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ABSTRACT 
Oxytocin is primarily synthesised in the brain and is widely known for its role in lactation 

and parturition after being released into the blood from the posterior pituitary gland. 

Nevertheless, peripheral tissues have also been reported to express oxytocin. Using 

systemic injection of a recombinant adeno-associated virus (rAAV) vector, we 

investigated the expression of the green fluorescent protein Venus under the control 

of the oxytocin promoter in the gastrointestinal tract, pancreas and testes of adult rats. 
Here we confirm that the vector infects oxytocin neurones of the enteric nervous 

system (ENS) in ganglia of the myenteric and submucosal plexuses. Venus was 

detected in 25–60% of the ganglia in the myenteric and submucosal plexuses 

identified by co-staining with the neuronal marker PGP9.5. Oxytocin expression was 

also detected in the islets of Langerhans in the pancreas and the Leydig cells of the 

testes. Our data illustrate that peripheral administration of the viral vector represents 

a powerful method to selectively label oxytocin-producing cells outside the brain. 

 
INTRODUCTION 

The pituitary hormone oxytocin is best known for its role in smooth muscle 

contraction after secretion from the pituitary gland into the bloodstream. In addition to 

its classical roles in parturition and milk ejection and its role in electrolyte homeostasis 

in rodents (1), oxytocin has emerged as a regulator of the brain-gut axis. Oxytocin is 

involved in energy homeostasis (2, 3), and hormonal signals released by the 

gastrointestinal tract in response to food intake (4), including cholecystokinin (CCK), 

secretin(5) and insulin(6), modulate the activity of oxytocin neurones. 

Conversely, there is evidence that oxytocin is involved in regulating gut motility, 

enteric neuronal activity, mucosal homeostasis, intestinal permeability and 

inflammation (7). Oxytocin receptors are expressed in several cell types of the rat 
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intestine, including villi enterocytes and neurones of the myenteric and submucosal  

plexuses (8, 9). Oxytocin given systemically stimulates gastric emptying (10) and colon  

motility, and exogenous oxytocin can restore peristaltic movements in patients with  

gastric atony (11). Disruption of oxytocin signalling in oxytocin receptor-deficient mice  

results in increased excretion of faeces and faecal water content, and increased total  

bowel transit time (7). Finally, administration of the oxytocin receptor antagonist  

atosiban decreases gastric emptying in humans (12).   

 Oxytocin is also synthesised locally in peripheral organs including the gut. The  

enteric nervous system (ENS) contains more than 400 million neurones in humans.  

These neurones are organised in networks of interconnected ganglia located in the  

walls of the gastrointestinal tract, constituting both the myenteric (Auerbach) and  

submucosal (Meissner) plexuses. Immunohistochemical studies have reported  

oxytocin immunoreactivity throughout the rat gastrointestinal tract and, in colchicine- 

treated rats, immunoreactive oxytocin was found in neurones of the ENS (8). In the  

human, PCR and immunohistochemistry respectively showed expression of mRNA for  

the oxytocin precursor and of the peptide in different segments of gastrointestinal tract  

(13, 14).  

In addition to the gut (13, 14), there is evidence that oxytocin is also synthesised  

in other peripheral organs, including the uterus (15), placenta, testis (16), pancreas  

(17, 18), and heart (19) along with its receptor expression in the same peripheral  

organs (13, 18, 20-22).   

 Several pieces of evidence also suggest that oxytocin can act directly at the  

pancreas in several species, stimulating insulin and glucagon secretion (23-25). In  

mice and humans, oxytocin has been shown to potentiate glucose-stimulated insulin  

secretion and also to stimulate beta-cell proliferation and prevent apoptosis (17). 

Oxytocin-receptor deficient mice showed an absence of oxytocin’s protective effect 

against cytokine stress in isolated pancreatic islets, and impaired insulin secretion in 

response to a glucose tolerance test after exposure to a high-fat diet (18). 

