observed.

As explained in the introduction, *Themeda triandra* is a species with a complex nature with varying morphologies and it is thus important to study the genetic diversity and determine whether it correlates with anatomical, morphological and cytological diversity. *T. triandra* has been hypothesised to have a number of varieties, due to its polymorphism (Gluckmann 1951). However, it may also be a case of phenotypic plasticity, which may be caused by adaptation to the different environmental conditions. Lock and Milburn (1971) and Groves *et al.* (1973) showed that the Australian and African *T. triandra* grow and flower in similar ways, therefore rejecting the hypothesis that *T. australis* is a different species.

The aim of the work described in this chapter is to use DNA sequence data from nuclear ribosomal Internal Transcribed Spacer (ITS) and External Transcribed Spacer (ETS) regions to determine if there is any genetic diversity within *T. triandra* and if this relates to the geographic distribution, morphology or what is known about the species' cytology. The study also aims to determine if the African and Australian *T. triandra* are the same species or not.

The nuclear ribosomal ITS and ETS has been evaluated and found to be the most suitable region for plant phylogenetics at species level and below (Charmet *et al.* 1997, Barker *et al.* 2005,

Gillespie *et al.* 2009, Wang *et al.* 2017). This is because these regions are faster evolving and easily amplified by polymerase chain reaction (PCR) (Ainouche and Bayer 1997, Baker *et al.* 2000). The use of ITS has become popular for plant phylogenetic studies (including grasses) at lower taxonomic levels and is widely accepted by grass systematists and recommended as a core plant DNA barcode (Doyle *et al.* 1996, Schaal *et al.* 1998, Hodkinson *et al.* 2002, Zhi-Ming *et al.* 2006, Cheng *et al.* 2016, Xu *et al.* 2017, Xuan *et al.* 2019, Peterson *et al.* 2020) due to the near-universality of the primers designed to anneal in highly conserved regions (Sang *et al.* 1995, Buckler and Holtsford 1996, Razafimandimbison *et al.* 2004, Cheng *et al.* 2016). The ITS regions show an unusual combination of highly conserved primer sites that are adjacent to highly variable sequences making it amenable for PCR amplification using universal primers (White *et al.* 1990). Buckler and Holtsford (1996) found that ITS regions have rates of nucleotide substitution that prove valuable in evaluating plant relationships at the generic and species levels. Such rates are much more accelerated in the grass family (Poaceae) mainly due to short generation times (Gaut *et al.* 1992).

The ITS nrDNA genes also evolve more rapidly and resolve lower level relationships better than other genes (Baker *et al.* 2000, Xu *et al.* 2017). As a result of these advantages, there are thousands of grass ITS sequences published on the GenBank (Hodkinson *et al.* 2002). However, there is low taxonomic resolution for some species delimitations based on ITS (Porras-Alfaro *et al.* 2014).

The use of ITS has been debatable at intraspecific level because it can be limited by biological factors such as reticulation, hybridisation and polyploidy (Sang *et al.* 1995, Bermingham and Moritz 1998, Soltis and Soltis 2000, Barker *et al.* 2005, Zheng *et al.* 2008). Reticulation occurs when gene flow results in heterozygosity of ITS types within an individual, recombination or partial gene conversion disrupts the phylogenetic signal in the ITS genealogy (Sang *et al.* 1995). Hybridisation can be viewed as beneficial in the formation of new species or varieties through polyploidy (Grant 1953, Schaal *et al.* 1998, Xu *et al.* 2017, Xuan *et al.* 2019). Hybridisation may also provide stimulus of invasiveness (Ellstrand and Schierenbeck 2000, Linder *et al.* 2014, Lambertini 2019, Naciri and Linder 2020). Polyploid plants that arise through hybridisation and have been examined with ITS markers show a polyphyletic nature (Álvarez and Wendel 2003,

Barker *et al.* 2005). Polyploidisation has negative implications on plant taxonomy and genetic diversity (Soltis and Soltis 2000). However, according to Sang *et al.* (1995), more investigations need to be done in order to further understand the evolutions of the ITS region after hybridization and polyploidization.

Other disadvantages of using ITS include its multi-copy nature, the possibility of the presence of pseudogenes, its problematic secondary structure and the possibility of contaminants, such as fungi, being amplified (Álvarez and Wendel 2003). The presence of multiple copies of a gene presents problems in determining whether the sequences being compared are paralogous (homologous genes that have diverged within one species) or orthologous (homologous genes that diverged during evolution to form different species - Baldwin 1992, Schaal et al. 1998). Pseudogenes are a section of chromosomes that are an imperfect copy of the gene that are often characterised by cytosine mutations at methylation sites (Buckler et al. 1997). ITS pseudogenes have been detected in all angiosperms (Buckler and Holtsford 1996, Buckler et al. 1997, Álvarez and Wendel 2003, Razafimandimbison et al. 2004, Zheng et al. 2008). Despite their disadvantage, ITS pseudogenes can be used for phylogenetic analysis where functional paralogs provide too low variation (Xiao et al. 2010). Active ITS regions are said to have functional constraints and the characteristics of functional ITS regions can help distinguish between functional and pseudogene ITS sequences (Buckler et al. 1997, Xiao et al. 2010, Xu et al. 2017). Contamination in ITS PCR amplification may occur if there are fungi in the samples being amplified. This is because ITS primers were originally made to amplify fungi and were later used for plants as well (Wang et al. 2017). The ITS region is said to have the highest probability of successful identification of a broad range of fungi (Raja et al. 2017). As a result of this the use of the universal ITS regions is discouraged and plant-specific primers have been designed (Cheng et al. 2016, Wang et al. 2017).

The use of ITS has also been criticized due to complications caused by concerted evolution taking place among members of multigene plant families (Doyle *et al.* 1996, Wang *et al.* 2016, Xu *et al.* 2017). Concerted evolution silences the contribution of one parent and possible recombination events, which then leads to incongruence between organismal and gene phylogenies (Ainouche and Bayer 1997, Soreng *et al.* 2015, Fijridiyanto and Murakami 2019,

Xuan *et al.* 2019). Concerted evolution may also explain the occurrence of paralogous genes observed within a species (Liao 1999, Xiao *et al.* 2010).

In contrast, the ETS locus has not been used extensively, as ITS has been, in phylogenetic studies of grasses (Duvall et al. 2003, Gillespie et al. 2009, Cabi et al. 2017, Krawczyk et al. 2017). However, the ETS region has been found useful in studying phylogenies of closely related plant taxa (Sallares and Brown 2004, Gillespie et al. 2009, Alonso et al. 2014, Barrett 2019, Fijridiyanto and Murakami 2019, Tkach et al. 2019, Nauheimer et al. 2019). It has also been found to represent an even more valuable instrument for phylogenetic analysis when compared to ITS (Poczai and Hyvönen 2010), having more than twice the number of variable sites than ITS (Duvall et al. 2003). According to Zhi-Ming et al. (2006), Alonso et al. (2014) and Fijridiyanto and Murakami (2019), ETS can be used in cases where ITS does not produce clear results, or to augment ITS data, because ETS evolves as much as 1.4 times faster. In a study where six different DNA loci were examined, ITS and ETS combined provided the best results in Nassella neesiana (Wang et al. 2017). In another study by Cabi et al. (2017) the use of both ITS and ETS provided a clearer view and placement of the new species Alopecurous goekyigitiana. Wang et al. (2017) also suggests that ETS promises to be the best marker for grass DNA barcoding if more robust primers are designed in order to increase its PCR success rate. However, according to Baldwin and Markos (1998) ETS lacks a highly conserved region suitable for primer design, therefore limiting its use in plant comparative studies. Although the use of ITS and ETS separately has produced variable results, the combined analysis of both datasets has resulted in better resolved and more robust trees (Gillespie et al. 2009, Poczai and Hyvönen 2010). The combination of these two regions has also resulted in improved resolution and increased bootstrap support for clades (Bena et al. 1998, Fijridiyanto and Murakami 2019), even though they show incompatibility between their DNA datasets/ alignments (Zhi-Ming et al. 2006). This is because these regions occur within a single transcriptional unit and evolve under similar functional constraints at comparable rates (Baldwin and Markos 1998, Zhi-Ming et al. 2006), hence the use of ETS and combining the two during the current study. Despite all the disadvantages associated with nuclear ribosomal DNA regions (ITS and ETS), they still represent suitable regions for plant genetic studies at and below species level (Schaal et al. 1998). It is for this reason that the current study utilised these two nrDNA regions.

3.2 <u>Materials and methods</u>

3.2.1 Sampling and DNA extraction

Themeda triandra samples were collected from various regions in southern Africa, including one sample from Zimbabwe and eight from Angola. DNA was extracted from 1-2cm of leaf or inflorescence material from the collected samples using standard CTAB genomic DNA isolation technique (Doyle and Doyle 1987).

Table 3.1: Specimen localities, collectors and whether ITS and ETS sequences were obtainedKwaZulu-Natal = KZN, Mpumalanga = Mpu, Gauteng = GP, Free-State = FS, Limpopo = Lim,Eastern Cape = EC, Northern Cape = NC.

Locality	Collector	GPS	ITS	ETS
Pretoria, GP	N.P. Barker (2009)	N/A	\checkmark	
Zimbabwe	Unknown	N/A	\checkmark	
Kalkhueve West, GP	A.E. Van Wyk	S25.850056°; E27.883139°		
Weenen, KZN	Unknown	N/A	\checkmark	\checkmark
Drakensberg1, KZN	S. Ntshangase (54)	S29.47137°; E28.9938°	\checkmark	
Drakensberg2, KZN	S. Ntshangase (55)	S29.42951°; E28.9472°	\checkmark	
GHT Barthust2, EC	S. Ntshangase (58)	N/A	\checkmark	\checkmark
Grahamstown, EC	S. Ntshangase (59)	N/A	\checkmark	\checkmark
Hogsback, EC	N.P. Barker	N/A	\checkmark	\checkmark
Grahamstown to PE,	N.P. Barker	N/A	\checkmark	\checkmark
EC				
Kimberley, NC	S. Ntshangase (60)	N/A	\checkmark	
Warden, FS	S. Ntshangase (1)	S27.85188°; E 28.9592°	\checkmark	\checkmark
Harrismith 4, FS	S. Ntshangase (11)	S28.26276°; E29.12316°		
Midmar Dam, KZN	S. Ntshangase (12)	S29.49566°; E30.16220°	\checkmark	\checkmark
Maphumulo, KZN	S. Ntshangase (13)	S29.11358°; E31.02684°		

Greytown, KZN	S. Ntshangase (14)	S28.98470°; E30.81659°	\checkmark	
St Lucia, KZN	S. Ntshangase (15)	S28.35575°; E32.41962°	\checkmark	
Pongola, KZN	S. Ntshangase (17)	S27.75515°; E32.11157°	\checkmark	
Piet Retief, Mpu	S. Ntshangase (18)	S27.20660°; E31.09293°	\checkmark	
Verzameling1, Mpu	S. Ntshangase (19)	S26.90885°; E30.72853°	\checkmark	
Verzameling2, Mpu	S. Ntshangase (20)	S26.90885°; E30.72853°	\checkmark	
Sheepmoor, Mpu	S. Ntshangase (21)	S26.75027°; E30.36234°	\checkmark	
Ermelo, Mpu	S. Ntshangase (22)	S26.51356°; E29.90657°	\checkmark	
Secunda, Mpu	S. Ntshangase (23)	S26.46438°; E29.18931°	\checkmark	
Harrismith2, FS	S. Ntshangase (9)	S28.26690°; E29.14110°		
Harrismith3, FS	S. Ntshangase (10)	S28.26309°; E29.14328°	\checkmark	
Pirie Forest 1, EC	S. Ntshangase (61)	N/A	\checkmark	
Brits, GP	S. Ntshangase (66)	S25.583333°; E27.772222°	\checkmark	
Brits, GP	S. Ntshangase (66)	S25.583333°; E27.772222°	\checkmark	
De Wild, GP	S. Ntshangase (67)	S25.65°; E27.822222°	\checkmark	
De Wild, GP	S. Ntshangase (67)	S25.65°; E27.822222°	\checkmark	
De Wild, GP	S. Ntshangase (67)	S25.65°; E27.822222°	\checkmark	
Magaliesburg, GP	S. Ntshangase (68)	S25.706944°; E27.9°	\checkmark	
Magaliesburg, GP	S. Ntshangase (68)	S25.706944°; E27.9°	\checkmark	
PTAWest1, GP	S. Ntshangase (69)	S25.794444°; E27.993056°	\checkmark	
PTAWest1, GP	S. Ntshangase (69)	S25.794444°; E27.993056°	\checkmark	
PTAWest1, GP	S. Ntshangase (69)	\$25.794444°; E27.993056°		\checkmark
PTAWest2, GP	S. Ntshangase (70)	S25.861111°; E28.011111°		
PTAWest2, GP	S. Ntshangase (70)	S25.861111°; E28.011111°	1	
PTAWest2, GP	S. Ntshangase (70)	S25.861111°; E28.011111°		+
Brits, GP	S. Ntshangase (66)	S25.583333°; E27.772222°		
Magaliesburg, GP	S. Ntshangase (68)	\$25.706944°; E27.9°	-	
R510, Lim	S. Ntshangase (24)	S 25.7117°; E 27.64917°		
Verena D, Mpu	S. Ntshangase (33)	S 25.47208°; E 29.03927°	\checkmark	
Riamarpark, Mpu	S. Ntshangase (34)	S 25.80934°; E 28.70253°	\checkmark	

Thabazimbi1, Lim	S. Ntshangase (25)	S 24.91234°; E 27.28350°	\checkmark	\checkmark
Thabazimbi2, Lim	S. Ntshangase (26)	S 24.57597°; E 27.41544°	\checkmark	\checkmark
Thabazimbi2, Lim	S. Ntshangase (26)	S 24.57597°; E 27.41544°		
Bela Bela1, Lim	S. Ntshangase (27)	S 24.86960°; E 28.10041°	\checkmark	
Bela Bela 2, Lim	S. Ntshangase (28)	S 24.84868°; E 28.34738°		\checkmark
Modimolle, Lim	S. Ntshangase (29)	S 24.70976°; E 28.41278°	\checkmark	\checkmark
Marblehall1, Lim	S. Ntshangase (30)	S 24.84401°; E 28.88696°		\checkmark
Marblehall2, Lim	S. Ntshangase (30)	S 24.84401°; E 28.88696°		\checkmark
Groblesdal, Lim	S. Ntshangase (31)	S 25.16815°; E 29.37104°		\checkmark
UitspanningB, Mpu	S. Ntshangase (32)	S 25.24319°; E 29.21340°		\checkmark
Pirie Forest 2, EC	S. Ntshangase (62)	N/A		
Angola5	N.P. Barker	N/A		
Angola6	N.P. Barker	N/A		
Angola1	N.P. Barker	N/A	\checkmark	\checkmark
Angola7	N.P. Barker	N/A		\checkmark
Angola8	N.P. Barker	N/A		
Angola2	N.P. Barker	N/A		
Argent, Mpu	M. Cunningham	S26.01115°; E28.79572°	\checkmark	\checkmark
Diamond Hill Off-	M. Cunningham	S25.79913°; E28.51610°	\checkmark	
Ramp, GP				
Boschbult, Mpu	M. Cunningham	S25.56765°; E28.64466°	\checkmark	\checkmark
Gariep Dam, FS	M. Cunningham	\$30.62924°; E25.49885°	\checkmark	\checkmark
Emalahleni, Mpu	S. Ntshangase (35)	S 25.88668°; E 29.27050°	\checkmark	\checkmark
Graskop, Mpu	S. Ntshangase (44)	S 24.92512°; E 30.81283°	\checkmark	\checkmark
Burgersfort, Lim	S. Ntshangase (45)	S 24.72472°; E 30.55678°	\checkmark	\checkmark
Phalaborwa, Lim	S. Ntshangase (46)	S 24.10687°; E 30.86461°		\checkmark
Thohoyandou, Lim	S. Ntshangase (47)	S 22.94123°; E 30.48588°		
Louis Tritchadt, Lim	S. Ntshangase (48)	S 23.03162°; E 29.91874°	\checkmark	
Bungeni, Lim	S. Ntshangase (49)	S 23.20885°; E 30.17513°	\checkmark	
Polokwane, Lim	S. Ntshangase (50)	S 23.93109°; E 29.46977°		

Mokopane, Lim	S. Ntshangase (51)	S 24.21767°; E 29.00510°		\checkmark
Bela Bela 3, Lim	S. Ntshangase (53)	S 25.08982°; E 28.30714°		
Bela Bela 4, Lim	S. Ntshangase (53)	S 25.08982°; E 28.30714°		\checkmark
Loskop Dam, Mpu	S. Ntshangase (36)	S 25.41040°; E 29.36386°		\checkmark
Groblesdal2, Lim	S. Ntshangase (37)	S 25.17921°; E 29.54404°		\checkmark
Barberton, Mpu	S. Ntshangase (38)	S 25.78289°; E 31.02855°		
Nelspruit, Mpu	S. Ntshangase (39)	S 25.64779°; E 30.97743°		\checkmark
Sabie1, Mpu	S. Ntshangase (40)	S 25.41015°; E 30.91567°	\checkmark	\checkmark
Lydenburg, Mpu	S. Ntshangase (42)	S 25.10905°; E 30.49458°	\checkmark	\checkmark
Ohrigstad, Lim	S. Ntshangase (43)	S 24.84682°; E 30.57333°	\checkmark	
Maden Dam1, EC	S. Ntshangase (63)	N/A	\checkmark	\checkmark
Maden Dam 2, EC	S. Ntshangase (64)	N/A	\checkmark	
Skurweberg, GP	S. Ntshangase (65)	S25.791667°; E27.983333°	\checkmark	
Australia	R. Jobson	N/A	\checkmark	
Australia	R. Jobson	N/A		
Australia	R. Jobson	N/A	\checkmark	
Australia	R. Jobson	N/A		\checkmark
Australia	R. Jobson	N/A		\checkmark
Australia	R. Jobson	N/A		
Australia	R. Jobson	N/A		\checkmark
Australia	R. Jobson	N/A		
Australia	R. Jobson	N/A	\checkmark	
GenBank T.australis	Unknown	N/A	\checkmark	
Tswaing, GP	S. Ntshangase (73)	S25.404996°; E28.083079°	\checkmark	

3.2.2 DNA amplification

The ITS region was amplified and sequenced using ITS_Them_ (TCGTGACCCTTAAACAAAACAG) (designed by R. Jobson, Royal Botanical Garden, Sydney) and ITS 4 (TCCTCCGCTTATTGATATGC – White *et al.* 1990). The ETS region was amplified and sequenced using ETS Rets4-F (5'-TTGGCTACGCGAGCGCATGAG) and 18S-R (5'-AGACAAGCATATGACTACTGGCAGG) primers (designed by Dr R. Jobson, Royal Botanical Garden, Sydney).

PCR amplification consisted of a 5 minute denaturing stage at 94°C; which was followed by 35 cycles of 94°C for 50 seconds, 55°C for 30 seconds and 72°C for 2 minutes annealing and a final extension of 7 minutes at 72°C. The PCR products were run on 1% agarose gel to view success of the PCR. The successful PCR products were then cleaned using the QIAGEN PCR purification kit according to manufacturer's instructions. The cleaned PCR products were then sequenced with BigDye terminator v.3.1. After cycle sequencing, the reactions were precipitated with 2.5mM EDTA, 100% ethanol and 70% ethanol. The products of precipitation were then sent to the Forestry and Agricultural Biotechnology Institute (FABI) (University of Pretoria) for sequencing using the ABI PRISM 3130xl and ABI PRISM 3500xl Genetic Analyzers.

3.2.3 Analysis

The raw sequence trace files were edited using Sequencher v. 5.4.6 (http://www.genecodes.com). DNA sequences were then aligned using MEGA6 with CLUSTAL W and subsequent manual corrections were made to the automatic alignment. In addition to the South African specimens analysed, Dr R. Jobson (Royal Botanic Gardens, Sydney) provided sequence data for nine Australian samples, seven *T. triandra*, one *T. arguens* and one *T. quadrivalvis*. The matrices obtained from MEGA6 were saved as NEXUS files.

Both tree building and network analyses were conducted. Networks were obtained using TCS and Median Joining (Clement *et al.* 2000) as implemented in PopArt v. 1.7 (Leigh and Bryant 2015). Phylogenetic trees were obtained using Bayesian analyses as implemented in Mr Bayes v. 3.1.2 (Huelsenbeck and Ronquist 2005).

According to Clement *et al.* (2000), the TCS method has been used extensively with nucleotide data at population levels. With this method, the distance between every pair of taxa in the source

and destination clusters is examined to determine possible connections within the species (Clement *et al.* 2000).

Prior to conducting the Bayesian analysis, JModelTest (Posada 2008) was run on the alignments to find the best-fit model of nucleotide substitution and this was used for Bayesian analysis (Posada 2008). For the Bayesian analysis (200000000 generations with a 2000 proportion of trees excluded as burnin) the phylogenetic trees were rooted on *T. arguens* as an out-group because Jobson's unpublished analyses show it to be a close relative to *T. triandra*. Phylogenetic trees were produced from Mr Bayes and TCS and Median Joining Networks for ITS, ETS and combined ITS and ETS datasets. Listed below are the characters (ITS, ETS and combined ITS and ETS respectively) for running the Bayesian analysis as obtained from the J-Model test.

```
log start;
set autoclose=yes;
Prset statefreqpr=dirichlet(1,1,1,1);
Lset nst=6 rates=invgamma;
mcmc ngen=20000000 samplefreq=200 nchains=4 savebrlens=yes startingtree=random;
sump burnin=2000 printtofile=yes;
sumt burnin=2000 contype=allcompat;
log stop;
```

```
log start;
set autoclose=yes;
Prset statefreqpr=dirichlet(1,1,1,1);
Lset nst=6 rates=invgamma;
mcmc ngen=2000000 samplefreq=200 nchains=4 savebrlens=yes startingtree=random;
sump burnin=2000 printtofile=yes;
sumt burnin=2000 contype=allcompat;
log stop;
```

log start;

set autoclose=yes; Prset statefreqpr=dirichlet(1,1,1,1); Lset nst=6 rates=invgamma; mcmc ngen=20000000 samplefreq=200 nchains=4 savebrlens=yes startingtree=random; sump burnin=2000 printtofile=yes; sumt burnin=2000 contype=allcompat; log stop;

3.3 <u>Results</u>

ITS data was obtained from 85 specimens, ETS data from 84 specimens and 67 specimens were used to produce a combined ITS and ETS data set. ITS alignments were 586bp long, ETS alignments were 448bp long and the combined ITS and ETS alignments were 1013bp long. The results are presented in the form of phylogenetic trees obtained from Bayesian analysis and Networks from Median Joining analysis.

