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ABSTRACT

he point at which a loan is in default is posited to be a portfolio-specific, probab-
ilistic, and risk-based "point of no return" beyond which loan collection becomes
sub-optimal if pursued any further. A method is presented for finding a delin-
quency threshold at which the overall loss of a given portfolio is minimised, i.e., loans
are forsaken neither too early nor too late. This method, called the Loss-based Recov-
ery Optimisation across Delinquency (LROD) procedure, incorporates the time value of
money, risk-adjusted costs, and the fundamental trade-off between accumulating arrears

versus forsaking future interest.

The procedure is demonstrated across a range of portfolio compositions and credit
risk scenarios using a simulation-based testbed. The computational results show that
threshold optima can exist across all reasonable values of both the payment probability
(default risk) and the loss rate (loan collateral). Furthermore, the procedure reacts
positively to portfolios afflicted by either systematic defaults (due to economic downturns)

or episodic delinquency (cycles of curing and re-defaulting).

For real-world loans, which are typically right-censored, a forecasting step is proposed
during which the remaining cash flows of each censored account are first ‘completed’
before applying the LROD-procedure. This approach is illustrated using residential
mortgage data from a large South African bank. The empirical results show that riskier
scenario-based forecasts of credit risk yield smaller threshold optima. Furthermore,
censored cash flows are iteratively forecast in an additional Monte Carlo-based step,

thereby analysing the stability of threshold optima yielded by the procedure.

In conclusion, this work can enhance relevant business strategies, improve related
modelling, and help revise the policy design of most banks, especially in tweaking the

quantitative aspects of collection policies.
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CHAPTER

INTRODUCTION

he practice of borrowing and lending has existed for over 4,000 years, having started

with a farmer borrowing seed-grain and promising to repay from his future harvest

with interest. This simple transaction, written on a Sumarian clay tablet, represents
the first-ever codification of trust between two parties. The lender assumes that the farmer will
honour his repayment obligation at some future date, effectively exchanging a modicum of ‘trust’
for a sum of money. In fact, the very word credit is derived from the Latin word creditum, meaning
"to have trusted". Unsurprisingly then, the biggest risk for the lender is that of the borrower not
honouring his obligation, which is formally known as credit risk and explained in Van Gestel and
Baesens (2009, pp. 24-29) and Thomas (2009a, pp. 1). Another aspect of any credit agreement,
as discussed in Finlay (2010, pp. 31-32), is that of time and the uncertainty that it brings to
repayment in general. Beyond repayment, the topic of trust (and its erosion) is deeply embedded
across many banking functions, starting with exchanging deposited commodities for some kind
of receipt that is trusted to be equal in value, e.g., the modern-day ‘promissory’ bank note. As
trade flourished during peace-time (before inevitably crashing again during wars), so too did
the need increase for these custodian banks and their services, as I shall examine in section 2.1
and section 2.3. Increased trade almost surely brings with it a multitude of currencies to be
exchanged, safeguarded, and reissued as loans; all of which reinforce the role of banks throughout

history as trusted intermediaries, financiers, and custodians of wealth.

The non-payment of basic amortising loans typically occurs gradually over time, which
suggests that ‘trust’ also erodes gradually between bank and borrower. Indeed, quantifying credit

risk relies fundamentally on first measuring the extent of eroded trust (or loan delinquency)
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CHAPTER 1. INTRODUCTION

using past records. A few candidate measures exist that are variations of simple accountancy
ratios, of which a few are discussed in Rosenberg and Christen (1999) and in Sah (2015). As a
prominent example, the so-called Contractual Delinquency (CD) measure’ is typically constructed
from the number of days past due (DPD), yielding the number of payments in arrears. In turn,
this CD-measure is extensively used when building statistical models (called credit scorecards)
that predict the risk of a borrower reaching a certain delinquency level. These models are often
implemented in modern-day computer systems that decide automatically whether or not to grant
credit to a new applicant. In fact, the astronomical growth in consumer credit over the last few

decades could not have been possible without a degree of automation, as discussed in section 2.2.

Loan delinquency and measures thereof have become increasingly embedded over time into a
growing array of models beyond the scope of simple scorecards, as I will argue in subsection 3.1.2.
Today, delinquency measurement is often the broad backbone on which banks enact credit and
pricing decisions, devise debt collection strategies, and perform overall risk management, in
addition to its use within risk modelling. However, most applications of the CD-measure require
setting a delinquency threshold beyond which a loan is deemed as in ‘default’. Banks have
commonly specified three payments in arrears (or 90 DPD) as a pragmatic point of ‘default’,
long before the introduction of relevant regulations. That said, this threshold generally ranges
between 30-180 days, supported by managerial discretion and some types of analyses, as explored
in subsection 3.1.3. However, the direct financial implications of any chosen threshold are
generally not considered during typical analyses, especially when developing credit scoring
models. Therefore, and as originally argued in Hand (2001), pursuing modelling excellence
becomes questionable when the constructed outcome variable, itself determined by the default

definition, is inherently quite arbitrary.

Other than simply breaching the aforementioned threshold, default definitions often contain
more qualitative criteria. The definitions may further differ based on the portfolio type and
the context of credit risk modelling: either unexpected or expected credit losses. However, the
international standards that govern either context are enforced to varying degrees by individual
regulators, with some examples thereof explored in subsection 3.1.1. Specifically, unexpected loss
modelling is largely regulated by the Basel IT Capital Accords?, while expected loss modelling is
mostly managed by the IFRS 9 accounting standard?, which focuses less on extreme risk events

than Basel II. Accordingly, ‘default’ (and/or the regulatory threshold itself) may differ across

IThis measure is known by a few names, e.g., payments (or months/time) in arrears, arrears category, and missed
payments. However, it is called the ‘CD’-measure throughout this study, or referred to by its mathematical form as the
go-measure (defined later).

2Amongst other things, these accords prescribe the way of setting capital aside that is intended to absorb
unexpected losses during liquidity crises, as discussed in sections 2.4-2.5.

3IFRS 9 articulates a set of principles for modelling the expected credit loss. Fundamentally, future loan write-offs
should be offset by keeping an adequate level of loss provisions in advance, barring catastrophic unexpected losses
that should rather be covered by Basel’s capital buffer.

20f 178



competing jurisdictions, which certainly complicates any related modelling for multinational
banks. Yet even if the threshold is decreed to be the same value across all nations, there is
little objective evidence to support such a value beyond simple discretion and crude analysis.
Furthermore, the acquisition, merging, and sale of loan portfolios (or portions thereof) present
another challenge. So-called ‘legacy’ definitions from the previous owners can certainly conflict
with that of the new owner, which implies that multiple definitions may run concurrently in
the same portfolio. Consequentially, the very idea of ‘default’ has arguably become a vague and

incoherent concept in trying to serve so many ‘masters’ at once.

The original premise of a default definition is to reach a so-called "point of no return"”, beyond
which loan repayment becomes extremely doubtful. Every unpaid instalment (or portion thereof)
erodes the trust between bank and borrower, which is only tolerable up to a point, as argued in
section 3.2. This ambiguous point may itself differ across portfolios and even banks, presumably
due to differing risk appetites and market conditions. Having reached this point, the bank
effectively assumes that the obligor’s delinquency will perpetuate if the loan is kept. Therefore,
the lender now pursues the immediate and maximal recovery of debt (including seizing any
collateral), instead of retaining the credit relationship any further. However, a loan may ‘cure’
from default whenever a borrower repays the arrears (regardless of reason), which further casts
doubt on a chosen default threshold as the supposed "point of no return". The challenge hereof
is to find the ideal switching point, i.e., the best time at which the lender should abandon all
hope of repayment. Finding this point using a delinquency measure is convenient since past loan
performance can be projected into scale-invariant delinquency progressions across loans, without

losing any behavioural information.

Owing to the difficulties of defining ‘default’ precisely, I explore a more fundamental meaning
of ‘default’ in section 3.2 as the portfolio-dependent, probabilistic, and risk-based "point of no
return” beyond which loan collection becomes sub-optimal if pursued. The ‘default’ state is simply
based on breaching a certain delinquency threshold using a given delinquency measure, so that
the "net cost" of each candidate threshold can be assessed. A loss basis (instead of profit) is
sensible since forsaking lent capital will generally incur a loss of some kind, rarely a profit.
Regardless, too strict a threshold will surely marginalise accounts that would have resumed
repayment (or cured from ‘default’), had the bank not foreclosed (or charged-off) that soon. A loan
may also experience multiple episodes of ‘redefaulting’ and curing, which is further exacerbated
by a threshold that is too strict. Conversely, too lenient a threshold will naively tolerate increasing
arrears at the cost of greater liquidity risk and bigger capital buffers, possibly becoming capital-
inefficient. The goal now becomes to devise an expert system in which these two extremes can
be appropriately offset against each other. Doing so can form a proverbial ‘Goldilocks-zone’ that
contains the ideal delinquency threshold for a portfolio, which translates into the ‘best’ time for

loan recovery. This concept is illustrated in Fig. 1.1 using the arrears amount (proportional) as a
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high-level threshold, including two extreme choices thereof.

mm [Loan 1 arrears (USD) = ] oan 2 arrears (USD) Threshold 1 (too strict) =eeee= Threshold 2 (too lenient)

.............................................................................................................

Loan 2 never defaults under Threshold 2
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Fi1c. 1.1: Illustrating the trade-off associated with two extreme arrears-based
thresholds for two fictional loans of the same size. Threshold 1 is overly strict
for loan 1 given that it cures later; but suitable for loan 2 since it never cures.
Conversely, threshold 2 is overly naive for loan 2, though suitable for loan 1.

The CD-measure is but one way of quantifying loan delinquency and surely alternative
measures exist or can be formulated that better suit a particular portfolio. To this point, a few
flaws of the CD-measure are discussed in section 3.3, followed by giving an improved variant
thereof. Two alternative measures are presented as well, one of my own design, in trying to
quantify delinquency more precisely. In particular, both partial payments and ‘prepayments’ (or
underpayments and overpayments respectively) can make measured delinquency less precise due
to rounding in the CD-measure. Lastly, different measures will likely have different measurement
domains, which suggests that a measurement can mean different things. The choice of measure

therefore presents another dimension when designing an optimisation procedure for this study.

The recovery (or foreclosure/charge-off) decision is therefore conjectured to be a portfolio-wide
optimisation problem of competing risks (and costs). The decision variable is the choice of a
threshold on the domain of a given measure. Within this context, the following set of research

questions are explored:
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Question 1 Can an optimal default point sensibly exist? Is 90+ DPD such an optimal point,

thereby explaining its widespread use?
Question 2 How can the exact timing of the loan recovery decision be optimised, if at all?

Question 3 Are there alternative measures of delinquency (other than the CD-measure)

that can better suit recovery optimisation?

Question 4 How can different delinquency measures be feasibly compared to one another,

especially if their domains (and output) differ fundamentally?

Question 5 Given some optimisation procedure, what are some of the factors that affect

recovery optimisation in general?

Question 6 Is it feasible to optimise the recovery decision for a real-world loan portfolio?

What underlying challenges (if any) exist that may impede optimisation?

Question 7 What factors affect recovery optimisation using real-world data? Given uncer-

tainty, how can the stability of the threshold optima be assessed?

Choose Calm.j.late ] g Choose
loss" of each

delinquency o threshqld with
measure lowest loss
threshold

FiG. 1.2: High-level steps of the contributed LROD-procedure.

A method is developed to explore these research questions, called the Loss-based Recovery
Optimisation across Delinquency (LROD) procedure, presented in section 3.4 and summarised
in Fig. 1.2. Essentially, an ideal portfolio-wide threshold is sought such that loans are forsaken
neither too early nor too late, if at all. To examine recovery optimisation from "first principles",
a simple simulation-based setup (or testbed) is devised in section 4.1. Basic amortising loan
portfolios are randomly generated given a specifiable risk profile. The testbed itself facilitates
drawing quick managerial insight on a portfolio’s optimisation potential, before conducting any
deep data work. This is achieved simply by tweaking the testbed’s simulation parameters. Finally,
the LROD-procedure is demonstrated in section 4.2, having conducted a broad computational
study on the testbed across different parametrisations and delinquency measures. Threshold
optima are successfully found across most levels of default risk and loss risk, as measured by the
probability of payment and loss rate respectively. Furthermore, the procedure reacts positively to
portfolios that suffer from systematic pattern-like defaults (due to economic downturns), as well

as portfolios with episodic delinquency (cycles of curing and re-defaulting).
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F1G. 1.3: Illustrating the increasing right-censoring effect of newer cohorts, which
requires more forecasting than older cohorts in completing a hypothetical 240-
month term portfolio.

Real-world loan portfolios are typically right-censored in that some accounts may not have
reached contractual maturity yet. Older loan cohorts will therefore have more observable data
than newer cohorts, which is unsurprising since most portfolios are actively being grown every
month. However, the LROD-procedure assumes that the underlying portfolio is uncensored. As
a solution, the residual cash flows of each censored account can first be ‘completed’ using an
appropriate forecasting method, as illustrated in Fig. 1.3. To this end, a few forecasting techniques
are outlined in section 5.1. Each technique is calibrated in section 5.2 using a South African
mortgage portfolio, followed by extensive testing and retraining. Recovery optimisation is then
conducted and discussed in section 5.3. Lastly, censored cash flows are iteratively forecast in an
additional Monte Carlo-based step in the procedure. This allows one to analyse the stability of

the optimisation results, which can inspire greater confidence in any found optima when the
variance is low.
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1.1. OVERVIEW OF THE THESIS

1.1 Overview of the thesis

The thesis is structured as follows. Chapter 2 reviews the history of banking from the perspect-
ive of broken trust to provide broad context for the present study. This review includes the
system-wide implications of bank failures, the subsequent regulatory quest for system stabil-
ity, and the increasing role of mathematical modelling in managing financial risks in banking.
Within the ambit of this modelling, the concept of ‘default’ is dissected in chapter 3 towards
developing a more comprehensive and dynamic theory of loan default. The discussion culminates
in the aforementioned LROD-procedure, which formulates the recovery decision’s timing as a
delinquency-based optimisation problem under uncertainty. This problem is then illustrated in
chapter 4 across various portfolio types and dynamics using a comprehensive simulation study.
The results from chapter 4 along with parts of chapter 3 are associated with a research article,
accepted for publication in the journal Expert Systems with Applications with a preprint available
in Botha et al. (2021).

While chapter 4 demonstrates the theoretical viability of the LROD-procedure, chapter 5
examines the real-world application thereof using mortgage data. In particular, a forecasting step
is proposed that remedies some of the challenges related to real-world data, thereby enabling the
practical use of the LROD-procedure. The results from chapter 5 along with parts of chapter 3 are
associated with a second research article, accepted for publication in the Journal of Credit Risk
with a preprint available in Botha et al. (2020). In summary, the quantitative aspects of any retail
bank’s collection policy can be improved, perhaps substantially so, by using the LROD-procedure.
Finally, chapter 6 concludes the study and outlines both the wider implications thereof for credit

risk modelling, as well as possible areas of future research.

C==y==9
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CHAPTER

BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

rust lies latent in the triad of depositor, banker, and borrower. This becomes self-evident

when exploring the rich history of banking across millennia, as surveyed in section 2.1.

Regardless of the exact role of the banker, the prerequisite of financial intermediation
remains that of ‘trust’; whether it be intermediating as a wealth custodian, transactor, exchanger,
or lender. Moreover, history suggests that trust — and indeed trade activity — can only exist within
a stable environment, propped up by the rule of law and its enforcement. Beyond simple banking
functions, I discuss the more recent meteoric rise of consumer credit over the last hundred years
in section 2.2. This astonishing growth is largely attributed to the advances in technology, as well
as improved risk assessments afforded by statistical techniques. In fact, the use of mathematical
and statistical models have become increasingly prevalent in driving a bank’s decision-making.
Some authors have even hailed the current era as a so-called "third revolution" in modelling a
bank’s decisions, especially as various models progressively overlap one another and become ever

more sophisticated.

Beyond decision-making, modelling advances have demonstrated that the fundamental reason
for banking’s continued existence is due to asymmetrical information between bank and borrower,
which I shall review in section 2.3. In particular, a bank develops specialised expertise and
generates risk information when fulfilling its many roles. This means that subsequent lending is
more risk-sensitive and strategically superior when compared to the case of no intermediation,
i.e., the individual that lends directly. Without the ability to produce risk information en masse,
it is doubtful that banking success would have reached its pinnacle in modernity as it clearly had.

That said, financial intermediation requires funding and trust to be successful, and I discuss
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CHAPTER 2. BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

the mechanics and underlying risks thereof in section 2.4. As part of its operation, a bank faces
the elemental risk of not being able to fund withdrawal requests from depositors during a panic.
This illiquidity implies a balancing act between placating depositors on their funds’ safety and
acting credible to procure debt-funding from other lenders. Failure of either objective can cause a
liquidity crisis or exacerbate an unfolding crisis, which can in turn propagate across the banking

system and cause universal turmoil.

To help safeguard the financial system and correct possible market failures (driven by
asymmetrical information), many governments have since created specific interventions. A
particular pertinent intervention is that of imposing minimum capital requirements to curb
excessive risk-taking, as discussed in section 2.5. This includes the internationally well-known
Basel Capital Accords, which are underpinned by a considerable mathematical literature and
a broad range of models. While capital ought to absorb unexpected losses that may otherwise
induce a liquidity crisis (or bank failure), it is not sufficient to cover more ‘expected’ levels of
credit risk. Providing for these more frequent losses, as governed by another well-known standard
(IFRS 9), is equally crucial to the base survival of a bank. As such, loss provisioning is briefly
reviewed together with other broad risk types in section 2.6, followed by discussing a few common

risk management strategies.

2.1 Trust as the historic bedrock of banking

Most banks throughout history can be characterised by two interdependent functions: the
brokerage role and the asset transformation function. A bank attracts deposits and investments
from which it funds lending activities to those borrowers deemed creditworthy. Doing so effectively
‘transforms’ idle deposits into more useful debt by acting as the financial intermediary between
depositors and borrowers. Moreover, as custodians of deposits, banks are uniquely positioned to
facilitate payments and exchange currencies, effectively brokering the flow of money amongst
parties. These functions largely came about from the invention of money as a system of account in
which the majority of trading activities took place, as opposed to bartering directly. Bartering is
challenged by first having to determine the differences in the disparate value of various goods and
services, not to mention baskets thereof, before transacting. This transactional friction is solved
by using a highly divisible currency in which to denominate value, as discussed in Van Gestel
and Baesens (2009, pp. 1-3, 9-12).

In most civilisations throughout history, currencies were commonly denominated in rare
and durable metals such as gold and silver. In fact, the earliest known coinage dates back to
the seventh century BC during which the Lydian kings (present-day Turkey) stamped emblems
on small standardised ingots forged from electrum (an alloy of gold and silver), which signified

their supposed value. As explained in MacDonald and Gastmann (2001, pp. 24), these coins were
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2.1. TRUST AS THE HISTORIC BEDROCK OF BANKING

backed by the authority of the king as having value by fiat, without needing to verify this claim
using scales (to determine the metal’s purity) when transacting. Naturally, an element of trust
was already imbued within these authoritative seals themselves. That said, money itself can take
(and has taken) any widely agreed-upon form, including cattle, amber, grain, ivory, salt, rice, and
various metals. A particularly interesting form of money was that of the cowrie; the shell of a
mollusc from the Pacific and Indian oceans. Of all the historical objects used as currency, cowries
were used for far longer and more universally than any other currency, including coinage. This,
according to Davies (2002, pp. 36—37), is attributed to the cowrie’s durability, ease of cleaning,
relative uniformity (or fungibility), and difficulty to counterfeit; also some of the attributes for

deeming something as ‘money’.
y

While the introduction of money meant wider proliferation of banking, the latter predates the
invention of coinage by about two thousand years. From Davies (2002, pp. 34-55), simple banking
operations have surfaced multiple times throughout antiquity. In fact, the first banks were
temples in Mesopotamia circa 3,000-2,000 BC that served as sanctuaries for a depositor’s wealth.
These priests accepted common deposits such as grain, cattle, fruits, agricultural implements —
and later, gold and silver money. However, gold and silver money should not be confused with
‘coinage’ as invented by the seventh century BC Lydians. According to Davies (2002, pp. 61-64),
these gold and silver pre-coins date from as early as 2,250 BC and underwent various stages of
invention, ranging from large silver blobs, to bars, to rods, and to elongated nails. Fearing common
thievery and desiring convenience, the depositor (or merchant) believed the temple to be a safe
place due to its bustling and devout crowds, as well as believably hosting the righteous divine.
Moreover, these temples were central locations in the city-states of Babylonia and therefore the
perfect locale for conducting business activities, as discussed in MacDonald and Gastmann (2001,
pp. 22—-23) and Davies (2002, pp. 48-50).

The art of writing originated from Mesopotamia first as a method of bookkeeping. As such,
the local temples often issued depositors with clay-based receipts of the deposited wealth. Having
multiple depositors, it was not long until the same temples supervised transacting merchants,
simply by transferring holdings from one merchant to that of another. This practice saw the
eventual establishment of state-owned "grain banks" into which harvests were pooled from
several farmers as general deposits, centralised across Babylonia and Egypt. Having risen to
prominence during the reign of the Egyptian Ptolemaic dynasty in the fourth century BcC, as
recounted in Davies (2002, pp. 52-54), these grain banks facilitated debt repayments amongst
various parties. Such a payment! was enacted simply as an accounting entry that transcended
locale without any money physically changing hands. The value thereof was offset against the

deposited grain of the payer at one location and credited to that of the recipient at another site.

1This is also known as a giro transfer, or giro credit, and refers to a direct transfer of money between two account
holders at the same bank.
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Channelling debt repayments via these grain banks (especially larger payments) became quite
popular amongst the ancient Egyptians. In fact, the resulting transactional records were widely
considered as official and even used as evidence whenever disputes were litigated. Using payment
receipts in this way clearly highlights the inherent trust that were placed in these grain banks,

having fulfilled their entangled roles as custodian, transactor, and later, as lender.

While they first brokered simple payments amongst their depositors, these temples and
granaries later started to issue loans from the wealth stored in their vaults. For grain banks
especially, this meant lending seed-grain to farmers, having agreed to repay the borrowed grain
with interest from their future harvests. Another example of institutionalised lending is the
emergence of a private mercantile bank called the House of Egibi that operated for over a few
centuries during the first millennium BC, as narrated in Davies (2002, pp. 51) and Hudson (2010).
Although the House of Egibi secured a wide range of deposits, they only ever used their own
wealth when funding loans, albeit with no arbitrage between deposit and lending rates (both
usually 20%). Furthermore, both Mesopotamia and Egypt lacked timber and certain stones (e.g.,
marble) that were required to develop their societies further, despite being blessed with fertile
lands and abundant water sources. In addition, the upper royal classes desired more luxury
goods beyond those that were locally available, according to MacDonald and Gastmann (2001,
pp- 20-21). This presented opportunities for ambitious traders who then sourced these goods from
international markets. However, increased trade brought with it the challenge of foreign and
multiple currencies, even though coinage was not yet that widespread at the time. As a result,
the merchants started to use these temples and banks as "clearing houses", who both facilitated

the auction of goods as well as brokered the credit-based transactions thereafter.

The invention of coinage during the seventh century BC quickly spread throughout the Persian
empire, the Aegean islands, Greece, and northward to Thrace, Macedonia, and the Black Sea.
Moreover, currency exchanges became necessary largely due the prolific Greek traders who
transacted in multitudes of metal-based coins, as discussed in MacDonald and Gastmann (2001,
pp. 25-26), Davies (2002, pp. 66, 71-74), and Rigas and Riga (2003). In fact, multi-currency
trade saw the rise of Greek bankers (or trapezitai?), who epitomised money-changing as the
most common form of banking during the Graeco-Roman period. These services proliferated
amidst a deluge of different coinages that varied in both quality and type, as a by-product of
trade prosperity. For their service, Greek bankers charged a commission of 5%-6% of the currency
value. Unfortunately, this prosperity also led to a rise in fraud and counterfeiting, which only

made the Greek bankers even more instrumental in ‘sanctifying’ these currency exchanges.

2The Greek word for banker trapezitai is likely derived from the trapezium-shaped tables (a trapeza) upon which
Greek bankers exchanged various currencies. These tables had a series of lines and squares, believed to have aided
calculations.
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However, it was the lending side of Greek banking that became the most lucrative form of
intermediation at the time. According to MacDonald and Gastmann (2001, pp. 25—-26), Davies
(2002, pp. 66, 71-74), and Rigas and Riga (2003), ship masters and merchants alike wanted more
funding with which they could then undertake more rewarding voyages, which certainly posed a
significant risk to the coffers of the Greek bankers. The resulting loans were largely funded using
the current accounts of the bank’s merchant depositors and carried interest rates between 6 to
30 percent, based on the assessed risk. In stark contrast to the earlier Egyptian House of Egibi
(who only used their own capital for lending), the Greeks secured their lending activities on the
short-term deposits of their borrowers, including copper, silver, gold, and sometimes even slaves.
This early example of asset transformation exemplifies the high level of trust that these Greek
bankers enjoyed. That said, Demosthenes (an early banking lawyer at the time) once remarked
that any banker who self-funded his lending was destined for bankruptcy, which again suggests

that banking success is predicated on first attaining trust.

Although the Greeks were instrumental in furthering banking innovations (particularly the
Athenians), their position was soon rivalled by the small offshore Aegean island of Delos during
the period of 200-100 BC. According to Davies (2002, pp. 78-79) and Rigas and Riga (2003), this
island had but two assets: its great harbour and its famous temple of Apollo. However, both of
these assets helped the island of Delos rise as one of the principal clearing houses of Macedonian
trade, which included tar, pitch, timber, silver, oriental wares from Arabia and India, as well as
slaves. The bankers of Delos retained the inherent trust of the antique world for well over 400
years. While the previous Greek bankers brokered transactions purely on a cash basis, the newly
established Bank of Delos opted for credit instead as its transactional basis. Accordingly, trade
volumes increased further and the Aegean coffers of these bankers grew ever larger. Moreover,
they safeguarded wealth within the temple of Apollo, itself surrounded by the ocean, thereby
further deterring robberies. This explains the strategic allure of trusting these particular bankers,
which subsequently attracted to their vaults substantial levels of state and private wealth. In
fact, this wealth helped to fund the rise of the Roman empire, with the Bank of Delos itself
later serving as the model for Roman banks. From Delos, the refined practices of conducting
credit-based transactions and giro transfers soon spread to Rome. Perhaps paramount to Rome’s
success was one particular practice borrowed from Delos: the strategic centralisation of deposit
contracts across vast banking networks, akin to the grain banks of contemporary Egypt and

earlier Mesopotamia.

While the Romans assimilated the advances in money and banking from the Greeks and
the Egyptians, the Roman achievements were more militaristic and administrative rather than
economic. In particular, the Romans contributed its legal discipline by which contracts and

property rights were strictly enforced, as well as the equitable settlement of disputes, as discussed
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in MacDonald and Gastmann (2001, pp. 26—29). While the Code of Hammurabi® was indeed an
earlier legal system circa 1700 BC in Mesopotamia, the Roman rule of law was more effective
given its military might and bureaucratic strength. According to Davies (2002, pp. 51), this
legal discipline instilled predictability and widespread trust that induced a rudimentary though
functional credit system across the empire. Furthermore, the Romans considered the minting
of coinage (and its centralisation) to be more important than advancing the Ptolemaic ideas
of central banking. In fact, the empire’s most famous and universal silver coin — the Denarius
— was exclusively minted in Rome itself, with provincial towns only allowed to mint bronze
coinage. From Davies (2002, pp. 89-93), the Roman emperors controlled mints directly and relied
heavily on taxation for revenue instead of issuing national debt. Furthermore, the Romans often
debased their own currency to fund their expanding armies by using more impure metals when
minting coins. Despite the tenfold increase in silver coins that were in circulation during the
great expansionary period of 150-50 BC, the inflow of raw bullion could simply not compete with

the considerable demand for Roman coins struck from it.

The Roman empire eventually began its slow economic decline until its eventual collapse, as
discussed in Howgego (1992) and Davies (2002, pp. 94-112). This decline was characterised by the
ceaseless debasement of the Roman currency, rampant inflation, inadequate taxation to support
a growing welfare state, maintaining the increasingly unaffordable military, and the exhaustion
of Roman mines. In fact, the emperor Gallienus debased the Roman coinage during his reign
(260-268 AD) to such an extent that the Denarius contained but 4% silver. Similarly, Aurelian
introduced two whole new coins into circulation during his reign (270-275 AD) as Roman emperor.
Both coins were valued by dictate at 2.5 times the previous nominal value of similar coins, i.e., the
basis of inflationary finance. Unsurprisingly, these actions generated rapid inflation and brought
about the temporary state seizure of Roman banks who refused to accept these inferior coins.
While it is certainly true that the Roman empire ultimately fell to barbaric invasions, one can
argue that the underlying cause of a weakened military is the chronic economic chaos endured up
to the fifth century AD. In particular, continued economic turmoil meant the breakdown of trust in
the Roman credit system, already battered by a weak and mistrusted currency. After the empire’s
collapse, money-based trade itself broke down across Europe, which persisted through most of
the Dark Ages. As such, it is argued in Van Gestel and Baesens (2009, pp. 2) that banking itself
became mostly irrelevant during this time when there was little trade to intermediate, wealth
to store, currencies to exchange, or loans to fund from empty vaults. The sporadic kingdoms,
having sprouted from the remnants of imperial Roman power, first had to relearn minting coins
during the next few centuries, let alone install the rule of law again, before banking could hail its

previous glory.

Various coinages surfaced repeatedly across Europe and Arabia over the next few centuries.

3This Code contained almost 300 laws, some of which pertain to banking operations and its ethical practice.
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However, it was the adoption of the tally stick by the medieval English treasury (or the Exchequer)
in the twelfth century AD that saw the widespread return of a credit system. This tally stick,
according to Davies (2002, pp. 148-152), is a piece of wood (or ‘slip of wood’ from its Latin origin
talea) that was originally used as evidence (or a receipt) of a payment, commonly cut from 20
cm lengths of hazel wood. A specific notch, signifying the exact amount owed in taxes (or other
debt), was cut across the breadth of the stick. Thereafter, the stick was partially split across its
length in twain up to the handle, with one piece broken off. The larger piece with the handle,
called the ‘stock’, was kept by the creditor, while the smaller piece, called the “foil’, was given to
the debtor along with the loan. When put together, both pieces would match the original shape of
the stick, therefore ‘tallying’ the debt and serving as legal evidence of the loan transaction. In
fact, verifying (or ‘checking’) tax payments were carried out on the Exchequer tables, which were
ten by five feet in size and were adorned with a chequered cloth. This cloth not only inspired the

name of the Exchequer but also later gave its name to the common bill of exchange, the ‘cheque’.

Taxes owed to the king, as represented by a tally stock kept in the Exchequer, could sub-
sequently be used by the king to pay someone else, simply by transferring the tally stock itself.
In a time when charging interest (or ‘usury’ as it was more commonly known) was forbidden on
religious grounds, these tallies became wooden ‘cheques’ and were used to raise state funding
based on Exchequer-held debt. As a result, the English monarchs soon began to issue tallies in
anticipation of collecting taxes in future, which indicates an early form of modern-day government
bonds. The overall money supply was significantly increased by bartering Exchequer debt for
funds, based on the inherent trust that the monarch will repay his debt using future tax revenue.
This catered for the growing demand amongst traders for coins, without resorting to the gross
debasement of coinage as enacted in earlier Roman times. These tallies were particularly oppor-
tune since the limited European supply of gold and silver at the time hindered any large-scale

minting of coinage.

While medieval finance in Western Europe slowly re-emerged, earlier Islamic conquests saw
the establishment of a Pax Islamica in the eleventh century AD. This brought about a virtual
free-trade zone across Western Asia, North Africa, and the Mediterranean, which was supported
by a more sophisticated credit system than that in Western Europe at the time. In servicing
the Islamic empire’s vast trade routes, credit flourished in the form of early bills of exchange
as a method of payment. These bills were then drawn from cooperating merchant bankers that
were flung far across the empire, as discussed in MacDonald and Gastmann (2001, pp. 34-36,
41-44). Another Islamic credit instrument was the mudaraba arrangement under which the
investor entrusted cash or goods to the trader. In turn, this capital was eventually repaid along
with an agreed upon share of profit, as a common way of circumventing the prevailing sin of
usury. However, it was Jewish bankers who reinvigorated lending and the widespread use of

credit across medieval Europe, especially since their religion permitted usury when dealing with
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non-Jews. Moreover, Jewish merchant families were networked across rival kingdoms in both
Europe and the Islamic world, which facilitated the flow of credit-based trade across oceans and
port-cities. Specifically, the Jewish bankers in Baghdad issued an early form of a letter of credit
known as a suftadja, therein committing payment to other parties on behalf of their Jewish
merchant clients. These familial bankers that cooperated across large distances were effectively

similar to the erstwhile Roman banks and its centralised credit system.

International trade soon flourished amongst Jews, Muslims, and Europeans alike, partially
due to the trade fairs held across France and Italy from the twelfth century AD onward. Although
these fairs originally celebrated a local religious saint, rulers at the time — particularly the
Counts of Champagne in France — quickly realised the tax potential of these fairs. The noblemen
subsequently helped to establish the rule of law during these fairs, which promoted greater
business confidence; increasing both trade and the associated tax revenue in turn. Based on
MacDonald and Gastmann (2001, pp. 59-62), these fairs subsequently attracted a diversity of
enterprising merchants and with them, a barrage of bi-metal bullion* as money. Apart from ex-
changing these currencies, the hassle of transporting money en masse — along with the associated
costs of hiring guards and caravans — made credit a useful and alternative payment system,
especially for conducting larger transactions. In fact, international merchants frequenting these
fairs soon innovated a credit instrument called lettres de faire (or fair letters) based on credit.
These documents recorded the sale of goods, whilst promising payment at a future fair. This delay
allows sufficient time for tallying the total debits and credits amongst participating merchants

plying their trades to one another during a particular fair.

In truth, the fair letters were but one short step away from becoming so-called bills of
exchange, which historians commonly consider as the greatest financial innovation of the late
Middle Ages. An example is given in MacDonald and Gastmann (2001, pp. 61) of such an early
bill that was issued (or drawn) by a fourteenth century Tuscan merchant (the drawer) who
instructed his bank (the drawee) to pay the bearer of the bill (the payee) the amount inscribed
on the bill itself. This is similar to the preceding Jewish suftadja and, indeed, a precursor to
the modern-day cheque (or more formally, a "negotiable instrument"). Naturally, these bills
soon became currency in themselves given their securability against the drawer’s assets, which
are implicitly trusted to cover payment sufficiently. Bills of exchange were far safer to handle
and made transactions quicker relative to keeping coins and bullion at hand. Though the trade
fairs themselves eventually stopped in the late thirteenth century AD, these bills — and the
credit system in which they operated — soon spread across the medieval world, as discussed

in MacDonald and Gastmann (2001, pp. 65). Ironically, the trade fairs that introduced these

4Medieval Europeans only started using the Italian florin as a central currency in 1252 AD. Preceding this, gold
and silver bullion itself were used as unedified money, although many other coins circulated at these fairs that were,
however, struck by multiple sovereigns.
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bills were made redundant by the very same, since networked merchants transacted across ever

increasing distances using these bills instead, with little need for visiting a fair once established.

The close relationship between stable power and credit is perhaps best exemplified by the
Knights Templar and the Knights Hospitallers during the Crusades, particularly during the
twelfth and thirteenth centuries AD. Initially, these two religious orders of warrior monks protec-
ted holy pilgrimages and provided medical care to war casualties. In time, these knights acquired
their own ships, castles, armies, storehouses, as well as held strategic points of presence that
spanned England to Egypt and Spain to Syria, according to MacDonald and Gastmann (2001,
pp. 66—68) and Davies (2002, pp. 153—-158). It is therefore unsurprising that the Templars soon
expanded into storing wealth and intermediating payments amongst merchants and princes
of the realm throughout Europe and the Holy Land. Ennobled with the perceived trust of the
Christian faith, they were excellent candidates for safely transferring goods and money across
their vast network to facilitate the war efforts. This was not unlike the paved trade routes that
were protected by the earlier Roman military, which enabled their credit system. Moreover, the
heavily fortified bases of the Templars soon attracted deposits from monarch and merchant alike.
Naturally, the Templars soon began to exchange copious amounts of currencies and to lend the
amassed wealth out again at large, thereby establishing a new credit system. Specifically, the
knights expedited payments using bills of exchange, acted as tax collectors for both kings® and
popes, transferred ransom payments, granted loans to crusaders and pilgrims, and even legally
coined their own currencies. However, their banking successes abrupt ended once their credibility
was grossly undermined by the French King Philip IV and his undignified greed. Eventually, the
relentless accusations and political machinations of the king led to Pope Clement V abolishing
the Templar order in 1312.

The Templars’ demise proved to be fortunate for their long-time rivals, the Italian bankers,
who readily met the credit demands across Europe and the Middle East in the absence of the
knights. The two Italian city-states of Venice and Genoa became financial superpowers; originally
spurred by the trade fairs, competing Jewish bankers, increasing international trade, and the
Crusades. As a result, these Italian bankers intermediated progressively more transactions and
established a competing credit system from as early as the twelfth century AD. From De Roover
(1963, pp. 1-2) and MacDonald and Gastmann (2001, pp. 73-76), the Genoese bancherii (or
bankers) innovated interbank transfers between customers who held accounts at competing
Italian banks. This was largely facilitated by their invention of double-entry bookkeeping and
its creative use in avoiding the Christian sin of usury. In fact, the Genoese bancherii invented

foreign exchange contracts, which were similar to bills of exchange though issued across two

5Perhaps the greatest supporter of the Crusades was the English King Henry II (1154-89) who enacted so-called
"crusading taxes". These revenue streams were mainly funnelled into his accounts that were held at both the Templars
and Hospitallers, instead of the London Exchequer, as discussed in Davies (2002, pp. 157).
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currencies at a preset exchange rate, as explained in Van Gestel and Baesens (2009, pp. 3—4).
These bills were later exonerated by the Roman Church, having realised that the element of risk
justified compensation. The Church argued that the potential profits were uncertain given that
they arose from trading these foreign bills at fluctuating prices once issued. Moreover, many
merchant banks of the time went bankrupt by investing too great a portion of their assets in
risky commercial ventures that subsequently failed. The potential of bankruptcy further justified

the charging of interest rates when lending, even if somewhat obscured in the ledger.

The dangers of default risk continued to be exemplified by even some of the most successful
European banks during the fourteenth and fifteenth centuries AD, as discussed in De Roover
(1963, pp. 2-5) and MacDonald and Gastmann (2001, pp. 79-82). The Hundred Years’ War
between England and France led to the failure of both the Bardi and Peruzzi familial banks of
Florence. Specifically, the English King Edward III defaulted on his various unsecured loans from
both Bardi and Peruzzi. Most monarchs at the time demanded loans from bankers in order to
fund and sustain their military campaigns, which these monarchs fielded to retain or expand
their sovereignty. Yet despite having perfectly legal loan agreements, the Italian bankers soon
realised that their borrowers’ ability and willingness to repay were tenuous and uncertain at
times, even if they were powerful monarchs. To this point, the word ‘bankrupt’ has its roots in
the Italian phrase banca rotta (or "broken bench"); see Van Gestel and Baesens (2009, pp. 4). The
idiomatic suggestion is that the wooden bench on which Italian bankers conducted their business

was physically ruptured upon default, likely in frustration.

On the other hand, the common man was largely unsympathetic to these bank failures as
induced by monarchical defaults. In fact, according to De Roover (1963, pp. 2-5) and MacDonald
and Gastmann (2001, pp. 79-82), Italian bankers were already despised at the time. An especially
hated group were the lombardii in Northern Italy; though small-scale, they were opportunistic
pawnbrokers and enterprising moneylenders who openly charged ‘usurious’ interest. Another
more prominent example is the Medici family who tried to collect upon a large loan in 1477 AD,
held by the deceased Duke of Burgundy, Charles the Bold. That said, the Medici family came
to be the most powerful European bankers following the fall of Bardi and Peruzzi, eventually
governing Florence itself. Having masterfully combined politics and finance, the Medici Bank
strategically called in large debts from their enemies, Naples and Venice. With their coffers
suddenly depleted, these city states could no longer fund their mercenary armies, who deserted

as a result, much to the Medicis’ delight.

As with the larger Bardi and Peruzzi banks, the Medici Bank eventually declined as well
in the late fifteenth century AD, again affected by royal defaults. The prevailing political theory
was that a monarch ruled by divine right and were subject to no temporal authority. Naturally,

this assertion severely conflicted the bankers when calling in the earthly loans of a divine prince
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of the realm. From De Roover (1963, pp. 5—6, 331-334) and MacDonald and Gastmann (2001,
pp.- 85—-89), both the English King Edward IV and the French Duke Charles the Bold defaulted
on their various debts during the Wars of the Roses. Along with deteriorating management,
it was nigh impossible for the London and Bruges bank branches to remain afloat thereafter.
A few other branches soon failed as well (notably those in Venice, Milan, and Lyons), which
is ascribed in De Roover (1963, pp. 358—367) to gross maladministration, lack of coordination,
economic recession, and both the lavish lifestyles and political entanglements of the Medicis.
The severe deterioration became self-evident when the bank governor, Lorenzo de’ Medici, even
misappropriated public funds; presumably to stave off impending insolvency. The bank finally
conceded defeat in 1494 upon the Italian invasion of the French King Charles VIII.

The now-familiar pattern reasserts itself with the subsequent rise (and eventual fall) of two
other banking families in the sixteenth century AD. Specifically, the Fuggers and Welsers rose
to prominence as German banks and even eclipsed the Medicis, having absorbed most of their
remaining assets. From MacDonald and Gastmann (2001, pp. 101-107), the Fuggers primarily
served the intermediation needs of the European royals, most notably the Hapsburgs. Both
German banks financed the growing international spice trade from Asia and the newly discovered
Americas, which diversified their revenue streams considerably. However, as with the erstwhile
Italian bankers, the German lenders suffered the same sovereign defaults from fickle princes
and their wars. In particular, the bankruptcy of the Spanish King Philip II in 1577 AD shook the
foundations of German banking and preempted the fall of the Fuggers. For additional context,
more than twenty large banks declared bankruptcy in Spain and Italy during the strikingly short
two-year period 1587-1589. Widespread private bank failures induced by sovereign defaults led
to the establishment of public banks. These institutions offered credit to both private clients and
the state, whilst being better secured by shares in public debt than by overly leveraged private

capital.

Up to the sixteenth century AD, merchant banks historically serviced a speculative niche,
though a new entity would soon enter the stage in the form of an early stock exchange in Antwerp,
called the bourse. As a common clearing house, the swap rates for commercial bills of exchange
(amongst England, France, Italy, and Germany) as well as government bonds could now be
regularly published, negotiated, and traded at the same central location. Moreover, this Antwerp
bourse availed to sovereigns a larger source of speculative credit, which could help fund conquests
and royal expeditions to the New World, as discussed in MacDonald and Gastmann (2001, pp. 98—
100, 107-114). This is perhaps best exemplified by Spanish public debt being sold to and traded
amongst third parties, ultimately funding the Spanish Conquistadors in the Americas. However,
religious conflicts between Catholics and Protestants made sieges and rebellions a reality in
Antwerp (commonly known as the Spanish Fury and the Dutch Revolt), which caused the local

merchants and bankers to flee to more stable environments. Moreover, the Dutch closed off the
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Scheldt river that previously fed trade into the embattled city of Antwerp. With less trade activity,
the Antwerp bourse naturally declined.