In human and rat testes extracts, immunoassays revealed a high concentration 

of oxytocin, suggesting either local peptide synthesis or uptake and accumulation by 

the tissue (26). Subsequent studies have revealed expression of the oxytocin gene in 

several species including human (27), bovine (28) and rat (29). In bovine and sheep 

testes, oxytocin mRNA appears to be expressed at a moderate level in Sertoli cells, 

but immunoreactive oxytocin and neurophysin 1 appear to be confined to the Leydig 
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cells, which contain no oxytocin mRNA detected by in situ hybridisation. Thus it seems 

that the Sertoli cells contain larger amounts of mRNA but express little or no oxytocin 

because of a post-translational block, but the Leydig cells may produce low levels of 

functional transcripts (30), although in monkeys oxytocin mRNA is expressed at 

highest levels in Leydig cells (31).  

 However, immunohistochemical studies may detect peptide that is taken up by 

tissues rather than synthesised there or may reflect cross-reaction of antibodies with 

other related antigens. Moreover, detection of mRNA by PCR does not necessarily 

imply the occurrence of any significant amount of synthesis. For example, the pregnant 

rat uterus expresses very large quantities of oxytocin mRNA – about 70 times the total 

hypothalamic content (15) – but the uterine mRNA differs from hypothalamic mRNA in 

having a truncated poly-A tail, and this appears to render it virtually inactive: the 

pregnant rat uterus contains just 2 ng of oxytocin per g net weight of tissue, compared 

to a total pituitary content of about 1.5 µg. These low levels of peptide may be 

accounted for binding of circulating oxytocin of pituitary origin to the highly abundant 

oxytocin receptors expressed in the pregnant rat uterus, and there is no evidence that 

significant amounts of oxytocin reach the circulation from the uterus. 

Accordingly, we sought an alternative way to test whether oxytocin is expressed 

in the gastrointestinal tract, pancreas and testes. In the present study, we used 

systemic administration of cell-specific AAV driving Venus as a brightest version of 

GFP under the control of the oxytocin promoter to characterise the expression and 

distribution of oxytocin-producing cells in selected peripheral tissues.  

 

METHODS 
Animals  

Adult male Sprague Dawley rats weighing 330 - 370 g were kept on a 12:12 h  

light/dark cycle (lights on at 07.00 h) at a room temperature of 20 - 21 °C, with ad  

libitum access to water and food. Five rats were injected intraperitoneally (i.p.) with the  

AAV, which expressed Venus under the control of the oxytocin promoter (32). Fifty  

microliters of the concentrated virus solution were added to 250 µl of sterile saline,  

and a total volume of 100 µl/kg was administered per rat. Based on previous pilot  

experiments, rats were then left for 6 weeks to allow transduction of target cells and  

the expression of Venus. All of the procedures were conducted in accordance with the  
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UK Home Office Animals Scientific Procedures Act 1986, and a project licence  

approved by the Ethical Committee of the University of Edinburgh.  

Cloning of rAAV vector and production of rAAV  

The rAAV vector was cloned as described previously (32). Briefly, for  

generating the rAAV with specific expression in oxytocin cells, we used the software  

BLAT from University of California, Santa Cruz (http://genome.ucsc.edu/cgi- 

bin/hgBlat) and selected a conserved 2.6 kb promoter directly upstream of the oxytocin  

gene exon 1. This DNA was amplified from an EcoRI-linearized BAC clone RP24- 

388N9 (RPCI-24 Mouse, BACPAC Resources) using a 5′ primer containing a NotI- 

restriction site (5′-ATTAGCGGCCGCAGATGAGCTGGTGAGCATGTGAAG  

ACATGC-3′) and a 3′ primer with a SalI-restriction site (5′-ATTAGTCGACGGCGA  

TGGTGCTCAGTCTGAGATCCGCTGT-3′), subcloned into pBlueScript SK and further  

cloned into the rAAV2 backbone, pAAV-αCaMKII-htTA, thereby substituting the  

αCaMKII-promoter. The resulting rAAV expression vector was used to exchange the  

htTA-gene for the gene of interest, Venus.   

