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ABSTRACT

The point at which a loan is in default is posited to be a portfolio-specific, probab-
ilistic, and risk-based "point of no return" beyond which loan collection becomes
sub-optimal if pursued any further. A method is presented for finding a delin-

quency threshold at which the overall loss of a given portfolio is minimised, i.e., loans
are forsaken neither too early nor too late. This method, called the Loss-based Recov-
ery Optimisation across Delinquency (LROD) procedure, incorporates the time value of
money, risk-adjusted costs, and the fundamental trade-off between accumulating arrears
versus forsaking future interest.

The procedure is demonstrated across a range of portfolio compositions and credit
risk scenarios using a simulation-based testbed. The computational results show that
threshold optima can exist across all reasonable values of both the payment probability
(default risk) and the loss rate (loan collateral). Furthermore, the procedure reacts
positively to portfolios afflicted by either systematic defaults (due to economic downturns)
or episodic delinquency (cycles of curing and re-defaulting).

For real-world loans, which are typically right-censored, a forecasting step is proposed
during which the remaining cash flows of each censored account are first ‘completed’
before applying the LROD-procedure. This approach is illustrated using residential
mortgage data from a large South African bank. The empirical results show that riskier
scenario-based forecasts of credit risk yield smaller threshold optima. Furthermore,
censored cash flows are iteratively forecast in an additional Monte Carlo-based step,
thereby analysing the stability of threshold optima yielded by the procedure.

In conclusion, this work can enhance relevant business strategies, improve related
modelling, and help revise the policy design of most banks, especially in tweaking the
quantitative aspects of collection policies.
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1
INTRODUCTION

The practice of borrowing and lending has existed for over 4,000 years, having started

with a farmer borrowing seed-grain and promising to repay from his future harvest

with interest. This simple transaction, written on a Sumarian clay tablet, represents

the first-ever codification of trust between two parties. The lender assumes that the farmer will

honour his repayment obligation at some future date, effectively exchanging a modicum of ‘trust’

for a sum of money. In fact, the very word credit is derived from the Latin word creditum, meaning

"to have trusted". Unsurprisingly then, the biggest risk for the lender is that of the borrower not

honouring his obligation, which is formally known as credit risk and explained in Van Gestel and

Baesens (2009, pp. 24–29) and Thomas (2009a, pp. 1). Another aspect of any credit agreement,

as discussed in Finlay (2010, pp. 31–32), is that of time and the uncertainty that it brings to

repayment in general. Beyond repayment, the topic of trust (and its erosion) is deeply embedded

across many banking functions, starting with exchanging deposited commodities for some kind

of receipt that is trusted to be equal in value, e.g., the modern-day ‘promissory’ bank note. As

trade flourished during peace-time (before inevitably crashing again during wars), so too did

the need increase for these custodian banks and their services, as I shall examine in section 2.1

and section 2.3. Increased trade almost surely brings with it a multitude of currencies to be

exchanged, safeguarded, and reissued as loans; all of which reinforce the role of banks throughout

history as trusted intermediaries, financiers, and custodians of wealth.

The non-payment of basic amortising loans typically occurs gradually over time, which

suggests that ‘trust’ also erodes gradually between bank and borrower. Indeed, quantifying credit

risk relies fundamentally on first measuring the extent of eroded trust (or loan delinquency)
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using past records. A few candidate measures exist that are variations of simple accountancy

ratios, of which a few are discussed in Rosenberg and Christen (1999) and in Sah (2015). As a

prominent example, the so-called Contractual Delinquency (CD) measure1 is typically constructed

from the number of days past due (DPD), yielding the number of payments in arrears. In turn,

this CD-measure is extensively used when building statistical models (called credit scorecards)

that predict the risk of a borrower reaching a certain delinquency level. These models are often

implemented in modern-day computer systems that decide automatically whether or not to grant

credit to a new applicant. In fact, the astronomical growth in consumer credit over the last few

decades could not have been possible without a degree of automation, as discussed in section 2.2.

Loan delinquency and measures thereof have become increasingly embedded over time into a

growing array of models beyond the scope of simple scorecards, as I will argue in subsection 3.1.2.

Today, delinquency measurement is often the broad backbone on which banks enact credit and

pricing decisions, devise debt collection strategies, and perform overall risk management, in

addition to its use within risk modelling. However, most applications of the CD-measure require

setting a delinquency threshold beyond which a loan is deemed as in ‘default’. Banks have

commonly specified three payments in arrears (or 90 DPD) as a pragmatic point of ‘default’,

long before the introduction of relevant regulations. That said, this threshold generally ranges

between 30–180 days, supported by managerial discretion and some types of analyses, as explored

in subsection 3.1.3. However, the direct financial implications of any chosen threshold are

generally not considered during typical analyses, especially when developing credit scoring

models. Therefore, and as originally argued in Hand (2001), pursuing modelling excellence

becomes questionable when the constructed outcome variable, itself determined by the default

definition, is inherently quite arbitrary.

Other than simply breaching the aforementioned threshold, default definitions often contain

more qualitative criteria. The definitions may further differ based on the portfolio type and

the context of credit risk modelling: either unexpected or expected credit losses. However, the

international standards that govern either context are enforced to varying degrees by individual

regulators, with some examples thereof explored in subsection 3.1.1. Specifically, unexpected loss

modelling is largely regulated by the Basel II Capital Accords2, while expected loss modelling is

mostly managed by the IFRS 9 accounting standard3, which focuses less on extreme risk events

than Basel II. Accordingly, ‘default’ (and/or the regulatory threshold itself) may differ across

1This measure is known by a few names, e.g., payments (or months/time) in arrears, arrears category, and missed
payments. However, it is called the ‘CD’-measure throughout this study, or referred to by its mathematical form as the
g0-measure (defined later).

2Amongst other things, these accords prescribe the way of setting capital aside that is intended to absorb
unexpected losses during liquidity crises, as discussed in sections 2.4–2.5.

3IFRS 9 articulates a set of principles for modelling the expected credit loss. Fundamentally, future loan write-offs
should be offset by keeping an adequate level of loss provisions in advance, barring catastrophic unexpected losses
that should rather be covered by Basel’s capital buffer.
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competing jurisdictions, which certainly complicates any related modelling for multinational

banks. Yet even if the threshold is decreed to be the same value across all nations, there is

little objective evidence to support such a value beyond simple discretion and crude analysis.

Furthermore, the acquisition, merging, and sale of loan portfolios (or portions thereof) present

another challenge. So-called ‘legacy’ definitions from the previous owners can certainly conflict

with that of the new owner, which implies that multiple definitions may run concurrently in

the same portfolio. Consequentially, the very idea of ‘default’ has arguably become a vague and

incoherent concept in trying to serve so many ‘masters’ at once.

The original premise of a default definition is to reach a so-called "point of no return", beyond

which loan repayment becomes extremely doubtful. Every unpaid instalment (or portion thereof)

erodes the trust between bank and borrower, which is only tolerable up to a point, as argued in

section 3.2. This ambiguous point may itself differ across portfolios and even banks, presumably

due to differing risk appetites and market conditions. Having reached this point, the bank

effectively assumes that the obligor’s delinquency will perpetuate if the loan is kept. Therefore,

the lender now pursues the immediate and maximal recovery of debt (including seizing any

collateral), instead of retaining the credit relationship any further. However, a loan may ‘cure’

from default whenever a borrower repays the arrears (regardless of reason), which further casts

doubt on a chosen default threshold as the supposed "point of no return". The challenge hereof

is to find the ideal switching point, i.e., the best time at which the lender should abandon all

hope of repayment. Finding this point using a delinquency measure is convenient since past loan

performance can be projected into scale-invariant delinquency progressions across loans, without

losing any behavioural information.

Owing to the difficulties of defining ‘default’ precisely, I explore a more fundamental meaning

of ‘default’ in section 3.2 as the portfolio-dependent, probabilistic, and risk-based "point of no

return" beyond which loan collection becomes sub-optimal if pursued. The ‘default’ state is simply

based on breaching a certain delinquency threshold using a given delinquency measure, so that

the "net cost" of each candidate threshold can be assessed. A loss basis (instead of profit) is

sensible since forsaking lent capital will generally incur a loss of some kind, rarely a profit.

Regardless, too strict a threshold will surely marginalise accounts that would have resumed

repayment (or cured from ‘default’), had the bank not foreclosed (or charged-off) that soon. A loan

may also experience multiple episodes of ‘redefaulting’ and curing, which is further exacerbated

by a threshold that is too strict. Conversely, too lenient a threshold will naively tolerate increasing

arrears at the cost of greater liquidity risk and bigger capital buffers, possibly becoming capital-

inefficient. The goal now becomes to devise an expert system in which these two extremes can

be appropriately offset against each other. Doing so can form a proverbial ‘Goldilocks-zone’ that

contains the ideal delinquency threshold for a portfolio, which translates into the ‘best’ time for

loan recovery. This concept is illustrated in Fig. 1.1 using the arrears amount (proportional) as a
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high-level threshold, including two extreme choices thereof.

FIG. 1.1: Illustrating the trade-off associated with two extreme arrears-based
thresholds for two fictional loans of the same size. Threshold 1 is overly strict
for loan 1 given that it cures later; but suitable for loan 2 since it never cures.
Conversely, threshold 2 is overly naive for loan 2, though suitable for loan 1.

The CD-measure is but one way of quantifying loan delinquency and surely alternative

measures exist or can be formulated that better suit a particular portfolio. To this point, a few

flaws of the CD-measure are discussed in section 3.3, followed by giving an improved variant

thereof. Two alternative measures are presented as well, one of my own design, in trying to

quantify delinquency more precisely. In particular, both partial payments and ‘prepayments’ (or

underpayments and overpayments respectively) can make measured delinquency less precise due

to rounding in the CD-measure. Lastly, different measures will likely have different measurement

domains, which suggests that a measurement can mean different things. The choice of measure

therefore presents another dimension when designing an optimisation procedure for this study.

The recovery (or foreclosure/charge-off) decision is therefore conjectured to be a portfolio-wide

optimisation problem of competing risks (and costs). The decision variable is the choice of a

threshold on the domain of a given measure. Within this context, the following set of research

questions are explored:
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Question 1 Can an optimal default point sensibly exist? Is 90+ DPD such an optimal point,

thereby explaining its widespread use?

Question 2 How can the exact timing of the loan recovery decision be optimised, if at all?

Question 3 Are there alternative measures of delinquency (other than the CD-measure)

that can better suit recovery optimisation?

Question 4 How can different delinquency measures be feasibly compared to one another,

especially if their domains (and output) differ fundamentally?

Question 5 Given some optimisation procedure, what are some of the factors that affect

recovery optimisation in general?

Question 6 Is it feasible to optimise the recovery decision for a real-world loan portfolio?

What underlying challenges (if any) exist that may impede optimisation?

Question 7 What factors affect recovery optimisation using real-world data? Given uncer-

tainty, how can the stability of the threshold optima be assessed?

FIG. 1.2: High-level steps of the contributed LROD-procedure.

A method is developed to explore these research questions, called the Loss-based Recovery

Optimisation across Delinquency (LROD) procedure, presented in section 3.4 and summarised

in Fig. 1.2. Essentially, an ideal portfolio-wide threshold is sought such that loans are forsaken

neither too early nor too late, if at all. To examine recovery optimisation from "first principles",

a simple simulation-based setup (or testbed) is devised in section 4.1. Basic amortising loan

portfolios are randomly generated given a specifiable risk profile. The testbed itself facilitates

drawing quick managerial insight on a portfolio’s optimisation potential, before conducting any

deep data work. This is achieved simply by tweaking the testbed’s simulation parameters. Finally,

the LROD-procedure is demonstrated in section 4.2, having conducted a broad computational

study on the testbed across different parametrisations and delinquency measures. Threshold

optima are successfully found across most levels of default risk and loss risk, as measured by the

probability of payment and loss rate respectively. Furthermore, the procedure reacts positively to

portfolios that suffer from systematic pattern-like defaults (due to economic downturns), as well

as portfolios with episodic delinquency (cycles of curing and re-defaulting).
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FIG. 1.3: Illustrating the increasing right-censoring effect of newer cohorts, which
requires more forecasting than older cohorts in completing a hypothetical 240-
month term portfolio.

Real-world loan portfolios are typically right-censored in that some accounts may not have

reached contractual maturity yet. Older loan cohorts will therefore have more observable data

than newer cohorts, which is unsurprising since most portfolios are actively being grown every

month. However, the LROD-procedure assumes that the underlying portfolio is uncensored. As

a solution, the residual cash flows of each censored account can first be ‘completed’ using an

appropriate forecasting method, as illustrated in Fig. 1.3. To this end, a few forecasting techniques

are outlined in section 5.1. Each technique is calibrated in section 5.2 using a South African

mortgage portfolio, followed by extensive testing and retraining. Recovery optimisation is then

conducted and discussed in section 5.3. Lastly, censored cash flows are iteratively forecast in an

additional Monte Carlo-based step in the procedure. This allows one to analyse the stability of

the optimisation results, which can inspire greater confidence in any found optima when the

variance is low.
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1.1. OVERVIEW OF THE THESIS

1.1 Overview of the thesis

The thesis is structured as follows. Chapter 2 reviews the history of banking from the perspect-

ive of broken trust to provide broad context for the present study. This review includes the

system-wide implications of bank failures, the subsequent regulatory quest for system stabil-

ity, and the increasing role of mathematical modelling in managing financial risks in banking.

Within the ambit of this modelling, the concept of ‘default’ is dissected in chapter 3 towards

developing a more comprehensive and dynamic theory of loan default. The discussion culminates

in the aforementioned LROD-procedure, which formulates the recovery decision’s timing as a

delinquency-based optimisation problem under uncertainty. This problem is then illustrated in

chapter 4 across various portfolio types and dynamics using a comprehensive simulation study.

The results from chapter 4 along with parts of chapter 3 are associated with a research article,

accepted for publication in the journal Expert Systems with Applications with a preprint available

in Botha et al. (2021).

While chapter 4 demonstrates the theoretical viability of the LROD-procedure, chapter 5

examines the real-world application thereof using mortgage data. In particular, a forecasting step

is proposed that remedies some of the challenges related to real-world data, thereby enabling the

practical use of the LROD-procedure. The results from chapter 5 along with parts of chapter 3 are

associated with a second research article, accepted for publication in the Journal of Credit Risk

with a preprint available in Botha et al. (2020). In summary, the quantitative aspects of any retail

bank’s collection policy can be improved, perhaps substantially so, by using the LROD-procedure.

Finally, chapter 6 concludes the study and outlines both the wider implications thereof for credit

risk modelling, as well as possible areas of future research.
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BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

Trust lies latent in the triad of depositor, banker, and borrower. This becomes self-evident

when exploring the rich history of banking across millennia, as surveyed in section 2.1.

Regardless of the exact role of the banker, the prerequisite of financial intermediation

remains that of ‘trust’; whether it be intermediating as a wealth custodian, transactor, exchanger,

or lender. Moreover, history suggests that trust – and indeed trade activity – can only exist within

a stable environment, propped up by the rule of law and its enforcement. Beyond simple banking

functions, I discuss the more recent meteoric rise of consumer credit over the last hundred years

in section 2.2. This astonishing growth is largely attributed to the advances in technology, as well

as improved risk assessments afforded by statistical techniques. In fact, the use of mathematical

and statistical models have become increasingly prevalent in driving a bank’s decision-making.

Some authors have even hailed the current era as a so-called "third revolution" in modelling a

bank’s decisions, especially as various models progressively overlap one another and become ever

more sophisticated.

Beyond decision-making, modelling advances have demonstrated that the fundamental reason

for banking’s continued existence is due to asymmetrical information between bank and borrower,

which I shall review in section 2.3. In particular, a bank develops specialised expertise and

generates risk information when fulfilling its many roles. This means that subsequent lending is

more risk-sensitive and strategically superior when compared to the case of no intermediation,

i.e., the individual that lends directly. Without the ability to produce risk information en masse,

it is doubtful that banking success would have reached its pinnacle in modernity as it clearly had.

That said, financial intermediation requires funding and trust to be successful, and I discuss
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the mechanics and underlying risks thereof in section 2.4. As part of its operation, a bank faces

the elemental risk of not being able to fund withdrawal requests from depositors during a panic.

This illiquidity implies a balancing act between placating depositors on their funds’ safety and

acting credible to procure debt-funding from other lenders. Failure of either objective can cause a

liquidity crisis or exacerbate an unfolding crisis, which can in turn propagate across the banking

system and cause universal turmoil.

To help safeguard the financial system and correct possible market failures (driven by

asymmetrical information), many governments have since created specific interventions. A

particular pertinent intervention is that of imposing minimum capital requirements to curb

excessive risk-taking, as discussed in section 2.5. This includes the internationally well-known

Basel Capital Accords, which are underpinned by a considerable mathematical literature and

a broad range of models. While capital ought to absorb unexpected losses that may otherwise

induce a liquidity crisis (or bank failure), it is not sufficient to cover more ‘expected’ levels of

credit risk. Providing for these more frequent losses, as governed by another well-known standard

(IFRS 9), is equally crucial to the base survival of a bank. As such, loss provisioning is briefly

reviewed together with other broad risk types in section 2.6, followed by discussing a few common

risk management strategies.

2.1 Trust as the historic bedrock of banking

Most banks throughout history can be characterised by two interdependent functions: the

brokerage role and the asset transformation function. A bank attracts deposits and investments

from which it funds lending activities to those borrowers deemed creditworthy. Doing so effectively

‘transforms’ idle deposits into more useful debt by acting as the financial intermediary between

depositors and borrowers. Moreover, as custodians of deposits, banks are uniquely positioned to

facilitate payments and exchange currencies, effectively brokering the flow of money amongst

parties. These functions largely came about from the invention of money as a system of account in

which the majority of trading activities took place, as opposed to bartering directly. Bartering is

challenged by first having to determine the differences in the disparate value of various goods and

services, not to mention baskets thereof, before transacting. This transactional friction is solved

by using a highly divisible currency in which to denominate value, as discussed in Van Gestel

and Baesens (2009, pp. 1–3, 9–12).

In most civilisations throughout history, currencies were commonly denominated in rare

and durable metals such as gold and silver. In fact, the earliest known coinage dates back to

the seventh century BC during which the Lydian kings (present-day Turkey) stamped emblems

on small standardised ingots forged from electrum (an alloy of gold and silver), which signified

their supposed value. As explained in MacDonald and Gastmann (2001, pp. 24), these coins were
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backed by the authority of the king as having value by fiat, without needing to verify this claim

using scales (to determine the metal’s purity) when transacting. Naturally, an element of trust

was already imbued within these authoritative seals themselves. That said, money itself can take

(and has taken) any widely agreed-upon form, including cattle, amber, grain, ivory, salt, rice, and

various metals. A particularly interesting form of money was that of the cowrie; the shell of a

mollusc from the Pacific and Indian oceans. Of all the historical objects used as currency, cowries

were used for far longer and more universally than any other currency, including coinage. This,

according to Davies (2002, pp. 36–37), is attributed to the cowrie’s durability, ease of cleaning,

relative uniformity (or fungibility), and difficulty to counterfeit; also some of the attributes for

deeming something as ‘money’.

While the introduction of money meant wider proliferation of banking, the latter predates the

invention of coinage by about two thousand years. From Davies (2002, pp. 34–55), simple banking

operations have surfaced multiple times throughout antiquity. In fact, the first banks were

temples in Mesopotamia circa 3,000–2,000 BC that served as sanctuaries for a depositor’s wealth.

These priests accepted common deposits such as grain, cattle, fruits, agricultural implements –

and later, gold and silver money. However, gold and silver money should not be confused with

‘coinage’ as invented by the seventh century BC Lydians. According to Davies (2002, pp. 61–64),

these gold and silver pre-coins date from as early as 2,250 BC and underwent various stages of

invention, ranging from large silver blobs, to bars, to rods, and to elongated nails. Fearing common

thievery and desiring convenience, the depositor (or merchant) believed the temple to be a safe

place due to its bustling and devout crowds, as well as believably hosting the righteous divine.

Moreover, these temples were central locations in the city-states of Babylonia and therefore the

perfect locale for conducting business activities, as discussed in MacDonald and Gastmann (2001,

pp. 22–23) and Davies (2002, pp. 48–50).

The art of writing originated from Mesopotamia first as a method of bookkeeping. As such,

the local temples often issued depositors with clay-based receipts of the deposited wealth. Having

multiple depositors, it was not long until the same temples supervised transacting merchants,

simply by transferring holdings from one merchant to that of another. This practice saw the

eventual establishment of state-owned "grain banks" into which harvests were pooled from

several farmers as general deposits, centralised across Babylonia and Egypt. Having risen to

prominence during the reign of the Egyptian Ptolemaic dynasty in the fourth century BC, as

recounted in Davies (2002, pp. 52–54), these grain banks facilitated debt repayments amongst

various parties. Such a payment1 was enacted simply as an accounting entry that transcended

locale without any money physically changing hands. The value thereof was offset against the

deposited grain of the payer at one location and credited to that of the recipient at another site.

1This is also known as a giro transfer, or giro credit, and refers to a direct transfer of money between two account
holders at the same bank.
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Channelling debt repayments via these grain banks (especially larger payments) became quite

popular amongst the ancient Egyptians. In fact, the resulting transactional records were widely

considered as official and even used as evidence whenever disputes were litigated. Using payment

receipts in this way clearly highlights the inherent trust that were placed in these grain banks,

having fulfilled their entangled roles as custodian, transactor, and later, as lender.

While they first brokered simple payments amongst their depositors, these temples and

granaries later started to issue loans from the wealth stored in their vaults. For grain banks

especially, this meant lending seed-grain to farmers, having agreed to repay the borrowed grain

with interest from their future harvests. Another example of institutionalised lending is the

emergence of a private mercantile bank called the House of Egibi that operated for over a few

centuries during the first millennium BC, as narrated in Davies (2002, pp. 51) and Hudson (2010).

Although the House of Egibi secured a wide range of deposits, they only ever used their own

wealth when funding loans, albeit with no arbitrage between deposit and lending rates (both

usually 20%). Furthermore, both Mesopotamia and Egypt lacked timber and certain stones (e.g.,

marble) that were required to develop their societies further, despite being blessed with fertile

lands and abundant water sources. In addition, the upper royal classes desired more luxury

goods beyond those that were locally available, according to MacDonald and Gastmann (2001,

pp. 20–21). This presented opportunities for ambitious traders who then sourced these goods from

international markets. However, increased trade brought with it the challenge of foreign and

multiple currencies, even though coinage was not yet that widespread at the time. As a result,

the merchants started to use these temples and banks as "clearing houses", who both facilitated

the auction of goods as well as brokered the credit-based transactions thereafter.

The invention of coinage during the seventh century BC quickly spread throughout the Persian

empire, the Aegean islands, Greece, and northward to Thrace, Macedonia, and the Black Sea.

Moreover, currency exchanges became necessary largely due the prolific Greek traders who

transacted in multitudes of metal-based coins, as discussed in MacDonald and Gastmann (2001,

pp. 25–26), Davies (2002, pp. 66, 71–74), and Rigas and Riga (2003). In fact, multi-currency

trade saw the rise of Greek bankers (or trapezitai2), who epitomised money-changing as the

most common form of banking during the Graeco-Roman period. These services proliferated

amidst a deluge of different coinages that varied in both quality and type, as a by-product of

trade prosperity. For their service, Greek bankers charged a commission of 5%-6% of the currency

value. Unfortunately, this prosperity also led to a rise in fraud and counterfeiting, which only

made the Greek bankers even more instrumental in ‘sanctifying’ these currency exchanges.