During the rebellion, the Dutch strategically diverted the flow of merchant ships to Amster-
dam, which was far more politically stable than Antwerp. Moreover, the seventeenth century AD
Dutch Republic was governed by an oligarchy of merchants (known as the Dutch regents), instead
of an authoritarian monarch. This, as argued in MacDonald and Gastmann (2001, pp. 110), led to
the national interest shifting from typical territorial conquest, to the more capitalist pursuit of
prosperity. While the influx of multinational merchants from Antwerp undoubtedly increased
trade and profits, the various coinages in circulation became problematic. From Quinn and
Roberds (2005), coins may devalue over time to less than their stated nominal value simply
due to abrasion. Another factor at the time was the various minting ordinances that decreed
nominal values for coinages against the florin in Amsterdam. However, the Dutch inadvertently
encouraged the deliberate debasement of coins given the arbitrage® in value between finer/heavier
and rougher/lighter varieties of coins, supposedly equal in value by ordinance. In turn, worn
or debased coins can artificially devalue a nation’s own currency when exchanging the debased
foreign coins for freshly minted domestic currency. In foreshadowing the modern central bank,
the Dutch founded the Wisselbank (or the Exchange Bank of Amsterdam) at which one could
safely store wealth and exchange multiple currencies with less devaluation. More importantly,
the Wisselbank transformed stored coins and bullion into special florin-denominated credit known
as bank money that became more valuable than any physical currency, thereby discouraging the

circulation of debased coinage.

Apart from the Wisselbank, the Dutch regents established the Amsterdam bourse (or Effecten-
Beurs) in the same period. This early stock exchange attracted excess capital by speculating
on (or investing in) commodities, government bonds, and shares in company profits. Common
commodities at the time included grain, whale oil, and spices; while equity shares were predomi-
nantly in the Dutch East Indian Company. The national credit system was in fact augmented by
the Amsterdam bourse since the stock investments served as collateral in secondary cycles of bor-
rowing and lending. Thus, the hallmarks of a modern financial world came to be. Financiers not
only had to trust their borrowers to repay, but also consider the dynamic value of the underlying
collateral, assuming it to be sufficiently tradable for offsetting potential credit losses. Moreover,
modern stock market manipulations, e.g., short-selling and bear raids, were invented by the same
enterprising Dutch at the time, according to MacDonald and Gastmann (2001, pp. 114-116). As a
result, the overarching credit system became progressively more sensitive to market movements

as the value of the underlying collateral increasingly depended on the same movements. The

6Two currencies are compared in Quinn and Roberds (2005): the cross rixdollar (minted in the Spanish Neth-
erlands) against another variant of the rixdollar (issued in the Republican Netherlands), both valued at 2.5 florins,
though the former was of a higher quality metal, thereby creating arbitrage.
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danger hereof is perhaps epitomised by the market crash in 1637 as a direct result of the Dutch

Tulipmania.

The Dutch impact upon the financial world was considerable during the seventeenth cen-
tury AD. From Quinn and Roberds (2005), Amsterdam became the de facto hub for drawing,
paying, and trading bills of exchange across all of Europe. The Wisselbank aside, this feat was
partially due to another Dutch innovation at the time. In particular, the Dutch have improved
upon the earlier bill of exchange by rendering it transferable beyond the original payee. Each
successive bearer of the Dutch bill enjoyed the same payment claim on the original debtor (or
drawer) than the last. Upon exchange, the new bearer endorses payment responsibility of the
previous bearer. According to MacDonald and Gastmann (2001, pp. 114), this establishes a chain
of drawers that are sequentially accountable for the remittance, should the previous drawer
default on his payment obligation. Effectively, these bills became a credit-backed form of payment,

which is a precursor to the modern-day bank note.

Dutch finance soon visited English shores, whose banking activities in the seventeenth cen-
tury AD were predominantly split amongst scriveners, tax-farmers, and pawnbrokers. Scriveners
were respected lawyers entrusted with large deposits; while tax-farmers advanced loans to
the Exchequer and collected repayment from tax-payers directly, as licensed by the monarch.
However, it was the goldsmiths in London who eventually overtook even Amsterdam as the
new financiers of not only Europe but also other parts of the world. As discussed in Davies
(2002, pp. 249-252), the goldsmiths’ affinity with precious metals made them natural currency
exchangers and their armoured gold stores soon attracted demand deposits during a time when
war, plague, and fire were common. As was the case with the Wisselbank receipts and the Dutch
bills of exchange, the deposit receipts issued by these goldsmiths became quasi-money in their
own right. Unlike the Dutch, however, the goldsmiths started issuing loans that were directly
denominated in these receipts instead of physical coins, thereby introducing the first bank note
as it were. These ‘promissory notes’ were widely accepted as payment since creditors trusted that
the coins kept in the vaults of the goldsmiths would be readily available when presenting these
notes. In turn, the goldsmiths upheld this credit system by keeping a fractional reserve of coins
for such withdrawals, which is a practice that largely continues to this day (although using bank

money instead of coins).

Aside from the goldsmiths at the time, England saw another significant shift in the balance
of power between the British Parliament and the English Crown. From Nichols (1971), monarchs
used to control the public purse exclusively (and whimsically) throughout history, often debt-
funding ambitious military conquests, sometimes to the ruin of banks. However, the British
Parliament won equal rights to governmental finance in 1688, helped by the sanctioned invasion
by the Dutch Prince William III, who later ascended the English throne. Thereafter, both monarch
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and parliament were jointly held responsible for repaying government bonds, which stabilised
the inherent credit risk of these bonds. National debt became a ‘perpetual’ source of loans to
the government whose repayment is ‘bonded’ to the nation’s future tax revenue. This balance of
power between monarch and parliament promoted using national debt increasingly as a major
funding source, which further fuelled the broader credit system, as discussed in MacDonald
and Gastmann (2001, pp. 130-134) and Davies (2002, pp. 255-263). Thus the modern age of
banking was begun when the Bank of England was founded in 1694, inspired by the earlier Dutch

Wisselbank and necessitated by the British government’s lack of funding.

In addition to facilitating government bonds, the Bank of England attracted private deposits
with favourable rates, most notably that of the Dutch in search of greater yield. Naturally, the
Bank’s extensive capital base escalated its subsequent lending capabilities. To this point, the
Bank purposefully charged lower interest rates than the goldsmith bankers in trying to dismantle
the latter’s monopoly on lending. Soon, even the goldsmiths’ receipts fell into disuse since the
Bank’s promissory notes carried with them the credibility of the British government itself. The
passage of the Bank Charter Act (1844) entrusted to the Bank of England the exclusive power
to print money, a right it still enjoys to this day in England and in Wales. Overall, the Bank
played an instrumental role in financing (and greatly profiting from) the worldwide Industrial
Revolution, as discussed in MacDonald and Gastmann (2001, pp. 135-138). Moreover, the excess
capital of the Bank helped fund many smaller private banks over time. The capital investment
in these ‘subsidiary’ banks gave the Bank of England an emerging supervisory role as a central
bank and ultimately serving as the lender of last resort. The Bank played a stabilising role in
the credit system and facilitated the ease at which money was borrowed amongst private banks.
In turn, this liquidity and mutual trust ensured the full usage of all financial resources of the

British economy across all of its colonies, with little wastage posed by idle savings.

The history of banking continued largely unimpeded throughout the nineteenth and twen-
tieth centuries AD across the new world, with many a bank rising and falling (see section 2.5).
Throughout millennia, it is clear that the bedrock of banking has remained largely unchanged,
being grounded in mutual trust to this day. Even the modern-day promissory bank notes are
ennobled by the public’s trust that their wealth is safeguarded within banks and readily available
from banks. Banking itself will likely experience significant stress once the rule of law becomes
destabilised, as perhaps best shown by the fall of the Roman Empire or the many royal defaults
and wars that bankrupted the Italian and German banks during the Renaissance. Furthermore,
history proves that banking operations follows naturally from flourishing trade activity and the
wealth it generates. Ancient temples, the Egyptian Ptolemaic grain banks, the Greek trapezitai,
the Bank of Delos, the Knights Templar and Hospitallers, and the goldsmiths of London all first
started as deposit-takers, safeguarding the merchants’ profits. Naturally, this custodianship led to

another role: offsetting payments between accounts in giro transfers, followed later by conducting
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interbank transfers amongst the Italian banks of the Renaissance. Trade prosperity brought
multiple currencies with it and again banks were the trusted intermediaries to sanctify these
exchanges. As trading activities grew and the demand for coins rose, banks stepped in yet again
to transform idle deposits into more useful loans. Banks advanced credit to selected borrowers
from these deposits, relying on a fractional reserve and the public’s trust in the credit system.
The proliferation of banking means an expansion of the same credit system, which both causes
and is caused by booming commerce. This symbiotic relationship is perhaps best exemplified by
the explosive growth of British lending during the Industrial Revolution, in turn largely financed
by the Bank of England. The ensuing cycle of trust and the flow of credit amongst the triad of
depositor, banker, and borrower continues in perpetuum; at least until this trust is sundered,

usually with disastrous effect on the other agents, or even the nation’s prosperity itself.

2.2 The rise of consumer credit in modernity

In more recent history, consumer credit has grown at a truly exponential rate over the last few
decades, shown in Fig. 2.1 for the United States of America (USA). This credit growth has its
origins in the 1920s when Henry Ford and A.P. Sloan started financing vehicle sales for their
customers in an effort to boost sales. The later introduction of the credit card in the late 1950s saw
the use of credit becoming widespread amongst consumers. Its current estimate of approximately
$11 trillion consists of mortgages, credit cards, personal loans, vehicle financing, overdrafts and
other revolving loans for the individual, at least according to the Board of Governors of the
Federal Reserve System (2020). For perspective, consumer debt levels in 2007 was 40% greater
than total industry debt ($9.2 trillion) and more than double than corporate debt ($5.8 trillion)
at the time, as discussed in Thomas (2009a, pp. 1-3). Although greatest in the USA, consumer
debt in other countries are not far behind, e.g., the United Kingdom (UK) had debt levels in 2007
at £1.4 trillion — a staggering £400 billion growth within the span of a mere three years. From
an affordability perspective, US household debt constituted 130% of total annual income at the
same time. In fact, this trend of debt levels exceeding household income is true for quite a few

countries over the last twenty or so years, of which a few examples are shown in Fig. 2.2.

As an explanation, consider the life cycle theory of consumption of Modigliani (1986), which
states that consumers generally have a greater appetite for risk early in their lives; then revert
to saving in their middle years; and then draw from these savings during retirement. As such,
the greater risk appetite of younger consumers directly translates to a greater level of borrowing
relative to older age groups. The growth of the 20-34 years age group rose sharply during the
period 1960-1990, which, as noted in Thomas et al. (2002, pp. 24), likely explains the rapid
rise in overall household debt levels during the same period, in accordance with this theory.
Conversely, the downward pressure seen in Fig. 2.1 from 2008 is directly attributable to the

sub-prime mortgage crisis that heralded a global recession, following the spread of foreclosures
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Fi1G. 2.1: Total household debt in the USA across time, with shaded areas indicating
recessions. From the Board of Governors of the Federal Reserve System (2020).

and the number of subsequent bank failures. In retrospect, it seems that this historic financial
crisis has only caused a slight blip in aggregate debt levels rather than signalling any structural
change, especially since current debt levels have returned to their previous 2008-peak, albeit in
the USA.

According to Thomas (2010), the considerable credit expansion could not have been possible
without a degree of automation during the credit approval process. Indeed, the development of
such automated decision-making models, called credit scorecards, greatly facilitated this rapid
growth in consumer credit by rendering consistent approve/decline decisions on high volumes
of credit applications. Prior to these formalisations in retail banking, bank managers either
approved or declined credit applications by conducting applicant interviews and subjectively
assessing the underlying credit risk. They did so using guiding principles known as the five ‘Cs’ of
granting credit. As discussed in Finlay (2010, pp. 83) and Van Gestel and Baesens (2009, pp. 93—
94), this includes the Capacity to repay (affordability), the applicant’s Character to repay (intent),
current macroeconomic Conditions, and Capital or Collateral as possible security. However, this
judgemental approach was largely inconsistent over time, typically varying by the daily mood
of the bank manager, as discussed in Hand (2001) and Thomas et al. (2002, pp. 9-10). At the
same time, one cannot deny that at least some of these credit decisions were fraught with the
irrational personal prejudices of these managers. Making a credit decision is often described in
literature as an art rather than a science, which is perhaps why it was understandably difficult to

teach the craft at the time. Overall, the judgemental approach cannot easily scale with increasing

24 of 178



2.2. THE RISE OF CONSUMER CREDIT IN MODERNITY

300

200

150

10ld Debt-to-Income

100

Hous

0 1995 1996 1997 1998 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

—e—AUS 949 986 107 114 120 125 131 150 162 172 182 187 190 183 189 187 186 187 183 192 199 207 213 217
—u - CAN 103 106 109 111 113 114 114 118 124 130 139 143 152 157 164 166 169 169 168 171 173 182 181 182
FIN 735 682 624 639 648 67.6 69.7 743 785 86.6 969 107 112 114 115 117 120 122 122 122 125 132 136 144
GRC 17 205 221 217 24 308 378 441 481 558 679 747 83.2 87.4 881 106 112 120 123 117 115 111 107 106
NLD 150 160 167 179 193 203 198 208 226 236 253 2556 260 269 282 286 279 277 272 268 256 251 249 241
NOR 123 125 127 126 129 135 148 148 151 161 167 198 207 207 206 212 216 220 222 225 221 231 237 239
USA 943 962 973 985 103 104 108 113 121 128 136 141 144 137 136 129 121 115 116 112 108 108 107 104

FiG. 2.2: Consumer household debt-to-income over annual periods by country, includ-
ing Australia (AUS), Canada (CAN), Finland (FIN), Greece (GRC), Netherlands
(NLD), Norway (NOR), and the United States of America (USA). Reproduced from
OECD (2020).

application volumes; it relies heavily on human decision-makers, which makes the approach

expensive; and it yields inconsistent and biased decisions for the same reason.

This credit decision occurred during a very specific step that still exists to this day within
the typical five-phase credit management process. As explained in Finlay (2010, pp. 11-13) and
reproduced in Fig. 2.3, a lender first devises campaigns to solicit new customers into applying for
a pre-designed credit product, during phase one (Marketing). Naturally, the goal is to maximise
the pool of potential customers in an effort to maximise the eventual and so-called take-up (or
conversion) rate, i.e., the proportion of loan applicants who became borrowers. During phase two
(Customer Acquisition), the lender assesses the creditworthiness of applicants in an exercise
called "credit scoring". For those deemed creditworthy, the lender prices the loan, i.e., compiling a
loan offer that contains a specific interest rate, loan amount, contractual term, and credit limit, as
applicable to the specific type of credit product. The goal of this second phase is to minimise bad
debt that has yet to develop as a result of granting credit today, i.e., selectively granting credit
to those deemed as sufficiently trustworthy in repaying their debts. Of course, this goal may

naturally conflict” with that of the first phase. Thereafter, phase three (Customer Management)

"These two conflicting goals are often balanced against each other by either adopting specific growth strategies at
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generally involves monthly housekeeping of the account, e.g., preparing and delivering regular
statements, as well as possibly offering further advances and/or cross-selling other credit products,

provided the account is in good standing.

@ @ ©

Completed .
Apreement

Write-off

4 a4

FiaG. 2.3: The five-phase credit management model through which all credit agree-
ments progress during their lifetimes. Loan applicants are solicited in 1), credit
scored in 2) and serviced in 3) until the ‘natural’ contractual end. However, de-
linquent accounts are nursed in 4) while doubtful debts are recovered in 5) prior
write-off. Reproduced from Finlay (2010, pp. 11).

However, if the account accrues any arrears, it enters phase four (Collections) during which
various initiatives are launched in an attempt to nurse the strained relationship between borrower
and bank back to health. This may include temporarily lowering instalments, zeroing interest
rates, or perhaps extending a payment ‘holiday’ during which the lender suspends instalments as
a token of good faith. If the borrower, despite these brokered arrangements, continues to renege on
his repayment obligation despite collection efforts, the account enters phase five (Debt Recovery).
No longer is it the goal to salvage the broken trust between borrower and bank, but rather to
recover as much as possible of the outstanding debt during what is called the workout period. This
includes seizing any underlying assets that served as loan collateral to the original agreement.
In summary then, a credit agreement typically ends in one of two ways: either naturally after the
successful repayment of all outstanding debts, or with the remaining debt written (or charged)

off after all debt recoveries are taken into account.

It is during this second phase (Customer Acquisition) that the practice of automated credit

the cost of an increased credit risk appetite, or scaling back market share amidst economic turmoil or satiated risk
levels.
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scoring became strategic and even critical. Credit scoring both catered for the rapidly increasing
volumes of credit applications; as well as fuelled the fiery demand for further credit thereafter
as a result of expanded decision-making capacity. From Hand and Henley (1997), Hand (2001),
Crook et al. (2007), Thomas (2009a, pp. 5), and Louzada et al. (2016), statistical credit scoring
is fundamentally a classification task in which loans (new or existing) are predicted to become
either good or bad risks, regarding their future repayment. This is achieved by sampling the
repayment performances of past borrowers and extrapolating from it the future performances
for new borrowers, based on the similarity in the common characteristics between new and old
borrowers. So-called ‘good’ and ‘bad’ classes are created as performance polarisations by which
old loans are first assessed in retrospect. The purpose thereof is to find a statistically formulated
relationship between borrower characteristics and these good/bad classes. The degree to which a
new applicant belongs to either class is then given by this relationship as a "credit score", which
quantifies the applicant’s credit risk on a typical scale of 0 to 999 (higher scores = lower risk). The
resulting credit scoring model (or scorecard) is then implemented within a lender’s computerised
application system, capable of rendering a far greater number of credit decisions based on more
factors than what would have been humanly possible. Moreover, given the statistical nature of
the scorecard, these credit decisions are markedly more objective than those preceding the era of

automated credit scoring.

The work of Durand (1941) first used a statistical method — the Fisher linear discriminant
function — to classify loans as either good or bad in what became an early scorecard. From
Thomas et al. (2002, pp. 2—4, 41-42), statistical scoring was first explored in response to the rise
of metropolitan clothing mail-order companies, which sent goods to customers on credit during
the 1930s. Thereafter, the formation of Fair, Isaac, and Company (now known as FICO®) in 1956
saw the practice of credit scoring gain momentum. One particular milestone is the advent of the
credit card, including BankAmericard in the USA (known today as VISA) and Barclaycard in the
UK in 1966. This feat was largely made possible due to the previous successes of credit scoring,
which was enabled by a simultaneous growth in computing power, as discussed in Thomas et al.
(2002, pp. 3-4) and Thomas (2009a, pp. 4-5). However, it was arguably the promulgation of
the Equal Credit Opportunity Acts of 1975 in the USA (later amended in 1976) that saw credit
scoring being wholly accepted as a decision-support tool throughout the banking industry. These
Acts prohibited discrimination in the credit decision, unless it was "empirically derived and
statistically valid", thereby embedding the use of statistical modelling within the bedrock of

modern retail banking.

It is perhaps unsurprising that the practice of credit scoring, given its success in credit

8FICO was founded in San Francisco by engineer Bill Fair and mathematician Earl Isaac. It sold its credit scoring
systems widely to American lenders, based on the belief that data — when used intelligently — can enhance business
decisions. See https://www.fico.com/en/about-us#history.
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cards, soon spread to other lending products during the 1980s, including term loans, mortgages,
and revolving credit. To this day, the philosophy underlying credit scoring remains rooted in
pragmatism and empiricism; it merely seeks to predict the risk of nonpayment and not explain the
risk structurally, as discussed in Thomas et al. (2002, pp. 4-6) and Thomas (2009a, pp. 5-6). This
pragmatism implies that any characteristic of a borrower — or that of the borrower’s environment
or life stage — that strengthens prediction accuracy, ought to be considered within the model itself.
These variables include those obviously associated with creditworthiness, e.g., the number of
times a borrower has defaulted in the past on other credit products. Other variables pertain to the
overall stability of an applicant, e.g., the time spent at the current employer or the tenure based
at the current address. Some variables explain the financial sophistication and resourcefulness
of an applicant, e.g., possessing credit cards, the tenure at the current bank, being married or
not, the number of financial dependants, or the number of other credit agreements held by the
applicant. However, some variables are prohibited by law in some jurisdictions — despite any
discovered statistical relevance to predicting credit risk — as some legislators commonly believe
their use will lead to unfair discrimination in the credit decision, according to Van Gestel and
Baesens (2009, pp. 98).

Other than the choice of variables, the spirit of pragmatism also surfaced in various other
areas of modelling default risk. An excellent example hereof is that lenders historically estimated
a very specific risk: that of the applicant becoming precisely 90 days past due within the next
twelve months, if approved. The modelling setup is typically that of cross-sectional models in
that two ‘snapshots’ of information are taken at different time points and merged: applicant
information and the subsequent loan performance thereafter. From Thomas (2009a, pp. 6-7) and
Thomas (2010), varying some aspects hereof — specifically, the period between the two snapshots,
or even the default definition — were never of real interest to lenders. The accuracy of the predicted
default risk was not nearly as important as the model’s ability to order applicants by relative
estimates of default risk, i.e., its risk-ranking ability. However, the recent introduction of IFRS 9
(see subsection 2.6.1) certainly changed this perspective according to Skoglund (2017), having

stressed the importance of accuracy over risk-ranking ability.

Given a set of risk-ordered applicants, lenders then tried to find a suitable cut-off score above
which credit is granted and beneath which an application is rejected. This cut-off score was
again set quite subjectively (and changed quite infrequently) using strategic business factors, e.g.,
growing market share or tightening the credit supply, thereby presenting another example of
pragmatism. For a replacement credit scorecard, the cut-off was often chosen such that the new
model theoretically yielded the same number of accept-decisions as that of the previous model.
According to Thomas et al. (2002, pp. 145-146), this strategy seeks to instil confidence in the
new model, regardless of the new model’s supposedly superior discrimination ability between the

good/bad risk outcomes. Once confident, the lender would typically want to realise the benefit of
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better discrimination by steadily lowering the cut-off score, thereby accepting a greater proportion
of applicants whilst maintaining the same risk appetite. However, the fairly recent work of Jung
et al. (2013) provided a more rigorous and dynamic approach to informing this cut-off score more

frequently, based on the good:bad odds ratio and how this ratio itself can vary over time.

Another aspect of the inherent pragmatism in credit scoring is that of the recency of applica-
tion data that is used in model development. While the so-called sample window across which
application data is extracted typically varies from one to five years, longer periods are generally
preferred to encompass as much of the prevailing economic cycle as possible, according to Siddiqi
(2005, pp. 31-33). Moreover, the overall recency of this sample (controlled by its exact starting
and ending points) is vital since it incorporates not only information on economic conditions at
the time, but also the portfolio composition and the effects of a lender’s policies, as discussed
in Thomas et al. (2002, pp. 121-122) and Kennedy et al. (2013). A model estimated from train-
ing data that is observed during a particularly favourable economic cycle may quickly degrade
in its performance as the cycle worsens (or, at least, changes). Similarly, if the development
sample overwhelmingly contains data from the distant past, then the model’s predictions may no
longer agree with the present reality (market conditions or lender strategies), given the inherent
sampling bias towards a long-gone era. On the other hand, too recent a period may prohibit
sufficient data maturity to enable a reasonable forecast. As a trivial example hereof, last month’s
approved applicants, whilst being representative of current market conditions, clearly will not
have enough repayment history from which to model default risk. This trade-off is illustrated in
Fig. 2.4.

| | -l
! No longer relevant | |
| to current market 3 Older Ne er 3 - Too little data
! W | - Immaturity
2005 -- Time Today

Fi1G. 2.4: The trade-off when choosing the time period for sampling application data.
Recent data may be too immature (or unavailable) while older data may no longer
be relevant to current market conditions or representative of a lender’s portfolio or
policies.

Given the success of scoring the creditworthiness of new applicants, also known as an
application scoring, the late 1970s gave rise to a variant thereof called behavioural scoring that
focuses on existing borrowers. The objective remains that of predicting future nonpayment as in
application scoring. However, this prediction task is complemented with additional data observed

after credit approval, which theoretically enhances prediction accuracy, as explained in Van
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Gestel and Baesens (2009, pp. 101-102) and Finlay (2010, pp. 115, 123-130). This richer data can
include subsequent repayment behaviour, income information, and general spending patterns for
those customers with a transactional/cheque account. Behavioural scoring is generally used as a
decision-support tool in the third phase (Customer Management) within Finlay’s model. There are
two broad goals within this phase: 1) to provide customer service (called operational management)
and; 2) to maximise the return on the borrower relationship over its lifetime (called relationship
management). Examples of the decisions serviced by behavioural scoring include advancing more
credit to the borrower, cross-selling other products, encouraging greater product-use (such as
an overdraft add-on to a cheque account), and adjusting the pricing for existing customers in
managing attrition risk. This last example is particularly important since there is little benefit in

acquiring customers (usually at great cost), only to lose them thereafter to competitor banks.

In principle, changes in the customer’s profile over time often require strategic responses,
which may benefit from an updated view on creditworthiness as estimated by a behavioural score.
Consider an existing borrower (in good standing) that received a salary increase at some point
during the loan life. Naturally, there is expanded scope at this point for raising the credit limit
of this now-wealthier customer, as part of maximising the lifetime return on this relationship.
Conversely, a borrower who becomes unemployed at some point has a reduced capacity to
honour existing debt obligations, even if only temporary. The impact of these events on overall
creditworthiness is certainly dynamic, which in turn advocates the use of behavioural scoring.
That said, it remains unclear how exactly risk-ordering these borrowers by default risk directly
impacts profit-optimality within the wider macroeconomic reality and lender policies at play,
as argued in Thomas (2009a, pp. 7) and Thomas (2010). Perhaps the practice of behavioural
scoring simply fits within the theme of pragmatism, instead of purporting to profit-optimise the

aforementioned strategic decisions mathematically.

More recent developments in literature outline a mind-shift to modelling the likelihood of a
borrower generating profits instead in an exercise called profit scoring, as discussed in Van Gestel
and Baesens (2009, pp. 105), Thomas (2009a, pp. 216-220), with an illustration given in Stewart
(2011). By replacing the default risk application scorecard, an applicant is either approved or
rejected based on a required profit margin, as predicted by the profit scorecard. While this
approach is certainly appealing given its closer alignment with business objectives, profit scoring
is also plagued by many questions, which leaves the practitioner little choice but to be pragmatic
for the time being. Perhaps most notable of these challenges is the base definition of ‘profit’ on
the account-level. The notions of direct and indirect costs become challenging to attribute to the
individual account since these costs typically depend on the situational context of the lender. As
examples hereof, consider fluctuating portfolio sizes, system infrastructure (including the cost
of downtime), and staffing costs. Another challenge is the choice of the time horizon over which

profit is measured before modelling it. Since profitability is generally perturbed by macroeconomic
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conditions, choosing an appropriate time horizon becomes fraught with balancing biases towards
periods of economic booms against maintaining a sample that is still representative of current
market conditions. Despite these challenges, the inherent appeal of profit scoring as the next
logical evolution in credit scoring may spur research initiatives in the near-future, which may

very well solve some of these problems.
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FiG. 2.5: Stylised metamodel of overlapping factors in model-driven decision-making
of a modern bank.

From what is already described as the "third revolution" in credit scoring more than ten
years ago in Thomas (2009a, pp. 7), it is clear that the modern-day lender faces increasing
competition on two intertwined fronts: the growing demand for consumer credit, as well as the
proliferation of consumer preference. The latter is especially important when one considers the
ease at which the financially unencumbered consumer can switch to a competing bank and/or
product offering. As a result, the lender becomes more amenable to the idea of profit-optimising
its many strategic decisions using mathematical rigour, instead of relying just on pragmatism
alone. At least from the perspective of making model-driven decisions, the loan amount (or
credit limit); the price (interest rates and/or fees); the price sensitivity of a borrower (competitor
offerings); the market-appealing mix of product features and overall design; customer selection;
the macroeconomic backdrop and timing of the credit offer; managing attrition risk ex post
acquisition; and risk management regarding capital reserves (section 2.5) and loss provisions

(section 2.6) — all of these factors may eventually be modelled together as one dynamical system,
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illustrated in Fig. 2.5. A worthwhile avenue of future research may very well explore the intricate
relationships amongst these components in a bank’s decision-making. It is not hard to imagine
the benefits of a rigorous, all-encompassing, and sophisticated profit-optimisation ‘supermodel’
(or metamodel). The pursuit hereof may soon become tractable, especially when considering the

advancements made in machine learning and artificial intelligence.

2.3 Financial intermediation and its raison d’étre

One of the fundamental reasons for the continued existence of banking is due to the so-called
asymmetrical information that exists between bank and borrower. As argued in Leland and Pyle
(1977) and Bhattacharya and Thakor (1993), a bank can generate cheaper and better quality
information on the riskiness of borrowers than individual lenders. This advantage is a historical
by-product of merchant banks having specialised as trade brokers and intermediaries amongst
many agents. These trade brokers generally facilitate trade by matching the buying and selling
sides of two parties, usually in exchange for a service fee, as explained in Van Gestel and Baesens
(2009, pp. 10). In its a role as a trade broker, a bank is able to accumulate and exploit subtle
‘signals’ (behavioural or market insight) across customers and over time. Moreover, the monitoring
of loan repayments on a large scale provides additional information, which further refines the
intermediary’s subsequent risk analyses. To this point, the work of Diamond (1984) first explored
and modelled the role of banks as delegated repayment monitors, which compared favourably to
the individual that lends directly.

Consider that a single wealthy investor (or saver) does not have access to the risk information
ordinarily held (and refined) by an intermediary. As a result, the individual would therefore need
to procure it at great cost to analyse the underlying credit risk of the lending proposition. For every
subsequent loan, the individual lender would need to repeat this laborious assessment, which
multiplies the previous costs. Moreover, the individual lender’s assessments are not corroborated
by or supplemented with risk information from institutional lenders, who may already have
surveyed more complete information on the prospective borrower. In a multi-agent economy,
there is clearly a significant degree of duplication when various individuals try to conduct these
risk assessments, which may quickly escalate and introduce gross inefficiencies. This is perhaps
exacerbated by the fact that these individual assessments can be subjectively biased, incomplete,
or even based on false ‘information’. In fact, Santomero (1984) argues that the lack of adequate
and trustworthy risk information within a credit market likely necessitates a few firms that are
dedicated to sourcing and evaluating said risk information. In this regard, banks are ultimately
well-positioned for such a role given the overlap thereof with their classical roles as wealth

custodians, transactors, lenders, and exchangers, as illustrated in Fig. 2.6.

Instead of conducting rigorous risk reviews on each prospective borrower, the individual
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Fi1G. 2.6: Illustrating the information brokerage function of a bank and its benefit over
direct lending and borrowing. Banks can manufacture superior risk information
over time as delegated monitors and by eliminating duplicate and/or incomplete
risk assessments. Risk information is continuously refined by repeating this process
when granting new loans, all of which reduce lending inefficiencies compared to
direct lending.

lender can simply charge a single risk-insensitive interest rate as an easier alternative. However,
and as argued in Bhattacharya and Thakor (1993) and Van Gestel and Baesens (2009, pp. 12), a
single price will likely discourage low-risk borrowers as they will seek better rates elsewhere.
Having exited the applicant pool, the lender is left with only higher-risk borrowers that are
typically more desperate for funding relative to low-risk borrowers — an acquisition bias called
adverse selection in microeconomic theory. This bias arises naturally in credit markets due to
imperfect information and often leads to a phenomenon called credit rationing. In particular,
banks offer credit at a certain price level such that loan demand exceeds supply. However, a bank’s
expected return can actually reduce if the loan interest rate (or collateral requirement) increases
beyond a certain point when trying to cater for the higher demand, as originally modelled in
Stiglitz and Weiss (1981). Credit rationing therefore implies that some applicants will simply

never be credit-approved and that risk-insensitive rates will likely bankrupt the individual
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lender.

Intermediation theory remains valid in modernity even when considering the recent advent
of electronic marketplaces ‘replacing’ traditional banks, i.e., so-called P2P (peer-to-peer) lending.
To this point, Berger and Gleisner (2009) studied the role of intermediation on the digital
micro-finance platform called Prosper.com. These P2P-platforms serve as electronic markets
that mediate amongst individual borrowers and small-scale individual lenders, including the
subsequent sale of these loans to other interested parties on the same platform. However, the
embedded credit-screening process produces risk information that is functionally similar to that
of a traditional intermediary (or bank). Furthermore, the Prosper.com platform hosted informal
and decentralised social networks of borrowers and lenders, who can vouch for one another. The
resulting friend endorsements are then useful in assessing creditworthiness for future loans via
the platform. In fact, Freedman and Jin (2008) showed that the monitoring of loan repayments (as
conducted by these small online communities) encouraged loan repayment overall and contributed
to lower credit risk, which is again similar to traditional banks as delegated monitors. Both
of these studies align with the propositions of Sarkar et al. (1998) in that the proliferation of
electronic markets will simply lead to new forms of intermediation (e.g., ‘cybermediaries’) instead

of displacing intermediation theory entirely, as initially espoused.

As trusted financial intermediaries amongst transacting agents, banks are mainly in the
business of pooling shorter term liquid cash deposits and transforming these into longer term
illiquid loans. Put differently, the surplus funds of savers are made productive by lending it
to borrowers/consumers. This feat is generally achieved when banks fulfil their so-called asset-
transformation function, as illustrated in Fig. 2.7 and reviewed in Santomero (1984). A bank
offers to pay interest on these deposit contracts, thereby attracting buyers (or ‘depositors’). The
cost thereof is offset by then charging interest and fees when lending some of these deposits to
borrowers, after which the bank retains the difference as revenue. When compared to purchasing
fixed-income securities with similar yields, deposit contracts may have cheaper transaction costs,
provides liquidity, and offers convenience. This last point is important since depositors would
alternatively need to assume the role of an investment analyst, as argued in Merton (1977). By
implication, a depositor would need to hunt for a risk-equivalent security from each competing
firm; then scrutinise the balance sheet and management (amongst other factors) of each security,
before selecting one to purchase. Clearly, this is an arduous and inconvenient process compared

to purchasing a simple deposit contract with a similar yield.

Another important facet of these deposit contracts is their maturity profiles, which can range
from shorter term current accounts (or demand deposits) to longer term fixed deposits (or term
deposits). Lending is only truly viable as long as a bank can fund the sporadic withdrawals (and

maturing term deposits) of depositors. A bank attempts to manage this cash flow ‘traffic’ by
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holding a sufficiently stable fractional reserve of cash, as discussed in Van Gestel and Baesens
(2009, pp. 9-13, 20-21). Moreover, a bank uses its risk expertise to ensure that its subsequent
lending activities are sufficiently diversified. This diversification includes balancing the appetites
and needs of borrowers (and the bank’s profit potential) against the risk of capital loss associated
with lending to the very same borrowers. Risk-based lending therefore demonstrates how the

previous information brokerage function complements the transformation of deposits into loans.
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FiG. 2.7: Illustrating the asset-transformation function of a bank wherein numerous
liquid deposits (usually shorter term) are collected and used to fund more illiquid
(usually longer term) loans to borrowers. A fractional reserve is maintained to fund
sporadic withdrawals. Arrows indicate the flow of funds.

2.4 The quest for bank liquidity and overall system stability

To better understand the role of trust (and its collapse) in modern banking, the basic mechanics
of a typical bank and its funding are discussed in subsection 2.4.1. Sources of funding are
broadly categorised across a depositor franchise, debt-based instruments, retained earnings, and
equity originally invested into the bank. These funds are primarily re-issued as risk-bearing
loans, though banks are increasingly diversifying their revenue streams across fee-producing
services. Of course, subsequent deposit withdrawals and maturing debt obligations pose a
fundamental risk to a bank in the form of a liquidity shortage. The strategic management
of this particular risk, reviewed in subsection 2.4.2, is made non-trivial largely due to unexpected
market movements, behavioural dynamics of borrowers, and the prevailing business strategy.
In light of this complexity, some authors have devised mathematical models to help manage
bank liquidity, as discussed in subsection 2.4.3. However, managing a single bank’s reserves
independent of other banks may still fail in fending off a widespread liquidity crisis. As such,

many governments have since devised stopgap solutions such as deposit insurance and lender
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of last resort strategies. Though these interventions can indeed stabilise a system somewhat,
they also carry inherent trade-offs (see subsection 2.4.4) and other costs. Ultimately, the task
of maintaining adequate liquidity will likely remain an endearingly complex and never-ending

quest for any bank, which arguably justifies their unique role in modern society even further.

2.4.1 The mechanics of a modern bank and its funding

Historically, a bank was largely funded by the deposits collected from individuals (called retail
deposits), corporates, small-to-medium-sized enterprises (SMEs), governments and parastatals.
Other external liabilities include interbank funding (since banks lend to one another) as well as
debt securities issued by the bank to raise capital from willing buyers, as explained in Dermine
(2007, pp. 495-497) and Van Gestel and Baesens (2009, pp. 27). The funding mix between the
deposit franchise and the issued debt securities (or institutional funding) can vary by bank,
time, and even the markets in which they operate. As an example, FirstRand Bank in South
Africa maintained a 64%-36% split between deposit and debt instruments respectively; the
competing Standard Bank group had a similar funding mix of 63%-37% — see the financial results
of FirstRand Bank Limited (2019) and the Standard Bank Group (2018). These two South African
banks purposefully aim to fund their operations primarily from an extensive depositor franchise,
given the particular structure of the South African credit market. Specifically, the high degree of
contractual savings held in pension/provident funds and asset managers, poses as an attractive
funding source for South African banks. Moreover, ZAR-denominated transactions are entirely
cleared and settled within the South African banking system, which further supports the idea of

using domestic deposits instead of relying on foreign funding.

Debt-based funding programmes issued by a bank are typically hierarchical, with some debt
types enjoying greater priority regarding their repayment than others when facing bankruptcy.
This hierarchy can range from senior tranches down to junior debt?, as illustrated in Fig. 2.8.
From the investor’s perspective, the higher debt tranches are safer bets in general than their
lower-tranche counterparts exactly due to the former’s elevated repayment priority. This was
evidenced in Schuermann (2004b) when comparing bond repayments during the 1990-91 and
2001 recessions, as well as in Schuermann (2004a) when studying empirical losses suffered on
defaulted corporate bonds. However, this presumption of low risk is not always the case, with
violations in the so-called absolute priority rule (or APR) more common than one would think,
as studied empirically in Longhofer, Carlstrom et al. (1995). In essence, this principle states
that a distressed debtor shall receive no value from his assets until all creditors have been
repaid, with priority given to senior creditors. The authors modelled circumstances where the

strategic violation of APR would actually be optimal for all bankruptcy participants, including

9Subordinated debt may also qualify for up to 50% of tier 2 regulatory capital held against unexpected losses, as
discussed in Van Gestel and Baesens (2009, pp. 351) and later in section 2.5.
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F1G. 2.8: Illustrating the seniority of different types of debt holders, given default.
After bankruptcy proceedings, bank loans are honoured first from the proceeds,
followed by the bondholders, then the shareholders. Adapted from Schuermann
(2004a) and Van Gestel and Baesens (2009, pp. 27, 67).

the bondholders themselves. Primarily, the prevalence of APR violations can depend on the

cost of bankruptcy versus the benefit of reorganising a distressed firm (instead of pursuing its

liquidation).
Assets Liabilities and equity
Loan assets (advances) Demand deposits
Cash and government bonds Term deposits
Interbank loans Interbank deposits
Investment securities Debt securities
Property and equipment Equity (capital & reserves)

Equity (shareholder’s equity)

TABLE 2.1: A simplified balance sheet of a bank.

Other than debt and deposits, a bank has liabilities to its owners in the form of reserves, as
well as retained earnings and capital originally invested by its shareholders. Capital reserves
may act as financial buffers against economic headwinds in the future and absorb unexpected
losses, as discussed in section 2.5. For expositional purposes, typical assets and liabilities are
shown in a simplified version of a bank’s balance sheet in Table 2.1. A bank may further hold
certain off-balance sheet items, which can create a cash flow contingent on some event in the
future, as explored in Dermine (2007, pp. 492). Examples hereof include loan commitments,

guarantees, and financial derivatives (such as forwards, options or swaps) of which the payoffs
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are related to movements in interest rates, exchange rates, commodity or equity prices.

Apart from holding adequate capital reserves, most of the bank’s procured funding is trans-
formed into credit assets, which will then generate interest income and fees for the bank over time.
The type of borrowers can range from retail customers, SMEs, larger corporates, governments,
as well as other banks. From Van Gestel and Baesens (2009, pp. 19), Finlay (2010, pp. 2-8),
and Phillips (2013), a bank may offer various types of loans, which can be characterised using
the following common factors. A loan may be secured by underlying collateral or be completely
unsecured (e.g., mortgages and auto loans vs. term loans); it may have a fixed repayment term
or be open-ended (e.g., amortising loans vs. credit cards); it may have different fee schedules
that apply conditionally (e.g., restructuring fee vs. monthly account fees); and it may have differ-
ent repayment schedules (e.g., instalment finance vs. bullet loans) that provide the bank with
revenue streams across different time horizons. Furthermore, a bank may securitise'® various
credit assets into more liquid and marketable securities to be sold to other agents. The proceeds
thereof can be used as an additional funding source with which to finance new loans that may
yet again be securitised. Other than investing in credit assets, a bank may use the funds to buy
equity investments in other companies as well as hold derivative instruments. However, these
investment decisions are not strictly unique to core banking (or lending) activities and therefore

outside of the scope of this study.

In addition to the interest income and endowments earned by a bank, another main source
of income are fees that are levied for services rendered to the bank’s customers, sensibly called
non-interest revenue (NIR). Income derived from trading activities and payouts received from
insurance contracts are typically included in a bank’s NIR, as discussed in Dermine (2007, pp. 495—
498) and Van Gestel and Baesens (2009, pp. 17-23). Furthermore, Allen and Santomero (2001)
showed that modern banks have deliberately diversified their traditional asset-transformation
role (from which they derive interest income) to include more fee-producing activities. These
services can include the management of trusts, mutual funds, mortgage banking, transaction
services, insurance brokerage, underwriting annuities, and trading. As an example, the fin-
ancial results of FirstRand Bank Limited (2019) demonstrate the active pursuit of revenue

diversification, with an NIR reported at 42.5% of total income.

All of these funding sources attract an expense of sorts, e.g., interest on debt or dividends
for equityholders. In particular, a bank will likely have to pay interest to depositors in exchange
for using deposits as a loan funding source. Another form of payable interest is to holders of
any debt securities that the bank may have issued in the past. More importantly, a bank has a

special expense directly related to realised credit risk called an impairment charge (or loss). This

10gee Bhattacharya and Thakor (1993), Van Gestel and Baesens (2009, pp. 76—81), Vento and La Ganga (2009),
and subsection 2.6.2.

38 of 178



2.4. THE QUEST FOR BANK LIQUIDITY AND OVERALL SYSTEM STABILITY

Item Symbol
+ Interest income and endowments a
- Interest expense b
- Impairment charge c
Net Interest Income (NII) x1
+ Fees and commission income d
+ Trading and investment income e
+ Insurance income f
Non-Interest Revenue (NIR) X9
Income from operations X3
- Operating expenses g
Earnings before tax X4
- Tax h
Earnings after tax x5

TABLE 2.2: A simplified income statement of a bank. Plus-signs depict income and
minus-signs represent expenses, all of which are respectively denoted by a,...,A.
Italicised line items are subtotals, expressed as x1 =a—-b—-c,x9=d+e+ [, x3=
x1+x9, and x4 = x3—g. Net profit is expressed as x5 =(a—b—c) + (d+e+f) — g — h.

charge is usually offset against the difference between interest earned and interest paid, which is
in turn called net interest income (NII). Lastly, a bank incurs various operating expenses when
conducting its risk-based business, e.g., staff salaries, marketing, audit fees, computer expenses,
repairs and maintenance, insurances, lease charges, and donations. These various income and

expense items are shown in a simplified income statement in Table 2.2.