These specimens are from 69 South African localities, 6 Angolan, 8 Australian, 1 Zimbabwean and one sample obtained from the GenBank (for ITS) and 72 South African, 5 Angolan and 7 Australian specimens (for ETS).

3.3.1 <u>Network Analyses</u>

Due to the similarities from the TCS network and Median Joining Network (MJN), only the results obtained from running the MJN are shown below. These show little genetic diversity between the South African specimens. However, the Australian specimens show some differences from the South African specimens and some are not grouped with these.

Figure 3.1: Results from Median Joining Network analysis of ITS data set. This network was obtained using an algorithm from <u>Clement *et al* (2002)</u>. The nodes correspond to specimens collected from southern Africa and Australia. The values on the nodes are <u>the number of mutations</u>. The above results show that in the MJN analysis of ITS data (Figure 3.1), the Australian specimens are not grouped with the South African specimens (source cluster) with distances of 2, 3, 5 (*T. quadrivalvis*) and 23 (*T. arguens*) mutations from the source cluster. The source (central) cluster consists of 75 South African and Angolan specimens and there are two other South African specimens that have a distance of one mutations each from the source cluster. These clusters show no geographic pattern.

Similarly, the results from the MJN analysis of ETS data (Figure 3.2) show that the Australian specimens are not grouped with the South African specimens (source cluster), with distances of 1, 2, 3, 8 (*T. quadrivalvis*) and 24 (*T.arguens*) mutations from the source cluster. The source (central) cluster consists of 70 South African and Angolan specimens. There are six other South African and Angolan specimens that have distances of 1, 3 and 5 mutations from the source cluster.

When the ITS and ETS datasets were combined, (Figure 3.3) the results were similar to those from individual data sets, with the Australian specimens showing slight difference to the South African specimens, as they did not cluster with any of them.

The Australian specimens show distances of 4, 15 (*T. quadrivalvis*) and 46 (*T.arguens*) mutations from the source cluster. The source (central) cluster consists of 57 South African and Angolan specimens. There are nine other South African and Angolan specimens that have distances of 1, 3 and 5 mutations from the source cluster.

Figure 3.2: Results from Median Joining Network analysis of ETS data set. This network was obtained using an algorithm from Clement *et al* (2002). The nodes correspond to specimens collected from southern Africa and Australia. The values on the nodes are the number of mutations.

Figure 3.3: Results from Median Joining Network analysis of combined ITS and ETS data sets. This network was obtained using an algorithm from Clement *et al* (2002). The nodes correspond to specimens collected from southern Africa and Australia. The values on the nodes are the number of mutations.

3.3.2 <u>Bayesian analyses</u>

The following phylogenetic trees (Figures 3.4 - 3.6) were obtained from the Bayesian analyses of ITS, ETS and IITS combined with ETS data sets. According to Hall (2013) a posterior probability value less than 70% is not considered reliable. It is for this reason that only values above 70% appear on the phylogenetic trees below. A total of 586 characters were analysed for Figure 3.4 (ITS), where 550 were constant with a proportion of 0.94, 29 variable characters were parsimony-uninformative and seven were parsimony-informative. For Figure 3.5 (ETS), a total of 448 characters were analysed, where 389 characters were constant with a proportion of 0.87, 55 variable characters were parsimony-uninformative and four characters were parsimony-informative. Lastly, for Figure 3.6 (combined ITS and ETS) a total of 1013 characters were analysed, where 921 were constant with a proportion of 0.91, 85 variable characters were parsimony-uninformative and seven characters were parsimony informative.

Figure 3.4: Results from the Bayesian analysis of the ITS data rooted on *T. arguens*. The posterior probabilities are all less than 70%, indicating no support for the indicated relationship.

0.

Figure 3.5: Results from the Bayesian analysis of the ETS data rooted on *T. arguens*. The posterior probabilities are all less than 70%.

The phylogenetic trees obtained from Bayesian analysis have all clades where Posterior Probability values are less than 70%. These trees also show no supported groups and therefore there is no phylogenetic pattern within the samples of *T. triandra*. The Australian specimens in the analysis of ITS data (Figure 3.4) cluster together, including the *T. australis* specimen obtained from the GenBank. On Figure 3.5 (ETS analysis), the Australian specimens cluster with South African specimens, apart from each other. Lastly, where ITS and ETS were combined (Figure 3.6), the Australian *T. triandra* specimens all cluster together including *T. quadrivalvis*. This suggests that the samples from Australia and South Africa are distinct and thus there is some evidence that the recognition of *T. australis* has some merit.

3.4 Discussion

According to the above results there is limited variability, and no genetic evidence of any infraspecific groupings, and there is thus no geographic pattern observed within the T. triandra samples from South Africa. Australian specimens appear to show some genetic differences to the southern African specimens. T. arguens (L.) Hack. differs from the South African T triandra, whereas T. quadrivalvis (L.) Kuntze appears to be closely related. T. quadrivalvis was considered a synonym to T. triandra (Veldkamp 2016). This was because T. triandra and T. quadrivalvis look similar and they are both said to dominate savannas and grasslands. The one major difference between the two species is that T. quadrivalvis is an annual species, whilst T. triandra is a perennial species (Dunning et al. 2017). A study by Dunning et al. (2017) where cpDNA and nrDNA (ITS) were sequenced on 17 Themeda species also showed that the Australian and African T. triandra samples were separated. However, this is in contrast to the study by Dell'Acqua et al. (2014) who found no genetic differentiation between the Australian and African specimens from Kenya. This latter study used a variety of Amplified Fragment Length Polymorphism (AFLP) markers. These are said to represent a fast and reliable tool for the production of a number of genome-wide genetic markers (Dell'Acqua et al. 2014). Their study differed from the current study in that ITS and ETS analyse a very small region of the nuclear genome and the AFLP markers study the whole genome. However, the results are comparable to the current study.

3.5 Conclusion

The aims of this chapter were to determine whether there is any genetic structure in *T. triandra* found in southern Africa, and to determine if there are any genetic differences between the southern African and Australian species. Unfortunately, the results obtained here indicate that (like the anatomical data) there is no genetic structure within the species.

One possible reason for this results is that ITS and ETS regions are not sensitive enough to reflect recent evolution and population history. Also these regions are multi-copy in nature, and there is the possibility of pseudogenes, problematic secondary structure and possible amplification of contaminants (Álvarez and Wendel 2003). During the current study, only the forward ITS primer was species-specific. Although plant-specific primers can eliminate contamination, the above issues still remain, therefore more studies need to be conducted with recent technologies to minimise them.

The results also show that there are genetic differences between the southern African and Australian *T. triandra*, suggesting that the name *T. australis* could be applied to the Australian specimens. However, much wider sampling is required from across the full distribution range of the species.

4 Chapter 4: Synthesis

Themeda triandra is a polymorphic species with ploidy levels ranging from 2n=20 to 100. It has been a species of interest to taxonomists and other scientists due to its variability. This variation is the main reason for the current study which aimed to answer the following questions:

1. Is there anatomical diversity within T. triandra specimens collected in southern Africa?

2. Is there genetic diversity within specimens collected in southern Africa and Australia?

3. To determine whether there are any species limits between South African and Australian specimens.

Results from leaf anatomy show no clear and consistent clustering of specimens and no geographic pattern among the specimens. There is, however, a little variation within the characters measured, although they did not present any taxonomic significance.

Genetic data was analysed and presented in networks and phylogenetic trees. These also showed no infra-specific groups and limited genetic diversity and no geographic pattern. The limited genetic diversity within the southern African specimens shows that the range of anatomical and morphological polymorphisms observed within the species is possibly a result of phenotypic plasticity. The Australian specimens were found to separate from those from southern Africa in both networks and phylogenetic trees. This shows that some differences do exist between the Australian and southern African specimens.

With the results showing little genetic diversity within the species within the subcontinent, it may then be suggested that the morphological differences observed in *T. triandra* may be due to environmental conditions and local adaptation. According to Bachle and Nippert (2018), climate variability has a great and common effect on physiological and phenetic responses in grass

species. These differences are used to explain species-specific responses of grasses in different conditions (Bachle and Nippert 2018, Bachle *et al.* 2018). C₄ grasses, such as *T. triandra*, are known to possess physiological traits that allow them to adapt to any unfavourable climatic conditions (Nippert *et al.* 2007, Bachle *et al.* 2018). Other such plants include *Clarkia unguiculata* Lindl. which was found to adapt to different elevations by self-fertilization and flowering earlier, before the onset of drought, especially at lower elevations (Jonas and Geber 1999).

4.1 Interpretation of these findings:

The fact that some species are variable and taxonomically difficult is not uncommon (McDade 1995). Approaches on how to accommodate these species taxonomically differ, and some workers will retain a broad and variable species, while others will divide it into smaller entities ("lumpers" and "splitters") (Böcher 1967, McDade 1995, Spooner *et al.* 2003, Weakely 2005, Endersby 2009, Silva *et al.* 2020). A study by Böcher (1967) showed two species of the genus *Cerastium* with varying ploidy levels can either be lumped or split. Similarly, *Hildaea* is a morphologically varied genus with unclear species boundaries studied by Silva *et al.* (2020).

The concepts of splitters and lumpers, as reviewed by Endersby (2009) has been of great debate since the times of Darwin and the botanist Hooker. Hooker was said to be a lumper who reduced the number of plant species names by redefining many of the species as merely varieties. The terms "lumpers" and "splitters" are still in use this day, with splitters gaining more influence in speciation and biodiversity (Spooner *et al.* 2003, Weakely 2005, Endersby 2009). This has led to an increase in plant species names changing more than before (Weakely 2005).

Linked to this is the mix of aspects such as species concepts, ecotypes, natural variability and population genetics. In dealing with a particularly variable species of *Diospyros* from Africa, White (1955) introduced the ochlospecies concept to accommodate instances of rampant phenotypic plasticity. A change in environmental conditions may result in the phenotype

(appearance) of the species being altered to adapt to the environmental conditions (ecology and geography - White *et al.* 1990, Bayonne Mboumba and Ward 2008). Phenotypic plasticity is said to affect the ways in which species interact with each other, how they compete and can promote or hinder coexistence within an environment (Turcotte and Levine 2016). Although the ochlospecies is not a taxonomic category, but a species concept, it can be very useful in showing that a species complex cannot be accommodated in a formal taxonomic treatment (Barbosa *et al.* 2012).

According to Brown and Emery (1957) and Liebenberg (1986) *T. triandra* may be an actively evolving agamic (apomictic) species. This means that the observed morphological variation is a result of asexual reproduction where gametophytes are formed directly from the diploid cells. Apomictic lineages are sometimes referred to as micro- or intermediate species (McDade 1995). According to Stace (1998) apomictic taxa do not require a taxonomic category. Soreng (1991), studying *Poa* L. lineages, indicated that it is better to treat an apomictic lineage not as separate species, but as sub-sets of a sexual species. This reduces the number of species that may result from splitting. A study by Hörandl (1998) on an agamic species *Ranunculus auricomus* L. showed that using phenetic species concepts (based on morphology) on an agamic species may lead to splitting in a number of species instead of one. It is for this reason that the current study incorporated genetics and leaf anatomy to assess the species morphological variation. However, the results of this study show *T. traindra* to be an ochlospecies more than an agamic species.

According to (Cronk 1998) there are ten characteristics of an ochlospecies, and if a species meets six or more of these it can then be considered an ochlospecies. These characteristics are:

- 1. A species which shows a non-hierarchical polymorphic variation.
- 2. Character-state distribution shows only partial correlation with the geography and ecology.
- 3. Characters vary independently, not in a correlated fashion.
- 4. Complexity is not due to hybridisation or to a special breeding system between currently recognisable species.

- 5. Geographically and ecologically widespread, occurring in a variety of climates and vegetation zones.
- 6. At a particular locality two distinct and non-intergrading forms may be found and other forms may be found at other localities, but taken together the forms intergrade and the classification breaks down.
- 7. They sometimes have a closely related, but morphologically monotypic species.
- 8. Similar variants may occur in widely separated localities and appear to be polytopic in origin.
- 9. They occur in medium to large genera, with more than 50 species.
- 10. There is often an untenable proliferation of synonyms.

According to Barbosa *et al.* (2012) the complexity seen in ochlospecies may be a result of "ancient hybridization or introgression events and to events related to expansion and retraction of populations during the Pleistocene Epoch".

Classifying species with a wide range of morphologies has been a great challenge for taxonomists (Harrington and Gadek 2009). A number of studies done on plant species and genera, without a clear geographic pattern have led to taxonomists assigning the term ochlospecies to taxonomically problematic species and species complexes (Pipoly 1983, Huxley and Jebb 1993, Neuba *et al.* 2006, Bennett *et al.* 2008, Harrington and Gadek 2009, Barbosa *et al.* 2012, Applequist 2015, Henderson 2020). It is worth briefly discussing these studies in which the ochlospecies concept is applied.

Barbosa *et al.* (2012) showed *Vellozia hirsuta* Goethart & Henrard to be an ochlospecies due to its variation in morphology and leaf anatomy. As in *Themeda triandra*, the variation seen in *V. hirsuta* is quite complex and does not follow any geographic pattern and therefore became very challenging to classify. In the end, the authors concluded that *V. hirsuta* is a single species with a wide morphological range (Barbosa *et al.* 2012). Huxley and Jebb (1993) described *Myrmecodia tuberosa* Jack as an ochlospecies due to its morphological variation that could not be related to

its geography. There had been variants with informal names described, but further studying of the many character combinations showed it to be an ochlospecies. The previously named variants were therefore eliminated and *M. tuberosa* remained one species with varying morphologies (Huxley and Jebb 1993).

A similar situation is seen in *Strobilanthes echinata* Nees (Bennett *et al.* 2008). *S. echinata* is polymorphic without a clear geographic pattern. The species has been described under many different names, but with further morphological studies and reference to White (1962), it was concluded that it is indeed an ochlospecies. The genus *Allophylus* L. is another example of a species complex (Stace 1998, Harrington and Gadek 2009). Initially, 255 species were described in the genus, but further studies by Leenhouts (1967) concluded that *Allophylus cobbe* (L.) Räusch is a single species with a wide range of morphologies and 255 synonyms, therefore making it an ochlospecies.

Another genus with a widespread morphology is *Sambucus*. According to Applequist (2015) there has not been any formal taxonomic treatment that has been satisfactory for the genus. Applequist (2015) reduced the number of species in the genus from thirty to nine where eight of the initially described species were found to be an ochlospecies complex. The species in *Sambucus* are so complex that neither lumping nor splitting them seemed appropriate (Applequist 2015). It was for this reason that the ochlospecies concept was considered and *Sambucus nigra* was then accepted as the formal name for the species (Applequist 2015).

Henderson (2020) found species in the palm genus *Calamus* to be similar to each other and taxonomically difficult. The previously described species, subspecies and varieties were grouped together as one morphologically variable species. Lima *et al.* (2015) showed that *M. tomentosa* is an ochlospecies because there was no genetic diversity to support the morphological differences within the species,)a case similar to *Themeda triandra*.

Other species that have been considered as ochlospecies include, *Dodonaea viscosa* Jacq. which shows a wide morphologiacal variation which does not correlate to its geography (Harrington and Gadek 2009). Neuba *et al.* (2006) studied *Leptactina benguelensis* (Welw. ex Benth. & Hook.f.) and found that it meets six of the characteristics of an ochlospecies described by Cronk (1998) resulting in the suppression of the subspecies and leaving *L. benguelensis* as a single species with multiple morphological forms. Similarly *Cybianthus spicatus* (H.B.K.) was found to be an ochlospecies due to its polymorphic nature which did not relate to its geography (Pipoly 1983).

Apart from White's original study on *Diospyros*, other African taxa considered to meet the requirements of the ochlospecies concept include *Vachellia karoo* (Hayne) Banfi & Galasso, where a study using ISSR DNA Barcoding techniques found this taxon to be an ochlospecies (Taylor and Barker 2012). Howis (2007) also used DNA data to show that some species of *Gazania* that were previously considered separate species because of their morphology were placed in a morphologically and genetically overlapping continuum that comprised an ochlospecies.

The ochlospecies concept has thus provided a more satisfactory way of classifying species and genera that do not conform to formal taxonomic treatments. *Themeda triandra*, with its polymorphic nature is another example of the many species that can be considered under the ochlospecies concept. As noted above, there are 10 characteristics of an ochlospecies, and a taxon must meet at least six of these to be considered an ochlospecies.

According to the current study, *T. triandra* meets characteristics 1, 2, 3, 4, 5 and 8, which qualifies it to be an ochlospecies.

While this is perhaps not a taxonomically convenient finding, the range of variability of this species means that (in the absence of data that can provide a finer resolution) this is the best lens through which *Themeda triandra* can be viewed. Variability is a biological reality that cannot always be conveniently partitioned and labelled.

4.2 Future perspectives

Further studies need to be conducted using more sophisticated DNA markers, such as Amplified Fragment Length Polymorphism (AFLP) markers. It has been shown that AFLP markers are the most appropriate and efficient method for studying systematics in plant groups where variation cannot be detected through nuclear and chloroplast sequence analyses (Hodkinson et al. 2000; Ward 2011).

5 <u>References</u>

- Ainouche, M. L., and Bayer, R. J. 1997. On the origins of the tetraploid *Bromus* species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome 40:730–743.
- Akin, D. E. 1979. Microscopic evaluation of forage digestion by rumen microorganisms-a review. Journal of Animal Science 48:701–710.
- Alonso, A., Bull, R. D., Acedo, C. and Gillespie, L. J. 2014. Design of plant-specific PCR primers for the ETS region with enhanced specificity for tribe Bromeae and their application to other grasses (Poaceae). Botany 92:693–699.
- Álvarez, I. and Wendel, J. F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution 29:417–434.
- Amory, A. and Cresswell, C. 1984. Effect of Inorganic Nitrogen lons on Photosynthesis and Carbon Dioxide Compensation Concentration of *Themeda triandra* and *Zea mays*. Annals of botany 54:719–727.
- Applequist, W.L., 2013, June. A brief review of recent controversies in the taxonomy and nomenclature of Sambucus nigra sensu lato. In I International Symposium on Elderberry 1061: 25-33.
- Bachle, S. and Nippert, J. B. 2018. Physiological and anatomical trait variability of dominant C4 grasses. Acta oecologica 93:14–20.
- Bachle, S., Griffith, D.M. and Nippert, J.B. 2018. Intraspecific trait variability in *Andropogon gerardii*, a dominant grass species in the US Great Plains. Frontiers in Ecology and Evolution 6(217): 1-8.
- Baker, W. J., Hedderson, T. A. and Dransfield, J. 2000. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Molecular phylogenetics and evolution 14:195–217.
- Baldwin, B. G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular phylogenetics and evolution 1:3–16.
- Baldwin, B. G. and Markos, S. 1998. Phylogenetic Utility of the External Transcribed Spacer (ETS) of 18S–26S rDNA: Congruence of ETS and ITS Trees of Calycadenia (Compositae). Molecular phylogenetics and evolution 10:449–463.
- Barbosa, A. R., Fiorini, C. F., Silva-Pereira, V., Mello-Silva, R. and Borba, E. L. 2012. Geographical genetic structuring and phenotypic variation in the *Vellozia hirsuta* (Velloziaceae) ochlospecies complex. American journal of botany 99:1477–1488.
- Barker, N. P., Von Senger, I., Howis, S., Zachariades, C. and Ripley, B. S. 2005. Plant phylogeography based on rDNA ITS sequence data: two examples from the Asteraceae. Regnum Vegetabile 143:217.
- Barkworth, M. E., Anderton, L. K., Capels, K. M., Long, S. and Piep, M. B. 2007. Manual of grasses for North America. Juniversity Press of Colorado.
- Barrett, M. D. 2019. *Triodia veniciae* (Poaceae), a new species from the Pilbara region, Western Australia. Nuytsia 30:221-228.

Baskin, J. M. and Baskin, C. C. 1973. Plant population differences in dormancy and germination characteristics of seeds: heredity or environment? American midland naturalist:493–498.