2The Greek word for banker trapezitai is likely derived from the trapezium-shaped tables (a trapeza) upon which
Greek bankers exchanged various currencies. These tables had a series of lines and squares, believed to have aided
calculations.

12 of 178



2.1. TRUST AS THE HISTORIC BEDROCK OF BANKING

However, it was the lending side of Greek banking that became the most lucrative form of

intermediation at the time. According to MacDonald and Gastmann (2001, pp. 25–26), Davies

(2002, pp. 66, 71–74), and Rigas and Riga (2003), ship masters and merchants alike wanted more

funding with which they could then undertake more rewarding voyages, which certainly posed a

significant risk to the coffers of the Greek bankers. The resulting loans were largely funded using

the current accounts of the bank’s merchant depositors and carried interest rates between 6 to

30 percent, based on the assessed risk. In stark contrast to the earlier Egyptian House of Egibi

(who only used their own capital for lending), the Greeks secured their lending activities on the

short-term deposits of their borrowers, including copper, silver, gold, and sometimes even slaves.

This early example of asset transformation exemplifies the high level of trust that these Greek

bankers enjoyed. That said, Demosthenes (an early banking lawyer at the time) once remarked

that any banker who self-funded his lending was destined for bankruptcy, which again suggests

that banking success is predicated on first attaining trust.

Although the Greeks were instrumental in furthering banking innovations (particularly the

Athenians), their position was soon rivalled by the small offshore Aegean island of Delos during

the period of 200–100 BC. According to Davies (2002, pp. 78–79) and Rigas and Riga (2003), this

island had but two assets: its great harbour and its famous temple of Apollo. However, both of

these assets helped the island of Delos rise as one of the principal clearing houses of Macedonian

trade, which included tar, pitch, timber, silver, oriental wares from Arabia and India, as well as

slaves. The bankers of Delos retained the inherent trust of the antique world for well over 400

years. While the previous Greek bankers brokered transactions purely on a cash basis, the newly

established Bank of Delos opted for credit instead as its transactional basis. Accordingly, trade

volumes increased further and the Aegean coffers of these bankers grew ever larger. Moreover,

they safeguarded wealth within the temple of Apollo, itself surrounded by the ocean, thereby

further deterring robberies. This explains the strategic allure of trusting these particular bankers,

which subsequently attracted to their vaults substantial levels of state and private wealth. In

fact, this wealth helped to fund the rise of the Roman empire, with the Bank of Delos itself

later serving as the model for Roman banks. From Delos, the refined practices of conducting

credit-based transactions and giro transfers soon spread to Rome. Perhaps paramount to Rome’s

success was one particular practice borrowed from Delos: the strategic centralisation of deposit

contracts across vast banking networks, akin to the grain banks of contemporary Egypt and

earlier Mesopotamia.

While the Romans assimilated the advances in money and banking from the Greeks and

the Egyptians, the Roman achievements were more militaristic and administrative rather than

economic. In particular, the Romans contributed its legal discipline by which contracts and

property rights were strictly enforced, as well as the equitable settlement of disputes, as discussed
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in MacDonald and Gastmann (2001, pp. 26–29). While the Code of Hammurabi3 was indeed an

earlier legal system circa 1700 BC in Mesopotamia, the Roman rule of law was more effective

given its military might and bureaucratic strength. According to Davies (2002, pp. 51), this

legal discipline instilled predictability and widespread trust that induced a rudimentary though

functional credit system across the empire. Furthermore, the Romans considered the minting

of coinage (and its centralisation) to be more important than advancing the Ptolemaic ideas

of central banking. In fact, the empire’s most famous and universal silver coin – the Denarius

– was exclusively minted in Rome itself, with provincial towns only allowed to mint bronze

coinage. From Davies (2002, pp. 89–93), the Roman emperors controlled mints directly and relied

heavily on taxation for revenue instead of issuing national debt. Furthermore, the Romans often

debased their own currency to fund their expanding armies by using more impure metals when

minting coins. Despite the tenfold increase in silver coins that were in circulation during the

great expansionary period of 150–50 BC, the inflow of raw bullion could simply not compete with

the considerable demand for Roman coins struck from it.

The Roman empire eventually began its slow economic decline until its eventual collapse, as

discussed in Howgego (1992) and Davies (2002, pp. 94–112). This decline was characterised by the

ceaseless debasement of the Roman currency, rampant inflation, inadequate taxation to support

a growing welfare state, maintaining the increasingly unaffordable military, and the exhaustion

of Roman mines. In fact, the emperor Gallienus debased the Roman coinage during his reign

(260–268 AD) to such an extent that the Denarius contained but 4% silver. Similarly, Aurelian

introduced two whole new coins into circulation during his reign (270–275 AD) as Roman emperor.

Both coins were valued by dictate at 2.5 times the previous nominal value of similar coins, i.e., the

basis of inflationary finance. Unsurprisingly, these actions generated rapid inflation and brought

about the temporary state seizure of Roman banks who refused to accept these inferior coins.

While it is certainly true that the Roman empire ultimately fell to barbaric invasions, one can

argue that the underlying cause of a weakened military is the chronic economic chaos endured up

to the fifth century AD. In particular, continued economic turmoil meant the breakdown of trust in

the Roman credit system, already battered by a weak and mistrusted currency. After the empire’s

collapse, money-based trade itself broke down across Europe, which persisted through most of

the Dark Ages. As such, it is argued in Van Gestel and Baesens (2009, pp. 2) that banking itself

became mostly irrelevant during this time when there was little trade to intermediate, wealth

to store, currencies to exchange, or loans to fund from empty vaults. The sporadic kingdoms,

having sprouted from the remnants of imperial Roman power, first had to relearn minting coins

during the next few centuries, let alone install the rule of law again, before banking could hail its

previous glory.

Various coinages surfaced repeatedly across Europe and Arabia over the next few centuries.

3This Code contained almost 300 laws, some of which pertain to banking operations and its ethical practice.
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However, it was the adoption of the tally stick by the medieval English treasury (or the Exchequer)

in the twelfth century AD that saw the widespread return of a credit system. This tally stick,

according to Davies (2002, pp. 148–152), is a piece of wood (or ‘slip of wood’ from its Latin origin

talea) that was originally used as evidence (or a receipt) of a payment, commonly cut from 20

cm lengths of hazel wood. A specific notch, signifying the exact amount owed in taxes (or other

debt), was cut across the breadth of the stick. Thereafter, the stick was partially split across its

length in twain up to the handle, with one piece broken off. The larger piece with the handle,

called the ‘stock’, was kept by the creditor, while the smaller piece, called the ‘foil’, was given to

the debtor along with the loan. When put together, both pieces would match the original shape of

the stick, therefore ‘tallying’ the debt and serving as legal evidence of the loan transaction. In

fact, verifying (or ‘checking’) tax payments were carried out on the Exchequer tables, which were

ten by five feet in size and were adorned with a chequered cloth. This cloth not only inspired the

name of the Exchequer but also later gave its name to the common bill of exchange, the ‘cheque’.

Taxes owed to the king, as represented by a tally stock kept in the Exchequer, could sub-

sequently be used by the king to pay someone else, simply by transferring the tally stock itself.

In a time when charging interest (or ‘usury’ as it was more commonly known) was forbidden on

religious grounds, these tallies became wooden ‘cheques’ and were used to raise state funding

based on Exchequer-held debt. As a result, the English monarchs soon began to issue tallies in

anticipation of collecting taxes in future, which indicates an early form of modern-day government

bonds. The overall money supply was significantly increased by bartering Exchequer debt for

funds, based on the inherent trust that the monarch will repay his debt using future tax revenue.

This catered for the growing demand amongst traders for coins, without resorting to the gross

debasement of coinage as enacted in earlier Roman times. These tallies were particularly oppor-

tune since the limited European supply of gold and silver at the time hindered any large-scale

minting of coinage.

While medieval finance in Western Europe slowly re-emerged, earlier Islamic conquests saw

the establishment of a Pax Islamica in the eleventh century AD. This brought about a virtual

free-trade zone across Western Asia, North Africa, and the Mediterranean, which was supported

by a more sophisticated credit system than that in Western Europe at the time. In servicing

the Islamic empire’s vast trade routes, credit flourished in the form of early bills of exchange

as a method of payment. These bills were then drawn from cooperating merchant bankers that

were flung far across the empire, as discussed in MacDonald and Gastmann (2001, pp. 34–36,

41–44). Another Islamic credit instrument was the mudaraba arrangement under which the

investor entrusted cash or goods to the trader. In turn, this capital was eventually repaid along

with an agreed upon share of profit, as a common way of circumventing the prevailing sin of

usury. However, it was Jewish bankers who reinvigorated lending and the widespread use of

credit across medieval Europe, especially since their religion permitted usury when dealing with
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non-Jews. Moreover, Jewish merchant families were networked across rival kingdoms in both

Europe and the Islamic world, which facilitated the flow of credit-based trade across oceans and

port-cities. Specifically, the Jewish bankers in Baghdad issued an early form of a letter of credit

known as a suftadja, therein committing payment to other parties on behalf of their Jewish

merchant clients. These familial bankers that cooperated across large distances were effectively

similar to the erstwhile Roman banks and its centralised credit system.

International trade soon flourished amongst Jews, Muslims, and Europeans alike, partially

due to the trade fairs held across France and Italy from the twelfth century AD onward. Although

these fairs originally celebrated a local religious saint, rulers at the time – particularly the

Counts of Champagne in France – quickly realised the tax potential of these fairs. The noblemen

subsequently helped to establish the rule of law during these fairs, which promoted greater

business confidence; increasing both trade and the associated tax revenue in turn. Based on

MacDonald and Gastmann (2001, pp. 59–62), these fairs subsequently attracted a diversity of

enterprising merchants and with them, a barrage of bi-metal bullion4 as money. Apart from ex-

changing these currencies, the hassle of transporting money en masse – along with the associated

costs of hiring guards and caravans – made credit a useful and alternative payment system,

especially for conducting larger transactions. In fact, international merchants frequenting these

fairs soon innovated a credit instrument called lettres de faire (or fair letters) based on credit.

These documents recorded the sale of goods, whilst promising payment at a future fair. This delay

allows sufficient time for tallying the total debits and credits amongst participating merchants

plying their trades to one another during a particular fair.

In truth, the fair letters were but one short step away from becoming so-called bills of

exchange, which historians commonly consider as the greatest financial innovation of the late

Middle Ages. An example is given in MacDonald and Gastmann (2001, pp. 61) of such an early

bill that was issued (or drawn) by a fourteenth century Tuscan merchant (the drawer) who

instructed his bank (the drawee) to pay the bearer of the bill (the payee) the amount inscribed

on the bill itself. This is similar to the preceding Jewish suftadja and, indeed, a precursor to

the modern-day cheque (or more formally, a "negotiable instrument"). Naturally, these bills

soon became currency in themselves given their securability against the drawer’s assets, which

are implicitly trusted to cover payment sufficiently. Bills of exchange were far safer to handle

and made transactions quicker relative to keeping coins and bullion at hand. Though the trade

fairs themselves eventually stopped in the late thirteenth century AD, these bills – and the

credit system in which they operated – soon spread across the medieval world, as discussed

in MacDonald and Gastmann (2001, pp. 65). Ironically, the trade fairs that introduced these

4Medieval Europeans only started using the Italian florin as a central currency in 1252 AD. Preceding this, gold
and silver bullion itself were used as unedified money, although many other coins circulated at these fairs that were,
however, struck by multiple sovereigns.
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bills were made redundant by the very same, since networked merchants transacted across ever

increasing distances using these bills instead, with little need for visiting a fair once established.

The close relationship between stable power and credit is perhaps best exemplified by the

Knights Templar and the Knights Hospitallers during the Crusades, particularly during the

twelfth and thirteenth centuries AD. Initially, these two religious orders of warrior monks protec-

ted holy pilgrimages and provided medical care to war casualties. In time, these knights acquired

their own ships, castles, armies, storehouses, as well as held strategic points of presence that

spanned England to Egypt and Spain to Syria, according to MacDonald and Gastmann (2001,

pp. 66–68) and Davies (2002, pp. 153–158). It is therefore unsurprising that the Templars soon

expanded into storing wealth and intermediating payments amongst merchants and princes

of the realm throughout Europe and the Holy Land. Ennobled with the perceived trust of the

Christian faith, they were excellent candidates for safely transferring goods and money across

their vast network to facilitate the war efforts. This was not unlike the paved trade routes that

were protected by the earlier Roman military, which enabled their credit system. Moreover, the

heavily fortified bases of the Templars soon attracted deposits from monarch and merchant alike.

Naturally, the Templars soon began to exchange copious amounts of currencies and to lend the

amassed wealth out again at large, thereby establishing a new credit system. Specifically, the

knights expedited payments using bills of exchange, acted as tax collectors for both kings5 and

popes, transferred ransom payments, granted loans to crusaders and pilgrims, and even legally

coined their own currencies. However, their banking successes abrupt ended once their credibility

was grossly undermined by the French King Philip IV and his undignified greed. Eventually, the

relentless accusations and political machinations of the king led to Pope Clement V abolishing

the Templar order in 1312.

The Templars’ demise proved to be fortunate for their long-time rivals, the Italian bankers,

who readily met the credit demands across Europe and the Middle East in the absence of the

knights. The two Italian city-states of Venice and Genoa became financial superpowers; originally

spurred by the trade fairs, competing Jewish bankers, increasing international trade, and the

Crusades. As a result, these Italian bankers intermediated progressively more transactions and

established a competing credit system from as early as the twelfth century AD. From De Roover

(1963, pp. 1–2) and MacDonald and Gastmann (2001, pp. 73–76), the Genoese bancherii (or

bankers) innovated interbank transfers between customers who held accounts at competing

Italian banks. This was largely facilitated by their invention of double-entry bookkeeping and

its creative use in avoiding the Christian sin of usury. In fact, the Genoese bancherii invented

foreign exchange contracts, which were similar to bills of exchange though issued across two

5Perhaps the greatest supporter of the Crusades was the English King Henry II (1154–89) who enacted so-called
"crusading taxes". These revenue streams were mainly funnelled into his accounts that were held at both the Templars
and Hospitallers, instead of the London Exchequer, as discussed in Davies (2002, pp. 157).
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currencies at a preset exchange rate, as explained in Van Gestel and Baesens (2009, pp. 3–4).

These bills were later exonerated by the Roman Church, having realised that the element of risk

justified compensation. The Church argued that the potential profits were uncertain given that

they arose from trading these foreign bills at fluctuating prices once issued. Moreover, many

merchant banks of the time went bankrupt by investing too great a portion of their assets in

risky commercial ventures that subsequently failed. The potential of bankruptcy further justified

the charging of interest rates when lending, even if somewhat obscured in the ledger.

The dangers of default risk continued to be exemplified by even some of the most successful

European banks during the fourteenth and fifteenth centuries AD, as discussed in De Roover

(1963, pp. 2–5) and MacDonald and Gastmann (2001, pp. 79–82). The Hundred Years’ War

between England and France led to the failure of both the Bardi and Peruzzi familial banks of

Florence. Specifically, the English King Edward III defaulted on his various unsecured loans from

both Bardi and Peruzzi. Most monarchs at the time demanded loans from bankers in order to

fund and sustain their military campaigns, which these monarchs fielded to retain or expand

their sovereignty. Yet despite having perfectly legal loan agreements, the Italian bankers soon

realised that their borrowers’ ability and willingness to repay were tenuous and uncertain at

times, even if they were powerful monarchs. To this point, the word ‘bankrupt’ has its roots in

the Italian phrase banca rotta (or "broken bench"); see Van Gestel and Baesens (2009, pp. 4). The

idiomatic suggestion is that the wooden bench on which Italian bankers conducted their business

was physically ruptured upon default, likely in frustration.

On the other hand, the common man was largely unsympathetic to these bank failures as

induced by monarchical defaults. In fact, according to De Roover (1963, pp. 2–5) and MacDonald

and Gastmann (2001, pp. 79–82), Italian bankers were already despised at the time. An especially

hated group were the lombardii in Northern Italy; though small-scale, they were opportunistic

pawnbrokers and enterprising moneylenders who openly charged ‘usurious’ interest. Another

more prominent example is the Medici family who tried to collect upon a large loan in 1477 AD,

held by the deceased Duke of Burgundy, Charles the Bold. That said, the Medici family came

to be the most powerful European bankers following the fall of Bardi and Peruzzi, eventually

governing Florence itself. Having masterfully combined politics and finance, the Medici Bank

strategically called in large debts from their enemies, Naples and Venice. With their coffers

suddenly depleted, these city states could no longer fund their mercenary armies, who deserted

as a result, much to the Medicis’ delight.

As with the larger Bardi and Peruzzi banks, the Medici Bank eventually declined as well

in the late fifteenth century AD, again affected by royal defaults. The prevailing political theory

was that a monarch ruled by divine right and were subject to no temporal authority. Naturally,

this assertion severely conflicted the bankers when calling in the earthly loans of a divine prince
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of the realm. From De Roover (1963, pp. 5–6, 331–334) and MacDonald and Gastmann (2001,

pp. 85–89), both the English King Edward IV and the French Duke Charles the Bold defaulted

on their various debts during the Wars of the Roses. Along with deteriorating management,

it was nigh impossible for the London and Bruges bank branches to remain afloat thereafter.

A few other branches soon failed as well (notably those in Venice, Milan, and Lyons), which

is ascribed in De Roover (1963, pp. 358–367) to gross maladministration, lack of coordination,

economic recession, and both the lavish lifestyles and political entanglements of the Medicis.

The severe deterioration became self-evident when the bank governor, Lorenzo de’ Medici, even

misappropriated public funds; presumably to stave off impending insolvency. The bank finally

conceded defeat in 1494 upon the Italian invasion of the French King Charles VIII.

The now-familiar pattern reasserts itself with the subsequent rise (and eventual fall) of two

other banking families in the sixteenth century AD. Specifically, the Fuggers and Welsers rose

to prominence as German banks and even eclipsed the Medicis, having absorbed most of their

remaining assets. From MacDonald and Gastmann (2001, pp. 101–107), the Fuggers primarily

served the intermediation needs of the European royals, most notably the Hapsburgs. Both

German banks financed the growing international spice trade from Asia and the newly discovered

Americas, which diversified their revenue streams considerably. However, as with the erstwhile

Italian bankers, the German lenders suffered the same sovereign defaults from fickle princes

and their wars. In particular, the bankruptcy of the Spanish King Philip II in 1577 AD shook the

foundations of German banking and preempted the fall of the Fuggers. For additional context,

more than twenty large banks declared bankruptcy in Spain and Italy during the strikingly short

two-year period 1587–1589. Widespread private bank failures induced by sovereign defaults led

to the establishment of public banks. These institutions offered credit to both private clients and

the state, whilst being better secured by shares in public debt than by overly leveraged private

capital.

Up to the sixteenth century AD, merchant banks historically serviced a speculative niche,

though a new entity would soon enter the stage in the form of an early stock exchange in Antwerp,

called the bourse. As a common clearing house, the swap rates for commercial bills of exchange

(amongst England, France, Italy, and Germany) as well as government bonds could now be

regularly published, negotiated, and traded at the same central location. Moreover, this Antwerp

bourse availed to sovereigns a larger source of speculative credit, which could help fund conquests

and royal expeditions to the New World, as discussed in MacDonald and Gastmann (2001, pp. 98–

100, 107–114). This is perhaps best exemplified by Spanish public debt being sold to and traded

amongst third parties, ultimately funding the Spanish Conquistadors in the Americas. However,

religious conflicts between Catholics and Protestants made sieges and rebellions a reality in

Antwerp (commonly known as the Spanish Fury and the Dutch Revolt), which caused the local

merchants and bankers to flee to more stable environments. Moreover, the Dutch closed off the
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Scheldt river that previously fed trade into the embattled city of Antwerp. With less trade activity,

the Antwerp bourse naturally declined.

During the rebellion, the Dutch strategically diverted the flow of merchant ships to Amster-

dam, which was far more politically stable than Antwerp. Moreover, the seventeenth century AD

Dutch Republic was governed by an oligarchy of merchants (known as the Dutch regents), instead

of an authoritarian monarch. This, as argued in MacDonald and Gastmann (2001, pp. 110), led to

the national interest shifting from typical territorial conquest, to the more capitalist pursuit of

prosperity. While the influx of multinational merchants from Antwerp undoubtedly increased

trade and profits, the various coinages in circulation became problematic. From Quinn and

Roberds (2005), coins may devalue over time to less than their stated nominal value simply

due to abrasion. Another factor at the time was the various minting ordinances that decreed

nominal values for coinages against the florin in Amsterdam. However, the Dutch inadvertently

encouraged the deliberate debasement of coins given the arbitrage6 in value between finer/heavier

and rougher/lighter varieties of coins, supposedly equal in value by ordinance. In turn, worn

or debased coins can artificially devalue a nation’s own currency when exchanging the debased

foreign coins for freshly minted domestic currency. In foreshadowing the modern central bank,

the Dutch founded the Wisselbank (or the Exchange Bank of Amsterdam) at which one could

safely store wealth and exchange multiple currencies with less devaluation. More importantly,

the Wisselbank transformed stored coins and bullion into special florin-denominated credit known

as bank money that became more valuable than any physical currency, thereby discouraging the

circulation of debased coinage.

Apart from the Wisselbank, the Dutch regents established the Amsterdam bourse (or Effecten-

Beurs) in the same period. This early stock exchange attracted excess capital by speculating

on (or investing in) commodities, government bonds, and shares in company profits. Common

commodities at the time included grain, whale oil, and spices; while equity shares were predomi-

nantly in the Dutch East Indian Company. The national credit system was in fact augmented by

the Amsterdam bourse since the stock investments served as collateral in secondary cycles of bor-

rowing and lending. Thus, the hallmarks of a modern financial world came to be. Financiers not

only had to trust their borrowers to repay, but also consider the dynamic value of the underlying

collateral, assuming it to be sufficiently tradable for offsetting potential credit losses. Moreover,

modern stock market manipulations, e.g., short-selling and bear raids, were invented by the same

enterprising Dutch at the time, according to MacDonald and Gastmann (2001, pp. 114–116). As a

result, the overarching credit system became progressively more sensitive to market movements

as the value of the underlying collateral increasingly depended on the same movements. The

6Two currencies are compared in Quinn and Roberds (2005): the cross rixdollar (minted in the Spanish Neth-
erlands) against another variant of the rixdollar (issued in the Republican Netherlands), both valued at 2.5 florins,
though the former was of a higher quality metal, thereby creating arbitrage.
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danger hereof is perhaps epitomised by the market crash in 1637 as a direct result of the Dutch

Tulipmania.

The Dutch impact upon the financial world was considerable during the seventeenth cen-

tury AD. From Quinn and Roberds (2005), Amsterdam became the de facto hub for drawing,

paying, and trading bills of exchange across all of Europe. The Wisselbank aside, this feat was

partially due to another Dutch innovation at the time. In particular, the Dutch have improved

upon the earlier bill of exchange by rendering it transferable beyond the original payee. Each

successive bearer of the Dutch bill enjoyed the same payment claim on the original debtor (or

drawer) than the last. Upon exchange, the new bearer endorses payment responsibility of the

previous bearer. According to MacDonald and Gastmann (2001, pp. 114), this establishes a chain

of drawers that are sequentially accountable for the remittance, should the previous drawer

default on his payment obligation. Effectively, these bills became a credit-backed form of payment,

which is a precursor to the modern-day bank note.