2.4.2 Managing the fundamental risk of illiquidity

Transforming deposits into illiquid loans certainly poses the fundamental risk of not being able
to fund withdrawals beyond a particular level. This is particularly pertinent when depositors
rush en masse to reclaim their funds, thereby triggering a possible liquidity crisis. However, the
definition of ‘liquidity’ can be ambiguous at times and certainly contextual, as explored in Vento
and La Ganga (2009) and Sekoni (2015). So-called market liquidity generally refers to the speed
at which an asset can be converted into cash without significant affecting its price. In contrast,
funding liquidity (or bank liquidity) is implicitly described by Basel Committee on Banking
Supervision (2006b) as a type of ‘reservoir’ from which a bank can draw to support financial
intermediation. Vento and La Ganga (2009) describes ‘liquidity’ more broadly as the ability of
a bank to coordinate an equilibrium between financial inflows and outflows over various time
periods; a definition adopted in this study. These various cash flows are inextricably connected to

the asset-liability mix of a bank. Accordingly, the inability of a bank to meet maturing short-term

39 of 178



CHAPTER 2. BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

obligations from available funding is then called liquidity risk, where ‘obligations’ and ‘funding’
can both relate to either assets or liabilities. In particular, paying maturing liabilities and meeting

scheduled draw-downs on previously-granted credit assets are both obligations.

The main difficulty in managing a bank’s liquidity risk is due to the differences in the maturity
dates between extended loans and a bank’s funding liabilities, both of which are typically interest-
sensitive. A so-called ‘gap-analysis’ (or maturity ladder) attempts to find significant differences
between total cash outflows versus inflows at each successive future period — a trivial exercise
for fixed cash flows across fixed timelines, with an example thereof given in Fig. 2.9. However,
uncertain cash flows complicate this exercise due to behavioural elements (e.g., defaulting),
as discussed in Dermine (2007, pp. 495, 516-525), Vento and La Ganga (2009), Van Gestel
and Baesens (2009, pp. 33-37), and Sekoni (2015). To incorporate the inherent uncertainty
underlying such a gap-analysis, one may try to forecast loan ‘production’ (or sales) into the future;
alternatively, try to forecast future draw-down levels on credit facilities. However, it remains a
non-trivial exercise that depends on product design and price elasticity. Another complicating
factor is that of the chosen business strategy, which generally has either a value-driven or a
growth-driven focus. According to Van Gestel and Baesens (2009, pp. 43—-44), the former tries to
maximise long-term profitability by preferring good credit quality, whilst the latter may sacrifice

credit quality in exchange for short-term growth in market share.

Fundamentally, obligations should not exceed available funding from a cash flow perspective.
While an equilibrium would be ideal, a so-called negative liquidity gap is preferred over its
converse, as illustrated in Fig. 2.9 for periods 2 and 3. To this point, a positive gap implies that
total outflow exceeds total inflow, which can signal a liquidity crisis at the relevant periods. In
such an event, a bank may have little choice but to procure expensive emergency funds by issuing
debt or by selling some of its assets, in an effort to remain liquid and a going concern. However, a
negative liquidity gap carries an opportunity cost in that excess liquid funds are unproductive or
even unprofitable. From Allen and Gale (2017), this opportunity cost manifests when compared to
the better returns of more productive long-term loan assets as an alternative to holding liquidity.
In addition, excess funding may carry interest-rate risk related to the banking ledger, i.e., adverse
movements in funding rates that negatively affect the financial statements. Note that this
discussion excludes interest-rate risk affecting market positions held in the trading ledger, which
are typically covered when managing market risk (see section 2.6). According to Dermine (2007,
pp- 516-519), Van Gestel and Baesens (2009, pp. 35-37), and Finlay (2010, pp. 164-166), the
most notable of these interest-rate risks is that of repricing risk. Having matched the maturing
cash flows of assets against maturing obligations at each period, subsequent rate movements can
cause net losses (or shortfalls) after the fact. In addition, repricing risk can arise when there are
differences in rate type (floating vs. fixed) or in maturity profiles (short-term vs. long-term), as

measured between assets and liabilities in both cases.
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F1c. 2.9: Bank liquidity gap analysis, showing a widening shortfall in available
funding to support intermediation from ¢ = 4. For example, the cash outflows from
total loan assets at ¢t =4 are forecast to be ZAR 850 billion. At the same time, cash
inflows from scheduled new liabilities or revenue from credit assets are forecast
only to be ZAR 750 billion. Additional funding will be needed to cover the shortfall
of ZAR 100 billion. Recreated from Van Gestel and Baesens (2009, pp. 34).

Banks generally prefer to borrow short-term and lend long-term, since short-term funding
is typically cheaper than long-term funding regarding rates. However, short-term funding can
heighten liquidity risk as these liabilities become due more frequently than the longer-term
variety, even if the latter is more expensive. Consider financing a single long-term fixed-rate
mortgage using many short-term smaller deposits. Apart from securitisation (see subsection 2.6.1),
the bank cannot truly liquidate the loan asset to fund maturing deposits, which implies sourcing
funds from elsewhere lest a liquidity crisis is triggered. If the maturation is uncertain, then the
bank may decide to maintain a light positive liquidity gap at times to realise higher returns.
Given the business strategy and market conditions, banks may very well switch between these
two types of liquidity gaps in realising either benefit, with the trade-offs thereof summarised
in Fig. 2.10. Ultimately, funding sources are often blended across differing maturity profiles to

balance cost efficiency against overall liquidity risk.

Another challenge in managing liquidity risk is that of optionality, which is the risk of sudden
and unexpected changes in either the maturities or the balances of loan assets. Optionality is

largely unavoidable due to the discretionary nature of borrower behaviour, commonly presenting
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F1G. 2.10: Two types of hypothetical bank liquidity gaps, with advantages and disad-
vantages. Denominated in ZAR billions.

as the early settlement (or ‘pre-payment’) of a loan. In this case, early settlement debilitates the
force of interest and thereby affects overall bank profitability, as discussed in Van Gestel and
Baesens (2009, pp. 36—-37). Borrower behaviour itself is more difficult to model than even relatively
cyclical or seasonal cash flows (when aggregated). As such, banks often use macroeconomic
scenario analyses that model borrower behaviour as a function of consumption, prime lending
rates, inflation, economic growth, etc. These scenarios help inform a range of different liquidity
needs, for which a bank will hold a general liquidity buffer. The exact level, according to Dermine
(2007, pp. 522-525) and Van Gestel and Baesens (2009, pp. 47-51), generally depends on the
overall business strategy of a bank, seasonality of future cash flows, ease of borrowing and its
related costs, and expected macroeconomic turbulence. This rather short-term buffer should not
only service the average level of immediate depositor withdrawals, but also be large enough to
fund new loans that are expected to be granted over the short-term. Moreover, the liquidity buffer
acts as financial grease to the friction of payment delays, and is first consumed by maturing
contingent liabilities before designated assets are liquidated. Both liquidity and interest-rate
risks are sufficiently significant that they are attributed to its own organisational function, known

as asset & liability management (ALM).
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2.4.3 A model for managing a bank’s reserves

Via banks, depositors and borrowers are able to invest and consume at will and at random
times, thereby sharing both liquidity and liquidity risk amongst themselves. This was first
mathematically modelled in Diamond and Dybvig (1983) across multiple equilibria (or outcomes)
for simple demand deposits. The authors found that 1) when calm prevails, liquidity and risk-
sharing can be efficient; 2) when agents panic and withdraw their funds, a bank run occurs that
disrupts both liquidity and risk-sharing, which impacts overall production in the economy. Banks
that are funded purely with demand deposits will likely be even more concerned with maintaining
confidence amongst agents. To this point, sources of angst can include any commonly observed
event in the economy, e.g., a bad earnings report, a widely publicised run at another bank, a
pessimistic government forecast, or even sunspots (given the possible interference with electronic
systems). Historically, banks temporarily suspended withdrawals as a defence mechanism against
bank runs, e.g., the US banks imposed a week-long banking ‘holiday’ during the 1930s. This
strategy is more formally known as suspension of convertibility in that deposits are temporarily
banned from being converted back into cash. However, suspending convertibility proved to be
sub-optimal for risk-sharing since banks do not know exactly how many withdrawals will occur
at future periods; the threat of such a suspension may nonetheless erode confidence further and

impact liquidity thereafter.

In optimising a bank’s balance sheet, there are two main literature branches outlined in
Baltensperger (1980) and Santomero (1984), namely, models for reserve (or liquidity) management
and for portfolio composition. The first branch, discussed in this section, deals with optimising
the quantity of primary/secondary reserves held by a bank to offset stochastic reserve losses,
caused by inadequate deposit levels. Reserve modelling has its origins in Edgeworth (1888) who
studied periodic withdrawals from the Bank of England and conjectured that the "calculus of
probability" may govern the limit of this reserve kept by a bank. Today, liquidity management is
essentially treated as a problem of inventory optimisation given stochastic demand in the field of

operations research.

As a basic model of managing this reserve, consider two asset types: non interest-bearing
liquid reserves R and interest-earning assets A yielding r 4 net of all costs. Assume that the bank
is a so-called price-taker in the credit market and cannot adjust r 4 based on the volume of loans it
extends. Alternatively, a modification is provided in Baltensperger (1980) wherein a bank relates
r o negatively to the amount of credit extended. However, this modification does not change the
reserve model fundamentally and is therefore discarded in this study. Assuming price-taking
then, let W denote the stochastic withdrawals, net of all deposits, credit line usage, and loan
repayments, with its associated probability density function given as f(W). If the reserves are

insufficient to offset net withdrawals, i.e., W > R, additional emergency funds must be procured
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at a cost c¢. For simplicity, assume this cost is proportional to the reserve deficiency W — R itself,
i.e., the cost per additional unit of currency needed. The optimisation problem is then to balance
the amount of reserves kept for withdrawals against the amount with which to fund new loans,
each with its associated costs. To maximise expected profit from deposits D, a one-period'! model
is accordingly specified as -

R :rAR—fR c(W-R)f(W)dW . (2.1)

The function R in Eq. 2.1 has two main terms. First, there is the opportunity cost r 4R on
holding bigger reserves R, which could have been used for funding loans yielding r 4. Second,
there is the expected cost of having a deficient reserve, i.e., the liquidity cost. As such, for each
extra unit of currency held in the reserve, the bank not only incurs a marginal opportunity
cost of %(r AR) > 0, but also enjoys a marginal reduction in liquidity cost —c¢ flgo fW)dW < 0.
Minimising the sum of these cost items means equating them, i.e., the first-order condition of

this optimisation problem will give a reserve amount that satisfies
o0
ra= Cf fX)aw. (2.2)
R

In other words, reserves are set such that the probability of a deficient reserve [5° f(X)dW equals
the ratio %A, as a fundamental condition to be met in most reserve models. However, one should
be careful when interpreting these parameters at face-value. The cost of a deficient reserve ¢
may not be linear in reality and can be affected by uncertain access to funding markets at the
time. Furthermore, the net yield r 4, although net of all costs and inclusive of all fees charged by
the bank, implies that optimal reserves only depend (relatively) on interest rates, though not

(absolutely) on the interest amounts themselves, which seems unrealistic.

Should it be necessary, regulatory reserve requirements can be incorporated into the afore-
mentioned model without drastically altering the economics thereof. The major effect of regulatory
requirements would simply amount to altering the critical value against which withdrawals
are compared. That is, the new reserve deficiency W > R* is used instead of the previous W > R
where R* may incorporate various legal requirements, as originally modelled in Poole (1968) and
reviewed in Baltensperger (1980). Furthermore, better information on a bank’s customers may
reduce the variance underlying the withdrawals W, which may decrease overall reserve costs.
This was previously incorporated exogenously in Santomero (1984) as a third ‘information-cost’
term, which was simply subtracted from Eq. 2.1. However, its quantification may be challenging

in reality.

The reserve model developed so far clearly depends a great deal on the withdrawal distribu-

tion f(W) as a proxy for deposit fluctuations. It is argued in Baltensperger (1980) that a Gaussian

1 Most of these models were designed for short-term horizons, e.g., managing the bank’s reserve position daily and
supplementing shortfalls from the interbank market or the central bank, as explained in Poole (1968).
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distribution can approximate f(W) since W is the sum of a large number of (presumably) inde-
pendent changes across the balances of individual deposit accounts. This Gaussian assumption
can only ever be an approximation since the upper limit of W will be equal to all deposits initially
held by a bank, which is a finite amount, thereby contrasting the Gaussian distribution’s infinite
domain. The author further argues that if one assumes that the net withdrawal distribution is
symmetrically anchored around 0 (for simplicity), i.e., E(W) = 0, then optimal reserves R can
be defined using a multiple b of the standard deviation of W (denoted as ow), where b may be

related to the previous ratio %A. This R is then expressed as

R=bow. (2.3)

A few intuitive remarks on f(W) are in order. It is quite reasonable that /(W) ought to depend
on the characteristics (e.g., volume, maturity structure, and costs) of the deposits held by a bank,
as formalised in Miller (1975). Should initial deposits D increase overall, it is likely that ow will
also increase and, by extension, so too shall the optimal reserve R — though not proportionally.
This relationship is sensible as long as the increased D occurs alongside an increase in the number
of (independent) sporadic withdrawals. Finally, if D is redistributed towards more volatile deposit
types (e.g., more demand deposits than term deposits), then both ow and R will reasonably

increase as well, and vice versa.

2.4.4 Two interventions to reduce bank fragility

Previous banking failures and the erosion of trust through the ages (as reviewed in section 2.1)
can motivate the design of more focused interventions to safeguard both bank and borrower.
Apart from a bank suspending its deposit convertibility, there are two broader government-run
instruments to help guard against liquidity shocks reverberating across the financial system
itself. These instruments include deposit insurance (DI) and a lender of last resort (LLR) strategy.
The work of Merton (1977) first explored DI schemes and the costing thereof using option
pricing theory. Whilst successful, DI schemes can be expensive with the costs thereof often
borne directly by taxpayers following a liquidity crisis, leading to a deadweight loss. Apart from
costs, DI schemes pose an inherent disincentive for depositors to demand interest rates that are
commensurate with the bank’s risk appetite. Moreover, if the DI premiums charged to banks are
risk-insensitive, as is commonly the case according to Bhattacharya and Thakor (1993), then DI
schemes may inadvertently encourage excessive risk-taking amongst some banks in the system.
Some authors have, however, found little empirical evidence between DI schemes and greater
risk-taking as a result thereof, while others found a worrying relationship between DI schemes
and bank failures, as reviewed in Santos (2006). In fact, the work of Anginer et al. (2014) studied
the empirical impact of DIs in averting contagious bank runs across 96 countries during (and

preceding) the so-called 2008 Global Financial Crisis (GFC). While systemic stability was greater
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during the crisis, DIs generally had a detrimental effect on the risk of bank failure during calm
periods. Ultimately, the latter outweighed the benefit of stability during the crisis across the full

sample period.

Amongst the many proposals to improve DI schemes, most notable is that of pricing their
premiums fairly given a bank’s underlying risk profile. According to Bhattacharya and Thakor
(1993) and Santos (2006), this is a non-trivial exercise primarily because of asymmetric informa-
tion between bank and insurer. Moreover, risk-sensitive DI schemes will be particularly difficult
to implement across the banking system without causing 1) safer banks cross-subsidising riskier
banks; 2) increased regulatory inspection to characterise banks’ portfolios. The first outcome dis-
torts the efficient market allocation of deposits amongst banks, as demonstrated in Taggart and
Greenbaum (1978) and Chan et al. (1992). The second outcome mandates intrusive monitoring,
which is not without its costs as well. That said, linking capital requirements intrinsically to DI
premiums can satisfy the aforementioned conditions. In particular, the work of Chan et al. (1992)
showed that an equilibrium exists when riskier banks select lower capital levels at the cost of
higher premia per dollar of insured deposits; while safer banks choose lower premia afforded by

higher capital requirements.

As an alternative to DI schemes, the prevailing central bank can instead provide emergency
funding to distressed banks under an LLR arrangement. Given the historical size of most central
banks, it was only natural for them to step in during liquidity crises and lend to distressed
banks. According to Santos (2006) and Allen and Gale (2017), LLR setups generally predate
DI schemes with the Belgian National Bank being the first to fulfil an active LLR role in the
1850s, followed by the Bank of England (amongst others) in the 1870s. A common rule at the
time was that rescued banks must still be solvent even if illiquid, which theoretically reduces
the LLR’s risk exposure somewhat. However, many authors have since questioned the mythical
separation between illiquidity and insolvency in practice. Furthermore, the whole purpose of an
LLR strategy is to insure against liquidity shocks, which is counteracted when the central bank
withholds credit from some distressed banks but not others. Similar to DI schemes, liquidity
assurances from a central bank can also result in a perverse incentive for banks to increase
credit risk deliberately and/or maintain greater positive liquidity gaps, as argued in Diamond
and Dybvig (1983). Ultimately, both DI and LLR schemes are not perfect and are still actively

researched and refined by governments to this day.

Negating the perverse incentives (or moral hazards) that are exerted by both DI and LLR
setups is difficult, especially at the system level. Perhaps a better course of action is their joint
incorporation into broader bank regulation and integrated monetary policy; at least according
to various authors, as reviewed in Santos (2006) and Allen and Gale (2017). In fact, a broader

problem with the design of most DIs, LLRs, and even capital regulation, is that of leaving systemic
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risk as an exogenous factor when modelling the risk of an individual bank failure. The research
on incorporating any single bank’s contribution to the overall risk of system failure is still fairly
limited, as is the case with liquidity regulation itself. That said, high-level liquidity requirements,
such as those in the recently introduced Basel II Capital Accord (see section 2.5), were prudently
promulgated in the 2010s, largely in response to the 2008 GFC. These requirements are centred
mainly on two measures: the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio
(NSFR). The LCR measures a bank’s ability to weather a deep liquidity crisis for at least 30 days,
while the NSFR quantifies the degree of maturity mismatches between assets and liabilities.
Along with capital regulation, many policymakers believe that minimum liquidity requirements

can help stabilise the banking system.

Although holding excess liquidity carries an undeniable opportunity cost, banks may offset
this cost by strategically lending excess liquidity to the interbank market during crises. When
liquidity becomes scarce, asset prices necessarily become volatile as the market tries to reach
an equilibrium, according to Allen and Gale (2017). That said, interbank loans carry a form of
credit risk (called counterparty risk) since the borrowing bank in distress can fail to repay even
the emergency funding in due time. In turn, adverse selection can occur during a liquidity crisis
wherein only the riskier banks are actively seeking interbank loans, to which lenders respond
by charging higher interest rates. However, it was demonstrated in Heider et al. (2015) that
lenders may fearfully continue to hoard liquidity in some extreme cases despite the allure of
higher interest rates, primarily due to the asymmetric information amongst banks. Alternatively,
the interest rates of interbank loans may become too high even for distressed borrowers, which
results in a similar market breakdown. In these cases, a central bank may yet again have to

provide emergency'? liquidity, even though doing so causes moral hazard.

In conclusion, a bank’s quest of maintaining sufficient liquidity within a fragile and dynamic
system is never-ending and non-trivial. At the one end, depositors must be assured lest the
collapse of their trust triggers a bank run and a liquidity crisis. At the other end, creditworthiness
must be maintained if banks are to access the interbank market for debt-based funding. Add to
this mix the nature of banks as profit-seeking firms within dynamic markets, then the inherent
complexity of banking quickly manifests. Moreover, interventionist schemes such as DIs and
LLRs are well-intentioned in safeguarding banking fragility, though can introduce secondary
challenges in addition to being costly. In some cases, these setups may even exert the opposite
effect than intended, as demonstrated in Anginer et al. (2014). On the other hand, regulatory
requirements such as minimum capital levels can rebuff unexpected losses and protect bank

liquidity during crises, though again at a cost. The fairly recent idea of regulating liquidity itself

12This was indeed the case during the 2008 crisis; both the US Federal Reserve and the European Central Bank
injected liquidity into their respective markets, albeit in different forms - see Vento and La Ganga (2009) and Heider
et al. (2015).
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is quite rational, though even less well-understood when compared to capital regulation. As
phrased in Allen and Gale (2017), it is unclear even what exactly to argue about when it comes to

liquidity regulation.

2.5 Maintaining capital: the Basel Capital Accords

Even though banks are commercial organisations, they function differently from other firms
and uniquely affect the economy at large. From Santos (2006), Dermine (2007, pp. 5630-532),
Van Gestel and Baesens (2009, pp. 53-55), and Allen and Gale (2017), the classical argument for
governmental intervention is largely premised on the risk of a banking system failure. Public
fear or reputational damage may trigger bank runs, possibly prompting a liquidity crisis that
may in turn propagate across the banking system. Moreover, general market dysfunction can
manifest due to asymmetric information between bank and depositor, especially regarding a
bank’s risk-taking levels. Depositors may very well request higher interest rates if they knew
the risks underlying the use of their funds. That said, a bank’s risk-taking may be naturally
counteracted by the possibility of reputational damage, as quantified in Bhattacharya and Thakor
(1993). The untarnished reputation of a bank partly assures the safety of the deposited funds,
which is self-evident when reviewing banking history in section 2.1. However, reputation can only
deter excessive risk-taking when the associated publicity of choosing lower-risk projects becomes
rewarding in its own right, which may be unsustainable in a competitive market. Ultimately,
there is clearly a case to be made for at least some type of public oversight to maintain confidence

in the banking system.

Many countries have drafted various types of governmental interventions to protect retail
deposits and bank liquidity, including DI and LLR schemes (as reviewed in Santos (2006) and
section 2.4). Of these interventions, perhaps the most prominent type is that of capital regulations
imposed on all national banks by some government agency. While bank capital can serve as a
source of funds (in the form of equity) to enable lending, it is the risk-bearing function thereof
that is more important for regulators. According to Taggart and Greenbaum (1978), bank capital
can absorb any deterioration in loan asset quality, thereby stabilising the bank’s overall asset
values that may otherwise be in flux. By doing so, the probability of insolvency is directly affected,
thereby protecting depositors and shoring up the public’s confidence in the bank, which in turn
limits the scope for a bank run. Moreover, the shareholders of a bank enjoy risk reduction since
capital will ultimately reduce potential losses in the event of insolvency. Lastly, a common belief

amongst bankers is that holding capital can deter excessive risk-taking when lending.

However, instating national mechanisms to protect banks from liquidity shocks will unavoid-
ably interfere with the free market and disturb its equilibrium, possibly inhibiting economic

growth objectives. In particular, regulated reserve requirements will impose a ‘tax’ of sorts when
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trying to raise funding from depositors, thereby inhibiting financial intermediation, which was
demonstrated in Taggart and Greenbaum (1978). Moreover, many studies have since shown that
capital requirements are not as effective in controlling risky lending or curbing liquidity crises as
one would otherwise believe — see Bhattacharya and Thakor (1993) and Santos (2006). In fact, the
general equilibrium models of Besanko and Thakor (1992) showed that greater capital require-
ments can reduce a bank’s reliance on deposit funding. In turn, this reduction then decreases
the interest rates offered by banks for deposits due to the weaker demand. Simultaneously, the
cheaper cost of funding means equilibrium loan rates decrease as well, which leads to declining
revenue at first, though is counteracted by greater loan sizes. This implies that higher capital
requirements benefit borrowers but hurt depositors and shareholders, even if such requirements

can induce safer lending.

Apart from imposing capital and liquidity requirements, a central bank (or a relevant public
agency) commonly regulates three other aspects of banking: market participation (by issuing/re-
voking a banking licence), the money supply (by setting the prime lending rate), and information
availability (by requiring the public disclosure thereof in annual reports). However, the need for
cooperation amongst central banks became increasingly clear as cross-border credit flows surged
and international lending grew, as discussed in Van Gestel and Baesens (2009, pp. 55-57) and
Baesens et al. (2016, pp. 5-6). This need was further underscored by subsequent liquidity crises
and large international banking!? failures, particularly those in 1974 of Bankhaus Herstatt in
Germany and Franklin National Bank in the USA. Soon thereafter, the Basel Committee on
Banking Supervision (BCBS) was established in 1975 by a board of central bank governors of the
G10 countries. The BCBS is head-quartered at the Bank for International Settlements (BIS) in
Basel, Switzerland, which was itself previously established in 1930 as the bank for all central
banks. The BIS remains a natural host for the BCBS to this day, given its goal of sustaining

monetary and financial stability and cooperation across the globe.

Initially, the BCBS only facilitated cooperation amongst central banks, though soon expanded
its scope to providing minimum supervisory standards to be enforced by central banks. Chief
amongst these standards is the issue of banks’ capital adequacy, which must enable them to
weather unexpected losses (UL) in excess of expected losses (EL). Capital adequacy is primarily
measured as the ratio between capital held and the risk-weighted loan asset balances. In fact,
the 1980s saw widespread decreases in the capital ratios of many large multinational banks,
largely due to increased lending in riskier emerging markets, as discussed in Van Gestel and
Baesens (2009, pp. 5557, 344-345), Thomas (2009a, pp. 289), and in Baesens et al. (2016, pp. 6).
Subsequently, many central banks agreed that, as a basic principle of lending, the amount of
capital ought to be reserved based on the risk profile of a bank’s loan assets. This consensus

culminated in a regulatory framework that was published in 1988, better known as the Basel

133ee Van Gestel and Baesens (2009, pp. 84-92) for a list of notable crises during the twentieth century.
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Capital Accord (or simply Basel I). This framework prescribed the minimum regulatory capital to
be at least 8% of risk-weighted assets (RWA), which is believed to have been the average capital
ratio at most banks at the time. Basel I also introduced fixed risk weights'4 based on the asset
class itself: 0% for cash exposures, 50% for mortgages, and 100% for other commercial exposures.
Incorporating the appropriate risk weight for a single exposure (or loan) i, the minimum capital

is then simply expressed as

Capital; = 8% x (Risk-weighted asset)
= 8% x (Risk weight x Exposure). (2.4)

Eq. 2.4 implies that riskier positions need greater capital to offset catastrophic default
risk, according to Van Gestel and Baesens (2009, pp. 344-345). On the portfolio-level, the total
regulatory capital is then simply the sum of these loan-level capital calculations. Clearly, total
capital will not necessarily be equally distributed amongst all exposures, simply by virtue of
differing risk weights. This discrepancy is especially relevant for lenders that have different
classes of loan exposures (e.g., mortgages and corporate loans), in contrast to smaller mono-line
banks offering but one loan product. Finally, Basel I requires that the total Capital Adequacy
Ratio (CAR) be equal or greater than 8%, expressed as

Y Capital;
—>8%. 2.5
TRWA) @5

Basel I differentiated only broadly by asset class without considering the underlying credit
risk of each borrower, which typically varies across the portfolio. Although the first Accord was
later amended to cater for bilateral netting of derivative products (in 1995) and to cover market
risk (in 1996), the BCBS eventually decided to revise the framework entirely in 1999. Published
in 2006 following extensive industry consultations, the reworked Basel II Capital Accord!® mostly
refined the measurement of credit risk as well as made the modelling thereof more rigorous. In
this regard, credit risk is now quantified using a statistical approach based on the individual
loan’s expected loss. This stochastic quantity depends on three risk parameters: the borrower’s
default risk, the loss rate given a default event, and the associated exposure size, according to
Van Gestel and Baesens (2009, pp. 2529, 274-277) and Baesens et al. (2016, pp. 10-11). At
the loan-level, let D denote a Bernoulli-distributed random variable such that D =1 indicates a
default event and D = 0 signifies the complement thereof, both expressed across some outcome
period (typically twelve months). The expectation thereof, E[D], equals the so-called Probability
of Default (PD) since E[D]=P[D =1]-1+P[D =0]-0=P[D = 1]. Assuming default, the associated

14 A more detailed table of specific risk weights is given in Van Gestel and Baesens (2009, pp. 346).

15The revised framework is formally called the "International Convergence of Capital Measurement and Capital
Standards, A Revised Framework, Comprehensive Version”, though it is more generally known as "Basel II" — see
Basel Committee on Banking Supervision (2006a).
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stochastic loss is expressed as the product of the estimable loss rate [ called the Loss Given
Default (LGD); and the related at-risk exposure ¢ called the Exposure At Default (EAD). More
technically, the EAD represents the average proportion of the loan balance or credit limit that is
at risk of loss at the time of default. By further assuming independence, the various loan-level

quantities {D;,/;,€;} are assembled into the stochastic loss L; of loan i as

L;=D;-l;ve;, = L;=D;-LGD; -EAD;. (2.6)

Overall, Basel II recognised the mitigatory effects of certain risk management practises, e.g.,
credit derivatives, collateral, and insurance guarantees, which should rightfully reduce regulatory
capital. Since these effects typically reflect in the internal credit data of a bank, Basel II promotes
greater risk sensitivity (compared to Basel I) by better leveraging this data when estimating
the underlying risk parameters (PD, LGD, EAD). In turn, greater sensitivity affords superior
differentiation, which can reduce the capital charge and thereby improve bank profitability, as
discussed in Van Gestel and Baesens (2009, pp. 347, 392) and Baesens et al. (2016, pp. 9-10). In
this regard, Basel II allows two broad levels of sophistication and flexibility when modelling credit
risk: the simplest though least flexible Standardised approach and the more flexible Internal
Ratings-Based approach (IRB). The Standardised approach expands upon the different risk
weights first used in Basel I and relies more heavily on estimates from external credit rating
agencies (e.g., Moody’s, Fitch, and Standard & Poor’s). In contrast, the IRB'® approach allows a
bank to use its own models and credit risk estimates, which is generally more accurate. In fact,
the work of Jankowitsch et al. (2007) demonstrated that more accurate credit rating systems can
reduce regulatory capital as well as yield significant economic value, simply by better pricing

loans based on their actual credit risk.

Eq. 2.6 can be estimated across all eventualities and aggregated into the so-called Expected
Loss (EL), thereby obtaining the mean value of the individual loan loss probability distribution,
expressed as

E[L;,1=E[D;]1-E[l;]-E[e;] = EL,=PD,-LGD;-EAD;. 2.7

Apart from Basel II capital modelling and loss provisioning, estimating the EL is especially useful
in loan pricing contexts. In these cases, a loan’s risk premium must theoretically cover E[D] x E[Z],
proportional to the loan amount, as explained in Van Gestel and Baesens (2009, pp. 274-276) and
Thomas (2009a, pp. 278-288). While loan-level estimates are certainly useful, the portfolio-level
variants are often more practical to use in managing the overall portfolio. These activities may
include assessing and tweaking the portfolio’s profitability, facilitating its securitisation, and

reserving Basel II-compliant capital for the portfolio. Moreover, any inherent diversification

16The IRB approach itself has two sub-levels: foundation (IRB-F) and advanced (IRB-A), both differentiated again
by the level of complexity. Note that banks are required to use either the Standard or the IRB-A approach for retail
exposures, as discussed in Van Gestel and Baesens (2009, pp. 392) and Baesens et al. (2016, pp. 10-11).
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benefit wherein one loan’s loss is offset by another loan’s profit becomes more tractable (or even

visible) at the portfolio-level than at the loan-level.

As such, the portfolio loss distribution can simply be obtained across N loans by summing

together the individual loss quantities from Eq. 2.6, i.e.,

N N N
LP=ZLi=Z(Di'li‘€i) - Lp=Z(Di'LGDi'EADL‘). (2.8)
i=1 i=1 =1

Similar to Eq. 2.7, the portfolio’s expected loss estimate is expressed as the sum of the various
expected losses at the individual loan-level, given by
N N N
E[Lp]= Zi[E[Li] = Xi([E[Di]-[E[li]-[E[ei]) — ELp= Zi(PDi LGD;-EAD;).  (2.9)
i= i= i=
While the portfolio loss distribution Lp contains all credit risk information, its shape can be very
different to that of the individual loss distribution L;. This is largely as a result of convolution,
i.e., the distribution of the sum of independent random variables (L + Lo +...) corresponds to
the distributions of the summands (L1,Lo,...), demonstrated in Van Gestel and Baesens (2009,
pp. 276-277). Consider lending ZAR 1,000 in total across N accounts with a PD of 5% while
assuming that both LGD and EAD equal 100% for expositional simplicity, thereby yielding
E[Lp]= ZAR 50. When lending to N = 1,000 accounts, then the actual portfolio loss will likely be
close to ZAR 50 mainly due to the central limit theorem. That said, if N = 1, then the actual loss
will either be ZAR 0 or ZAR 1,000, despite the fact that the mean loss will remain ZAR 50 for both
N =1,000 and N = 1. While this example from Thomas (2009a, pp. 278) clearly demonstrates the
importance of larger more granular portfolios, it also alludes to the potential disconnect between

portfolio-level and loan-level distributions due to distributional convolution.

In addition to distributional convolution, the shape of the portfolio loss distribution Lp can
be affected by the extent of default correlation and loan concentration found within a portfolio.
From Van Gestel and Baesens (2009, pp. 285-287), the benefit of diversified lending erodes
away as correlated default events become more widespread, which would roughly translate
into holding more capital depending on the portfolio size N. In this regard, smaller portfolios
have a more linear relationship between UL and correlation strength while larger portfolios
typically exhibit a slower ramp-up effect in UL as default correlation increases. Similarly, capital
increases exponentially as lending becomes more concentrated, which is typically measured by
the so-called Herfindahl-Hirschmann Index (HHI) as demonstrated in Van Gestel and Baesens
(2009, pp. 287-291). Moreover, the risk parameters may themselves be stochastically correlated,
thereby expressing a joint behaviour, e.g., both PD and LGD increase linearly during economic
downturn periods. As such, Basel II introduced a fourth risk parameter R that represents the
degree of correlated defaults. According to Van Gestel and Baesens (2009, pp. 317-319, 377) and
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Finlay (2010, pp. 184), Basel II suggests the following R-values!” for retail exposures: 4% for
qualifying credit lines, 15% for mortgages, and a PD-based exponentially weighted interpolation

for other retail exposures that ranges between 3% and 16%.

The prevalence of distributional convolution and default correlation means that modelling the
portfolio loss from the lower loan-level quickly becomes complex. Furthermore, the various inter-
dependencies amongst risk parameters imply that the eventual level of capital will itself depend
on the portfolio’s composition. While this relationship seems intuitive, any inherent volatility in
the risk estimates will undoubtedly diffuse throughout the capital base in that capital estimates
vary wildly over time, as argued in Thomas (2009a, pp. 293—295) and Van Gestel and Baesens
(2009, pp. 312). In turn, volatile capital levels suggest that the credit decision will become overly
volatile at the loan-level since the same loan may be granted one day but declined the following
day. This volatility is impractical from an operational perspective and certainly not conducive to
growing (or even maintaining) market share due to the inevitable backlash from customers. As a
solution, the principle of portfolio invariance was devised in Gordy (2003) wherein the capital
per loan must only depend on the particular loan’s own risk profile. This (necessarily) restrictive
condition requires two assumptions. Firstly, the portfolio must be as finely-grained as possible,
composed of a large number of loans such that no single loan dominates the portfolio in terms
of loan size. Secondly, there must be a single systemic risk factor that affects all loans in the
portfolio. Both assumptions taken together imply that any idiosyncratic risk factors amongst
loans tend to negate one another, leaving only the systemic risk factor as a source of uncertainty

at the portfolio level.

To achieve portfolio invariance, Basel II therefore requires that the portfolio be subdivided
into various risk grades or segments, at least for capital modelling purposes. Each risk grade
should contain loans that are largely homogeneous in their overall risk profile. According to
paragraphs 404—409 in Basel II and Van Gestel and Baesens (2009, pp. 160 , 258-259, 399),
a minimum of seven risk grades are required for wholesale PD-models, whilst no minimum is
explicitly specified for retail PD-models or any LGD/EAD-models — though segmentation should
certainly still be pursued where possible. The principle is to devise a meaningful segmentation
scheme S such that the resulting groups s € S are adequately variegated across the portfolio
whilst constraining risk variance within each risk class, i.e., between-class differentiation and
in-class uniformity. In turn, the PD;-estimates of the individual loans within risk grade s can
be replaced with a single value D that represents the segment-level default risk PDg, i.e.,
E[D;]:= Dy for all i € s. Having conditioned the PD-estimate per segment, it is not unreasonable

to assume that all loss risks LGD; are now independent of one another. As such, the portfolio

17Note that these correlation values were reverse-engineered from historical loss data of G10 supervisory databases,
which relate to corporate lending instead of retail lending. After all, individuals are not stock-listed nor can their
personal assets and liabilities be as easily assessed as in the case of corporates. For more detail, refer to Van Gestel
and Baesens (2009, pp. 318-319).

53 of 178



CHAPTER 2. BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

ELp from Eq. 2.9 simplifies considerably into

N
E[Lpl=) (EID;1-E[[;]-E[e;]) <= ) (Z rE[Ds]-[E[li]-[E[ei])

i=1 seS\ieS
=) DS(Z [E[li]-[E[e,-]) = ELp=) PD; (Z LGD; -EADi). (2.10)
seS ieS seS ieS

The portfolio EL-measure, defined in either Eq. 2.9 or Eq. 2.10, summarises the portfolio loss
distribution into a single quantity. Though it cannot provide information on the distributional
shape, the EL-measure exhibits all four properties of a so-called coherent risk measure p, as
originally formulated in Artzner et al. (1999) and discussed in Van Gestel and Baesens (2009,
pp. 278-279). Consider two bounded random variables X and Y that represent losses on two
individual loans. Firstly, subadditivity holds when the risk of the sum may be less than the
sum of the risks, i.e., p(X +Y) < p(X) + p(Y), which implies a diversification benefit when adding
together individual risks. Secondly, monotonicity requires that riskier positions be measured as
such, i.e., if X <Y, then p(X) < p(Y). Thirdly, positive homogeneity applies when both a risk
measurement and its input scale linearly, i.e., p(1X) = 1p(X). Lastly, translation invariance
means that a risk measurement decreases when adding a risk-free investment a to a portfolio,
ie., p(X +a.ry) = p(X)-a with € R and ry denoting a risk-free discount factor. The converse is

true as well, i.e., p(X — a.ry) = p(X) + a, according to Artzner et al. (1999).

Another (perhaps more important) risk measure is the so-called Value-At-Risk function VaR,,.
This measure yields the lowest extreme percentile L at the far-right tail of the Lp distribution
such that the probability of attaining even greater losses than L, i.e., P(Lp > L), is at most 1 —«

over a given time horizon. More formally, the VaR,-estimate of Lp is defined as
VaR,(Lp)=min(LeR : P(Lp>L)<1-a. (2.11)

The chosen confidence level a € [0, 1] is usually very high, e.g., a = 99.9% that corresponds to a
1-in-thousand year failure event. At a, one can be sure not to lose more than VaR,(Lp) in (1-a)%
of times. A thorough discourse hereof is given in Artzner et al. (1999), Van Gestel and Baesens
(2009, pp. 282—-285), Thomas (2009a, pp. 288—-293), Finlay (2010, pp. 185-187), and Baesens et al.
(2016, §9). The portfolio VaR was adopted in Basel II to help set regulatory capital levels and is
typically expressed over one year for covering unexpected credit risk. In fact, the related idea
of economic capital leverages the portfolio VaR to calculate the necessary capital for supporting
all portfolio risks in excess of loss provisions, as illustrated in Fig. 2.11. Denoted as EC,, the

economic capital for covering the portfolio’s loss distribution Lp is simply defined as
ECy(Lp)=VaRy(Lp)—ELp. (2.12)

While the VaR-measure is quite popular in industry, it is not a coherent risk measure since it does

not possess the subadditivity-property, as demonstrated in Artzner et al. (1999). This implies
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that the combination of portfolios will yield a greater VaR than that of each individual portfolio
simply added together, therefore discarding diversification. A variant of the VaR-measure that is
fully coherent is the so-called Expected Shortfall function (or the conditional VaR), as explained
in Van Gestel and Baesens (2009, pp. 285).

(100— c)% confidence level

Economic Capital

Portfolio Loss Lp

Loss provisions

Time Frequency of Portfolio Loss Ly

F1G. 2.11: A Value-at-Risk approach for estimating the portfolio’s unexpected loss,
denoted as VaR,(Lp), at a (1-a)% confidence level. Hypothetical portfolio loss
rates are shown over time, from which the portfolio loss distribution Lp is calcu-
lated. While loss provisions ought to cover E[Lp], the difference VaR,(Lp) - E[Lp]
constitutes economic capital.

Regulatory capital is meant to cover extreme losses and, as such, one cannot simply use
averages of the PD-parameter, even when segmented. The seminal work of Vasicek (2002) devised
a mechanism by which PD; may be stressed to an appropriate level for capital reservation. From
Thomas (2009a, pp. 296—298), Van Gestel and Baesens (2009, pp. 294-296), Witzany et al. (2013),
and Baesens et al. (2016, pp. 240-242), the starting point of Vasicek’s structural default model,
also known as the asymptotic single risk factor (ASRF) model, is to restate the loan-level default
indicator D; following Merton’s original model. Specifically, assume that default occurs whenever

a borrower’s underlying assets Y; (or overall credit quality) fall below a certain value c;, i.e.,

1 ifY;<c¢;
D; = . (2.13)
0 otherwise

Furthermore, Vasicek assumes that Y; is standard normally distributed, which is to say that the
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unconditional probability of default for loan i becomes P(D; =1) =P (Y; <c¢;) = ®(c;) where D is
the cumulative standard normal distribution function. If equated to an average default rate d
as ®(c;) =d, then ¢; = F1(d) = D~ 1(d) where ! represents the inverse cumulative standard

normal distribution function (or quantile function).

Vasicek further incorporates in-segment default correlation by structurally decomposing
each Y; into two independent components: 1) a portfolio-level systemic risk factor V such as
a macroeconomic index; and 2) an idiosyncratic loan-specific risk factor Z;. Assume that the
random variables Y; are jointly standard normally distributed with equal pairwise correlations,
i.e., corr(Y;,Y;) = p for i # j. Accordingly, V and Z; are also mutually independent standard

normally distributed variables and related to Y; by a Gaussian copula as

Yi=\/§'V+\/1—p'Zi. (2.14)

The decomposition in Eq. 2.14 supposes that default correlation between the market factor V
and the credit quality of each loan i is constant and equal to \/p. By substituting Eq. 2.14 into
the default assumption of Y; < ¢;, a necessary condition is obtained that must hold for loan i (as

measured via Z;) in order for default to occur, expressed as

i—vp-V
7, <G VP YV (2.15)

1-p

By assumption, the random variables Z; are independent from the market factor V, even
though Y; are actually correlated amongst themselves. For simplicity, Vasicek conditions Eq. 2.15
to a certain value of the market shock V, thereby relieving the degree of correlation amongst
Y;. For a realisation v from V and estimating ¢; with ®~1(d) under portfolio invariance, the

conditional probability of default 6(v) becomes

o (d)-p-V o 1(d)- /p-
P Zisﬁ‘vzu o TDZVPYY g, 2.16)
1-p 1-p
Given that Z; ~ N(0,1), another quantity that becomes useful later is the inverse of Eq. 2.16, i.e.,
o l(d)-p-V
% =0 1(OW)). (2.17)
-p

Lastly, the market shock v can be substituted with an extreme percentile from the standard
normal distribution since V ~ N(0,1). This is to say that Eq. 2.17 is evaluated at an extreme
probability level 1-a, e.g., @ = 0.999, which is simply given by v = ®~1(1 - a), as derived in
Baesens et al. (2016, pp. 240-241). By symmetry, this quantity is the same as v = —®~1(a), which
is substituted into Eq. 2.16, thereby yielding the classical Vasicek ASRF model, expressed as

o > Yd) - /p- (D L))
1-p

O Yd)+/p- P Ha)
1-p '

(2.18)
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For Basel II capital reservation under an IRB-A approach, a given PD;-value can be stressed
by incorporating Eq. 2.18 into a function K. The default correlation p is substituted with Basel’s
R-values at @ =0.999 and K is then defined as

o 1(PD;) + VR -d1(0.999)
Vi-R

For each loan i, the Basel II capital level C; € [0,1] is then simply defined as the difference

K®PD,)=® (2.19)

between the stressed expected loss K (PD;)-LGD; and the presumably provision-covered expected
loss PD; - LGD;, expressed as
C; =K (PD,)-LGD; - (PD,-LGD;]

o 1(PD;) + VR -®71(0.999)
Vi-R

For convenience, the minimum CAR of 8% from Eq. 2.5 is algebraically reshuffled as 12.5-8% = 1.