Production and purification of rAAV (Serotype 1/2) was as described (33). rAAV  

genomic titers were determined with QuickTiter AAV Quantitation Kit (Cell Biolabs)  

and RT-PCR using the ABI 7700 cycler (Applied Biosystems). rAAVs titers were  

∼1010 genomic copies per μl.  

  

Tissue collection  

Six weeks after i.p. injection of the AAV, rats were euthanised with sodium  

pentobarbital (160 mg/kg) and were then transcardially perfused with 350 ml of  

heparinised (20 U/ml) 0.9 % saline solution to flush out blood. The gastrointestinal  

tract was then removed surgically, dissected into its different regions (i.e. stomach  

(antrum), duodenum, ileum, jejunum, colon) and the luminal content gently flushed out  

with 0.1 M phosphate buffer (PB) solution (pH 7.4), using an 18 G needle. The  

pancreas and testes were also removed and with the gut regions fixed by immersion  

in paraformaldehyde (PFA) 4 % in 0.1 M PB for 24 h which was then changed to  

increasing concentrations (10% every 24 h) of sucrose solution in 0.1M PB, to reach  

a final concentration of 30% 48 h after fixation. The tissue was kept at 4 °C in the 30%  

sucrose solution for at least 72 h.  
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Small pieces of tissue from each gut region were embedded in Cryo-M-Bed (Bright 

Instrument Co. Ltd. Huntingdon, UK) and frozen rapidly using dry ice, then 15-µm 

sections were cut transversally using a cryostat and mounted onto super frost slides. 

Other larger pieces of tissue were prepared for longitudinal sections Swiss roll 

technique, adapted from Williams et al. (34). Briefly, the pieces of fixed tissue were 

cut along their length with spring scissors and gently opened. One end was then 

gripped with self-closing forceps and the intestines gently rolled evenly around the 

forceps ensuring the rolls were not too tight and edges were kept flush. The completed 

roll was secured with a 30 G needle and the tissue frozen in Cryo-M-Bed and cut into 

15-µm sections using a cryostat. 

This allowed us to examine the expression of oxytocin in both myenteric and 

submucous plexuses within different segments of the gastrointestinal tract, while 

preserving its morphology, and so one in every 8 sequentially cut sections (i.e. 120 

µm) was mounted on the slide to avoid double counting of neural structures. 

Pieces of pancreatic and testicular tissue were placed in Tissue 

Tek® Cryomold® moulds, embedded in Tissue Tek® OCT cryo-embedding 

compound, quickly frozen and cut into sections of 12 µm thickness. Sections were 

mounted onto gelatine-subbed slides and stored at -20°C prior to immunostaining.   

 

Immunohistochemistry  

The slides containing tissue sections were washed between steps in 0.1 M PB 

+ 0.3 % Triton X-100 (PB-T; pH 7.4). Sections were incubated in blocking buffer 

solution containing 10% normal goat serum (NGS) and 1% bovine serum albumin 

(BSA) in 0.1 M PB-T (pH 7.4) for 1 h at room temperature, and were then incubated 

for 48 h at 4°C with primary antibodies (Table 1) diluted in blocking buffer. After 

incubation, the sections were washed and then incubated for 2 h at room temperature 

with the secondary antibody (Table 1) diluted in blocking buffer. After this, the slides 

were washed and incubated with 4′,6-diamidino-2-phenylindole (DAPI) diluted in 0.1 

M PB (pH 7.4) to concentration 1:30,000 for 5 min. After washing with PBS, Vector® 

TrueVIEW® Autofluorescence quenching kit (SP-8400, Vector Laboratories) was 

applied for 5 minutes followed by an additional PBS wash. Slides were then cover-

slipped using Permafluor mounting medium (cat #TA-030-FM; Fisher Scientific, 

Loughborough, UK). Incubations were carried out in a light-protected humidity 

chamber. To check the specificity of the immunoreactions, negative controls were 
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included in all immunofluorescence histochemistry experiments by omitting the 

addition of the primary antibody; no immunofluorescence signal was detected in these 

sections (e.g. Fig. 5A).  