Dutch finance soon visited English shores, whose banking activities in the seventeenth cen-

tury AD were predominantly split amongst scriveners, tax-farmers, and pawnbrokers. Scriveners

were respected lawyers entrusted with large deposits; while tax-farmers advanced loans to

the Exchequer and collected repayment from tax-payers directly, as licensed by the monarch.

However, it was the goldsmiths in London who eventually overtook even Amsterdam as the

new financiers of not only Europe but also other parts of the world. As discussed in Davies

(2002, pp. 249–252), the goldsmiths’ affinity with precious metals made them natural currency

exchangers and their armoured gold stores soon attracted demand deposits during a time when

war, plague, and fire were common. As was the case with the Wisselbank receipts and the Dutch

bills of exchange, the deposit receipts issued by these goldsmiths became quasi-money in their

own right. Unlike the Dutch, however, the goldsmiths started issuing loans that were directly

denominated in these receipts instead of physical coins, thereby introducing the first bank note

as it were. These ‘promissory notes’ were widely accepted as payment since creditors trusted that

the coins kept in the vaults of the goldsmiths would be readily available when presenting these

notes. In turn, the goldsmiths upheld this credit system by keeping a fractional reserve of coins

for such withdrawals, which is a practice that largely continues to this day (although using bank

money instead of coins).

Aside from the goldsmiths at the time, England saw another significant shift in the balance

of power between the British Parliament and the English Crown. From Nichols (1971), monarchs

used to control the public purse exclusively (and whimsically) throughout history, often debt-

funding ambitious military conquests, sometimes to the ruin of banks. However, the British

Parliament won equal rights to governmental finance in 1688, helped by the sanctioned invasion

by the Dutch Prince William III, who later ascended the English throne. Thereafter, both monarch
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and parliament were jointly held responsible for repaying government bonds, which stabilised

the inherent credit risk of these bonds. National debt became a ‘perpetual’ source of loans to

the government whose repayment is ‘bonded’ to the nation’s future tax revenue. This balance of

power between monarch and parliament promoted using national debt increasingly as a major

funding source, which further fuelled the broader credit system, as discussed in MacDonald

and Gastmann (2001, pp. 130–134) and Davies (2002, pp. 255–263). Thus the modern age of

banking was begun when the Bank of England was founded in 1694, inspired by the earlier Dutch

Wisselbank and necessitated by the British government’s lack of funding.

In addition to facilitating government bonds, the Bank of England attracted private deposits

with favourable rates, most notably that of the Dutch in search of greater yield. Naturally, the

Bank’s extensive capital base escalated its subsequent lending capabilities. To this point, the

Bank purposefully charged lower interest rates than the goldsmith bankers in trying to dismantle

the latter’s monopoly on lending. Soon, even the goldsmiths’ receipts fell into disuse since the

Bank’s promissory notes carried with them the credibility of the British government itself. The

passage of the Bank Charter Act (1844) entrusted to the Bank of England the exclusive power

to print money, a right it still enjoys to this day in England and in Wales. Overall, the Bank

played an instrumental role in financing (and greatly profiting from) the worldwide Industrial

Revolution, as discussed in MacDonald and Gastmann (2001, pp. 135–138). Moreover, the excess

capital of the Bank helped fund many smaller private banks over time. The capital investment

in these ‘subsidiary’ banks gave the Bank of England an emerging supervisory role as a central

bank and ultimately serving as the lender of last resort. The Bank played a stabilising role in

the credit system and facilitated the ease at which money was borrowed amongst private banks.

In turn, this liquidity and mutual trust ensured the full usage of all financial resources of the

British economy across all of its colonies, with little wastage posed by idle savings.

The history of banking continued largely unimpeded throughout the nineteenth and twen-

tieth centuries AD across the new world, with many a bank rising and falling (see section 2.5).

Throughout millennia, it is clear that the bedrock of banking has remained largely unchanged,

being grounded in mutual trust to this day. Even the modern-day promissory bank notes are

ennobled by the public’s trust that their wealth is safeguarded within banks and readily available

from banks. Banking itself will likely experience significant stress once the rule of law becomes

destabilised, as perhaps best shown by the fall of the Roman Empire or the many royal defaults

and wars that bankrupted the Italian and German banks during the Renaissance. Furthermore,

history proves that banking operations follows naturally from flourishing trade activity and the

wealth it generates. Ancient temples, the Egyptian Ptolemaic grain banks, the Greek trapezitai,

the Bank of Delos, the Knights Templar and Hospitallers, and the goldsmiths of London all first

started as deposit-takers, safeguarding the merchants’ profits. Naturally, this custodianship led to

another role: offsetting payments between accounts in giro transfers, followed later by conducting
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interbank transfers amongst the Italian banks of the Renaissance. Trade prosperity brought

multiple currencies with it and again banks were the trusted intermediaries to sanctify these

exchanges. As trading activities grew and the demand for coins rose, banks stepped in yet again

to transform idle deposits into more useful loans. Banks advanced credit to selected borrowers

from these deposits, relying on a fractional reserve and the public’s trust in the credit system.

The proliferation of banking means an expansion of the same credit system, which both causes

and is caused by booming commerce. This symbiotic relationship is perhaps best exemplified by

the explosive growth of British lending during the Industrial Revolution, in turn largely financed

by the Bank of England. The ensuing cycle of trust and the flow of credit amongst the triad of

depositor, banker, and borrower continues in perpetuum; at least until this trust is sundered,

usually with disastrous effect on the other agents, or even the nation’s prosperity itself.

2.2 The rise of consumer credit in modernity

In more recent history, consumer credit has grown at a truly exponential rate over the last few

decades, shown in Fig. 2.1 for the United States of America (USA). This credit growth has its

origins in the 1920s when Henry Ford and A.P. Sloan started financing vehicle sales for their

customers in an effort to boost sales. The later introduction of the credit card in the late 1950s saw

the use of credit becoming widespread amongst consumers. Its current estimate of approximately

$11 trillion consists of mortgages, credit cards, personal loans, vehicle financing, overdrafts and

other revolving loans for the individual, at least according to the Board of Governors of the

Federal Reserve System (2020). For perspective, consumer debt levels in 2007 was 40% greater

than total industry debt ($9.2 trillion) and more than double than corporate debt ($5.8 trillion)

at the time, as discussed in Thomas (2009a, pp. 1–3). Although greatest in the USA, consumer

debt in other countries are not far behind, e.g., the United Kingdom (UK) had debt levels in 2007

at £1.4 trillion – a staggering £400 billion growth within the span of a mere three years. From

an affordability perspective, US household debt constituted 130% of total annual income at the

same time. In fact, this trend of debt levels exceeding household income is true for quite a few

countries over the last twenty or so years, of which a few examples are shown in Fig. 2.2.

As an explanation, consider the life cycle theory of consumption of Modigliani (1986), which

states that consumers generally have a greater appetite for risk early in their lives; then revert

to saving in their middle years; and then draw from these savings during retirement. As such,

the greater risk appetite of younger consumers directly translates to a greater level of borrowing

relative to older age groups. The growth of the 20-34 years age group rose sharply during the

period 1960–1990, which, as noted in Thomas et al. (2002, pp. 24), likely explains the rapid

rise in overall household debt levels during the same period, in accordance with this theory.

Conversely, the downward pressure seen in Fig. 2.1 from 2008 is directly attributable to the

sub-prime mortgage crisis that heralded a global recession, following the spread of foreclosures
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FIG. 2.1: Total household debt in the USA across time, with shaded areas indicating
recessions. From the Board of Governors of the Federal Reserve System (2020).

and the number of subsequent bank failures. In retrospect, it seems that this historic financial

crisis has only caused a slight blip in aggregate debt levels rather than signalling any structural

change, especially since current debt levels have returned to their previous 2008-peak, albeit in

the USA.

According to Thomas (2010), the considerable credit expansion could not have been possible

without a degree of automation during the credit approval process. Indeed, the development of

such automated decision-making models, called credit scorecards, greatly facilitated this rapid

growth in consumer credit by rendering consistent approve/decline decisions on high volumes

of credit applications. Prior to these formalisations in retail banking, bank managers either

approved or declined credit applications by conducting applicant interviews and subjectively

assessing the underlying credit risk. They did so using guiding principles known as the five ‘Cs’ of

granting credit. As discussed in Finlay (2010, pp. 83) and Van Gestel and Baesens (2009, pp. 93–

94), this includes the Capacity to repay (affordability), the applicant’s Character to repay (intent),

current macroeconomic Conditions, and Capital or Collateral as possible security. However, this

judgemental approach was largely inconsistent over time, typically varying by the daily mood

of the bank manager, as discussed in Hand (2001) and Thomas et al. (2002, pp. 9–10). At the

same time, one cannot deny that at least some of these credit decisions were fraught with the

irrational personal prejudices of these managers. Making a credit decision is often described in

literature as an art rather than a science, which is perhaps why it was understandably difficult to

teach the craft at the time. Overall, the judgemental approach cannot easily scale with increasing
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FIG. 2.2: Consumer household debt-to-income over annual periods by country, includ-
ing Australia (AUS), Canada (CAN), Finland (FIN), Greece (GRC), Netherlands
(NLD), Norway (NOR), and the United States of America (USA). Reproduced from
OECD (2020).

application volumes; it relies heavily on human decision-makers, which makes the approach

expensive; and it yields inconsistent and biased decisions for the same reason.

This credit decision occurred during a very specific step that still exists to this day within

the typical five-phase credit management process. As explained in Finlay (2010, pp. 11–13) and

reproduced in Fig. 2.3, a lender first devises campaigns to solicit new customers into applying for

a pre-designed credit product, during phase one (Marketing). Naturally, the goal is to maximise

the pool of potential customers in an effort to maximise the eventual and so-called take-up (or

conversion) rate, i.e., the proportion of loan applicants who became borrowers. During phase two

(Customer Acquisition), the lender assesses the creditworthiness of applicants in an exercise

called "credit scoring". For those deemed creditworthy, the lender prices the loan, i.e., compiling a

loan offer that contains a specific interest rate, loan amount, contractual term, and credit limit, as

applicable to the specific type of credit product. The goal of this second phase is to minimise bad

debt that has yet to develop as a result of granting credit today, i.e., selectively granting credit

to those deemed as sufficiently trustworthy in repaying their debts. Of course, this goal may

naturally conflict7 with that of the first phase. Thereafter, phase three (Customer Management)

7These two conflicting goals are often balanced against each other by either adopting specific growth strategies at
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generally involves monthly housekeeping of the account, e.g., preparing and delivering regular

statements, as well as possibly offering further advances and/or cross-selling other credit products,

provided the account is in good standing.

FIG. 2.3: The five-phase credit management model through which all credit agree-
ments progress during their lifetimes. Loan applicants are solicited in 1), credit
scored in 2) and serviced in 3) until the ‘natural’ contractual end. However, de-
linquent accounts are nursed in 4) while doubtful debts are recovered in 5) prior
write-off. Reproduced from Finlay (2010, pp. 11).

However, if the account accrues any arrears, it enters phase four (Collections) during which

various initiatives are launched in an attempt to nurse the strained relationship between borrower

and bank back to health. This may include temporarily lowering instalments, zeroing interest

rates, or perhaps extending a payment ‘holiday’ during which the lender suspends instalments as

a token of good faith. If the borrower, despite these brokered arrangements, continues to renege on

his repayment obligation despite collection efforts, the account enters phase five (Debt Recovery).

No longer is it the goal to salvage the broken trust between borrower and bank, but rather to

recover as much as possible of the outstanding debt during what is called the workout period. This

includes seizing any underlying assets that served as loan collateral to the original agreement.

In summary then, a credit agreement typically ends in one of two ways: either naturally after the

successful repayment of all outstanding debts, or with the remaining debt written (or charged)

off after all debt recoveries are taken into account.

It is during this second phase (Customer Acquisition) that the practice of automated credit

the cost of an increased credit risk appetite, or scaling back market share amidst economic turmoil or satiated risk
levels.
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scoring became strategic and even critical. Credit scoring both catered for the rapidly increasing

volumes of credit applications; as well as fuelled the fiery demand for further credit thereafter

as a result of expanded decision-making capacity. From Hand and Henley (1997), Hand (2001),

Crook et al. (2007), Thomas (2009a, pp. 5), and Louzada et al. (2016), statistical credit scoring

is fundamentally a classification task in which loans (new or existing) are predicted to become

either good or bad risks, regarding their future repayment. This is achieved by sampling the

repayment performances of past borrowers and extrapolating from it the future performances

for new borrowers, based on the similarity in the common characteristics between new and old

borrowers. So-called ‘good’ and ‘bad’ classes are created as performance polarisations by which

old loans are first assessed in retrospect. The purpose thereof is to find a statistically formulated

relationship between borrower characteristics and these good/bad classes. The degree to which a

new applicant belongs to either class is then given by this relationship as a "credit score", which

quantifies the applicant’s credit risk on a typical scale of 0 to 999 (higher scores = lower risk). The

resulting credit scoring model (or scorecard) is then implemented within a lender’s computerised

application system, capable of rendering a far greater number of credit decisions based on more

factors than what would have been humanly possible. Moreover, given the statistical nature of

the scorecard, these credit decisions are markedly more objective than those preceding the era of

automated credit scoring.

The work of Durand (1941) first used a statistical method – the Fisher linear discriminant

function – to classify loans as either good or bad in what became an early scorecard. From

Thomas et al. (2002, pp. 2–4, 41–42), statistical scoring was first explored in response to the rise

of metropolitan clothing mail-order companies, which sent goods to customers on credit during

the 1930s. Thereafter, the formation of Fair, Isaac, and Company (now known as FICO8) in 1956

saw the practice of credit scoring gain momentum. One particular milestone is the advent of the

credit card, including BankAmericard in the USA (known today as VISA) and Barclaycard in the

UK in 1966. This feat was largely made possible due to the previous successes of credit scoring,

which was enabled by a simultaneous growth in computing power, as discussed in Thomas et al.

(2002, pp. 3–4) and Thomas (2009a, pp. 4–5). However, it was arguably the promulgation of

the Equal Credit Opportunity Acts of 1975 in the USA (later amended in 1976) that saw credit

scoring being wholly accepted as a decision-support tool throughout the banking industry. These

Acts prohibited discrimination in the credit decision, unless it was "empirically derived and

statistically valid", thereby embedding the use of statistical modelling within the bedrock of

modern retail banking.

It is perhaps unsurprising that the practice of credit scoring, given its success in credit

8FICO was founded in San Francisco by engineer Bill Fair and mathematician Earl Isaac. It sold its credit scoring
systems widely to American lenders, based on the belief that data – when used intelligently – can enhance business
decisions. See https://www.fico.com/en/about-us#history.
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cards, soon spread to other lending products during the 1980s, including term loans, mortgages,

and revolving credit. To this day, the philosophy underlying credit scoring remains rooted in

pragmatism and empiricism; it merely seeks to predict the risk of nonpayment and not explain the

risk structurally, as discussed in Thomas et al. (2002, pp. 4–6) and Thomas (2009a, pp. 5–6). This

pragmatism implies that any characteristic of a borrower – or that of the borrower’s environment

or life stage – that strengthens prediction accuracy, ought to be considered within the model itself.

These variables include those obviously associated with creditworthiness, e.g., the number of

times a borrower has defaulted in the past on other credit products. Other variables pertain to the

overall stability of an applicant, e.g., the time spent at the current employer or the tenure based

at the current address. Some variables explain the financial sophistication and resourcefulness

of an applicant, e.g., possessing credit cards, the tenure at the current bank, being married or

not, the number of financial dependants, or the number of other credit agreements held by the

applicant. However, some variables are prohibited by law in some jurisdictions – despite any

discovered statistical relevance to predicting credit risk – as some legislators commonly believe

their use will lead to unfair discrimination in the credit decision, according to Van Gestel and

Baesens (2009, pp. 98).

Other than the choice of variables, the spirit of pragmatism also surfaced in various other

areas of modelling default risk. An excellent example hereof is that lenders historically estimated

a very specific risk: that of the applicant becoming precisely 90 days past due within the next

twelve months, if approved. The modelling setup is typically that of cross-sectional models in

that two ‘snapshots’ of information are taken at different time points and merged: applicant

information and the subsequent loan performance thereafter. From Thomas (2009a, pp. 6–7) and

Thomas (2010), varying some aspects hereof – specifically, the period between the two snapshots,

or even the default definition – were never of real interest to lenders. The accuracy of the predicted

default risk was not nearly as important as the model’s ability to order applicants by relative

estimates of default risk, i.e., its risk-ranking ability. However, the recent introduction of IFRS 9

(see subsection 2.6.1) certainly changed this perspective according to Skoglund (2017), having

stressed the importance of accuracy over risk-ranking ability.

Given a set of risk-ordered applicants, lenders then tried to find a suitable cut-off score above

which credit is granted and beneath which an application is rejected. This cut-off score was

again set quite subjectively (and changed quite infrequently) using strategic business factors, e.g.,

growing market share or tightening the credit supply, thereby presenting another example of

pragmatism. For a replacement credit scorecard, the cut-off was often chosen such that the new

model theoretically yielded the same number of accept-decisions as that of the previous model.

According to Thomas et al. (2002, pp. 145–146), this strategy seeks to instil confidence in the

new model, regardless of the new model’s supposedly superior discrimination ability between the

good/bad risk outcomes. Once confident, the lender would typically want to realise the benefit of
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better discrimination by steadily lowering the cut-off score, thereby accepting a greater proportion

of applicants whilst maintaining the same risk appetite. However, the fairly recent work of Jung

et al. (2013) provided a more rigorous and dynamic approach to informing this cut-off score more

frequently, based on the good:bad odds ratio and how this ratio itself can vary over time.

Another aspect of the inherent pragmatism in credit scoring is that of the recency of applica-

tion data that is used in model development. While the so-called sample window across which

application data is extracted typically varies from one to five years, longer periods are generally

preferred to encompass as much of the prevailing economic cycle as possible, according to Siddiqi

(2005, pp. 31–33). Moreover, the overall recency of this sample (controlled by its exact starting

and ending points) is vital since it incorporates not only information on economic conditions at

the time, but also the portfolio composition and the effects of a lender’s policies, as discussed

in Thomas et al. (2002, pp. 121–122) and Kennedy et al. (2013). A model estimated from train-

ing data that is observed during a particularly favourable economic cycle may quickly degrade

in its performance as the cycle worsens (or, at least, changes). Similarly, if the development

sample overwhelmingly contains data from the distant past, then the model’s predictions may no

longer agree with the present reality (market conditions or lender strategies), given the inherent

sampling bias towards a long-gone era. On the other hand, too recent a period may prohibit

sufficient data maturity to enable a reasonable forecast. As a trivial example hereof, last month’s

approved applicants, whilst being representative of current market conditions, clearly will not

have enough repayment history from which to model default risk. This trade-off is illustrated in

Fig. 2.4.

FIG. 2.4: The trade-off when choosing the time period for sampling application data.
Recent data may be too immature (or unavailable) while older data may no longer
be relevant to current market conditions or representative of a lender’s portfolio or
policies.

Given the success of scoring the creditworthiness of new applicants, also known as an

application scoring, the late 1970s gave rise to a variant thereof called behavioural scoring that

focuses on existing borrowers. The objective remains that of predicting future nonpayment as in

application scoring. However, this prediction task is complemented with additional data observed

after credit approval, which theoretically enhances prediction accuracy, as explained in Van
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Gestel and Baesens (2009, pp. 101–102) and Finlay (2010, pp. 115, 123–130). This richer data can

include subsequent repayment behaviour, income information, and general spending patterns for

those customers with a transactional/cheque account. Behavioural scoring is generally used as a

decision-support tool in the third phase (Customer Management) within Finlay’s model. There are

two broad goals within this phase: 1) to provide customer service (called operational management)

and; 2) to maximise the return on the borrower relationship over its lifetime (called relationship

management). Examples of the decisions serviced by behavioural scoring include advancing more

credit to the borrower, cross-selling other products, encouraging greater product-use (such as

an overdraft add-on to a cheque account), and adjusting the pricing for existing customers in

managing attrition risk. This last example is particularly important since there is little benefit in

acquiring customers (usually at great cost), only to lose them thereafter to competitor banks.

In principle, changes in the customer’s profile over time often require strategic responses,

which may benefit from an updated view on creditworthiness as estimated by a behavioural score.

Consider an existing borrower (in good standing) that received a salary increase at some point

during the loan life. Naturally, there is expanded scope at this point for raising the credit limit

of this now-wealthier customer, as part of maximising the lifetime return on this relationship.

Conversely, a borrower who becomes unemployed at some point has a reduced capacity to

honour existing debt obligations, even if only temporary. The impact of these events on overall

creditworthiness is certainly dynamic, which in turn advocates the use of behavioural scoring.

That said, it remains unclear how exactly risk-ordering these borrowers by default risk directly

impacts profit-optimality within the wider macroeconomic reality and lender policies at play,

as argued in Thomas (2009a, pp. 7) and Thomas (2010). Perhaps the practice of behavioural

scoring simply fits within the theme of pragmatism, instead of purporting to profit-optimise the

aforementioned strategic decisions mathematically.

More recent developments in literature outline a mind-shift to modelling the likelihood of a

borrower generating profits instead in an exercise called profit scoring, as discussed in Van Gestel

and Baesens (2009, pp. 105), Thomas (2009a, pp. 216–220), with an illustration given in Stewart

(2011). By replacing the default risk application scorecard, an applicant is either approved or

rejected based on a required profit margin, as predicted by the profit scorecard. While this

approach is certainly appealing given its closer alignment with business objectives, profit scoring

is also plagued by many questions, which leaves the practitioner little choice but to be pragmatic

for the time being. Perhaps most notable of these challenges is the base definition of ‘profit’ on

the account-level. The notions of direct and indirect costs become challenging to attribute to the

individual account since these costs typically depend on the situational context of the lender. As

examples hereof, consider fluctuating portfolio sizes, system infrastructure (including the cost

of downtime), and staffing costs. Another challenge is the choice of the time horizon over which

profit is measured before modelling it. Since profitability is generally perturbed by macroeconomic
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conditions, choosing an appropriate time horizon becomes fraught with balancing biases towards

periods of economic booms against maintaining a sample that is still representative of current

market conditions. Despite these challenges, the inherent appeal of profit scoring as the next

logical evolution in credit scoring may spur research initiatives in the near-future, which may

very well solve some of these problems.

FIG. 2.5: Stylised metamodel of overlapping factors in model-driven decision-making
of a modern bank.

From what is already described as the "third revolution" in credit scoring more than ten

years ago in Thomas (2009a, pp. 7), it is clear that the modern-day lender faces increasing

competition on two intertwined fronts: the growing demand for consumer credit, as well as the

proliferation of consumer preference. The latter is especially important when one considers the

ease at which the financially unencumbered consumer can switch to a competing bank and/or

product offering. As a result, the lender becomes more amenable to the idea of profit-optimising

its many strategic decisions using mathematical rigour, instead of relying just on pragmatism

alone. At least from the perspective of making model-driven decisions, the loan amount (or

credit limit); the price (interest rates and/or fees); the price sensitivity of a borrower (competitor

offerings); the market-appealing mix of product features and overall design; customer selection;

the macroeconomic backdrop and timing of the credit offer; managing attrition risk ex post

acquisition; and risk management regarding capital reserves (section 2.5) and loss provisions

(section 2.6) – all of these factors may eventually be modelled together as one dynamical system,
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illustrated in Fig. 2.5. A worthwhile avenue of future research may very well explore the intricate

relationships amongst these components in a bank’s decision-making. It is not hard to imagine

the benefits of a rigorous, all-encompassing, and sophisticated profit-optimisation ‘supermodel’

(or metamodel). The pursuit hereof may soon become tractable, especially when considering the

advancements made in machine learning and artificial intelligence.