=0

] LGD, - (PDS.WDJ (2.20)

Accordingly, the loan-level risk-weighted assets RWA; 18 is computed using C; as

RWA; =125-EAD;-C; . (2.21)

In modelling each component, the first risk parameter D — default risk (PD) — may depend on
a number of factors, including borrower-centric, portfolio-based, and macroeconomic-related input
variables, as explained in Van Gestel and Baesens (2009, pp. 24-25), Thomas (2009a, pp. 282-283),
and Baesens et al. (2016, §5-6). Its estimation is principally the same exercise as behavioural
credit scoring, which was previously discussed in section 2.2. However, there is greater scope to
focus on prediction accuracy when developing PD-models than application/behavioural scorecards,
simply due to the former’s relatively more direct impact on loss provisioning (see section 2.6)
and capital reservation. In particular, greater accuracy can more easily translate into cost
efficiency than risk-ranking ability alone. The latter has typically been the focal point of most
application/behavioural scoring models instead of pursuing accuracy above all else. Furthermore,
PD-models are generally developed at the product-level in retail banking, loosely motivated by
the product’s securability (e.g., mortgages vs. personal loans) and/or its broader design. To this
point, the loan account (held by a borrower) usually forms the base granularity for risk models
in retail banking. However, in wholesale banking, the borrower (e.g., corporate or other large

counterpart) becomes the base-level for risk models instead of the account.

Modelling default risk at the product-level (or asset class) will often reveal significant dif-
ferences in PD-estimates across different products, especially when the same borrower (or
counterpart) holds multiple products at the same bank. Many practitioners can attest to the

lower default rates of more secure products when compared to their less secure counterparts,

18Basel II applies an additional scaling factor of 1.06 on the RWA in the interest of prudence.
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which is curious at first glance. In principle, a counterpart that defaults on one loan may likely
default on other concurrent loans, thereby causing a so-called ‘contagion’ effect in product-level
default rates. However, when the chain of defaults seizes at certain products — specifically more
secure portfolios — then it suggests some other dynamic in play. Furthermore, a product’s secur-
ability certainly affects its overall LGD (and therefore the portfolio EL), but one wouldn’t expect
securability itself to influence the PD. It turns out that retail borrowers in financial distress may
choose to default rather selectively by product type, as discussed in Van Gestel and Baesens
(2009, pp. 25). More ‘critical’ debts are paid first, usually those debts directly related to financial
and job security, e.g., mortgages and auto loans. At the very least, this phenomenon suggests an

‘order’ in which default propagates across products amongst highly credit-leveraged borrowers.

The second risk parameter [ — loss risk (LGD) — is commonly defined as the proportion of a
defaulted exposure to be written-off. This quantity varies widely based on the type of default
resolution (e.g., write-off vs. cure) and underlying loan collateral (if any). From Van Gestel and
Baesens (2009, pp. 26-28, 217-222) and Baesens et al. (2016, §10), more secure products typically
have very low LGD-values since seized collateral can offset credit losses. Furthermore, the LGD
can even become negative in secured lending since the collateral may have been auctioned at
a higher value than that of the outstanding debt, or due to recouped penalty fees and interest.
Conversely, loss rates can exceed 100% of the debt due to extra litigation and administrative
costs but failed loan recovery. To this point, Basel II (paragraph 460) requires that all material

direct and indirect costs be considered when estimating loss, including the time value of money.

Furthermore, calculating the LGD of a defaulted loan inherently depends on the account’s
default resolution during the ‘workout’ period; an uncertain and often lengthy process itself. In
fact, optionality greatly affects LGD in that a distressed borrower may recover financially and sub-
sequently repay all arrears, thereby ‘curing’ the default event. Aside from liquidation/recovery and
curing, a third type of default resolution is that of restructuring. A bank can strategically avoid
costly (and uncertain) liquidation proceedings and instead maintain the credit relationship with
the borrower, though at the cost of reduced income and a medium loss. This resolution is achieved
by reorganising a debt in such a way that instalments become affordable for the distressed
borrower, thereby ‘curing’. The remaining unresolved (or right-censored in that write-off/cured
outcomes are still pending) defaults are typically excluded when calculating the realised/ac-
tual LGD, even though these cases are often the recent majority. These ideas are illustrated in
Fig. 2.12.

The third risk parameter € — exposure risk (EAD) — is often closely related to the LGD
definition and its calculation, such that LGD x EAD denotes the economic loss upon defaulting.
There are two broad approaches to defining EAD, as discussed in Van Gestel and Baesens (2009,
pp. 28-29, 226-229) and Baesens et al. (2016, §11). Firstly, the EAD may be defined as time-
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Resolution / Workout

- —_——— —_——— ——— o o
1
1
]

Resolved

Outcomes

Default

F1G. 2.12: Tllustrating the typical process of resolving defaulted exposures during the
workout period. Defaults are eventually resolved into either write-offs or cures,
while the rest are still pending an outcome.

invariant in that it literally represents the debt balance at the default point 7. In this case,
the EAD is calculated as the starting balance b (or overall credit limit) relative to the default
balance b, thereby yielding a simple ratio s = bo/b;. These loan-level factors are then averaged
across the defaulted population and used quite generically in the EAD-estimate as € = s- by.
However, this rather deterministic approach may be too conservative for more flexible credit
products wherein borrowers can draw and repay dynamically, e.g., credit cards and revolving
loans. As such, another approach (favoured by Basel II as well) for measuring the EAD ¢ is to
model the so-called Credit Conversion Factor (CCF) n instead of € itself. The CCF is characterised
by two quantities, the credit limit by and the drawn amount b; that is measured at time ¢,
assuming by > b;. In essence, the CCF tries to quantify the proportion of the undrawn limit
that will yet convert into credit at the default time 7. The EAD is then related to the CCF as

€r=by_p+1n-(bg—b;_p) across a chosen outcome period & with 7 —% > 0.

Additional Basel II requirements apply when modelling each risk parameter, as summarised
in paragraphs 461-479 of Basel II, Van Gestel and Baesens (2009, pp. 259-262), and Baesens et al.
(2016, pp. 279). In particular, the sampling period should ideally span a complete business cycle
(or at least seven years) for wholesale LGD-modelling, five years for wholesale PD-modelling,
and at least five years for all retail modelling. Paragraphs 473 and 479 in Basel II also affords
some discretion to weigh more recent observations more heavily than older observations in retail
models. Furthermore, the epoch in time from which data is sampled should ideally include a
recession or economic downturn period. This requirement simply injects some conservatism into
the eventual risk estimates to cover possible modelling deficiencies, as argued in de Jongh et al.
(2017). Lastly, extensive modelling guidance for estimating any of these risk parameters is given
in Van Gestel and Baesens (2009, pp. 174-201) and Baesens et al. (2016). The various modelling
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techniques can broadly be categorised into:

1. Financial models that are more theoretical, e.g., Merton’s structural model, the cash
flow-based gambler’s ruin model, and reduced-form models based on Cox processes — see
Van Gestel and Baesens (2009, pp. 176-181);

2. Statistical models that are largely data-driven, e.g., generalised linear models, and more
advanced machine learning techniques. These techniques may include Support Vector
Machines (SVMs), Multilayer Perceptron (MLP) neural networks, and Bayesian Belief
Networks (BBNs) — see Hastie et al. (2009);

3. Expert models that are committee-based or in the form of heuristic rule systems. Although
similar to statistical models in structure, an expert model relies on a priori opinions and
expert judgement in parametrising the model’s components instead of data, which may be
scarce — see Van Gestel and Baesens (2009, pp. 191-194).

Both Basel I and II require banks to reserve capital into at least 50% of highly liquid and
quality loss-absorbing "core" Tier 1 capital, with the rest held as relatively less liquid Tier 2
supplementary capital, as discussed in Van Gestel and Baesens (2009, pp. 350-353) and Baesens
et al. (2016, pp. 8-9). Tier 1 capital ought to be highly reliable and liquid (especially during
adverse economic conditions), e.g., common stock, preferred stock, and retained earnings. On the
other hand, the less liquid Tier 2 capital can include undisclosed reserves, revaluation reserves,
general loan loss provisions, and subordinated term debt; with some allowed deductions from
the total, e.g., goodwill and insurance investments. Following the 2008 GFC, the required Tier 1
weight was adjusted to at least 75% for Tier 1 capital (or 6% of RWA considering Eq. 2.5), thereby
enhancing the rapid loss-absorption power of banks. This change formed part of the new Basel
IIT Capital Accord (effective from 1 January 2013), which largely introduced additional liquidity
requirements without changing the credit risk modelling process itself that underpin Basel II.
For the most part, Basel III established an additional capital conservation buffer that consists
of the 30-day LCR and the 1-year NSFR (see subsection 2.4.4), which must equal at least 2.5%
of RWA. Moreover, Basel II seeks to stabilise capital levels across the macroeconomic cycle by
imposing an additional counter-cyclical buffer. This add-on is controlled by the local regulator
depending on the level of macroeconomic stress at any time and can range from 0% to 2.5% of
RWA. Lastly, Basel III emphasised the need for banks to stress-test their internal risk models to

a greater extent.

The Basel Capital Accords are broadly based on three overlapping sets of principles, called
Pillars 1-3 with a thorough discourse thereof given in Thomas (2009a, pp. 290), Van Gestel and
Baesens (2009, pp. 348-349, 418-427), Finlay (2010, pp. 176-177), and in Baesens et al. (2016,
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pp. 7-8). Pillar 1, which encompassed much of the discussion so far, generally prescribes the
calculation of minimum capital across various risk types. In this regard, Basel I only focused on
credit risk, while Basel IT expanded the risk scope to market and operational risks, to be discussed
in section 2.6. Pillar 2 outlines the principles of both internal and external supervisory oversight
in evaluating and monitoring a bank’s quantitative risk models or processes. Its purpose is to
promote continuous improvements in both modelling methods and the overall design of risk
processes, thereby ensuring adequate capitalisation. Pillar 2 is underpinned by four principles,

the first of which is meant for banks and the remainder for regulators:

1. Banks should have an internal process'? for assessing the adequacy of overall capitalisation

against their risk profile;
2. Regulators should periodically review the aforementioned adequacy-process of banks;
3. Regulators should expect banks to hold capital in excess of the minimum level,

4. Regulators should intervene timeously when capital levels of banks fall beneath the min-

imum.

Lastly, Pillar 3 advocates the public disclosure of a bank’s modelled risks. This disclosure
can include certain details of the capital calculation and certain risk management processes, all
of which are aimed at alleviating asymmetrical information between bank and investor. Doing
so will likely promote greater confidence in the solvency and risk management practices of a
bank. In turn, greater confidence has a reciprocal effect in that it assists a bank in procuring
funding at lower costs, which can have a bearing on profitability. Moreover, subjecting all banks
in a system to these Capital Accords (I-III) will undoubtedly safeguard overall liquidity and
stave off failure, albeit at a cost to depositors and shareholders. Simultaneously, ongoing research
will likely expand the level of sophistication in modelling credit risk in both the EL and UL, as
promoted by Pillar 2 of the Accords — an exciting prospect.

2.6 The management of financial risk in banking

A bank generally faces a myriad of risk types as an unavoidable result of its operation. The
ever-present danger of illiquidity necessitates reserving sufficient capital against unexpected
losses, as discussed in sections 2.4-2.5. However, some risk types are more probable than others
and I shall accordingly examine three broad classes of risk in subsection 2.6.1 that, together with
liquidity risk, constitute so-called financial risk. Moreover, the greatest factor hereof — credit

risk — warrants not only capital to cover unexpected losses, but also necessitates a provisions

19This particular process is more commonly known as the internal capital adequacy assessment process (ICAAP).
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account from which expected losses can be offset on a more frequent basis. As such, the discussion
cannot be complete without presenting a brief introduction to the IFRS 9 accounting standard
that governs loss provisions. Finally, common strategies for managing these identified risks are

outlined in subsection 2.6.2.

2.6.1 A trifecta of risks: credit, market, and operational

It is widely accepted that credit risk presents the single largest source of bank risk, to such an
extent that even a relatively small number of defaulting borrowers have the potential to bankrupt
a bank. Credit risk itself consists of a few subcategories of specific risks, as outlined in Dermine
(2007, pp. 498-499) and Van Gestel and Baesens (2009, pp. 23-25). All of these credit risk
subclasses relate to the breakdown of trust and/or reneging on the repayment of loans or other
commitments. Between two banks, counterparty risk is the probability that the borrowing
bank fails to pay as obligated by the lending bank, which may include bonds, derivatives, or
insurance contracts. Another form of counterparty risk is that of settlement risk, which arises
during the exchange of foreign currencies (or securities), wherein one party has already delivered
while the other party has not. A defining example of settlement risk is the failure of Bankhaus
Herstatt on 26 June 1974. According to Van Gestel and Baesens (2009, pp. 85), this German
bank had its banking licence withdrawn whilst transacting with US banks, who had already and
irrevocably paid their dues to Bankhaus Herstatt preceding its imminent failure. Country risk
(or sovereign risk) materialises when a government defaults on its financial commitments or
freezes foreign currency payments. However, the most common type of counterparty credit risk
is so-called retail and/or wholesale credit risk, which is the potential loss due to a borrower

not honouring a debt obligation to the bank within agreed-upon timelines.

A particularly important facet of credit risk is the low but persistent loss of lent capital
due to the materialisation of ‘expected’ credit risk over time. All loan assets carry the inherent
risk of becoming impaired and while capital covers catastrophic portfolio impairment, it is not
meant to offset low-level loan impairments. To this point, there are at least two fundamental
reasons for keeping a so-called provision account for offsetting expected losses, as explained in
Dermine (2007, pp. 514-515) and Finlay (2010, pp. 167-169). Firstly, and as a central tenet of risk
management, a bank effectively manages long-term solvency risk and smooths earnings volatility
when providing for future expected credit losses earlier. In fact, a bank may better absorb these
expected losses if they are spread out over time, instead of conducting a sudden and systemic
write-down of impaired loan assets that may subsequently trigger a liquidity crisis. Secondly, loss
expectations pose as an effective counterweight to a bank that may otherwise engage in riskier
lending. Early loan performances may prematurely bias overall profitability in the absence of
loss expectations, which is particularly incendiary when staff bonuses are linked to these early

loan performances. In turn, this premature exuberance may very well lead to increasing the risk
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appetite of a lender unwittingly.

Accordingly, the IFRS 9 (2014) accounting standard requires that the value of financial assets
be comprehensively adjusted based on a bank’s evolving estimates of expected credit risk. The
underlying principle is that the bank willingly forfeits a portion of its income at each period
into a central loss provision account that ideally offsets any amounts written-off in future on
average. The provision value should be updated frequently based on the forecast of a loan’s so-
called expected credit loss (ECL), provided by an underlying statistical model. Similar to Basel’s
EL-measure, the ECL is generally expressed as the probability-weighted sum of all future cash
shortfalls that the bank expects to loss over a certain horizon, according to IFRS 9 (2014, §5.5.8,
§5.5.17, §B5.5.25-35). As credit risk evolves, the loss provision is adjusted either by raising more
from earnings or releasing a portion thereof back into the income statement, respectively as
an impairment loss or gain. Accordingly, loss provisions directly reduce bank profitability and
are similar to depreciation since the gross carrying value of an asset is effectively decreased.
Ultimately, providing for future bad debt rightfully recognises that loan assets recorded on the

balance sheet are actually less than the value at which they are stated.

The ECL may be calculated using a staged approach based on the extent of deterioration in a
loan’s credit risk, according to IFRS 9 (2014, §5.5.3, §5.5.5). Each subsequent stage requires a
more severe ECL estimate, as illustrated in Fig. 2.13. In particular, Stage 1 includes most loan
assets, provided that these assets either have low credit risk or have not experienced a so-called
significant increase in credit risk (SICR) event since origination. As a middle ground, Stage 2
contains those assets that have in fact deteriorated quite significantly in their credit quality, but
do not yet qualify as fully credit-impaired. Finally, Stage 3 includes assets with objective evidence
of credit impairment that may adversely affect their future cash flows, e.g., defaulted accounts.
These impairment stages aim to reflect a broader pattern of deterioration (or improvement) in
credit quality over time, thereby allowing for recognising credit losses more timeously when
necessary, as discussed in IFRS 9 (2014, §B5.5.2) and Cohen, Edwards Jr et al. (2017). Another
consideration is that of the time horizon underlying the ECL-estimate: 12 months for Stage 1
and lifetime for Stages 2—3. The latter horizon considers all possible default events over the
remainder of the asset’s expected life. The 12-month horizon then refers to the portion of the
lifetime ECL that may occur over the next 12 months, specifically due to a single default event.
Lastly, the manner in which a bank should calculate interest revenue differs by impairment stage
as well: the gross carrying amount (or balance) is used when in Stages 1-2, but switches to the

amortised cost (balance less the loss allowance) when in Stage 3.

Stage migrations are largely based on a loan accruing arrears or entering debt restructuring
under distress, as summarised in Fig. 2.13. However, the SICR-component is arguably more

important as a stage impairment classifier, presumably based on a "multi-factor and holistic
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Improvement One-period Credit Risk Evolution Deterioration
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= 30 days in

Defaults®
arrears®

Cures after
ki = 3 monthsf Stage 3

ures if < 30
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12-month ECL o Lifetime ECL
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F1G. 2.13: [Illustrating the one-period evolution of credit risk according to the IFRS 9 staged impairment framework. Each
subsequent impairment stage implies a greater ECL estimate to reflect the deeper level of credit deterioration. Arrows
indicate possible stage migrations, subject to meeting certain qualitative criteria after a certain probation period has
lapsed. The exception is the probabilistic SICR-component that may include other more external factors.
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analysis” using "reasonable and supportable information”, as set out in IFRS 9 (2014, §5.5.9,
§B5.5.16). At a minimum, flagging an account as an increased risk requires estimating and
comparing the account’s lifetime default risk at two points in time. Consider the probabilistic
model pp(x,t) that estimates the default probability P(D|X,T), where D is a default indicator
random variable that is measured at a given time T' = ¢, whilst observing all available information
X =x at the same t. Per requirement, the account’s default risk is then estimated twice: once at
origination ¢ = 0 and again at the desired reporting time ¢ > 0 (or subsequent monthly period).
It is self-evident that risk has increased whenever pp(x,t') > pp(x,0) for some ¢’ > 0. Having
calculated the magnitude of this increased risk, i.e., pp(x,t') — pp(x,0), the bank has to decide
on a threshold?® of sorts beyond which an account should transit into Stage 2 and below which
an account remains in Stage 1. Lastly, IFRS 9 (2014, §5.5.11, §B5.5.17) provides a broad range
of factors to assist with the SICR-decision, including so-called "forward-looking information”,
i.e., macroeconomic information (historic and forecast). This concludes the brief introduction and
discussion of IFRS 9.

The second risk in the trifecta is that of market risk, which spans various subclasses of risk
(similar to credit risk) that are introduced by bank participation in the market. This risk type
is more relevant for investment banks as opposed to classical retail or commercial banks, as
discussed in Van Gestel and Baesens (2009, pp. 29-30). Historically, the distinctions amongst
retail, commercial and investment banks were highly dependent on the set of specialities of a
bank. In this regard, the Second Banking directive (89/646/EEC) of the European Commission
introduced the idea of universal banking, which removed the previous boundaries amongst
bank types. Instead, the directive describes a complete list of acceptable banking activities,
given in Dermine (2007, pp. 494). Regardless, some types of market risk include equity risk
(downward price movements of equity holdings, e.g., common stock in other companies), currency
risk (adverse rate movements in investments held in foreign currencies), commodity risk
(devaluations in physical products like grain, gold, and gas; which impact derivatives), and
interest-rate risk (downward rate movements in floating rate debt instruments held by a bank

for trading purposes).

Market risks are typically measured using a much shorter time window (often measured in
days) when compared to modelling credit risk, mostly since market prices are available much
more frequently. The VaR-measure is typically used in expressing the maximum loss over these
shorter time horizons at a certain probability, as explained in Van Gestel and Baesens (2009,
pp- 30-31). Basel II then simply requires holding sufficient capital to cover the quantified level
of market risk. Furthermore, some investments may be subject to both market and credit risk,
especially when trying to hedge one’s risk by investing in debts (e.g., corporate bonds). However,

there is a difference between buying instruments intended for imminent trading versus holding

20This exercise is currently non-trivial, open-ended, and largely based on the subjective discretion of a bank.
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instruments until redemption (or maturity). The former usually attracts market risk whilst the

latter carries relatively more credit risk.

The third and final risk in the trifecta is called operational risk, which are potential losses
as a result of failures in internal processes, IT systems, people, and external events. From
Dermine (2007, pp. 500) and Van Gestel and Baesens (2009, pp. 31-33), operational risk generally
refers to any other risk type beyond credit risk, market risk, and liquidity risk. Operational risk
has many subcategories, which are too numerous and pervasive to list in this text. That said,
a particularly significant subclass is that of legal risk, which include any regulatory fines or
penalties, as well as losses from potential law suits. Another noteworthy subclass is that of fraud,
which can materialise in ever-changing forms, both internally and externally. More technically,
fraud generally transpires whenever illicit financial gain is sought or bank-owned property is
misappropriated, including financial assets. Although related to fraud, cyber security risk is
another subclass that has emerged during the last few years in its own right, according to Alghazo
et al. (2017). Internet banking and the self-service offerings of so-called "digital banks" avail
greater convenience to customers. In turn, banks have accelerated the adoption of technology
and digitisation efforts to cater for this demand, though at the risk of security breaches. In this
regard, digital attacks may be launched on the computer and network systems of a bank, usually

to steal valuable and sensitive data and/or cause reputational damage.

Other more unintentional forms of operational losses include general negligence when ser-
vicing customers, e.g., fiduciary failures that may lead to fines from an ombudsman or legal
suits. Operational losses further include avoidable costs due to failures in trade relations (or
contractual agreements) as well as losses in the form of refunds to remedy process-based or
human-related errors, or service disruptions. Less distinct forms include damage to property as
a result of natural disasters or riots, the payment of personal injury claims due to health and
safety violations, and payouts to settle discriminatory events. Most of these operational losses can
be mitigated to a certain degree by conducting adequate risk management, which may include
buying insurance, developing fraud detection systems, or reserving Basel II-compliant capital
for covering operational risk. In addition, embedding an agreeable risk culture and devising

adequate internal controls may further reduce the proclivity of human and process errors.

2.6.2 Common risk management strategies in banking

A proper risk management strategy generally aims to smooth away significant volatility in
earnings and to avoid large concurrent losses. In modern banking, the risk management function
will typically partner with other more operationally-inclined departments (e.g., sales, finance,

IT) when fulfilling its role, according to Finlay (2010, pp. 16—23). Risk management itself is
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typically conducted in a three-step?! continuous process, as illustrated in Fig. 2.14. This process
generally starts off with risk identification, followed by measuring a risk, and ending with its
mitigation by devising appropriate strategies. From Van Gestel and Baesens (2009, pp. 38—40),
sources of potential risk or threats to the business model are continuously identified through
careful analysis, discovery, and critical thinking. Once identified, the practitioner may conduct
statistical analyses of these past events, which enables risk quantification, followed by the
risk-ranking thereof based on the severity and/or underlying probability. Developing credit risk
models to forecast credit losses is an example of risk measurement. Expert judgement or more
theoretical/structural models can also be used in measuring risk, especially in data-poor contexts.
The final step is to devise the strategic treatment of the measured risk. In this regard, Van Gestel
and Baesens (2009, pp. 40—42) categorises various treatments into four broad groups: avoidance,
reduction, acceptance, and transferal. While these treatments are tailored to each specific risk in

practice, they will be explained here within the context of credit risk.

Avoidance strategies are centred on curtailing the investment decision itself. This is usually
achieved either by selectively investing in (or lending to) certain counterparts, or by drastically
limiting the exposure amount based on the level of perceived risk. As a secondary benefit,
this strategy may reduce concentration risk by progressively restricting credit to ever riskier
counterparts, thereby diversifying the loan portfolio. Application credit scoring, as previously

discussed in section 2.2, is essentially an example of a credit risk avoidance strategy.

Reduction strategies generally try to assume but a part of the underlying risk whilst sharing
the remainder thereof with other parties. An example hereof is petitioning another lender to help
fund a loan (especially in large corporate lending), thereby sharing the inherent credit risk at the
cost of reduced interest income. A simpler example is when a bank requires collateral from high
risk borrowers that may be seized in the event of default, thereby reducing the overall credit risk

exposure.

Acceptance strategies are based on assuming the underlying risk entirely, which is generally
reserved for low risk cases or portfolios that are already well-diversified. An example of an
acceptance strategy is loss provisioning since any potential loss is ’accepted’ simply by offsetting
it against the provision account. However, risk acceptance directly affects profitability, which may
be unpalatable to investors. Regardless of the chosen risk management strategy, the strength
and feasibility thereof must be regularly evaluated in line with new loss events (e.g., recent loan
write-offs) and the overall business context. This includes ‘back-testing’ the predictions from risk

models onto the recent past, as well as continuously refining the risk measurement process itself.

215ome will argue that ranking a measured risk as well as monitoring it thereafter poses two additional and
interleaved steps. However, risk-ranking is an inherent part of risk quantification and is therefore included in the
second step. Moreover, monitoring only ‘treated’ risks is not as sensible as monitoring all steps continuously instead,
which is the more pervasive practice.
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*Reduction
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FiG. 2.14: The three-step continuous risk management process, starting with iden-
tification, then measurement, and then treatment of each risk. This process is
supplemented by continuous monitoring, evaluation and further refinement.

The latter may take the form of redeveloping credit risk models that may have deteriorated over
time, as well as conducting novel academic research in the field of credit risk modelling — not

unlike this study.

Transfer strategies focus on buying insurance from guarantors for covering any future loss
events, thereby transferring the underlying risk to a third party. An example of this is a derivative
called a credit default swap wherein the insurer reimburses a lender the underlying credit loss in
the event of default. Another more notorious example is that of securitisation, whereby originated
debts are packaged into more liquid and tradable securities. From Bhattacharya and Thakor
(1993), Van Gestel and Baesens (2009, pp. 76-81), and Vento and La Ganga (2009), widespread
securitisation became a lucrative business model in the 2000s since securitised debts were no
longer held on a bank’s balance sheet, which meant less risk and therefore reduced capital.
Furthermore, originating banks used the proceeds from selling off these securities as a funding

source itself, thereby promoting further lending activities and entrenching this so-called originate-
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to-distribute (OTD) business model. In contrast, the traditional business strategy is to retain an
originated loan on a bank’s balance sheet up to maturity or write-off. However, as a risk transfer
strategy, securitisation failed abysmally during the 2008 GFC largely due to the inability of those
agents who bought securitised debts to perform the classical roles of a bank. Specifically, these
entities were neither nearly as well prepared as banks to analyse credit risk, manage credit
deterioration, or act as delegated monitors; nor did they keep adequate capital under regulatory

supervision.

In conclusion, the main elements of financial risk in banking consist of liquidity risk, credit
risk, market risk, and operational risk. The inherent dangers of each risk type is primarily
mitigated by implementing an adequate management strategy, which include effective bank
policies and holding sufficient capital. However, banks need to balance financial risk against
business/performance risk, which generally refers to the failure of a business strategy and/or the
erosion of profitability, according to Van Gestel and Baesens (2009, pp. 51-52). Mismanagement
of either business or performance risks will likely impact the bank’s overall return on equity
for shareholders. High-level examples hereof include declining loan production, inadequate loan
pricing (e.g., the inability of interest rate margins to cover expected losses or bank expenses),
price-elasticity amidst competing banks, improper diversification or simply lavish spending.
Ultimately, the principle is to fuse attaining sufficient profitability with adequately managing
the risks of loan assets, both within the ambit of a sustainable business strategy. It is clear
with no excessive stretch of the imagination that this principle alone can be rather daunting to

implement — not to mention even the potential optimisation thereof.

C=y===9
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CHAPTER

THE BANKER’S GAUGE OF ERODED TRUST

stimating the frequency of any event in a given sample fundamentally depends on the

definition of the event. While loan ‘default’ is intrinsic to credit risk (and its subsequent

estimation), the default event itself has many definitions, used both historically and in
modern times. These differences become self-evident when comparing the legal requirements of
various prudential regulators, most notably that of the South African regulator! compared to the
UK and EU counterparts. More importantly, these regulators (and many others) all subscribe
to the Basel Capital Accords, which is a set of reasonable principles that were published by
the Basel Committee on Banking Supervision (2006a) and upon which credit risk models are
commonly built in practice. The recent introduction of the IFRS 9 accounting framework has some
interaction with Basel II, especially regarding the former’s impairment stage classification that
ultimately leads to the notion of loan ‘default’. These standards aside, some regulators are more
prescriptive than others in enforcing elements thereof, especially regarding default definitions
and related topics. However, prescription should never deter broader scientific inquiry in and of

itself, especially since regulations are often amenable to (and dependent on) academic advances.

Estimating default risk is becoming increasingly interwoven in the many emerging statistical
and mathematical models that drive decision-making in modern banking. Given this ubiquity,
the stakes are certainly raised when the exact ‘default’ point is varied by altering the underlying
definition, not to mention its impact cascading across other models. Besides specific regulatory

prescriptions, there is limited scientific reason to neglect re-examining the suitability of the

1Known respectively as the South African Reserve Bank (SARB), the Bank of England’s Prudential Regulatory
Authority (PRA), and the European Banking Authority (EBA).
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default definition and others, even less so when pursuing risk innovation. Admittedly, this is
currently more viable in certain areas of banking than in others, e.g., application scorecards
and collections modelling. However, the idea of ‘default’ remains quite firmly rooted in reaching
a probabilistic "point of no return”, beyond which repayment becomes extremely improbable.
Operationally then, a ‘default’ is fundamental impetus for the lender to act, e.g., by initiating debt
recovery and/or abandoning the credit relationship. Surely there must be varying consequences
associated with the lender’s action in this regard and, more importantly, its exact timing. If this
is true, then modelling any aspect of the default event using potentially stale definitions thereof
will likely be sub-optimal. As paraphrased from Hand (2001), it is reasonable to question the
pursuit of modelling excellence when the constructed outcome variable itself, i.e., the default

definition, is inherently quite arbitrary.

I begin this chapter by reviewing the relevant pieces of regulation and standards that
relate to default definitions in section 3.1. This review includes two additional topics. Firstly,
the functional areas in retail baking are explored wherein loan delinquency is typically used;
secondly, a decision-support tool called a roll rate analysis is examined, which is commonly used
to test default definitions outside of Basel IT and IFRS 9 contexts. Two interrelated problems are
then discussed in section 3.2, emerging from the gap in literature on default definitions versus
loan collection. First of all, classical roll rate-based approaches are divorced from direct loss
considerations and competing costs when varying the ‘default’ point. Moreover, these roll rates
are highly sensitive to a few design parameters (e.g., outcome period length, sampling window),
which can obscure idiosyncratic characteristics of the portfolio and enable confirmation biases
when selecting a default definition. Secondly, the mere possibility of a loan recovering from a
supposed "point of no return" chafes away at any confidence held in the underlying definition

thereof, especially as curing becomes more frequent.

Finding a "point of no return” presupposes that loan delinquency is already quantified a priori.
The measurement of delinquency itself becomes a crucial but often overlooked prerequisite, which,
at the very least, warrants a discussion of the underlying limitations of current measurement
practices. As such, three delinquency measures are mathematically reworked and discussed in
section 3.3. These measures form an intrinsic but modular part in studying the ideal timing
of the bank’s recovery decision and, by extension, the "point of no return". It is against these
thematic backdrops that the philosophy underlying loan recovery is primed as a variable point on
the banker’s imagined continuum of eroded trust. To this end, I contribute a novel optimisation
method in section 3.4 that manifests this idea, called the Loss-based Recovery Optimisation across
Delinquency (LROD) procedure, followed by the chapter’s conclusion in section 3.5. At its core,
this procedure attempts to find the ideal point for a given portfolio such that loan recovery occurs

neither too early nor too late in aggregate loan life.
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3.1 Default definitions: a servant of many masters

To collect on a distressed loan is to have breached a certain "point of no return" in the relationship
between bank and borrower, at which the lender abandons all hope in the eventual repayment of
a loan. This notion is arguably similar to that which underlie most default definitions found in
practice. In turn, default definitions themselves become a valuable starting point for a discussion
that is ultimately centred on when to abandon a troubled loan. Banks have used different default
definitions throughout history, even differing amongst various portfolios held by the same bank.
Similarly, the prescriptions of regulators relating to default definitions differ by jurisdiction;
especially so in the degree of flexibility when interpreting international standards, such as Basel
II and IFRS 9 (see sections 2.5-2.6). To this end, various regulations and standards relating
to default are examined in subsection 3.1.1, followed by surveying the default definitions of

well-known external credit rating agencies.

However, default definitions serve a few other masters beyond domestic regulations and
international standards, most notably the contexts of credit scoring, loan pricing, and collection
modelling. It is therefore worthwhile to review how both ‘delinquency’ and the subsequent notion
of ‘default’ is used elsewhere in banking, most notably in basic credit and pricing decisions. Having
reviewed these areas in subsection 3.1.2, the specifics of a decision-support tool called a roll
rate analysis, which is commonly used in selecting default definitions when building application

scorecard models, are discussed in subsection 3.1.3.

3.1.1 A regulatory overview of default definitions

Credit risk is inherent to any credit agreement, though the manner in which the default event
is defined can vary by product, customer type, and bank. Historically, these definitions include
reaching a certain number of days in arrears (or overdrawn), filing for bankruptcy, claims that
are not fulfilled up to a certain nominal value, negative net present values, as well as being
three payments in arrears, as discussed in Van Gestel and Baesens (2009, pp. 203—207) and
Baesens et al. (2016, pp. 137-138). The introduction of Basel II brought with it a greater degree
of uniformity in the formulations of default definitions across banks world-wide, while still
leaving some room for subjective discretion (subject to the local regulator’s approval). Specifically,
paragraph 452 of the Basel Committee on Banking Supervision (2006a) defines ‘default’ when

either one or both of the following events has occurred:

1. The obligor has reached 902 days past due (or three payments in arrears) on a material

loan balance, or has been in excess of an advised credit limit for at least 90 days;

2Paragraph 452 of the Basel Committee on Banking Supervision (2006a) concedes that some regulators allow up
to 180 days past due as a default criterion for retail and public sector exposures.
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2. The bank considers, in its opinion, that the obligor is unlikely to repay its obligations in

full, without the necessary intervention of the bank, e.g., liquidating any collateral.

Basel II also lists a few reasonable indicators of default in paragraph 453 for those banks
following the IRB approach, which are in many cases enforced verbatim by the regulator of a
country. For example, Regulation 67 of the amended Banks Act of South Africa (2012, pp. 1201-
1202, 1211) defines ‘default’ exactly the same way as in Basel IT and lists the same indicators.
In addition, Regulation 67 indirectly describes ‘default’ when it defines non-performing debt as
those debts having reached the point when it is "no longer prudent to credit interest receivable to
the income statement” of a bank. This definition reinforces the original notion of default as having
reached a certain "point of no return’, i.e., unlikely to repay in Basel’s parlance. Accordingly,
banks are afforded a modicum of discretion in formulating their own default definitions, which
lends additional credibility for the present study. Finally, Basel II's default indicators include the

following, at a minimum:

Indicator 1  The bank assigns a non-accrued status to the relevant credit obligation, thereby

no longer charging interest;

Indicator 2 The bank writes down a portion of the credit obligation, or raises a specific
provision, as a result of the belief that the credit quality has significantly

deteriorated since the inception of the credit obligation;

Indicator 3 The bank resolves to sell the credit obligation at a material economic loss

related to credit risk;
Indicator 4  The bank files for the obligor’s bankruptcy;

Indicator 5 The bank agrees to the restructuring of the credit obligation, which likely

results in a materially reduced financial obligation;

Indicator 6 The obligor files for bankruptcy (or is placed therein), which will likely either

delay or avoid repaying the credit obligation.

Some of these indicators (of "unlikeliness to repay”), most notably, indicators 1-4, are retro-
spective in that they denote ‘default’ as a result of certain actions taken by a bank ex post.
However, these actions are only reasonably pursued after a bank has already resolved that
continuing the credit agreement is of decreasing (or little) financial benefit. This is to say that
the trust between bank and borrower in honouring the credit agreement in full has already been
eroded beyond a certain point, likely as a result of persistent non-payment. If one considers

that reaching this particular precipice already reflects ‘default’ in essence, then these specific
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default indicators do not preemptively signal ‘default’ as much as they merely reaffirm what a
bank already considers to be obvious. This suggests the fallacy of circular reference, or petitio
principii, on the premise of using these indicators in defining default when they themselves are
deducible by presumably the same underlying default criteria, e.g., having accrued a certain level

of arrears.

The remaining indicators 5—6 are uncertain and prospective in nature since they may not
necessarily coincide with either previous or future non-payment, at least not with absolute
certainty. Consider a financially-distressed obligor who is not yet in arrears, contacting the bank
to restructure his obligation timeously. At this point of restructure, there can be no erosion
in trust (or default) since there is no amount in arrears. This remains the case even though
the restructured terms may eventually lead to a slight economic loss relative to the original
agreement. In this scenario, statistical analysis may very well show a time-lagged relationship
between the restructure event and subsequent non-payment, which supports the original premise
of a restructure event denoting default. However, though default is reasonably likely, it is not
an absolute certainty at the point of restructure itself. Consider the converse of a restructure or
bankruptcy event indeed following a series of unpaid instalments. These indicators 5—6 merely
reaffirm the observed erosion of trust incurred by non-payment instead of supposedly signalling
it, similar to indicators 1-4. Therefore, indicators 5—6 ought to be considered more as possible

predictors of default, rather than indicating definite default at a certain point in time.

The IFRS 9 (2014) accounting standard does not rigidly prescribe a fixed or singular default
definition for all banks. Doing so would be challenging (and perhaps unwise) since banks (and
their internal business units) differ from one another in their product offerings, risk appetites,
operations and financing, markets in which they operate, and levels of sophistication. Instead,
IFRS 9 more reasonably requires in paragraph B.5.5.37 that a chosen default definition simply
be consistent with the definition used in other internal credit risk models and management.
Furthermore, the same paragraph provides a rebuttable presumption of 90 days past due (or
DPD) as a default definition. The rebuttal hereof can logically lead to any other default definition,

provided that "reasonable and supportable information” demonstrates its appropriateness.

The recent guidelines (D403 of 2017), published by the Basel Committee on Banking Super-
vision (2017), intends to harmonise default definitions across banks by proposing the use of 90
DPD quantum as a universal definition of a non-performing loan (NPL). This criterion is supple-
mented by additional default indicators of unlikeliness to pay and applies to any exposure type
(retail or otherwise). Collateralisation does not play a direct role, except perhaps as an indirect
default indicator, should a bank think it necessary. Critically, this universal NPL-definition is not
intended to replace any default definition currently used for loss impairment calculation or IRB

capital estimation, as noted in the guidelines. Instead, a central definition will sensibly promote
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the comparability of credit risk information amongst banks, as well as help regulators assess

asset quality more accurately.

The regulators of some jurisdictions may grant concessions or impose additional requirements
on member banks when interpreting Basel II’s default definition. As an example, the South
African regulator issued circular C2/2014 in SARB (2014) wherein it stated that Basel’s 90
DPD criterion has broad equivalence to that of using a three-month missed instalments-based
definition, which is widely used by South African banks. More importantly, the SARB acknow-
ledged that the costs of implementing Basel’s day-count definition will be too great for South
African banks. Many of their computer systems are designed for instalment-based products,
which integrates better an instalment-based default definition. Accordingly, the communique
listed necessary steps for banks to follow when intending to use an alternative default definition
that differs from Regulation (i.e., Basel II). Most notable of these steps is that of demonstrating
the suitability of the proposed definition over time for a particular portfolio. This particular
concession arguably provides academic scope for pursuing alternative definitions — particularly
when varying the time-based element thereof — provided these definitions are demonstrably
superior at the end of the day. Relatedly, Regulation 1 of the amended Banks Act of South
Africa (2012) states that compliance with the Regulations should not prove costlier than the risk
benefits accrued by being compliant in the first place. At the very least, this affords a mandate for
experimentation, even if it may lead to an alternative default definition that yields fewer losses,

but also contrasts the prescriptions of the SARB — or even Basel II.

Another regulatory example is Article 178 in Regulation (EU) No 575/2013, the so-called
Capital Requirements Regulation (or CRR) as promulgated by the European Parliament (2013),
which gives the default definition of an obligor across all EU-member banks. The European
Banking Authority (or EBA) later amended Article 178 in EBA (2016) by providing guidelines on
interpreting and applying the default definition within the EU jurisdiction. Firstly, the same six
minimum default indicators as in Basel II’'s paragraph 453 are enforced when defining default.
In particular, the EBA (2016, §2.3.1) clarified Article 178(3)(b) of the CRR, which relates to a
perceived decline in credit quality (Indicator 2) serving as a default indicator. In line with IFRS
9, an obligor should be classified as having defaulted whenever a bank recognises a Specific
Credit Risk Adjustment (or SCRA) due to the obligor’s credit risk having deteriorated. These

adjustments include

(a) losses representing credit risk impairments that are recognised in the profit/loss account

for all instruments measured at fair value;

(b) losses due to current/past events affecting either a single though material exposure or a

collection of less material exposures that are significant in the collective.
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Although Stage 2 exposures under IFRS 9 already contain SICR-accounts, i.e., those accounts
whose credit risk has potentially increased, the EBA (2016, §2.3.1) stresses that reaching Stage
2 does not constitute an indicator of default by itself. The guidelines do, however, seek to align
reaching Stage 3 credit impairment under IFRS 9 as a broader sign of default, in an effort
to harmonise some aspects between Basel-compliant capital modelling and IFRS 9-compliant
expected loss modelling. However, under no circumstances should the treatment of SCRAs under
IFRS 9 overrule the CRR and its requirements or discretions. To this point, reaching Stage 3

under IFRS 9 will generally constitute a default event?, except for

(a) cases where the discretionary use of up to 180 DPD is applicable as a default criterion, as
per Article 178(1)(b) of the CRR and paragraph 452 of Basel II;

(b) cases of technical (or false) defaults, i.e., having entered default purely due to system/data
errors or evidenced failures in the payment system, as clarified by the EBA (2016, §2.2.2);

(c) cases of immaterial (or too small) defaulted exposures, i.e., where the materiality threshold
remains unbreached, as per Article 178(2)(d) of the CRR, and discussed hereafter;

(d) exposures to central governments, local authorities, and public sector entities, as defined
by the EBA (2016, §2.2.3).