- Baxter, B. J. 1996. Aspects Related to the Germination of Themeda triandra Seed. . Citeseer.
- Baxter, B., Van Staden, J., Granger, J. and Brown, N. 1994. Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass *Themeda triandra*. Environmental and experimental botany 34:217–223.
- Bayonne Mboumba, G. and Ward, D. 2008. Phenotypic plasticity and local adaptation in two extreme populations of *Acacia karroo*. African Journal of Range and Forage Science 25:121–130.Bena, G., Jubier, M.-F., Olivieri, I. and Lejeune, B. 1998. Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). Journal of Molecular Evolution 46:299–306.
- Bena, G., Jubier, M.-F., Olivieri, I. and Lejeune, B. 1998. Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of *Medicago* (Leguminosae). Journal of Molecular Evolution 46:299–306.
- Bennett, B. C. and Balick, M. J. 2014. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research. Journal of ethnopharmacology 152:387–392.
- Bennett, J.R., Wood, J.R. and Scotland, R.W., 2008. Uncorrelated variation in widespread species: species delimitation in *Strobilanthes echinata* Nees (Acanthaceae). Botanical Journal of the Linnean Society, 156(1):131-141.
- Bermingham, E. and Moritz, C. 1998. Comparative phylogeography: concepts and applications. Molecular Ecology 7:367–369.
- Birari, S. P. 1981. Polyploidy in species of *Themeda* Forssk. Caryologia 34:301-310.
- Böcher, T. W. 1967. Continuous variation and taxonomy. Taxon 16(4):225-258.
- Botha, C. 1992. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187:348–358.
- Botha, C., Hartley, B. and Cross, R. 1993. The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of *Themeda triandra* var. *imberbis* (Retz) A. Camus in conventionally-fixed blades. Annals of Botany 72:255–261.
- Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in genetics 13:115–155.
- Bridgens, A. B. 1968. Aspects of shoot apex morphogenesis, development and behaviour in grasses, with reference to the utilization and management of natural grassland.
- Briske, D. 1993. Developmental morphology and physiology of grasses. Grazing management: an ecological perspective. Timber Press, Portland:85–108.
- Brown, W. and Emery, W. 1957. Apomixis in the Gramineae, tribe Andropogoneae: *Themeda triandra* and *Bothriochloa ischaemum*. Botanical Gazette 118:246–253.
- Brown, W. V. 1958. Leaf anatomy in grass systematics. Botanical Gazette 119:170–178.
- Buckler, E. and Holtsford, T. P. 1996. *Zea* systematics: ribosomal ITS evidence. Molecular Biology and Evolution 13:612–622.

Buckler, E. S., Ippolito, A. and Holtsford, T. P. 1997. The evolution of ribosomal DNA divergent paralogues and phylogenetic implications. Genetics 145:821–832.

Cabi, E., Soreng, R.J., Gillespie, L. and Boudko, E., 2017. *Alopecurus goekyigitiana* (Poaceae, subtribe Alopecurinae sensu stricto), a new species from Turkey based on morphological and molecular investigation. Turkish Journal of Botany, 41(2):189-199.

- Cai, L., Xi, Z., Amorim, A. M., Sugumaran, M., Rest, J. S., Liu, L. and Davis, C. C. 2019. Widespread ancient whole-genome duplivations in Malpighiales coincide with Eocene global climatic upheaval. New Phytologis 221:565-576.
- Calisher, C. H. and Mahy, B. W. 2003. Taxonomy: get it right or leave it alone. The American journal of tropical medicine and hygiene 68:505–506.
- Carnahan, H. L., and Hill, H. D. 1961. Cytology and genetics of forage grasses. The Botanical Review 27:1–162.
- Charmet, G., Ravel, C. and Balfourier, F. 1997. Phylogenetic analysis in the *Festuca-Lolium* complex using molecular markers and ITS rDNA. Theoretical and Applied Genetics 94:1038–1046.
- Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y. and Zhou, S. 2016. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16:138–149.
- Christin, P.-A. and Osborne, C. P. 2014. The evolutionary ecology of C4 plants. New Phytologist 204:765–781.
- Clayton, W. D. and Renvoize, S. A. 1986. Genera Graminum. Grasses of the world. 13.
- Clement, M., Posada, D. and Crandall, K. A. 2000. TCS: a computer program to estimate gene genealogies. Molecular ecology 9:1657–1659.
- Cole, G. T. and Behnke, H.-D. 1975. Electron microscopy and plant systematics. Taxon 24:3–15.
- Cresswell, C. and Nelson, H. 1972. The Effect of Boron on the Breaking, and Possible Control of Dormancy of Seed of *Themeda triandra* Forssk. Annals of Botany 36:771–780.
- Cronk, Q. 1998. The ochlospecies concept. In* Huxley, CR, Lock JM, Cutler DF,* eds. Chorology, taxonomy and ecology of the floras of Africa and Madagascar. Kew: Royal Botanic Gardens, Kew:155–170.
- Cutler, D. F., Botha, T. and Stevenson, D. W. 2008. Plant anatomy: an applied approach. Malden, MA, USA, etc.: Blackwell Publishing.
- Danckwerts, J. 1987. Growth analysis of *Themeda triandra* and *Sporobolus fimbriatus* tillers in semi-arid grassveld. Journal of the Grassland Society of Southern Africa 4:7–12.
- Dávila, P. and Clark, L. G. 1990. Scanning electron microscopy survey of leaf epidermis of *Sorghastrum* (Poaceae: Andropogoneae). American Journal of Botany:499–511.
- Dell'Acqua, M., Fricano, A., Gomarasca, S., Caccianiga, M., Piffanelli, P., Bocchi, S. and Gianfranceschi, L. 2014. Genome scan of Kenyan *Themeda triandra* populations by AFLP markers reveals a complex genetic structure and hints for ongoing environmental selection. South African Journal of Botany 92:28–38.
- Dell'Acqua, M., Gomarasca, S., Porro, A. and Bocchi, S. 2013. A tropical grass resource for pasture improvement and landscape management: *Themeda triandra* Forssk. Grass and Forage Science 68:205–215.
- Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15.
- Doyle, J. J., Kanazin, V., and Shoemaker, R. C. 1996. Phylogenetic utility of histone H3 intron sequences in the perennial relatives of soybean (Glycine: Leguminosae). Molecular Phylogenetics and Evolution 6:438–447.
- Dunning, L. T., Liabot, A.-L., Olofsson, J. K., Smith, E. K., Vorontsova, M. S., Besnard, G., Simpson, K. J., Lundgren, M. R., Addicott, E., Gallagher, R. V. Chu, Y., Pennington, R. T., Christin, P.-A. and Lehmann, C. E. R. 2017. The recent and rapid spread of *Themeda triandra*. Botany Letters 164:327–337.

- Duvall, M. R., Saar, D. E., Grayburn, W. S. and Holbrook, G. P. 2003. Complex transitions between C3 and C4 photosynthesis during the evolution of Paniceae: a phylogenetic case study emphasizing the position of *Steinchisma hians* (Poaceae), a C3-C4 intermediate. International Journal of Plant Sciences 164:949–958.
- Elberse, W. T. and Berendse. F. 1993. A comparative study of the growth and morphology of eight grass species from habitats with different nutrient availabilities. Functional Ecology:223–229.
- Ellis, R. P. 1981. Relevance of comparative leaf blade anatomy in taxonomic and functional research on the South African Poaceae. Pretoria: University of Pretoria 239p.-illus.. En (Af) Icones, Maps, Anatomy and morphology. Thesis: University of Pretoria: Doctor Scientiae. Geog 5.
- Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences 97:7043–7050.
- Endersby, J., 2009. Lumpers and splitters: Darwin, Hooker, and the search for order. Science 326(5959), pp.1496-1499.
- Everson, C., Everson, T. M. and Tainton, N. 1985. The dynamics of *Themeda triandra* tillers in relation to burning in the Natal Drakensberg. Journal of the Grassland Society of southern Africa 2:18–25.
- Everson, C. S., and Everson, T. M. 2016. The long-term effects of fire regime on primary production of montane grasslands in South Africa. African Journal of Range & Forage Science 33:33–41.
- Everson, T. M. 1994. Seedling establishment of *Themeda triandra* Forssk. in the montane grasslands of Natal. . University of Natal.
- Faria, A. P. G., de Vieira, A. C. M. and Wendt, T. 2012. Leaf anatomy and its contribution to the systematics of *Aechmea* subgenus *Macrochordion* (de Vriese) Baker (Bromeliaceae). Anais da Academia Brasileira de Ciências 84:961–971.
- Fijridiyanto, I. A. and Murakami, N. 2019. Evaluating the utility of External Transcribed Spacer (ETS) and Internal Transcribed Spacer sequences (ITS) for phylogenetic analyses of *Litsea* Lam.(Lauraceae) and related genera. Buletin Kebun Raya, 22(1):47-68.
- Fish, L. 2004. Themeda triandra Forssk. South African National Biodiversity Institute.
- Fish, L., Mashau, A., Moeaha, M. and Nembudani, M. 2015. Identification guide to southern African grasses.
- Fossey, A. and Liebenberg, H. 1992. A cytogenetic study of a hexaploid *Themeda triandra* Forssk. population. South African Journal of Botany 58:275–276.
- Gaut, B. S., Muse, S.V., Clark, W. D. and Clegg, M. T. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. Journal of molecular evolution 35:292–303.
- Gibbs Russell, G., Watson, L., Koekemoer, M., Smook, L., Barker, N., Anderson, H. and Dallwitz, M. 1991. Grasses of southern Africa. Memoirs of the Botanical Survey of South Africa No. 58.
- Gillespie, L. J., Soreng, R. J. and Jacobs, S. W., 2009. Phylogenetic relationships of Australian *Poa* (Poaceae: Poinae), including molecular evidence for two new genera, *Saxipoa* and *Sylvipoa*. Australian Systematic Botany, 22(6):413-436.
- Glover, P., Glover, J. and Gwynne, M. 1962. Light rainfall and plant survival in E. Africa II. Dry grassland vegetation. The Journal of Ecology:199–206.

- Gluckmann, E. 1951. Cytotaxonomic studies in the species *Themeda triandra* Forsk. . University of the Witwatersrand.
- Godfree, R. C., Marshall, D. J., Young, A. G., Miller, C. H. and Mathews, S. 2017. Empirical evidence of fixed and homeostatic patterns of polyploid advantage in a keystone grass exposed to drought and heat stress. Royal Society of Open Science 4:170934.
- Grant, W. F. 1953. A cytotaxonomic study in the genus *Eupatorium*. American Journal of Botany 40:729–742.
- Groves, R., Keraitis, K., Moore, W. E. and Langer, H. 1973. Relative growth of *Themeda australis* and *Poa Labillardieri* in pots in response to phosphorus and nitrogen. Australian Journal of Botany 21:1–11.
- Hall, B. G. 2013. Building phylogenetic trees from molecular data with MEGA. Molecular biology and evolution 30:1229–1235.
- Harrington, M.G. and Gadek, P.A., 2009. A species well travelled–the *Dodonaea viscosa* (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. Journal of Biogeography, 36(12):2313-2323.
- Hayman, D. 1960. The distribution and cytology of the chromosome races of *Themeda australis* in southern Australia. Australian Journal of Botany 8:58–68.
- Heady, H. 1966. Influence of grazing on the composition of *Themeda triandra* grassland, East Africa. The Journal of Ecology:705–727.
- Henderson, A. 2020. A revision of *Calamus* (arecaceae, Calamoideae, Calameae, Calaminae). Phytotaxa 445(1):1-656.
- Heywood, V. H. 1976. Plant Taxonomy. . London: Edward Arnold (The Institute of Biology's studies in biology).
- Hilu, K. W. 1984. Leaf epidermes of *Andropogon* sect. *Leptopogon* (Poaceae) in North America. Systematic botany:247–257.
- Hodkinson, T. R., Chase, M. W., Lledó, D. M., Salamin, N. and Renvoize, S. A. 2002.
 Phylogenetics of *Miscanthus*, *Saccharum* and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of plant research 115:381– 392.
- Hörandl, E., 1998. Species concepts in agamic complexes: Applications in the *Ranunculus auricomus* complex and general perspectives. Folia Geobotanica, 33(3):335-348.
- Howis, S. 2007. A taxonomic revision of the Southern African endemic genus *Gazania* (Asteraceae) based on morphometric, genetic and phylogeographic data.
- Huelsenbeck, J. P. and Ronquist, F. 2005. Bayesian analysis of molecular evolution using MrBayes. Pages 183–226 Statistical methods in molecular evolution. . Springer.
- Huxley, C.R. and Jebb, M.H.P., 1993. The tuberous epiphytes of the Rubiaceae 5. Blumea, 37(2):271-334.
- Jaag, H.M. 2018. Sequence data from the internal and external transcribed spacers of nuclear ribosomal DNA of *Cyclamen purpurascens* allow geographic mapping. BioRxiv, p.432203.
- Jonas, C. S. and Geber, N. A. 1999. Variation among populations of *Clarkia unguivulata* (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany 86:333-343.

Kesler, T. R., Anderson, L. C. and Hermann, S. M. 2003. A taxonomic reevaluation of *Aristida stricta* (Poaceae) using anatomy and morphology. Southeastern Naturalist 2:1–10.

- Kim, K.-J. and Jansen, R. K.. 1994. Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (*Krigia*, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant systematics and Evolution 190:157–185.
- Krawczyk, K., Nobis, M., Nowak, A., Szczecińska, M. and Sawicki, J., 2017. Phylogenetic implications of nuclear rRNA IGS variation in *Stipa* L.(Poaceae). Scientific reports, 7(1):1-11.
- Lambertini, C. 2019. Why are tall-statured energy grasses of polyploid species complexes potentially invasive? A review of their genetic variation patterns and evolutionary plasticity. Biological Invasions:1-23.
- Lande, R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of evolutionary biology 22:1435–1446.
- Lavania, U. C. 2020. Plant speciation and polyploid: In habitat divergence and environmental perspective. Nucleus 63:1-5.
- Leandro, T., Shirasuna, R., Filgueiras, T. and Scatena, V. 2016. The utility of Bambusoideae (Poaceae, Poales) leaf blade anatomy for identification and systematics. Brazilian Journal of Biology 76:708–717.
- Leenhouts, P. W. 1967. A conspectus of the genus *Allophylus* (Sapindaceae). Blumea 15:301-358.
- Leigh, J.W. and Bryant, D., 2015. Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9):.1110-1116.
- Liao, D. 1999. Concerted evolution: molecular mechanism and biological implications. American journal of human genetics 64:24.
- Liebenberg, H. 1986. Cytotaxonomic studies in *Themeda triandra*. I. Chromosome numbers and microsporogenesis. South African Journal of Botany 52:413–420.
- Liebenberg, H. 1990. Cytotaxonomic studies in *Themeda triandra* Forssk.: Part III: Sexual and apomictic embryo sac development in 53 collections. South African Journal of Botany 56:554–559.
- Liebenberg, H., Lubbinge, J. and Fossey, A. 1993. Cytotaxonomic studies in *Themeda triandra* Forssk.: IV. A population cytogenetic study of a contact zone between tetraploid and hexaploid populations. South African Journal of Botany 59:305–310.
- Lima, D. F., Mauad, A. V. S., da Silva-Pereira, V., de Camargo Smidt, E. and Goldenberg, R. 2015. Species boundaries inferred from ISSR markers in the *Myrcia laruotteana* complex (Myrtaceae). Plant systematics and evolution 301:353–363.
- Linder, H. P., Perl, F., Bouchenak-Khelladi, Y and Barker, N. P. 2014. Phylogeographical pattern in the southern African grass *Tenaxia disticha* (Poaceae). Systematic Botany 39:428–440.
- Lock, J. and Milburn, T. 1971. Seed biology of *Themeda triandra* Forsk. in relation to fire. Brit Ecol Soc Symp.
- Martin, C. C. 1975. The role of glumes and gibberellic acid in dormancy of *Themeda triandra* spikelets. Physiologia plantarum 33:171–176.
- Martínez-Sagarra, G., Abad, P. and Devesa, J. A. 2017. Study of the leaf anatomy in crosssection in the Iberian species of *Festuca* L. (Poaceae) and its systematic significance. PhytoKeys 83: 43–74.
- McCarthy, P. H. 1980. The importation of the one-humped camel (*Camelus dromedarius*) into Australia during 1840-1841. Australian Veterinary Journal 56:547-551.

- McDade, L.A., 1995. Species concepts and problems in practice: insight from botanical monographs. Systematic Botany: 606-622.
- McMaster, G. S. 2005. Phytomers, phyllochrons, phenology and temperate cereal development. The Journal of Agricultural Science 143:137–150.
- Meredith, D., Rose, C. and Meredith, D. 1955. Grasslands in South Africa agriculture. The grasses and pastures of South Africa. South Africa: Central News Agency:544–672.
- Morgan, J. 1999. Importance of canopy gaps for recruitment of some forbs in *Themeda triandra*dominated grasslands in south-eastern Australia. Australian Journal of Botany 46:609– 627.
- Morgan, J. W. and Lunt, I. D. 1999. Effects of time-since-fire on the tussock dynamics of a dominant grass (*Themeda triandra*) in a temperate Australian grassland. Biological Conservation 88:379–386.
- Naciri, Y. and Linder, H. P. 2020. The genetics of evolutionary radiations. Biological Reviews. Camb Philos Soc.
- Nauheimer, L., Cui, L., Clarke, C., Crayn, D. M., Bourke, G. and Nargar, K. 2019. Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus *Nepenthes* (caryophyllales). Australian Systematic Botany 32(3):243-254.
- Neuba, R.F.D., Robbrecht, E. and De Block, P. 2006. Infraspecific variation and ecogeography of *Leptactina benguelensis* (Rubiaceae-Pavetteae). Belgian Journal of Botany:233-251.
- Nippert, J. B., Fay, P. A. and Knapp, A. K. 2007. Photosynthetic traits in C₃ and C₄ grassland species in mesocosm and field environments. Environ. Exp. Bot. 60:412-420.
- O'Connor, T. 1993. The influence of rainfall and grazing on the demography of some African savanna grasses: a matrix modelling approach. Journal of Applied Ecology:119–132.
- O'Connor, T. and Bredenkamp, G. 1997. Grassland. Vegetation of Southern Africa. Cambridge University Press, Cambridge:215–257.
- Peart, M. H. 1979. Experiments on the biological significance of the morphology of seeddispersal units in grasses. Journal of Ecology 3:843-863.
- Peart, M. H. 1984. The effects of morphology, orientation and position of grass diaspores on seedling survival. The Journal of Ecology:437–453.
- Peterson, P. M., Sylvester, S. P., Romaschenko, K., Soreng, R. J., Barbera, P., Quintanar, A. and Aedo, C. 2020. A phylogeny of species near *Agrostis* supporting the recognition of two genera *Agrostula* and *Alpagrostis* (Poaceae, Pooidae, Agrostidinae) from Europe. PhytoKeys 167:57-82.
- Piperno, D. R. and Pearsall, D. M. 1984. The silica bodies of tropical American grasses: morphology, taxonomy and implications for grass systematics and fossil phytolith identification. Smithsonian contributions to Botany 85: 1-44.
- Pipoly, J.J., 1983. Contributions toward a monograph of *Cybianthus* (Myrsinaceae): III a revision of subgenus *Laxiflorus*. Brittonia, 35(1):61-80.
- Poczai, P. and Hyvönen, J. 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Molecular biology reports 37:1897–1912.
- Porras-Alfaro, A., Liu, K.-L., Kuske, C. R. and Xie, G. 2014. From genus to phylum: largesubunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl. Environ. Microbiol. 80:829–840.
- Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular biology and evolution 25:1253–1256.

- Prychid, C. J., Rudall, P. J. and Gregory, M. 2004. Systematics and biology of silica bodies in monocotyledons. The Botanical Review 69(4):377-440.
- Quinn, J. A. 1978. Plant ecotypes: ecological or evolutionary units? Bulletin of the Torrey Botanical Club:58–64.
- Raja, R., Hemaiswarya, S., Ganesan, V. and Carvalho, I. S.. 2017. Internal Transcribed sequence (ITS) of *Halocafeteria seosinensis* (Bicosoecids). Beni-Suef University journal of basic and applied sciences 6:266–268.
- Razafimandimbison, S. G., Kellogg, E. A. and Bremer, B. 2004. Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Systematic Biology 53:177–192.
- Rohlf, F. J. 2009. NTSYS pc Numerical Taxonomy and Multivariate Analysis System version 2.2. Department of Ecology and Evolution, State University of New York, Stony Brook, NY 11794-5246.
- Saleem, A., Hassan, F., Manaf, A. and Ahmedani, M. 2009. Germination of *Themeda triandra* (Kangaroo grass) as affected by different environmental conditions and storage periods. African Journal of Biotechnology 8.
- Sallares, R. and Brown, T. A. 2004. Phylogenetic analysis of complete 5' external transcribed spacers of the 18S ribosomal RNA genes of diploid *Aegilops* and related species (Triticeae, Poaceae). Genetic Resources and Crop Evolution 51:701–712.
- Sang, T., Crawford, D. J. and Stuessy, T. F. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences 92:6813–6817.
- Schaal, B., Hayworth, D., Olsen, K. M., Rauscher, J. and Smith, W. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7:465–474.
- Schlichting, C. D. 1986. The evolution of phenotypic plasticity in plants. Annual review of ecology and systematics 17:667–693.
- Sequencher® version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA <u>http://www.genecodes.com</u>
- Silva, C., Snak, C., Davidse, G., Van Den Berg, C. and Oliveira, R.P. 2020. Assessing the molecular diversity of *Hildaea* (Poaceae, Panicoideae): reaching a compromise between the splitter and the lumper. Botanical Journal of the Linnean Society, 192(1):121-147.
- Smit, C., Bredenkamp, G. and Van Rooyen, N. 1992. Phytosociology of the B land type in the Newcastle–Memel–Chelmsford Dam area. South African Journal of Botany 58:363–373.
- Snyman, H. A., Ingram, L. J. and Kirkman, K. P. 2013. *Themeda triandra*: a keystone grass species. African Journal of Range & Forage Science 30:99–125.
- Sokal, R. R. 1963. The principles and practice of numerical taxonomy. Taxon:190-199.
- Soltis, P. S. and Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences 97:7051–7057.
- Soltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., Sankoff, D., DePamphilis, C. W., Wall, P. K. and Soltis P. S. 2009. Polyploidy and diversification. American Journal of Botany 96(1):336-348.
- Soreng, R. J. 1991. Systematics of the "Epiles" group of *Poa* (Poaceae). Systematic Botany 16:507-528
- Soreng, R. J., Gillespie, L. J., Koba, H., Boudko, E. and Bull, R. D. 2015. Molecular and morphological evidence for a new grass genus, *Dupontiopsis* (Poaceae tribe Poeae

subtribe Poinae sl), endemic to alpine Japan, and implications for the reticulate origin of *Dupontia* and *Arctophila* within Poinae sl. Journal of Systematics and Evolution 53:138–162.