As the gastrointestinal tract tissue exhibited green auto-fluorescence, the 

expression of Venus was confirmed immunohistochemically (anti-GFP) and the 

immunoreaction visualised using Alexa Fluor 546 (orange) secondary antibody, then 

this signal was digitally transformed into green colour to make the labelling of Venus 

and protein gene product 9.5 (PGP9.5; Alexa Fluor 647 — red) more obvious. 

Double immunochemistry was performed for Venus and oxytocin-neurophysin 

by incubating sections with the two primary antibodies simultaneously (Table 1). The 

immunoreactions were revealed following the same procedures as indicated above. 

For oxytocin-neurophysin immunostaining, sections were incubated in mouse anti-rat 

PS38-oxytocin-neurophysin monoclonal antibody kindly provided by Prof H. Gainer 

(NIH, Bethesda, MD, USA) diluted 1:5000. This antibody recognises the heterologous 

parts of oxytocin-neurophysin but not the nine-amino acid oxytocin peptide (35). 

Sections were incubated in 0.1 M PB for 1 h at room temperature in biotinylated horse 

anti-mouse IgG antibody (Vector Laboratories, Inc., Peterborough, UK). To visualise 

the oxytocin-neurophysin immunoreactivity, a solution containing 0.025% 

diaminobenzidine and 0.015% H2O2 in 0.1 M Tris was used.  

Immunofluorescence histochemistry on brain sections was carried out with a 

similar protocol, but using free-floating sections. After staining, sections were mounted 

on gelatinised slides and cover-slipped using Permafluor mounting medium (cat #TA-

030-FM; Fisher Scientific, Loughborough, UK). 

 

Image acquisition and data analysis   

Images were acquired using a Zeiss LSM800 confocal microscope. For each 

anatomical region of the gastrointestinal tract, four sections were analysed by 

capturing four randomly selected non-overlapping microscopic fields at 10x 

magnification (1277.8 x 1277.8μm) in each section. All the images captured contained 

PGP9.5 -labelled ganglia that were identified by visualising only the red channel, so 

as to avoid bias for selecting areas with Venus-labelled cells. Then, using a PC running 

Fiji version 1.52n, ganglia of enteric neurones were confirmed as positive and counted 

when they contained at least one nucleus stained with DAPI completely engulfed by  

PGP9.5 (red) fluorescence. Identified nerve structures were then analysed for  
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colocalization of Venus immunofluorescence. Three investigators independently 

analysed and quantified the number of ganglia containing neurones that expressed 

Venus. 

The numbers of PGP/DAPI and PGP/DAPI/Venus-labelled ganglia were 

counted and the percentage of colocalization calculated in each image (microscopic 

field) and averaged for each section. The values in each section were averaged for 

the different gut regions in each rat, and the values are expressed as percentage of 

ganglia expressing Venus per microscopic field. Data are means ± SEM; only 

descriptive statistics were used in this study.  

 
RESULTS 

We used chimeric serotype 1/2 AAV, which permeates the blood-brain barrier 

poorly and thus has limited access to the brain after systemic injection. The 

hypothalamic magnocellular oxytocin neurones are the main source of oxytocin 

produced within the brain. There was little Venus expression in the hypothalamic 

paraventricular nucleus (data not shown) but several neurones in the rostral portion of 

the supraoptic nucleus (Fig. 1) were positive for Venus. All Venus-expressing 

neurones were double-labelled for oxytocin-neurophysin, indicating promotor-specific 

expression of Venus despite the low permeability of the AAV.  

 

Identification of nerve structures in the gut  

To reveal the presence of nerve structures in sections of gastrointestinal tract 

we initially used NeuN and PGP9.5 antibodies as markers of mature neurones. 

Labelling by the NeuN antibody was limited and patchy and it was therefore not used 

subsequently. PGP9.5 is expressed in the cytoplasm of the diffuse neuroendocrine  

system (36) and strong labelling was found in the plexuses of the ENS, as reported  

previously (37-40). In our study the PGP9.5 antibody also labelled cells and nerve  

structures, and these were detected throughout the different regions of the gut (Fig.  