Regarding the aforementioned materiality threshold, point 1 of Basel II's paragraph 452
requires at least 90 DPD to lapse on a material credit obligation before the exposure is considered
as in default, which is enforced by Article 178(1)(b) of the CRR within the EU jurisdiction. To help
clarify the meaning of a ‘material’ past due obligation, the EBA (2018) specified that all exposures
should be subjected to a materiality test that consists of two components when deciding default.
Firstly, the arrears balance A must exceed a specified limit on an absolute basis to be considered
material. Secondly, A as a proportion of the outstanding balance B must exceed a given %-valued
threshold to be considered material. Both of these thresholds may be differentiated between
retail exposures and other non-retail exposures. Owing to differences in economic conditions,
individual EU-member regulators are allowed some flexibility when setting the thresholds of the
materiality test. The EBA suggests A >€100 (or the equivalence thereof in domestic currency)
and 4/B > 1% for an overdue retail exposure. For non-retail exposures that are overdue, the EBA
retains the threshold of the relative component while suggesting a threshold of A >€500. More
recently, the UK regulator rendered these thresholds moot for retail exposures when setting A >0
and A/B > 0% in PRA (2019), though still adopting the EBA’s suggested thresholds for non-retail
exposures. Conducting these materiality tests when defining default is expected to enter into

force from 31 December 2020 at the latest, at least for capital estimation.

3However, if Stage 3 credit impairment status is the only default indication, then such exposures may still be
considered as performing, given that CRR supersedes IFRS 9.

77 of 178



CHAPTER 3. THE BANKER’S GAUGE OF ERODED TRUST

Perhaps more interesting is that Article 178(1)(b) of the CRR allows IRB-banks to relax the
standard 90 DPD criterion up to 180 DPD, where appropriate?. This discretion recognises that
the quantum of this particular default criterion may differ amongst banks, presumably in line
with the varying levels of risk tolerances of each bank as they compete with one another. However,
the EBA recently announced its intention of withdrawing this discretion, primarily since only a
small number of UK banks (and one French institution) are currently using it as their default
criterion. The 2017/17 opinion piece of the EBA (2017b), with an annex given in EBA (2017a)
containing an empirical analysis, argued that this withdrawal will harmonise reporting and
remove ‘unwarranted’ variability in risk-weighted assets (or RWA) across EU banks. Its analysis
was primarily based on measuring the change in RWA implied by adopting 90 DPD instead of 180
DPD as the default criterion. Using highly aggregated data from affected institutions, the EBA
found that capital will likely increase for two thirds of these institutions by an average of 1.61%,
or with a minimum and a maximum relative change of -20.3% and 23.57% respectively. However,
the analysis assumes all other factors remain equal and ignores the fundamental opportunity
costs at play and potential risk benefits to be had when varying the ‘default’ point as a function of
arrears levels, which is explored later in this study. As such, it is unfortunate that both the EBA
and the UK regulator, having recently enforced this opinion in PRA (2019) starting 31 December
2020, seek such a high degree of bureaucratic uniformity amongst banks in the formulation of

risk itself that it may stifle risk innovation in this regard.

The Basel II default indicator, as specified in Article 178(3)(c) of the CRR relating to selling
the credit obligation at a loss (Indicator 3), was further refined by the EBA (2016, §2.3.2). In
particular, a bank may decide to sell an obligation at a loss due to liquidity concerns or changes in
business strategy, which logically does not constitute a default event for the obligor. If, however,
the bank sells an obligation E at an agreed price P < E, which results in a credit-related economic
loss, then this event should be considered a default indicator. This should only apply provided
that the %-difference is sufficiently material, e.g., (E-PYE > 5% as suggested by the EBA (2016,
pp. 27-28) in paragraphs 41-48. Moreover, the EBA (2016, §2.3.5) contends that both Basel
II’s paragraph 453 and Article 178(3)(a—f) of the CRR do not provide an exhaustive list of
default indicators. Banks are expected to consider and pursue additional indicators of default
(or measures thereof) if they think it necessary, based on their own experience. Lastly, the EBA
(2016, §2.6) requires that a bank should strive to apply default definitions consistently within
its internal risk management, as far as possible. However, the guidelines concede that some
differences in definitions may be unavoidable, e.g., different legal entities within the banking
group, or different jurisdictions across various geographical locations in which the banking group

operates.

4This criterion applies specifically only to residential mortgages, commercial properties within the retail exposure
class, or public sector entities. Other than these, this treatment should only be applied in exceptional circumstances
for exposures to central governments, local authorities, and public sector entities, as noted by the EBA (2016, §2.2.3).
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A particular default definition may be differently applied either at the facility-level (or
product-level) or at the obligor-level. The latter case equates to triggering default on all facilities
held if the obligor defaults on any one of his facilities. However, if a bank assesses some of the
obligor’s exposures at the facility-level instead, then triggering default on any of these specific
exposures will not automatically propagate across other exposures held by the same obligor.
Naturally, this is at odds with the spirit of applying the default definition at the obligor-level. The
paradoxical reason is that paragraph 455 of Basel II and Article 178(1) of the CRR allows for
applying the default definition at the facility-level for all retail exposures. The EBA (2016, §2.7)
advises that banks applying their default definitions at different levels across different types of
retail exposures, should demonstrate that the cases are negligible where the same borrowers
are subjected to various default definitions applied at varying levels. More broadly, there is no
presumption of default contagion amidst retail exposures, i.e., a defaulted exposure of one facility
held by a distressed retail borrower will not automatically trigger default on another facility held
by the same borrower. However, banks are encouraged to analyse the extent of default contagion
(especially in retail banking), perhaps to formulate an additional default indicator, if appropriate.
That said, such an exercise can quickly escalate into statistical modelling®, which detracts from

framing the default definition first and foremost as a measurement problem.

Another Basel IT default indicator, Article 178(3)(d) of the CRR regarding distressed restruc-
tures (Indicator 5), is rather unclear on what exactly constitutes a materially diminished financial
obligation. In fact, guidelines posted by the EBA (2016, §2.3.3) sought to clarify this particular
indicator by proposing a so-called ‘impairment test’, in line with IFRS 9. As a result, all cases of
restructuring that will likely result in an overall diminished financial obligation due to credit
forgiveness, forbearance measures, or postponement/suspension of principal, interest, or fees,
should be considered a distressed restructuring. The extent of financial diminishing should be
subjected to a materiality test, which is based on the difference in the net present value of expec-
ted cash flows before and after changing the contract’s terms and conditions. Both net present
values, denoted P (before restructuring) and P (after restructuring), should be compared at the
same point of restructuring and discounted using the original effective interest rate (in line with
IFRS 9). If (P.-P1)P, exceeds a specified %-threshold, then the distressed restructure should be
recognised as a sufficiently material default event, e.g., P2—P1YP, > 1% as suggested by the EBA
(2016, pp. 29-30) in paragraphs 49-55.

The South African regulator defines distressed restructures similarly as the EU regulator
when defining forbearance, following that the Basel Committee on Banking Supervision (2017,
pp- 12-14) in paragraphs 36—44. Directive D7/2015 of the SARB (2015) states that restructured

exposures that are in arrears (excluding technical arrears) either at the time of restructure or

5A more prudent approach would be to include information on possible default contagion as input variables when
modelling elements of credit risk.

79 of 178



CHAPTER 3. THE BANKER’S GAUGE OF ERODED TRUST

during the past six months prior, should be considered as distressed restructures. This includes
loans with no arrears that were preemptively restructured to prevent the obligor from going
into arrears in the first place. However, this requirement seems overly punitive, especially when
subsequent payments are dutifully paid by the obligor, even if these instalments are slightly
reduced. Nonetheless, the South African regulator considers distressed restructures as objective
evidence of credit impairment. Therefore, banks need to conduct regular impairment tests and,
if necessary, raise a specific impairment against these restructured exposures. As long as a
specific impairment exists, the exposure must be considered as in default. The South African
regulator also condones (though does not prescribe) a more stringent policy wherein all distressed
restructures are automatically classified as in default, regardless of recognising an impairment

loss.

In general, the default state is not an indefinite state into which the obligor is forever trapped.
Both paragraph 457 of Basel II and Article 178(5) of the CRR acknowledges this and requires
banks to rate the obligor/facility as they would for a performing exposure whenever default
criteria cease to apply. However, reclassifying a previously-defaulted exposure as performing, i.e.,
curing, was limited and made subject to additional requirements by the EBA (2016, pp. 34-36)
in paragraphs 71-74. To ensure the curing assessment is sufficiently prudent and that the
credit quality has indeed ‘permanently’ improved, a minimum probation period of three months
applies. During this period (itself perhaps informed by the standard 90 DPD default criterion),
the obligor’s behaviour and financial situation are carefully monitored. This period starts from
the moment that the obligor no longer meets any default criteria, and must lapse in full and
without pause before exiting the default state. Distressed restructures, however, warrant special
attention since such an exposure will never cease being restructured until it is fully repaid or
de-recognised (e.g., written-off). Therefore, the EU’s minimum probation period that applies
to distressed restructures is 1 year from the latest of: i) the moment of restructure, plus any
grace-period extended to the obligor or ii) the moment of default, provided that the exposure
is no longer in default at the end of the probation period. The South African regulator is less
stringent in this regard, having simply specified a minimum probation period of six months
for distressed restructures in directive D7/2015 issued by the SARB (2015), with no minimum
probation period prescribed for ‘regular’ defaulted exposures. These ideas and legal requirements
(where applicable) are summarised in Fig. 3.1, along with a proposed minimum probation period

of three months for normal South African defaulted exposures.

Aside from the various regulators, external rating agencies have their own (though not too
dissimilar) default definitions, given in Table 3.1. These agencies regularly publish credit risk
ratings on a wide range of counterparts, in guiding investment decisions. As discussed in Van
Gestel and Baesens (2009, pp. 115-117, 149-151), the three most prominent rating agencies
to date include Moody’s, Standard & Poor’s (S&P), and Fitch. While the original intent was
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FiaG. 3.1: Illustrating the curing process wherein a defaulted exposure rehabilitates
and exits the default state, provided that default criteria are no longer met over a
minimum period. Legal requirements are tabulated for both South Africa and the
UK/EU, detailing the minimum length of the applicable probation period £.

to differentiate between investment grade and non-investment grade debt securities (mainly
government bonds), modern ratings cover a spectrum of issuers and associated credit risk, which
are frequently re-assessed. These ratings are generally assigned by a committee of domain experts
using both quantitative and qualitative methods on public and private data. Examples of data
include the financial statements of the entity being assessed, their debt structure, management
quality, market position and growth prospects. These entities commonly include large companies,
banks, state-owned enterprises, municipalities, and sovereigns themselves. Lastly, the eventual
credit ratings assigned to these entities are no longer only used for investment decisions, but also

in asset pricing and general portfolio management.

All three agencies measure default fundamentally based on the non-payment of interest
and/or capital repayments, including the delay thereof within a grace period of certain length
(one day for Moody’s, 10—30 days for S&P and Fitch). However, it is clear from Van Gestel and
Baesens (2009, pp. 208-209) that there are some nuanced differences to this principle. Moody’s
will consider a contract to be in default on the very first day of payment becoming delayed, while

S&P and Fitch applies a grace period of 10-30 days. Furthermore, Moody’s does not consider
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Credit quality Fitch Moody’s S&P
Extremely strong AAA  Aaa AAA
AA+ Aal AA+
Very strong AA Aa2 AA
AA- Aa3 AA-
A+ Al A+
Strong A A2 A
A- A3 A-
BBB+ Baal BBB+
Adequate BBB Baa2 BBB
BBB- Baa3 BBB-
BB+ Bal BB+
Speculative BB Ba2 BB
BB- Ba3 BB-
B+ B1 B+
Highly speculative B B2 B
B- B3 B-
CCC+ Caal CCC+
Vulnerable CCC Caa2 CCC
CCC- Caa3 CCC-
Highly vulnerable CC Ca CC
Extremely vulnerable C C C
Selective, restrictive default RD RD SD
Default D D D

TABLE 3.1: The long-term credit risk ratings published respectively by Fitch, Moody’s,
and Standard & Poor’s. Investment grades refer to overall good creditworthiness,
e.g., Aaa—Baa3 for Moody’s, with the remainder of ratings located lower in the spec-
trum denoting speculative (or higher credit risk) grades, e.g., Bal-C for Moody’s.
The exceptions to these otherwise a priori predictions of default risk include the
observed/actual default states, e.g., RD-D for Moody’s. Recreated from Van Gestel
and Baesens (2009, pp. 116).

technical defaults (e.g., covenant violations), while S&P ignores the dividends due from preferred
stock as financial obligations, which implies that unpaid dividend payments are ignored. On
the other hand, there is some agreement amongst their definitions as well, such as considering
bankruptcy proceedings as indicative of default, similar to Basel II’s fourth and sixth indicators.
Secondly, exchanging a debt security under distress, or repackaging of an existing obligation
such that the overall financial position of creditors is reduced, are both considered as signs of
default by all three agencies. This is similar to one of Basel II’s default indicators relating to the

distressed restructuring of a loan (Indicator 5).

The use of external data (such as the previous credit ratings) when defining default internally
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is supported by both paragraph 456 in Basel II and by the EBA (2016, §2.4) in Article 178(4) of
the CRR. However, banks following the IRB approach should rigorously assess the differences
in default definitions and the impact thereof when using external datasets. Adjustments are
required where necessary, otherwise it will suffice to show that the differences are negligible in
their impact on the eventual risk parameters. If broad equivalence between internal and external
definitions cannot be demonstrated, a larger margin of conservatism should be applied when
estimating the subsequent risk parameters. The exact calculation of this margin, however, is
not prescribed and should presumably be challenged and assessed internally by the relevant

technical committee of a bank.

The discussion hitherto has made clear the differences amongst the default definitions of
various institutions, as well as the relevant prescriptions of some regulators. Neither Basel
IT nor IFRS 9 define ‘default’ absolutely and both standards afford some discretion to lenders,
perhaps wisely so. Regulators may enforce these international standards to different levels,
depending on how flexible they wish to be in their interpretation thereof. That said, at least some
of the default regulations seem to coalesce around the central idea of low repayment probability
(or “unlikeliness to repay”) in trying to define where this rather probabilistic point ought to be.
Admittedly, the recent regulatory drive for standardising these definitions is quite understandable
from a compliance and comparability perspective. However, in doing so, regulators dampen the
probabilistic element of “unlikeliness to repay” by decreeing certain criteria (e.g., 90 DPD) as risk
‘absolutes’ beyond reproach. Instead of finding this threshold statistically using decision theory
uniquely for each portfolio, a standardised default threshold devolves into little more than a static
hurdle — perhaps useful for reporting and accounting purposes, but not much more than that. If
reaching ‘default’ is indeed impetus for the lender to abandon the credit relationship in having
reached a "point of no return” (as it has been historically), then surely there must be different
consequences to varying the timing of this recovery decision. In turn, retaining possibly stale
default definitions purely for the sake of regulatory compliance seems like a wasted opportunity
when pursuing risk modelling innovation in the grander scheme of things. This is especially
regrettable when there appears to be little objective evidence that supports fixing the default

threshold to such a static and risk-insensitive value as 90 DPD.

3.1.2 Delinquency: the leitmotif in risk models

The advent of loan application credit scoring (as discussed in section 2.2) made necessary a more
methodical manner of measuring credit risk. Bankers required an automated proxy of sorts
for capturing what is essentially the development of mistrust between bank and borrower, as
instalments go unpaid over time. In this sense, any ‘accrued’ mistrust (or delinquency) can abate
over time once the borrower posts a series of overpayments, thereby reducing the arrears amount.

In turn, this gradually restores some confidence that the original credit agreement will again
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be honoured. The potential for either worsening or abating mistrust suggests that ‘delinquency’
itself is not a fixed state, but instead a flexible level of incurred mistrust over time, as defined in
Def. 3.1 within this study.

Loan delinquency

Definition 3.1. Loan delinquency is a time-dependent measurable quantity that repre-
sents the extent of eroded trust between bank and borrower in honouring the original
credit agreement. Let g denote such a delinquency measure wherein an increased value of

g signifies increased mistrust, and vice versa for a decreased value of g.

The number of payments in arrears is a commonly constructed and accountancy-based
measure of delinquency wherein the unpaid portion of an instalment is aged into increasingly
severe bins as each 30-day calendar month lapses: 30 days, 60 days, 90 days, and so forth, as
discussed in the introduction of Cyert et al. (1962). The most severe bin attained finally becomes
the delinquency measurement itself, which is referred to as the gg-measure in this research.
More formally, g is constructed using the arrears amount A; (measured at time #) and a fixed
instalment 7, as assembled in Def. 3.2 with an appropriate rounding function f that maps the
input to the number of payments in arrears. This measure is most sensible within the context of
amortising loans or credit facilities with a contingent series of regular payments due, e.g., credit
cards or drawn/utilised overdrafts. That said, it can be generalised to other credit commitments
without regular instalments becoming overdrawn, by calculating an artificial ‘instalment’ that
settles the overdrawn portion (effectively an ‘arrears’ amount) over a set period. Regardless, the
go-measure has many variations in practice, with the most common variant thereof given in
6

Def. 3.2. Moreover, the present study will later examine some of the flaws of the go-measure® in

subsection 3.3.1 towards devising a more robust variant thereof called the gi-measure.

Banks commonly specified 90 DPD (or approximately whenever g¢(¢) = 3 payments in arrears)
as the point of default, long before the introduction of Basel II when building application score-
cards. This particular point, however, is largely informed by managerial discretion and can vary
from 30 days up to 180 days, depending on data availability and the particular loan portfolio, as
discussed in Thomas et al. (2002, pp. 123-124), Siddiqi (2005, pp. 32—42), Van Gestel and Baesens
(2009, pp. 208-212), and Baesens et al. (2016, pp. 90, 115). Factors that influence this default
threshold d € Z=° include the type of security (or collateral) underlying credit commitments,
e.g., secured mortgages vs. unsecured term loans. Another factor is the contractual loan term,

which imposes some reasonable bounds on the chosen default threshold. This is perhaps best

6The go-measure carries many names, e.g., the number of missed instalments, payments in arrears, contractual
delinquency (or CD-level), and arrears categories. Though a more robust variant g1 is later developed in this study,
the name ‘CD-measure’ is retained for both gg and g1, given their conceptual similarities.
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demonstrated when considering a very short term 2-month pay-day loan versus a standard
60-month vehicle loan. In this case, a default threshold of d = 3 is clearly nonsensical for the
2-month loan, though it demonstrates the principle. Lastly, the bank’s risk appetite is arguably
the most important factor when deciding the default threshold. The basic principle hereof is that
the higher the appetite for arrears, the more forgiving/greater the default threshold d, and vice

versa.

Payments in arrears (go-measure)

Definition 3.2. If A; denotes the accumulated amount in arrears at a given loan time
t=0,...,T with T being the contractual maturity (or fixed time horizon), and if I represents
the level instalment, then the payments in arrears delinquency measure (henceforth

called the gg-measure) is defined as
A
go(t)=f(7t), 3.1)

where f is a chosen rounding function f : R — Ny that maps the real-valued input to the

non-negative integer-valued output, which denotes the number of payments in arrears.

The use of a loan delinquency measure such as g¢ is widespread and deeply entrenched
across the various divisions and functions of a typical modern bank (especially retail banking).
Measuring delinquency is commonplace in almost every piece of analytics or statistical model
employed in retail banking, which are called ‘exercises’ in this work. A basic (but non-exhaustive)
taxonomy of these exercises is given in Fig. 3.2; see Finlay (2010) for more detailed discussion.
Many of these account-level models focus on predicting the default event itself (e.g., PD models)
by way of collapsing the delinquency measure into binary ‘default/non-default’ outcomes via the
chosen default definition. Models of this particular kind are commonly used to support various
operational decisions typically found across the first three phases (Marketing, Acquisition,
and Customer Management) in Finlay’s credit life cycle model, as discussed in Thomas et al.
(2002, pp. 169—-171) and previously in section 2.2. The first model group includes prescreening
and preapproval scorecard models in which the default risk of potentially new customers are
predicted using any available data. The subjects are then risk-ordered and perhaps selectively
culled, thereby producing a list of ‘marketing leads’ whom the lender can then solicit during the
Marketing-phase. Secondly, application scorecard models are perhaps the best known example
wherein default risk is predicted, upon which a credit offer decision is subsequently made by the
lender during the Acquisition-phase. Lastly, behavioural scoring and the PD-component within
capital and loss provisioning models (see section 2.6) continuously predict default risk throughout

loan life.
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FiaG. 3.2: The various credit risk-related models and types of analyses used across
the five-phase credit life cycle of retail banking. The common factor amongst these
‘exercises’ is the use of a delinquency measure, used either directly or indirectly
alongside a default definition.

The remaining exercises in Fig. 3.2 use this delinquency measure as well, though not neces-
sarily as an outcome variable or within a predictive setting. Instead, collection and litigation
scoring commonly use it as an input variable when predicting the likelihood of successful col-
lection or even successful litigation amidst debt recovery proceedings, as discussed in Thomas
et al. (2002, pp. 176). Some lenders may deploy advanced default risk models to aid them in
restructuring a delinquent account in such a way that the risk of ‘re-default’ is minimised, which
naturally requires using a delinquency measure. Furthermore, risk-based pricing commonly
uses default risk models to help determine the interest rate (or other contract variables, e.g., the
loan amount) of a new loan, as explained in Thomas et al. (2002, pp. 174-175, 227-228) and
Thomas (2009a, pp. 1562-156). Outside of modelling, a delinquency measure is commonly used
in producing various pieces of portfolio analytics within credit reports (e.g., default rates), or to
investigate more ad hoc phenomena, e.g., finding a new trend of increasing arrears within some

portfolio.

Perhaps most noteworthy is the use of a delinquency measure g within the very structure of
capital and loss provisioning models when modelling the expected loss” of a portfolio. Specifically,
the default definition itself conditions the various modelling samples used in estimating each of
the three risk parameters, i.e., PD, LGD, and EAD. Moreover, many PD models use delinquency
measurements as an input variable itself, apart from already using it in labelling the default
event that PD-models typically seek to predict. In estimating LLGD, loan accounts that are at
risk of a loss can only feasibly include defaulted loans, which means their histories are observed
from the moment of entering the default state, up to their resolution (if resolved). Sensibly,
using a different default threshold, e.g., d = 1, will likely alter the starting point of the workout
period when preparing data, which will likely in turn affect the realised loss itself, as calculated
from historically written-off accounts. The statistical distributions of various characteristics of

defaulted loans may change when changing d within a default definition, simply due to sampling

"For a thorough treatise on modelling the generic aspects of quantifying credit risk, refer to Thomas (2009a,
pp. 289-293), Van Gestel and Baesens (2009, §4, §6), and Baesens et al. (2016, §5-11).
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at a different starting point. Lastly, the sample sizes themselves will likely change given each
candidate threshold d, especially when modelling default risk — not unlike the floodgates of a

dam changing the water flow as it opens or closes.

In summary, measuring loan delinquency and using these measurements in predictive models
seems ubiquitous in modern banking. Choosing a threshold d on the domain of a delinquency
measure as part of defining loan ‘default’, e.g., go(¢) = 3, appears to be a deeply embedded practice
in many of these modelling exercises. This ubiquity is unsurprising given that the very business
model of a bank relies on accurately quantifying credit risk, which implicitly belies some internally
agreed default threshold. However, the supposed suitability of any particular default threshold,
as used within a wider default definition, still remains questionable — regardless of whether
the threshold was decreed by a regulator or chosen arbitrarily by the bank itself for whichever
purpose. The particular modelling exercise in which it operates, albeit capital modelling or
application scoring, becomes almost superfluous, especially if the underlying principle of any
default threshold remains that of approximating the "point of no return" in probability. Intuitively,
changing the default point will likely have cascading effects across all exercises built upon the

default definition — almost unfathomable when considering the modern regulatory environment.

3.1.3 Roll rate analyses as decision-support tools

Practitioners often conduct a statistical analysis called a roll rate analysis in providing quan-
titative assurance on a chosen default threshold, as explained in Siddiqi (2005, pp. 41-42). At
its core, a roll rate analysis is a cross-tabulation of observed transition rates amongst various
ordinal-valued (and increasingly severe) arrears categories across a length of time, called the out-
come period. These categories include the newly-chosen and so-called "default state" as imposed
via a pre-selected value for d. An individual roll rate expresses the proportion of a portfolio (or
segment) that transitioned from a particular pre-defined delinquency level to another. This can
include transitioning to a worse state (rolling forwards), recovering or curing back to a better
state (rolling backwards), or staying within a particular state (milling). When analysed together,
roll rates summarise the delinquency dynamics amongst loans, from which the overall risk profile

of a given loan portfolio can be characterised.

It is worthwhile to discuss the typical structure of most loan datasets before estimating these
roll rates, as illustrated in Fig. 3.3. A bank generally disburses approved loans continuously over
time as part of actively growing its portfolio, which translates into a loan distribution that is
staggered over time in the underlying dataset. For most kinds of risk modelling, the first decision
is to choose the epoch in time from which to sample loan accounts, i.e., the sample window as
shown in Fig. 2.4, with associated trade-offs previously discussed in section 2.2. Part of this

decision relates to whether the analysis is solely focused on new loans or the entire portfolio. In
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Fi1G. 3.3: Illustrating the role of an outcome period within roll rate analyses and
within most cross-sectional models. A particular subject (e.g., a loan along with its
characteristics) is observed at a specific starting point in time, called a ‘snapshot’
or a cross-section, whereupon it is merged with a follow-up observation (e.g.,
repayment status) after the outcome period has lapsed.

other words, only using new loans implies that the starting time of each loan within the greater
sample window will be ¢ = 0, which is appropriate when building application credit scoring
models. Alternatively, the starting time can simply refer to a specific cross-section (or ‘snapshot’)
of accounts taken of the portfolio at a particular time, e.g., monthly cohorts, which can include
both newly-originated (at the time) and existing accounts. This design has a few extensions of
the starting point in practice, though most are more applicable to building behavioural scoring
models than credit risk models. From Baesens et al. (2016, pp. 118-120), one such extension is
based on an additional behavioural window, during which some characteristics are aggregated
over time up to the starting point, e.g., the average utilisation of the borrower’s approved credit
limit. Naturally, this extension is only relevant for those accounts with sufficient history prior to

the starting point.

A secondary set of decisions relate to observing the repayment performance of each loan
from the starting time across a given outcome period of & periods (e.g., 12 months), thereby
forming pooled cross-sectional data, as discussed in Thomas (2000) and Siddiqi (2005, pp. 33—
36). Other than choosing k itself, the practitioner has to decide the manner of aggregating loan
performances across the outcome period. This can be as simple as recording the latest delinquency
value go(t+£) of each loan after the outcome period has lapsed, or by taking the worst delinquency
value across the outcome period, i.e., maxg(#') for t' =¢,...,t + k. The latter so-called worst-ever
approach takes into account a wider span of data and can aid in the detection of distressed debt
restructuring during the outcome period, as noted in R. Anderson (2007, pp. 339—340). However,
the worst-ever approach can be more punitive towards curing behaviour in that an isolated case
of delinquency will persist throughout the remainder of the outcome period, despite subsequent
repayments. As such, choosing the more risk-averse worst-off approach can deliberately skew the

portfolio’s assessed risk profile away from reality, especially if a portfolio has significant curing
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behaviour.

Quicome period (k)

Cohort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Jan-2018 0.00% | 013% ! 0353% ! 140% @ 207% | 249% | 345% | 3.39% | 385% | 405% | 431% | 445% | 449% | 453% | 456% { 459%  462% | 4.64%
Feb-2013 0.00% | 0.16% : 058% ! 137% @ 190%  2.87% | 338% ;| 347% | 389% ;| 403% | 429% | 442% | 446% | 452% | 454% ; 458%  4.60%
Mar-2018 0.00% | 017% @ 051% | 1.07% @ 198% | 237% | 3.05% | 332% | 3.67% | 3.95% | 428% | 437% | 443% | 447% | 451% | 454%

Apr-2018 0.00% | 0.12% : 045% ! 097% @ 185% i 2.72% | 335% | 343% | 371% | 398% | 424% | 435% | 439% | 448% | 450%

May-2018 0.00% | 0.16% | 047% | 1.10% | 179% : 247% @ 3.08% | 3129% | 3.77% | 3.92% | 4.23% @ 438% | 442% | 449%

Jun-2018 0.00% | 0.19% § 037% | 130% | 2.09% : 2.35% | 3.17% | 349% : 3.69% | 3.95% : 421% | 439% | 443%

Jul-2018 0.00% | 0.11% ;| 042% | 093% | 189% : 2.67% | 2.98% @ 333% | 371% : 3.99% | 4.18% | 436%

Aug-2018 0.00% ;| 0.08% ; 041% ; 1.13% : 237% | 2.77% ! 3.07% | 346% | 3.75% | 4.01% | 426%

Sep-2018 0.00% | 0.0%% ; 037% : 120% ; 183% | 261% | 3.16% | 3.3%% ! 379% | 391%

Oct-2018 0.00% | 0.17% | 041% : 050% ; 188% | 248% | 2.97% ! 3.55% ! 371%

Nov-2018 0.00% ; 0.25% | 043% : 131% ; 2.14% | 251% | 3.02% | 3.51%

Dec-2018 0.00% : 0.16% @ 037% : 132% : 234% | 2.64% | 3.32%

Jan-2019 0.00% | 0.14% : 049% : 149% : 217% | 2.84%

Feb-2019 0.00% : 0.17% : 051% : 143% : 2.01%

Mar-2019 0.00% | 0.13% | 049% | 127%

Apr-2019 0.00% | 0.0%% | 047%

May-2019 0.00% | 0.13%

Jun-2019 0.00%

Average defaultrate  0,00%  0.14% 0.46% 122% 2.02% 2.60% 3.17% 3.44% 3.76% 3.98% 425% 4.30% 444% 4.50% 4.53% 4.57% 4.01%  4.64%

FIG. 3.4: An illustrative cohort analysis of cumulative default rates across various
candidate outcome periods &, given a particular default definition. This hypothet-

ical analysis is conducted in retrospect at a particular point in time, e.g., July
2019.

Practitioners often conduct a so-called cohort (or vintage) analysis to help select an appropriate
outcome period k. This analysis, as explained in Siddiqi (2005, pp. 33-35), considers a particular
cohort of loans, e.g., January-2018, whereupon the cumulative default rate for that cohort is
iteratively calculated across various candidate outcome periods, e.g., £ = 1,...,24. Thereafter,
these calculations are repeated for subsequent cohorts, thereby forming a triangular matrix
as illustrated in Fig. 3.4. As an example, 3.59% of the January-2018 cohort were in default 8
months later. More recent cohorts will likely have less data available than older cohorts, which
is testament to the intrinsic right-censoring effect present in most real-world ‘incomplete’ loan
portfolios. Furthermore, the resulting cohort analysis is unique to a particular default definition,
sample window, loan portfolio (or segment therein), and even product type. By implication, a
cohort analysis does not lend itself flexibly to analysing various candidate default thresholds d
themselves, which is problematic when the lender is unsure of a particular criterion within its
default definition.

Performing a cohort analysis becomes more valuable once the default rates from Fig. 3.4
are summarised across the various candidate periods under consideration, as shown in Fig. 3.5.
Shorter periods usually coincide with default rates that are still in flux, while longer periods
typically yield default rates that have stabilised, as exemplified by large (or small) changes in the
standard deviation of each period. The practitioner often selects a period from the latter group

with more stable default rates simply due to risk-aversion, i.e., default rates should preferably
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5.00% 0.002
4.50% 0.0018
4.00% 0.0016
3.50% 0.0014
3.00% 0.0012
2.50% 0.001
2.00% 0.0008
1.50% 0.0006
1.00% 0.0004
0.50% 0.0002
0.00% 0
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Outcome period k

——e— Average default rate (left axis) Standard deviation (right axis)

Fi1G. 3.5: The development of the average default rate across candidate outcome
periods as a summary of the cohort analysis from Fig. 3.4. The grey-shaded area
shows outcome periods during which the portfolio is still immature, while the
blue-shaded area shows outcome periods yielding more mature average default
rates.

be overstated rather than understated. From Thomas et al. (2002, pp. 91) and Van Gestel and
Baesens (2009, pp. 101-102), the outcome period generally varies from 6—-24 months, though

literature guiding its selection optimally is fairly limited.

In fact, the work of Kennedy et al. (2013) experimented with various outcome periods in
predicting default risk using binary logit models on Irish data. Shorter periods exhibited greater
volatility in default/curing rates due to seasonal effects and/or insufficient loan maturity, which
may misrepresent the ‘true’ default/curing rates. On the other hand, longer periods may no
longer represent current market conditions nor reflect the portfolio’s original risk composition.
The authors found that classifier accuracy decreases for increasingly longer outcome periods.
Too long a window may also fail to capture unusually rapid delinquency movements, e.g., an
oscillating series of defaults and cures, as argued in Kelly and O’Malley (2016). Lastly, Kennedy
et al. suggests that using an outcome period between 3—12 months (and a worst-ever approach
in assigning the class label) will yield the most accurate model of default risk on average. This
result was corroborated in Mushava and Murray (2018) wherein nine different classification

algorithms were investigated using South African data across various outcome periods.

Having selected an outcome period %, an epoch of time, and a method of aggregating loan
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performance, the practitioner is finally able to conduct a roll rate analysis. As a typical example,
consider Fig. 3.6 wherein a large proportion of accounts (80%) remained up to date with their
payments following a 12-month outcome period. Similarly, consider the 60% of accounts that
remained 90+ DPD (the supposed default state for this hypothetical), and consider the measly
10% of accounts previously in ‘default’ that cured completely. The principle, at least when building
application scorecards, is based on back-solving for stability in that accounts identified as ‘lost’
should stay lost at the end of the outcome period. This is to find the "point of no return" at which
only a minimum of accounts recover from a supposed default state as imposed via d, which gives
more confidence in the overall stability of the default definition using this d over time — in this
case, 90 DPD. By extension, this instils confidence in any subsequent model that seeks to predict

‘default’, or use the predicted default probability in some way or another.

Current 30 days pastdue W60 days pastdue B 90+ days past due

90+ days past due 15.0%

60 days past due 25.0%

30 days past due 17.5%

Current

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Proportion - Next 12 months

Fi1G. 3.6: An illustrative roll-rate analysis showing the transitions rates amongst
arrears categories across a period of time (12-months).

As a more advanced form of a roll rate analysis, the sophisticated practitioner can use a
Markovian approach instead. Specifically, one can model the conditional transition probability
itself given several starting and ending delinquency states, in estimating a Markov chain. This
was first explored in Cyert et al. (1962) as part of loss provisioning, wherein a time-homogeneous
discrete-space Markov chain was built to model the transitions amongst arrears categories.
Specifically, the balances of accounts receivable at a particular time point ¢ were classified

into n + 1 delinquency levels (or states) denoted as By,...,B,, where B denotes all balances
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with go(¢) = 0 payments in arrears, B, _; signifies all balances with go(¢) = n — 1 payments in
arrears, and B, represents all remaining balances to be written-off with go(#) = n payments in
arrears. Afterwards, the balances can again be reclassified at time ¢ + 1, although it becomes
necessary to define an additional (absorbing) state 0 to cater for the balances of settled/prepaid
accounts denoted as Bj. This leads to calculating an n +2 square matrix B wherein the individual
element B;; denotes balances in state i at time ¢ that moved to state j at time ¢ + 1 for all states

i,j=0,0,1,...,n, which is expressed as

[Bso Bgo -+ By, By, |
By Boo -+ Boj -+ Bon
B=| ' ' . (3.2)
By Bio -~ Bij - B,
B,5 Bno - Bnj -+ Bun

Naturally, one can estimate an n + 2 transition matrix P from B that measures the likelihood
of transiting amongst the delinquency states over the same time period. The element P;; is
therefore defined as the conditional probability of one rand in state i at time ¢ transiting to state
j at time ¢+ 1 for all states i,j =0,0,1,...,n. The repayment history of each account constitutes
a repeated observation of the underlying Markov chain formed by the sequence of random
variables B(0), B(1),... over time ¢ =0, 1,... that can each assume states 0,0, 1,...,n respectively,
as discussed in T. W. Anderson and Goodman (1957). Assuming stationarity, the maximum
likelihood estimate (MLE) for each P;; is defined as

Bi; B}
P;j=P(B(t+1)=j|B(t)=i)= ——2— Vi,j=0,0,1,...,n. (3.3)
ZZ:()Bik

The work of Cyert et al. (1962) provided useful theorems using Markov theory for directly
estimating the allowance for bad debts (state n). This is achieved by calculating the particular
absorption probability, followed by estimating its variance — as illustrated in Appendix A.1 for
n = 2. Using these theorems, the loss expectancy rates can be estimated for each delinquency
state, as well as provide the steady state distribution into which the Markov chain will settle over
time. Their work was later extended in Corcoran (1978) wherein account balances were stratified
according to size before estimating a transition matrix P for each stratum, which improved
the overall predictive power. The transition matrix itself was exponentially-smoothed each
lapsing month to counteract the assumption of time-homogeneity and to incorporate subsequent
repayment behaviour. Lastly, Cyert et al. (1962) used an unconventional approach (the so-called
"total balance" method) in ageing balances across delinquency states, which is based on retaining

the oldest amount due despite partial payments posted subsequently. The ageing procedure
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was modified in Van Kuelen et al. (1981) such that collections are no longer understated when

estimating the transition matrix.

In general, Markovian approaches are quite prolific in the credit risk modelling literature,
even though they are perhaps not commonplace in practice yet. As an example, the bankruptcy
process of firms was modelled in Jarrow et al. (1997) as a Markov chain across various credit
rating states and an absorbing ‘default’ state. Specifically, the time distribution of the chain
first entering the default state was explicitly modelled, from which a probability of default over
a certain term structure can be estimated. In agreement with Corcoran (1978) on the Markov
chain being time-dependent in reality, a non-stationary forecasting model with a Markovian
structure was developed in Smith and Lawrence (1995) using US mortgage loans from the 1970’s
and 1980’s. Each transition probability P;;(¢,t + 1) was modelled separately as a multinomial
logistic regression explicitly containing the age covariate ¢, amongst others. The state space of the
eventual Markov chain was limited to four states, which implies that this approach can quickly

become extreme for larger though more realistic state spaces.

Alternatively, the Markovian approach followed in Grimshaw and Alexander (2011) proposed
modelling only certain transitions within the matrix as time-dependent multinomial logits,
which was illustrated using US subprime home loans data. The remainder of the transition
matrix can instead be estimated as simple intercept-only models. Additionally, the authors
introduced new empirical Bayes estimators that are appropriate for estimating non-stationary
and heterogeneous transition matrices. This heterogeneity recognises that certain segments
within a loan portfolio may have fundamentally different transition rates. Furthermore, the
authors compared estimating the transition matrix based on the actual dollar movement amongst
states (value-based) versus the number of accounts that transited (volume-based). The former
value-based approach was originally used in Cyert et al. (1962) and Van Kuelen et al. (1981).
While both approaches are statistically unbiased, the value-based approach was shown to be

inefficient due to exhibiting greater variance than the volume-based approach.

In modelling the insurance purchase behaviour of customers, the time-homogeneity and
first-order assumptions of Markov chains were relaxed in Bozzetto et al. (2005). Portfolio-level
credit risk models for corporate exposures were translated into the retail banking context using a
Markovian approach, as investigated in Thomas (2009b). The same study argued that the implicit
assumption in most Markov models of independent default behaviours amongst borrowers is
likely flawed due to the default contagion principle in a given market. Lastly, a four-state non-
homogeneous Markov chain was built as part of a larger suite of intensity models in Leow and
Crook (2014) for credit card delinquencies. Other examples of Markovian approaches applied to

the credit risk context are reviewed in Hao et al. (2010).
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Both a roll rate analysis and its more advanced form, a Markov chain, can be iteratively
used to analyse the impact of a proposed threshold d within a larger default definition, based on
attaining stability. Whether or not a candidate d passes managerial muster will likely depend
on the particular portfolio, regulatory restrictions, and the associated curing rate implied by d.
Such an analysis, however, often depends on other design parameters that may influence any
inference drawn from it, including the sample window and the length of the outcome period. For
greater assurance, the practitioner can laboriously repeat the same analysis a few times using
slightly different parameter choices each time. Given the bank-wide ubiquity, complexity, and
implied impact of varying d within any default definition, it is perhaps unsurprising that most

practitioners (and regulators) simply interpret the default definition as something fixed.

3.2 Towards opportune loan recovery: analysing true ‘default’

Although various regulations exist that constrict the default definition for Basel and IFRS 9 types
of credit risk modelling, there are areas in retail banking that can benefit from a new ‘philosophy’
of default — in particular, that of application scoring and optimising the collections process,
including related policy decisions. Consider that the original premise of a default definition
is reaching a rather probabilistic "point of no return", which may differ for every portfolio (or
segment therein) in reality. Therefore, ‘default’ is reinterpreted in this study by simply using d
as a threshold upon the domain of a delinquency measure g, which is deliberately divorced from
current practices and from relevant regulations. This more fundamental meaning becomes useful
when attempting to optimise the recovery decision’s timing later in section 3.4, i.e., finding the
best time at which the lender should forsake the loan and instead pursue debt recovery, including

seizing any collateral.

As discussed in subsection 3.1.3, the choice of outcome period and the sample window from
which loan performances are drawn can clearly complicate any roll rate-based analysis. This is
further exacerbated when trying to choose the ‘best’ threshold d to approximate the "point of no
return" based on these roll rate results, at least without expending a great deal of additional
analytic effort. As an example, it would be difficult to decide if a particularly low curing rate
is artificially due to an overly short outcome period, testament of the portfolio’s risk profile, or
shifting market conditions — without conducting additional analysis. Moreover, a roll rate-based
approach ignores the competing financial and opportunity costs that may be in play when varying
d itself, e.g., legal and administration costs, collection staff salaries, loss provision increases, as
well as overall effort. While stability in these roll rate analyses is a noble criterion for finding d,
a better alternative may be to consider the direct loss implications associated with any chosen
d instead. For these reasons, a roll rate analysis is deemed unfit as an approach for finding an

ideal threshold d, and an alternative becomes necessary.
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The work of Harris (2013b) and Harris (2013a) first broached the subject of varying d within
a default definition and studied the subsequent effects thereof on model accuracy®. Specifically,
support vector machines were used as default-classifiers and it was found that those classifiers
trained with increasingly intolerable definitions (or ‘broader’, e.g., 30 DPD) had progressively
higher accuracy on validation datasets pre-classified with gradually more tolerable definitions (or
‘narrower’, e.g., 120 DPD). In other words, models built with intolerable definitions are seemingly
more accurate in predicting defaults that are defined more tolerably (or more severe cases of
delinquency). This seems counter-intuitive as one would expect models built with a specific
definition to be the best at predicting that very same definition — surely they ought to outperform
models built with another definition trying to do the same. However, larger values of d yield
decreasing sample sizes since greater severities of delinquency typically occur less frequently, as
noted in Thomas et al. (2002, pp. 124) and Siddiqi (2005, pp. 38), and corroborated by anecdotal
experience. These decreasing sample sizes of ‘defaults’ afford less opportunity for the classifier to
learn overall patterns of delinquency. This explains the improved accuracy of classifiers trained

with smaller values of d, since they inherently had more training samples.

However, these findings — while proving that d significantly influences model accuracy — say
little about the direct impact on profitability. As originally argued in Hand and Henley (1997) and
Hand (2001), a lender is primarily interested in the underlying profitability of a credit decision,
with credit risk being but a facet thereof. This is to say that lower default risk borrowers are not
necessarily the most profitable since default risk is merely a proxy for profitability, amongst other
factors. There is certainly some truth to the idea that borrowers with no arrears (considered
as ‘good’ risks) will likely yield a profit for the bank. Conversely, those accounts with sufficient
arrears (enough to prompt a default decision) will likely lead to losses and are justifiably ‘bad’
risks. Using 90 DPD as a heuristic rule therefore seems apt and fitting with the historical
pragmatism in banking analytics, as discussed in section 2.2. However, the presumption of
profitability underlying this particular rule has little objective evidence in literature, with little

research effort spent on the topic as a whole.