- Spooner, D. M., van den Berg, R. G., Hetterscheid, W. L. A. and Brandenburg, W. A. 2003. Plant nomenclature and taxonomy. An horticulture and agronomic perspective.
- Stace, C.A., 1998. Species recognition in agamosperms—the need for a pragmatic approach. Folia Geobotanica, 33(3):319-326.
- Stant, M. Y. 1973. The role of the scanning electron microscope in plant anatomy. Kew bulletin:105–115.
- Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York.
- Sultan, S. 1995. Phenotypic plasticity and plant adaptation. Acta botanica neerlandica 44:363–383.
- Tainton, N. M. 1981. Veld and pasture management in South Africa. . Shuter & Shooter; University of Natal Press.
- Tainton, P. D. V. and Booysen, N.M. 1965. Growth and development in perennial veld grasses. I. *Themeda triandra* tillers under various systems of defoliation. South African journal of agricultural science 8:93–110.
- Taylor, C. and Barker, N. 2012. Species limits in Vachellia (Acacia) karroo (Mimosoideae: Leguminoseae): Evidence from automated ISSR DNA "fingerprinting. South African journal of botany 83:36–43.
- Taylor, C. L., and Barker, N. P.. (n.d.). Genetic diversity of *Themeda triandra* Forssk populations in South Africa with comparison to Australian populations.
- Theunissen, J. D. 1992. An ecosystematic investigation of *Themeda triandra* (Poaceae: Andropogonae) in the semi-arid grasslands of southern Africa. Journal of Arid Environments 23:35-44.
- Tkach, N., Schneider, J., Döring, E., Wölk, A., Hochbach, A., Nissen, J., Winterfeld, G., Meyer, S., Gabriel, J., Hoffmann, M. H. and Röser, M. 2019. Phylogeny, morphology and the role of hybridization as driving force of evolution in grass tribes Aveneae and Poeae (Poaceae). Biorxiv.
- Torre, S., Fjeld, T., Gislerød, H. R. and Moe, R.. 2003. Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. Journal of the American Society for Horticultural Science 128:598–602.
- Turcotte, M. M. and Levine, J. M. 2016. Phenotypic plasticity and species coexistence. Trends in ecology & evolution 31:803–813.
- Van Belkum, A., Struelens, M., de Visser, A., Verbrugh, H. and Tibayrenc, M. 2001. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clinical microbiology reviews 14:547–560.
- Van Rensburg, S. Janse. 2003. Ecological significance of variation in *Themeda triandra* Forsk: a case of intra-specific divergence in life history strategies? University of Cape Town.
- Veldkamp, J. F. 2016. A revision of *Themeda* (Gramineae) in Malesia with a new species from Laos. Blumea 61:29-40.
- Vieira, R., Gomes, D., Sarahyba, L. and Arruda, R. 2002. Leaf anatomy of three herbaceous bamboo species. Brazilian Journal of Biology 62:907–922.
- Wang, F., Lu, J., Wen, J, Ebihara, A. and Li, D. 2016. Applying DNA barcodes to identify closely related species of ferns: A case study of the Chinese Adiantum (Pteridaceae). PloS one 10:e0160611.

- Wang, A., Gopurenko, D., Wu, H. and Lepschi, B. 2017. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia. PloS one 12:e0175338.
- Ward, D. 2011. Population differentiation in a purported ring species, *Acacia karroo* (Mimosoideae). Biological Journal of the Linnean Society 104:748–755.
- Weakely, A. S. 2005. Why are plant names changing so much? Native Plants Journal:52-58.
- Weinmann, H. 1961. Total available carbohydrates in grasses and legumes. Herb. Abstr 31:5–261.
- Weinmann, H., and Reinhold, L. 1946. Reserve carbohydrates in South African grasses. J. South African Bot 12:57–73.
- White, F. (1955) Distribution of the African species of Diospyros. Webbia 11: 525-540.
- White, T. J., Bruns, T., Lee, S., Taylor, J, Innis, M. A., Gelfand, D. H. and Sninsky, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322.
- Xiao, L.Q., Möller, M. and Zhu, H., 2010. High nrDNA ITS polymorphism in the ancient extant seed plant *Cycas*: incomplete concerted evolution and the origin of pseudogenes. Molecular Phylogenetics and Evolution, 55(1):168-177.
- Xu, B., Zeng, X.M., Gao, X.F., Jin, D.P. and Zhang, L.B., 2017. ITS non-concerted evolution and rampant hybridization in the legume genus *Lespedeza* (Fabaceae). Scientific Reports, 7(1):1-15.
- Xuan, Y., Wu, Y., Li, P., Liu, R., Luo, Y., Yuan, J., Xiang, Z. and He, N., 2019. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ, 7, p.e8158.
- Zheng, X., Cai, D., Yao, L. and Teng, Y. 2008. Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in *Pyrus*. Molecular Phylogenetics and Evolution 48:892–903.
- Zhi-Ming, L., Jie, L. and Xi-Wen, L. 2006. Polyphyly of the genus *Actinodaphne* (Lauraceae) inferred from the analyses of nrDNA ITS and ETS sequences.

6 <u>Appendix</u>

Table 2.1: Details of specimens used in anatomical survey, including locality, collector and whether they are fresh or herbarium specimens, and the nature of the anatomical method used (Scanning Electron Microscopy, light microscopy or both). KwaZulu-Natal = KZN, Mpumalanga = Mpu, Gauteng = GP, Free-State = FS, Limpopo = Lim, Eastern Cape = EC, Northern Cape = NC

Collector	Fresh	Herbarium	Locality	GPS Co-ordinates	SEM	LM
S. Ntshangase (1)	\checkmark		Warden, FS	S27.85188°; E 28.9592°	\checkmark	\checkmark
S. Ntshangase (2)	\checkmark		Royal Natal 1, KZN	S28.71217°; E28.93358°	\checkmark	\checkmark
S. Ntshangase (3)			Royal Natal 2, KZN	S28.71073°; E28.92605°	\checkmark	
S. Ntshangase (4)	\checkmark		Royal Natal 3, KZN	S28.71012°; E28.91412°	\checkmark	
S. Ntshangase (5)	\checkmark		Royal Natal 4, KZN	S28.72620°; E28.92976°		
S. Ntshangase (6)	\checkmark		Royal Natal 5, KZN	S28.68802°; E28.94857°	\checkmark	
S. Ntshangase (7)	\checkmark		Road from Royal natal	S28.51175°; E29.07344°	\checkmark	
			to Harrismith, KZN			
S. Ntshangase (8)	\checkmark		Harrismith 1, FS	S28.26690°; E29.14110°		
S. Ntshangase (9)	\checkmark		Harrismith 2, FS	S28.26309°; E29.14328°		
S. Ntshangase	\checkmark		Harrismith 3, FS	S28.26507°; E29.14053°		\checkmark
(10)						
S. Ntshangase	\checkmark		Harrismith 4, FS	S28.26276°; E29.12316°		\checkmark
(11)						

Ntshangase	\checkmark	Midmar Dam, KZN	S29.49566°; E30.16220°		
Ntshangase	\checkmark	Maphumulo, KZN	S29.11358°; E31.02684°	\checkmark	\checkmark
Ntshangase	\checkmark	Greytown, KZN	S28.98470°; E30.81659°	\checkmark	\checkmark
Ntshangase	\checkmark	St. Lucia, KZN	S28.35575°; E32.41962°	\checkmark	\checkmark
Ntshangase	\checkmark	N2 towards Pongola,	S27.75515°; E32.11157°	\checkmark	\checkmark
		KZN			
Ntshangase	\checkmark	Pongola, KZN	S27.42693°; E31.86554°	\checkmark	\checkmark
Ntshangase	\checkmark	Piet Retief, Mpu	S27.20660°; E31.09293°	\checkmark	\checkmark
Ntshangase	\checkmark	Verzameling, Mpu	S26.90885°; E30.72853°	\checkmark	
Ntshangase	\checkmark	Verzameling, Mpu	S26.90885°; E30.72853°	\checkmark	\checkmark
Ntshangase	\checkmark	Sheepmoor, Mpu	S26.75027°; E30.36234°	\checkmark	\checkmark
Ntahangaga	2	Ermalo Mau	S26 51256°, E20 00657°	2	2
Intshangase	v	Ermeio, wipu	S20.31530; E29.90037	N	v
	Ntshangase Ntshangase Ntshangase Ntshangase Ntshangase Ntshangase Ntshangase Ntshangase	Ntshangase \checkmark	Ntshangase \checkmark Midmar Dam, KZN Ntshangase \checkmark Maphumulo, KZN Ntshangase \checkmark Greytown, KZN Ntshangase \checkmark St. Lucia, KZN Ntshangase \checkmark N2 towards Pongola, KZN Ntshangase \checkmark Pongola, KZN Ntshangase \checkmark Piet Retief, Mpu Ntshangase \checkmark Verzameling, Mpu Ntshangase \checkmark Sheepmoor, Mpu Ntshangase \checkmark Sheepmoor, Mpu	Ntshangase \checkmark Midmar Dam, KZNS29.49566°; E30.16220°Ntshangase \checkmark Maphumulo, KZNS29.11358°; E31.02684°Ntshangase \checkmark Greytown, KZNS28.98470°; E30.81659°Ntshangase \checkmark St. Lucia, KZNS28.35575°; E32.41962°Ntshangase \checkmark N2 towards Pongola, KZNS27.75515°; E32.11157°Ntshangase \checkmark Pongola, KZNS27.42693°; E31.86554°Ntshangase \checkmark Piet Retief, MpuS27.20660°; E31.09293°Ntshangase \checkmark Verzameling, MpuS26.90885°; E30.72853°Ntshangase \checkmark Sheepmoor, MpuS26.90885°; E30.72853°Ntshangase \checkmark Sheepmoor, MpuS26.75027°; E30.36234°	Ntshangase \checkmark Midmar Dam, KZNS29.49566°; E30.16220° \checkmark Ntshangase \checkmark Maphumulo, KZNS29.11358°; E31.02684° \checkmark Ntshangase \checkmark Greytown, KZNS28.98470°; E30.81659° \checkmark Ntshangase \checkmark St. Lucia, KZNS28.35575°; E32.41962° \checkmark Ntshangase \checkmark N2 towards Pongola, KZNS27.75515°; E32.11157° \checkmark Ntshangase \checkmark Pongola, KZNS27.42693°; E31.86554° \checkmark Ntshangase \checkmark Piet Retief, MpuS27.20660°; E31.09293° \checkmark Ntshangase \checkmark Verzameling, MpuS26.90885°; E30.72853° \checkmark Ntshangase \checkmark Sheepmoor, MpuS26.75027°; E30.36234° \checkmark Ntshangase \checkmark Sheepmoor, MpuS26.75027°; E30.36234° \checkmark

S.	Ntshangase		Secunda, Mpu	S26.46438°; E29.18931°	\checkmark	
(23)						
S.	Ntshangase	\checkmark	R510 - Lim	S 25.7117°; E 27.64917°	\checkmark	\checkmark
(24)						
S.	Ntshangase	\checkmark	Thabazimbi 1, Lim	S 24.91234°; E 27.28350°		\checkmark
(25)						
S.	Ntshangase	\checkmark	Thabazimbi 2, Lim	S 24.57597°; E 27.41544°		
(26)						
S.	Ntshangase	\checkmark	Bela Bela 1, Lim	S 24.86960°; E 28.10041°	\checkmark	\checkmark
(27)						
S.	Ntshangase	\checkmark	Bela Bela 2, Lim	S 24.84868°; E 28.34738°	\checkmark	\checkmark
(28)						
S.	Ntshangase	\checkmark	Modimolle, Lim	S 24.70976°; E 28.41278°		\checkmark
(29)						
S.	Ntshangase	\checkmark	Marblehall, Lim	S 24.84401°; E 28.88696°		\checkmark
(30)						
S.	Ntshangase	\checkmark	Groblesdal, Lim	S 25.16815°; E 29.37104°		\checkmark
(31)						
S.	Ntshangase	\checkmark	Uitspanning B, Mpu	S 25.24319°; E 29.21340°	\checkmark	\checkmark
(32)						
S.	Ntshangase	\checkmark	Verena-D, Mpu	S 25.47208°; E 29.03927°		\checkmark
(33)						

S.	Ntshangase		Riamarpark, Mpu	S 25.80934°; E 28.70253°		\checkmark
(34)						
S.	Ntshangase	\checkmark	Emalahleni, Mpu	S 25.88668°; E 29.27050°		\checkmark
(35)						
S.	Ntshangase	\checkmark	Loskop Dam, Mpu	S 25.41040°; E 29.36386°		\checkmark
(36)						
S.	Ntshangase	\checkmark	Groblesdal, Lim	S 25.17921°; E 29.54404°		\checkmark
(37)						
S.	Ntshangase	\checkmark	Barberton, Mpu	S 25.78289°; E 31.02855°		\checkmark
(38)						
S.	Ntshangase	\checkmark	Nelspruit, Mpu	S 25.64779°; E 30.97743°		\checkmark
(39)						
S.	Ntshangase	\checkmark	Sabie 1, Mpu	S 25.41015°; E 30.91567°		\checkmark
(40)						
S.	Ntshangase	\checkmark	Sabie 2, Mpu	S 25.14502°; E 30.75759°		\checkmark
(41)						
S.	Ntshangase	\checkmark	Lydenburg, Mpu	S 25.10905°; E 30.49458°		\checkmark
(42)						
S.	Ntshangase	\checkmark	Ohrigstad, Lim	S 24.84682°; E 30.57333°		\checkmark
(43)						
S.	Ntshangase	\checkmark	Graskop, Mpu	S 24.92512°; E 30.81283°		\checkmark
(44)						
			1		1	1

S.	Ntshangase		Burgersfort, Lim	S 24.72472°; E 30.55678°		\checkmark
(45)						
S.	Ntshangase	\checkmark	Phalaborwa, Lim	S 24.10687°; E 30.86461°	\checkmark	\checkmark
(46)						
S.	Ntshangase	\checkmark	Thohoyandou, Lim	S 22.94123°; E 30.48588°	\checkmark	\checkmark
(47)						
S.	Ntshangase	\checkmark	Louis Tritchadt, Lim	S 23.03162°; E 29.91874°	\checkmark	\checkmark
(48)						
S.	Ntshangase	\checkmark	Bungeni, Lim	S 23.20885°; E 30.17513°	\checkmark	\checkmark
(49)						
S.	Ntshangase	\checkmark	Polokwane, Lim	S 23.93109°; E 29.46977°	\checkmark	\checkmark
(50)						
S.	Ntshangase	\checkmark	Mokopane, Lim	S 24.21767°; E 29.00510°	\checkmark	\checkmark
(51)						
S.	Ntshangase	\checkmark	Mookgopong, Lim	S 24.62459°; E 28.59945°	\checkmark	\checkmark
(52)						
S.	Ntshangase	\checkmark	Bela Bela, Lim	S 25.08982°; E 28.30714°	\checkmark	\checkmark
(53)						
M. Cı	ınningham		Argent, Mpu	S26.01115°; E28.79572°	\checkmark	\checkmark
M. Cu	ınningham	\checkmark	Diamond Hill-Off-	S25.79913°; E28.51610°	\checkmark	\checkmark
			ramp, GP			
M. Cı	ınningham	\checkmark	Boschbult, Mpu	S25.56765°; E28.64466°	\checkmark	

M. Cunningham	\checkmark	Gariep Dam, FS	\$30.62924°; E25.49885°		\checkmark
Unknown	\checkmark	Zimbabwe	N/A	\checkmark	
Unknown	\checkmark	Weenen, KZN	N/A		
S. Ntshangase		Drakensberg 1, KZN	S29.47137°; E28.9938°		
(54)					
S. Ntshangase	\checkmark	Drakensberg 2, KZN	S29.42951°; E28.9472°		
(55)					
S. Ntshangase	\checkmark	Drakensberg 3, KZN	S29.44847°; E28.9384°		
(56)					
S. Ntshangase	\checkmark	Barthust 1, EC	N/A		
(57)					
S. Ntshangase		Barthust 2, EC	N/A		
(58)					
S. Ntshangase	\checkmark	Barthust 3, EC	N/A		
(59)					
Prof Nigel Barker	\checkmark	Hogsback, EC	N/A		
Prof Nigel Barker	\checkmark	Port Elizabeth, EC	N/A		
S. Ntshangase	\checkmark	Kimberley, NC	N/A		
(60)					
S. Ntshangase		Pirie Forest 1, EC	N/A		
(61)					
S. Ntshangase	\checkmark	Pirie Forest 2, EC	N/A	\checkmark	

(62)					
S. Ntshangase	\checkmark	Maden Dam 1, EC	N/A		
(63)					
S. Ntshangase	\checkmark	Maden Dam 2, EC	N/A	\checkmark	
(64)					
S. Ntshangase	\checkmark	Skurweberg, GP	\$25.791667°; E27.983333°	\checkmark	\checkmark
(65)					
N.P. Barker	\checkmark	Angola 1	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 2	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 3	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 4	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 5	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 6	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 7	N/A	\checkmark	
N.P. Barker	\checkmark	Angola 8	N/A	\checkmark	
N.P. Barker	\checkmark	Pretoria 1, GP	N/A		-
(2099)					
N.P. Barker	\checkmark	Pretoria 2, GP	N/A		+
(2100)					
N.P. Barker	\checkmark	Pretoria 3, GP	N/A		
(2101)					
S. Ntshangase	\checkmark	Brits; PTA, GP	S25.583333°; E27.772222°		\checkmark

(66)						
S. Ntshangase	\checkmark		De Wild; PTA, GP	S25.65°; E27.822222°	\checkmark	
(67)						
S. Ntshangase			Magaliesburg Range;	S25.706944°; E27.9°	\checkmark	\checkmark
(68)			PTA, GP			
S. Ntshangase			Pretoria West-1, GP	S25.794444°; E27.993056°	\checkmark	\checkmark
(69)						
S. Ntshangase			Pretoria West-2, GP	S25.861111°; E28.011111°		
(70)						
S. Ntshangase			PTA Botanical garden,	S25.739369°; E28.273635°		\checkmark
(71)			GP			
S. Ntshangase			Edendale, KZN	S29.615850°; E30.370443°		
(72)						
N.P. Barker and			Roodeplaat 1, GP	GP S34.665°; E21.694°		\checkmark
D. Masia						
N.P. Barker and			Roodeplaat 2, GP	GP S34.665°; E21.694°		
D. Masia						
S. Ntshangase			Tswaing crater, GP	S25.404996°; E28.083079°		\checkmark
(73)						
C.M. Breen (31) -		\checkmark	Zululand	N/A	\checkmark	
GRA						
A.B. Low (12094)		\checkmark	Tulbagh Valley	N/A	\checkmark	

- GRA				
J. Allsop (7) -	 Pietermaritzburg	N/A		
GRA				
J. Anderson	 Oviston_NR	N/A		
(ORFS199) -				
GRA				
L. Smook (3972)	 Sommerset_East	N/A		
- GRA				
E. Bebster (5) -	 Grahamstown	N/A		
GRA				
Abraham (s.n.) -	 Kowie_NR	N/A		
GRA				
B.P. Botha (5668)	 Addo	N/A		
- GRA				
M.R. Court (5) -	 Voortreker_Monument	N/A		
GRA				
E.A. Gotzee (214)	 Shamvura_Namibia	N/A	\checkmark	
- GRA				
H. Burrows (s.n.)	 Harare_Zimbabwe	N/A		
- GRA				
Phillipson (4492)	 Leribe_Lesotho	N/A	\checkmark	
- GRA				

Phillipson (5088)		Arusha_Tanzania	N/A	
- GRA				
De Bie (s.n.) -		Bloemfontein	N/A	
GRA				
P. Christonsen		Ruiru_Kenya	N/A	
(132) - GRA				
M. hurter (s.n.) -		Cedaville	N/A	
GRA				
D.F. Moult (29) -		Kimberley	N/A	
GRA				
S. McCartn (16) -		Bergbron	N/A	
GRA				
E. Brink (s.n.) -		Ecca_Reserve	N/A	
GRA				
K. Bowker (s.n.) -		Carlisle	N/A	
GRA				
H. Burrows		Kariega_Park	N/A	
(4418) - GRA				
G. Siom (893) -		Arusha_Tanzania	N/A	
GRA				
A. Mogg (34292)		Kerry_Farm_Zimbabw	N/A	
- GRA		e		

R. Lupke (6132) -	\checkmark	Mokhotlong_Dam_Les	N/A	\checkmark	
GRA		otho			
C. Chielchinskey	\checkmark	Tiffendell	N/A		
(50) - GRA					
P.N. Sebothoma		Queenstown	N/A		
(48) - GRA					
J. Victor (698) -	\checkmark	Burgesdorp	N/A		
GRA					
G. Youthead	\checkmark	Kromme_River	N/A		
(733) - GRA					
J. Jessop (1014) -	\checkmark	Melkhoutboom	N/A		
GRA					
S. Dickinson (55)	\checkmark	Brynston	N/A		
- GRA					
S. Gower (17) -	\checkmark	Meintjies_Kop	N/A		
GRA					
G. Buchanan	\checkmark	Ridgefontein	N/A		
(24565) - GRA					
P. Burdett (103) -	\checkmark	Kudu_Reserve	N/A		
GRA					
E. Archibald	\checkmark	Middleberg	N/A	\checkmark	
(3351) - GRA					
E. Archibald	\checkmark	Addo	N/A	\checkmark	
-------------------	--------------	-----------------------	-----	--------------	
(3874) - GRA					
E. Warren (115) -		Port_Alfred	N/A	\checkmark	
GRA					
Gibbs-Russell		Fort_Hare	N/A	\checkmark	
(3068) - GRA					
A. Jacot-		Faraway_Farm	N/A	\checkmark	
Gillarmod (8856)					
- GRA					
M. Olivier (2462)		Springs_Reserve	N/A	\checkmark	
- GRA					
E. Archibald		Maletsanyane_Falls_Le	N/A	\checkmark	
(530) - GRA		sotho			
D. Verwoed (4) -		Double_Mouth_Transk	N/A	\checkmark	
GRA		ei			
L. Smook (4004)		Braamskloof	N/A	\checkmark	
– GRA					
K. Dahlstrand		Kosuga	N/A	\checkmark	
(2861) - GRA					
G. Swart (s.n.) –	\checkmark	Firston_Farm	N/A	\checkmark	
GRA					
Gibbs-Russell		Gxulu	N/A	\checkmark	