2.3 Financial intermediation and its raison d’être

One of the fundamental reasons for the continued existence of banking is due to the so-called

asymmetrical information that exists between bank and borrower. As argued in Leland and Pyle

(1977) and Bhattacharya and Thakor (1993), a bank can generate cheaper and better quality

information on the riskiness of borrowers than individual lenders. This advantage is a historical

by-product of merchant banks having specialised as trade brokers and intermediaries amongst

many agents. These trade brokers generally facilitate trade by matching the buying and selling

sides of two parties, usually in exchange for a service fee, as explained in Van Gestel and Baesens

(2009, pp. 10). In its a role as a trade broker, a bank is able to accumulate and exploit subtle

‘signals’ (behavioural or market insight) across customers and over time. Moreover, the monitoring

of loan repayments on a large scale provides additional information, which further refines the

intermediary’s subsequent risk analyses. To this point, the work of Diamond (1984) first explored

and modelled the role of banks as delegated repayment monitors, which compared favourably to

the individual that lends directly.

Consider that a single wealthy investor (or saver) does not have access to the risk information

ordinarily held (and refined) by an intermediary. As a result, the individual would therefore need

to procure it at great cost to analyse the underlying credit risk of the lending proposition. For every

subsequent loan, the individual lender would need to repeat this laborious assessment, which

multiplies the previous costs. Moreover, the individual lender’s assessments are not corroborated

by or supplemented with risk information from institutional lenders, who may already have

surveyed more complete information on the prospective borrower. In a multi-agent economy,

there is clearly a significant degree of duplication when various individuals try to conduct these

risk assessments, which may quickly escalate and introduce gross inefficiencies. This is perhaps

exacerbated by the fact that these individual assessments can be subjectively biased, incomplete,

or even based on false ‘information’. In fact, Santomero (1984) argues that the lack of adequate

and trustworthy risk information within a credit market likely necessitates a few firms that are

dedicated to sourcing and evaluating said risk information. In this regard, banks are ultimately

well-positioned for such a role given the overlap thereof with their classical roles as wealth

custodians, transactors, lenders, and exchangers, as illustrated in Fig. 2.6.

Instead of conducting rigorous risk reviews on each prospective borrower, the individual
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FIG. 2.6: Illustrating the information brokerage function of a bank and its benefit over
direct lending and borrowing. Banks can manufacture superior risk information
over time as delegated monitors and by eliminating duplicate and/or incomplete
risk assessments. Risk information is continuously refined by repeating this process
when granting new loans, all of which reduce lending inefficiencies compared to
direct lending.

lender can simply charge a single risk-insensitive interest rate as an easier alternative. However,

and as argued in Bhattacharya and Thakor (1993) and Van Gestel and Baesens (2009, pp. 12), a

single price will likely discourage low-risk borrowers as they will seek better rates elsewhere.

Having exited the applicant pool, the lender is left with only higher-risk borrowers that are

typically more desperate for funding relative to low-risk borrowers – an acquisition bias called

adverse selection in microeconomic theory. This bias arises naturally in credit markets due to

imperfect information and often leads to a phenomenon called credit rationing. In particular,

banks offer credit at a certain price level such that loan demand exceeds supply. However, a bank’s

expected return can actually reduce if the loan interest rate (or collateral requirement) increases

beyond a certain point when trying to cater for the higher demand, as originally modelled in

Stiglitz and Weiss (1981). Credit rationing therefore implies that some applicants will simply

never be credit-approved and that risk-insensitive rates will likely bankrupt the individual
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lender.

Intermediation theory remains valid in modernity even when considering the recent advent

of electronic marketplaces ‘replacing’ traditional banks, i.e., so-called P2P (peer-to-peer) lending.

To this point, Berger and Gleisner (2009) studied the role of intermediation on the digital

micro-finance platform called Prosper.com. These P2P-platforms serve as electronic markets

that mediate amongst individual borrowers and small-scale individual lenders, including the

subsequent sale of these loans to other interested parties on the same platform. However, the

embedded credit-screening process produces risk information that is functionally similar to that

of a traditional intermediary (or bank). Furthermore, the Prosper.com platform hosted informal

and decentralised social networks of borrowers and lenders, who can vouch for one another. The

resulting friend endorsements are then useful in assessing creditworthiness for future loans via

the platform. In fact, Freedman and Jin (2008) showed that the monitoring of loan repayments (as

conducted by these small online communities) encouraged loan repayment overall and contributed

to lower credit risk, which is again similar to traditional banks as delegated monitors. Both

of these studies align with the propositions of Sarkar et al. (1998) in that the proliferation of

electronic markets will simply lead to new forms of intermediation (e.g., ‘cybermediaries’) instead

of displacing intermediation theory entirely, as initially espoused.

As trusted financial intermediaries amongst transacting agents, banks are mainly in the

business of pooling shorter term liquid cash deposits and transforming these into longer term

illiquid loans. Put differently, the surplus funds of savers are made productive by lending it

to borrowers/consumers. This feat is generally achieved when banks fulfil their so-called asset-

transformation function, as illustrated in Fig. 2.7 and reviewed in Santomero (1984). A bank

offers to pay interest on these deposit contracts, thereby attracting buyers (or ‘depositors’). The

cost thereof is offset by then charging interest and fees when lending some of these deposits to

borrowers, after which the bank retains the difference as revenue. When compared to purchasing

fixed-income securities with similar yields, deposit contracts may have cheaper transaction costs,

provides liquidity, and offers convenience. This last point is important since depositors would

alternatively need to assume the role of an investment analyst, as argued in Merton (1977). By

implication, a depositor would need to hunt for a risk-equivalent security from each competing

firm; then scrutinise the balance sheet and management (amongst other factors) of each security,

before selecting one to purchase. Clearly, this is an arduous and inconvenient process compared

to purchasing a simple deposit contract with a similar yield.

Another important facet of these deposit contracts is their maturity profiles, which can range

from shorter term current accounts (or demand deposits) to longer term fixed deposits (or term

deposits). Lending is only truly viable as long as a bank can fund the sporadic withdrawals (and

maturing term deposits) of depositors. A bank attempts to manage this cash flow ‘traffic’ by
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holding a sufficiently stable fractional reserve of cash, as discussed in Van Gestel and Baesens

(2009, pp. 9–13, 20–21). Moreover, a bank uses its risk expertise to ensure that its subsequent

lending activities are sufficiently diversified. This diversification includes balancing the appetites

and needs of borrowers (and the bank’s profit potential) against the risk of capital loss associated

with lending to the very same borrowers. Risk-based lending therefore demonstrates how the

previous information brokerage function complements the transformation of deposits into loans.

FIG. 2.7: Illustrating the asset-transformation function of a bank wherein numerous
liquid deposits (usually shorter term) are collected and used to fund more illiquid
(usually longer term) loans to borrowers. A fractional reserve is maintained to fund
sporadic withdrawals. Arrows indicate the flow of funds.

2.4 The quest for bank liquidity and overall system stability

To better understand the role of trust (and its collapse) in modern banking, the basic mechanics

of a typical bank and its funding are discussed in subsection 2.4.1. Sources of funding are

broadly categorised across a depositor franchise, debt-based instruments, retained earnings, and

equity originally invested into the bank. These funds are primarily re-issued as risk-bearing

loans, though banks are increasingly diversifying their revenue streams across fee-producing

services. Of course, subsequent deposit withdrawals and maturing debt obligations pose a

fundamental risk to a bank in the form of a liquidity shortage. The strategic management

of this particular risk, reviewed in subsection 2.4.2, is made non-trivial largely due to unexpected

market movements, behavioural dynamics of borrowers, and the prevailing business strategy.

In light of this complexity, some authors have devised mathematical models to help manage

bank liquidity, as discussed in subsection 2.4.3. However, managing a single bank’s reserves

independent of other banks may still fail in fending off a widespread liquidity crisis. As such,

many governments have since devised stopgap solutions such as deposit insurance and lender
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of last resort strategies. Though these interventions can indeed stabilise a system somewhat,

they also carry inherent trade-offs (see subsection 2.4.4) and other costs. Ultimately, the task

of maintaining adequate liquidity will likely remain an endearingly complex and never-ending

quest for any bank, which arguably justifies their unique role in modern society even further.

2.4.1 The mechanics of a modern bank and its funding

Historically, a bank was largely funded by the deposits collected from individuals (called retail

deposits), corporates, small-to-medium-sized enterprises (SMEs), governments and parastatals.

Other external liabilities include interbank funding (since banks lend to one another) as well as

debt securities issued by the bank to raise capital from willing buyers, as explained in Dermine

(2007, pp. 495–497) and Van Gestel and Baesens (2009, pp. 27). The funding mix between the

deposit franchise and the issued debt securities (or institutional funding) can vary by bank,

time, and even the markets in which they operate. As an example, FirstRand Bank in South

Africa maintained a 64%-36% split between deposit and debt instruments respectively; the

competing Standard Bank group had a similar funding mix of 63%-37% – see the financial results

of FirstRand Bank Limited (2019) and the Standard Bank Group (2018). These two South African

banks purposefully aim to fund their operations primarily from an extensive depositor franchise,

given the particular structure of the South African credit market. Specifically, the high degree of

contractual savings held in pension/provident funds and asset managers, poses as an attractive

funding source for South African banks. Moreover, ZAR-denominated transactions are entirely

cleared and settled within the South African banking system, which further supports the idea of

using domestic deposits instead of relying on foreign funding.

Debt-based funding programmes issued by a bank are typically hierarchical, with some debt

types enjoying greater priority regarding their repayment than others when facing bankruptcy.

This hierarchy can range from senior tranches down to junior debt9, as illustrated in Fig. 2.8.

From the investor’s perspective, the higher debt tranches are safer bets in general than their

lower-tranche counterparts exactly due to the former’s elevated repayment priority. This was

evidenced in Schuermann (2004b) when comparing bond repayments during the 1990–91 and

2001 recessions, as well as in Schuermann (2004a) when studying empirical losses suffered on

defaulted corporate bonds. However, this presumption of low risk is not always the case, with

violations in the so-called absolute priority rule (or APR) more common than one would think,

as studied empirically in Longhofer, Carlstrom et al. (1995). In essence, this principle states

that a distressed debtor shall receive no value from his assets until all creditors have been

repaid, with priority given to senior creditors. The authors modelled circumstances where the

strategic violation of APR would actually be optimal for all bankruptcy participants, including

9Subordinated debt may also qualify for up to 50% of tier 2 regulatory capital held against unexpected losses, as
discussed in Van Gestel and Baesens (2009, pp. 351) and later in section 2.5.
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FIG. 2.8: Illustrating the seniority of different types of debt holders, given default.
After bankruptcy proceedings, bank loans are honoured first from the proceeds,
followed by the bondholders, then the shareholders. Adapted from Schuermann
(2004a) and Van Gestel and Baesens (2009, pp. 27, 67).

the bondholders themselves. Primarily, the prevalence of APR violations can depend on the

cost of bankruptcy versus the benefit of reorganising a distressed firm (instead of pursuing its

liquidation).

Assets Liabilities and equity

Loan assets (advances) Demand deposits
Cash and government bonds Term deposits
Interbank loans Interbank deposits
Investment securities Debt securities
Property and equipment Equity (capital & reserves)

Equity (shareholder’s equity)

TABLE 2.1: A simplified balance sheet of a bank.

Other than debt and deposits, a bank has liabilities to its owners in the form of reserves, as

well as retained earnings and capital originally invested by its shareholders. Capital reserves

may act as financial buffers against economic headwinds in the future and absorb unexpected

losses, as discussed in section 2.5. For expositional purposes, typical assets and liabilities are

shown in a simplified version of a bank’s balance sheet in Table 2.1. A bank may further hold

certain off-balance sheet items, which can create a cash flow contingent on some event in the

future, as explored in Dermine (2007, pp. 492). Examples hereof include loan commitments,

guarantees, and financial derivatives (such as forwards, options or swaps) of which the payoffs
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are related to movements in interest rates, exchange rates, commodity or equity prices.

Apart from holding adequate capital reserves, most of the bank’s procured funding is trans-

formed into credit assets, which will then generate interest income and fees for the bank over time.

The type of borrowers can range from retail customers, SMEs, larger corporates, governments,

as well as other banks. From Van Gestel and Baesens (2009, pp. 19), Finlay (2010, pp. 2–8),

and Phillips (2013), a bank may offer various types of loans, which can be characterised using

the following common factors. A loan may be secured by underlying collateral or be completely

unsecured (e.g., mortgages and auto loans vs. term loans); it may have a fixed repayment term

or be open-ended (e.g., amortising loans vs. credit cards); it may have different fee schedules

that apply conditionally (e.g., restructuring fee vs. monthly account fees); and it may have differ-

ent repayment schedules (e.g., instalment finance vs. bullet loans) that provide the bank with

revenue streams across different time horizons. Furthermore, a bank may securitise10 various

credit assets into more liquid and marketable securities to be sold to other agents. The proceeds

thereof can be used as an additional funding source with which to finance new loans that may

yet again be securitised. Other than investing in credit assets, a bank may use the funds to buy

equity investments in other companies as well as hold derivative instruments. However, these

investment decisions are not strictly unique to core banking (or lending) activities and therefore

outside of the scope of this study.

In addition to the interest income and endowments earned by a bank, another main source

of income are fees that are levied for services rendered to the bank’s customers, sensibly called

non-interest revenue (NIR). Income derived from trading activities and payouts received from

insurance contracts are typically included in a bank’s NIR, as discussed in Dermine (2007, pp. 495–

498) and Van Gestel and Baesens (2009, pp. 17–23). Furthermore, Allen and Santomero (2001)

showed that modern banks have deliberately diversified their traditional asset-transformation

role (from which they derive interest income) to include more fee-producing activities. These

services can include the management of trusts, mutual funds, mortgage banking, transaction

services, insurance brokerage, underwriting annuities, and trading. As an example, the fin-

ancial results of FirstRand Bank Limited (2019) demonstrate the active pursuit of revenue

diversification, with an NIR reported at 42.5% of total income.

All of these funding sources attract an expense of sorts, e.g., interest on debt or dividends

for equityholders. In particular, a bank will likely have to pay interest to depositors in exchange

for using deposits as a loan funding source. Another form of payable interest is to holders of

any debt securities that the bank may have issued in the past. More importantly, a bank has a

special expense directly related to realised credit risk called an impairment charge (or loss). This

10See Bhattacharya and Thakor (1993), Van Gestel and Baesens (2009, pp. 76–81), Vento and La Ganga (2009),
and subsection 2.6.2.
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Item Symbol

+ Interest income and endowments a
- Interest expense b
- Impairment charge c

Net Interest Income (NII) x1

+ Fees and commission income d
+ Trading and investment income e
+ Insurance income f

Non-Interest Revenue (NIR) x2

Income from operations x3
- Operating expenses g

Earnings before tax x4
- Tax h

Earnings after tax x5

TABLE 2.2: A simplified income statement of a bank. Plus-signs depict income and
minus-signs represent expenses, all of which are respectively denoted by a, . . . ,h.
Italicised line items are subtotals, expressed as x1 = a− b− c, x2 = d+ e+ f , x3 =
x1+x2, and x4 = x3−g. Net profit is expressed as x5 = (a−b−c) + (d+e+ f ) − g − h.

charge is usually offset against the difference between interest earned and interest paid, which is

in turn called net interest income (NII). Lastly, a bank incurs various operating expenses when

conducting its risk-based business, e.g., staff salaries, marketing, audit fees, computer expenses,

repairs and maintenance, insurances, lease charges, and donations. These various income and

expense items are shown in a simplified income statement in Table 2.2.

2.4.2 Managing the fundamental risk of illiquidity

Transforming deposits into illiquid loans certainly poses the fundamental risk of not being able

to fund withdrawals beyond a particular level. This is particularly pertinent when depositors

rush en masse to reclaim their funds, thereby triggering a possible liquidity crisis. However, the

definition of ‘liquidity’ can be ambiguous at times and certainly contextual, as explored in Vento

and La Ganga (2009) and Sekoni (2015). So-called market liquidity generally refers to the speed

at which an asset can be converted into cash without significant affecting its price. In contrast,

funding liquidity (or bank liquidity) is implicitly described by Basel Committee on Banking

Supervision (2006b) as a type of ‘reservoir’ from which a bank can draw to support financial

intermediation. Vento and La Ganga (2009) describes ‘liquidity’ more broadly as the ability of

a bank to coordinate an equilibrium between financial inflows and outflows over various time

periods; a definition adopted in this study. These various cash flows are inextricably connected to

the asset-liability mix of a bank. Accordingly, the inability of a bank to meet maturing short-term
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obligations from available funding is then called liquidity risk, where ‘obligations’ and ‘funding’

can both relate to either assets or liabilities. In particular, paying maturing liabilities and meeting

scheduled draw-downs on previously-granted credit assets are both obligations.

The main difficulty in managing a bank’s liquidity risk is due to the differences in the maturity

dates between extended loans and a bank’s funding liabilities, both of which are typically interest-

sensitive. A so-called ‘gap-analysis’ (or maturity ladder) attempts to find significant differences

between total cash outflows versus inflows at each successive future period – a trivial exercise

for fixed cash flows across fixed timelines, with an example thereof given in Fig. 2.9. However,

uncertain cash flows complicate this exercise due to behavioural elements (e.g., defaulting),

as discussed in Dermine (2007, pp. 495, 516–525), Vento and La Ganga (2009), Van Gestel

and Baesens (2009, pp. 33–37), and Sekoni (2015). To incorporate the inherent uncertainty

underlying such a gap-analysis, one may try to forecast loan ‘production’ (or sales) into the future;

alternatively, try to forecast future draw-down levels on credit facilities. However, it remains a

non-trivial exercise that depends on product design and price elasticity. Another complicating

factor is that of the chosen business strategy, which generally has either a value-driven or a

growth-driven focus. According to Van Gestel and Baesens (2009, pp. 43–44), the former tries to

maximise long-term profitability by preferring good credit quality, whilst the latter may sacrifice

credit quality in exchange for short-term growth in market share.

Fundamentally, obligations should not exceed available funding from a cash flow perspective.

While an equilibrium would be ideal, a so-called negative liquidity gap is preferred over its

converse, as illustrated in Fig. 2.9 for periods 2 and 3. To this point, a positive gap implies that

total outflow exceeds total inflow, which can signal a liquidity crisis at the relevant periods. In

such an event, a bank may have little choice but to procure expensive emergency funds by issuing

debt or by selling some of its assets, in an effort to remain liquid and a going concern. However, a

negative liquidity gap carries an opportunity cost in that excess liquid funds are unproductive or

even unprofitable. From Allen and Gale (2017), this opportunity cost manifests when compared to

the better returns of more productive long-term loan assets as an alternative to holding liquidity.

In addition, excess funding may carry interest-rate risk related to the banking ledger, i.e., adverse

movements in funding rates that negatively affect the financial statements. Note that this

discussion excludes interest-rate risk affecting market positions held in the trading ledger, which

are typically covered when managing market risk (see section 2.6). According to Dermine (2007,

pp. 516–519), Van Gestel and Baesens (2009, pp. 35–37), and Finlay (2010, pp. 164–166), the

most notable of these interest-rate risks is that of repricing risk. Having matched the maturing

cash flows of assets against maturing obligations at each period, subsequent rate movements can

cause net losses (or shortfalls) after the fact. In addition, repricing risk can arise when there are

differences in rate type (floating vs. fixed) or in maturity profiles (short-term vs. long-term), as

measured between assets and liabilities in both cases.
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FIG. 2.9: Bank liquidity gap analysis, showing a widening shortfall in available
funding to support intermediation from t ≥ 4. For example, the cash outflows from
total loan assets at t = 4 are forecast to be ZAR 850 billion. At the same time, cash
inflows from scheduled new liabilities or revenue from credit assets are forecast
only to be ZAR 750 billion. Additional funding will be needed to cover the shortfall
of ZAR 100 billion. Recreated from Van Gestel and Baesens (2009, pp. 34).

Banks generally prefer to borrow short-term and lend long-term, since short-term funding

is typically cheaper than long-term funding regarding rates. However, short-term funding can

heighten liquidity risk as these liabilities become due more frequently than the longer-term

variety, even if the latter is more expensive. Consider financing a single long-term fixed-rate

mortgage using many short-term smaller deposits. Apart from securitisation (see subsection 2.6.1),

the bank cannot truly liquidate the loan asset to fund maturing deposits, which implies sourcing

funds from elsewhere lest a liquidity crisis is triggered. If the maturation is uncertain, then the

bank may decide to maintain a light positive liquidity gap at times to realise higher returns.

Given the business strategy and market conditions, banks may very well switch between these

two types of liquidity gaps in realising either benefit, with the trade-offs thereof summarised

in Fig. 2.10. Ultimately, funding sources are often blended across differing maturity profiles to

balance cost efficiency against overall liquidity risk.

Another challenge in managing liquidity risk is that of optionality, which is the risk of sudden

and unexpected changes in either the maturities or the balances of loan assets. Optionality is

largely unavoidable due to the discretionary nature of borrower behaviour, commonly presenting
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FIG. 2.10: Two types of hypothetical bank liquidity gaps, with advantages and disad-
vantages. Denominated in ZAR billions.

as the early settlement (or ‘pre-payment’) of a loan. In this case, early settlement debilitates the

force of interest and thereby affects overall bank profitability, as discussed in Van Gestel and

Baesens (2009, pp. 36–37). Borrower behaviour itself is more difficult to model than even relatively

cyclical or seasonal cash flows (when aggregated). As such, banks often use macroeconomic

scenario analyses that model borrower behaviour as a function of consumption, prime lending

rates, inflation, economic growth, etc. These scenarios help inform a range of different liquidity

needs, for which a bank will hold a general liquidity buffer. The exact level, according to Dermine

(2007, pp. 522–525) and Van Gestel and Baesens (2009, pp. 47–51), generally depends on the

overall business strategy of a bank, seasonality of future cash flows, ease of borrowing and its

related costs, and expected macroeconomic turbulence. This rather short-term buffer should not

only service the average level of immediate depositor withdrawals, but also be large enough to

fund new loans that are expected to be granted over the short-term. Moreover, the liquidity buffer

acts as financial grease to the friction of payment delays, and is first consumed by maturing

contingent liabilities before designated assets are liquidated. Both liquidity and interest-rate

risks are sufficiently significant that they are attributed to its own organisational function, known

as asset & liability management (ALM).
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2.4.3 A model for managing a bank’s reserves

Via banks, depositors and borrowers are able to invest and consume at will and at random

times, thereby sharing both liquidity and liquidity risk amongst themselves. This was first

mathematically modelled in Diamond and Dybvig (1983) across multiple equilibria (or outcomes)

for simple demand deposits. The authors found that 1) when calm prevails, liquidity and risk-

sharing can be efficient; 2) when agents panic and withdraw their funds, a bank run occurs that

disrupts both liquidity and risk-sharing, which impacts overall production in the economy. Banks

that are funded purely with demand deposits will likely be even more concerned with maintaining

confidence amongst agents. To this point, sources of angst can include any commonly observed

event in the economy, e.g., a bad earnings report, a widely publicised run at another bank, a

pessimistic government forecast, or even sunspots (given the possible interference with electronic

systems). Historically, banks temporarily suspended withdrawals as a defence mechanism against

bank runs, e.g., the US banks imposed a week-long banking ‘holiday’ during the 1930s. This

strategy is more formally known as suspension of convertibility in that deposits are temporarily

banned from being converted back into cash. However, suspending convertibility proved to be

sub-optimal for risk-sharing since banks do not know exactly how many withdrawals will occur

at future periods; the threat of such a suspension may nonetheless erode confidence further and

impact liquidity thereafter.