Loan profitability itself depends on much more than just delinquency, with loan pricing
amidst credit market dynamics representing another major factor. As explored in Edelberg
(2006), Thomas (2009a, §3), and Phillips (2013), most lenders employ default risk-based pricing
by charging higher prices for riskier borrowers, as compensation for the greater credit losses
expected in aggregate. This practice, having started with mortgage lenders from the mid-1990s,
only became feasible as default risk estimates of the individual borrower became available,
which was in turn enabled by lower data storage costs and improvements in both technology
and underwriting models. The basis of risk-based pricing is to segment a loan portfolio into a

kth

few ordinal-valued risk grades and define a rate factor [ specific to the segment, e.g., a

8 Accuracy was measured using the area under the curve (AUC) and a cross-validation setup.
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rate based on the segment’s average expected loss. The final customer rate rj, is then given as
ry =r.+m+1; where r. is the overall cost of capital and m is a desired profit margin targeted
by the bank. Moreover, the work of Edelberg (2006) showed that the difference in rj (or risk
premium) between high- and low-risk borrowers almost doubled for secured loans on average
during the 1990s, and increased for most unsecured loans. In turn, lower-risk households had an
incentive to increase borrowing given the lower costs, while higher-risk households gained better
credit access overall. Risk-based pricing as a practice clearly has demonstrable benefits, not only

to borrowers, but also to the base profitability of a bank.

However, risk-based pricing suffers from adverse selection wherein riskier borrowers are less
price-sensitive than their lower-risk counterparts in accepting a higher-priced loan. Adverse
selection, as induced by loan pricing, may lead to banks rationing credit at certain price intervals,
which was famously explored in Stiglitz and Weiss (1981). As a secondary market-driven effect,
adverse selection implies that the volume of higher-risk borrowers may exceed the lender’s
original expectation a posteriori. It was first empirically evidenced in Ausubel (1999) using
the results of several "market experiments" that were conducted by a major US bank. Several
pre-approved and varied credit card offers were issued in randomised trials. Evidently, the risk
characteristics of respondents were inferior to those of the non-respondents, which confirms the
so-called "Winner’s Curse®" phenomenon in the auctions literature. Furthermore, those customers
who accepted inferior offers were substantially more likely to default. These inferior offers
include higher introductory (or teaser) rates, shorter teaser periods, and higher post-teaser rates.
Adverse selection was further demonstrated in Cressy and Toivanen (2001), wherein the variation
and trade-offs amongst interest rates, loan sizes, and collateral requirements were empirically
modelled given imperfect information. Finally, price-driven adverse selection was incorporated
in Phillips and Raffard (2011) by developing a consumer pricing model based on differential

price-sensitivity.

Another interesting phenomenon related to profitability is that of price-based risk wherein a
higher price may itself contribute to higher default rates. One of the many drivers of the 2008 GFC
was the prevalence of so-called adjustable-rate mortgages (ARMs), wherein the interest rate rose
after an introductory period (usually 1-2 years) by contractual design. Perhaps unsurprisingly,
the associated default rates rose significantly as rates increased and house prices fell, which
was demonstrated in Campbell and Cocco (2015) using rational expectations theory. Moreover,
credit-constrained borrowers with uncertain incomes were found to favour ARMs, especially
when the offered teaser rates were low. It so happened that this scenario attracted ever riskier
borrowers into ARM-portfolios leading up to the crisis, i.e., adverse selection. As the crisis started

to unfold, some borrowers exercised a "default decision" to avert negative home equity as house

91n the absence of adverse selection, there should be no difference in the characteristics between respondents and
non-respondents, as explained in Ausubel (1999).
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prices started to fall. In tandem, unemployment shocks meant that more borrowers wanted
to access home equity, and the resulting oversupply exacerbated the decline in house prices.
However, the interest rates declined rapidly during the crisis as well, which would ordinarily
imply lower default rates in these ARMs. The authors explains that as home equity became
negative, many borrowers rather chose to default strategically than to repay their mortgages;

thereby explaining the higher default rates in spite of decreasing interest rates.

The notion of price elasticity can be incorporated into price-based risk as well. In particular,
price elasticity of loan demand, or the so-called price-response elasticity, is typically expressed in
economics literature as a differential that measures the change in the volume of a good/service
demanded by consumers, given a change in the price — see Thomas (2009a, §3). In fact, the work
of Oliver and Thaker (2013) helped develop a price-risk-response trifecta by defining so-called
price-response and price-risk elasticities. While the former is familiar, the latter measures the
change in the PD given changes in the loan price. Taken together, these two elasticities were
incorporated into an equation that reveal how risk behaviours and response preferences are
simultaneously exchanged as the underlying price is varied. Moreover, it was demonstrated
in Phillips and Raffard (2011) and Phillips (2013) that a necessary condition for price-based
risk to exist is for higher-risk customers to be less price-sensitive in their take-up decision than
lower-risk customers. In summary, both price-driven adverse selection and price-based risk are
intricate market-related phenomena that influence overall profitability beyond risk-based pricing.
More importantly, both phenomena rely on a chosen threshold d within a default definition,
which implies that their dynamics on profitability are largely unknown when varying d itself — a
rich avenue of future pricing research. Regardless, the pricing literature explored so far suggests
that evaluating different values of d, based on their relative contribution to financial loss, may

be a viable approach.

The reasons underlying consumer loan ‘default’ are numerous, though can be crudely grouped
into either fraud ("won’t pay") or financial distress ("can’t pay"), which are explored in Thomas
(2009a, pp. 282) and Bravo et al. (2015). The first group is rather self-explanatory, however,
though the pursuit of modelling fraud events is valuable in its own right, it is an unnecessary
complication that is best left outside the ambit of credit risk modelling. More interesting is the
second group of default reasons, which can include simple financial naivety. As an example hereof,
the borrower may not have understood (or appreciated) the financial discipline that is necessary
to service the loan, and may therefore become overburdened in its repayment. Financial distress
can include life altering-events that are outside of the borrower’s control, e.g., loss of employment
or marital breakdown, that compromises the borrower’s ability to repay his loans, despite his
best intentions or efforts. However, the exact reasons for delinquency are difficult to substantiate
since lenders rarely keep record of them. In this regard, the administrative burden alone may

prove too costly for a bank to track (and validate) all possible default reasons. Perhaps a more
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tangible avenue is to consider whether this impairment in repayment ability is either persistent

or temporary — and the costs of either case.

A sufficiently patient lender may afford some distressed borrowers enough time to recover,
which will likely prompt them to resume their repayment schedule. In this case, the borrower’s
arrears will at first increase over time due to the distress, after which it will decrease again as
the borrower regains his ability to repay (e.g., by finding new employment), as shown in Fig. 3.7
for the first loan. The account has recovered from what has clearly been a temporary episode of
financial distress, which was enabled by not yet writing-off the loan. In effect, the lender trusts
that the borrower’s ‘distress’ only reaches an inflection point of sorts, after which arrears will
hopefully subside again. Critically, the lender also trusts that this inflection point is below a
certain threshold, in line with the bank’s risk appetite. On the other hand, being patient for too
long a period may prove naive and costly. The borrower may simply never reach this turning
point and instead continue deeper into arrears, which may unnecessarily delay debt recovery and
incur liquidity and other opportunity costs. Specifying a default threshold may therefore serve
as a margin of tolerance towards accruing arrears before spurring a lender into taking recovery

action and forsaking the credit relationship.

Arrears (ZAR)

Time (months)

=—s—Toan 1 Loan 2 Default Threshold

FiaG. 3.7: Illustrating the stylised speeds at which two hypothetical delinquent ac-
counts can accumulate arrears over time. Both loans reach an inflection point, after
which arrears subside again due to a supposedly recovered ability of a borrower
to repay. The arrears of the second loan breached the bank’s margin of tolerance
while that of the first loan did not. This discrepancy casts doubt on the default
threshold as a supposed "point of no return".

As a contrived example, consider the second loan in Fig. 3.7 that breached this tolerance
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level at some point, though cured again from default at another point in time. One can argue
that the overall tolerance level was perhaps too strict, even punitive if the lender subsequently
wrote-off this curable loan. More generally, the mere possibility of curing from ‘default’ (as fixed
via d) inherently injects uncertainty into any chosen d as the supposed "point of no return".
Multi-period ‘episodes’ of delinquency are actually more widespread in practice than one would
otherwise believe, corroborated in part by anecdotal experience. In fact, the work of Thomas et al.
(2016) demonstrated this oscillating regime-switching effect wherein borrowers have stochastic
episodes of payment and non-payment. Specifically, the authors modelled the collections process
of defaulted UK loans using both a four-state homogeneous Markov chain and a time-sensitive
hazard rate model. Amongst other things, these models demonstrated how LGD modelling can
partially depend on the write-off policy of a bank, which typically constrains overall loan recovery.
To this point, a write-off policy is similar in its objective to that of imposing a certain "point of no

return” via setting d, which suggests another worthy research avenue to explore in time.

In fact, candidate write-off policies may be indirectly tested by incorporating them as boundary
conditions for loan duration within their base models, according to Thomas et al. (2016). However,
the authors admitted that this may not really be an appropriate solution for directly trying
to find the ‘best’ write-off policy. Instead, the seminal contribution of Mitchner and Peterson
(1957) investigated the optimal pursuit duration of overall loan recovery, which was based on
maximising the net profit of a collections department. Using US personal loans, the authors
found that pursuing loan recovery should cease (and the remaining balance written-off) whenever
the one-period expected repayment equals the cost of pursuing loan recovery itself, which is quite
intuitive. However, the authors admitted that their results depend critically on a few simplifying
assumptions, which may not realistically hold. One of these assumptions is that a defaulted
borrower is forever absorbed into a paying regime, once entered. Regardless, their work offers

valuable insights into trying to optimise the write-off decision’s timing.

Collections optimisation was explored more explicitly in De Almeida Filho et al. (2010)
wherein a dynamic programming model was devised to find both the ideal type of recovery
action and its pursuit duration for the "average" debtor over discrete monthly time intervals.
Using unsecured European personal loans, the authors maximised the net recovery rate in their
dynamic approach by pursuing a particular action for a set period. In order of severity, these
actions include telephonic calls, various letters, house visits, legal redress, and write-off. However,
the state space formulation excludes any repayment success (or cash flows) from previous periods
or indeed those from the future. Their work was later extended in So et al. (2019) wherein
a Bayesian approach was instead followed to obtain similarly optimised outputs, though on
the individual debtor-level. Within the same context, the work of Liu et al. (2019) devised a
Markov-based decision process wherein the optimal collection action is theoretically found across

possible delinquency state progressions over time, using designed data. A schedule of optimal
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collection actions is then calculated accordingly, which was shown to supersede a static policy
based on maximising the expected net present value. However, the authors made some strong
simplifying assumptions when designing both their ‘data’ and elements within their method,
which may have implications for their end-results when trying to use their method on real data.
In addition, they impose explicit write-off criteria exogenously within the state space of their

Markov chain, instead of structuring it as a candidate collection action.

Another extension is the work of Duman et al. (2017) wherein outputs similar to that of
De Almeida Filho et al. (2010) were sought using Turkish data, though on a finer daily time
scale. The authors posited that each recovery action may have unintended consequences on
subsequent customer loyalty, which they incorporated into their optimisation along with collection
capacity constraints. Chehrazi et al. (2019) examined the same collection problem and formulated
repayments as a complex self-exciting point process in continuous time. As a stochastic control
problem, the authors allowed both the size and the timings of receipts to influence each other.
Both of these random processes are in turn perturbed by pursuing a particular recovery action.
Matuszyk et al. (2010) provided another perspective on optimising collections by developing a
decision tree-based approach to inform the overall collection strategy. Candidate strategic choices
included keeping collections in-house, outsourcing collections to external agencies, and selling
the debt itself. Their work formed part of subsequently modelling the LGD using a two-stage
approach and unsecured personal loans. Lastly, Han and Jang (2013) extended this by showing

the positive effects of including collection action history within LGD models, using Korean data.

Using a delinquency-based approach for optimising the recovery decision presupposes that
a single measure thereof is used. In fact, Rosenberg and Christen (1999) surveyed a few other
ways of quantifying loan delinquency, which can serve as important diagnostic tools in managing
and modelling credit risk. Three broad classes of so-called ‘delinquency ratios’ were discussed
and compared. The first of these are those assembled from an arrears-basis as overdue amounts
divided by total loan amounts (or instalments), e.g., the go-measure from Def. 3.2. The second
kind are those that compare amounts actually received from borrowers against amounts that fell
due within the same period. These ratios measure delinquency from a cash-flow perspective'®
with variants thereof constructed across different lengths of time periods. The third class of
delinquency ratios measures the portion of the portfolio at risk, which is commonly expressed
as the remaining loan balances (plus unpaid instalments) divided by the portfolio’s outstanding
balance. Other than these three types of delinquency ratios, the literature appears limited on

more advanced methods of quantifying loan delinquency.

In this regard, the work of Moffatt (2005) is of particular interest since it advocates a two-

staged approach (or a so-called "double hurdle" model) for ‘measuring’ loan delinquency and then

10From this basis, a more robust delinquency measure is later developed in subsection 3.3.1.
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modelling it. Not only was the number of payments in arrears considered (the "first hurdle") in
classifying the conventional default event, but also the extent of the arrears amount itself (the
"second hurdle"). Using two dimensions in defining ‘default’ inherently recognises that there is a
subset of borrowers who will never let a cent go unpaid in any circumstance. More importantly, it
recognises that not all unpaid payments are equal in their cash flow impact and that defining
the "point of no return" can be more nuanced than currently espoused by the industry!!. In fact,
the work of Kelly and McCann (2016) demonstrated exactly this heterogeneity using mortgage
defaults from the Irish market. A legal peculiarity during 2009-2013 made it extremely difficult
for Irish lenders to liquidate troubled mortgages, which led to some borrowers venturing into a
disproportionately deep level of arrears. A multinomial logit model was subsequently estimated
using different severities of delinquency (measured in DPD) as the levels of the output variable,
i.e., 0-89 (or ‘early default’, also the reference level), 90-359, and 360+ (or ‘deep default’). Even
when controlling for the time spent in arrears, the overall delinquency and curing experiences
were markedly different amongst these severities, which can be interpreted as different default
thresholds within a grander default definition. Amongst other things, these results cast doubt
on the supposed finality of classical default definitions that ought to serve as the "points of no

return".

In conclusion, there are some gaps between the collections and credit risk modelling literatures
regarding the principal meaning of ‘default’ as the supposed point of initiating recovery action.
The present study is closest in form to the collection optimisation works of De Almeida Filho et al.
(2010) and Liu et al. (2019). However, a different and more general approach is followed in this
work based on delinquency measures that leverage the entire portfolio instead of only defaulted
loans. Moreover, the focus is more fundamentally on if and when to forsake a loan based on
delinquency progression over time, instead of attempting to compile a menu of collection actions.
Regarding an optimisation basis, financial loss can serve as a unifying framework into which a
wide array of competing costs and opportunities can be incorporated and weighted accordingly.
This basis aligns directly with the main profit-based objective of a lender when making decisions.
Furthermore, exploring other ways of quantifying loan delinquency may be worthwhile when

delinquency is to be used as a central criterion in optimising the timing of the recovery decision.

3.3 Measures of loan delinquency

In measuring the severity of eroded trust between bank and borrower for a fixed-term amortising
loan contract, three quantities that track the severity of delinquency are presented and discussed,

called delinquency measures. Firstly, a variant of the widely-used go-measure from Def. 3.2 is

11Arguably, this idea may have inspired Basel II’s paragraph 452 on requiring a material balance for default
considerations, which was later enforced by Article 178(1)(b) of the EU’s CRR. In turn, this led to the materiality tests
imposed by the UK’s PRA (2019), as discussed in subsection 3.1.1.
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refined into a more robust measure in subsection 3.3.1, called the g;-measure (or CD-measure).
The gi-measure uses a weighting scheme based on specifiable risk-aversion towards accrued
arrears, which solves many of the challenges of the original gy-measure. Secondly, a more concise
algorithm is contributed in subsection 3.3.2 that creates the Macaulay Duration Index from Sah
(2015), called the go-measure (or MD-measure). This measure is best interpreted as an index of
the weighted average time to recover the capital portion of a loan. Lastly, a modified but novel
variant of g9 is introduced in subsection 3.3.3, called the g3-measure (or DoD-measure). This

measure incorporates the extent of disrupted cash flows into the base assessment of delinquency.

3.3.1 Contractual Delinquency (CD): the g{-measure

As a common delinquency measure, the go-measure from Def. 3.2 is not without its flaws,
predominantly the choice of the rounding function. Many practitioners simply round the ratio
between arrears A; and the level instalment I upwards to the nearest integer-valued ceiling,
thereby calculating the number of payments in arrears. However, this is quite stringent in that
even a small difference I; — R; = ¢ < ZAR 1.00 will increase the delinquency measurement, purely
due to rounding. While the prevalence of this rounding error surely depends on the overall
volatility of R; over time, it makes little business sense to penalise a borrower when € is but a few
cents. That said, there must intuitively exist some upper limit on € > 0 at which point delinquency
should be incremented; otherwise, the concept of delinquency (and measures thereof) becomes
meaningless if delinquency can never increase. This suggests a boundary of sorts by which ¢
ought to be constrained when measuring loan delinquency. Relatedly, should the ratio between A;
and [ instead be rounded to the nearest integer, then a change in go(¢) over time [£1,¢2] depends
entirely on whether A;/I is above or below 50%. This implied ‘threshold’ of 50% seems arbitrary,
inflexible, and devoid of any risk consideration, which surely contrasts the risk-sensitive practices

of a bank, at least in spirit.

A simple solution to this rounding problem may be to ignore rounding all together and use
the arrears ratio A;/I directly. This will, however, revert the domain of g¢ back to a real-valued
construct and therefore no longer honour its definition. Furthermore, there are still quite a few
situations in which arrears categories (constructed from this arrears ratio) can be useful. For
example: 1) modelling the transition probabilities amongst these arrears categories; 2) compiling
portfolio analytics showing the incidence rates over time within various stages of arrears; or
3) modelling the repayment behaviour within a particular arrears category. Inevitably, these
situations require the collapse of the arrears ratio back into some category, e.g.,2<A;/I <3 = 2
payments in arrears, which again circles back to the original rounding problem. As a consequence
of a particular rounding function f (or rounding ‘threshold’), the gg-measure can potentially lag
overall measurement by one (or more) periods when a significant overpayment is immediately

followed by a severe underpayment the following month, simply due to rounding. In turn,
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this "measurement error" has negative implications for the true accuracy of any models using

delinquency in some fashion, especially default risk models.

Another flaw of the gg-measure is its inherent reliance on the accrued arrears amount A;.
This dependence is not necessarily a problem when A; is simply the sum of partial instalments
not yet paid. However, A; becomes ‘impure’ when the same quantity accrues interest on itself or
attracts delinquency-related penalty fees of sorts (even if indirectly via the outstanding balance).
Specifically, it becomes possible for a gg-measured value to change simply due to these exogenous
factors, especially when considering the aforementioned rounding problem. In turn, the lender
may inadvertently inflate/deflate delinquency measurement; not as a result of the fundamental
breakdown of trust, but instead due to its own pricing structures or system constraints at the
time. Lastly, the construction of g9 quickly becomes cumbersome when the instalment has the
potential to vary over time (e.g., prime rate-linked), as is common for secured lending. Short of
ignoring this feature (and simply using the latest instalment available), the practitioner has little
choice but to construct a haphazard and nested variant of g¢, which may very well present its

own set of unstudied risks and flaws as a delinquency measure.

Therefore, a more comprehensive variant, called the Contractual Delinquency (CD) g1-
measure, is presented here that circumvents some of these challenges. In particular, g1 incorpor-
ates a boundary parameter z between the receipt and the instalment beneath which delinquency
is increased, which may be set (and later optimised) by the lender. Furthermore, it does not rely
on the corruptible arrears amount and instead measures the erosion of trust between bank and
borrower purely from a cash flow perspective. Let the receipt vector be R =[Ro,R1,...,R7] with
its elements (or receipt amounts) R; = 0, and let the instalment vector be I =[1¢,I1,...,I7] with
its elements I; > 0 (instalment amounts). Both vectors are defined for a specific loan account
across its discrete time periods ¢ =0,...,T, with ¢ = 0 representing the origination point and
T denoting the tenure (or current loan age). Note that 7' may exceed the contractual term ¢,
especially in unsecured lending or cases of extreme delinquency. The repayment ratio A; € [0,00)
is then defined as

ht=}i: Vie=1,...,T and ho=0. (3.4)
A boundary z € [0,1] for h; is then specified accordingly. If the A;-value of an account equal or
exceed this given z parameter, then the account is considered current at time ¢; otherwise it
is considered delinquent for that particular period’s expected cash flow. As an illustration, this
boundary is set as z = 90% in this study, though the lender should certainly adjust (or optimise)
this z parameter for its particular context. Next, an interim Boolean-valued decision function
d1(t) €{0,1} is defined for t = 1,...,T, using Iverson brackets [a] that outputs 1 if the enclosed

statement a is true, and O if false, as
d1(8) = [y <z] . (3.5)
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Memory of past delinquency is introduced by defining another integer-valued function m(¢) €

{-1,0,1,...}for ¢ =1,...,T, which outputs the reduction in accrued delinquency (if any), as
h
m(t) = ( {—tJ - 1) (1 - £f1(t)) —dy(2)
z
h
= {—tJ (1-a®)-1. (3.6)
z

This function m(t) gives the magnitude by which the measured delinquency at time ¢ should
be reduced (if at all) in catering for past delinquency. When overpaying, i.e., R; > I, the ratio
between & ; and z in Eq. 3.6 signifies the total number of ‘payments’ by which accrued delinquency
should be decreased, as weighed by z. Moreover, the rounding problem is inherently resolved when
dividing by the z-parameter since its value reflects the lender’s tolerance towards underpayment
by design. Therefore, taking the floor of this particular ratio A;/z does not detract from the
previous discussion of the flaws of g¢. Instead, it is merely intended for g1 to be an integer-valued
delinquency measure, signifying the z-weighted number of payments in arrears. Furthermore, the
currently-owed instalment should be recognised first before reducing any accrued delinquency,
which is achieved by subtracting one instalment. For sufficient underpayment, i.e., R; < zI;, the

delinquency is sensibly increased by one payment, which resolves to m(¢) = —1 when d;(¢) = 1.

To indicate previous cases of delinquency using g1 at time ¢ — 1, let da(¢) € {0, 1} be another

Boolean-valued decision function for ¢ = 1,...,T, which is defined using Iverson brackets again, as
dt)=[g1(t-1)=0] . (3.7

The reduction in delinquency m(t) at time ¢ is subtracted from delinquency as measured at the
previous period ¢ — 1, thereby giving the net delinquency. Finally, the Contractual Delinquency (or
CD) gi-measure is then formally defined as in Def. 3.3. Note the necessary starting condition of
£1(0) =0, since a newly-disbursed loan account cannot yet be delinquent. In extraordinary cases
where a lender has temporarily suspended the expected instalment (perhaps as part of a payment

holiday), the practitioner can artificially set the I; very close to zero in order to calculate g1.

Contractual Delinquency (CD): the g;-measure

Definition 3.3. Let the Boolean-valued decision functions 4; and 45 be defined as in
Eq. 3.5 and Eq. 3.7 respectively. Let the memory function m be as defined in Eq. 3.6 by
which accrued delinquency is reduced, respective to the z € [0, 1] boundary parameter for
the repayment ratio A; as defined in Eq. 3.4. The integer-valued Contractual Delinquency
g1-measure is then defined such that g1(¢) =0 for t =1,...,T and g1(0) = 0, recursively

expressed as

g1(t)=max |0, d1(t)da(t) + (1_t{2(t))(g1(t_1)—m(t))] : (3.8)
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The output of the g;-measure is best interpreted as the z-weighted number of payments
in arrears, weighed by the lender’s tolerance (or appetite) towards accrued arrears. This ap-
petite level is represented by the boundary parameter z that constrains the repayment ratio A;
accordingly when assessing delinquency. Since delinquency only increases if 4; < z by definition,
a higher value of z effectively translates to greater risk-aversion towards accrued arrears, and

vice versa for lower z-values.

3.3.2 Macaulay Duration (MD): the g2-measure

The Macaulay Duration Index, recently introduced as a measure of delinquency in Sah (2015), is
an index based on the idea of bond duration, i.e., the weighted average time to recover the capital
portion of a loan. In its assessment of delinquency, this measure incorporates the loan’s interest
rate as well as the arrears balance, weighed by the time value of money. It is constructed as a
ratio between the actual and the expected loan duration, which is reformulated in this study as
the go-measure. The values of g9 cannot be compared directly to those of the previous g1-measure
since the domains of both functions — and the meaning of measurements taken within these

domains — differ from each other.

Let A; = I; — R; be the difference between the instalment I; and the receipt R; at every
time point £ = 0,...,T during the life of a loan, including at disbursement ¢ = 0 to capture any
applicable initiation fees. Considering the time value of money, let v; = (1 + r)~/ be a discounting
function that uses a nominal monthly interest rate r. In addition, let 6 be the continuously
compounded rate with its nominal variant 6%’ = §/p and with an annual compounding period
p =12. Let Lp denote the loan amount (or principal) that is to be amortised. Ordinarily, the
Macaulay Duration is calculated (perhaps once) at origination as the weighted average time to
recover sunk capital from future cash flows. However, here it is recursively calculated instead at
each subsequent period ¢ =0,...,T across the remaining m instalments as at each ¢. Naturally,
this expected duration quantity, denoted as fgp, tends towards zero over time as it nears the end

of loan life, expressed as

L (Invmst)(m—t
)= (—)(—)] Vi=0,...,T. (3.9)
fep mZ:t Lp p

However, Eq. 3.9 assumes that instalments I are free of uncertainty. When substituting these
instalments with the actual receipts R, a significant difference is intuitively expected. Moreover,
it becomes necessary to track the arrears balance as it develops (if it does) over the loan life.
In line with Sah (2015), any arrears at any time are added to the last expected (contractual)
instalment at ¢ = ¢., since it represents the last contractual opportunity to repay any such arrears,
short of the lender intervening and restructuring the loan. This last instalment is then recursively

updated at each subsequent period ¢, using the available arrears information at each ¢. Note
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that R; does not enter the calculation directly but instead via its effect on the arrears at each ¢.
In turn, accrued arrears will affect the last instalment, which is denoted as I ET)‘ The vector I’
itself equals instalments I at the outset. Lastly, the actual duration f4p(¢) value is recursively
calculated, each time starting again at ¢ = 0 up to the ‘current’ loan age T'. This is illustrated using
pseudo-code in Algorithm 1. Finally, the Macaulay Duration (or MD) go-measure is expressed as

the ratio between the actual duration and the expected duration, as formally defined in Def. 3.4.

Algorithm 1 Calculating g2

1: I':=1, where I = [Iy,...,Ir]| and T < ¢,

2: fAD(O)'=fED(0)

3: fort=0,...,T do > such that T' < ¢,

T-t

4 IET) _IET) + At(1+ 5@)) , Vi= LT > Add any arrears to IéT)
< I v

5: fAD(t) —ZTlT tc[( mU( t))(mT)] .,T

6: end for

Macaulay Duration (MD): the go-measure

Definition 3.4. Let fgp be defined as in Eq. 3.9, and let f4p(¢) be calculated recursively
at every time period ¢ = 0,...,T for a loan account aged T < ¢, following Algorithm 1.
The real-valued Macaulay Duration go-measure is then defined such that go(¢) =0 for

t=0,...,T—1, which is expressed as

fap(®)
fEp(@®)

ga(t) = (3.10)

3.3.3 Degree of Delinquency (DoD): the g3-measure

From a cash flow perspective, an ideal delinquency measurement should penalise the non-
payment of a larger loan’s instalment to a greater degree than that of a smaller loan’s instalment,
given the relatively larger impact on a bank’s cash flow. Furthermore, the differences in risk
concentration between a larger number of small loans versus a small number of larger loans
should also be incorporated by the ideal delinquency measure. As a possible solution, the actual
duration f4p from Eq. 3.10 can be altered such that the eventual ga(¢) value is greater for larger

loans than for smaller loans by defining an appropriate multiplier (or function thereof).

Note that g9 is only defined up to the contractual term .. However, delinquency can continue
even past the contractual term 7' = ¢, of a loan, likely due to persisting underpayment. Ignoring
loan write-off policies for the moment, let d3(¢) € {0,1} be a Boolean-valued decision function that
returns 1 if the given time point ¢ precedes the contractual term ¢., and 0 if otherwise. Using

Iverson brackets, this is expressed as

dt)=[t<t.]. (3.11)
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When ¢ > ¢., any arrears can clearly no longer be added to the last contractual instalment (since
it has lapsed), as is the case with I éT) when calculating g9 in Algorithm 1. Instead, at least
one more payment, albeit out-of-contract, can reasonably be expected as time lapses, provided
that collection efforts are still actively pursued. Therefore, delinquency can now be computed up
to time 7T instead of the previous T, with 7 either representing the contractual term ¢, when
t <t¢, or a moving target 7 =t when ¢ = t.. Note that both I and R will incrementally expand
with additional elements for as long as collection efforts'? continue past the contractual term. A

revised algorithm is given in Algorithm 2.

Algorithm 2 Calculating g3
1 I':=1,where I =[Iy,...,I7] and 0<¢, <T

2: T =t
3: fort=0,...,T do
4: a:=1 éT) > This refers to the element at the 7 position of I’
5: T :=ted3(t) + t(l - z{;),(t)) > 7 is either equal to ¢, or to ¢ = ¢,
8 Tt 5@ _
I _IgT)dg(t) (1422 . a(l—r[g(t)) (1+27), ve=1,.,7T

6
7: Bm)=m—-t+1-d3(t), Ve=1,...,T > Discounting period, see next 3 lines
8 fep(t):= Zm:t [( '"”‘“'"’) ( (’”’)], v¢=0,...,T
9: fAD(t) :IfED(t) for t =

10: fap(t):= Z;‘:t (I vmm))( )] =1,...T

11: end for

Afterwards, let A(Lys,Lp,s) denote a multiplier function that inflates the value f4p(¢) at
every relevant period ¢. Regarding this function’s arguments, let Lj; > 0 denote the maximum
loan size and let s € [0,1] be a real-valued sensitivity that represents the ‘strength’ at which
to apply this inflationary effect. Let 44(¢) € {0,1} be another Boolean-valued decision function
that returns 1 if there is currently any accrued delinquency at #, and 0 otherwise, defined using

Iverson brackets as

ds(t) = [fap@®) > fEp ()] . (3.12)
As a simple example, this multiplier is defined as
Ly-L
A(LM,Lp,s)zs(l—M) . (3.13)
Ly

This particular multiplier function simply measures the percentage deviation between the
maximum size allowed by a lender and the size of the particular loan’s principal. This base value
is then further adjusted by the multiplicative factor s. The inflated variant of f4p, denoted as

J}AD, is at last expressed as

Fap®) = fapO(da(OMLy,Lp,s) + 1) . (3.14)

1214 is typically the role of the collections department of a bank to negotiate new repayment schedules with the
customer (or his debt councillor) once a loan agreement lapses its contractual term or becomes sufficiently delinquent.
This includes reduced instalments and interest rates.
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By including 44 into f 'ap in Eq. 3.14, accrued delinquency will not be inflated when overpaying
at some period ¢. Once f4p(¢) < fgp(t) as indicated by d4(¢) = 0, then either significant or persistent
overpayment is implied. In this case, the benefit of a depressed actual duration would be lost if
fap(t) is still inflated when assessing delinquency. Finally, the real-valued Degree of Delinquency
(or DoD) gs-measure is defined as in Def. 3.5.

Degree of Delinquency (DoD): the g3-measure

Definition 3.5. Let fA p be defined as in Eq. 3.14, and let fgp(¢) and fgp(¢) be calculated
recursively at every time period ¢t =0,...,T for a loan account aged T, following Algorithm 2.
The real-valued Degree of Delinquency gs-measure is then defined such that g3(¢) = 0 for

t=0,...,T -1, which is expressed as

_ fap® ( g2(2)

t) = =
2 fEp()  \fap(®)

) Fap®) = go®)( da(OMLar,Lp,s) + 1) (3.15)

The sensitivity s, which is fixed in this study at s = 100% (though should ideally be optimised),
represents a universal and intuitive lever at the lender’s disposal. Its adjustment can align with
the lender’s (or loan portfolio’s) particular risk appetite and tolerances. The gs-measure still
collapses back into go when setting s = 0, though at values s > 0, the gg-measure purposefully
resembles a more risk-averse form of g9. Delinquency measurements are more varied than those

of g9 due to the sensitivity to loan principals that is intrinsic to g3 by design.

In summary, three measures of loan delinquency are formulated in this section, each pro-
gressively catering for identifiable weaknesses, albeit at the cost of increasing complexity. The
outputs of these measures are illustrated in section A.2 using a simple two-loan case study to aid
interpretation. These measures can be applied to the performance history of each loan within
a greater portfolio, thereby yielding vectors of delinquency measurements respective to each
loan across its history, for each measure g € {g1,g2,g3}. To find the optimal point where trust
between bank and borrower has historically collapsed, is conjectured to be a certain threshold
on the domain of each measure g, after having combined all of these vectors of measured loan
delinquencies. Given that these measures cater differently for under— and overpayments, it may
very well be that each measure g signals recovery at different times for the same loan, whenever

breaching the threshold (if at all) of each measure.

3.4 Optimising loan recovery times: the LROD-procedure

In this section, an expert system is developed, called the Loss-based Recovery Optimisation

across Delinquency (LROD) procedure. This procedure helps to find the ‘best’ delinquency-based
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threshold for a given delinquency measure g € {g1,82,83} at which the portfolio’s recovery
decision is loss-optimised, as illustrated in Fig. 3.8. The following two points are noted regarding
the procedure’s design. Firstly, using loss (instead of profit) as the optimisation basis is intuitively
preferable since ‘default’ implies a continuous stream of non-payments, which can only induce
losses in principle. Secondly, construing the threshold choice as a delinquency-based criterion is
convenient since delinquency measurements are scale-invariant across the portfolio, while still

containing all necessary behavioural information on the borrower.

X
Measure 1
Measure 2 Measure 3
w
W
(o]
— . ~
%a%
\;bi_ _
-
fs
D -
]
I
0 Threshold

F1G. 3.8: [Illustrating the loss optimisation of the recovery decision across several
delinquency measures. As a result, Measure 3 is chosen as the best measure with
its minimum loss attained at threshold c.

Consider a portfolio of N loans, indexed by i = 1,...,N, and let g(i,t) denote the value of a
particular measure g € {g1,82,83} at periods t =0,...,¢., with ¢, representing the contractual
term of the ;™" account. Let vga) and v(tb) be standard discounting functions that use an alternative
risk-free interest rate and the loan interest rate respectively in discounting back ¢ periods, both
expressed as annual effective rates and parametrised later. Let Ri and I ; represent the receipt
and expected instalment respectively at time ¢ for the i*! account. Then, let R(i, ) be the present
value of the sum of discounted receipts from origination up to given time ¢ =0,...,%.; of the ith

account, expressed as

t
RG,0=) Riv\. (3.16)
=0

For the expected outstanding balance, let O(i,¢) denote the present value of the sum of discounted
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instalments from given time ¢ =0, ...,¢., up to maturity ¢., of the ith account, defined as

te,
0G,0=v® Y I, 0G,n=0 fort=t,. (3.17)
I=t+1

Finally, to cater for instalments (or portions thereof) in arrears, let A(i,t) represent the present
value of the sum of discounted differences (or shortfalls) between instalments and receipts from
origination up to given time ¢ =1,..., ¢, of the i*h account, which is given by

t . .
AGH=Y (1-Rj)vl®. (3.18)
=0

Financial loss can only be realised when the lender disposes of the impaired asset, regardless
of the extent of the impairment. This implies that a loan must first become non-performing
before sensibly writing-off the non-recoverable part as a loss. For now, all provisioning-related
technicalities and regulatory requirements are discarded when defining default; see Novotny-
Farkas (2016), Xu (2016), Cohen, Edwards Jr et al. (2017), and Skoglund (2017) for a comparison
between IAS 39 and IFRS 9 accounting frameworks regarding loss provisioning. In this study,
‘default’ is interpreted as a variable state, which will become useful for optimising the eventual
recovery decision. Having breached some threshold based on some g (thereby signifying broken
trust), the lender’s objective immediately changes to collecting the most it can from the distressed
borrower within the shortest amount of time possible. As a simplifying assumption, a fixed
portion of the loan is immediately written-off upon entering ‘default’. In reality, this portion will
likely depend on many factors, including the workout period itself. This assumption can certainly
be relaxed in future research when refining this optimisation procedure and what is essentially

its LGD-component.

Accordingly, let rg €[0,1] be a loss rate levied on the expected balance O(i,¢) to help reflect
any underlying opportunity costs of forsaking future revenue. Moreover, assume that any amount
in arrears A(i,t) is partly written-off though at a different loss rate r4 €[0,1] to account for
impairment. Using two different loss rates recognises that the recovery success may differ
between these two components (expected balance and arrears). Simultaneously, it unifies the
loss calculation on the arrears portion for both performing and non-performing loans. This setup
accounts for implicit trade-offs between forsaking future revenue versus accruing arrears for
a given t respective to Eq. 3.17 and Eq. 3.18. Ideally, these loss rates serve as placeholders for
the output from more sophisticated loss models (or expert knowledge of the loss experience),
presumably including all other costs. Furthermore, let (i, ¢) be the discounted "blended loss" for

the i*" account assessed at the given time ¢ =0,...,¢,, expressed as
1G,0)=0@G,rg+A(,Dry . (3.19)

The notation (g,d) is adopted wherein a particular threshold d is coupled with the domain of a

particular delinquency measure g, as formalised in Def. 3.6.
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The notion of (g, d)-defaulting accounts

Definition 3.6. Let g(i,¢) denote the value of a delinquency measure g € {g1,82,83}
applied on a particular loan i = 1,...,N at every loan period ¢t =0,...,t., where ¢, is its
particular contractual term. Then, let d = 0 be a delinquency threshold applicable to the
domain of a particular delinquency measure g such that the i*" account is considered
as (g,d)-defaulting if and only if g(i,t) = d at any particular time ¢ =0,...,¢., during its
lifetime. Accordingly, let Sp be the subset of all loan accounts within the portfolio that

may be considered as (g,d)-defaulting at a particular point in time such that

Sp={i|3te[0,ts,] : gli,t)=d}. (3.20)

Since an account may enter and leave the (g,d)-default state multiple times in reality, let

t(ig ) be the earliest moment of ‘default’ for the ith (g,d)-defaulting account, defined as
8% —min(¢: g(i,t)=d), Vie Sp. (3.21)

Similarly, let Sp be the subset of all loan accounts within the portfolio that may be considered as

(g,d)-performing such that
Sp=1{i: gli,)<d V tel0,t.]}. (3.22)

The main difference in assessing the loss between a (g,d)-defaulting and a (g,d)-performing

(g,d)

account is simply the time of assessment, which is set at either ¢ = ¢;

or t = t., respectively
within [(i,¢) from Eq. 3.19. At each time ¢, the lender effectively decides an account’s membership
between Sp or Sp, based on accrued delinquency g(i,t) and a particular (g,d)-configuration. The
latter is to be adopted as a portfolio-wide delinquency-based collection policy at the outset z = 0.
In a sense, accrued delinquency forms the time-invariant action space of a Markov Decision
Process (MDP) in choosing d, whereas accrued delinquency formed the state space in Liu et al.
(2019). Accordingly, the state space in this work is set membership itself, i.e., either Sp or Sp. A
classical MDP framework is not employed, instead opting for a simpler approach that facilitates
choosing a static (g,d)-policy. Both ‘payoff’ and the element of time is already accounted for in
Eq. 3.19 by having discounted the associated loss to ¢t = 0 for a given (g,d)-policy. As such, the
objective function is simply the total portfolio loss L4(d) for a particular (g,d)-configuration, as

formalised in Def. 3.7 and used throughout this study.
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A simple portfolio loss model for a given (g,d)-configuration

Definition 3.7. Given a (g,d)-configuration as defined in Def. 3.6 and Eq. 3.22, and
given a loss function [(i,#) as defined in Eq. 3.19, let the argument ¢ denote the time
of loss assessment either at the earliest moment of (g,d)-default t(ig £ for the ith (g,d)-
defaulting account or at the contractual maturity ¢., for the i*h (g,d)-performing account.
The discounted portfolio loss for a (g,d)-configuration is then given by the value of the

objective function L ;(d), expressed as

Ly = Y 1(i,t87) + ¥ (i) (3.23)

iESD iESp

Losses are iteratively calcullated across a range of thresholds d € D, using L, from Eq. 3.23
in Def. 3.7 with a particular measure g € {g1,82,g3}. To summarise then, the practitioner should

complete three preparatory steps before conducting loss optimisation:

1. Delinquency must be measured for every account and across its history using g € {g1,82,83};
2. Select appropriate thresholds d € D, on the domain of a particular g for optimisation;

3. A portfolio loss model L, must be applied for every chosen threshold d € D, of each g.

The procedure now becomes a search for a minimum in L, and output the associated threshold
d from the search space D, for a given measure g. By dividing the main optimisation problem
into smaller (g,d)-based sub-problems, the ideal (g,d)-policy can be found. More specifically,
for each (g,d)-iteration, the associated portfolio loss Lg(d) is calculated and stored centrally
as an element within a wider collection. As formalised in Def. 3.8, there may exist a global
minimum loss m'® at threshold d® respective to each g. Delinquency measures themselves
become indirectly comparable on the portfolio-level by minimising across the set formed by m‘®
for g € {g1,82,83}. The optimal measure g* is then the g that yielded the lowest loss at its

corresponding threshold, as illustrated in Fig. 3.8, though expressed more formally as

g" =arg, min m8 m 82 &) (3.24)
g¢€lg1,82,83}

Note that this procedure can also be used with a single measure, e.g., g1. In this case, the
optimisation problem from Eq. 3.26 simply resolves to finding d‘¢¥ € Dy, that is, finding the

optimal input arg; minL 4, (d) that minimises L, .
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Loss-optimising the recovery decision: the LROD-procedure

Definition 3.8. Assume delinquency thresholds d € D, respective to a delinquency
measure g € {g1,82,83} are adequately chosen, and that portfolio losses are calculated at
each chosen threshold d using a loss model L, e.g., as in Def. 3.7. The function L, : Dy — R
is adopted as the objective function with its smaller search space D, within the domain of
g. Using an iterative approach, the optimisation problem then seeks a threshold d' € D,
such that Lg(d") < L g(d) for all chosen d € Dg. More generally, the minimum loss m® and

optimal input argument d‘© for a particular measure g are respectively expressed as

m® = min L,(d) and (3.25)
deDy,
(@ — inL 2
d'®’ = argy (11161%2 g(d). (3.26)

The optimisation’s feasibility relies on having an adequately populated search space D,.
However, the choice of g affects Dg, which can complicate choosing thresholds d in practice.
Imagine that an underlying real-valued loss curve L exists but cannot be specified in closed-form.
Its functional shape only becomes apparent by iteratively calculating L4(d) across a sufficiently
wide range d = 0. This is trivial for the integer-valued g1-measure since any finite integer interval
[d1,d2] € Dy is countable. However, this is not the case for g and g3, with an infinite number of
possible real-valued thresholds that may be chosen between the now real-valued points d and
ds. In this case, one may calculate the derivative of L, with respective to d at certain points d*
within [d1,ds], e.g., using finite difference methods. The approximated derivatives Lfg(d*) can
then be inspected across the chosen points d* for sign-changes, i.e., negative to positive, to help
isolate neighbourhoods containing minima. Upon finding such a neighbourhood, this scheme can

be repeated across a smaller range of points located closer to where the sign changed.