(3452) - GRA					
A. Jacot-	\checkmark	Faraway_Farm	N/A	\checkmark	
Gillarmod (9213)					
- GRA					
J. Wirminghaus		Round_Hill_NR	N/A		
(132) – GRA					
L. Britten (716) –		Three_Sisters	N/A		
GRA					
I. Hepburn (180) -		Sterspruit	N/A		
GRA					
D. Cotterrell (s.n.)		Fairford_Farm	N/A		
– GRA					
L. Britten (4631)		Pomona_Farm_Ugi	N/A		
– GRA					
Forward (s.n.) –		Piggs_Peak_Swaziland	N/A		
GRA					
N. Fanshaw (214)	\checkmark	Zearust	N/A	\checkmark	
– GRA					
J. Anderson	\checkmark	Oviston_NR	N/A	\checkmark	
(ORFS180) –					
GRA					
W. Berrington –	\checkmark	Van_Staden_Reserve	N/A		

GRA					
Bonny and Uschi		Mountain_Zebra_Park_	N/A	\checkmark	
(ub190) – GRA		Craddock			
T. Dold (1900) –		Grahamstown	N/A	\checkmark	
GRA					
A.M. Makwarela	\checkmark	Indwe	N/A	\checkmark	
(75) – GRA					
R. Lubke (3418) –	\checkmark	Oudtshoorn_De_Komb	N/A		
GRA		uis			
K. Simpson and	\checkmark	Grahamstown	N/A	\checkmark	
B. Ripley (24) –					
GRA					
R.E. Geroeau	\checkmark	Arusha_Tanzania	N/A	\checkmark	
(6535) – GRA					
T. Hill (12) –	\checkmark	Loteni_Drakensberg	N/A	\checkmark	
GRA					
J.M. Todd (96) -	\checkmark	Sosbury_Harare	N/A	\checkmark	
GRA					
K. Easton (73) –	\checkmark	Kimberley	N/A		
GRA					
C.D. Hobson (16)	\checkmark	Salem	N/A	\checkmark	
– GRA					

J. Hebblethwaite	\checkmark	Oxbow_Bethlehem_Le	N/A		
(s.n.) -PRU		sotho			
M.P. Robertson		Sani Pass, Maluti-	N/A		
(69) –PRU		Drakensberg			
S. Malan (688) –		Faerie Glen	N/A		
PRU					
Group 1/8 –PRU		Faerie Glen	N/A		
A. Abbott (5881)		Woodcliffs trails NW	N/A		
–PRU		of Reed park			
B.J. Coetzee (2) –		Wonderboomsuid,	N/A		
PRU		Magaliesberg			
P. van Staden –		Kransberg National	N/A		
PRU		Park Thabazimbi			
P.C. Zietsman		Glen Landboukollege	N/A		
(3713) -PRU		Bloemfontein			
N.P. Barker (619)		Brits, Beestekral Game	N/A		
-PRU		reserve			
N. van Rooyen		Waterberge, Ellisras	N/A		
(1627) -PRU		District			
A. Oosterhuis (1)		about 2km from	N/A		
-PRU		Fonteine-Sirkel			
H. Herne (22) -	\checkmark	Cape province: Anda	N/A	\checkmark	

PRU		Lusia			
K.J. Bloem (5) –		Steenkampsberg	N/A		
PRU		Natuur Reservaat			
C. Watson (4) –		Kruger National Park	N/A		
PRU					
M. Mathee (355)	N	Potlale Nature Reserve,	N/A	\checkmark	
–PRU		Zebediela			
A.A. Gubb (2868)		Farm Eureka, South of	N/A		
–PRU		Rooigrond			
S.P. Bester (243)		Drakensberg. 2km to	N/A		
–PRU		Lily Vale			
A. Abbott (8116)		Umtamvuna Nature	N/A	\checkmark	
–PRU		Reserve			
L.A. Coetzer		Farm Lekkerbreek,	N/A		
(868) –PRU		Wambad District.			
R. Ayres (007) -		Gauteng, 30km from	N/A		
PRU		Krugersdorp			
A.E. van Wyk		Centurion, Gauteng	N/A	\checkmark	
(13657) –PRU					
C.J. du Plessis		Middelburg	N/A	\checkmark	
(664) –PRU		(Doornkop)			
G.J. Bredenkamp		Suiker bosrand-Tussen	N/A	\checkmark	

(248) –PRU		Fees		
H.P.V.D. Schyef	\checkmark	Marieskop, Eastern	N/A	\checkmark
(5989) –PRU		Transvaal.		
H.G. (1700) –		Pretoria, about 18 miles	N/A	\checkmark
PRU		SE of Pretoria		
H. Herne (7) –	\checkmark	Cape province, Anda	N/A	\checkmark
PRU		Lusia		
W.M. O'Donovan		Charleswood District.	N/A	\checkmark
(s.n.) –PRU		Zimbabwe		
A. Krige (130) -	\checkmark	Cradle of Human kind	N/A	\checkmark
PRU				
R. Smit (2801) –	\checkmark	Mapoch's caves,	N/A	\checkmark
PRU		Roossenekal		
G.K. Theron	\checkmark	Sasolburg. OUS,	N/A	\checkmark
(550) –PRU		Hoeveldtuin		
J.C. Scheepers	\checkmark	Duiwelskloof, Letaba	N/A	\checkmark
(527) –PRU		District		
P.J. Robbertse		Zebediela,	N/A	\checkmark
(422) –PRU		Mogotokloof, Blare		
		harig		
P.J. Robbertse	\checkmark	Zebediela,	N/A	
(591) –PRU		Mogotokloof		

P.J. Robbertse		Zebediela	N/A	
(600) –PRU				
C.J. du Plessis		Middelburg	N/A	
(217) –PRU		(Doornkop)		
A. Abbott (328) –		Umtamvuna Nature	N/A	
PRU		Reserve		
G.K. Theron		Middelburg/Witbank,	N/A	
(696) –PRU		Loskop dam		
G.K. Theron		Middelburg/Witbank,	N/A	
(2052) –PRU		Loskop		
G.K. Theron (71)		Groenkloof. Langs,	N/A	
-PRU		Totius straad		
G.F. Bredenkamp		Suikerboorand	N/A	
(787) –PRU				
Hon's Wildlife		Derdepoort Radio	N/A	
Management (3) –		station. Transvaal		
PRU				
M. Potgieter (312)		Maitland Nature	N/A	
-PRU		Reserve. Kosuga		
M. Potgieter (312)		Maitland Nature	N/A	
-PRU		Reserve. Kosuga		
A. Abbott (6168)	√	Nsikeni, Long Ridge	N/A	√

-PRU				
A. Abbott (3976)	\checkmark	Umtamvuna Nature	N/A	\checkmark
–PRU		Reserve		
R.H. Archer (75)	\checkmark	Vaalwater, Klatenberge	N/A	\checkmark
–PRU				
Group 2/89 –PRU		Coregon Str., Faerie	N/A	\checkmark
		Glen		
G.G. Catto (12) –	\checkmark	Groenkloof National	N/A	\checkmark
PRU		Park, Pretoria		
J.P. Kluge (368) –		Witklip, Lydenburg,	N/A	\checkmark
PRU		Transvaal		
G.K. Theron		Ohrigstad Natuur	N/A	\checkmark
(3419) –PRU		Reservaat		
Group 4/32 –PRU		Faerie Glen	N/A	\checkmark
G.K. Theron		Sasolburg. OVS	N/A	\checkmark
(550) –PRU				
A. Abbott (7966)		Port Edward, Natal	N/A	\checkmark
–PRU				
A. Abbott (7965)	\checkmark	Port Edward, Natal	N/A	\checkmark
–PRU				
S.J. Siebert (678)	\checkmark	Steelpoort,	N/A	$\overline{\mathbf{v}}$
–PRU		Mpumalanga		

N. van Rooyen	 Waterberge, 45km N of	N/A	\checkmark
(1627) –PRU	Vaalwater		
N. van Rooyen	 NKW, Punda Milia,	N/A	
(1058) –PRU	Shipudza		
N. van Rooyen	 Roodeplaat dam,	N/A	
(2807) –PRU	Pretoria		
H.G. (1700) –	 Pretoria	N/A	
PRU			
J.P.J. van Vuuren	 Mpumalanga, Njaha,	N/A	
(10) –PRU	Graskop		
J.P.J. van Vuuren	 KZN, Ixopo, 6.4km	N/A	
(33) -PRU	from town		

 Table 6.1: Characters and character states as obtained from the SEM observations of freshly collected specimens from Simple

 Matching and Euclidean Distance phenogram analyses.

Character	Fresh Euclidean	Fresh SM
Macro-Hairs	Cluster I: none of the specimens have	Cluster A: 6/37 specimens have
presence/absence	macro-hairs.	macro-hairs.
	Cluster II: 9/28 specimens have macro-	Cluster B: One of the two

	hairs.	specimens has macro-hairs.
	Cluster III: 7/54 specimens have macro-	Cluster C: 10/48 specimens have
	hairs.	macro-hairs.
	Cluster IV: None of the specimens have	Cluster D: None of the two have
	macro-hairs	macro-hairs.
	Cluster V: None of the specimens have	Cluster E: None of the two have
	macro-hairs	macro-hairs
Macro-hair frequency	Cluster II: 4/9 specimens have an	Cluster A: 1/6 specimens has a
	occasional frequency.	dense frequency.
	Cluster III: 3/7 specimens have an	Cluster B: The one specimen has
	occasional frequency.	a dense frequency.
		Cluster C: 7/10 specimens have
		a dense frequency.
Macro-hair length	Specimens have varying macro-hair	Cluster A: Lengths vary,
	lengths.	however, $\pm 1400 \mu m$ is common.
		Cluster B: The one specimen has
		a macro-hair length of 908.2µm.
		Cluster C: Specimens have
		varying macro-hair lengths.
Micro-Hairs	Cluster I: One of the two specimens has	Cluster A: 35/37 specimens have
presence/absence	micro-hairs. Cluster II: 26/28 specimens	micro-hairs.
	have micro-hairs. Cluster III: 49/54	Cluster B: None of the two

	specimens have micro-hairs.	specimens have micro-hairs.
	Cluster IV: All two specimens have	Cluster C: 44/48 specimens have
	micro-hairs.	micro-hairs.
	Cluster V: All three specimens have	Cluster D: Both specimens have
	micro-hairs.	micro-hairs.
		Cluster E: Both specimens have
		micro-hairs
Micro-hair frequency	Cluster I: the one specimen has an	Cluster A: 6/35 specimens have
	occasional frequency.	a dense micro-hair frequency.
	Cluster II: 3/26 specimens have a dense	Cluster C: 7/44 specimens have
	micro-hair frequency.	a dense micro-hair frequency.
	Cluster III: 10/49 specimens have a	Cluster D: Both specimens have
	dense micro-hair frequency.	an occasional micro-hair
	Cluster IV: All two specimens have an	frequency.
	occasional micro-hair frequency.	Cluster E: One of the two
	Cluster V: All three specimens have an	specimens has a dense micro-hair
	occasional micro-hair frequency.	frequency.
Micro-hair length	The specimens have micro-hairs that vary	The specimens have varying
	from 25µm to 70µm in length.	lengths.
Large-Prickle Hairs	Cluster I: Both specimens have large-	Cluster A: All 37 specimens
presence/absence	prickle hairs.	have large-prickle hairs.
	Cluster II: All the specimens have large-	Cluster B: Both specimens have

	prickle hairs.	large-prickle hairs.
	Cluster III: 51/54 specimens have large-	Cluster C: 45/48 specimens have
	prickle hairs.	large prickle hairs.
	Cluster IV: All two specimens have	Cluster D: Both specimens have
	large-prickle hairs.	large-prickle hairs.
	Cluster V: All three specimens have	Cluster E: Both specimens have
	large-prickle hairs.	large-prickle hairs.
Large-prickles density	Cluster I: One of the two specimens has a	Cluster A: 5/37 specimens have
	dense large-prickle hair frequency.	an occasional frequency.
	Cluster II: 6/28 specimens have an	Cluster B: Both specimens have
	occasional frequency.	a dense large-prickle hair
	Cluster III: 6/51 specimens have an	frequency.
	occasional frequency.	Cluster C: 7/45 specimens have
	Cluster IV: One of the two specimens has	an occasional large prickle-hair
	an occasional frequency.	frequency.
	Cluster V: All three specimens have a	Cluster D: Both specimens have
	dense large-prickle hair frequency.	an occasional large prickle-hair
		frequency.
		Cluster E: Both specimens have
		a dense large prickle-hair
		frequency.
Large prickles base	Cluster I: One of the two specimens has a	Cluster A: 6/37 specimens have

structure	base structure with a collar.	no collar at their base.
	Cluster II: 4/28 specimens have a base	Cluster B: Both specimens have
	structure without a collar.	a collar at their large-prickle hair
	Cluster III: 5/51 specimens have a base	base.
	structure without a collar.	Cluster C: 4/45 specimens have
	Cluster IV: One of the two specimens has	no collar at their base.
	a base structure without a collar.	Cluster D: Both specimens have
	Cluster V: All three specimens have a	a collar at their large-prickle hair
	base structure with a collar.	base.
		Cluster E: One of the two
		specimens does not have a collar
		at the base of the large-prickle
		hairs.
Large-prickles length	Cluster I: The lengths are 60µm and	Cluster A: The large-prickle
	30µm.	lengths range from 40µm to
	Cluster II: The lengths vary from $30\mu m$	88µm.
	to 90μm.	Cluster B: The large-prickle
	Cluster III: The lengths vary from 23µm	lengths range from 35µm to
	to 104µm.	60µm.
	Cluster IV: The lengths vary from $47\mu m$	Cluster C: The large-prickle
	to 48µm.	lengths range from 30µm to
	Cluster V: The lengths vary from 54µm	104µm.

	to 67µm.	Cluster D: The large-prickle
		lengths range from 48µm to
		54µm.
		Cluster E: The large-prickle
		lengths range from 52µm to
		70µm.
Large prickles size	Cluster I: Both specimens have uniform	Cluster A: 6/37 specimens have
uniformity	large-prickle hair lengths.	non-uniform large prickle hairs.
	Cluster II: 3/28 specimens have non-	Cluster B: One of the two
	uniform large-prickle hairs.	specimens has non-uniform large
	Cluster III: 5/51 specimens have non-	prickle hairs.
	uniform large-prickle hairs.	Cluster C: 2/45 specimens have
	Cluster IV: All two specimens have	non-uniform large prickle hairs.
	uniform large-prickle hairs.	Cluster D: Both specimens have
	Cluster V: All three specimens have	uniform large prickle hairs.
	uniform large-prickle hairs.	Cluster E: Both specimens have
		uniform large prickle hairs
Large-prickles	Cluster I: Both specimens have large-	Cluster A: 5/37 specimens have
orientation	prickle hairs that are not erect.	erect large-prickle hairs.
	Cluster II: 3/28 specimens have erect	Cluster B: One of the two
	large-prickle hairs.	specimens has erect large-prickle
	Cluster III: 7/51 specimens have erect	hairs.

	large-prickle hairs.	Cluster C: 6/45 specimens have
	Cluster IV: One of the two specimens ha	erected large prickle hairs.
	erect large-prickle hairs.	Cluster D: Both specimens have
	Cluster V: one of the three specimens has	non-erect large prickle hairs.
	erect large-prickle hairs.	Cluster E: Both specimens have
		non-erect large prickle hairs.
Large prickles	Cluster I: Only one of the two specimens	Cluster A: 6/37 specimens have
distribution	has large-prickle hairs distributed on all	large prickle hairs distributed on
	vascular bundles including the midrib.	all vascular bundles including the
	Cluster II: 6/28 specimens have large-	midrib.
	prickle hairs distributed on all vascular	Cluster B: Both specimens have
	bundles including the midrib.	large prickle hairs distributed on
	Cluster III: 5/51 specimens have large-	the 1° and 2° vascular bundles
	prickle hairs distributed on all vascular	only
	bundles including the midrib	Ollig
	Cluster IV: Large-prickle hairs are	Cluster C: 7/47 specimens nave
	distributed on only the 1° and 2° vascular	large prickle hars distributed on
	hundles on all two specimens	all vascular bundles including the
	bundles on all two specimens.	
	Cluster V: Large-prickle hairs are	Cluster D: Both specimens have
	distributed on only the 1° and 2° vascular	large prickle hairs distributed on
	bundles on all three specimens.	the 1° and 2° vascular bundles

		only.
		Cluster E: Both specimens have
		large prickle hairs distributed on
		the 1° and 2° vascular bundles
		only.
Long-Barb Prickles	Cluster I: Both specimens have long-barb	Cluster A: 7/37 specimens do not
presence/absence	prickles.	have long-barb prickles.
	Cluster II: 7/28 specimens do not have	Cluster B: Both specimens have
	long-barb prickles.	long-barb prickles.
	Cluster III: 13/54 specimens do not have	Cluster C: 11/48 specimens do
	long-barb prickles.	not have long-barb prickles.
	Cluster IV: One of the two specimens	Cluster D: None of the two
	does not have long-barb prickles.	specimens has long-barb prickles.
	Cluster IV: One of the three specimens	Cluster E: One of the two
	does not have long-barb prickles	specimens has long-barb prickles.
Long-barb prickles	The lengths of all the long-barb prickle on	The lengths of all the specimens
length	the specimens on all clusters (I to V) vary	from all clusters (A to E) vary
	from 15µm to 35µm.	from 7.5µm to 35µm.
Long-barb prickles	Cluster I: One of the two specimens has a	Cluster A: 10/30 specimens have
density	dense frequency.	a dense frequency of long barb
	Cluster II: 3/21 specimens have a dense	prickles.

	fraquanay	Cluster D : One of the englimone
	nequency.	Cluster D: One of the specimens
	Cluster III: 12/41 specimens have a	has a dense frequency of long-
	dense frequency.	barb prickles.
	Cluster IV: The one specimen has a	Cluster C: 8/39 specimens have
	dense frequency.	a dense frequency of long barb
	Cluster V: Both specimens have an	prickles.
	occasional long-barb prickle density.	Cluster E: The one specimen
		with long barb prickles has an
		occasional frequency.
Leaf-Margin Prickles	Cluster I: All specimens have leaf-	Cluster A: Only one of the 37
	margin prickles.	specimens does not leaf-margin
	Cluster II: 1/28 specimens does not have	prickles.
	leaf-margin prickles.	Cluster B: Both specimens have
	Cluster III: 4/54 specimens do not have	leaf-margin prickles.
	leaf-margin prickles.	Cluster C: 4/48 specimens do not
	Cluster IV: One of the two specimens	have leaf-margin prickles.
	does not have leaf-margin prickles.	Cluster D: One of the two
	Cluster V: All three specimens have	specimens does not have leaf-
	leaf-margin prickles.	margin prickles.
		Cluster E: Both specimens have
		leaf-margin prickles.
Leaf margin prickles	Leaf-margin prickles have varying lengths	Leaf-margin prickles have

length	on all the clusters (I to V)	varying lengths on all the clusters
		(A to E)
Silica bodies	Cluster I: Only one of the specimens has	Cluster A: 8/37 specimens do not
	DSSBs	show DSSBs.
	Cluster II: 20/28 specimens have DSSBs.	Cluster B: None of the two
	Cluster III: 36/54 specimens have	specimens show DSSBs.
	DSSBs.	Cluster C: 20/48 specimens do
	Cluster IV: Both specimens have DSSBs.	not show DSSBs.
	Cluster V: None of the three specimens	Cluster D: None of the two
	has DSSBs.	specimens show DSSBs.
		Cluster E: Only one of the two
		specimens does not have DSSBs.
Papillae	Cluster I: One of the two specimens has	Cluster A: All the 37 specimens
	papillae.	have papillae.
	Cluster II: All 28 specimens have	Cluster B: Both specimens have
	papillae (on both the abaxial and adaxial	papillae.
	sides).	Cluster C: 6/48 specimens do not
	Cluster III: 5/54 specimens do not have	have papillae.
	papillae.	Cluster D: Both specimens have
	Cluster IV: All two specimens have	papillae.
	papillae.	Cluster E: Both specimens have
	Cluster V: All three specimens have	papillae.

	papillae.	
Papillae diameter	Papillae on all the specimens, on all the	Papillae on all the specimens, on
	clusters have varying diameters, with	all the clusters have varying
	7.7µm being the most commonly	diameters.
	occurring length.	
Stomata	Cluster I: Both specimens have stomata	Clusters A to E: All specimens
	on the abaxial side only.	have stomata.
	Cluster II: All 28 specimens have	
	stomata, with 9/28 specimens having	
	stomata on both abaxial and adaxial sides.	
	Cluster III: All 54 specimens have	
	stomata, with 14/54 specimens having	
	stomata on both abaxial and adaxial sides.	
	Cluster IV: Both specimens have	
	stomata, with one specimen having	
	stomata on both abaxial and adaxial sides.	
	Cluster V: All three specimens have	
	stomata, with one specimen having	
	stomata on both abaxial and adaxial sides.	
Stomata length	Stomata on all the clusters have varying	Stomata on all the clusters have
	lengths.	varying lengths.
Stomata width	Stomata on all the clusters have varying	Stomata on all the clusters have

	widths.	varying widths.
Epidermal Cells	Cluster I: None of the two specimens	Cluster A: 12/37 specimens have
	have visible epidermal cells.	visible epidermal cells.
	Cluster II: 17/28 specimens do not have	Cluster B: None of the two
	their epidermal cells visible.	specimens have visible epidermal
	Cluster III: 37/54 specimens do not have	cells
	their epidermal cells visible.	Cluster C: 16/48 specimens have
	Cluster IV: None of the two specimens	visible epidermal cells.
	have their epidermal cells visible.	Cluster D: None of the two
	Cluster V: None of the three specimens	specimens have visible epidermal
	have their epidermal cells visible	cells.
		Cluster E: None of the two
		specimens have visible epidermal
		cells.
Cell length	Cells are of varying lengths.	Cells are of varying lengths.
Cell width	Cells are of varying widths.	Cells are of varying widths.
Cell shape	Cluster II: 1/17 specimens has varying	Cluster A: All 12 specimens
	cell shapes.	have constant epidermal cell
	Cluster III: 1/37 specimens has varying	shapes.
	cell shapes.	Cluster C: 2/16 specimens have
		varying epidermal cell shapes.