In optimising a bank’s balance sheet, there are two main literature branches outlined in

Baltensperger (1980) and Santomero (1984), namely, models for reserve (or liquidity) management

and for portfolio composition. The first branch, discussed in this section, deals with optimising

the quantity of primary/secondary reserves held by a bank to offset stochastic reserve losses,

caused by inadequate deposit levels. Reserve modelling has its origins in Edgeworth (1888) who

studied periodic withdrawals from the Bank of England and conjectured that the "calculus of

probability" may govern the limit of this reserve kept by a bank. Today, liquidity management is

essentially treated as a problem of inventory optimisation given stochastic demand in the field of

operations research.

As a basic model of managing this reserve, consider two asset types: non interest-bearing

liquid reserves R and interest-earning assets A yielding rA net of all costs. Assume that the bank

is a so-called price-taker in the credit market and cannot adjust rA based on the volume of loans it

extends. Alternatively, a modification is provided in Baltensperger (1980) wherein a bank relates

rA negatively to the amount of credit extended. However, this modification does not change the

reserve model fundamentally and is therefore discarded in this study. Assuming price-taking

then, let W denote the stochastic withdrawals, net of all deposits, credit line usage, and loan

repayments, with its associated probability density function given as f (W). If the reserves are

insufficient to offset net withdrawals, i.e., W > R, additional emergency funds must be procured
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at a cost c. For simplicity, assume this cost is proportional to the reserve deficiency W −R itself,

i.e., the cost per additional unit of currency needed. The optimisation problem is then to balance

the amount of reserves kept for withdrawals against the amount with which to fund new loans,

each with its associated costs. To maximise expected profit from deposits D, a one-period11 model

is accordingly specified as

R̃ = rAR−
∫ ∞

R
c(W −R) f (W)dW . (2.1)

The function R̃ in Eq. 2.1 has two main terms. First, there is the opportunity cost rAR on

holding bigger reserves R, which could have been used for funding loans yielding rA. Second,

there is the expected cost of having a deficient reserve, i.e., the liquidity cost. As such, for each

extra unit of currency held in the reserve, the bank not only incurs a marginal opportunity

cost of d
dR (rAR) > 0, but also enjoys a marginal reduction in liquidity cost −c

∫ ∞
R f (W)dW < 0.

Minimising the sum of these cost items means equating them, i.e., the first-order condition of

this optimisation problem will give a reserve amount that satisfies

rA = c
∫ ∞

R
f (X )dW . (2.2)

In other words, reserves are set such that the probability of a deficient reserve
∫ ∞

R f (X )dW equals

the ratio rA
c , as a fundamental condition to be met in most reserve models. However, one should

be careful when interpreting these parameters at face-value. The cost of a deficient reserve c

may not be linear in reality and can be affected by uncertain access to funding markets at the

time. Furthermore, the net yield rA, although net of all costs and inclusive of all fees charged by

the bank, implies that optimal reserves only depend (relatively) on interest rates, though not

(absolutely) on the interest amounts themselves, which seems unrealistic.

Should it be necessary, regulatory reserve requirements can be incorporated into the afore-

mentioned model without drastically altering the economics thereof. The major effect of regulatory

requirements would simply amount to altering the critical value against which withdrawals

are compared. That is, the new reserve deficiency W > R∗ is used instead of the previous W > R

where R∗ may incorporate various legal requirements, as originally modelled in Poole (1968) and

reviewed in Baltensperger (1980). Furthermore, better information on a bank’s customers may

reduce the variance underlying the withdrawals W, which may decrease overall reserve costs.

This was previously incorporated exogenously in Santomero (1984) as a third ‘information-cost’

term, which was simply subtracted from Eq. 2.1. However, its quantification may be challenging

in reality.

The reserve model developed so far clearly depends a great deal on the withdrawal distribu-

tion f (W) as a proxy for deposit fluctuations. It is argued in Baltensperger (1980) that a Gaussian
11Most of these models were designed for short-term horizons, e.g., managing the bank’s reserve position daily and

supplementing shortfalls from the interbank market or the central bank, as explained in Poole (1968).
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distribution can approximate f (W) since W is the sum of a large number of (presumably) inde-

pendent changes across the balances of individual deposit accounts. This Gaussian assumption

can only ever be an approximation since the upper limit of W will be equal to all deposits initially

held by a bank, which is a finite amount, thereby contrasting the Gaussian distribution’s infinite

domain. The author further argues that if one assumes that the net withdrawal distribution is

symmetrically anchored around 0 (for simplicity), i.e., E(W) = 0, then optimal reserves R can

be defined using a multiple b of the standard deviation of W (denoted as σW ), where b may be

related to the previous ratio rA
c . This R is then expressed as

R = bσW . (2.3)

A few intuitive remarks on f (W) are in order. It is quite reasonable that f (W) ought to depend

on the characteristics (e.g., volume, maturity structure, and costs) of the deposits held by a bank,

as formalised in Miller (1975). Should initial deposits D increase overall, it is likely that σW will

also increase and, by extension, so too shall the optimal reserve R – though not proportionally.

This relationship is sensible as long as the increased D occurs alongside an increase in the number

of (independent) sporadic withdrawals. Finally, if D is redistributed towards more volatile deposit

types (e.g., more demand deposits than term deposits), then both σW and R will reasonably

increase as well, and vice versa.

2.4.4 Two interventions to reduce bank fragility

Previous banking failures and the erosion of trust through the ages (as reviewed in section 2.1)

can motivate the design of more focused interventions to safeguard both bank and borrower.

Apart from a bank suspending its deposit convertibility, there are two broader government-run

instruments to help guard against liquidity shocks reverberating across the financial system

itself. These instruments include deposit insurance (DI) and a lender of last resort (LLR) strategy.

The work of Merton (1977) first explored DI schemes and the costing thereof using option

pricing theory. Whilst successful, DI schemes can be expensive with the costs thereof often

borne directly by taxpayers following a liquidity crisis, leading to a deadweight loss. Apart from

costs, DI schemes pose an inherent disincentive for depositors to demand interest rates that are

commensurate with the bank’s risk appetite. Moreover, if the DI premiums charged to banks are

risk-insensitive, as is commonly the case according to Bhattacharya and Thakor (1993), then DI

schemes may inadvertently encourage excessive risk-taking amongst some banks in the system.

Some authors have, however, found little empirical evidence between DI schemes and greater

risk-taking as a result thereof, while others found a worrying relationship between DI schemes

and bank failures, as reviewed in Santos (2006). In fact, the work of Anginer et al. (2014) studied

the empirical impact of DIs in averting contagious bank runs across 96 countries during (and

preceding) the so-called 2008 Global Financial Crisis (GFC). While systemic stability was greater
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during the crisis, DIs generally had a detrimental effect on the risk of bank failure during calm

periods. Ultimately, the latter outweighed the benefit of stability during the crisis across the full

sample period.

Amongst the many proposals to improve DI schemes, most notable is that of pricing their

premiums fairly given a bank’s underlying risk profile. According to Bhattacharya and Thakor

(1993) and Santos (2006), this is a non-trivial exercise primarily because of asymmetric informa-

tion between bank and insurer. Moreover, risk-sensitive DI schemes will be particularly difficult

to implement across the banking system without causing 1) safer banks cross-subsidising riskier

banks; 2) increased regulatory inspection to characterise banks’ portfolios. The first outcome dis-

torts the efficient market allocation of deposits amongst banks, as demonstrated in Taggart and

Greenbaum (1978) and Chan et al. (1992). The second outcome mandates intrusive monitoring,

which is not without its costs as well. That said, linking capital requirements intrinsically to DI

premiums can satisfy the aforementioned conditions. In particular, the work of Chan et al. (1992)

showed that an equilibrium exists when riskier banks select lower capital levels at the cost of

higher premia per dollar of insured deposits; while safer banks choose lower premia afforded by

higher capital requirements.

As an alternative to DI schemes, the prevailing central bank can instead provide emergency

funding to distressed banks under an LLR arrangement. Given the historical size of most central

banks, it was only natural for them to step in during liquidity crises and lend to distressed

banks. According to Santos (2006) and Allen and Gale (2017), LLR setups generally predate

DI schemes with the Belgian National Bank being the first to fulfil an active LLR role in the

1850s, followed by the Bank of England (amongst others) in the 1870s. A common rule at the

time was that rescued banks must still be solvent even if illiquid, which theoretically reduces

the LLR’s risk exposure somewhat. However, many authors have since questioned the mythical

separation between illiquidity and insolvency in practice. Furthermore, the whole purpose of an

LLR strategy is to insure against liquidity shocks, which is counteracted when the central bank

withholds credit from some distressed banks but not others. Similar to DI schemes, liquidity

assurances from a central bank can also result in a perverse incentive for banks to increase

credit risk deliberately and/or maintain greater positive liquidity gaps, as argued in Diamond

and Dybvig (1983). Ultimately, both DI and LLR schemes are not perfect and are still actively

researched and refined by governments to this day.

Negating the perverse incentives (or moral hazards) that are exerted by both DI and LLR

setups is difficult, especially at the system level. Perhaps a better course of action is their joint

incorporation into broader bank regulation and integrated monetary policy; at least according

to various authors, as reviewed in Santos (2006) and Allen and Gale (2017). In fact, a broader

problem with the design of most DIs, LLRs, and even capital regulation, is that of leaving systemic
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risk as an exogenous factor when modelling the risk of an individual bank failure. The research

on incorporating any single bank’s contribution to the overall risk of system failure is still fairly

limited, as is the case with liquidity regulation itself. That said, high-level liquidity requirements,

such as those in the recently introduced Basel II Capital Accord (see section 2.5), were prudently

promulgated in the 2010s, largely in response to the 2008 GFC. These requirements are centred

mainly on two measures: the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio

(NSFR). The LCR measures a bank’s ability to weather a deep liquidity crisis for at least 30 days,

while the NSFR quantifies the degree of maturity mismatches between assets and liabilities.

Along with capital regulation, many policymakers believe that minimum liquidity requirements

can help stabilise the banking system.

Although holding excess liquidity carries an undeniable opportunity cost, banks may offset

this cost by strategically lending excess liquidity to the interbank market during crises. When

liquidity becomes scarce, asset prices necessarily become volatile as the market tries to reach

an equilibrium, according to Allen and Gale (2017). That said, interbank loans carry a form of

credit risk (called counterparty risk) since the borrowing bank in distress can fail to repay even

the emergency funding in due time. In turn, adverse selection can occur during a liquidity crisis

wherein only the riskier banks are actively seeking interbank loans, to which lenders respond

by charging higher interest rates. However, it was demonstrated in Heider et al. (2015) that

lenders may fearfully continue to hoard liquidity in some extreme cases despite the allure of

higher interest rates, primarily due to the asymmetric information amongst banks. Alternatively,

the interest rates of interbank loans may become too high even for distressed borrowers, which

results in a similar market breakdown. In these cases, a central bank may yet again have to

provide emergency12 liquidity, even though doing so causes moral hazard.

In conclusion, a bank’s quest of maintaining sufficient liquidity within a fragile and dynamic

system is never-ending and non-trivial. At the one end, depositors must be assured lest the

collapse of their trust triggers a bank run and a liquidity crisis. At the other end, creditworthiness

must be maintained if banks are to access the interbank market for debt-based funding. Add to

this mix the nature of banks as profit-seeking firms within dynamic markets, then the inherent

complexity of banking quickly manifests. Moreover, interventionist schemes such as DIs and

LLRs are well-intentioned in safeguarding banking fragility, though can introduce secondary

challenges in addition to being costly. In some cases, these setups may even exert the opposite

effect than intended, as demonstrated in Anginer et al. (2014). On the other hand, regulatory

requirements such as minimum capital levels can rebuff unexpected losses and protect bank

liquidity during crises, though again at a cost. The fairly recent idea of regulating liquidity itself

12This was indeed the case during the 2008 crisis; both the US Federal Reserve and the European Central Bank
injected liquidity into their respective markets, albeit in different forms - see Vento and La Ganga (2009) and Heider
et al. (2015).
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is quite rational, though even less well-understood when compared to capital regulation. As

phrased in Allen and Gale (2017), it is unclear even what exactly to argue about when it comes to

liquidity regulation.

2.5 Maintaining capital: the Basel Capital Accords

Even though banks are commercial organisations, they function differently from other firms

and uniquely affect the economy at large. From Santos (2006), Dermine (2007, pp. 530–532),

Van Gestel and Baesens (2009, pp. 53–55), and Allen and Gale (2017), the classical argument for

governmental intervention is largely premised on the risk of a banking system failure. Public

fear or reputational damage may trigger bank runs, possibly prompting a liquidity crisis that

may in turn propagate across the banking system. Moreover, general market dysfunction can

manifest due to asymmetric information between bank and depositor, especially regarding a

bank’s risk-taking levels. Depositors may very well request higher interest rates if they knew

the risks underlying the use of their funds. That said, a bank’s risk-taking may be naturally

counteracted by the possibility of reputational damage, as quantified in Bhattacharya and Thakor

(1993). The untarnished reputation of a bank partly assures the safety of the deposited funds,

which is self-evident when reviewing banking history in section 2.1. However, reputation can only

deter excessive risk-taking when the associated publicity of choosing lower-risk projects becomes

rewarding in its own right, which may be unsustainable in a competitive market. Ultimately,

there is clearly a case to be made for at least some type of public oversight to maintain confidence

in the banking system.

Many countries have drafted various types of governmental interventions to protect retail

deposits and bank liquidity, including DI and LLR schemes (as reviewed in Santos (2006) and

section 2.4). Of these interventions, perhaps the most prominent type is that of capital regulations

imposed on all national banks by some government agency. While bank capital can serve as a

source of funds (in the form of equity) to enable lending, it is the risk-bearing function thereof

that is more important for regulators. According to Taggart and Greenbaum (1978), bank capital

can absorb any deterioration in loan asset quality, thereby stabilising the bank’s overall asset

values that may otherwise be in flux. By doing so, the probability of insolvency is directly affected,

thereby protecting depositors and shoring up the public’s confidence in the bank, which in turn

limits the scope for a bank run. Moreover, the shareholders of a bank enjoy risk reduction since

capital will ultimately reduce potential losses in the event of insolvency. Lastly, a common belief

amongst bankers is that holding capital can deter excessive risk-taking when lending.

However, instating national mechanisms to protect banks from liquidity shocks will unavoid-

ably interfere with the free market and disturb its equilibrium, possibly inhibiting economic

growth objectives. In particular, regulated reserve requirements will impose a ‘tax’ of sorts when
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trying to raise funding from depositors, thereby inhibiting financial intermediation, which was

demonstrated in Taggart and Greenbaum (1978). Moreover, many studies have since shown that

capital requirements are not as effective in controlling risky lending or curbing liquidity crises as

one would otherwise believe – see Bhattacharya and Thakor (1993) and Santos (2006). In fact, the

general equilibrium models of Besanko and Thakor (1992) showed that greater capital require-

ments can reduce a bank’s reliance on deposit funding. In turn, this reduction then decreases

the interest rates offered by banks for deposits due to the weaker demand. Simultaneously, the

cheaper cost of funding means equilibrium loan rates decrease as well, which leads to declining

revenue at first, though is counteracted by greater loan sizes. This implies that higher capital

requirements benefit borrowers but hurt depositors and shareholders, even if such requirements

can induce safer lending.

Apart from imposing capital and liquidity requirements, a central bank (or a relevant public

agency) commonly regulates three other aspects of banking: market participation (by issuing/re-

voking a banking licence), the money supply (by setting the prime lending rate), and information

availability (by requiring the public disclosure thereof in annual reports). However, the need for

cooperation amongst central banks became increasingly clear as cross-border credit flows surged

and international lending grew, as discussed in Van Gestel and Baesens (2009, pp. 55–57) and

Baesens et al. (2016, pp. 5–6). This need was further underscored by subsequent liquidity crises

and large international banking13 failures, particularly those in 1974 of Bankhaus Herstatt in

Germany and Franklin National Bank in the USA. Soon thereafter, the Basel Committee on

Banking Supervision (BCBS) was established in 1975 by a board of central bank governors of the

G10 countries. The BCBS is head-quartered at the Bank for International Settlements (BIS) in

Basel, Switzerland, which was itself previously established in 1930 as the bank for all central

banks. The BIS remains a natural host for the BCBS to this day, given its goal of sustaining

monetary and financial stability and cooperation across the globe.

Initially, the BCBS only facilitated cooperation amongst central banks, though soon expanded

its scope to providing minimum supervisory standards to be enforced by central banks. Chief

amongst these standards is the issue of banks’ capital adequacy, which must enable them to

weather unexpected losses (UL) in excess of expected losses (EL). Capital adequacy is primarily

measured as the ratio between capital held and the risk-weighted loan asset balances. In fact,

the 1980s saw widespread decreases in the capital ratios of many large multinational banks,

largely due to increased lending in riskier emerging markets, as discussed in Van Gestel and

Baesens (2009, pp. 55–57, 344–345), Thomas (2009a, pp. 289), and in Baesens et al. (2016, pp. 6).

Subsequently, many central banks agreed that, as a basic principle of lending, the amount of

capital ought to be reserved based on the risk profile of a bank’s loan assets. This consensus

culminated in a regulatory framework that was published in 1988, better known as the Basel

13See Van Gestel and Baesens (2009, pp. 84–92) for a list of notable crises during the twentieth century.
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Capital Accord (or simply Basel I). This framework prescribed the minimum regulatory capital to

be at least 8% of risk-weighted assets (RWA), which is believed to have been the average capital

ratio at most banks at the time. Basel I also introduced fixed risk weights14 based on the asset

class itself: 0% for cash exposures, 50% for mortgages, and 100% for other commercial exposures.

Incorporating the appropriate risk weight for a single exposure (or loan) i, the minimum capital

is then simply expressed as

Capitali = 8%× (
Risk-weighted asset

)
= 8%× (

Risk weight×Exposure
)
. (2.4)

Eq. 2.4 implies that riskier positions need greater capital to offset catastrophic default

risk, according to Van Gestel and Baesens (2009, pp. 344–345). On the portfolio-level, the total

regulatory capital is then simply the sum of these loan-level capital calculations. Clearly, total

capital will not necessarily be equally distributed amongst all exposures, simply by virtue of

differing risk weights. This discrepancy is especially relevant for lenders that have different

classes of loan exposures (e.g., mortgages and corporate loans), in contrast to smaller mono-line

banks offering but one loan product. Finally, Basel I requires that the total Capital Adequacy

Ratio (CAR) be equal or greater than 8%, expressed as∑
Capitali∑
(RWA)i

≥ 8% . (2.5)

Basel I differentiated only broadly by asset class without considering the underlying credit

risk of each borrower, which typically varies across the portfolio. Although the first Accord was

later amended to cater for bilateral netting of derivative products (in 1995) and to cover market

risk (in 1996), the BCBS eventually decided to revise the framework entirely in 1999. Published

in 2006 following extensive industry consultations, the reworked Basel II Capital Accord15 mostly

refined the measurement of credit risk as well as made the modelling thereof more rigorous. In

this regard, credit risk is now quantified using a statistical approach based on the individual

loan’s expected loss. This stochastic quantity depends on three risk parameters: the borrower’s

default risk, the loss rate given a default event, and the associated exposure size, according to

Van Gestel and Baesens (2009, pp. 25–29, 274–277) and Baesens et al. (2016, pp. 10–11). At

the loan-level, let D denote a Bernoulli-distributed random variable such that D = 1 indicates a

default event and D = 0 signifies the complement thereof, both expressed across some outcome

period (typically twelve months). The expectation thereof, E [D], equals the so-called Probability

of Default (PD) since E [D]=P [D = 1] ·1+P [D = 0] ·0=P [D = 1]. Assuming default, the associated

14A more detailed table of specific risk weights is given in Van Gestel and Baesens (2009, pp. 346).
15The revised framework is formally called the "International Convergence of Capital Measurement and Capital

Standards, A Revised Framework, Comprehensive Version", though it is more generally known as "Basel II" – see
Basel Committee on Banking Supervision (2006a).
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stochastic loss is expressed as the product of the estimable loss rate l called the Loss Given

Default (LGD); and the related at-risk exposure ε called the Exposure At Default (EAD). More

technically, the EAD represents the average proportion of the loan balance or credit limit that is

at risk of loss at the time of default. By further assuming independence, the various loan-level

quantities {D i, l i,εi} are assembled into the stochastic loss L i of loan i as

L i = D i · l i ·εi =⇒ L i = D i ·LGDi ·EADi . (2.6)

Overall, Basel II recognised the mitigatory effects of certain risk management practises, e.g.,

credit derivatives, collateral, and insurance guarantees, which should rightfully reduce regulatory

capital. Since these effects typically reflect in the internal credit data of a bank, Basel II promotes

greater risk sensitivity (compared to Basel I) by better leveraging this data when estimating

the underlying risk parameters (PD, LGD, EAD). In turn, greater sensitivity affords superior

differentiation, which can reduce the capital charge and thereby improve bank profitability, as

discussed in Van Gestel and Baesens (2009, pp. 347, 392) and Baesens et al. (2016, pp. 9–10). In

this regard, Basel II allows two broad levels of sophistication and flexibility when modelling credit

risk: the simplest though least flexible Standardised approach and the more flexible Internal

Ratings-Based approach (IRB). The Standardised approach expands upon the different risk

weights first used in Basel I and relies more heavily on estimates from external credit rating

agencies (e.g., Moody’s, Fitch, and Standard & Poor’s). In contrast, the IRB16 approach allows a

bank to use its own models and credit risk estimates, which is generally more accurate. In fact,

the work of Jankowitsch et al. (2007) demonstrated that more accurate credit rating systems can

reduce regulatory capital as well as yield significant economic value, simply by better pricing

loans based on their actual credit risk.

Eq. 2.6 can be estimated across all eventualities and aggregated into the so-called Expected

Loss (EL), thereby obtaining the mean value of the individual loan loss probability distribution,

expressed as

E [L i]= E [D i] ·E [l i] ·E [εi] =⇒ EL i =PDi ·LGDi ·EADi . (2.7)

Apart from Basel II capital modelling and loss provisioning, estimating the EL is especially useful

in loan pricing contexts. In these cases, a loan’s risk premium must theoretically cover E [D]×E [l],

proportional to the loan amount, as explained in Van Gestel and Baesens (2009, pp. 274–276) and

Thomas (2009a, pp. 278–288). While loan-level estimates are certainly useful, the portfolio-level

variants are often more practical to use in managing the overall portfolio. These activities may

include assessing and tweaking the portfolio’s profitability, facilitating its securitisation, and

reserving Basel II-compliant capital for the portfolio. Moreover, any inherent diversification

16The IRB approach itself has two sub-levels: foundation (IRB-F) and advanced (IRB-A), both differentiated again
by the level of complexity. Note that banks are required to use either the Standard or the IRB-A approach for retail
exposures, as discussed in Van Gestel and Baesens (2009, pp. 392) and Baesens et al. (2016, pp. 10–11).
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benefit wherein one loan’s loss is offset by another loan’s profit becomes more tractable (or even

visible) at the portfolio-level than at the loan-level.