However, the practical assembly (or approximation) of £, remains challenging since these
thresholds are still selected manually, even if using numerical differentiation. There are two
competing interests when populating D, with thresholds. Firstly, inadequate threshold choices
may lead to failure in materialising the true shape of £z, which can obscure hidden optima and
ruin the optimisation. Secondly, too large a set of chosen thresholds can become computationally
burdensome in evaluating L, especially as loans increase in either contractual term or number.
As a practical expedient, D, for g1 is simply populated in this study by choosing d =0,...,dn
where dy corresponds to a reasonable (but admittedly arbitrary) proportion of the maximum
contractual term, e.g., 60%. In addition to lowering computation time, a lower value for dy
is sensible since it would be unintuitive to search for optimal thresholds that are near the
contractual term in value, especially for longer term loan portfolios. To populate D, for the real-

valued measures g2 and g3, the output of these functions are simply binned using a combination
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of equal-width discretisation, some numerical differentiation, and a healthy dose of discretion.

3.5 Concluding remarks

Having reviewed the international standards relating to default definitions, lenders are clearly
afforded some discretion in defining ‘default’. Individual regulators may, however, prescribe the
definition thereof to varying degrees, though it seems that many of these prescriptions still
coalesce around "unlikeliness to repay” as a central tenet. Regardless, prescribing an admittedly
probabilistic idea by fiat may render the default event into little more than a standardised static
hurdle. In principle, reaching ‘default’ is impetus for the lender to forsake the credit agreement in
having reached a certain "point of no return". This implies that there must surely exist different
consequences when varying the timing of the recovery decision, lest the idea of ‘default’ itself

becomes meaningless.

The notion of loan delinquency is widely used in many other (less regulated) contexts outside
of modelling capital and loss provisions, most notably that of application and collection scoring.
It is perhaps this level of ubiquity that exacerbates the fact that little scientific evidence exist
for decreeing any threshold (e.g., 90 DPD) as an optimised absolute, regardless of context. That
said, using a roll rate analysis (instead of regulation) to inform a delinquency threshold d is
common practice in some modelling contexts. However, such an analysis can lead to spurious
results simply due to arbitrary settings in its design, e.g., the choice of outcome period and the
particular sample window. Moreover, roll rate-based approaches are oblivious to any competing
financial and opportunity costs when varying the threshold d, in addition to using stability
instead of financial loss as a base criterion. All of these factors complicate finding the ideal
threshold d when using a roll rate-based approach, which calls for devising a more appropriate
and optimisation-friendly method. A chosen threshold d can serve as a time-sensitive margin
of tolerance towards accruing arrears, beyond which the associated costs for keeping the loan
would trump any benefit thereof. Financial loss can therefore be used as an optimisation basis
for finding the ideal threshold d on a given measure g. Accordingly, this work has explored and
refined a few ways of quantifying delinquency itself, thereby enumerating the choice of g with
a few functional forms. These alternative measures can potentially enhance any subsequent

optimisation given g-measurable delinquency.

Finally, the philosophy underlying the recovery decision is framed anew as a loss-based
nonlinear optimisation problem. The LROD-procedure manifests this problem by trying to find an
ideal threshold d (the main decision variable, apart from the choice of g) such that loan recovery
occurs neither too early nor too late, if at all. Too strict a threshold will surely marginalise some
loan accounts that would otherwise have resumed payment, had the bank been more trusting. Yet

too forgiving a threshold will naively tolerate increasing arrears amounts at the cost of greater
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liquidity risk, increased capital buffers, and overall higher levels of credit risk. Ultimately, the
"net cost" of each candidate threshold is assessed and collated into a g-specific collection, thereby
forming a loss curve that may be inspected for optima. As such, debt ought to be recovered at this
optimum (or ‘default’ point) whereupon the portfolio loss is minimised in aggregate. Pursuing loan
collection any further beyond this point would be sub-optimal, which agrees more fundamentally
with ‘default’ translating into a variable "point of no return" on the banker’s imagined gauge of
eroded trust.

Co=y==9
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CHAPTER

OPTIMISING LOAN RECOVERY TIMING: A COMPUTATIONAL STUDY

he prevailing philosophy when timing loan recovery is framed as a hypothetical delinquency-

based optimisation problem, such that loans are forsaken neither too early nor too late, if

at all. In this chapter, the LROD-procedure is tested from "first principles" using portfolios
that are meaningfully generated across the entire range of credit risk scenarios. In particular,
a few probabilistic techniques and their associated parameters are described in section 4.1 by
which the cash flows of any portfolio can be generated, guided by expert judgement and industry
experience. Accordingly, various parameter searches are conducted in section 4.2 to identify
a set of ideal parametrisations for which recovery optimisation becomes feasible, i.e., yielding
optima. Finally, this chapter is concluded in section 4.3, which includes a discussion on directions
for future research. Overall, the results demonstrate that the timing of loan recovery depends
greatly on the inherent risk level of a given loan portfolio and its composition. A research article
titled "Simulation-based optimisation of the timing of loan recovery across different portfolios”
is associated with this chapter, published in the journal Expert Systems with Applications; see
Botha et al. (2021). The associated source code is available in Botha (2020a).

4.1 Portfolio generation: a testbed for the LROD-procedure

A real-world portfolio inherently suffers from censoring insofar that delinquent loans are only
kept on the balance sheet up to a certain point, as controlled by the bank’s write-off policies.
Although eventually optimising the recovery decision of a real-world portfolio would be ideal, it
is arguably prudent first to demonstrate the efficacy hereof from "first principles" on designed

data. In this section, a broad but simple simulation-based setup is described, guided by expert
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judgement and industry experience. Using this setup as a testbed, replicable loan portfolios
of varying risk levels are iteratively generated in testing the LROD-procedure. This testbed is
subsequently used to identify a certain range of credit risk profiles for which optima are found,

simply by varying the simulation parameters.

Some delinquent accounts will simply never recover in reality, which implies a continuous
stream of zeros in their receipts R = [R 1,R2,...,th] after some point. Given a measure g €
{g1,82,83} and a so-called truncation parameter k = 0, this effect is simulated from a certain
starting point ¢’ = min (j : g(j) = k) that only exists when delinquency has accrued sufficiently,
i.e., the earliest period j € [0,%.] at which g(j) = k& is potentially triggered. A process, called
(k, g)-truncation, then changes R to R’ by

[R1,Rg,...,Ry,0,...,0] if ¢ exists

R' = . (4.1)
R otherwise

Consider N = 10,000 standard amortising loan accounts that are indexed by i = 1,...,N, with
a fixed contractual term of ¢, = 60 months, a fixed effective annual interest rate of 20%, and
a fixed principal amount such that the level instalment is I; = 100 at every period ¢ =1,...,¢..
Admittedly, these quantities are oversimplified and will typically vary in a real portfolio based
on the level of credit risk and loan demand. However, sampling them instead from stylised!
distributions did not have nearly the same effect as that of credit risk in the optimisation itself.
These simplifications are therefore justified for the time being. Furthermore, an effective annual
risk-free rate of 7% is used in discounting, which is realistic for the South African market. Let
the maximum loan size be Lj; = 5,000 and let rg = 40% and r4 = 70% with the rationale that
losses on arrears ought to be penalised more than losses on expected balances. The latter is a
decreasing quantity while the former increases over time for a persistently delinquent loan. All
of these parameter values represent expert knowledge though can certainly be varied in practice,

which will be demonstrated later for some of these parameters.

In simulating the receipt vector R of each loan account, three probabilistic techniques are now
described. As a basic technique (called random defaults), let u; € [0,1] be a randomly generated
number at every period ¢ =1,...,¢, and let b be the probability of payment, i.e., P(R; = I) = b with
I denoting the level instalment. Note that b = 80% is chosen as a default value, though this is
later varied. Each element R; within R is then populated with either I or 0, expressed as

I ifu;<b

Rt = . (42)
0 otherwise

1In particular, a beta distribution was first parametrised to resemble the typically right-skewed distributional
shape of unsecured retail loan rates in the South African market, thereby reflecting expert knowledge and risk-based
pricing practises. Secondly, the loan amount was also sampled from a similarly parametrised distribution, again based
on the authors’ experience in the industry.
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Despite its simplicity, random defaults do not feasibly generate periods of consecutive non-
payments followed by resumed payment, which frequently occurs in practice as "episodic de-
linquency". Therefore, the so-called episodic defaults technique is devised wherein pp = 50%
represents the overall probability of default, i.e., half the portfolio is bound to have a default
episode by design. Let /; be the number of consecutive non-payments to be simulated for the
j*™ delinquent account within the defaulting-segment. This episode length [ j€l[1,k]is sampled
from the uniform distribution up to %, coinciding with (%, g1)-truncation. When applying (%, g1)-
truncation, accounts will only cure if they had less than £ consecutive non-payments, as a limiting
condition. Thereafter, the starting point o; € [1,¢. — ;] of the episode is sampled from the uniform
distribution up to ¢. —/;, which is to say the entire episode must fit within the remaining loan
life. Finally, each element R; within R of the jth delinquent account is then simulated as

0 iijStS(Oj+lj)

t= (4.3)

I otherwise

Realistically, an account may experience multiple default episodes during its life, though the
previous episodic technique only produces one such episode. Therefore, and similar to Thomas
et al. (2016), the Markovian defaults technique is defined where X; € {P,D, W} denotes a random
variable that can assume one of three states at each period #; the paying state P: R; = I, the
delinquent state D : R; = 0, and the absorbing write-off state W : R;»y = 0 from a certain point ¢’
onwards. Then, let X1,X59,... be a sequence of random variables that form a discrete-time first-
order Markov chain. One can reasonably assume that every account starts off as non-delinquent,
i.e., P(X1 =P) = 1 while P(X; € {D,W}) = 0. Subsequently, the one-period transition probability
from the current state i at ¢ to the future state j at ¢t +1 is denoted as P;;. However, let the
write-off probabilities be sensibly set to 0.1% and 1% respective to the starting states P and
D. These values agree with general industry experience of an unsecured portfolio, though can
certainly be tweaked to the individual portfolio in practice. The remaining elements in the
transition matrix can now be derived from but two probabilities, Ppp and Ppp. In turn, both of
these can be systematically varied to generate a portfolio’s cash flows according to a certain level

(or profile) of credit risk. The transition matrix is accordingly expressed in Table 4.1.

To
P D \
P Ppp 1-Ppp-0.1% 0.1%
£ D|1-Ppp-1% Ppp 1%
£ W 0% 0% 100%

TABLE 4.1: A conceptual transition matrix for the Markovian defaults technique,
wherein the rates Ppp and Ppp are to be systematically varied.
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4.2 Computational results of recovery optimisation

In this section, the LROD-procedure is demonstrated and tested across a wide array of credit risk
scenarios, generated using the testbed described in section 4.1. The computational results are
grouped below by technique, followed by suggestions given in subsection 4.2.4 for applying the
LROD-procedure on real-world data.

4.2.1 Random defaults
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Delinquency Measure —=— 81 - &2 — &3 Delinquency Measure —=- 81 —#= &2 — &3
(a) Using (4, g1)-truncation (b) Using (6, g3)-truncation

FiG. 4.1: Losses (as a proportion of summed principals) across thresholds d by mea-
sure g € {g1,82,83} using the random defaults technique. In (a), loans are (4,g1)-
truncated, while they are (6, g3)-truncated in (b). In both cases, the zoomed plots
show that global minima occur at or near the truncation point, d = k.

This technique leverages (&, g)-truncation to control the portfolio generation itself, thereby
serving as a sanity check when testing the optimisation results and its underlying logic. Intuit-
ively, the lowest loss should be at threshold d = %, since receipts are zeroed after having breached
k by design. As an illustration, (4, g1)-truncation is applied in Fig. 4.1(a), which shows the lowest
loss occurs at d =4 for g1 as expected. However, the choice of g € {gl, g9, g3} when truncating
introduces bias in the timing of cash flows, such that this g will likely contain the lowest loss as
well. This is demonstrated in Fig. 4.1(b) when using (6, g3)-truncation instead, where the min-
imum loss now occurs approximately at d = k& = 6 for g3. Whilst seemingly artificial, truncation is
merely used as an intuitive testing tool. However, the notion of truncation is plausibly similar to
default contagion during a real-world economic downturn, during which borrowers may default

systematically at some level of accrued delinquency % on average.

Minimum losses ought to occur wherever d = & in applying (%, g)-truncation on receipts. This

intuition is largely confirmed in Fig. 4.2 wherein truncation parameters 2 =1,...,10 are applied
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F1G. 4.2: Losses (as a proportion of summed principals) across thresholds d for the
g1-measure with (&, g1)-truncation, using the random defaults technique. Several
truncation points 2 =1,...,10 are used, with the zoomed plot confirming that global
minima in losses occur at each truncation point d = k.

during portfolio generation. As a result, loss minima occur consistently at the truncation point
d =k as expected, while holding other factors constant. Each increasing value of % also yielded a
smaller minimum loss as a result of the overall lessening truncation effect. Since receipts are
truncated less frequently as & increases, generated portfolios exhibit overall less delinquency (or
credit risk), which explains both lower loss curves and lower loss minima. Although not shown,
this result holds similarly for go and g3 when used in truncation. Therefore, the optimisation is
deemed sensitive to systematic defaults and can react accordingly should the defaulting behaviour

of borrowers converge, as simulated by truncation.

Besides truncation, this technique has another parameter that is arguably more relevant:
that of the one-period repayment probability b. Each value of b corresponds to a particular level
of credit risk during portfolio generation. By varying b, the effect of credit risk can be broadly
tested when optimising loan recovery, as shown in Fig. 4.3. Applying (6, g1)-truncation as a
benchmark, loss minima still occur at d =k = 6 as expected, though only for a certain range of
0.5 < b < 0.94. This suggests that optimising loan recovery in practice is infeasible for either
very risky loan portfolios or near riskless portfolios. In particular, the two boundary cases of
b=0and b =1 in Fig. 4.3 support this idea in that loans should be forsaken at the outset when

b =0, as evidenced by the loss minimum at d = 0, since all receipts will be zero-valued by design.
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Conversely, if there is no credit risk, i.e., b = 1, then no loss is made at any d > 0 and loan recovery
itself becomes a moot point. These computational results can directly translate into practical
value when estimating the parameter b from a real-world portfolio, as well as estimating the

extent of any underlying truncation effect.
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65.0% -7 81.0% 91.0% 100.0%

F1G. 4.3: Losses (as a proportion of summed principals) across thresholds d for the g1-
measure with (6, g1)-truncation, using the random defaults technique and several
probabilities of payment b € [0,1]. The zoomed plot shows a smaller range of
0.65 < b <0.91 where loss minima occur at the chosen truncation point.

Intuitively, the loss experience (or LGD) of a particular portfolio ought to affect the results of
recovery optimisation as well, especially when considering loan security in the event of default.
This is testable by varying the loss rate r 4 during portfolio generation while holding other factors
constant, as illustrated in Fig. 4.4 using g1 (though similar results hold for g9 and g3). As a
proxy for more secure portfolios, smaller values of r 4 lead to flatter loss curves, until reaching
a point where recovery optimisation becomes infeasible. Conversely, larger values of r4 yield
loss curves with a greater ‘bend’ at the chosen truncation point, which signifies the greater risk
involved with more unsecured portfolios. Since b is held constant, one can conclude that once
default does occur, the viability of recovery optimisation only increases with the risk of loss, which
is intuitively sensible. This is to say that unsecured portfolios will likely benefit even more from

recovery optimisation than secured portfolios.
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F1G. 4.4: Losses (as a proportion of summed principals) across thresholds d for the g1-
measure with (6, g1)-truncation, using the random defaults technique and several
arrears loss rates r4 €[0,1]. The zoomed plot shows a smaller range of loss rates
0.62 <r4 <1 where loss minima occur at the chosen truncation point.

4.2.2 Episodic defaults

Since this technique is tightly coupled with (%, g1)-truncation by design, portfolios are generated
accordingly for £ = 1,...,10, as shown in Fig. 4.5 for g1 (with similar results for g9 and g3).
Clearly, the shapes of loss curves are different, even though loss minima are still found at each
successive truncation point. Furthermore, accounts only resume payment provided that the
length of the default episode is less than k. Longer episodes (higher k) seem to absorb the loss
that is specifically introduced by truncation itself, which is signified by flattening loss curves for
d = k. Since higher & implies that truncation will occur less frequently, a greater proportion of
accounts with an episode length less than % will resume payment. In turn, arrears stabilise given

less frequent truncation, which explains the flattening slopes of loss curves for greater k.

In general then, small £ implies shorter episode lengths but more truncated accounts, while
large £ means longer episode lengths but fewer truncated accounts. It seems this technique
generates portfolios with an interesting trade-off between default episode length and truncation
frequency, regarding their credit risk compositions. Since loss minima are still obtained at
each truncation point as hoped, it suggests that recovery optimisation will likely remain viable

in practice when facing portfolios with these more interesting characteristics. This includes
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Fi1G. 4.5: Losses (as a proportion of summed principals) across thresholds d for the
CD-measure g1 with (&, g1)-truncation, using the episodic defaults technique with
pp =50% and several truncation points £ =1,...,10. The zoomed plot shows that
loss minima occur at each successive truncation point.

portfolios wherein truly delinquent accounts (as proxy for truncation) occur more frequently (e.g.,
unsecured lending), but are also more prone to recover from shorter bouts of delinquency, and

vice versa.

4.2.3 Markovian defaults

This technique affords greater flexibility in generating portfolios with more sporadic repayment
histories. Accordingly, the LROD-procedure is demonstrated in Fig. 4.6 using some of the para-
metrisations of the underlying Markov chain that yield optima across all delinquency measures.
Evidently, the g1-measure appears to outperform the other measures since it yields the lowest
loss within each of these settings, including a number of other parametrisations not shown.
However, summarily concluding the supremacy of g1 across all portfolios would be disingenuous.
It is still possible that some real-world portfolios may be better served using measures other
than g; within the LROD-procedure (or more broadly in risk management). The current objective
is not to determine the best measure conclusively. Indeed, conducting such an empirical study
would require expansive real-world data on all types of portfolios across the risk spectrum, which
is prohibitively impractical at this stage. That said, the g{-measure is henceforth used in this

section given its supremacy in this instance.
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FIG. 4.6: Losses across thresholds d by measure g € {g1,82, 83} using the Markovian
defaults technique to generate three different loan portfolios. Each panel explores
a specific setting of the transition matrix, using the titular probabilities within the
matrix defined in Table 4.1. Encircled points indicate loss minima at associated
thresholds d@.

Using this technique, a broad iterative scheme is devised to generate portfolios systematically
across the entire credit risk spectrum, as measured with g;. In particular, Ppp is held constant
at a certain value while varying Ppp, followed by fixing Ppp to a different value and varying Ppp
again, and so on. This scheme allows for suitably varying the transition matrix in Table 4.1 using
fixed intervals, with some of the resulting loss curves and associated loss minima presented in
Fig. 4.7. The subplots in both panels (A) and (I) represent boundary cases that confirm intuition.
Specifically, panel (A) demonstrates recovery optimisation for portfolios with highly transitive
delinquency states such that accounts immediately exit this state in the next period, once entered.
Accordingly, the loss curves increasingly resemble a near risk-less case as the value of Ppp tends
towards 1, which is similar to setting b = 1 in Fig. 4.3 when using random defaults. In turn,
recovery optimisation itself becomes progressively infeasible in tandem with Ppp approaching
1. Conversely, panel (I) showcases the loss curves of extremely risky portfolios, which are again
similar to setting b = 0 in Fig. 4.3 as Ppp approaches 0. More importantly, the fact that loss
minima occur at very small thresholds agrees intuitively with cutting losses sooner rather than

later, especially for extreme default risk.

The remaining panels in Fig. 4.7 are perhaps the most instructive. As the delinquency state
becomes more absorbing (or less transient), i.e., moving from panel (B) to (F), the loss-optimal
thresholds d‘¢V become increasingly staggered across both axes. This is to say that d‘¢*) becomes
progressively more sensitive to both the threshold d and the value of Ppp. Moreover, it is sensible

that ever greater losses (at d&V) are associated with lower values of Ppp since the latter implies
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F1G. 4.7: Losses across thresholds d for the g;-measure using the Markovian defaults
technique with several transition rates Ppp € [0,1] and Ppp € [0, 1]. Encircled points
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indicate loss minima at associated thresholds d‘év).

40

less time being spent in the paying state, even as the delinquency state becomes less transient.

Furthermore, consider that d¢? increases in threshold-value when Ppp decreases and Ppp

increases, i.e., moving from curve (i) down to curve (a) whilst moving across panels (B) to (F).

This suggests that gradually postponing loan recovery is the better strategy even as delinquency

becomes more likely, at least up until a certain point, in this case, panel (G). However, this

suggestion is counter-intuitive since one would rather cut losses sooner than later when risk

supposedly increases, which implies selecting lower thresholds instead.
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Two factors help explain this phenomenon. Firstly, the relevant portfolios are increasingly
turbulent by design when Ppp changes from higher to lower values in each successive panel. The
effect hereof is that loans start to oscillate quite rapidly between the paying and delinquent states
as Ppp decreases. The slightly increased rate of absorption into the delinquent state (when moving
across panels) is not sufficient to support earlier loan recovery as intuition would otherwise
suggest, especially so when an account still frequently exits the delinquent state. This has the
side-effect of muting the severity of ‘default’, which is plausible when curing from ‘default’ itself
becomes increasingly likely due to the same turbulence. Therefore, the associated opportunity
cost of forsaking the loan earlier is too high when future repayments are still likely to be received
over the longer run, albeit sporadic. Accordingly, greater turbulence in a portfolio requires greater
patience to collect upon these repayments, which is why postponing loan recovery (by virtue of
d@V increasing) would be loss-efficient. Secondly, even if d€?) increases in value, the associated
loss minimum reassuringly increases alongside Ppp, as expected from more turbulent and riskier

portfolios.

There is little need for applying (%, g)-truncation on these results since the Markovian
technique already has a realistically-set write-off state that achieves the same effect. While
additional truncation will surely confound the results, (12, g1)-truncation is experimentally
applied in the interest of completeness. The results (not shown) are largely similar to that of
random defaults in that loss minima still occur at or near k£ = 12 across most portfolios. The
exceptions are the two boundary cases, i.e., at or close to panels (A) and (I). Furthermore, the
Markovian technique is especially geared towards generating "regime-switching" portfolios where
accounts suffer from episodes of delinquency that vary in length, as controlled by the state
probabilities. In this regard, episodic delinquency is more common a phenomenon in practice
than one would think, which is why investigating recovery optimisation for these cases is more

valuable than exploring explicit truncation/write-off any further in this section.

4.24 Applying the LROD-procedure on real-world data

The steps in section 3.4 require data to be in a longitudinal-format, having measured delinquency
in retrospect across all accounts and time (usually monthly), based on expected instalments and
actual receipts. Letting the contractual term, loan and risk-free rates, and even the loss rates
vary across the portfolio ought not to impede the practical use of the LROD-procedure. However,
the portfolio is assumed to be fully observed (or ‘completed’) in this study, with little consideration
given to any right-censoring and its effect on the receipt history of an account. This particular
avenue is further explored in Botha et al. (2020), thereby demonstrating the empirical use of the
procedure on real-world data. That said, simply excluding incomplete accounts from the dataset
can sidestep this possible issue, though at the cost of a reduced sample size. The effect hereof will

likely vary based on the typical tenure of the loan product.
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The results, particularly those from subsection 4.2.3, can easily translate into practical value
with relatively little analytical effort. For example, one can fit the same three-state Markov
chain on a real portfolio’s delinquency progressions, just to obtain the associated transition rate
estimates. In turn, these estimates can be used as a rough guide in finding a corresponding loss
curve amongst all those presented in Fig. 4.7, i.e., a look-up exercise. The associated optimised
threshold can provide a high-level idea of recovery optimisation, provided the assumptions are
reasonably met. That said, applying the LROD-procedure remains the imperative in order to

capture all idiosyncrasies of a particular portfolio and the prevailing market conditions.

4.3 Concluding remarks

The results demonstrate that optimising the timing of the recovery decision using the LROD-
procedure is sensitive to the level of credit risk of a portfolio and its particular composition.
This rather intuitive result rests upon weighing two competing interests against each other: the
prospect of reaping future revenue from troubled loans versus the cost of retaining these loans
any further. In addition, the LROD-procedure is formulated in such a way that it can be used
with multiple loan delinquency measures. This facilitates the objective testing of alternative
measures, e.g., those provided in the appendix, that may better suit the recovery optimisation (or
even broader risk management) of a portfolio. That said, the study objective is not to establish

the best measure conclusively, which would likely be a data-intensive and costly endeavour.

Regarding results, a simple simulation-based setup is first described in which the LROD-
procedure (and its goal of recovery optimisation) is closely examined from "first principles". Using
this setup as a testbed, a broad computational study is conducted wherein basic amortising
loan portfolios are systematically generated by varying the simulation parameters, though still
constrained by expert judgement. Having spanned the entire credit risk spectrum (as measured
with the payment probability b), the computational results show that optimising the recovery
decision’s timing is viable across most risk levels, except at the extremes. The results further
indicate that optimised recovery times are sensitive to systematic defaults that may structurally
affect a portfolio during an economic downturn, as approximated by the notion of (%, g)-truncation
in the testbed. Another factor is that of collateral and the portfolio’s loss experience (or LGD),
insofar that optima were successfully found across most of the loss spectrum (as measured with
the loss rate r4). Moreover, recovery optimisation seems to become an increasingly viable practice

as the risk of loss increases.

In addition, recovery optimisation is tested on more turbulent portfolios wherein borrow-
ers repay intermittently, thereby causing episodic delinquency. Once accounts oscillate rapidly
between paying and nonpayment, ‘default’ itself diminishes in severity, especially when cur-

ing also becomes more likely as a result of the very same turbulence. Accordingly, optimised
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thresholds are shown to increase in value as turbulence develops, though only up to a point.
Postponing loan recovery in tandem with greater turbulence is therefore strategically optimal
since it allows greater scope to collect upon these repayments, albeit sporadic. As a secondary
contribution, the testbed itself can serve as a valuable tool in exploring the strategic viability of
the LROD-procedure. Once appropriately parametrised, the testbed can generate a wide variety
of portfolios, which allows a bank to investigate (at least preliminarily) the prospects of recovery
optimisation for a certain type of portfolio. Ultimately, the LROD-procedure can be used to tweak

existing collection policies and, perhaps in time, default definitions themselves.

Future studies can focus on refining the LROD-procedure using real-world portfolio data.
So-called ‘incomplete’ portfolios, i.e., those wherein many loans have not yet reached contractual
maturity, may prove a challenge for recovery optimisation at this stage. The simplest solution
would be to exclude the incomplete accounts, though unfortunately reducing the sample size
as well. Alternatively, one can perhaps explore an appropriate forecasting approach in future
work. Furthermore, homogeneity is currently assumed in that the optimised threshold is a
portfolio-wide criterion. However, exploring segmentation schemes may be worthwhile such that
the LROD-procedure yields an ideal threshold for each identified segment within the portfolio.
Lastly, the current loss model L, can be refined by incorporating historical loss experiences and
transforming it into a more dynamic component. As an example, calculating the realised LGD
generally requires a specific point of entering ‘default’. From this point, cash flows are observed
during its workout up to the applicable write-off point. By introducing d as the (g,d)-default
state, the starting points of cash flows will naturally vary with d, thereby impacting the LGD
calculation itself for each (g,d)-policy. Intuitively, longer or shorter workout periods will affect
the loss experience, which will influence recovery optimisation based on the study results. This
particular refinement will likely intersect with the existing literature on credit loss modelling

and IFRS 9, which as a field is currently quite in vogue.

C==y===9
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CHAPTER

RECOVERY OPTIMISATION USING REAL-WORLD DATA WITH
FORECASTING

he LROD-procedure from section 3.4 allows for the objective comparison, evaluation, and

optimisation of a bank’s recovery decision (i.e, foreclosure) across competing delinquency

measures. This procedure was demonstrated in chapter 4 as an optimisation problem
using toy portfolios in such a way that loans are forsaken neither too early nor too late, if at all. In
this chapter, the same LROD-procedure is extended and refined using a rich real-world portfolio
of 20-year residential mortgages, provided by a large South African bank. However, real-world
amortising loan portfolios typically suffer from right-censoring in that the many of its constituent
loan accounts have not yet reached contractual maturity, barring those that were settled early or
written-off historically. Older monthly cohorts will have more observable history available than
those cohort originated more recently. Consequentially, the cash inflows (or receipts) of these
active loan accounts can only be observed up to the most recent time point ¢¢9 and no further.
More formally, a loan account has the receipt vector R = [R 1,R2,...,RtO,Rtl,...,th] of which
elements are observed from data only up to time ¢y < ¢, with ¢, denoting the contractual term.
The remaining future elements at times ¢1,...,¢. (Where #g < 1 < t.) are right-censored and

therefore unobservable.

Accordingly, censored portfolios present a secondary challenge since the LROD-procedure
was originally developed within the context of uncensored ‘completed’ portfolios. It is also quite
challenging to procure a real-world uncensored though still data-rich portfolio from a willing

lender. However, even if procured, its use may become questionable since the completed portfolio
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may no longer reflect current market conditions, which may adversely affect recovery optimisation.
Moreover, the unsurprising reality is that most loan portfolios will be censored to some degree
since they are being actively grown every month, which suggests that censoring will remain a
prevalent problem whenever seeking to apply the LROD-procedure in practice. Failure to treat
for this censoring leads to unusable and counter-intuitive results'. Arguably, it would be more
feasible to use available data and try to forecast the remaining cash flows of each censored
account up to its contractual term, as originally depicted in Fig. 1.3. Performing this necessary

step will then in turn enable the empirical use of the LROD-procedure.

This chapter is begun by outlining two candidate forecasting techniques in section 5.1 by
which a censored portfolio can be completed. Each technique is parametrised from 20-year resid-
ential mortgage data and assessed on its forecasting quality in section 5.2. The LROD-procedure
is then applied on the now-completed portfolio in section 5.3, accompanied by a discussion of the
ensuing results. A Monte Carlo-based refinement to the procedure is demonstrated in subsec-
tion 5.3.2 by which the variance of the underlying forecasts can be analysed, thereby granting
additional assurance on the stability of the optimisation results. Finally, this chapter is concluded
in section 5.4, which includes a discussion on limitations and avenues for future research. Over-
all, the timing of a bank’s recovery decision is successfully illustrated as a delinquency-based
optimisation problem using real-world data. This work can therefore facilitate the revision of
relevant bank policies or strategies towards optimising the loan collections process. A research
article titled "The loss optimisation of loan recovery decision times using forecast cash flows” is
associated with this chapter, accepted for publication in the Journal of Credit Risk. A preprint is
published in Botha et al. (2020) while the associated source code is available in Botha (2020b).

5.1 Two techniques to forecast future loan receipts

Two techniques are presented in this section to forecast the future cash flows R, ,...,R;, up to the
contractual term ¢. of each censored loan account, using its observed receipt history Ry,...,R;,.
These techniques include a simple probabilistic technique called random defaults as well as a
more sophisticated eight-state Markov chain-based technique called Markovian defaults. Note

that both techniques are data-driven extensions of those used in chapter 4.

5.1.1 Random defaults with empirical truncation

Let u; €[0,1] be a randomly generated number from the uniform distribution at every loan period
t=t1,...,t. that is to be forecast. Let b be an estimable probability of payment, i.e., P(R; =1.)=b

with I, being the calculated level instalment. This instalment is calculated such that it amortises

1Using an untreated real-world portfolio in the procedure did not yield loss-optimised thresholds on any measure,
regardless of the chosen loss rate — see Appendix A.3.
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the most recent outstanding balance as observed at time ¢( to zero at time ¢., using the most
recent client interest rate observed from data. The receipt is then initially forecast as
I, if U < b

R, = . (5.1)
0 otherwise

A truncation effect is introduced (similar to section 4.1) via a structural break in the forecast
receipt vector at a certain point (if at all) and replacing elements thereafter with zeros. Tempering
the predicted receipts in this way mimics the fact that some loan accounts will simply never
resume payment in reality. This is similar to Thomas et al. (2016) wherein the parameters
controlling the payment and non-payment sequences were fixed after reaching some point in the
process. More formally, consider all periods j = tg,...,t. within the now-forecast receipt vector
R of a particular account, with the measure g1 applied accordingly across all periods. Let 2 =0
be a truncation parameter above which the receipts are truncated. The starting period of this
truncation, denoted as ¢z = 0, may then exist if the account has experienced sufficient delinquency
g1(j) = k at some j, i.e., t; =min(;j: g1(j) = k). Conversely, if delinquency has not breached &,
then this time point ¢; does not exist. A process called (%, g1)-truncation then changes R to R’ by

R;,...,R;,0,...,0| if¢, exists
R | BB I ity . (5.2)

R otherwise
In estimating this truncation parameter % (as opposed to fixing it previously in section 4.2),
consider that the maximum delinquency across time can be obtained for each account in a loan
portfolio, using g1 for simplicity’s sake. In turn, the histogram of these maxima is plotted, followed
by fitting statistical distributions to these maxima. One can then draw a random sample £; from
an appropriately fitted distribution for each account and finally (l%i,gl)-truncate the initially

forecast receipt vector. This introduces some realistic variance to the overall truncation effect.

Lastly, consider an indicator function Z, @) that signals payment using the receipt R} ! and
instalment 1 ; of the ith account at its historical periods ¢t = .,20(2). This Z, @ is then formally

defined as
o |1 ifR/ =1 .
7, = t=1,...,t00) . (5.3)
0 otherwise

The probability of payment b can be estimated by b, which is defined as

Z

t()ZI“) Vi=1,...,Nandt=1,...,t0(i) . (5.4)
olz

5.1.2 Markovian defaults

Let X; € {xg,...,x7} be a random vector that can assume one of eight increasingly-severe de-

linquency states derived from g1, across all historical periods ¢ =1,...,¢¢ of an account. The
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states xg,...,x5 correspond to g1(¢) having the respective values 0,...,5 at any ¢. State xg is
semi-absorbing such that g1(¢) = 6 at any ¢ and the state x7 denotes write-off (fully-absorbing).
The sequence X7,...,X;, then forms a discrete-time first-order Markov chain from which receipts
can be forecast, based on the predicted states X;,,...,X;, at future periods ¢ =¢1,...,¢.. Note that
g1 can only ever increase in value by one delinquency level, while it can decrease by several
levels depending on the magnitude of the overpayment R; > I;. Lastly, previous studies used
Markov chains with fewer states to characterise the delinquency process (see subsection 3.1.3).
However, more delinquency states should theoretically translate into better capturing a portfolio’s
delinquency dynamics over time. While this claim is not explicitly tested, an eight-state Markov

chain is deemed a reasonable compromise between greater sophistication and simplicity.

To generate receipts at these future periods, temporarily ignore write-off (x7) and consider the
one-period delinquency difference 6;, defined as 6; = g1(¢) — g1(¢ — 1). A positive difference 6; >0
implies R; < h;I. since delinquency has increased and R; is therefore simply zeroed. Secondly,
6; =0 implies R; = I, since the delinquency level remained unchanged. Finally, §; < 0 implies
R; =21, since § — 1 extra payments are needed to decrease the delinquency level beyond the
instalment normally due at the time. When X; = xg, the account remains semi-absorbed as long
as g1(¢) = 6, which implies either increasing or constant delinquency. For the sake of prudence,
the former case is assumed (i.e., §; > 0) and R; is zeroed accordingly. These ideas (barring x7) are

combined into forecasting the receipt as

-I1.(6:-1) ifé,<0
R;=11. if6,=0 . (5.5)
0 if6,>0

Note that truncation is effectively incorporated whenever an account transitions to the absorbing
write-off state x7 at a supposed time point ¢,, that only exists when X; =x7 with t; <¢, <t..
This inherently implies zeroed receipts from that point forward, i.e., R; =0 for ¢ = ¢,,...,t. if t},

exists.

In estimating the transition matrix of this Markov chain, note that the receipt history of each
loan account effectively signifies a repeated observation of the underlying chain, as discussed in
T. W. Anderson and Goodman (1957). Assuming stationarity, the maximum likelihood estimates
(MLEs) for the transition probabilities p;; from state i to state j are then p;; =n;;j/n; where
n;ij is the number of observed transitions across all time periods from state i to j and n; is the
observed number of total transitions starting in state i. In this context, it is not necessary to
estimate initial state probabilities since the starting delinquency state is simply observed from

the last available time point ¢¢ of an account.
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5.2 Calibrating the forecasting techniques to mortgage data

The aforementioned forecasting techniques are calibrated in this section using credit data on a
rich portfolio of ordinary home loans granted to the lower-income segment of the South African
market. Although shorter-term matured loans would be ideal for this study, only mortgage data
was available. This longitudinal dataset has monthly loan performance observations over time
t=1,...,t9(7) for account i = 1,...,N with N = 61,648 single-advance 20-year mortgage accounts.
These mortgages were originated from April 2004 (and beyond) and observed throughout up
to December 2017, thereby yielding 3,271,534 raw monthly observations of loan performance.
This data includes actual net cash flows (receipts), expected instalments (including credit life
insurance add-ons and fees, or special arrangements), variable interest rates, original loan
principals, month-end balances, write-off amounts and indicators, asset sale proceeds, and early

settlement indicators.
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Fi1G. 5.1: The difference between the theoretically observable loan tenure (as mea-
sured at December 2017 in retrospect) and the remaining contractual term across
monthly loan cohorts. The mean and median loan ages per monthly cohort are
overlaid.

As measured at December 2017, the difference between the maximum theoretical loan tenure
and the remainder of the contractual term is shown in Fig. 5.1 at every historical monthly loan

cohort, with aggregates overlaid. Clearly, these aggregates are below the theoretical maximum
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for most cohorts, which demonstrates some additional right-censoring. To this point, mortgage
loans can exit the portfolio pre-maturely either via write-off or via early settlement, e.g., private
sales, bond cancellations, or transfers. Moreover, the volatility in both of these aggregates at
earlier times attests to low sample sizes, which is unsurprising for a fledgling loan portfolio at the
time. This volatility, however, gradually subsides until both aggregates approach the theoretical
maximum. This is sensible since more recently originated mortgages have less time available to

develop write-off or early settlement outcomes than their older counterparts.

In estimating the various parameters of the forecasting techniques, the data is partitioned to
form three specific samples: S as the full dataset, Sg as the delinquents-only sample (all accounts
that had at least one payment in arrears historically, or were eventually written-off), and S3 as
the write-offs sample. These samples and the relationships amongst them are illustrated with a
Venn diagram shown in Fig. 5.2. Some accounts will simply never experience any delinquency
and their exclusion in S2 and S3 removes an optimism bias during model training. There is
little practical benefit to finding the best time for loan recovery on a near risk-less portfolio.
Furthermore, recovery optimisation is only sensible for loans likely to become delinquent in the
first place, which is predicated upon forecasting them as such. Likewise, it would be pointless
to forecast cash flows of closed accounts, though their repayment histories are retained for
model training purposes. Lastly, this particular partitioning scheme is an experimental proxy for
risk compositions that differ across both product and risk appetites in reality. As an example,
mortgages typically have a much lower default rate than unsecured personal loans, which is

catered for in the current setup.

S1

S;

. 22777 36827

Fi1G. 5.2: A Venn diagram showing the relative sizes and overlaps amongst the three
main samples of mortgage accounts: S (full sample), So (delinquents), and Sg
(write-offs). These samples are used both in training the forecasting techniques
and during the subsequent loss optimisation.
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5.2.1 Calibrating the random defaults technique
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F1G. 5.3: A histogram and empirical density curve of the maximum delinquency level
observed per account, drawn for the samples So (delinquents) and S3 (write-offs).
A theoretical distribution is then fit on each sample (see Appendix A.4), from
which the truncation parameter % is drawn randomly for each loan account prior
forecasting.

The aforementioned probability of payment b used in this technique is estimated from
samples {S1,S2,S3} respectively as 131 =87%, 132 =81%, and 133 =45%. The descending values are
plausible given that each successive sample contains a greater proportion of delinquency by design.
Note that the random truncation of forecasts that accompanies this technique is only sensibly
performed for delinquent cases, which implies %2 > 0. Therefore, ignoring S, the distribution of
the maximum delinquency level per account, i.e., max g1(¢) across all historically observed periods
t=1,...,tp, is given in Fig. 5.3 for both samples S and S3. A few statistical distributions were
tested against the data (see Appendix A.4), though the exponential and two-parameter Weibull
distributions are chosen for So and S3 respectively, denoted as Exp(1) and Weibull(1, ¢). The
MLESs of these parameters are A = 0.1378555 for the exponential distribution, scale A = 24.449566
and shape ¢ = 1.688026 for the Weibull distribution. The truncation parameter then follows
either one of these distributions, i.e., £ ~ Exp(A) for both S; and Sg, as well as & ~ Weibull(A, ¢)
for S3, as part of a comparative study. Note that the exponentially-distributed % has a stronger
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truncation effect since it generally yields lower values of £ than those yielded by its Weibull-
distributed counterpart. This is also evidenced by the sample mean of £ estimated from S9 being
7.25 versus that from S3 being 21.58.

5.2.2 Calibrating the Markovian defaults technique

Ending state
X0 X1 X2 X3 X4 X5 X6 X7
xp | 0.9477 0.0521 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
x1 | 0.0942 0.8074 0.0980 0.0000 0.0000 0.0000 0.0000 0.0004
x2 | 0.0138 0.0502 0.7735 0.1621 0.0000 0.0000 0.0000 0.0004
x3 | 0.0064 0.0084 0.0481 0.7372 0.1993 0.0000 0.0000 0.0006
x4 | 0.0064 0.0030 0.0082 0.0488 0.6957 0.2371 0.0000 0.0007
x5 | 0.0051 0.0020 0.0029 0.0081 0.0469 0.6846 0.2496 0.0009
x¢ | 0.0044 0.0006 0.0007 0.0009 0.0021 0.0095 0.9756 0.0061
x7 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Starting state

TABLE 5.1: Maximum likelihood estimates for the transition matrix of the multi-
state Markov chain, estimated from the delinquents sample Sq. States xo,...,x5
correspond to g1 having the respective values 0,...,5 (weighted payments in ar-
rears). States xg (semi-absorbing) and x7 (absorbing) indicate g1 = 6 and write-off
respectively.

Ending state
X0 x1 X9 X3 X4 X5 X6 X7
xo | 0.8820 0.1126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0054
x1 | 0.0962 0.5387 0.3534 0.0000 0.0000 0.0000 0.0000 0.0117
xg | 0.0254 0.0453 0.4607 0.4600 0.0000 0.0000 0.0000 0.0086
x3 | 0.0136 0.0103 0.0430 0.3824 0.5393 0.0000 0.0000 0.0114
x4 | 0.0117 0.0032 0.0093 0.0412 0.3187 0.6048 0.0000 0.0112
x5 | 0.0079 0.0037 0.0037 0.0053 0.0293 0.3181 0.6194 0.0127
x¢ | 0.0076 0.0006 0.0005 0.0007 0.0012 0.0035 0.9474 0.0385
x7 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Starting state

TABLE 5.2: Maximum likelihood estimates for the transition matrix of the multi-state
Markov chain, estimated from the write-offs sample S3. States xo, ..., x5 correspond
to g1 having the respective values 0,...,5 (weighted payments in arrears). States
x6 (semi-absorbing) and x7 (absorbing) indicate g1 = 6 and write-off respectively.

The MLEs for the transition matrices, as used in this technique, are estimated only from the
samples S9 and S3, shown respectively in Tables 5.1-5.2. Note that the estimates using S differ
from those yielded by using S only in the first row, which is sensible since S; contains the same
delinquent accounts (and therefore the same transitions) as Sg by design. The estimates are
realistic in that an account in any particular delinquency state (barring write-off) can increase
its delinquency level only by one level within a monthly period. Additionally, these estimates

reflect the fact that an account can significantly overpay and thereby recover either partially or
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entirely from distress. The probability of staying within a particular starting state is greatest,
though it decreases gradually as the delinquency level increases, at least for states xo,...,x5.
Simultaneously, the probability of becoming even more delinquent increases as the starting
delinquency level increases, which agrees with anecdotal experience in the industry. This is
corroborated by the increasing probability of write-off, effectively representing an increasing

probability of truncation.