2). As described previously (41), autofluorescence often occurs from inherent tissue  

components (collagen, elastin, lipofuscin, and red blood cells) and the extent and  

intensity of autofluorescence background made it difficult to distinguish the virally  

transduced cells in the tissues from the background signal (Fig. 2A-C). The use of  

antibody against GFP (Venus) for signal amplification and adopting an additional step  
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in the immunohistochemistry protocols to quench the autofluorescence drastically 

improved image quality in the later parts of the study (Fig. 2D,E). 

 

Oxytocin-neurophysin expression in the rat gastrointestinal tract 

In the myenteric and submucosal plexuses (Fig. 3A), Venus-positive cells were 

detected in ganglia and also in some single cells. In the sections analysed, no Venus-

positive cells were found outside the submucosal layer and the boundary separating 

the circular and longitudinal muscular layers (Fig. 2). 

In the myenteric plexus, Venus immunosignal was detected in 41±3% of the 

ganglia (range 35 - 46%; n = 5 rats); the highest number of Venus-positive ganglia 

was found in the duodenum and the lowest in the jejunum. In the submucosal plexus, 

the average number of ganglia Venus-immunopositive ganglia was 41±7 % (range 25 

- 60%; n = 5 rats); the highest percentage of nerve structures containing Venus-

positive cells was found in the colon, and the lowest was found in the jejunum (Fig. 

3B). We also detected Venus-positive cells in the myenteric plexus of the stomach 

antrum in a small number of sections (not shown), but this was not quantified. 

Notably, oxytocin-neurophysin immunosignal overlapped Venus 

immunoreactivity in all cell types of the gastrointestinal tract (Fig. 2E). 

 

Oxytocin-neurophysin expression in the pancreas and testes 

Venus-immunopositive cells in pancreas were restricted to its endocrine part 

and were exclusively detected in the islets of Langerhans (Fig. 4A-C), confined to the 

cells also labelled with an antibody against oxytocin (Fig. 4B). Furthermore, Venus 

and oxytocin immunosignals were colocalized with a few insulin immunoreactive cells 

in Langerhans islets (Fig. 4C,D). 

The analysis of testes revealed that the Venus-immunopositive cells are located 

in the interstitial spaces (Fig. 5B), predominantly in the clusters of Leydig cells. 

Oxytocin expression in those cells was then confirmed immunohistochemically using 

oxytocin-neurophysin antibody (Fig. 5C). 

 

DISCUSSION  
Initially, our study aimed to investigate the expression of oxytocin in the nerve 

structures of the rat gastrointestinal tract. Accordingly, we found oxytocin-neurophysin 

expression in the myenteric and submucosal plexuses of the ENS in all the regions of 
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the gut analysed. These results confirm previous studies reporting the expression of 

oxytocin in the gastrointestinal tract in different species (8, 13, 14, 42).  

In our study, we quantified ganglia containing labelled cells and found that 

Venus was expressed in approximately 40% of both myenteric and submucosal 

ganglia co-labelled with PGP9.5, the marker for enteric neurones. In the guinea pig 

~15% of the myenteric and ~50% of the submucosal ganglion neurones have been 

reported to express immunoreactive oxytocin (42); in the myenteric plexus, 

immunoreactive oxytocin was expressed exclusively in the intrinsic enteric afferent 

neurones. In biopsies taken from the gastrointestinal tracts of elderly humans,10-30% 

of cells of the myenteric plexus were reported to express immunoreactive oxytocin, 

and in the submucosal plexus, immunoreactive oxytocin was reported in 30-50% of 

neurones in the ileum and 50-70 % of neurones in the colon (14).  

Oxytocin-expressing neurones in the myenteric and submucosal ganglia are 

believed to project their nerve fibres to the inner circular muscle layer. In the guinea 

pig, a high density of oxytocin immunoreactive nerve fibres has also been described 

around the glands in the mucosa of the intestine and colon, and oxytocin here might 

act on the intestinal epithelium and gland epithelium to influence absorption and 

secretion (42). 