As such, the portfolio loss distribution can simply be obtained across N loans by summing

together the individual loss quantities from Eq. 2.6, i.e.,

LP =
N∑

i=1
L i =

N∑
i=1

(
D i · l i ·εi

) =⇒ LP =
N∑

i=1
(Di ·LGDi ·EADi) . (2.8)

Similar to Eq. 2.7, the portfolio’s expected loss estimate is expressed as the sum of the various

expected losses at the individual loan-level, given by

E [LP ]=
N∑

i=1
E [L i]=

N∑
i=1

(
E [D i] ·E [l i] ·E [εi]

) =⇒ ELP =
N∑

i=1

(
PDi ·LGDi ·EADi

)
. (2.9)

While the portfolio loss distribution LP contains all credit risk information, its shape can be very

different to that of the individual loss distribution L i. This is largely as a result of convolution,

i.e., the distribution of the sum of independent random variables (L1 +L2 + . . . ) corresponds to

the distributions of the summands (L1,L2, . . . ), demonstrated in Van Gestel and Baesens (2009,

pp. 276–277). Consider lending ZAR 1,000 in total across N accounts with a PD of 5% while

assuming that both LGD and EAD equal 100% for expositional simplicity, thereby yielding

E [LP ]= ZAR 50. When lending to N = 1,000 accounts, then the actual portfolio loss will likely be

close to ZAR 50 mainly due to the central limit theorem. That said, if N = 1, then the actual loss

will either be ZAR 0 or ZAR 1,000, despite the fact that the mean loss will remain ZAR 50 for both

N = 1,000 and N = 1. While this example from Thomas (2009a, pp. 278) clearly demonstrates the

importance of larger more granular portfolios, it also alludes to the potential disconnect between

portfolio-level and loan-level distributions due to distributional convolution.

In addition to distributional convolution, the shape of the portfolio loss distribution LP can

be affected by the extent of default correlation and loan concentration found within a portfolio.

From Van Gestel and Baesens (2009, pp. 285–287), the benefit of diversified lending erodes

away as correlated default events become more widespread, which would roughly translate

into holding more capital depending on the portfolio size N. In this regard, smaller portfolios

have a more linear relationship between UL and correlation strength while larger portfolios

typically exhibit a slower ramp-up effect in UL as default correlation increases. Similarly, capital

increases exponentially as lending becomes more concentrated, which is typically measured by

the so-called Herfindahl-Hirschmann Index (HHI) as demonstrated in Van Gestel and Baesens

(2009, pp. 287–291). Moreover, the risk parameters may themselves be stochastically correlated,

thereby expressing a joint behaviour, e.g., both PD and LGD increase linearly during economic

downturn periods. As such, Basel II introduced a fourth risk parameter R that represents the

degree of correlated defaults. According to Van Gestel and Baesens (2009, pp. 317–319, 377) and
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Finlay (2010, pp. 184), Basel II suggests the following R-values17 for retail exposures: 4% for

qualifying credit lines, 15% for mortgages, and a PD-based exponentially weighted interpolation

for other retail exposures that ranges between 3% and 16%.

The prevalence of distributional convolution and default correlation means that modelling the

portfolio loss from the lower loan-level quickly becomes complex. Furthermore, the various inter-

dependencies amongst risk parameters imply that the eventual level of capital will itself depend

on the portfolio’s composition. While this relationship seems intuitive, any inherent volatility in

the risk estimates will undoubtedly diffuse throughout the capital base in that capital estimates

vary wildly over time, as argued in Thomas (2009a, pp. 293–295) and Van Gestel and Baesens

(2009, pp. 312). In turn, volatile capital levels suggest that the credit decision will become overly

volatile at the loan-level since the same loan may be granted one day but declined the following

day. This volatility is impractical from an operational perspective and certainly not conducive to

growing (or even maintaining) market share due to the inevitable backlash from customers. As a

solution, the principle of portfolio invariance was devised in Gordy (2003) wherein the capital

per loan must only depend on the particular loan’s own risk profile. This (necessarily) restrictive

condition requires two assumptions. Firstly, the portfolio must be as finely-grained as possible,

composed of a large number of loans such that no single loan dominates the portfolio in terms

of loan size. Secondly, there must be a single systemic risk factor that affects all loans in the

portfolio. Both assumptions taken together imply that any idiosyncratic risk factors amongst

loans tend to negate one another, leaving only the systemic risk factor as a source of uncertainty

at the portfolio level.

To achieve portfolio invariance, Basel II therefore requires that the portfolio be subdivided

into various risk grades or segments, at least for capital modelling purposes. Each risk grade

should contain loans that are largely homogeneous in their overall risk profile. According to

paragraphs 404–409 in Basel II and Van Gestel and Baesens (2009, pp. 160 , 258–259, 399),

a minimum of seven risk grades are required for wholesale PD-models, whilst no minimum is

explicitly specified for retail PD-models or any LGD/EAD-models – though segmentation should

certainly still be pursued where possible. The principle is to devise a meaningful segmentation

scheme S such that the resulting groups s ∈ S are adequately variegated across the portfolio

whilst constraining risk variance within each risk class, i.e., between-class differentiation and

in-class uniformity. In turn, the PDi-estimates of the individual loans within risk grade s can

be replaced with a single value Ds that represents the segment-level default risk PDs, i.e.,

E [D i] := Ds for all i ∈ s. Having conditioned the PD-estimate per segment, it is not unreasonable

to assume that all loss risks LGDi are now independent of one another. As such, the portfolio

17Note that these correlation values were reverse-engineered from historical loss data of G10 supervisory databases,
which relate to corporate lending instead of retail lending. After all, individuals are not stock-listed nor can their
personal assets and liabilities be as easily assessed as in the case of corporates. For more detail, refer to Van Gestel
and Baesens (2009, pp. 318–319).
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ELP from Eq. 2.9 simplifies considerably into

E [LP ]=
N∑

i=1

(
E [D i] ·E [l i] ·E [εi]

) ⇐⇒ ∑
s∈S

( ∑
i∈S

E [Ds] ·E [l i] ·E [εi]

)

= ∑
s∈S

Ds

( ∑
i∈S

E [l i] ·E [εi]

)
=⇒ ELP = ∑

s∈S
PDs

( ∑
i∈S

LGDi ·EADi

)
. (2.10)

The portfolio EL-measure, defined in either Eq. 2.9 or Eq. 2.10, summarises the portfolio loss

distribution into a single quantity. Though it cannot provide information on the distributional

shape, the EL-measure exhibits all four properties of a so-called coherent risk measure ρ, as

originally formulated in Artzner et al. (1999) and discussed in Van Gestel and Baesens (2009,

pp. 278–279). Consider two bounded random variables X and Y that represent losses on two

individual loans. Firstly, subadditivity holds when the risk of the sum may be less than the

sum of the risks, i.e., ρ(X +Y )≤ ρ(X )+ρ(Y ), which implies a diversification benefit when adding

together individual risks. Secondly, monotonicity requires that riskier positions be measured as

such, i.e., if X ≤Y , then ρ(X )≤ ρ(Y ). Thirdly, positive homogeneity applies when both a risk

measurement and its input scale linearly, i.e., ρ(λX )=λρ(X ). Lastly, translation invariance
means that a risk measurement decreases when adding a risk-free investment α to a portfolio,

i.e., ρ(X +α.r f )= ρ(X )−α with α ∈R and r f denoting a risk-free discount factor. The converse is

true as well, i.e., ρ(X −α.r f )= ρ(X )+α, according to Artzner et al. (1999).

Another (perhaps more important) risk measure is the so-called Value-At-Risk function VaRα.

This measure yields the lowest extreme percentile L at the far-right tail of the LP distribution

such that the probability of attaining even greater losses than L, i.e., P (LP > L), is at most 1−α

over a given time horizon. More formally, the VaRα-estimate of LP is defined as

VaRα(LP )=min
(

L ∈R : P (LP > L)≤ 1−α
)
. (2.11)

The chosen confidence level α ∈ [0,1] is usually very high, e.g., α= 99.9% that corresponds to a

1-in-thousand year failure event. At α, one can be sure not to lose more than VaRα(LP ) in (1−α)%

of times. A thorough discourse hereof is given in Artzner et al. (1999), Van Gestel and Baesens

(2009, pp. 282–285), Thomas (2009a, pp. 288–293), Finlay (2010, pp. 185–187), and Baesens et al.

(2016, §9). The portfolio VaR was adopted in Basel II to help set regulatory capital levels and is

typically expressed over one year for covering unexpected credit risk. In fact, the related idea

of economic capital leverages the portfolio VaR to calculate the necessary capital for supporting

all portfolio risks in excess of loss provisions, as illustrated in Fig. 2.11. Denoted as ECα, the

economic capital for covering the portfolio’s loss distribution LP is simply defined as

ECα(LP )=VaRα(LP )−ELP . (2.12)

While the VaR-measure is quite popular in industry, it is not a coherent risk measure since it does

not possess the subadditivity-property, as demonstrated in Artzner et al. (1999). This implies
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that the combination of portfolios will yield a greater VaR than that of each individual portfolio

simply added together, therefore discarding diversification. A variant of the VaR-measure that is

fully coherent is the so-called Expected Shortfall function (or the conditional VaR), as explained

in Van Gestel and Baesens (2009, pp. 285).

FIG. 2.11: A Value-at-Risk approach for estimating the portfolio’s unexpected loss,
denoted as VaRα(LP ), at a (1-α)% confidence level. Hypothetical portfolio loss
rates are shown over time, from which the portfolio loss distribution LP is calcu-
lated. While loss provisions ought to cover E [LP ], the difference VaRα(LP ) - E [LP ]
constitutes economic capital.

Regulatory capital is meant to cover extreme losses and, as such, one cannot simply use

averages of the PD-parameter, even when segmented. The seminal work of Vasicek (2002) devised

a mechanism by which PDs may be stressed to an appropriate level for capital reservation. From

Thomas (2009a, pp. 296–298), Van Gestel and Baesens (2009, pp. 294–296), Witzany et al. (2013),

and Baesens et al. (2016, pp. 240–242), the starting point of Vasicek’s structural default model,

also known as the asymptotic single risk factor (ASRF) model, is to restate the loan-level default

indicator D i following Merton’s original model. Specifically, assume that default occurs whenever

a borrower’s underlying assets Yi (or overall credit quality) fall below a certain value ci, i.e.,

D i =
1 if Yi ≤ ci

0 otherwise
. (2.13)

Furthermore, Vasicek assumes that Yi is standard normally distributed, which is to say that the
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unconditional probability of default for loan i becomes P (D i = 1)=P (Yi ≤ ci)=Φ(ci) where Φ is

the cumulative standard normal distribution function. If equated to an average default rate d̄

as Φ(ci)= d̄, then ci = F−1(d̄)=Φ−1(d̄) where Φ−1 represents the inverse cumulative standard

normal distribution function (or quantile function).

Vasicek further incorporates in-segment default correlation by structurally decomposing

each Yi into two independent components: 1) a portfolio-level systemic risk factor V such as

a macroeconomic index; and 2) an idiosyncratic loan-specific risk factor Zi. Assume that the

random variables Yi are jointly standard normally distributed with equal pairwise correlations,

i.e., corr
(
Yi,Y j

) = ρ for i 6= j. Accordingly, V and Zi are also mutually independent standard

normally distributed variables and related to Yi by a Gaussian copula as

Yi =p
ρ ·V +√

1−ρ ·Zi . (2.14)

The decomposition in Eq. 2.14 supposes that default correlation between the market factor V

and the credit quality of each loan i is constant and equal to p
ρ. By substituting Eq. 2.14 into

the default assumption of Yi ≤ ci, a necessary condition is obtained that must hold for loan i (as

measured via Zi) in order for default to occur, expressed as

Zi ≤
ci −p

ρ ·V√
1−ρ

. (2.15)

By assumption, the random variables Zi are independent from the market factor V , even

though Yi are actually correlated amongst themselves. For simplicity, Vasicek conditions Eq. 2.15

to a certain value of the market shock V , thereby relieving the degree of correlation amongst

Yi. For a realisation v from V and estimating ci with Φ−1(d̄) under portfolio invariance, the

conditional probability of default θ(v) becomes

P

(
Zi ≤

Φ−1(d̄)−p
ρ ·V√

1−ρ

∣∣∣∣V = v

)
=Φ

(
Φ−1(d̄)−p

ρ ·v√
1−ρ

)
:= θ(v) . (2.16)

Given that Zi ∼N (0,1), another quantity that becomes useful later is the inverse of Eq. 2.16, i.e.,

Φ−1(d̄)−p
ρ ·V√

1−ρ
=Φ−1 (θ(v)) . (2.17)

Lastly, the market shock v can be substituted with an extreme percentile from the standard

normal distribution since V ∼N (0,1). This is to say that Eq. 2.17 is evaluated at an extreme

probability level 1−α, e.g., α = 0.999, which is simply given by v = Φ−1(1−α), as derived in

Baesens et al. (2016, pp. 240–241). By symmetry, this quantity is the same as v =−Φ−1(α), which

is substituted into Eq. 2.16, thereby yielding the classical Vasicek ASRF model, expressed as

Φ

(
Φ−1(d̄)−p

ρ · (−Φ−1(α)
)√

1−ρ

)
=Φ

(
Φ−1(d̄)+p

ρ ·Φ−1(α)√
1−ρ

)
. (2.18)
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For Basel II capital reservation under an IRB-A approach, a given PDs-value can be stressed

by incorporating Eq. 2.18 into a function K . The default correlation ρ is substituted with Basel’s

R-values at α= 0.999 and K is then defined as

K (PDs)=Φ
[
Φ−1(PDs) + p

R ·Φ−1(0.999)p
1−R

]
. (2.19)

For each loan i, the Basel II capital level Ci ∈ [0,1] is then simply defined as the difference

between the stressed expected loss K (PDs)·LGDi and the presumably provision-covered expected

loss PDs ·LGDi, expressed as

Ci = K (PDs) ·LGDi −
(
PDs ·LGDi

)
=Φ

[
Φ−1(PDs) + p

R ·Φ−1(0.999)p
1−R

]
·LGDi −

(
PDs ·LGDi

)
(2.20)

For convenience, the minimum CAR of 8% from Eq. 2.5 is algebraically reshuffled as 12.5 ·8%= 1.

Accordingly, the loan-level risk-weighted assets RWAi
18 is computed using Ci as

RWAi = 12.5 ·EADi ·Ci . (2.21)

In modelling each component, the first risk parameter D – default risk (PD) – may depend on

a number of factors, including borrower-centric, portfolio-based, and macroeconomic-related input

variables, as explained in Van Gestel and Baesens (2009, pp. 24–25), Thomas (2009a, pp. 282–283),

and Baesens et al. (2016, §5–6). Its estimation is principally the same exercise as behavioural

credit scoring, which was previously discussed in section 2.2. However, there is greater scope to

focus on prediction accuracy when developing PD-models than application/behavioural scorecards,

simply due to the former’s relatively more direct impact on loss provisioning (see section 2.6)

and capital reservation. In particular, greater accuracy can more easily translate into cost

efficiency than risk-ranking ability alone. The latter has typically been the focal point of most

application/behavioural scoring models instead of pursuing accuracy above all else. Furthermore,

PD-models are generally developed at the product-level in retail banking, loosely motivated by

the product’s securability (e.g., mortgages vs. personal loans) and/or its broader design. To this

point, the loan account (held by a borrower) usually forms the base granularity for risk models

in retail banking. However, in wholesale banking, the borrower (e.g., corporate or other large

counterpart) becomes the base-level for risk models instead of the account.

Modelling default risk at the product-level (or asset class) will often reveal significant dif-

ferences in PD-estimates across different products, especially when the same borrower (or

counterpart) holds multiple products at the same bank. Many practitioners can attest to the

lower default rates of more secure products when compared to their less secure counterparts,
18Basel II applies an additional scaling factor of 1.06 on the RWA in the interest of prudence.

57 of 178



CHAPTER 2. BANK AND BORROWER: A TREATISE OF TRUST AND ITS EROSION

which is curious at first glance. In principle, a counterpart that defaults on one loan may likely

default on other concurrent loans, thereby causing a so-called ‘contagion’ effect in product-level

default rates. However, when the chain of defaults seizes at certain products – specifically more

secure portfolios – then it suggests some other dynamic in play. Furthermore, a product’s secur-

ability certainly affects its overall LGD (and therefore the portfolio EL), but one wouldn’t expect

securability itself to influence the PD. It turns out that retail borrowers in financial distress may

choose to default rather selectively by product type, as discussed in Van Gestel and Baesens

(2009, pp. 25). More ‘critical’ debts are paid first, usually those debts directly related to financial

and job security, e.g., mortgages and auto loans. At the very least, this phenomenon suggests an

‘order’ in which default propagates across products amongst highly credit-leveraged borrowers.

The second risk parameter l – loss risk (LGD) – is commonly defined as the proportion of a

defaulted exposure to be written-off. This quantity varies widely based on the type of default

resolution (e.g., write-off vs. cure) and underlying loan collateral (if any). From Van Gestel and

Baesens (2009, pp. 26–28, 217–222) and Baesens et al. (2016, §10), more secure products typically

have very low LGD-values since seized collateral can offset credit losses. Furthermore, the LGD

can even become negative in secured lending since the collateral may have been auctioned at

a higher value than that of the outstanding debt, or due to recouped penalty fees and interest.

Conversely, loss rates can exceed 100% of the debt due to extra litigation and administrative

costs but failed loan recovery. To this point, Basel II (paragraph 460) requires that all material

direct and indirect costs be considered when estimating loss, including the time value of money.

Furthermore, calculating the LGD of a defaulted loan inherently depends on the account’s

default resolution during the ‘workout’ period; an uncertain and often lengthy process itself. In

fact, optionality greatly affects LGD in that a distressed borrower may recover financially and sub-

sequently repay all arrears, thereby ‘curing’ the default event. Aside from liquidation/recovery and

curing, a third type of default resolution is that of restructuring. A bank can strategically avoid

costly (and uncertain) liquidation proceedings and instead maintain the credit relationship with

the borrower, though at the cost of reduced income and a medium loss. This resolution is achieved

by reorganising a debt in such a way that instalments become affordable for the distressed

borrower, thereby ‘curing’. The remaining unresolved (or right-censored in that write-off/cured

outcomes are still pending) defaults are typically excluded when calculating the realised/ac-

tual LGD, even though these cases are often the recent majority. These ideas are illustrated in

Fig. 2.12.

The third risk parameter ε – exposure risk (EAD) – is often closely related to the LGD

definition and its calculation, such that LGD×EAD denotes the economic loss upon defaulting.

There are two broad approaches to defining EAD, as discussed in Van Gestel and Baesens (2009,

pp. 28–29, 226–229) and Baesens et al. (2016, §11). Firstly, the EAD may be defined as time-
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FIG. 2.12: Illustrating the typical process of resolving defaulted exposures during the
workout period. Defaults are eventually resolved into either write-offs or cures,
while the rest are still pending an outcome.

invariant in that it literally represents the debt balance at the default point τ. In this case,

the EAD is calculated as the starting balance b0 (or overall credit limit) relative to the default

balance bτ, thereby yielding a simple ratio s = b0 /bτ. These loan-level factors are then averaged

across the defaulted population and used quite generically in the EAD-estimate as ε = s · b0.

However, this rather deterministic approach may be too conservative for more flexible credit

products wherein borrowers can draw and repay dynamically, e.g., credit cards and revolving

loans. As such, another approach (favoured by Basel II as well) for measuring the EAD ε is to

model the so-called Credit Conversion Factor (CCF) η instead of ε itself. The CCF is characterised

by two quantities, the credit limit b0 and the drawn amount bt that is measured at time t,

assuming b0 > bt. In essence, the CCF tries to quantify the proportion of the undrawn limit

that will yet convert into credit at the default time τ. The EAD is then related to the CCF as

ετ = bτ−k +η · (b0 −bτ−k) across a chosen outcome period k with τ−k > 0.

Additional Basel II requirements apply when modelling each risk parameter, as summarised

in paragraphs 461–479 of Basel II, Van Gestel and Baesens (2009, pp. 259-262), and Baesens et al.

(2016, pp. 279). In particular, the sampling period should ideally span a complete business cycle

(or at least seven years) for wholesale LGD-modelling, five years for wholesale PD-modelling,

and at least five years for all retail modelling. Paragraphs 473 and 479 in Basel II also affords

some discretion to weigh more recent observations more heavily than older observations in retail

models. Furthermore, the epoch in time from which data is sampled should ideally include a

recession or economic downturn period. This requirement simply injects some conservatism into

the eventual risk estimates to cover possible modelling deficiencies, as argued in de Jongh et al.

(2017). Lastly, extensive modelling guidance for estimating any of these risk parameters is given

in Van Gestel and Baesens (2009, pp. 174–201) and Baesens et al. (2016). The various modelling
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techniques can broadly be categorised into:

1. Financial models that are more theoretical, e.g., Merton’s structural model, the cash

flow-based gambler’s ruin model, and reduced-form models based on Cox processes – see

Van Gestel and Baesens (2009, pp. 176–181);

2. Statistical models that are largely data-driven, e.g., generalised linear models, and more

advanced machine learning techniques. These techniques may include Support Vector

Machines (SVMs), Multilayer Perceptron (MLP) neural networks, and Bayesian Belief

Networks (BBNs) – see Hastie et al. (2009);

3. Expert models that are committee-based or in the form of heuristic rule systems. Although

similar to statistical models in structure, an expert model relies on a priori opinions and

expert judgement in parametrising the model’s components instead of data, which may be

scarce – see Van Gestel and Baesens (2009, pp. 191–194).

Both Basel I and II require banks to reserve capital into at least 50% of highly liquid and

quality loss-absorbing "core" Tier 1 capital, with the rest held as relatively less liquid Tier 2

supplementary capital, as discussed in Van Gestel and Baesens (2009, pp. 350–353) and Baesens

et al. (2016, pp. 8–9). Tier 1 capital ought to be highly reliable and liquid (especially during

adverse economic conditions), e.g., common stock, preferred stock, and retained earnings. On the

other hand, the less liquid Tier 2 capital can include undisclosed reserves, revaluation reserves,

general loan loss provisions, and subordinated term debt; with some allowed deductions from

the total, e.g., goodwill and insurance investments. Following the 2008 GFC, the required Tier 1

weight was adjusted to at least 75% for Tier 1 capital (or 6% of RWA considering Eq. 2.5), thereby

enhancing the rapid loss-absorption power of banks. This change formed part of the new Basel

III Capital Accord (effective from 1 January 2013), which largely introduced additional liquidity

requirements without changing the credit risk modelling process itself that underpin Basel II.

For the most part, Basel III established an additional capital conservation buffer that consists

of the 30-day LCR and the 1-year NSFR (see subsection 2.4.4), which must equal at least 2.5%

of RWA. Moreover, Basel II seeks to stabilise capital levels across the macroeconomic cycle by

imposing an additional counter-cyclical buffer. This add-on is controlled by the local regulator

depending on the level of macroeconomic stress at any time and can range from 0% to 2.5% of

RWA. Lastly, Basel III emphasised the need for banks to stress-test their internal risk models to

a greater extent.

The Basel Capital Accords are broadly based on three overlapping sets of principles, called

Pillars 1–3 with a thorough discourse thereof given in Thomas (2009a, pp. 290), Van Gestel and

Baesens (2009, pp. 348–349, 418–427), Finlay (2010, pp. 176–177), and in Baesens et al. (2016,
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pp. 7–8). Pillar 1, which encompassed much of the discussion so far, generally prescribes the

calculation of minimum capital across various risk types. In this regard, Basel I only focused on

credit risk, while Basel II expanded the risk scope to market and operational risks, to be discussed

in section 2.6. Pillar 2 outlines the principles of both internal and external supervisory oversight

in evaluating and monitoring a bank’s quantitative risk models or processes. Its purpose is to

promote continuous improvements in both modelling methods and the overall design of risk

processes, thereby ensuring adequate capitalisation. Pillar 2 is underpinned by four principles,

the first of which is meant for banks and the remainder for regulators:

1. Banks should have an internal process19 for assessing the adequacy of overall capitalisation

against their risk profile;

2. Regulators should periodically review the aforementioned adequacy-process of banks;

3. Regulators should expect banks to hold capital in excess of the minimum level;

4. Regulators should intervene timeously when capital levels of banks fall beneath the min-

imum.