5.2.3 Assessing the quality of forecasts

Although forecasts are trained specifically on {S1,S2,S3}, the forecast quality itself is examined in
this section by following a more general k-fold cross-validation approach as additional assurance.
However, the available mortgage portfolio did not have a single completed 20-year loan, against
which the receipt forecasts could be validated across all periods. Nonetheless, available loan data
up to #¢(i) is still used within a k£ =5 cross-validation setup, despite the censoring-related bias
this likely introduces into measuring the forecast error. Moreover, the main objective is not to
produce the most accurate or robust forecasting model on the account-level, although that is
certainly a worthwhile endeavour. Instead, the present focus is more fundamental: using different
forecasts (regarding accuracy) when optimising the timing of loan recovery, which suggests using

multiple forecasting techniques.

Metric Random defaults (T;) Markovian defaults (T)
Mean Absolute Error (MAE) of cash flows 3,233.19 1,414.03
Instalment-scaled MAE 103.7% 45.3%

Delinquency Forecast Error (DFE): Mean 30.3 5.5

DFE: Median 22.2 0

Portfolio Arrears Rate (PAR) 6.715% (-1.64%) 0.695% (-1.64%)

Mean parameter %-difference 0.00012% -0.0068%

TABLE 5.3: The results of various measures, calculated and averaged across a 5-fold
cross-validation setup. The receipt forecasts are validated using MAE against the
actual receipts within the %™ subset per technique, having trained the technique
on the rest of the data. The DFE-metric compares the g1-based delinquency levels
underlying forecasts against the actual values by taking the difference thereof
at each period and averaging. The PAR-metric expresses the sum of discounted
shortfalls (essentially ‘arrears’) between instalments and forecasts as a proportion
of all gross advances, using 7% as the discounting rate. The actual PAR-value is
-1.64% on average, which is negatively signed due to large historical overpayments
at earlier periods.

A few measures are used that span forecast error, portfolio impact, and overall parameter
stability, with the results thereof given in Table 5.3. These results reflect the significant differences

between each technique’s performance, which is unsurprising given that the simpler technique
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(T,) deliberately ignores the possibility of curing. Another factor that affects the forecast accuracy
is the ability of the Markovian technique (7T;) to produce forecasts based on the level of accrued
delinquency. This advantage gave a Mean Absolute Error (MAE) of less than half that of T, which
is perhaps made more contextual when expressing the error as a proportion of the overall mean
instalment. The receipt forecasts are perhaps less important themselves than the delinquency
calculations that they enable, as eventually used during recovery optimisation. Accordingly, the
Delinquency Forecast Error (DFE) quantifies the ‘error’ in measured delinquency levels when
replacing historical cash flows with their forecast-counterparts. As a result, the DFE also suggests
a clear preference for T, with its much lower error, regardless of taking the mean or median
of these account-level errors. On the other hand, the Portfolio Arrears Rate (PAR) reflects the
portfolio-wide arrears rate as implied when using each technique’s forecasts of historical receipts.
Again, the PAR of T, is much closer to the actual rate than that of T,,. Regarding parameter
stability, the mean %-difference in parameter estimates is reassuringly close to 0, as calculated

between using all data versus using each training fold.

5.3 Optimising the recovery decision: an empirical illustration

The parameters of each forecasting technique were previously estimated three times, each from
a progressively worse sample, thereby recognising that a portfolio’s historical risk composition
itself will bias the forecast receipts. Naturally, the LROD-procedure itself can be applied on
each of these subsequent samples. The locations of the recovery thresholds at which losses are
minimised (if found) are expected to differ significantly, given the different risk profiles. That said,
this procedure is imagined to be applied on the entire loan portfolio when loss-optimising a bank’s
recovery decision in practice. It is, however, iteratively applied in this study as an experimental
and artificial proxy for various risk compositions found in reality, as if each sample is a stand-
alone portfolio. Moreover, the sample S; from which a forecasting technique is parametrised (or
trained) may differ from the sample S; on which the LROD-procedure is applied, where both i
and j are indexes that signify samples {S1,S2,S3}. Apart from using data more efficiently, this
approach approximates the reality of a portfolio’s historical risk composition changing in the
future. As an example, parametrising a forecasting technique from S3 but optimising recovery
thresholds on S; simulates the context of a proportionally lower-risk portfolio (S1) undergoing
heavy financial strain in the future (by using forecasts trained from Sj3). Additionally, this
proposed setup aligns with the IFRS 9 accounting standard, which requires expected credit losses
to be estimated based on various macroeconomic scenarios, as stated in IFRS 9 (2014, §5.5).
Therefore, the experimental setup is illustrated as a 3 x 3 matrix in Table 5.4 wherein each cell
s;; represents the results from a specific scenario. Greater values of j denote riskier portfolios,

while greater values of i represent more pessimistic forecasts.

On interpreting the following results, the LROD-procedure’s particular loss model from
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J
S1 Sz S3
S1 | s11 sz si13
i Sg | s21 s S23
S3 | s31 S32  s33

TABLE 5.4: The experimental setup containing nine scenarios wherein row i repre-
sents the sample used for parametrising a forecasting technique, and column j
denotes the sample on which optimisation is performed.

section 3.4 assumes that a portion of the expected balance and arrears amount are immediately
lost upon entering (g,d)-default. In effect, this equates the actual default and write-off events
to a single point, which implies that a loss-optimised threshold is not necessarily the suggested
starting point of legal proceedings, but rather the optimal ending point. For that matter, finding
the optimal starting point of legal proceedings will likely lead to a workout period that varies
in its length, depending on the starting point. Data collection is likely to be challenging since a
lender would have to delay debt recovery deliberately for enabling such an experiment. Other
than these data challenges, there may be a few operational and legal factors (e.g., jurisdictions
differing in their legal processes) that influence the workout length, which could require a more
sophisticated portfolio loss model than the one used in this study. Therefore, pursuing the best

starting point of debt and/or legal proceedings is left as an avenue of future investigation.

5.3.1 Optimisation results using S, So, and S3 respectively

The first set of results are presented in Fig. 5.4 wherein all loss curves exhibit minima at certain
thresholds d* when loss-optimising the recovery decision on the full sample Sy, i.e., results
based on the first column in Table 5.4. In this case, optimising on S; represents a historically
lower-risk portfolio, while training forecasts from {S,S2,S3} represents increasingly dire credit
risk scenarios in future. Specifically, the loss minimum increases both in value as well as occur
at decreasing thresholds as the forecast scenario worsens, i.e., progressing from s1; — s91 — S31
when parametrising the forecasting technique. Furthermore, overall losses across all thresholds
increase as the forecast scenario deteriorates, which is evidenced by the steeper slope of the
loss curve after having reached its minimum at d*. This agrees with the intuition of cutting
losses sooner rather than later when facing increasingly higher credit risk on future cash flows.
Moreover, the sg1-results yielded the lowest thresholds d* = {4, 6} respective to each technique,
whose values seem close to the current practice of using d = 3 with the gg-measure as a default
definition. Therefore, training forecast models from S3 may serve as a conservative ‘boundary’

case, thereby deliberately introducing risk aversion when optimising the recovery decision itself.

Regarding the techniques, the base scenario s11 clearly gives two very different loss minima

at d* =5 for random defaults versus d* = 13 for Markovian defaults. Incidentally, the latter also
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Fi1G. 5.4: Loss rates across recovery thresholds d for measure g1 on the full sample
S across various forecasting scenarios, using the random defaults technique with
k ~ Exp(A) truncation, and using the Markovian defaults technique independently.
Solid lines indicate base scenarios wherein both optimisation and training forecasts
use the same sample. Zoomed plot and encircled points show global minima for
each loss curve, also bracketed in the legend.

yielded lower loss rates at less stringent (higher) values of d * in general, when compared to
those given by random defaults across all scenarios s;;. Moreover, the difference between d*
yielded by each technique becomes smaller as the forecast scenario worsens. In fact, Markovian
defaults for s3; gives a loss curve that is similarly shaped to those produced by random defaults
irrespective of forecast scenario, which suggests some connection. Consider that the underlying
transition matrix in Table 5.2 is generally much more transient than the one in Table 5.1, with
far greater conditional probabilities of transiting to worse states. As the possibility of curing back
to a better state declines, the Markovian technique increasingly resembles the simpler technique
in effect. The latter provides inherently less realistic forecasts since it deliberately ignores curing,
which means the larger cash flows associated with curing events are not generated. Since the
Markovian forecasts are demonstrably more accurate, they are therefore clearly preferable,

though the random forecasts are kept for expositional purposes, including model risk.
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F1G. 5.5: Loss rates across recovery thresholds d for measure g1 on the delinquents
sample Sy across various forecasting scenarios, using the random defaults tech-
nique with 2 ~ Exp(1) truncation, and using the Markovian defaults technique
independently. Graphical formatting follows that of Fig. 5.4.

The same trends hold true in Figs. 5.5-5.6 when optimising on samples S and S3 instead,
i.e., scenarios from the second/third columns in Table 5.4. As the main result, optima are still
obtained (though at different locations) across all techniques and forecast scenarios, thereby
demonstrating the LROD-procedure’s sensitivity to the inherent risk profile of a portfolio. In
particular, optimising across increasingly riskier portfolios (S; — S2 — S3) remains viable,
even if the loss curves become somewhat vertically compressed relative to lower-risk samples.
Moreover, d* seem to increase across riskier samples. The base scenarios {s11,522,833}, i.e., the
diagonal in Table 5.4, demonstrate this phenomenon with loss minima found at d* = {5,10,35} for
random defaults and d* = {13,23,35} for Markovian defaults. That said, the recoveries realised
from selling the underlying asset largely explains this phenomenon. Since these recoveries are
generally recognised only at the write-off point after a typically long workout period, the suddenly
large receipt will dramatically decrease the delinquency level at the last period. Therefore, when

optimising on S3, it is indeed statistically better to wait strategically and collect some of these
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Fi1G. 5.6: Loss rates across recovery thresholds d for measure g1 on the write-offs
sample S3 across various forecasting scenarios, using the random defaults tech-
nique with £ ~ Weibull(A, ¢p) truncation, and using the Markovian defaults tech-
nique independently. Graphical formatting follows that of Fig. 5.4.

large cash flows. This is evidenced by the relatively high threshold d* = 35, which indicates the
optimal ending point of legal proceedings. The fact that both loss minima and their thresholds

change when optimising on S3 — S9 — S; merely attests to the dilution of written-off cases as a
proportion of the overall portfolio.

While the CD-measure g1 is primarily used in this study, loss-optimality was also found for
the other two measures g9 and g3 across the experimental setup for both forecasting techniques.
Interestingly, the d* yielded by g9 and g3 are much less varied than those yielded by g1, which
suggests these measures are not as sensitive as g1 to the choice of technique, risk level, or
forecast scenario. Specifically, the loss minima for g9 and g3 occur within the threshold ranges
[1.2,1.9], [1.3,2.3], and [3.2,6] when optimising respectively across {S1,S2,S3}. However, the loss
minima themselves are greater than those yielded by g1 with the percentage difference thereof
averaging at 3.6% (excluding S3). Evidently, the LROD-procedure suggests that the g{-measure is

objectively the best delinquency measure for signalling loan recovery — at least for this particular
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mortgage portfolio.

5.3.2 Monte Carlo simulations for analysing the variance of optima
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F1G.5.7: Average loss rates (solid lines) across thresholds d for measure g1, estimated
from n = 500 Monte Carlo trials, for scenario s;;1. Forecasts are iteratively and
independently made using the random defaults technique with &£ ~ Exp(1) trunca-
tion, and the Markovian defaults technique. The averages are accompanied by a
99% shaded confidence band with error bars. Zoomed plots show global minima for
each loss curve, also bracketed in the legend. Box-and-whiskers mini-plots within
the zoomed plots summarise the overlaid loss estimates at each d.

Given that forecast receipts are inherently probabilistic, their subsequent use within a
delinquency measure injects uncertainty into the latter’s output as well as into the optimisation
itself. Therefore, any loss minimum that is found at a certain threshold may, in fact, be spurious.
As an example, a random but systemic perturbation at some time point in the underlying forecasts
can produce an alternative minimum at an entirely different threshold, which has implications for
the overall precision of the optimisation. Confidence in this supposed minimum can be enhanced

by conducting a variance study on the loss curve. One approach to this problem is to produce
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multiple sets of forecasts of the portfolio’s future cash flows using simple Monte Carlo simulation
and the laws of large numbers. Each iteration thereof will have its own independent loss curve
using a particular set of random forecasts generated from a specific technique. As an example,
consider n such Monte Carlo trials, thereby resulting in n loss rate estimates at each threshold d,
from which a sample mean pg is calculated at each d. The corresponding sample variance 33 is
estimated, which is finally used in constructing a standard 99% confidence interval for the mean
as g +2.58s4/y/n.

Monte Carlo simulation is illustrated in Fig. 5.7 for both forecasting techniques using the
s11 base scenario after 500 runs. The forecasts yielded by the simpler technique appear to be
quite robust since the resulting loss rates had relatively little variation and retained the overall
shape of the original loss curve in Fig. 5.4. These results, particularly the difference in the widths
of the confidence intervals per technique, attest to the bias-variance trade-off phenomenon in
statistical learning, as the model’s complexity varies. More specifically, the simpler technique
with its relatively invariant forecasts is also much less accurate than the Markovian technique.
Reassuringly, the lowest sample mean still occurs at d* =5 as it did previously. However, the
same cannot be said for the Markovian forecasts since the minimum now occurs at d* = 10 (down
from the previous d* = 13). While the overall shape of the Markovian loss curve is still the same,
the loss rate estimates exhibit greater variance than those of the simpler technique. Moreover,
the loss curve is relatively flat in the region near d* = 10 (as in Fig. 5.4), which helps explains

the ‘ease’ at which the minimum shifted in this particular scenario.

Conducting these Monte Carlo simulations clearly refines the LROD-procedure one step
further by controlling for the uncertainty within forecasts. That said, it is not necessarily true
that the average minimum loss will always occur at a different threshold, as it did in Fig. 5.7.
In fact, the average minima remained at the same thresholds as they did in Figs. 5.5-5.6, when
running these Monte Carlo simulations for the other base scenarios sgg and s33 in Fig. 5.8,
regardless of forecasting technique. Moreover, the general shape of each loss curve in Fig. 5.8
remained the same, all of which provides combined assurance on the precision of the optimisation
results. Lastly, the practitioner may consider a smaller and more focused range of thresholds,
especially within the general region of optima, when conducting these Monte Carlo simulations
in practice. In contrast, a larger range is chosen in this study simply to demonstrate the LROD-

procedure (and its viability) as a "proof of concept".
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forecasts provided in both panels. Graphical formatting follows that of Fig. 5.7.
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5.4 Concluding remarks

The timing of the recovery decision is empirically illustrated as a delinquency-based optimisation
problem, such that loans are forsaken neither too early nor too late, if at all. This empiricism,
however, has to contend with the non-trivial practicalities of a real-world portfolio, most notably
that of extensive right-censoring wherein most loan accounts have not yet reached their full
contractual maturity. The LROD-procedure, previously presented in section 3.4, only caters for
‘completed’ uncensored loan portfolios, which poses an additional challenge®. While an uncensored
portfolio would be ideal, the paucity of both data and lenders willing to avail sufficiently rich
data makes this difficult. Moreover, most portfolios are actively grown by banks, which causes
right-censoring and implies that recovery optimisation will likely remain problematic in practice.
A more feasible remedy is demonstrated wherein available data is first used to forecast the
residual cash flows of each account up to its contractual maturity. This step ‘completes’ the
portfolio and enables the practical use of the LROD-procedure for optimising the bank’s recovery

decision.

As a secondary contribution, two forecasting techniques are proposed, parametrised, and
applied on the portfolio before optimisation. This includes a simple probabilistic technique and a
more sophisticated eight-state Markov chain, both of which are subsequently used in forecasting
cash flows independently. However, the manner in which receipts are forecast will greatly affect
the portfolio’s subsequent credit risk profile, which influences the timing of loan recovery at which
the minimum loss is subsequently attained. Accordingly, forecasts are artificially differentiated
by training them from different account subsets (or samples), where each sample contains a
progressively greater proportion of delinquent accounts by design. Effectively, each sample
approximates a different risk composition typically found in reality, e.g., mortgages vs. unsecured
loans, as if each sample is a stand-alone portfolio. Furthermore, the sample that is optimised may
differ from the sample from which forecasts are trained. This simulates the reality of a portfolio’s
historical risk composition changing in the future by forecasting receipts accordingly, while also
making more efficient use of data. Additionally, this setup aligns with IFRS 9 by using various

macroeconomic scenarios when estimating expected losses.

Within each scenario of this experimental setup, a so-called ‘Goldilocks’-region is found that
contains an ideal delinquency threshold at which the portfolio loss is minimised. This setup
demonstrates that the LROD-procedure is sensitive to the historical risk profile of a portfolio.
Moreover, riskier forecasts yield smaller (or more stringent) optimal delinquency thresholds,
which agrees intuitively with cutting losses sooner rather than later as risk expectations de-
teriorate. Another contribution is that of a Monte Carlo-based refinement to the procedure that

can provide additional assurance on the stability of optima, especially given the uncertainty

2Ignoring the censoring is ill-advised since it leads to unusable results, see Appendix A.3
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underlying all forecasts. To this point, the choice of forecasting technique itself affects recovery
optimisation, which is demonstrated by the significant differences between each technique’s
optima. By design, the Markovian technique is much more realistic since it allows for curing
backwards to lower delinquency levels, which affects the size of forecasts. Conducting a 5-fold
cross-validation further verified the superior quality of Markovian forecasts. However, the sim-
pler technique is retained for expositional purposes since it clearly demonstrates the dangers of
model risk when forecasting. That said, an ensemble of forecasting techniques suggests that a
meta-learning approach may be viable, which can certainly be further examined in future work.
For example, optima can be averaged across technique and forecast scenario using a weighting
scheme of sorts. Besides optimisation, there is also practical value for developing these forecast

models within an IFRS 9-compliant loss provisioning context.

Regarding limitations, historical cash flows are surely affected by past collection strategies
(and their subsequent success or failure) that were employed by the bank at the time. Therefore,
training a forecast model from the same data carries the unavoidable risk of embedding the
effects of previous strategies into the optimisation, as additional data ‘noise’. Future research can
perhaps focus on controlling for the bank’s strategic influence on these cash flows over time when
forecasting receipts. Another avenue of future study is to explore a finer-grained segmentation
scheme during the optimisation step. Partitioning data into three increasingly riskier samples
correctly assumes homogeneity within each sample. However, recovery decision times can surely
be further optimised within certain segments of the portfolio, instead of yielding a portfolio-wide
criterion. This may attenuate the LROD-procedure further to the idiosyncrasies of a portfolio,
though one will have balance greater segmentation against too little data within a segment.
Furthermore, future work can certainly explore a less censored (and therefore richer) portfolio
of shorter-term loans, perhaps from different epochs of time. Doing so can reduce the necessary
forecasting extent as well as improve the forecasting ability. Lastly, future studies can expand
upon the current loss model by incorporating dynamic cost components more explicitly, e.g.,
funding costs. The static loss rates rg and r4 may be converted into proper LGD-models instead
such that loss rates are estimated from the time of entering the (g,d)-default state. Pursuing
this particular avenue will likely intersect with the literature on credit risk modelling and IFRS

9, which can enhance model sophistication given that the field itself is currently in vogue.
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CHAPTER

CONCLUSION

ankers and merchants have plied their trades for millennia in what is ostensibly a

commercial symbiosis. The tradesman’s wealth invariably gravitates to the security and

convenience of the banker’s vaults, which initiates the cycle of trust. In fact, the banker’s
integrity is what attracts deposits in the first place; exemplified by the ancient temples and their
divine sanctity, the state-owned grain banks spread across Ptolemaic Egypt, the Bank of Delos
within Apollo’s temple, and the Catholic castles of the Knights Templar. With capital pooled
together, the banker is undoubtedly better placed to facilitate transactions amongst his depositors.
Merchants soon trusted their bankers to conduct exchanges amongst the many currencies in
which they traded. However, flourishing trade also increases the overall demand for money, which
is precisely when bankers transform stored wealth into loan assets, thereby easing the money
demand in what is perhaps their greatest feat. It is this last role that establishes the banker
more as a catalyst for trade than its enabler, e.g., granting business loans for risky sea-faring
ventures. Lending completes the cycle of trust wherein credit flows freely between depositor and
banker and again between bank and borrower. This symbiosis continues in perpetuum unless

trust erodes sufficiently between any two agents in this triad.

Although the history of banking dates back to antiquity, the use of statistical and mathemat-
ical models in driving decision-making has only entered the discourse during the last few decades.
Credit risk still poses the single largest source of bank risk, especially since the credit losses from
even a few defaulting borrowers may trigger a liquidity crisis — or even an outright bank failure.
Accordingly, reserving capital and raising write-off provisions are perhaps the greatest examples

of model-driven decision-making in modern-day banking. Another example is that of application
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scorecards, which have revolutionised and largely automated the credit granting decision in the
1960s. This advent has both spurred and was made necessary by the extreme growth of consumer
credit since that time. The recent introduction of IFRS 9 requires even greater sophistication
when modelling expected losses, which only further embeds the use of statistical models beyond

the level already required by Basel II.

The breakdown of trust between bank and borrower has remained a largely unavoidable
risk, despite the increasing prevalence of statistical models. While there are certainly model-
based strategies for managing credit risk, most of these strategies arguably depend on first
tolerating a certain level of eroded trust before their activation. It is at this level (or threshold)
at which confidence in loan repayment is supposedly lost entirely. As a consequence, the bank
renounces the relationship and proceeds with debt recovery, presumably safe in its assumption
that retaining the impaired loan asset any longer will inevitably lead to deeper delinquency.
The idea of reaching a so-called "point of no return" is believed to be the historical basis of a
"default definition", predating the prescripts of Basel II and most related regulations. However, it
is argued that the various contexts and jurisdictions in which ‘default’ is used (or decreed) today
has made the very concept thereof utterly incoherent in trying to serve so many ‘masters’ at once.
Even if the ‘default’ point becomes uniform across all contexts and jurisdictions, the optimality

thereof remains questionable and without objective evidence.

A more fundamental meaning of ‘default’ is explored in this thesis; posited as the risk-based
"point of no return" beyond which loan recovery becomes sub-optimal, thereby answering Question
1 in part. Any impairment in a borrower’s repayment ability may either persist indefinitely or
simply turn out to be a momentary weakness. Deciding exactly where this dichotomy fractures,
however, is a non-trivial decision. On the one hand, sufficient patience may afford some distressed
borrowers enough time to recover and ultimately to resume their repayments. However, too much
patience may prove naive and costly, especially since the inevitably greater arrears will require
more capital, thereby crowding out new loans. To specify a ‘default’ threshold therefore serves as
a margin of tolerance towards accumulating arrears. In this study, the admittedly abstract notion
of trust and its subsequent erosion is first made concrete using a mathematical delinquency
measure g. In this regard (and that of Question 3), a few measures are re-examined in this
work, followed by presenting three refined measures. Secondly, the ‘default’ point is reinterpreted
as simply exceeding a variable threshold d upon the domain of g, which better aligns with
the rather probabilistic idea of breaching the aforementioned "point of no return". As such, a
novel optimisation procedure (LROD) is contributed that yields the ideal time (or delinquency

threshold) for recovering debt, thereby answering Question 2.

The LROD-procedure weighs two competing interests against each other: extracting the

residual revenue from troubled loans versus the risk-adjusted cost thereof. Each distinct (g,d)-
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pair serves as a candidate collection policy that carries a "net cost" if applied to a portfolio.
Keeping the choice of g constant, the procedure iterates across values of d (or ‘policies’) and
calculates the overall portfolio loss of each d. Doing so produces a loss curve for each g, which is
then inspected for a certain threshold at which the lowest loss occurs, thereby concluding the
optimisation. By way of its formulation, the LROD-procedure indirectly facilitates the objective
comparison and evaluation of competing delinquency measures, which satisfies Question 4.
Alternative measures may better suit a given portfolio’s recovery optimisation, or even enhance
risk modelling more broadly. However, establishing the best measure conclusively would be

data-intensive and costly in its own right, and therefore left as future work.

The LROD-procedure is tested by conducting a comprehensive computational study to exam-
ine its optimisation ability. To this end, a simulation-based system (or testbed) is devised wherein
loan portfolios are meaningfully generated by systematically varying the underlying parameters.
Using this testbed, the different types of portfolios wherein threshold optima are found can be
broadly determined across the entire credit risk spectrum, in line with Question 5. In fact, the
results demonstrate that optimising the recovery decision’s timing is viable across most levels of
default risk!, though to different degrees. Furthermore, systematic defaults? occurring during an
economic downturn are shown to affect recovery optimisation; itself affected by the extent of a
portfolio’s loss experience (or LGD). Lastly, recovery optimisation is explored on more turbulent
portfolios wherein borrowers repay intermittently, thereby causing episodic delinquency. In this
case, postponing loan recovery in response to greater turbulence is demonstrably the strategic
optimum (though only up to a point) since it affords greater scope to collect upon sporadic

repayments.

Real-world loan portfolios are often right-censored in that many loan accounts have not
yet reached contractual maturity. This is unsurprising given that most portfolios are being
actively grown by banks, thereby causing ‘perpetual’ right-censoring (unless loan origination
stops entirely). However, the LROD-procedure itself was designed for ‘completed’ portfolios and
not treating the inherent right-censoring yields unintuitive results, as explored in section A.3.
Furthermore, guiding subsequent policy design based on such flawed results is downright dan-
gerous. As a remedy, a forecasting step is introduced into the procedure, wherein the residual
cash flows of each censored loan are first forecast up to its contractual maturity. Accordingly, this
step enables the practical and feasible application of the LROD-procedure on a now-completed

portfolio, thereby answering Question 6.

Armed with forecasts trained from real-world data, the results show that riskier forecasts

1In this case, default risk is measured by the payment probability b, as defined in section 4.1.
2The notion of (£, g)-truncation approximates the idea of systematic defaults in the testbed; see section 4.1.
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lead to earlier recovery times® during optimisation. This finding agrees intuitively with cutting
losses sooner rather than later, especially when risk expectations deteriorate. Another factor
that affects the optimisation is that of choosing (and calibrating) a forecasting technique. A
more sophisticated technique (like the Markovian method) produces more accurate forecasts,
thereby increasing the credibility of the LROD-procedure’s optima. However, having compared
a few forecasting techniques by design, an ensemble of forecasting techniques may actually be
more useful than a single technique; a worthy avenue of future research. Regarding Question
7, the factors that influence optimisation include the portfolio’s historical risk composition, its
subsequent forecast (i.e., macroeconomic or other strategic factors), and the level of modelling
sophistication. Lastly, the uncertainty underlying any forecast may destabilise subsequent
threshold optima. As a solution (that satisfies Question 7), the censored cash flows are repeatedly
forecast in an additional Monte Carlo-based step in the LROD-procedure. This approach allows
one to analyse the variance of both forecasts and resulting optima, thereby inspiring greater

confidence.

The thesis of the recovery decision and its timing is successfully demonstrated as a nonlinear
optimisation problem, both theoretically and empirically. Balancing risk against reward is at
the core of the LROD-procedure such that loans are forsaken neither too early nor too late, if
at all. This study has significant implications for the policy design of most banks, especially in
tweaking their collection policies. In particular, the quantitative aspects thereof can be better
informed using the LROD-procedure than relying on arbitrary discretion alone. Moreover, related
business strategies and certain default-driven models (e.g., application credit scorecards, pricing
and collection models) can be similarly enhanced. Another more fundamental implication is that
a default definition’s quantum (e.g., 90+ DPD) can itself be optimised within capital modelling or
broader portfolio management. That said, optimising ‘default’ in this way undoubtedly raises
legal questions about the contractual design of credit agreements, not to mention the existing
regulatory prescriptions relating to ‘default’. However, there remains little scientific evidence
for the supposed optimality of using 90+ DPD as a default criterion in the first place. In this
regard, my work attempts to bridge the gap in literature between credit risk modelling and
collection optimisation. Using the LROD-procedure may become standard practice in time, which
is certainly preferable to regulators prescribing ‘default’ by fiat alone. In turn, optimising a
definition in this way would likely have a tremendous impact on credit risk modelling and its

improvement.

Regarding limitations, the LROD-procedure currently assumes homogeneity in that a single
threshold is sought that serves as a portfolio-wide criterion. This assumption may be relaxed
in future work by exploring a simple segmentation scheme, thereby yielding a segment-specific

optimised threshold. However, finer segmentation must be balanced against having too little

3When slotting in riskier forecasts, the optimised thresholds decreased in value; see subsection 5.3.1.
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data (as a result) when attenuating the procedure to a portfolio. Furthermore, one can refine the
procedure’s current loss model by converting its static components into dynamic probabilistic
models, conditioned on a given (g,d)-default state, e.g., converting the static loss rate rg into a
model rg(g,d). Calculating the realised LGD requires that cash flows be observed from a certain
starting point, which will naturally vary with the value of d. Regarding calibration, a future
study can further validate the LROD-procedure by exploring a less censored portfolio of shorter-
term loans. While doing so will surely lessen the forecasting burden, it will not resolve another
challenge, i.e., controlling for a bank’s own influence in past data. Since historical cash flows
are inevitably affected by past collection strategies, any model trained on this data will likely
embed the effects thereof into the subsequent optimisation, at least to some degree. Therefore,
future work can devise and examine remedies for what basically amounts to a bit of data noise or
‘contamination’. Lastly, future researchers can compare the output from the LROD-procedure to
that of a typical roll rate analysis. However, the latter cannot directly compete with the former

given the considerable differences in sophistication.

In conclusion, there is no doubt that the erosion of trust will remain fixed in the banker’s
mind. As the economy waxes and wanes over its many cycles, so too will its influence on the
borrower’s disposable income; itself subject to other life-altering events. The borrower’s measured
ability to service his debt cannot be an absolute nor can it be time-invariant. Moreover, future
defaults may soon be predicted even better, given the current era of machine learning and overall
greater sophistication in risk modelling. For these reasons, isolating the ideal default point every
so often should henceforth be structured as a modelling exercise in its own right, especially
when modelling credit risk. Such an exercise certainly fits the banker’s supposed prerogative in

defining what is essentially a dynamic and context-sensitive ‘true’ default state.
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APPENDIX

ANCILLARY MATERIAL ON VARIOUS UNRELATED SUBTOPICS

he following sections are ancillary to this study. This includes an illustration of using
Markov theory in base loss reservation in section A.1. A few delinquency measures are
compared in section A.2 using a simple two-loan case study. The dangers of not treating
a real-world portfolio for right-censoring during recovery optimisation are demonstrated in
section A.3. In section A.4, various statistical distributions are fit to the maximum delinquency

observed at the account-level using a real-world portfolio.

A.1 An example of loss reservation using Markov theory

The theorems developed in Cyert et al. (1962) using Markov theory can be simplistically applied
to loss reservation as an illustration of using a Markov chain in practice. In a nutshell, loss
reservation involves calculating the relevant absorption probability and applying it to a balance
vector, which is then modified by adding/subtracting a few standard deviations as needed. This
is achieved firstly by re-ordering the states in the transition matrix P (as estimated in Eq. 3.3)
so that the two absorbing states are put first, i.e., the settled state 0 and the write-off state
n, followed by the remaining transient delinquency states 0,1,...,n —1. As a simple though

unrealistic example, suppose n =2 with the correspondingly re-ordered matrix P given as

0 2 0 1

0[1 0 0 O

210 1 0 0
P= (A1)

0].2 0 6 .2

114 2 3 .1
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Following Kemeny-Snell notation, the matrix P can be partitioned as

I|0
R

where I is the 2 x 2 identity matrix; O is a 2 x n zero matrix; R is an n x 2 absorption matrix; and

) (A.2)

Q is an n x n matrix of the remaining transient states. The inverted matrix N = (1-Q)! is the
so-called fundamental matrix of the absorbing Markov chain. Finally, the entries of the resulting
n x 2 matrix NR, yield the absorption probabilities into either state 0 or n. Using the example

matrix P from Eq. A.1, the corresponding partition matrices are

2 0 6 2 -2] " [3 .67
R= , Q= , and N=(I-Q)'= = : (A.3)
4 .2 31 -3 .9 1 1.33
The absorption probabilities in NR are then calculated as
3 67|12 0 .87 .13
NR = = . (A.4)
1 133[|.4 2 73 .27

If B =(By,B1,...,B,-1) represents a balance vector of balances at time ¢ classified across all
0,1,...,n—1 transient delinquency states, then Cyert’s first theorem states that the 2-component
vector BN R will output the expected settled and write-off amounts respectively. As an example,
suppose that g = [70 30] is the balance vector observed at ¢ for the transient states By and Bj,
in which case, BNR will yield 82.67 and 17.33 as the expected settled and write-off amounts
respectively. Furthermore, if b is the sum of all elements in § and g’ = % P is the probability
vector denoting the fraction of balances observed across all transient delinquency states, then
Cyert’s first theorem caters for the variance as follows. Let A be a two-component vector that

gives the variances of settlements and write-offs (per example), which is formally defined as
A=b(f'NR-('NR)y,), (A.5)

where (e),, is a matrix operation that outputs the square of each element. If g’ = [.7 .3] as an

example, then the corresponding variances using Eq. A.5 are calculated as

i )

:100([.8267 .1733]—([.8267 .1733]) )
=[14.33 14.33]. (A.6)

.87 .13
73 .27

.87 .13

AleO([.7 .3] 73 o7

sq

This particular theorem allows for customising the loss reserve beyond its expectation at 17.33 in
a simple way, e.g., raising it by one standard deviation v/14.33 =3.79 as 17.33+3.79 = 21.12.
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A.2. ILLUSTRATING THREE DELINQUENCY MEASURES: A CASE STUDY

Small Loan Large Loan Small Loan Large Loan

Loan age History 1 History 1 History 2 History 2
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 265 4,000 265 4,000
4 795 12,000 397.50 6,000
5 300 4,528.30 132.50 2,000
6 0 0 0 0

7 0 0 0 0

8 265 4,000 265 4,000
9 795 12,000 397.50 6,000
10 300 4,528.30 132.50 2,000
11 0 0 0 0

12 0 0 0 0

13 265 4,000 265 4,000
14 795 12,000 397.50 6,000
15 300 4,528.30 132.50 2,000
16 0 0 0 0

17 0 0 0 0

18 265 4,000 265 4,000
19 795 12,000 397.50 6,000
20 300 4,528.30 132.50 2,000

TABLE A.1: Hypothetical repayment histories (denominated in ZAR) for two loan
accounts: a case study.

A.2 Illustrating three delinquency measures: a case study

Consider two 20-month amortising loans with the same interest rate as in Sah (2015), but with
significantly different instalments: a small loan and a large loan. Assume a fixed instalment
of ZAR 265 (with principal ZAR 5,000) and ZAR 4,000 (with principal ZAR 75,471.54), both
using a continuously compounded interest rate 6 = 6.7% expressed per annum. Further assume
that the receipt elements R{,Rg9,...,R7 coinciding with loan periods 1,2,...,T of each loan
account are generated by one of two possible vectors containing a specific cyclic pattern, with
I € {265,4000} denoting the instalment of each loan: [00 I 3() 1.13()] for a particular receipt
history; [00 I 1.5(1) 0.5()] for another particular receipt history. Applying these two patterns
repeatedly will give two hypothetical receipt histories for each loan in populating the elements of
R, as detailed in Table A.1.

Delinquency is then calculated using a few distinct delinquency measures on these two loans
as a case study. Fig. A.1 illustrates the g{-measure using a repayment ratio z = 90% that was

set within reason. Clearly, the g;-measure cannot differentiate in delinquency between loans
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of different sizes but with proportionally equal receipts, as evidenced by the curves of both the
small and large loan being equal to each other. Moreover, g1 cannot account for the effects of
overpayments when assessing delinquency beyond its zero-valued lower bound, i.e., amounts
paid in advance. Lastly, the impact of unpaid interest amounts when delinquent is completely
disregarded insofar that g; considers the incurred delinquency to be independent of its timing
within the life of the loan. From a cash flow perspective of an amortising loan, non-payment at
larger t, i.e., closer to contractual maturity, should reasonably be considered with greater urgency
than at smaller ¢. The rationale for this is that there is simply less contractual time available to

repay any accumulated arrears, without restructuring such a loan.
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Fi1G. A.1: The g1-measure for a two-loan case study (different loan sizes) with two par-
ticular receipt histories over time, as detailed in Table A.1. A reasonable repayment
ratio threshold of z =90% is used for illustration purposes.

To this last point, the inability of g1 to capture the timing of delinquency relative to residual
maturity is perhaps best seen when studying Fig. A.2. Specifically, the go-measure is showcased
using the same two-loan setup, clearly showing that go can assign greater (or lesser) delinquency-
values than g; as their particular receipt patterns manifest cyclically over loan life t — T' (or
t — 0). This apparent sensitivity of the go-measure to loan life seems sensible when considering
it from a cash flow perspective. However, the relative insensitivity of delinquency to earlier loan
life may be naive from a risk perspective. Whether this sensitivity is either a boon or a distinct
disadvantage is unknown, especially in the absence of a comparative framework. Factors that

may be considered within such a framework include loan contract variables (e.g., loan amount, or
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interest rate), portfolio and borrower characteristics, and the macroeconomic reality.
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FiGg. A.2: The go-measure for a two-loan case study (different loan sizes) with two
particular receipt histories over time, as detailed in Table A.1.

In addition, the go-measure accounts for the effects of overpayments beyond the case of
zero-valued arrears, which is evident whenever go(t) < 1. Overpayment itself, i.e., R; > I; at any
t €[0,T], may very well be considered positively in that the borrower has beaten the monthly
expectation, which leaves the bank with marginally more cash and with a slightly better liquidity
position. On the other hand, overpayment can become a profit-related concern since habitual
overpayment can cause overall loan life to become shortened. This will in turn inhibit the force of
interest and therefore compromise profit margins. Regardless, the go-measure incorporates both
under— and overpayments as apparent polar opposites in its assessment of delinquency, which

seems more flexible when compared to the g;-measure.

Despite these improvements over g1, the go-measure still cannot differentiate in delinquency
between the proportionally equal receipts of the small and the large loan. This is clear from
Fig. A.2 where go(¢) of either loan is equal to each other at every time period ¢. On the other
hand, the g3-measure remedies this and is sensitive to loan principal sizes when assessing
delinquency. This is evident in Fig. A.3 using the first! receipt history across three sensitivities
s €[0%;50%;100%], wherein g3(¢) differs at every period ¢, for both loan sizes. This result strongly

suggests that g3 can uniquely pivot the delinquency assessment itself in accordance to the

1The second receipt history is excluded since it has very similar results.
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severity of the unpaid (or underpaid) instalment, relative to other instalments. Amongst other

factors, the disruption in cash flow of a particular loan is therefore assessed on its magnitude
relative to other differently-sized loans.
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The gs-measure for a two-loan case study (different loan sizes) using the
first receipt history as detailed in Table A.1, for sensitivities s € [0;50%;100%].

On interpretation, the g;-measure is best interpreted as the z-weighted number of payments
in arrears, as weighed by the risk appetite of a lender towards accrued arrears. The go-measure

is the extent at which the expected duration is increased (or penalised/contorted). As a simple
example, the value go(#) = 1.5 at a particular ¢ represents a 50% penalty in the expected time to
recover the loan capital originally lent by the bank, accounting for the residual maturity, arrears
balance, and the force of interest. Furthermore, the gs-measure carries a very similar meaning
in its output, albeit merely nuanced/inflated given a discretionary sensitivity s towards loan
principal differences. Lastly, it is quite clear that these delinquency measures g1 vs. gg and g3
represent different things and even operate on different measurement scales (interval vs. ratio

scales respectively). As such, their measurements cannot be compared directly to one another,
especially so at the account-level, without becoming meaningless.
A.3 Failing to forecast before recovery time optimisation

As an illustration, the LROD-procedure devised in section 3.4 is applied on a real-world loan

portfolio that is left untreated. This is to say that the receipt vector R = [Rl,Rz, ... ,Rto] only
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contains elements as observed from data up to the most recent time point ¢y < ¢.. The remaining
future elements ¢1,...,¢, are unobservable and deliberately ignored in this illustration to demon-
strate the effect of foregoing any forecasting on the results of the LROD-procedure. Furthermore,
the balances of each account are observed at relevant time periods and simply multiplied with a
static loss rate [, € [0, 1], as a simpler loss model. More specifically, the most recent balance at
time ¢ is used for a (g, d)-performing account whilst the balance at the default time 7 < ¢( is used
for a (g,d)-defaulting account, as signalled by a particular (g,d)-configuration. In both cases,
the observed balance is simply discounted back to time ¢ = 1 (loan origination) using the same
7% risk-free rate. Selecting a range of loss rates at will, the LROD-procedure is then iteratively
applied on the entire portfolio. The resulting loss curves are presented in Fig. A.4 using the

CD-measure g1. There are no significant differences in the shapes of loss curves for loss rates

exceeding 50%.
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F1Gg. A.4: Total losses (expressed as a % of the summed principals) across default
thresholds d for the CD-measure g1, using a range of static loss rates [, € [0,1]
and an untreated real-world loan portfolio.

No global minima in losses exist at any particular threshold, regardless of the chosen loss

rate. Instead, all losses tend toward a certain asymptote that is influenced by the loss rate,
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which renders the optimisation of the recovery threshold a moot point. Moreover, the resulting
loss curves suggest that one should simply ignore any accrued delinquency, except for very low
thresholds d < 2, which coincide with the greatest losses. Although unusual, consider that the
majority of the portfolio’s receipts are still pending. The LROD-procedure’s particular loss model
recognises this and logically suggests never to recover a single account. Regardless, ignoring
accrued delinquency at large is intuitively false and ill-advised for a credit risk-based business
like a bank. Instead, this result rather attests to the breakdown of the LROD-procedure itself

when foregoing the necessary forecasting of a loan portfolio’s cash flows.

A4 Fitting statistical distributions to the truncation

parameter &

In calibrating the random defaults technique to forecast cash flows, a truncation effect simulates
the reality that some accounts will simply never resume payment. This is achieved when the
forecast receipts are zero-valued after a certain point ¢, coinciding with a certain .-threshold
in measured delinquency. In estimating this & truncation parameter, the maximum observed
delinquency (using g1) per account is calculated with the resulting empirical distributions of these
maxima shown in Fig. 5.3, respective to each sample S (delinquents) and Sg (write-offs). Several
candidate statistical distributions are then fit using maximum likelihood on each respective
sample, with the fitted probability density function overlaid on the histogram, as shown in

Fig. A.5 for some of these candidates.

In selecting the best fit, both Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit
tests are conducted for each candidate distribution against the standard 5% significance level.
However, all of the null hypotheses are rejected for both Sg and Ss3, presumably due to the
heavily right-skewed distributions of maxima in both cases. Secondly, the Akaike Information
Criterion (AIC) reveals that the Dagum, log-normal, Pareto, Weibull, exponential, and gamma
distributions were amongst the best fitting candidates for Sg. Though the Dagum distribution
had the best AIC, the exponential distribution is chosen owing to its simplicity and its somewhat
greater popularity in statistical literature. Furthermore, the exponential distribution is strictly
decreasing for x, which is deemed more appropriate given the histogram’s shape. Similarly, the
AIC for S3 suggests that the Dagum, Burr (Type 12), Weibull, Gumbel, Gamma, and Logistic
distributions were the better-fitting candidates. Of these, the Weibull distribution is chosen since
it best approximates the histogram visually without lending too much credence to the left-tail

though still yielding a sufficiently heavy right-tail.

C=y===09
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