Our anatomical findings may offer the technical prospect of studying the effects 

of oxytocin on gut motility and transit (21, 43). These effects might be mediated by 

release of oxytocin from the posterior pituitary gland, and some gut-related peptides, 

such as CCK, secretin and insulin, stimulate oxytocin release into the bloodstream (5, 

6, 44). However, it is possible that oxytocin synthesised within the gastrointestinal tract 

modulates functions in an autocrine/paracrine manner. Supporting this notion, 

oxytocin been shown to induce relaxation of the colon (45, 46), and to reduce the 

sensitivity of mesenteric afferents (47) in vitro by a mechanism that involves the 

release of nitric oxide by enteric cells expressing oxytocin receptors. Furthermore, 

disruption of oxytocin signalling has been associated with an increased myenteric 

neuronal response to cholera toxin in vitro, and reduced villus height and crypt depth 

in vivo (7). In line with this, oxytocin application attenuates the expression of transcripts 

encoding inflammatory pathway genes in a necrotising enterocolitis mice model (48), 

and also the activation of intracellular signalling pathways related to inflammatory 

response following lipopolysaccharide application to Caco2BB gut cells (49). 

However, the physiological significance of endogenous oxytocin in the gastrointestinal 
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tract in health and disease needs to be further evaluated by available viral vector 

means.  

Exploring our work to other tissues we surprisingly also found expression of 

oxytocin/Venus-positive cells in rat pancreatic islets. Detection and quantification of a 

higher content of oxytocin in human and rat pancreatic extracts than that present in 

plasma has led to the notion of locally synthesised oxytocin (50). However, Watanabe 

et al. (18) found abundant oxytocin receptor mRNA in the mouse pancreatic islets, 

they found only trace levels of oxytocin mRNA. Nevertheless, Mohan et al. (17) 

reported oxytocin immunostaining in cells of isolated mouse islets, mostly in 

insulin-containing cells; in the present study, we detected the immunohistochemical 

expression of both Venus and oxytocin in cells of the rat pancreatic islets, suggesting 

that they express functional oxytocin transcripts, but we found relatively little co-

localisation of insulin and oxytocin.  

Furthermore, the analysis of testes revealed oxytocin/Venus immunosignal in 

Leydig cells, in line with previous studies reporting the expression of oxytocin mRNA 

and peptide in rat and bovine testes (30, 51, 52). Oxytocin in the testis is thought to 

have a role in regulating reproductive and endocrine functions, including modulation 

of steroid metabolism, contractility of the seminiferous tubules, and seasonal changes 

in the reproductive system in some species (53-55). 

Recombinant adeno-associated viruses (rAAV) are normally delivered directly 

into the brain to study central neuronal systems, which circumvent the blood-brain 

barrier that restricts the access of several molecules including most of the rAAV 

serotypes (56, 57). In accordance, we detected only few Venus/oxytocin positive 

neurons in the rostral part of the supraoptic nucleus and the PVN.   

In the hypothalamus, oxytocin is translated from a three-exon gene into a large 

precursor consisting of a pre-pro-hormone of 125 amino acid residues: exon A 

encodes a 19-amino acid signal peptide, the 9-amino acid biologically active oxytocin 

peptide, and the first 9 amino acids of its associated neurophysin carrier; the core 

section of the neurophysin and its COOH-terminal 16 amino acid residues are 

encoded by exons B and C, respectively (58). In the cell bodies of oxytocin neurones, 

this precursor molecule is packaged into large dense-core vesicles, each containing 

about 80,000 molecules of the precursor. These vesicles are transported down the 

axons to the posterior pituitary from where they will be secreted into the systemic 

circulation, and en route the precursor molecule is processed enzymatically to yield 
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various fragments including oxytocin itself and its associated neurophysin (59, 60). 

Thus in oxytocin-expressing cells oxytocin is present at equimolar concentrations with 

its associated neurophysin. However the (much larger) neurophysin molecule is much 

easier to detect immunocytochemically (35). 