Table 6.2: Characters and character states as obtained from the SEM observations of herbarium specimens from Simple Matching and Euclidean Distance phenogram analyses.

Character	Herbarium (Euclidean Distance)	Herbarium (Simple Matching)
Macro-Hairs	Cluster I: 4/21 specimens have macro-	Cluster A: One of four
presence/absence	hairs.	specimens has macro-hairs.
	Cluster II: 17/94 specimens have	Cluster B: 16/116 specimens
	macro-hairs.	have macro-hairs.
	Cluster III: None of the 8 specimens	Cluster C: 3/5 specimens have
	has macro-hairs.	macro-hairs.
	Cluster IV: One of the three specimens	
	has macro-hairs.	
Macro-hair frequency	Cluster I: One of the four specimens	Cluster A: The one specimen
	has a dense macro-hair frequency.	has an occasional macro-hair
	Cluster II: 9/17 specimens have a dense	frequency.
	macro-hair frequency.	Cluster B: 8/16 specimens have
	Cluster IV: The one specimen has an	an occasional macro-hair
	occasional macro-hair frequency.	frequency.
		Cluster C: 1/3 specimens has an
		occasional macro-hair
		frequency.
Macro-hair length	The lengths of all the macro-hairs on all	Specimens have varying macro-
	clusters vary, with the shortest being	hair lengths.

	257µm and the longest being about	
	2000µm.	
Micro-Hairs	Cluster I: 13/21 specimens do not have	Cluster A: 2/4 specimens have
presence/absence	micro-hairs.	micro-hairs.
	Cluster II: 68/94 specimens do not have	Cluster B: 28/116 specimens
	micro-hairs.	have micro-hairs.
	Cluster III: Only two of the 8	Cluster C: 2/5 specimens have
	specimens have micro-hairs.	micro-hairs.
	Cluster IV: None of the three	
	specimens has micro-hairs.	
Micro-hair frequency	Cluster I: 3/8 specimens have a dense	Cluster A: Both specimens have
	micro-hair frequency.	an occasional frequency.
	Cluster II: Only one of the 26	Cluster B: 3/28 specimens have
	specimens has a dense micro-hair	an occasional micro-hair
	frequency.	frequency.
	Cluster III: Both specimens have an	Cluster C: Both specimens have
	occasional micro-hair frequency.	an occasional micro-hair
		frequency.
Micro-hair length	The specimens have varying lengths.	Cluster A: The lengths are
		22µm and 89µm.
		Cluster B: The specimens have
		varying lengths.

		Cluster C: Both lengths are
		above 50µm and below 60µm.
Large-Prickle Hairs	Cluster I: All 21 specimens have large-	Cluster A: All four specimens
presence/absence	prickle hairs.	have large prickle hairs.
	Cluster II: All 94 specimens have	Cluster B: All 116 specimens
	large-prickle hairs.	have large prickle hairs.
	Cluster III: All 8 specimens have large-	Cluster C: 1/5 specimens does
	prickle hairs.	not have large prickle hairs.
	Cluster IV: All 3 specimens have large-	
	prickle hairs.	
	• This makes this character	
	taxonomically insignificant.	
Large-prickles density	Cluster I: 2/21 specimens have an	Cluster A: Three of the four
	occasional large-prickle hair frequency.	specimens have a dense large
	Cluster II: 28/94 specimens have an	prickle hair frequency.
	occasional large-prickle frequency.	Cluster B: 30/116 specimens
	Cluster III: One of the 8 specimens has	have an occasional large prickle
	an occasional large-prickle hair	hair frequency.
	frequency.	Cluster C: 2/4 specimens have a
	Cluster IV: One of the three specimens	dense large prickle hair
	has an occasional large-prickle hair	frequency.
	frequency.	

Large-prickles base	Cluster I: All the 21 specimens have a	Cluster A: All 4 specimens have
structure	base structure that has a collar.	base structures with a collar.
	Cluster II: All the 94 specimens have a	Cluster B: All 116 specimens
	base structure that has a collar.	have base structures with a
	Cluster III: All the 8 specimens have a	collar.
	base structure that has a collar.	Cluster C: All 4 specimens have
	Cluster IV: All the three specimens	base structures with a collar.
	have a base structure that has a collar.	
	• The base structure character also	
	shows no taxonomic importance	
	for the current study.	
Large-prickles length	The lengths vary greatly on all the	Cluster A: The large prickle
	clusters, from as little as 20µm to over	hair lengths range from 59µm to
	100µm.	60µm.
		Cluster B: The lengths vary
		greatly.
		Cluster C: The lengths vary
		from 32µm to 117µm.
Large-prickles size	Cluster I: 4/21 specimens have non-	Cluster A: All the specimens
uniformity	uniform large-prickle hair lengths.	have large prickle hairs of
	Cluster II: 15/94 specimens have non-	uniform sizes.
	uniform large-prickle hair lengths.	Cluster B: 19/116 have large

	Cluster III: 2/8 specimens have non-	prickle hairs of non-uniform
	uniform large prickle hair lengths.	sizes.
	Cluster IV: All three specimens have	Cluster C: Three of the four
	uniform large-prickle lengths.	specimens have large prickle
		hairs of uniform sizes.
Large-prickles	Cluster I: 2/21 specimens have erect	Cluster A: All specimens have
orientation	large-prickle hairs.	un-erect large prickle hairs.
	Cluster II: 11/94 specimens have erect	Cluster B: 12/116 specimens
	large-prickle hairs.	have un-erect large prickle hairs.
	Cluster III: None of the 8 specimens	Cluster C: All four specimens
	have erect large-prickle hairs.	have un-erect large prickle hairs.
	Cluster IV: None of the three	
	specimens have erect large-prickle hairs.	
Large-prickles	Cluster I: 2/21 specimens have large-	Cluster A: All four specimens
distribution	prickle hairs distributed on all vascular	have large prickle hairs
	bundles including the midrib.	distributed on all vascular
	Cluster II: 12/94 specimens have large-	bundles excluding the midrib.
	prickle hairs distributed on all vascular	Cluster B: 13/116 specimens
	bundles including the midrib.	have large prickle hairs
	Cluster III: 1/8 specimens have large-	distributed on all vascular
	prickle hairs distributed on the 1° and 2	bundles including the midrib.
		Cluster C: 2/4 specimens have

	[°] vascular bundles only.	large prickle hairs distributed on
	Cluster IV: All three specimens have large-prickle hairs distributed on all	all vascular bundles including the midrib.
	vascular bundles including the midrib.	
Long-Barb Prickles	Cluster I: 11/21 specimens have long-	Cluster A: 3/4 specimens have
presence/absence	barb prickles.	long-barb prickles.
	Cluster II: 39/94 specimens have long-	Cluster B: 48/116 specimens
	barb prickles.	have long-barb prickles.
	Cluster III: 3/8 specimens have long-	Cluster C: 1/5 specimens has
	barb prickles.	long-barb prickles.
	Cluster IV: All three specimens have	
	long-barb prickles.	
Long barb prickles	Cluster I: The lengths range from 15µm	Cluster A: The lengths range
length	to $36\mu m$, with one extreme $127\mu m$ from	from 28µm to 127µm.
	Zululand.	Cluster B: The lengths range
	Cluster II: The lengths range from	from 15µm to 160µm.
	18μm to 160μm	Cluster C: The only specimen
	Cluster III: The lengths range from	in this cluster has a 42µm long
	16μm to 55μm	barb prickle.
	Cluster IV: The lengths range from	
	21µm to 53µm.	

Long barb prickles	Cluster I: All 11 specimens have an	Cluster A: All three specimens
density	occasional density of long-barb prickles.	have an occasional long barb
	Cluster II: 4/39 specimens have a dense	frequency.
	frequency of long-barb prickles.	Cluster B: 5/48 specimens have
	Cluster III: All 3 specimens have an	a dense long barb prickle
	occasional density of long-barb prickles.	frequency.
	Cluster IV: All 3 specimens have an	Cluster C: The one specimen
	occasional density of long-barb prickles.	has a dense long barb frequency.
Leaf-Margin Prickles	Cluster I: 3/21 specimens do not have	Cluster A: 2/4 specimens do not
	leaf-margin prickles.	have leaf-margin prickles.
	Cluster II: 28/94 specimens do not have	Cluster B: 35/116 specimens do
	leaf-margin prickles.	not have leaf-margin prickles.
	Cluster III: One of the eight specimens	Cluster C: All five specimens
	does not have leaf-margin prickles.	have leaf-margin prickles.
	Cluster IV: One of the three specimens	
	does not have leaf-margin prickles.	
Leaf margin prickles	Leaf-margin prickles have varying	Leaf-margin prickles have
length	lengths on all the clusters (I to IV)	varying lengths on all the
		clusters (A to C)
Silica bodies	Cluster I: 9/21 specimens have DSSBs.	Cluster A: All four specimens
	Cluster II: 34/94 specimens have	have DSSBs.
	DSSBs.	Cluster B: 43/116 specimens

	Cluster III: 6/8 specimens have DSSBs.	have DSSBs.
	Cluster IV: All three specimens have	Cluster C: 3/5 specimens have
	DSSBs.	DSSBs.
Papillae	Cluster I: 2/21 specimens do not have	Cluster A: All the specimens
	papillae.	have papillae.
	Cluster II: 5/94 specimens do not have	Cluster B: 8/116 specimens do
	papillae.	not have papillae.
	Cluster III: All 8 specimens have	Cluster C: All the specimens
	papillae.	have papillae.
	Cluster IV: All three specimens have	
	papillae.	
Papillae diameter	Papillae have varying diameters.	Papillae have varying diameters.
Stomata	Cluster I to IV: All the specimens have	Cluster A: All four specimens
	stomata.	have stomata.
		Cluster B: All 116 specimens
		have stomata.
		Cluster C: All five specimens
		have stomata.
Stomata length	Stomata on all the clusters have varying	Stomata on all the clusters have
	lengths.	varying lengths.
Stomata width	Stomata on all the clusters have varying	Stomata on all the clusters have
	widths.	varying widths.

Epidermal Cells	Cluster I: 6/21 specimens have visible	Cluster A: All four specimens
	epidermal cells.	have visible epidermal cells.
	Cluster II: 45/94 specimens have	Cluster B: 44/116 specimens
	visible epidermal cells.	have visible epidermal cells.
	Cluster III: 4/8 specimens have visible	Cluster C: All specimens have
	epidermal cells.	visible epidermal cells.
	Cluster IV: All three specimens have	
	visible epidermal cells.	
Cell length	Cells are of varying lengths.	Cells are of varying lengths.
Cell width	Cells are of varying widths.	Cells are of varying widths.
Cell shape	Cluster A: 2/6 specimens have cells of	Cluster A: One of the four
	varying shapes.	specimens has varying epidermal
	Cluster B: 20/45 specimens have cells	cell shapes.
	of varying shapes.	Cluster B: 20/44 specimens
	Cluster C: 2/7 specimens have cells of	have varying epidermal cell
	varying shapes.	shapes.
		Cluster C: 1/5 specimens has
		varying epidermal cell shapes.

Table 6.3: Characters and character states as obtained from the SEM observations of fresh and herbarium specimens from Simple Matching and Euclidean Distance phenogram analyses.

Character	Fresh and Herbarium (ED)	Fresh and Herbarium (SM)
Macro-Hairs	Cluster I: None of the two	Cluster A: 1/14 specimens has
presence/absence	specimens have macro-hairs.	macro-hairs.
	Cluster II: 37/194 specimens have	Cluster B: 12/112 specimens have
	macro-hairs.	macro-hairs.
	Cluster III: 4/17 specimens have	Cluster C: 9/73 specimens have
	macro-hairs.	macro-hairs.
	Cluster IV: None of the five	Cluster D: 16/19 specimens have
	specimens have macro-hairs.	macro-hairs.
Macro-hair frequency	Cluster II: 18/37 specimens have a	Cluster A: The one specimen has
	dense macro-hair frequency.	an occasional frequency of macro-
	Cluster III: Three of the four	hairs.
	specimens have a dense macro-hair	Cluster B: 9/12 specimens have an
	frequency.	occasional macro-hair frequency.
		Cluster C: 5/9 specimens have an
		occasional macro-hair frequency.
		Cluster D: 4/16 specimens have an
		occasional macro-hair frequency.
Macro-hair length	Specimens have varying macro-hair	Macro-hair lengths vary greatly
	lengths.	from less than 1000 μ m to over
		4000µm.
Micro-Hairs	Cluster I: Both specimens have	Cluster A: 4/14 specimens have

presence/absence	micro-hairs.	micro-hairs.
	Cluster II: 84/194 specimens do not	Cluster B: 43/112 specimens have
	have micro-hairs.	micro-hairs.
	Cluster III: 8/17 specimens have	Cluster C: 64/73 specimens have
	micro-hairs.	micro-hairs.
	Cluster IV: 3/5 specimens have	Cluster D: 11/19 specimens have
	micro-hairs.	micro-hairs.
Micro-hair frequency	Cluster I: Both specimens have an	Cluster A: All four specimens have
	occasional micro-hair frequency.	occasional micro-hair frequency.
	Cluster II: 17/84 specimens have a	Cluster B: 5/43 specimens have a
	dense micro-hair frequency.	dense micro-hair frequency.
	Cluster III: All 8 specimens have	Cluster C: 11/64 specimens have a
	an occasional micro-hair frequency.	dense micro-hair frequency.
	Cluster IV: 1/3 specimens has a	Cluster D: 1/11 specimens has a
	dense micro-hair frequency.	dense micro-hair frequency.
Micro-hair length	The specimens have varying lengths.	Specimens have micro-hair lengths
		that vary greatly.
Large-Prickle Hairs	Cluster I: Both specimens have	Cluster A: All the 14 specimens
presence/absence	large-prickle hairs.	have large-prickle hairs.
	Cluster II: 4/194 specimens do not	Cluster B: Only one of the 112
	have large-prickle hairs.	specimens does not have large-
	Cluster III: All 17 specimens have	prickle hairs.

	large-prickle hairs.	Cluster C: Three of 73 specimens
	Cluster IV: All five specimens have	do not have large-prickle hairs.
	large-prickle hairs.	Cluster D: All the 19 specimens
		have large-prickle hairs.
Large-prickles density	Cluster I: Both specimens have a	Cluster A: 4/14 specimens have an
	dense large-prickle hair frequency.	occasional large-prickle hair
	Cluster II: 145/190 specimens have	frequency.
	a dense large-prickle hair frequency.	Cluster B: 27/111 specimens have
	Cluster III: 13/17 specimens have a	an occasional large-prickle hair
	dense large-prickle hair frequency.	frequency.
	Cluster IV: All five specimens have	Cluster C: 12/70 specimens have
	a dense large-prickle hair frequency.	an occasional large-prickle hair
		frequency.
		Cluster D: 3/19 specimens have an
		occasional large-prickle hair
		frequency.
Large-prickles base	Cluster I: Both specimens have	Cluster A: All 14 specimens have
structure	base structures with a collar.	large-prickle hairs with a collar.
	Cluster II: 10/190 specimens have	Cluster B: 2/111 specimens have
	base structures without a collar.	large-prickle hairs without a collar.
	Cluster III: 1/17 has a base	Cluster C: 8/70 specimens have
	structure without a collar.	large-prickle hairs without a collar.

	Cluster IV: All specimens have	Cluster D: 1/19 specimens has
	base structures with a collar.	large-prickle hairs without a collar.
Large-prickles length	The lengths vary greatly on all the	The lengths vary greatly on all the
	clusters.	clusters.
Large-prickles size	Cluster I: One of the two specimens	Cluster A: 3/14 specimens have
uniformity	has uniform large-prickle hair	non-uniform large-prickle lengths.
	lengths.	Cluster B: 16/111 specimens have
	Cluster II: 26/190 specimens have	non-uniform large-prickle lengths.
	non-uniform large-prickle hair sizes.	Cluster C: 7/70 specimens have
	Cluster III: 2/17 specimens have	non-uniform large-prickle lengths.
	non-uniform large-prickle hair sizes.	Cluster D: 5/19 specimens have
	Cluster IV: 1/5 specimens has non-	non-uniform large-prickle lengths.
	uniform large-prickle hair sizes.	
Large-prickles	Cluster I: Both specimens have un-	Cluster A: All 14 specimens have
orientation	erect large-prickle hairs.	non erect large-prickle hairs.
	Cluster II: 23/190 specimens have	Cluster B: 13/111 specimens have
	erect large-prickle hairs.	erect large-prickle hairs.
	Cluster III: 2/17 specimens have	Cluster C: 9/70 specimens have
	erect large-prickle hairs.	erect large-prickle hairs.
	Cluster D: 1/5 specimens has erect	Cluster D: 2/19 specimens have
	large-prickle hairs.	erect large-prickle hairs.
Large-prickles	Cluster I: Only one of the two	Cluster A: 2/14 specimens have

distribution	specimens has large-prickle hairs	large-prickle hairs distributed on all
	distributed on all vascular bundles	vascular bundles including the
	including the midrib.	midrib.
	Cluster II: 26/190 specimens have	Cluster B: 18/111 specimens have
	large-prickle hairs distributed on all	large-prickle hairs distributed on all
	vascular bundles including the	vascular bundles including the
	midrib.	midrib.
	Cluster III: All 17 specimens have	Cluster C: 9/70 specimens have
	large-prickle hairs distributed on	large-prickle hairs distributed on all
	primary and secondary vascular	vascular bundles including the
	bundle excluding the midrib.	midrib.
	Cluster IV: 2/5 specimens have	Cluster D: 2/19 specimens have
	large-prickle hairs distributed on all	large-prickle hairs distributed on all
	vascular bundles including the	vascular bundles including the
	midrib.	midrib.
Long-Barb Prickles	Cluster I: One of the two specimens	Cluster A: 5/14 specimens have
presence/absence	has long-barb prickles.	long-barb prickles.
	Cluster II: 108/194 specimens have	Cluster B: 55/112 specimens have
	long-barb prickles.	long-barb prickles.
	Cluster III: 11/17 specimens have	Cluster C: 51/73 specimens have
	long-barb prickles.	long-barb prickles.
	Cluster IV: 3/5 specimens have	Cluster D: 11/19 specimens have

	long-barb prickles.	long-barb prickles.
Long-barb prickles	The lengths of all the specimens on	The lengths of all the specimens on
length	all clusters (I to IV) vary greatly.	all clusters (A to D) vary greatly.
Long-barb prickles	Cluster I: The one specimen has an	Cluster A: All five specimens have
density	occasional long-barb prickle	an occasional long-barb frequency.
	frequency.	Cluster B: 6/55 specimens have a
	Cluster II: 18/108 specimens have a	dense long-barb frequency.
	dense long-barb prickle frequency.	Cluster C: 14/51 specimens have a
	Cluster III: 3/11 specimens have a	dense long-barb frequency.
	dense long-barb prickle frequency.	Cluster D: 2/11 specimens have a
	Cluster IV: All three specimens	dense long-barb frequency.
	have an occasional long-barb prickle	
	frequency.	
Leaf-Margin Prickles	Cluster I: One of the two specimens	Cluster A: 3/14 specimens do not
	does not have leaf-margin prickles.	have leaf margin prickles.
	Cluster II: 31/194 specimens do not	Cluster B: 21/112 specimens do
	have leaf-margin prickles.	not have leaf margin prickles.
	Cluster III: 8/17 specimens do have	Cluster C: 5/73 specimens do not
	leaf-margin prickles.	have leaf margin prickles.
	Cluster IV: one of the specimens	Cluster D: 6/19 specimens do not
	does not have leaf-margin prickles.	have leaf margin prickles.