Lastly, Pillar 3 advocates the public disclosure of a bank’s modelled risks. This disclosure

can include certain details of the capital calculation and certain risk management processes, all

of which are aimed at alleviating asymmetrical information between bank and investor. Doing

so will likely promote greater confidence in the solvency and risk management practices of a

bank. In turn, greater confidence has a reciprocal effect in that it assists a bank in procuring

funding at lower costs, which can have a bearing on profitability. Moreover, subjecting all banks

in a system to these Capital Accords (I–III) will undoubtedly safeguard overall liquidity and

stave off failure, albeit at a cost to depositors and shareholders. Simultaneously, ongoing research

will likely expand the level of sophistication in modelling credit risk in both the EL and UL, as

promoted by Pillar 2 of the Accords – an exciting prospect.

2.6 The management of financial risk in banking

A bank generally faces a myriad of risk types as an unavoidable result of its operation. The

ever-present danger of illiquidity necessitates reserving sufficient capital against unexpected

losses, as discussed in sections 2.4–2.5. However, some risk types are more probable than others

and I shall accordingly examine three broad classes of risk in subsection 2.6.1 that, together with

liquidity risk, constitute so-called financial risk. Moreover, the greatest factor hereof – credit

risk – warrants not only capital to cover unexpected losses, but also necessitates a provisions

19This particular process is more commonly known as the internal capital adequacy assessment process (ICAAP).
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account from which expected losses can be offset on a more frequent basis. As such, the discussion

cannot be complete without presenting a brief introduction to the IFRS 9 accounting standard

that governs loss provisions. Finally, common strategies for managing these identified risks are

outlined in subsection 2.6.2.

2.6.1 A trifecta of risks: credit, market, and operational

It is widely accepted that credit risk presents the single largest source of bank risk, to such an

extent that even a relatively small number of defaulting borrowers have the potential to bankrupt

a bank. Credit risk itself consists of a few subcategories of specific risks, as outlined in Dermine

(2007, pp. 498–499) and Van Gestel and Baesens (2009, pp. 23–25). All of these credit risk

subclasses relate to the breakdown of trust and/or reneging on the repayment of loans or other

commitments. Between two banks, counterparty risk is the probability that the borrowing

bank fails to pay as obligated by the lending bank, which may include bonds, derivatives, or

insurance contracts. Another form of counterparty risk is that of settlement risk, which arises

during the exchange of foreign currencies (or securities), wherein one party has already delivered

while the other party has not. A defining example of settlement risk is the failure of Bankhaus

Herstatt on 26 June 1974. According to Van Gestel and Baesens (2009, pp. 85), this German

bank had its banking licence withdrawn whilst transacting with US banks, who had already and

irrevocably paid their dues to Bankhaus Herstatt preceding its imminent failure. Country risk
(or sovereign risk) materialises when a government defaults on its financial commitments or

freezes foreign currency payments. However, the most common type of counterparty credit risk

is so-called retail and/or wholesale credit risk, which is the potential loss due to a borrower

not honouring a debt obligation to the bank within agreed-upon timelines.

A particularly important facet of credit risk is the low but persistent loss of lent capital

due to the materialisation of ‘expected’ credit risk over time. All loan assets carry the inherent

risk of becoming impaired and while capital covers catastrophic portfolio impairment, it is not

meant to offset low-level loan impairments. To this point, there are at least two fundamental

reasons for keeping a so-called provision account for offsetting expected losses, as explained in

Dermine (2007, pp. 514–515) and Finlay (2010, pp. 167–169). Firstly, and as a central tenet of risk

management, a bank effectively manages long-term solvency risk and smooths earnings volatility

when providing for future expected credit losses earlier. In fact, a bank may better absorb these

expected losses if they are spread out over time, instead of conducting a sudden and systemic

write-down of impaired loan assets that may subsequently trigger a liquidity crisis. Secondly, loss

expectations pose as an effective counterweight to a bank that may otherwise engage in riskier

lending. Early loan performances may prematurely bias overall profitability in the absence of

loss expectations, which is particularly incendiary when staff bonuses are linked to these early

loan performances. In turn, this premature exuberance may very well lead to increasing the risk
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appetite of a lender unwittingly.

Accordingly, the IFRS 9 (2014) accounting standard requires that the value of financial assets

be comprehensively adjusted based on a bank’s evolving estimates of expected credit risk. The

underlying principle is that the bank willingly forfeits a portion of its income at each period

into a central loss provision account that ideally offsets any amounts written-off in future on

average. The provision value should be updated frequently based on the forecast of a loan’s so-

called expected credit loss (ECL), provided by an underlying statistical model. Similar to Basel’s

EL-measure, the ECL is generally expressed as the probability-weighted sum of all future cash

shortfalls that the bank expects to loss over a certain horizon, according to IFRS 9 (2014, §5.5.8,

§5.5.17, §B5.5.25–35). As credit risk evolves, the loss provision is adjusted either by raising more

from earnings or releasing a portion thereof back into the income statement, respectively as

an impairment loss or gain. Accordingly, loss provisions directly reduce bank profitability and

are similar to depreciation since the gross carrying value of an asset is effectively decreased.

Ultimately, providing for future bad debt rightfully recognises that loan assets recorded on the

balance sheet are actually less than the value at which they are stated.

The ECL may be calculated using a staged approach based on the extent of deterioration in a

loan’s credit risk, according to IFRS 9 (2014, §5.5.3, §5.5.5). Each subsequent stage requires a

more severe ECL estimate, as illustrated in Fig. 2.13. In particular, Stage 1 includes most loan

assets, provided that these assets either have low credit risk or have not experienced a so-called

significant increase in credit risk (SICR) event since origination. As a middle ground, Stage 2

contains those assets that have in fact deteriorated quite significantly in their credit quality, but

do not yet qualify as fully credit-impaired. Finally, Stage 3 includes assets with objective evidence

of credit impairment that may adversely affect their future cash flows, e.g., defaulted accounts.

These impairment stages aim to reflect a broader pattern of deterioration (or improvement) in

credit quality over time, thereby allowing for recognising credit losses more timeously when

necessary, as discussed in IFRS 9 (2014, §B5.5.2) and Cohen, Edwards Jr et al. (2017). Another

consideration is that of the time horizon underlying the ECL-estimate: 12 months for Stage 1

and lifetime for Stages 2–3. The latter horizon considers all possible default events over the

remainder of the asset’s expected life. The 12-month horizon then refers to the portion of the

lifetime ECL that may occur over the next 12 months, specifically due to a single default event.

Lastly, the manner in which a bank should calculate interest revenue differs by impairment stage

as well: the gross carrying amount (or balance) is used when in Stages 1–2, but switches to the

amortised cost (balance less the loss allowance) when in Stage 3.

Stage migrations are largely based on a loan accruing arrears or entering debt restructuring

under distress, as summarised in Fig. 2.13. However, the SICR-component is arguably more

important as a stage impairment classifier, presumably based on a "multi-factor and holistic
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analysis" using "reasonable and supportable information", as set out in IFRS 9 (2014, §5.5.9,

§B5.5.16). At a minimum, flagging an account as an increased risk requires estimating and

comparing the account’s lifetime default risk at two points in time. Consider the probabilistic

model pD(x, t) that estimates the default probability P (D|X ,T), where D is a default indicator

random variable that is measured at a given time T = t, whilst observing all available information

X = x at the same t. Per requirement, the account’s default risk is then estimated twice: once at

origination t = 0 and again at the desired reporting time t > 0 (or subsequent monthly period).

It is self-evident that risk has increased whenever pD(x, t′) > pD(x,0) for some t′ > 0. Having

calculated the magnitude of this increased risk, i.e., pD(x, t′)− pD(x,0), the bank has to decide

on a threshold20 of sorts beyond which an account should transit into Stage 2 and below which

an account remains in Stage 1. Lastly, IFRS 9 (2014, §5.5.11, §B5.5.17) provides a broad range

of factors to assist with the SICR-decision, including so-called "forward-looking information",

i.e., macroeconomic information (historic and forecast). This concludes the brief introduction and

discussion of IFRS 9.

The second risk in the trifecta is that of market risk, which spans various subclasses of risk

(similar to credit risk) that are introduced by bank participation in the market. This risk type

is more relevant for investment banks as opposed to classical retail or commercial banks, as

discussed in Van Gestel and Baesens (2009, pp. 29–30). Historically, the distinctions amongst

retail, commercial and investment banks were highly dependent on the set of specialities of a

bank. In this regard, the Second Banking directive (89/646/EEC) of the European Commission

introduced the idea of universal banking, which removed the previous boundaries amongst

bank types. Instead, the directive describes a complete list of acceptable banking activities,

given in Dermine (2007, pp. 494). Regardless, some types of market risk include equity risk
(downward price movements of equity holdings, e.g., common stock in other companies), currency
risk (adverse rate movements in investments held in foreign currencies), commodity risk
(devaluations in physical products like grain, gold, and gas; which impact derivatives), and

interest-rate risk (downward rate movements in floating rate debt instruments held by a bank

for trading purposes).

Market risks are typically measured using a much shorter time window (often measured in

days) when compared to modelling credit risk, mostly since market prices are available much

more frequently. The VaR-measure is typically used in expressing the maximum loss over these

shorter time horizons at a certain probability, as explained in Van Gestel and Baesens (2009,

pp. 30–31). Basel II then simply requires holding sufficient capital to cover the quantified level

of market risk. Furthermore, some investments may be subject to both market and credit risk,

especially when trying to hedge one’s risk by investing in debts (e.g., corporate bonds). However,

there is a difference between buying instruments intended for imminent trading versus holding

20This exercise is currently non-trivial, open-ended, and largely based on the subjective discretion of a bank.
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instruments until redemption (or maturity). The former usually attracts market risk whilst the

latter carries relatively more credit risk.

The third and final risk in the trifecta is called operational risk, which are potential losses

as a result of failures in internal processes, IT systems, people, and external events. From

Dermine (2007, pp. 500) and Van Gestel and Baesens (2009, pp. 31–33), operational risk generally

refers to any other risk type beyond credit risk, market risk, and liquidity risk. Operational risk

has many subcategories, which are too numerous and pervasive to list in this text. That said,

a particularly significant subclass is that of legal risk, which include any regulatory fines or

penalties, as well as losses from potential law suits. Another noteworthy subclass is that of fraud,

which can materialise in ever-changing forms, both internally and externally. More technically,

fraud generally transpires whenever illicit financial gain is sought or bank-owned property is

misappropriated, including financial assets. Although related to fraud, cyber security risk is

another subclass that has emerged during the last few years in its own right, according to Alghazo

et al. (2017). Internet banking and the self-service offerings of so-called "digital banks" avail

greater convenience to customers. In turn, banks have accelerated the adoption of technology

and digitisation efforts to cater for this demand, though at the risk of security breaches. In this

regard, digital attacks may be launched on the computer and network systems of a bank, usually

to steal valuable and sensitive data and/or cause reputational damage.

Other more unintentional forms of operational losses include general negligence when ser-

vicing customers, e.g., fiduciary failures that may lead to fines from an ombudsman or legal

suits. Operational losses further include avoidable costs due to failures in trade relations (or

contractual agreements) as well as losses in the form of refunds to remedy process-based or

human-related errors, or service disruptions. Less distinct forms include damage to property as

a result of natural disasters or riots, the payment of personal injury claims due to health and

safety violations, and payouts to settle discriminatory events. Most of these operational losses can

be mitigated to a certain degree by conducting adequate risk management, which may include

buying insurance, developing fraud detection systems, or reserving Basel II-compliant capital

for covering operational risk. In addition, embedding an agreeable risk culture and devising

adequate internal controls may further reduce the proclivity of human and process errors.

2.6.2 Common risk management strategies in banking

A proper risk management strategy generally aims to smooth away significant volatility in

earnings and to avoid large concurrent losses. In modern banking, the risk management function

will typically partner with other more operationally-inclined departments (e.g., sales, finance,

IT) when fulfilling its role, according to Finlay (2010, pp. 16–23). Risk management itself is
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typically conducted in a three-step21 continuous process, as illustrated in Fig. 2.14. This process

generally starts off with risk identification, followed by measuring a risk, and ending with its

mitigation by devising appropriate strategies. From Van Gestel and Baesens (2009, pp. 38–40),

sources of potential risk or threats to the business model are continuously identified through

careful analysis, discovery, and critical thinking. Once identified, the practitioner may conduct

statistical analyses of these past events, which enables risk quantification, followed by the

risk-ranking thereof based on the severity and/or underlying probability. Developing credit risk

models to forecast credit losses is an example of risk measurement. Expert judgement or more

theoretical/structural models can also be used in measuring risk, especially in data-poor contexts.

The final step is to devise the strategic treatment of the measured risk. In this regard, Van Gestel

and Baesens (2009, pp. 40–42) categorises various treatments into four broad groups: avoidance,

reduction, acceptance, and transferal. While these treatments are tailored to each specific risk in

practice, they will be explained here within the context of credit risk.

Avoidance strategies are centred on curtailing the investment decision itself. This is usually

achieved either by selectively investing in (or lending to) certain counterparts, or by drastically

limiting the exposure amount based on the level of perceived risk. As a secondary benefit,

this strategy may reduce concentration risk by progressively restricting credit to ever riskier

counterparts, thereby diversifying the loan portfolio. Application credit scoring, as previously

discussed in section 2.2, is essentially an example of a credit risk avoidance strategy.

Reduction strategies generally try to assume but a part of the underlying risk whilst sharing

the remainder thereof with other parties. An example hereof is petitioning another lender to help

fund a loan (especially in large corporate lending), thereby sharing the inherent credit risk at the

cost of reduced interest income. A simpler example is when a bank requires collateral from high

risk borrowers that may be seized in the event of default, thereby reducing the overall credit risk

exposure.

Acceptance strategies are based on assuming the underlying risk entirely, which is generally

reserved for low risk cases or portfolios that are already well-diversified. An example of an

acceptance strategy is loss provisioning since any potential loss is ’accepted’ simply by offsetting

it against the provision account. However, risk acceptance directly affects profitability, which may

be unpalatable to investors. Regardless of the chosen risk management strategy, the strength

and feasibility thereof must be regularly evaluated in line with new loss events (e.g., recent loan

write-offs) and the overall business context. This includes ‘back-testing’ the predictions from risk

models onto the recent past, as well as continuously refining the risk measurement process itself.

21Some will argue that ranking a measured risk as well as monitoring it thereafter poses two additional and
interleaved steps. However, risk-ranking is an inherent part of risk quantification and is therefore included in the
second step. Moreover, monitoring only ‘treated’ risks is not as sensible as monitoring all steps continuously instead,
which is the more pervasive practice.
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FIG. 2.14: The three-step continuous risk management process, starting with iden-
tification, then measurement, and then treatment of each risk. This process is
supplemented by continuous monitoring, evaluation and further refinement.

The latter may take the form of redeveloping credit risk models that may have deteriorated over

time, as well as conducting novel academic research in the field of credit risk modelling – not

unlike this study.

Transfer strategies focus on buying insurance from guarantors for covering any future loss

events, thereby transferring the underlying risk to a third party. An example of this is a derivative

called a credit default swap wherein the insurer reimburses a lender the underlying credit loss in

the event of default. Another more notorious example is that of securitisation, whereby originated

debts are packaged into more liquid and tradable securities. From Bhattacharya and Thakor

(1993), Van Gestel and Baesens (2009, pp. 76–81), and Vento and La Ganga (2009), widespread

securitisation became a lucrative business model in the 2000s since securitised debts were no

longer held on a bank’s balance sheet, which meant less risk and therefore reduced capital.

Furthermore, originating banks used the proceeds from selling off these securities as a funding

source itself, thereby promoting further lending activities and entrenching this so-called originate-
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to-distribute (OTD) business model. In contrast, the traditional business strategy is to retain an

originated loan on a bank’s balance sheet up to maturity or write-off. However, as a risk transfer

strategy, securitisation failed abysmally during the 2008 GFC largely due to the inability of those

agents who bought securitised debts to perform the classical roles of a bank. Specifically, these

entities were neither nearly as well prepared as banks to analyse credit risk, manage credit

deterioration, or act as delegated monitors; nor did they keep adequate capital under regulatory

supervision.

In conclusion, the main elements of financial risk in banking consist of liquidity risk, credit

risk, market risk, and operational risk. The inherent dangers of each risk type is primarily

mitigated by implementing an adequate management strategy, which include effective bank

policies and holding sufficient capital. However, banks need to balance financial risk against

business/performance risk, which generally refers to the failure of a business strategy and/or the

erosion of profitability, according to Van Gestel and Baesens (2009, pp. 51–52). Mismanagement

of either business or performance risks will likely impact the bank’s overall return on equity

for shareholders. High-level examples hereof include declining loan production, inadequate loan

pricing (e.g., the inability of interest rate margins to cover expected losses or bank expenses),

price-elasticity amidst competing banks, improper diversification or simply lavish spending.

Ultimately, the principle is to fuse attaining sufficient profitability with adequately managing

the risks of loan assets, both within the ambit of a sustainable business strategy. It is clear

with no excessive stretch of the imagination that this principle alone can be rather daunting to

implement – not to mention even the potential optimisation thereof.
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THE BANKER’S GAUGE OF ERODED TRUST

Estimating the frequency of any event in a given sample fundamentally depends on the

definition of the event. While loan ‘default’ is intrinsic to credit risk (and its subsequent

estimation), the default event itself has many definitions, used both historically and in

modern times. These differences become self-evident when comparing the legal requirements of

various prudential regulators, most notably that of the South African regulator1 compared to the

UK and EU counterparts. More importantly, these regulators (and many others) all subscribe

to the Basel Capital Accords, which is a set of reasonable principles that were published by

the Basel Committee on Banking Supervision (2006a) and upon which credit risk models are

commonly built in practice. The recent introduction of the IFRS 9 accounting framework has some

interaction with Basel II, especially regarding the former’s impairment stage classification that

ultimately leads to the notion of loan ‘default’. These standards aside, some regulators are more

prescriptive than others in enforcing elements thereof, especially regarding default definitions

and related topics. However, prescription should never deter broader scientific inquiry in and of

itself, especially since regulations are often amenable to (and dependent on) academic advances.

Estimating default risk is becoming increasingly interwoven in the many emerging statistical

and mathematical models that drive decision-making in modern banking. Given this ubiquity,

the stakes are certainly raised when the exact ‘default’ point is varied by altering the underlying

definition, not to mention its impact cascading across other models. Besides specific regulatory

prescriptions, there is limited scientific reason to neglect re-examining the suitability of the

1Known respectively as the South African Reserve Bank (SARB), the Bank of England’s Prudential Regulatory
Authority (PRA), and the European Banking Authority (EBA).
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default definition and others, even less so when pursuing risk innovation. Admittedly, this is

currently more viable in certain areas of banking than in others, e.g., application scorecards

and collections modelling. However, the idea of ‘default’ remains quite firmly rooted in reaching

a probabilistic "point of no return", beyond which repayment becomes extremely improbable.

Operationally then, a ‘default’ is fundamental impetus for the lender to act, e.g., by initiating debt

recovery and/or abandoning the credit relationship. Surely there must be varying consequences

associated with the lender’s action in this regard and, more importantly, its exact timing. If this

is true, then modelling any aspect of the default event using potentially stale definitions thereof

will likely be sub-optimal. As paraphrased from Hand (2001), it is reasonable to question the

pursuit of modelling excellence when the constructed outcome variable itself, i.e., the default

definition, is inherently quite arbitrary.

I begin this chapter by reviewing the relevant pieces of regulation and standards that

relate to default definitions in section 3.1. This review includes two additional topics. Firstly,

the functional areas in retail baking are explored wherein loan delinquency is typically used;

secondly, a decision-support tool called a roll rate analysis is examined, which is commonly used

to test default definitions outside of Basel II and IFRS 9 contexts. Two interrelated problems are

then discussed in section 3.2, emerging from the gap in literature on default definitions versus

loan collection. First of all, classical roll rate-based approaches are divorced from direct loss

considerations and competing costs when varying the ‘default’ point. Moreover, these roll rates

are highly sensitive to a few design parameters (e.g., outcome period length, sampling window),

which can obscure idiosyncratic characteristics of the portfolio and enable confirmation biases

when selecting a default definition. Secondly, the mere possibility of a loan recovering from a

supposed "point of no return" chafes away at any confidence held in the underlying definition

thereof, especially as curing becomes more frequent.

Finding a "point of no return" presupposes that loan delinquency is already quantified a priori.

The measurement of delinquency itself becomes a crucial but often overlooked prerequisite, which,

at the very least, warrants a discussion of the underlying limitations of current measurement

practices. As such, three delinquency measures are mathematically reworked and discussed in

section 3.3. These measures form an intrinsic but modular part in studying the ideal timing

of the bank’s recovery decision and, by extension, the "point of no return". It is against these

thematic backdrops that the philosophy underlying loan recovery is primed as a variable point on

the banker’s imagined continuum of eroded trust. To this end, I contribute a novel optimisation

method in section 3.4 that manifests this idea, called the Loss-based Recovery Optimisation across

Delinquency (LROD) procedure, followed by the chapter’s conclusion in section 3.5. At its core,

this procedure attempts to find the ideal point for a given portfolio such that loan recovery occurs

neither too early nor too late in aggregate loan life.
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3.1 Default definitions: a servant of many masters

To collect on a distressed loan is to have breached a certain "point of no return" in the relationship

between bank and borrower, at which the lender abandons all hope in the eventual repayment of

a loan. This notion is arguably similar to that which underlie most default definitions found in

practice. In turn, default definitions themselves become a valuable starting point for a discussion

that is ultimately centred on when to abandon a troubled loan. Banks have used different default

definitions throughout history, even differing amongst various portfolios held by the same bank.

Similarly, the prescriptions of regulators relating to default definitions differ by jurisdiction;

especially so in the degree of flexibility when interpreting international standards, such as Basel

II and IFRS 9 (see sections 2.5–2.6). To this end, various regulations and standards relating

to default are examined in subsection 3.1.1, followed by surveying the default definitions of

well-known external credit rating agencies.

However, default definitions serve a few other masters beyond domestic regulations and

international standards, most notably the contexts of credit scoring, loan pricing, and collection

modelling. It is therefore worthwhile to review how both ‘delinquency’ and the subsequent notion

of ‘default’ is used elsewhere in banking, most notably in basic credit and pricing decisions. Having

reviewed these areas in subsection 3.1.2, the specifics of a decision-support tool called a roll

rate analysis, which is commonly used in selecting default definitions when building application

scorecard models, are discussed in subsection 3.1.3.

3.1.1 A regulatory overview of default definitions

Credit risk is inherent to any credit agreement, though the manner in which the default event

is defined can vary by product, customer type, and bank. Historically, these definitions include

reaching a certain number of days in arrears (or overdrawn), filing for bankruptcy, claims that

are not fulfilled up to a certain nominal value, negative net present values, as well as being

three payments in arrears, as discussed in Van Gestel and Baesens (2009, pp. 203–207) and

Baesens et al. (2016, pp. 137–138). The introduction of Basel II brought with it a greater degree

of uniformity in the formulations of default definitions across banks world-wide, while still

leaving some room for subjective discretion (subject to the local regulator’s approval). Specifically,

paragraph 452 of the Basel Committee on Banking Supervision (2006a) defines ‘default’ when

either one or both of the following events has occurred:

1. The obligor has reached 902 days past due (or three payments in arrears) on a material

loan balance, or has been in excess of an advised credit limit for at least 90 days;

2Paragraph 452 of the Basel Committee on Banking Supervision (2006a) concedes that some regulators allow up
to 180 days past due as a default criterion for retail and public sector exposures.
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2. The bank considers, in its opinion, that the obligor is unlikely to repay its obligations in

full, without the necessary intervention of the bank, e.g., liquidating any collateral.