The immunohistochemical detection of oxytocin itself in non-hypothalamic 

sources (where the peptide is synthesised at low rates) and axonal pathways has been 

difficult and commonly requires colchicine treatment to accumulate the peptide 

vesicles within the cell bodies (61), which in the rat gut enhances oxytocin punctuate 

staining in the neuropile of myenteric ganglia and some cell bodies (8). Otherwise, 

Venus is ubiquitously distributed throughout the cytoplasm of infected oxytocin cells, 

and has previously been shown to be a sensitive and specific method for identifying 

neuronal projections that have escaped conventional immunohistochemical detection 

(32, 62). Whether expression of the oxytocin gene, as reflected by Venus expression, 

is consistently accompanied by the expression of biologically active oxytocin remains 

to be determined as the antibody against the oxytocin-associated neurophysin used 

in this study recognises both the precursor and mature forms of neurophysin (35). 

Further studies should consider the use of specific antibodies targeting the (bioactive) 

oxytocin nonapeptide as reported recently (63), and the use of oxytocin-deficient 

animals as an additional (negative) control for Venus and oxytocin-neurophysin 

labelling in peripheral tissues. 

The results presented here demonstrate that viral vector-based systems are 

powerful tools to label peripheral peptide-synthesising cells, which overcomes 

problems of detection of peptides of interest using conventional 

immunohistochemistry. Future studies using genetic expression of fluorescence 

markers and manipulation of activity of virally-infected cells by chemo- and optogenetic 

means will allow more thorough interrogation of the function of these cells in 

physiological and pathological conditions both in vitro and in vivo.    
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TABLE AND FIGURE LEGENDS 
 

Table 1: Primary and secondary antibodies used for immunohistochemistry 
 
Antibody Dilution Catalogue # Manufacturer 
Primary    

Rabbit anti-PGP9.5 1:4000 Z511601-2 
Agilent Technologies, 

Cheshire, UK 

Chicken anti-GFP 1:5000 AB13970 Abcam, Cambridge, UK 

Mouse anti-Oxytocin-

neurophysin 
1:5000 PS-38 

Prof H. Gainer (NIH, 

Bethesda, USA)  

Guinea pig anti-

Oxytocin  
1:200 AB51637 Abcam, Cambridge, UK 

Rabbit monoclonal 

anti-Insulin 
1:500 

EPR17539 

(AB181547) 
Abcam, Cambridge, UK 

Secondary    

Alexa Fluor 546 goat 

anti-mouse 
1:500 A-11003 

 

Invitrogen, Paisley, UK 

Alexa Fluor 546 goat 

anti-chicken 
1:500 A-11040 

Alexa Fluor 647 goat 

anti-rabbit 
1:500 A-21245 

Alexa Fluor 488 goat 

anti-chicken 
1:500 A-11039 

Alexa Fluor 546 goat 

anti-rabbit 
1:500 A-11035 

Alexa Fluor 546 goat 

anti-guinea pig 
1:500 A-1107 

Alexa Fluor 647 

donkey anti-rabbit 
1:500 711-605-152-JIR Stratech Scientific, Ely, UK  
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Figure 1: Cell-type expression of Venus in virally-infected oxytocin neurones. A) 
Oxytocin neurones of the rostral supraoptic nucleus expressing Venus under the 

control of the oxytocin promoter (green) 6 weeks after intraperitoneal administration of 

the adeno-associated virus. B) Immunolabelling for oxytocin-neurophysin (red) and C) 
overlay (yellow). OC, optic chiasm. 

 

Figure 2: Immunohistochemistry of Venus and oxytocin expression in the adult 
rat gut. A, B) Examples of ganglia (red) expressing Venus (green, yellow in merged 

images, white arrows) in the A) the myenteric plexus of the ileum, and B) the 

submucosal plexus of the duodenum. C,D) Example of ganglia that do not express 

Venus (yellow arrow) in the myenteric plexus of the colon. E) Example of a viral-

transfected cell (green) in the colon that is also stained by fluorescence histochemistry 

for oxytocin (red). Nuclear marker (DAPI) in blue.  