Leaf margin prickles	Leaf-margin prickle lengths vary	Leaf-margin prickles have varying
length	from as little as $20\mu m$ to as big as	lengths on all the clusters (A to D)
	500µm	
Silica bodies	Cluster I: Both specimens have	Cluster A: 4/14 specimens do not
	DSSBs.	have DSSBs.
	Cluster II: 92/194 specimens do not	Cluster B: 62/112 specimens do
	have DSSBs.	not have DSSBs.
	Cluster III: 9/17 specimens do not	Cluster C: 25/73 specimens do not
	have DSSBs.	have DSSBs.
	Cluster IV: One of the five	Cluster D: 14/19 specimens do not
	specimens does not have DSSBs.	have DSSBs.
Papillae	Cluster I: Both specimens have	Cluster A: All 14 specimens have
	papillae.	papillae.
	Cluster II: 12/194 specimens do not	Cluster B: 5/112 specimens do not
	have papillae.	have papillae.
	Cluster III: One of the 17	Cluster C: 6/73 specimens do not
	specimens does not have papillae.	have papillae.
	Cluster IV: All five specimens have	Cluster D: 2/19 specimens do not
	papillae.	have papillae.
Papillae diameter	Papillae diameter varies greatly,	Papillae diameter varies greatly,
	most specimens have diameters less	with a majority of the specimens
	than 10μm.	with diameters of less than 10µm.
-----------------	--------------------------------------	-----------------------------------
Stomata	Cluster I: Both specimens have	Cluster A to D: All the specimens
	stomata visible on both sides (ab-	have stomata.
	and ad-).	
	Cluster II: All 194 specimens have	
	stomata visible, 44 specimens have	
	stomata visible on both sides.	
	Cluster III: All 17 specimens have	
	stomata visible; four specimens have	
	stomata visible on both sides.	
	Cluster IV: All specimens have	
	stomata visible, but none have	
	stomata visible on both sides.	
Stomata length	Stomata on all the clusters have	Stomata on all the clusters have
	varying lengths.	varying lengths.
Stomata width	Stomata on all the clusters have	Stomata on all the clusters have
	varying widths.	varying widths.
Epidermal Cells	Cluster I: Both specimens have	Cluster A: 2/14 specimens do not
	epidermal cells visible.	have epidermal cells visible.
	Cluster II: 75/194 specimens have	Cluster B: 46/112pecimens have
	their epidermal cells visible.	epidermal cells visible.
	Cluster III: 5/17 specimens have	Cluster C: 18/73 specimens have

	their epidermal cells visible.	epidermal cells visible.
	Cluster IV: 2/5 specimens have	Cluster D: 8/19 specimens have
	their epidermal cells visible.	epidermal cells visible.
Cell length	Cells are of varying lengths	Cells are of varying lengths
Cell width	Cells are varying widths	Cells are varying widths
Cell shape	Cluster I: One of the two specimens	Cluster A: 5/12 specimens have
	has cells of varying shapes.	varying epidermal cell shapes.
	Cluster II: 23/75 specimens have	Cluster B: 15/18 specimens have
	epidermal cells of varying shapes.	varying epidermal cell shapes.
	Cluster III: 2/5 specimens have	Cluster C: 1/18 specimens has
	epidermal cells of varying shapes.	varying epidermal cell shapes.
	Cluster IV: Both specimens have	Cluster D: 3/8 specimens have
	epidermal cells of constant shapes.	varying epidermal cell shapes.

Table 6.4: Characters and character states as obtained from the LM observations of freshly collected specimens from Simple Matching and Euclidean Distance phenogram analyses.

Character	Fresh (Euclidean Distance)	Fresh (Simple Matching)
Outline of open leaves	Cluster I: 3/38 specimens have V-	Cluster A: 4/47 specimens have V-
	shaped leaves, none of them have U-	shaped leaves, none have U-shaped
	shaped leaves, 4/38 specimens have	leaves; 2/47 specimens have wide

	wide open leaves of almost 180°,	open leaves of almost 180°; 12/47
	8/38 specimens have narrow leaves	specimens have narrow leaves of
	of about 45°, 9/38 specimens have	about 45°; 7/47 specimens have
	leaves with a concave shape and	leaves with a concave shape and
	14/38 specimens have convex-	22/47 specimens have convex-
	shaped leaves.	shaped leaves.
	Cluster II: 2/21 specimens have	Cluster B: 4/10 specimens have
	wide open leaves of almost 180°,	wide open leaves of almost 180 $^\circ$,
	4/21 specimens have narrow leaves	1/10 specimens has narrow leaves of
	of about 45°, 4/21 specimens have	about 45 \circ , 2/10 specimens have
	concave shaped leaves and 11/21	concave shaped leaves and 3/10
	specimens have convex-shaped	specimens have convex-shaped
	leaves.	leaves.
	Cluster III: 1/6 specimens has V-	Cluster C: 4/10 specimens have
	shaped leaves, 1/6 specimens has	concave shaped leaves and 6/10
	narrow leaves of about 45° and 4/6	specimens have convex-shaped
	specimens have convex-shaped	leaves
	leaves.	
Ribs on the adaxial	Cluster I: 24/38 specimens have ribs	Cluster A: 39/47 specimens have
side: Absent = 0;	on the adaxial side of the leaves.	ribs on the adaxial side of the

Present = 1	Cluster II: 18/21 specimens have	leaves.
	ribs on the adaxial side of the leaves.	Cluster B: 4/10 specimens have
	Cluster III: 5/6 specimens have ribs	ribs on the adaxial side of the
	on the adaxial side of the leaves.	leaves.
		Cluster C: 7/10 specimens has ribs
		on the adaxial side of the leaves.
Ribs on the abaxial	Cluster I: 29/38 specimens do not	Cluster A: 20/47 specimens have
side: Absent = 0 ;	have ribs on the abaxial side of the	ribs on the abaxial side of the
Present = 1	leaves.	leaves.
	Cluster II: 12/21 specimens do not	Cluster B: None of the 10
	have ribs on the abaxial side of the	specimens has ribs on the abaxial
	leaves.	side of the leaves.
	Cluster III: 4/6 specimens do not	Cluster C: 1/10 specimens has ribs
	have ribs on the abaxial side of the	on the abaxial side of the leaves.
	leaves.	
On the adaxial side:	Cluster I: 20/24 specimens have ribs	Cluster A: 36/39specimens have
Ribs only over the 1°	over both the 1° and 2° vascular	ribs over both the 1 $^\circ~$ and 2 $^\circ~$
and 2° bundles = 0; Over only 1° or 2°	bundles. 4/24 specimens have ribs	vascular bundles. 3/39 specimens
bundles = 1	over 1° or 2° vascular bundles.	have ribs over 1 \circ or 2 \circ vascular
	Cluster II: 17/18 specimens have	bundles.
	ribs over both the 1° and 2° vascular	Cluster B: ³ / ₄ specimens have ribs

	bundles. 1/18 specimen has ribs over	over both the 1 \circ and 2 \circ vascular
	1° or 2° vascular bundles.	bundles. 1/4 specimens has ribs over
	Cluster III: 4/5 specimens have ribs	$1 \circ$ or $2 \circ$ vascular bundles.
	over both the 1° and 2° vascular	Cluster C: 5/7 specimens have ribs
	bundles. 1/5 specimen has ribs over 1	over both the 1 \circ and 2 \circ vascular
	° or 2° vascular bundles.	bundles. 2/7 specimens have ribs
		over $1 \circ \text{ or } 2 \circ \text{ vascular bundles.}$
On the abaxial side:	Cluster I: All 9 specimens have ribs	Cluster A: 16/20 specimens have
Ribs opposite 1° bundles = 0; Opposite	opposite the 1° bundles.	ribs opposite the 1° bundles; and
both 1° and 2° bundles -1	Cluster II: 5/9 specimens have ribs	4/20 specimens have ribs opposite
- 1	opposite the 1° bundles. 4/9	both 1° and 2° bundles.
	specimens have ribs opposite both 1°	Cluster B: None of the specimens
		have ribs on the abaxial side.
	and 2° bundles.	Cluster C: The one specimen has
	Cluster III: Both specimens have	ribs opposite the 1° bundles.
	ribs opposite the 1° bundles.	
Total number of 1°	Cluster I: The numbers of 1°	Cluster A: The numbers of 1 \circ
vascular bundles	vascular bundles are all 5 and below	vascular bundles are all 6 and below

	(minimum is 2).	(minimum is 2, and the most
	Cluster II: The numbers of 1°	common numbers are 3 and 4).
	vascular bundles ranges from 3 to 6.	Cluster B: The numbers of $1 \circ$
	Cluster III: The numbers of 1°	vascular bundles are all 6 and below
	vascular bundles ranges from 3 to 6	(minimum is 2, and the most
	vasediai sundies ranges from s to o.	common number is 3).
		Cluster C: The numbers of $1 \circ$
		vascular bundles are all 5 and below
		(minimum is 3).
Total number of 2°	Cluster I: The numbers of 2°	Cluster A: The numbers of $2 \circ$
vascular bundles	vascular bundles ranges from 5 to 11.	vascular bundles ranges from 4 to
	Cluster II: The numbers of 2°	12.
	vascular bundles ranges from 4 to 12.	Cluster B: The numbers of $2 \circ$
	Cluster III: The numbers of 2°	vascular bundles ranges from 5 to
	vascular bundles ranges from 3 to 14.	14.
		Cluster C: The numbers of 2 $^{\circ}$
		vascular bundles ranges from 3 to
		11.
Total number of 3°	Cluster I: The numbers of 3°	Cluster A: The numbers of 3 \circ

vascular bundles	vascular bundles ranges from 6 to 16.	vascular bundles ranges from 8 to
	Cluster II: The numbers of 3°	21.
	vascular bundles ranges from 13 to	Cluster B: The numbers of 3 \circ
	20.	vascular bundles ranges from 6 to
	Cluster III: The numbers of 3°	24.
	vascular bundles ranges from 19 to	Cluster C: The numbers of 3 $^{\circ}$
	26.	vascular bundles ranges from 8 to
		26.
1° bundles fewer than	Cluster I: All 38 specimens have 1°	Cluster A: 45/47 specimens have
2° and 3° bundles = 0;	bundles fewer than 2° and 3° bundles.	less 1° bundles than the 2° and 3°
They are an equal $a_{1} = 1$	Cluster II: 19/21 specimens have 1°	bundles; and 2/47 specimens have
number – 1	bundles fewer than 2° and 3 $^{\circ}$	equal numbers of 1°, 2° and 3°
	bundles; 2 specimens have an equal	bundles.
	number of 1°, 2° and 3 $^{\circ}$.	Cluster B: All 10 specimens have
	Cluster III: 4/6 specimens have 1°	less 1° bundles than the 2° and 3° $$
		bundles.
	bundles fewer than 2° and 3°	Cluster C: 8/10 specimens have
	bundles; 2/6 specimens have an	less 1° bundles than the 2° and 3°
	equal number of 1°, 2° and 3°.	bundles; and 2/10 specimens have

		equal numbers of 1°, 2° and 3°
		bundles.
Two 3° bundles occur	Cluster I: 7/38 specimens have two	Cluster A: 5/47 specimens have
between the larger	3° bundles occurring between the	two 3° bundles occurring between
bundles = 0; More than	larger bundles; and 31/38 with more	the larger bundles; and $42/47$ with
two 3° bundles occur	than two 3° bundles occurring	more than two 3° bundles occurring
between larger bundles		
= 1	between larger bundles.	between larger bundles.
	Cluster II: 1/21 specimen has two 3	Cluster B: 1/10 specimen has two 3
	[°] bundles occurring between the	[°] bundles occurring between the
	larger bundles; and 20/21 with more	larger bundles; and 9/10 with more
	than two 3° bundles occurring	than two 3° bundles occurring
	between larger bundles.	between larger bundles.
	Cluster III: All six specimens have	Cluster C: 3/10 specimen has two 3
	more than two 3° bundles occurring	[°] bundles occurring between the
	between larger bundles.	larger bundles; and 7/10 with more
		than two 3° bundles.
Two 2° bundles occur	Cluster I: 17/38 specimens have two	Cluster A: 22/47 specimens have
between $1^{\circ} = 0$; More	2° bundles occurring between 1°	two 2° bundles occurring between 1

than two 2° bundles	bundles; and 21/38 with more than	° bundles; and 25/47 with more than
occur between 1°	two 2° bundles occurring between 1°	two 2° bundles occurring between 1°
bundles = 1	bundles. Cluster II: 12/21 specimens have two 2° bundles occurring between 1° bundles; and 9/21 with more than two 2° bundles occurring between 1° bundles.	bundles. Cluster B: 4/10 specimens have two 2° bundles occurring between 1 ° bundles; and 6/10 with more than two 2° bundles occurring between 1
	Cluster II: 1/5 specimen has two 2°	[°] bundles.
	bundles occurring between 1°	Cluster C: 4/10 specimen has two 2
	bundles; and 5/6 with more than two	[°] bundles occurring between 1 [°]
	2° bundles occurring between 1°	bundles; and 6/10 with more than
	bundles.	two 2° bundles occurring between 1
		[°] bundles.
3° Vascular bundles:	Cluster I: All the 38 specimens have	Cluster A: All the 47 specimens
Positioned at the centre	3° vascular bundles positioned closer	have 3° vascular bundles positioned
of the blade $= 0$; They are closer to either the	to the abaxial side of the leaf.	closer to the abaxial side of the leaf.
abaxial = 1; The adaxial side of the leaf = 2		Cluster B: All the 10 specimens

	Cluster II: 12/21 specimens have 3°	have 3° vascular bundles positioned
	vascular bundles positioned closer at	closer to the abaxial side of the leaf.
	the centre of the leaf blade; and 9/21	Cluster C: All the 10 specimens
	specimens have 3° vascular bundles	have 3° vascular bundles positioned
	positioned closer to the abaxial side	closer to the abaxial side of the leaf.
	of the leaf.	
	Cluster III: All six specimens have	
	3° vascular bundles positioned closer	
	to the abaxial side of the leaf.	
3° bundles: With a	Cluster I: All 38 specimens have 3°	Cluster A: 46/47 specimens have 3
circular shape $= 0$; With	bundles with a circular shape.	[°] bundles with a circular shape; and
un emptical shape – 1	Cluster II: 20 specimens have 3°	1/47 with an elliptical shape.
	bundles with a circular shape: and	Cluster B: All 10 specimens have 3
	one with an elliptical shape.	[°] bundles with a circular shape.
	Cluster III: All 6 specimens have 3°	Cluster C: All 10 specimens have 3
	bundles with a circular shape.	[°] bundles with a circular shape.
2° bundles: With an	Cluster I: 14/38 specimens have 2°	Cluster A: 26/47 specimens have 2
elliptical shape $= 0;$	bundles with an alliptical shape; and	[°] bundles with an elliptical shape;
With a round/circular	oundres with an emptical shape, and	

shape = 1	24 have a circular shape.	and 21/47 have a circular shape.
	Cluster II: 9/21 specimens have 2°	Cluster B: 5/10 specimens have 2°
	bundles with an elliptical shape; and	bundles with an elliptical shape; and
	12 have a circular shape.	5/10 have a circular shape.
	Cluster III: All six specimens have	Cluster C: 6/10 specimens have 2°
	2° bundles with a circular shape.	bundles with an elliptical shape; and
		4/10 have a circular shape.
l° bundles: With an egg-	Cluster I: All 38 specimens have 1°	Cluster A: 46/47 specimens have 1
shape, i.e. broad on the adaxial side $= 0$: With a	bundles with an egg shape.	[°] bundles with an egg shape; and
circular shape $= 1$	Cluster II: 20 specimens have 1°	1/47 specimens has 1° bundles with
	bundles with an egg shape; and 1	a circular shape.
	specimen has 1° bundles with a	Cluster B: All 10 specimens have 1
	circular shape.	[°] bundles with an egg shape.
	Cluster III: All 6 specimens have 1°	Cluster C: All 10 specimens have 1
	bundles with an egg shape.	[°] bundles with an egg shape.
Phloem of the 1° bundle:	Cluster I: 37/38 specimens have the	Cluster A: 45/47 specimens have
Completely surrounded	phloem of the 1° bundle completely	the phloem of the 1° bundle
by thick-walled fibres =		

0; Divided by the	surrounded by thick-walled fibres;	completely surrounded by thick-
intrusion of small fibres	1/38 has phloem divided by the	walled fibres; 2/47 has phloem
= 1	intrusions of small fibres.	divided by the intrusions of small
	Cluster II: 19/21 specimens have	fibres.
	the phloem of the 1° bundle	Cluster B: All 10 specimens have
	completely surrounded by thick-	the phloem of the 1° bundle
	walled fibres; 2/21 have phloem	completely surrounded by thick-
	divided by the intrusions of small	walled fibres.
	fibres.	Cluster C: 8/10 specimens have the
	Cluster III: All six specimens have	phloem of the 1° bundle completely
	the phloem of the 1° bundle	surrounded by thick-walled fibres;
	completely surrounded by thick-	2/10 has phloem divided by the
	walled fibres.	intrusions of small fibres.
Lysigenous cavity:	Cluster I: 7/38 specimens do not	Cluster A: 5/47 specimens do not
Absent on the 1°	have the lysigenous cavity on their 1	have the lysigenous cavity on their 1
bundles = 0; Present = 1	° vascular bundles.	° vascular bundles.
	Cluster II: 2/21 specimens do not	Cluster B: 4/10 specimens do not
	have the lysigenous cavity on their 1	have the lysigenous cavity on their 1
	° vascular bundles.	° vascular bundles.
	Cluster III: 1/6 specimens does not	Cluster C: 1/9 specimens does not

	have the lysigenous cavity on its 1°	have the lysigenous cavity on its 1°
	vascular bundles.	vascular bundles.
Vascular bundle sheath:	Cluster I: 36/38 specimens have an	Cluster A: 46/47 specimens have
incomplete due to slight	incomplete vascular bundle sheath;	an incomplete vascular bundle
interruptions from	and 2/38 specimens have a complete	sheath; and 1/47 specimens have a
narrow/ wide girders of	vascular bundle sheath.	complete vascular bundle sheath.
1-3 or more fibres $= 0;$	Cluster II: 19/21 specimens have an	Cluster B: 8/10 specimens have an
Sheath complete, i.e.	incomplete vascular bundle sheath;	incomplete vascular bundle sheath;
completely surrounds	and 2/21 specimens have a complete	and 2/10 specimens have a complete
the 1° bundle = 1	vascular bundle sheath.	vascular bundle sheath.
	Cluster III: All six specimens have	Cluster C: 8/10 specimens have an
	an incomplete vascular bundle	incomplete vascular bundle sheath;
	sheath.	and 2/10 specimens have a complete
		vascular bundle sheath.
Length of extension of	Cluster I: All 38 specimens have a	Cluster A: All 47 specimens have a
sheath: 1-2 cells long =	sheath that is 1-2 cells long.	sheath that is 1-2 cells long.
0; 2-5 cells long = 1	Cluster II: All 21 specimens have a	Cluster B: All 10 specimens have a
	sheath that is 1-2 cells long.	sheath that is 1-2 cells long.
	Cluster III: All 6 specimens have a	Cluster C: All 10 specimens have a
	sheath that is 1-2 cells long.	sheath that is 1-2 cells long.
Number of cells	Cluster I: The number of cells	Cluster A: The number of cells

comprising the 1° bundle	comprising the 1° sheath varies from	comprising the 1° sheath varies
sheath.	9-19 cells.	from 9-21 cells.
	Cluster II: The number of cells	Cluster B: The number of cells
	comprising the 1° sheath varies from	comprising the 1° sheath varies
	12-21 cells.	from 9-20 cells.
	Cluster III: The number of cells	Cluster C: The number of cells
	comprising the 1° sheath varies from	comprising the 1° sheath varies
	9-20 cells.	from 10-19 cells.
Number of cells	Cluster I: The number of cells	Cluster A: The number of cells
comprising the 2 [°] bundle	comprising the 2° sheath varies from	comprising the 2° sheath varies
sheath.	6-11 cells (with 7 being the most	from 6-12 cells.
	common).	Cluster B: The number of cells
	Cluster II: The number of cells	comprising the 2° sheath varies
	comprising the 2° sheath varies from	from 7-12 cells.
	6-12 cells.	Cluster C: The number of cells
	Cluster III: The number of cells	comprising the 2° sheath varies
	comprising the 2° sheath varies from	from 6-10 cells.
	7-10 cells.	
Number of cells	Cluster I: The number of cells	Cluster A: The number of cells

comprising the 3° bundle	comprising the 3° sheath varies from	comprising the 3° sheath varies
sheath.	4-7 cells.	from 4-9 cells.
	Cluster II: The number of cells	Cluster B: The number of cells
	comprising the 3° sheath varies from	comprising the 3° sheath varies
	5-9 cells.	from 5-7 cells.
	Cluster III: The number of cells	Cluster C: The number of cells
	comprising the 3° sheath varies from	comprising the 3° sheath varies
	4-6 cells (with 6 being the most	from 4-7 cells.
	common).	
Sclerenchyma:	Cluster I: 12/38 specimens have	Cluster A: 9/47 specimens have
Associated with 1°	sclerenchyma associated with 1°	sclerenchyma associated with 1°
0: Associated with	vascular bundles; and 26/38 have	vascular bundles; and 38/47 have
either 2° or 3° bundles =	sclerenchyma associated with 2° or 3	sclerenchyma associated with 2° or
1	° vascular bundles.	3° vascular bundles.
	Cluster II: 4/21 specimens have	Cluster B: 9/10 specimens have
	sclerenchyma associated with 1°	sclerenchyma associated with 1°
	vascular bundles; and 17/21 have	vascular bundles; and 1/10 has
	sclerenchyma associated with 2° or 3	sclerenchyma associated with 2° or