  

Figure 3: Oxytocin (Venus) expression in the adult rat gut. A) Haematoxylin and 

eosin staining of a section from the duodenum. B) Percentage of PGP9.5-positive 

nerve structures (ganglia) expressing Venus in the myenteric (blue bars) and 

submucosal (orange bars) plexuses of the enteric nervous system in different regions 

of the gut. Each dot represents the (average) value per animal analysed; n=5, mean 

± SEM.   

 

Figure 4: Immunohistochemistry of Venus, oxytocin and insulin expression in 
the adult rat pancreas. A) Examples of islet of Langerhans expressing Venus (green) 

and after signal amplification with antibody against Venus (red), yellow in merged 

images. B) Example of a viral-transfected islet (green) which is also stained by 

fluorescence histochemistry for oxytocin (red). C) Example of a viral-transfected islet 

(green) co-stained for insulin. D) Example for double fluorescence histochemistry for 

insulin (green) and oxytocin (red). Nuclear marker (DAPI) in blue.  

   
Figure 5: Immunohistochemistry of Venus and oxytocin expression in the adult 
rat testes. A) Haematoxylin and eosin staining of a section from the testes B) 
Examples of testes tissue expressing Venus (green) and negative control without 

primary antibody treatment. C) Example of a virally-transfected tissue (green) which is 
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also stained by fluorescence histochemistry for oxytocin (red). The overlay shows 

oxytocin expression in the Leydig cells. Nuclear marker (DAPI) in blue.  
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Figure 1: Cell-type expression of Venus in virally-infected oxytocin neurones . A) Oxytocin 
neurones of the rostral SON expressing Venus under the control of the oxytocin promoter (green) 
6 weeks after of intraperitoneal administration of the adeno-associated virus. B)
Immunolabelling for oxytocin-neurophysin (red) and C) overlay (yellow). OC, optic chiasm.
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Paiva et al., Fig. 2

Ileum

Figure 2: Immunohistochemistry of Venus and oxytocin expression in the adult rat gut. A, B) Examples 
of ganglia (red) expressing Venus (green, yellow in merged images, white arrows) in the A) myenteric 
plexus of the ileum, and B) the submucosal plexus of the duodenum. C,D) Example of ganglia which do 
not express Venus (yellow arrow) in the myenteric plexus of the colon. E) Example of a viral-transfected 
cell (green) in the colon which is also stained by fluorescence histochemistry for oxytocin (red). Nuclear 
marker (DAPI) in blue. 
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Figure 3: Oxytocin (Venus) expression in the adult rat gut. A) Haematoxylin and eosin staining 
of a section from the duodenum. B) Percentage of PGP9.5-positive nerve structures (ganglia) 
expressing Venus in the myenteric (blue bars) and submucosal (orange bars) plexuses of the 
enteric nervous system in different regions of the gut. Each dot represents the (average) value 
per animal analysed; n=5, mean ± SEM.  
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Figure 4: Immunohistochemistry of Venus, oxytocin and insulin expression in the adult rat pancreas. A)
Examples of islet of Langerhans expressing Venus (green) and after signal amplification with antibody 
against Venus (red), yellow in merged images. B) Example of a viral-transfected islet (green) which is also 
stained by fluorescence histochemistry for oxytocin (red). C) Example of a viral-transfected islet (green) 
co-stained for insulin. D) Example for double fluorescence histochemistry for insulin (green) and oxytocin 
(red). Nuclear marker (DAPI) in blue. 
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Paiva et al., Fig. 5
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Figure 5: Immunohistochemistry of Venus and oxytocin expression in the adult rat testes. A)
Haematoxylin and eosin staining of a section from the testes B) Examples of testes tissue expressing 
Venus (green) and negative control without primary antibody treatment. C) Example of a viral-transfected 
tissue (green) which is also stained by fluorescence histochemistry for oxytocin-neurophysin (red). The 
overlay shows oxytocin expression in the Leydig cells. Nuclear marker (DAPI) in blue. 
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