	° vascular bundles.	3° vascular bundles.
	Cluster III: 4/6 specimens have	Cluster C: 2/10 specimens have
	sclerenchyma associated with 1°	sclerenchyma associated with 1°
	vascular bundles; and 2/6 have	vascular bundles; and 8/10 have
	sclerenchyma associated with 2° or 3	sclerenchyma associated with 2° or
	° vascular bundles.	3° vascular bundles.
On the adaxial side	Cluster I: All 38 specimens have	Cluster A: All 47 specimens have
sclerenchyma: Narrow,	narrow sclerenchyma with 2-4 fibres	narrow sclerenchyma with 2-4 fibres
with only 2-4 fibres	on the adaxial side.	on the adaxial side.
wide $= 0$; With more	Cluster II: 19/21 specimens have	Cluster B: All 10 specimens have
than 4 fibres $= 1$	narrow sclerenchyma with 2-4 fibres,	narrow sclerenchyma with 2-4 fibres
	and 2/21 have more than 4 fibres on	on the adaxial side.
	the adaxial side.	Cluster C: 8/10 specimens have
	Cluster III: All six specimens have	narrow sclerenchyma with 2-4
	narrow sclerenchyma with 2-4 fibres	fibres, and 2/10 have more than 4
	on the adaxial side.	fibres on the adaxial side.
1° vascular bundle	Cluster I: 28/38 specimens have 1°	Cluster A: 38/47 specimens have 1
girders on the adaxial side: Well developed,	vascular bundle girders that are well	[°] vascular bundle girders that are

conspicuous and	developed, conspicuous and	well developed, conspicuous and
narrowing towards the	narrowing towards the 1° bundle on	narrowing towards the 1° bundle on
1° bundle = 0; They	the adaptical sides and $10/28$	the adaptical sides and $0/47$ specimens.
form a	the adaxial side; and 10/38	the adaxial side; and 9/47 specimens
straight/horizontal band	specimens have girders that form a	have girders that form a straight
towards the 1° bundle =	straight band towards the 1° bundle.	band towards the 1° bundle.
1	Cluster II: 19/21 specimens have 1°	Cluster B: 9/10 specimens have 1°
	vascular bundle girders that are well	vascular bundle girders that are well
	developed, conspicuous and	developed, conspicuous and
	narrowing towards the 1° bundle on	narrowing towards the 1° bundle on
	the adaxial side; and 2/21 specimens	the adaxial side; and 1/10 specimens
	have girders that form a straight band	has girders that form a straight band
	towards the 1° bundle.	towards the 1° bundle.
	Cluster III: 4/6 specimens have 1°	Cluster C: 5 /10 specimens have 1°
	vascular bundle girders that are well	vascular bundle girders that are well
	developed, conspicuous and	developed, conspicuous and
	narrowing towards the 1° bundle on	narrowing towards the 1° bundle on
	the adaxial side; and 2/6 specimens	the adaxial side; and 5/10 specimens
	have girders that form a straight band	have girders that form a straight

	towards the 1° bundle.	band towards the 1° bundle.
2° vascular bundle	Cluster I: 34/38 specimens have 2°	Cluster A: 44/47 specimens have 2
side: Well developed,	vascular bundle girders that are well developed, conspicuous and	well developed, conspicuous and
conspicuous and narrowing towards the	narrowing towards the 2° bundle on	narrowing towards the 2° bundle on
2° bundle = 0; They	the adaxial side; and 4/38 specimens	the adaxial side; and 3/47 specimens
form a	have girders that form a straight band	have girders that form a straight
straight/horizontal band	towards the 2° bundle.	band towards the 2° bundle.
towards the 2° bundle =	Cluster II: All 21 specimens have 2	Cluster B: All 10 specimens have 2
-	° vascular bundle girders that are	[°] vascular bundle girders that are
	well developed, conspicuous and	well developed, conspicuous and
	narrowing towards the 2° bundle on	narrowing towards the 2° bundle on
	the adaxial side.	the adaxial side.
	Cluster III: 5/6 specimens have 2°	Cluster C: 8/10 specimens have 2°
	vascular bundle girders that are well	vascular bundle girders that are well
	developed, conspicuous and	developed, conspicuous and
	narrowing towards the 2° bundle on	narrowing towards the 2° bundle on
	the adaxial side; and 1/6 specimens	the adaxial side; and 2/10 specimens

	has girders that form a straight band	have girders that form a straight
	towards the 2° bundle.	band towards the 2° bundle.
Girder fibres of the	Cluster I: 37/38 specimens have	Cluster A: All 47 specimens have
adaxial and the abaxial	girder fibres that are in contact with	girder fibres that are in contact with
side: In contact with the	the cells of the single or outer 1°	the cells of the single or outer 1°
cells of the single or outer 1° bundle sheath =	bundle sheath on the adaxial and abaxial sides: and 1/38 specimens	bundle sheath on the adaxial and abaxial sides.
0; Fibres interrupt the	has fibres that interrupt the cells of	Cluster B: 9/10 specimens have
cells of the single or outer 1° bundle sheath =	the single or outer 1° bundle sheath.	girder fibres that are in contact with
1	Cluster II: All 21 specimens have	the cells of the single or outer 1°
	girder fibres that are in contact with	bundle sheath on the adaxial and
	the cells of the single or outer 1°	abaxial sides; and 1/10 specimens
	bundle sheath on the adavial and	has fibres that interrupt the cells of
	abaxial sides.	the single or outer 1° bundle sheath.
	Cluster III: All 6 specimens have	Cluster C: All 10 specimens have
	girder fibres that are in contact with	girder fibres that are in contact with
	the cells of the single or outer 1°	the cells of the single or outer 1°
	bundle sheath on the adaxial and	bundle sheath on the adaxial and
	abaxial sides.	abaxial sides.

Girder fibres of the	Cluster I: 34/38 specimens have	Cluster A: 45/47 specimens have
adaxial and the abaxial side: In contact with the	girder fibres that are in contact with	girder fibres that are in contact with
cells of the single or	the cells of the single or outer 2°	the cells of the single or outer 2°
outer 2 [°] bundle sheath = 0; Fibres interrupt the	bundle sheath on the adaxial and abayial sides; and $4/38$ specimens	bundle sheath on the adaxial and abayial sides; and $2/47$ specimens
cells of the single of outer γ bundle sheath =	house fibres that interment the calls of	have filmes that interment the calls of
1	have fibres that interrupt the cells of	have fibres that interrupt the cells of
	the single or outer 2° bundle sheath.	the single or outer 2° bundle sheath.
	Cluster II: 20/21 specimens have	Cluster B: All 10 specimens have
	girder fibres that are in contact with	girder fibres that are in contact with
	the cells of the single or outer 2°	the cells of the single or outer 2°
	bundle sheath on the adaxial and	bundle sheath on the adaxial and
	abaxial sides; and 1/21 specimens	abaxial sides.
	has fibres that interrupt the cells of	
	has notes that interrupt the cens of	Cluster A: //10 specimens have
	the single or outer 2° bundle sheath.	girder fibres that are in contact with
	the single or outer 2° bundle sheath. Cluster III: All 6 specimens have	girder fibres that are in contact with the cells of the single or outer 2°
	the single or outer 2° bundle sheath. Cluster III: All 6 specimens have girder fibres that are in contact with	girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and
	the single or outer 2° bundle sheath. Cluster III: All 6 specimens have girder fibres that are in contact with the cells of the single or outer 2°	cluster A: 7/10 specimens have girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and abaxial sides; and 3/10 specimens
	the single or outer 2° bundle sheath. Cluster III: All 6 specimens have girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and	cluster A: 7/10 specimens have girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and abaxial sides; and 3/10 specimens have fibres that interrupt the cells of
	the single or outer 2° bundle sheath. Cluster III: All 6 specimens have girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and abaxial sides.	cluster A: 7/10 specimens have girder fibres that are in contact with the cells of the single or outer 2° bundle sheath on the adaxial and abaxial sides; and 3/10 specimens have fibres that interrupt the cells of the single or outer 2° bundle sheath.

Sclerenchyma of the	Custer I: 31/38 specimens have	Custer A: 41/47 specimens have
abaxial side: Deep and	sclerenchyma of the abaxial side that	sclerenchyma of the abaxial side
adaxial side = 0: Is the	is deep and wider than that of the	that is deep and wider than that of
same size as that of the	adaxial side; and 7/38 specimens	the adaxial side; and 6/47 specimens
adaxial side $= 1$	have sclerenchyma of the abaxial	have sclerenchyma of the abaxial
	side that is the same size as that of	side that is the same size as that of
	the adaxial side.	the adaxial side.
	Cluster II: 20/21 specimens have	Cluster B: 8/10 specimens have
	sclerenchyma of the abaxial side that	sclerenchyma of the abaxial side
	is deep and wider than that of the	that is deep and wider than that of
	adaxial side; and 1/21 specimens	the adaxial side; and 2/10 specimens
	have sclerenchyma of the abaxial	have sclerenchyma of the abaxial
	side that is the same size as that of	side that is the same size as that of
	the adaxial side.	the adaxial side.
	Cluster III: 3/6 specimens have	Cluster C: 7/10 specimens have
	sclerenchyma of the abaxial side that	sclerenchyma of the abaxial side
	is deep and wider than that of the	that is deep and wider than that of
	adaxial side; and 3/6 specimens have	the adaxial side; and 3/10 specimens
	sclerenchyma of the abaxial side that	have sclerenchyma of the abaxial
	is the same size as that of the adaxial	side that is the same size as that of
	side.	the adaxial side.
Girder on the abaxial	Cluster I: 16/38 specimens have	Cluster A: 9/47 specimens have

side: Narrowing	girders on the abaxial side narrowing	girders on the abaxial side
towards the l° vascular	towards the 1° vascular bundle; and	narrowing towards the 1° vascular
bundle, i.e. triangular/trapezoidal = 0; Forms a straight/horizontal band = 1	22/38 specimens have girders on the abaxial side forming a straight band. Cluster II: 3/21 specimens have girders on the abaxial side narrowing towards the 1° vascular bundle; and 18/21 specimens have girders on the abaxial side forming a straight band.	bundle; and 38/47 specimens have girders on the abaxial side forming a straight band. Cluster B: 8/10 specimens have girders on the abaxial side narrowing towards the 1° vascular bundle; and 2/10 specimens have
	Cluster III: 2/6 specimens have	girders on the abaxial side forming a
	girders on the abaxial side narrowing	straight band.
	towards the 1° vascular bundle; and	Cluster C: 5/10 specimens have
	$\Lambda/6$ specimens have girders on the	girders on the abaxial side
	abaxial side forming a straight band.	narrowing towards the 1° vascular
		bundle; and 5/10 specimens have girders on the abaxial side forming a straight band.
Sclerenchyma in leaf	Cluster I: 4/38 specimens do not	Cluster A: 5/47 specimens do not
margins: Absent = 0;	have sclerenchyma on the leaf	have sclerenchyma on the leaf
Present, comprising a	margins; and 34/38 specimens have	margins; and 42/47 specimens have
couple of fibres = 1; or	sclerenchyma in the leaf margins	sclerenchyma in the leaf margins

present, with a width	comprising a couple of fibres.	comprising a couple of fibres.
less than 3° bundle = 2	Cluster II: 5/21 specimens do not	Cluster B: 3/10 specimens do not
	have sclerenchyma on the leaf	have sclerenchyma on the leaf
	margins; and 16/21 specimens have	margins; and 7/10 specimens have
	sclerenchyma in the leaf margins	sclerenchyma in the leaf margins
	comprising a couple of fibres.	comprising a couple of fibres.
	Cluster III: 1/6 specimens does not	Cluster C: 2/10 specimens do not
	have sclerenchyma on the leaf	have sclerenchyma on the leaf
	margins; and 5/6 specimens have	margins; and 8/10 specimens have
	sclerenchyma in the leaf margins	sclerenchyma in the leaf margins
	comprising a couple of fibres.	comprising a couple of fibres.
The marginal cap:	Cluster I: 17/38 specimens have	Cluster A: 25/47 specimens have
Pointed = 0; Round = 1;	pointed marginal caps; and 21/38	pointed marginal caps; and 22/47
Crescent-shaped, i.e.	specimens have round marginal caps.	specimens have round marginal
sclerenchyma extends	Cluster II: 11/21 specimens have	caps.
shortly along both the	pointed marginal caps; and 10/21	Cluster B: 5/10 specimens have
abaxial and adaxial	specimens have round marginal caps.	pointed marginal caps; and 5/10
sides of the leaf $= 2$	Cluster III: 5/6 specimens have	specimens have round marginal
	pointed marginal caps; and 1/5	caps.
	specimens has round marginal caps.	Cluster C: 5/10 specimens have
		pointed marginal caps; and 5/10
		specimens has round marginal caps.

Chlorenchyma: Radiate	Cluster I: All 38 specimens have	Cluster A: All 47 specimens have
= 0; Irregular $= 1$	radiate Chlorenchyma.	radiate Chlorenchyma.
	Cluster II: All 21 specimens have	Cluster B: All 10 specimens have
	radiate Chlorenchyma.	radiate Chlorenchyma.
	Cluster III: All 6 specimens have	Cluster C: All 10 specimens have
	radiate Chlorenchyma.	radiate Chlorenchyma.
One layer of	Cluster I: All 38 specimens have	Cluster A: All 47 specimens have
Chlorenchyma cells	one layer of Chlorenchyma cells	one layer of Chlorenchyma cells
around bundles $= 0;$	around bundles.	around bundles.
More than one layers =	Cluster II: All 21 specimens have	Cluster B: All 10 specimens have
1	one layer of Chlorenchyma cells	one layer of Chlorenchyma cells
	around bundles.	around bundles.
	Cluster III: All 6 specimens have	Cluster C: All 10 specimens have
	one layer of Chlorenchyma cells	one layer of Chlorenchyma cells
	around bundles.	around bundles.
Radiating mesophyll	Cluster I: 26/38 specimens have	Cluster A: 34/47 specimens have
groups: Separated by	radiating mesophyll groups that are	radiating mesophyll groups that are
irregular Chlorenchyma	separated by irregular Chlorenchyma	separated by irregular
and intercellular air-	and intercellular air-spaces; and	Chlorenchyma and intercellular air-
spaces = 0; Separated	12/38 specimens have radiating	spaces; and 13/47 specimens have
by bulliform and	mesophyll groups that are separated	radiating mesophyll groups that are
colourless cell groups =	by bulliform and colourless cells.	separated by bulliform and

1	Cluster II: 16/21 specimens have	colourless cells.
	radiating mesophyll groups that are	Cluster B: All 10 specimens have
	separated by irregular Chlorenchyma	radiating mesophyll groups that are
	and intercellular air-spaces; and 5/21	separated by irregular
	specimens have radiating mesophyll	Chlorenchyma and intercellular air-
	groups that are separated by	spaces.
	bulliform and colourless cells.	Cluster C: 5/10 specimens have
	Cluster III: All six specimens have	radiating mesophyll groups that are
	radiating mesophyll groups that are	separated by irregular
	separated by irregular Chlorenchyma	Chlorenchyma and intercellular air-
	and intercellular air-spaces.	spaces; and 5/10 specimens have
		radiating mesophyll groups that are
		separated by bulliform and
		colourless cells.
Radiating cells:	Cluster I: 28/38 specimens have	Cluster A: 36/47 specimens have
Reduced to two strips	radiating cells that are reduced to	radiating cells that are reduced to
of Chlorenchyma by	two strips of Chlorenchyma by large	two strips of Chlorenchyma by large
large girders or	girders or colourless parenchyma;	girders or colourless parenchyma;
colourless parenchyma	and 10/38 specimens have radiating	and 11/47 specimens have radiating
= 0; Completely	cells that are completely surrounding	cells that are completely
surrounding the bundles	the bundles.	surrounding the bundles.
= 1	Cluster II: 18/21 specimens have	Cluster B: All 10 specimens have

	radiating cells that are reduced to	radiating cells that are reduced to
	two strips of Chlorenchyma by large	two strips of Chlorenchyma by large
	girders or colourless parenchyma;	girders or colourless parenchyma.
	and 3/21 specimens have radiating	Cluster C: 7/10 specimens have
	cells that are completely surrounding	radiating cells that are reduced to
	the bundles.	two strips of Chlorenchyma by large
	Cluster III: 3/6 specimens have	girders or colourless parenchyma;
	radiating cells that are reduced to	and 3/10 specimens have radiating
	two strips of Chlorenchyma by large	cells that are completely
	girders or colourless parenchyma;	surrounding the bundles.
	and 3/6 specimens have radiating	
	cells that are completely surrounding	
	the bundles.	
Colourless cells: Absent	Cluster I: 11/38 specimens do not	Cluster A: 14/47 specimens do not
= 0; Present $= 1$	have colourless cells; and 27/38	have colourless cells; and 33/47
	specimens have colourless cells.	specimens have colourless cells.
	Custer II: 7/21 specimens do not	Custer B: 7/10 specimens do not
	have colourless cells; and 14/21	have colourless cells; and 3/10
	specimens have colourless cells.	specimens have colourless cells.
	Cluster III: 4/6 specimens do not	Cluster C: 1/10 specimens does not
	have colourless cells; and 2/6	have colourless cells; and 9/10
	specimens have colourless cells.	specimens have colourless cells.

Colourless cells:	Cluster I: All 27 specimens have	Cluster A: All 33 specimens have
Closely associated with	colourless cells that are closely	colourless cells that are closely
bulliform cells = 0; Not	associated with bulliform cells.	associated with bulliform cells.
closely associated with	Cluster II: 13/14 specimens have	Cluster B: 2/3 specimens have
bulliform cells = 1	colourless cells that are closely	colourless cells that are closely
	associated with bulliform cells; and	associated with bulliform cells; and
	1/14 specimens has colourless cells	1/3 specimens has colourless cells
	that are not closely associated with	that are not closely associated with
	bulliform cells.	bulliform cells.
	Cluster III: All 2 specimens have	Cluster C: All 9 specimens have
	colourless cells that are closely	colourless cells that are closely
	associated with bulliform cells.	associated with bulliform cells.
Colourless cells:	Cluster I: All 27 specimens have	Cluster A: All 33 specimens have
Smaller than bulliform	colourless cells that are smaller than	colourless cells that are smaller than
cells; are uninflated,	the bulliform cells.	the bulliform cells.
often the same size as	Cluster II: All 14 specimens have	Cluster B: All 3 specimens have
the Chlorenchyma cells	colourless cells that are smaller than	colourless cells that are smaller than
= 0; Have similar size	the bulliform cells.	the bulliform cells.
or shape as the	Cluster III: All 2 specimens have	Cluster C: All 9 specimens have
bulliform cells, and are	colourless cells that are smaller than	colourless cells that are smaller than
inflated = 1	the bulliform cells.	the bulliform cells.
Colourless cells:	Cluster I: All 27 specimens have	Cluster A: All 33 specimens have

Narrower than the	narrower colourless cells than the	narrower colourless cells than the
bulliform cells = 0; Are	bulliform cells.	bulliform cells.
the same width as the	Cluster II: All 14 specimens have	Cluster B: All 3 specimens have
bulliform cells $= 1$	narrower colourless cells than the	narrower colourless cells than the
	bulliform cells.	bulliform cells.
	Cluster III: All 2 specimens have	Cluster C: All 9 specimens have
	narrower colourless cells than the	narrower colourless cells than the
	bulliform cells.	bulliform cells.
Only one extension of	Cluster I: All 27 specimens have	Cluster A: All 33 specimens have
colourless cells from	only one extension of colourless cells	only one extension of colourless
each bulliform cell	from each bulliform cell group.	cells from each bulliform cell group.
group = 0; Two	Cluster II: All 14 specimens have	Cluster B: All 3 specimens have
extensions, one on	only one extension of colourless cells	only one extension of colourless
either side $= 1$	from each bulliform cell group.	cells from each bulliform cell group.
	Cluster III: All 2 specimens have	Cluster C: All 9 specimens have
	only one extension of colourless cells	only one extension of colourless
	from each bulliform cell group.	cells from each bulliform cell group.
Bulliform cells: Absent	Cluster I: All 38 specimens have	Cluster A: All 47 specimens have
= 0; Present in groups =	bulliform cells occurring in groups.	bulliform cells occurring in groups.
1; present, but not in	Cluster II: All 21 specimens have	Cluster B: All 10 specimens have
groups = 2	bulliform cells occurring in groups.	bulliform cells occurring in groups.
	Cluster III: All 6 specimens have	Cluster C: All 10 specimens have

	bulliform cells occurring in groups.	bulliform cells occurring in groups.
Bulliform cells occupy	Cluster I: 4/38 specimens have	Cluster A: 5/47 specimens have
less than ¼ of the leaf	bulliform cells that occupy less than	bulliform cells that occupy less than
thickness = 0; Occupy	¹ / ₄ of the leaf thickness; and 34/38	¹ / ₄ of the leaf thickness; and 42/47
more than ¹ / ₄ of the leaf	specimens have bulliform cells that	specimens have bulliform cells that
thickness = 1	occupy more than ¹ / ₄ of the leaf	occupy more than ¼ of the leaf
	thickness.	thickness.
	Cluster II: 4/21 specimens have	Cluster B: All 10 specimens have
	bulliform cells that occupy less than	bulliform cells that occupy more
	¹ / ₄ of the leaf thickness; and 17/21	than ¹ / ₄ of the leaf thickness.
	specimens have bulliform cells that	Cluster C: 4/10 specimens has
	occupy more than ¹ / ₄ of the leaf	bulliform cells that occupy less than
	thickness.	¹ / ₄ of the leaf thickness; and 6/10
	Cluster III: 1/6 specimens has	specimens have bulliform cells that
	bulliform cells that occupy less than	occupy more than ¹ / ₄ of the leaf
	$\frac{1}{4}$ of the leaf thickness; and $\frac{5}{6}$	thickness.
	specimens have bulliform cells that	
	occupy more than ¹ / ₄ of the leaf	
	thickness.	
Outer walls of typical	Cluster I: All 38 specimens have	Cluster A: All 47 specimens have
epidermal cells:	slightly thickened outer walls of the	slightly thickened outer walls of the
Slightly thickened or	epidermal cells.	epidermal cells.

with a thin cuticle $= 0$;	Cluster II: All 21 specimens have	Cluster B: All 10 specimens have
Not thickened with a	slightly thickened outer walls of the	slightly thickened outer walls of the
very thin cuticle = 1	epidermal cells.	epidermal cells.
	Cluster III: All 6 specimens have	Cluster C: All 10 specimens have
	slightly thickened outer walls of the	slightly thickened outer walls of the
	epidermal cells.	epidermal cells.