Basel II also lists a few reasonable indicators of default in paragraph 453 for those banks

following the IRB approach, which are in many cases enforced verbatim by the regulator of a

country. For example, Regulation 67 of the amended Banks Act of South Africa (2012, pp. 1201–

1202, 1211) defines ‘default’ exactly the same way as in Basel II and lists the same indicators.

In addition, Regulation 67 indirectly describes ‘default’ when it defines non-performing debt as

those debts having reached the point when it is "no longer prudent to credit interest receivable to

the income statement" of a bank. This definition reinforces the original notion of default as having

reached a certain "point of no return", i.e., unlikely to repay in Basel’s parlance. Accordingly,

banks are afforded a modicum of discretion in formulating their own default definitions, which

lends additional credibility for the present study. Finally, Basel II’s default indicators include the

following, at a minimum:

Indicator 1 The bank assigns a non-accrued status to the relevant credit obligation, thereby

no longer charging interest;

Indicator 2 The bank writes down a portion of the credit obligation, or raises a specific

provision, as a result of the belief that the credit quality has significantly

deteriorated since the inception of the credit obligation;

Indicator 3 The bank resolves to sell the credit obligation at a material economic loss

related to credit risk;

Indicator 4 The bank files for the obligor’s bankruptcy;

Indicator 5 The bank agrees to the restructuring of the credit obligation, which likely

results in a materially reduced financial obligation;

Indicator 6 The obligor files for bankruptcy (or is placed therein), which will likely either

delay or avoid repaying the credit obligation.

Some of these indicators (of "unlikeliness to repay"), most notably, indicators 1–4, are retro-

spective in that they denote ‘default’ as a result of certain actions taken by a bank ex post.

However, these actions are only reasonably pursued after a bank has already resolved that

continuing the credit agreement is of decreasing (or little) financial benefit. This is to say that

the trust between bank and borrower in honouring the credit agreement in full has already been

eroded beyond a certain point, likely as a result of persistent non-payment. If one considers

that reaching this particular precipice already reflects ‘default’ in essence, then these specific
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default indicators do not preemptively signal ‘default’ as much as they merely reaffirm what a

bank already considers to be obvious. This suggests the fallacy of circular reference, or petitio

principii, on the premise of using these indicators in defining default when they themselves are

deducible by presumably the same underlying default criteria, e.g., having accrued a certain level

of arrears.

The remaining indicators 5–6 are uncertain and prospective in nature since they may not

necessarily coincide with either previous or future non-payment, at least not with absolute

certainty. Consider a financially-distressed obligor who is not yet in arrears, contacting the bank

to restructure his obligation timeously. At this point of restructure, there can be no erosion

in trust (or default) since there is no amount in arrears. This remains the case even though

the restructured terms may eventually lead to a slight economic loss relative to the original

agreement. In this scenario, statistical analysis may very well show a time-lagged relationship

between the restructure event and subsequent non-payment, which supports the original premise

of a restructure event denoting default. However, though default is reasonably likely, it is not

an absolute certainty at the point of restructure itself. Consider the converse of a restructure or

bankruptcy event indeed following a series of unpaid instalments. These indicators 5–6 merely

reaffirm the observed erosion of trust incurred by non-payment instead of supposedly signalling

it, similar to indicators 1–4. Therefore, indicators 5–6 ought to be considered more as possible

predictors of default, rather than indicating definite default at a certain point in time.

The IFRS 9 (2014) accounting standard does not rigidly prescribe a fixed or singular default

definition for all banks. Doing so would be challenging (and perhaps unwise) since banks (and

their internal business units) differ from one another in their product offerings, risk appetites,

operations and financing, markets in which they operate, and levels of sophistication. Instead,

IFRS 9 more reasonably requires in paragraph B.5.5.37 that a chosen default definition simply

be consistent with the definition used in other internal credit risk models and management.

Furthermore, the same paragraph provides a rebuttable presumption of 90 days past due (or

DPD) as a default definition. The rebuttal hereof can logically lead to any other default definition,

provided that "reasonable and supportable information" demonstrates its appropriateness.

The recent guidelines (D403 of 2017), published by the Basel Committee on Banking Super-

vision (2017), intends to harmonise default definitions across banks by proposing the use of 90

DPD quantum as a universal definition of a non-performing loan (NPL). This criterion is supple-

mented by additional default indicators of unlikeliness to pay and applies to any exposure type

(retail or otherwise). Collateralisation does not play a direct role, except perhaps as an indirect

default indicator, should a bank think it necessary. Critically, this universal NPL-definition is not

intended to replace any default definition currently used for loss impairment calculation or IRB

capital estimation, as noted in the guidelines. Instead, a central definition will sensibly promote
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the comparability of credit risk information amongst banks, as well as help regulators assess

asset quality more accurately.

The regulators of some jurisdictions may grant concessions or impose additional requirements

on member banks when interpreting Basel II’s default definition. As an example, the South

African regulator issued circular C2/2014 in SARB (2014) wherein it stated that Basel’s 90

DPD criterion has broad equivalence to that of using a three-month missed instalments-based

definition, which is widely used by South African banks. More importantly, the SARB acknow-

ledged that the costs of implementing Basel’s day-count definition will be too great for South

African banks. Many of their computer systems are designed for instalment-based products,

which integrates better an instalment-based default definition. Accordingly, the communique

listed necessary steps for banks to follow when intending to use an alternative default definition

that differs from Regulation (i.e., Basel II). Most notable of these steps is that of demonstrating

the suitability of the proposed definition over time for a particular portfolio. This particular

concession arguably provides academic scope for pursuing alternative definitions – particularly

when varying the time-based element thereof – provided these definitions are demonstrably

superior at the end of the day. Relatedly, Regulation 1 of the amended Banks Act of South

Africa (2012) states that compliance with the Regulations should not prove costlier than the risk

benefits accrued by being compliant in the first place. At the very least, this affords a mandate for

experimentation, even if it may lead to an alternative default definition that yields fewer losses,

but also contrasts the prescriptions of the SARB – or even Basel II.

Another regulatory example is Article 178 in Regulation (EU) No 575/2013, the so-called

Capital Requirements Regulation (or CRR) as promulgated by the European Parliament (2013),

which gives the default definition of an obligor across all EU-member banks. The European

Banking Authority (or EBA) later amended Article 178 in EBA (2016) by providing guidelines on

interpreting and applying the default definition within the EU jurisdiction. Firstly, the same six

minimum default indicators as in Basel II’s paragraph 453 are enforced when defining default.

In particular, the EBA (2016, §2.3.1) clarified Article 178(3)(b) of the CRR, which relates to a

perceived decline in credit quality (Indicator 2) serving as a default indicator. In line with IFRS

9, an obligor should be classified as having defaulted whenever a bank recognises a Specific

Credit Risk Adjustment (or SCRA) due to the obligor’s credit risk having deteriorated. These

adjustments include

(a) losses representing credit risk impairments that are recognised in the profit/loss account

for all instruments measured at fair value;

(b) losses due to current/past events affecting either a single though material exposure or a

collection of less material exposures that are significant in the collective.
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Although Stage 2 exposures under IFRS 9 already contain SICR-accounts, i.e., those accounts

whose credit risk has potentially increased, the EBA (2016, §2.3.1) stresses that reaching Stage

2 does not constitute an indicator of default by itself. The guidelines do, however, seek to align

reaching Stage 3 credit impairment under IFRS 9 as a broader sign of default, in an effort

to harmonise some aspects between Basel-compliant capital modelling and IFRS 9-compliant

expected loss modelling. However, under no circumstances should the treatment of SCRAs under

IFRS 9 overrule the CRR and its requirements or discretions. To this point, reaching Stage 3

under IFRS 9 will generally constitute a default event3, except for

(a) cases where the discretionary use of up to 180 DPD is applicable as a default criterion, as

per Article 178(1)(b) of the CRR and paragraph 452 of Basel II;

(b) cases of technical (or false) defaults, i.e., having entered default purely due to system/data

errors or evidenced failures in the payment system, as clarified by the EBA (2016, §2.2.2);

(c) cases of immaterial (or too small) defaulted exposures, i.e., where the materiality threshold

remains unbreached, as per Article 178(2)(d) of the CRR, and discussed hereafter;

(d) exposures to central governments, local authorities, and public sector entities, as defined

by the EBA (2016, §2.2.3).

Regarding the aforementioned materiality threshold, point 1 of Basel II’s paragraph 452

requires at least 90 DPD to lapse on a material credit obligation before the exposure is considered

as in default, which is enforced by Article 178(1)(b) of the CRR within the EU jurisdiction. To help

clarify the meaning of a ‘material’ past due obligation, the EBA (2018) specified that all exposures

should be subjected to a materiality test that consists of two components when deciding default.

Firstly, the arrears balance A must exceed a specified limit on an absolute basis to be considered

material. Secondly, A as a proportion of the outstanding balance B must exceed a given %-valued

threshold to be considered material. Both of these thresholds may be differentiated between

retail exposures and other non-retail exposures. Owing to differences in economic conditions,

individual EU-member regulators are allowed some flexibility when setting the thresholds of the

materiality test. The EBA suggests A >AC100 (or the equivalence thereof in domestic currency)

and A/B > 1% for an overdue retail exposure. For non-retail exposures that are overdue, the EBA

retains the threshold of the relative component while suggesting a threshold of A >AC500. More

recently, the UK regulator rendered these thresholds moot for retail exposures when setting A > 0

and A/B > 0% in PRA (2019), though still adopting the EBA’s suggested thresholds for non-retail

exposures. Conducting these materiality tests when defining default is expected to enter into

force from 31 December 2020 at the latest, at least for capital estimation.
3However, if Stage 3 credit impairment status is the only default indication, then such exposures may still be

considered as performing, given that CRR supersedes IFRS 9.
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Perhaps more interesting is that Article 178(1)(b) of the CRR allows IRB-banks to relax the

standard 90 DPD criterion up to 180 DPD, where appropriate4. This discretion recognises that

the quantum of this particular default criterion may differ amongst banks, presumably in line

with the varying levels of risk tolerances of each bank as they compete with one another. However,

the EBA recently announced its intention of withdrawing this discretion, primarily since only a

small number of UK banks (and one French institution) are currently using it as their default

criterion. The 2017/17 opinion piece of the EBA (2017b), with an annex given in EBA (2017a)

containing an empirical analysis, argued that this withdrawal will harmonise reporting and

remove ‘unwarranted’ variability in risk-weighted assets (or RWA) across EU banks. Its analysis

was primarily based on measuring the change in RWA implied by adopting 90 DPD instead of 180

DPD as the default criterion. Using highly aggregated data from affected institutions, the EBA

found that capital will likely increase for two thirds of these institutions by an average of 1.61%,

or with a minimum and a maximum relative change of -20.3% and 23.57% respectively. However,

the analysis assumes all other factors remain equal and ignores the fundamental opportunity

costs at play and potential risk benefits to be had when varying the ‘default’ point as a function of

arrears levels, which is explored later in this study. As such, it is unfortunate that both the EBA

and the UK regulator, having recently enforced this opinion in PRA (2019) starting 31 December

2020, seek such a high degree of bureaucratic uniformity amongst banks in the formulation of

risk itself that it may stifle risk innovation in this regard.

The Basel II default indicator, as specified in Article 178(3)(c) of the CRR relating to selling

the credit obligation at a loss (Indicator 3), was further refined by the EBA (2016, §2.3.2). In

particular, a bank may decide to sell an obligation at a loss due to liquidity concerns or changes in

business strategy, which logically does not constitute a default event for the obligor. If, however,

the bank sells an obligation E at an agreed price P < E, which results in a credit-related economic

loss, then this event should be considered a default indicator. This should only apply provided

that the %-difference is sufficiently material, e.g., (E−P)/E > 5% as suggested by the EBA (2016,

pp. 27–28) in paragraphs 41–48. Moreover, the EBA (2016, §2.3.5) contends that both Basel

II’s paragraph 453 and Article 178(3)(a–f) of the CRR do not provide an exhaustive list of

default indicators. Banks are expected to consider and pursue additional indicators of default

(or measures thereof) if they think it necessary, based on their own experience. Lastly, the EBA

(2016, §2.6) requires that a bank should strive to apply default definitions consistently within

its internal risk management, as far as possible. However, the guidelines concede that some

differences in definitions may be unavoidable, e.g., different legal entities within the banking

group, or different jurisdictions across various geographical locations in which the banking group

operates.

4This criterion applies specifically only to residential mortgages, commercial properties within the retail exposure
class, or public sector entities. Other than these, this treatment should only be applied in exceptional circumstances
for exposures to central governments, local authorities, and public sector entities, as noted by the EBA (2016, §2.2.3).
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A particular default definition may be differently applied either at the facility-level (or

product-level) or at the obligor-level. The latter case equates to triggering default on all facilities

held if the obligor defaults on any one of his facilities. However, if a bank assesses some of the

obligor’s exposures at the facility-level instead, then triggering default on any of these specific

exposures will not automatically propagate across other exposures held by the same obligor.

Naturally, this is at odds with the spirit of applying the default definition at the obligor-level. The

paradoxical reason is that paragraph 455 of Basel II and Article 178(1) of the CRR allows for

applying the default definition at the facility-level for all retail exposures. The EBA (2016, §2.7)

advises that banks applying their default definitions at different levels across different types of

retail exposures, should demonstrate that the cases are negligible where the same borrowers

are subjected to various default definitions applied at varying levels. More broadly, there is no

presumption of default contagion amidst retail exposures, i.e., a defaulted exposure of one facility

held by a distressed retail borrower will not automatically trigger default on another facility held

by the same borrower. However, banks are encouraged to analyse the extent of default contagion

(especially in retail banking), perhaps to formulate an additional default indicator, if appropriate.

That said, such an exercise can quickly escalate into statistical modelling5, which detracts from

framing the default definition first and foremost as a measurement problem.

Another Basel II default indicator, Article 178(3)(d) of the CRR regarding distressed restruc-

tures (Indicator 5), is rather unclear on what exactly constitutes a materially diminished financial

obligation. In fact, guidelines posted by the EBA (2016, §2.3.3) sought to clarify this particular

indicator by proposing a so-called ‘impairment test’, in line with IFRS 9. As a result, all cases of

restructuring that will likely result in an overall diminished financial obligation due to credit

forgiveness, forbearance measures, or postponement/suspension of principal, interest, or fees,

should be considered a distressed restructuring. The extent of financial diminishing should be

subjected to a materiality test, which is based on the difference in the net present value of expec-

ted cash flows before and after changing the contract’s terms and conditions. Both net present

values, denoted P1 (before restructuring) and P2 (after restructuring), should be compared at the

same point of restructuring and discounted using the original effective interest rate (in line with

IFRS 9). If (P2−P1)/P2 exceeds a specified %-threshold, then the distressed restructure should be

recognised as a sufficiently material default event, e.g., (P2−P1)/P2 > 1% as suggested by the EBA

(2016, pp. 29–30) in paragraphs 49–55.

The South African regulator defines distressed restructures similarly as the EU regulator

when defining forbearance, following that the Basel Committee on Banking Supervision (2017,

pp. 12–14) in paragraphs 36–44. Directive D7/2015 of the SARB (2015) states that restructured

exposures that are in arrears (excluding technical arrears) either at the time of restructure or

5A more prudent approach would be to include information on possible default contagion as input variables when
modelling elements of credit risk.
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during the past six months prior, should be considered as distressed restructures. This includes

loans with no arrears that were preemptively restructured to prevent the obligor from going

into arrears in the first place. However, this requirement seems overly punitive, especially when

subsequent payments are dutifully paid by the obligor, even if these instalments are slightly

reduced. Nonetheless, the South African regulator considers distressed restructures as objective

evidence of credit impairment. Therefore, banks need to conduct regular impairment tests and,

if necessary, raise a specific impairment against these restructured exposures. As long as a

specific impairment exists, the exposure must be considered as in default. The South African

regulator also condones (though does not prescribe) a more stringent policy wherein all distressed

restructures are automatically classified as in default, regardless of recognising an impairment

loss.

In general, the default state is not an indefinite state into which the obligor is forever trapped.

Both paragraph 457 of Basel II and Article 178(5) of the CRR acknowledges this and requires

banks to rate the obligor/facility as they would for a performing exposure whenever default

criteria cease to apply. However, reclassifying a previously-defaulted exposure as performing, i.e.,

curing, was limited and made subject to additional requirements by the EBA (2016, pp. 34–36)

in paragraphs 71–74. To ensure the curing assessment is sufficiently prudent and that the

credit quality has indeed ‘permanently’ improved, a minimum probation period of three months

applies. During this period (itself perhaps informed by the standard 90 DPD default criterion),

the obligor’s behaviour and financial situation are carefully monitored. This period starts from

the moment that the obligor no longer meets any default criteria, and must lapse in full and

without pause before exiting the default state. Distressed restructures, however, warrant special

attention since such an exposure will never cease being restructured until it is fully repaid or

de-recognised (e.g., written-off). Therefore, the EU’s minimum probation period that applies

to distressed restructures is 1 year from the latest of: i) the moment of restructure, plus any

grace-period extended to the obligor or ii) the moment of default, provided that the exposure

is no longer in default at the end of the probation period. The South African regulator is less

stringent in this regard, having simply specified a minimum probation period of six months

for distressed restructures in directive D7/2015 issued by the SARB (2015), with no minimum

probation period prescribed for ‘regular’ defaulted exposures. These ideas and legal requirements

(where applicable) are summarised in Fig. 3.1, along with a proposed minimum probation period

of three months for normal South African defaulted exposures.

Aside from the various regulators, external rating agencies have their own (though not too

dissimilar) default definitions, given in Table 3.1. These agencies regularly publish credit risk

ratings on a wide range of counterparts, in guiding investment decisions. As discussed in Van

Gestel and Baesens (2009, pp. 115–117, 149–151), the three most prominent rating agencies

to date include Moody’s, Standard & Poor’s (S&P), and Fitch. While the original intent was
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FIG. 3.1: Illustrating the curing process wherein a defaulted exposure rehabilitates
and exits the default state, provided that default criteria are no longer met over a
minimum period. Legal requirements are tabulated for both South Africa and the
UK/EU, detailing the minimum length of the applicable probation period k.

to differentiate between investment grade and non-investment grade debt securities (mainly

government bonds), modern ratings cover a spectrum of issuers and associated credit risk, which

are frequently re-assessed. These ratings are generally assigned by a committee of domain experts

using both quantitative and qualitative methods on public and private data. Examples of data

include the financial statements of the entity being assessed, their debt structure, management

quality, market position and growth prospects. These entities commonly include large companies,

banks, state-owned enterprises, municipalities, and sovereigns themselves. Lastly, the eventual

credit ratings assigned to these entities are no longer only used for investment decisions, but also

in asset pricing and general portfolio management.

All three agencies measure default fundamentally based on the non-payment of interest

and/or capital repayments, including the delay thereof within a grace period of certain length

(one day for Moody’s, 10–30 days for S&P and Fitch). However, it is clear from Van Gestel and

Baesens (2009, pp. 208–209) that there are some nuanced differences to this principle. Moody’s

will consider a contract to be in default on the very first day of payment becoming delayed, while

S&P and Fitch applies a grace period of 10–30 days. Furthermore, Moody’s does not consider
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Credit quality Fitch Moody’s S&P

Extremely strong AAA Aaa AAA

Very strong
AA+ Aa1 AA+
AA Aa2 AA
AA- Aa3 AA-

Strong
A+ A1 A+
A A2 A
A- A3 A-

Adequate
BBB+ Baa1 BBB+
BBB Baa2 BBB
BBB- Baa3 BBB-

Speculative
BB+ Ba1 BB+
BB Ba2 BB
BB- Ba3 BB-

Highly speculative
B+ B1 B+
B B2 B
B- B3 B-

Vulnerable
CCC+ Caa1 CCC+
CCC Caa2 CCC
CCC- Caa3 CCC-

Highly vulnerable CC Ca CC
Extremely vulnerable C C C

Selective, restrictive default RD RD SD
Default D D D

TABLE 3.1: The long-term credit risk ratings published respectively by Fitch, Moody’s,
and Standard & Poor’s. Investment grades refer to overall good creditworthiness,
e.g., Aaa–Baa3 for Moody’s, with the remainder of ratings located lower in the spec-
trum denoting speculative (or higher credit risk) grades, e.g., Ba1–C for Moody’s.
The exceptions to these otherwise a priori predictions of default risk include the
observed/actual default states, e.g., RD–D for Moody’s. Recreated from Van Gestel
and Baesens (2009, pp. 116).

technical defaults (e.g., covenant violations), while S&P ignores the dividends due from preferred

stock as financial obligations, which implies that unpaid dividend payments are ignored. On

the other hand, there is some agreement amongst their definitions as well, such as considering

bankruptcy proceedings as indicative of default, similar to Basel II’s fourth and sixth indicators.

Secondly, exchanging a debt security under distress, or repackaging of an existing obligation

such that the overall financial position of creditors is reduced, are both considered as signs of

default by all three agencies. This is similar to one of Basel II’s default indicators relating to the

distressed restructuring of a loan (Indicator 5).

The use of external data (such as the previous credit ratings) when defining default internally
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is supported by both paragraph 456 in Basel II and by the EBA (2016, §2.4) in Article 178(4) of

the CRR. However, banks following the IRB approach should rigorously assess the differences

in default definitions and the impact thereof when using external datasets. Adjustments are

required where necessary, otherwise it will suffice to show that the differences are negligible in

their impact on the eventual risk parameters. If broad equivalence between internal and external

definitions cannot be demonstrated, a larger margin of conservatism should be applied when

estimating the subsequent risk parameters. The exact calculation of this margin, however, is

not prescribed and should presumably be challenged and assessed internally by the relevant

technical committee of a bank.

The discussion hitherto has made clear the differences amongst the default definitions of

various institutions, as well as the relevant prescriptions of some regulators. Neither Basel

II nor IFRS 9 define ‘default’ absolutely and both standards afford some discretion to lenders,

perhaps wisely so. Regulators may enforce these international standards to different levels,

depending on how flexible they wish to be in their interpretation thereof. That said, at least some

of the default regulations seem to coalesce around the central idea of low repayment probability

(or "unlikeliness to repay") in trying to define where this rather probabilistic point ought to be.

Admittedly, the recent regulatory drive for standardising these definitions is quite understandable

from a compliance and comparability perspective. However, in doing so, regulators dampen the

probabilistic element of "unlikeliness to repay" by decreeing certain criteria (e.g., 90 DPD) as risk

‘absolutes’ beyond reproach. Instead of finding this threshold statistically using decision theory

uniquely for each portfolio, a standardised default threshold devolves into little more than a static

hurdle – perhaps useful for reporting and accounting purposes, but not much more than that. If

reaching ‘default’ is indeed impetus for the lender to abandon the credit relationship in having

reached a "point of no return" (as it has been historically), then surely there must be different

consequences to varying the timing of this recovery decision. In turn, retaining possibly stale

default definitions purely for the sake of regulatory compliance seems like a wasted opportunity

when pursuing risk modelling innovation in the grander scheme of things. This is especially

regrettable when there appears to be little objective evidence that supports fixing the default

threshold to such a static and risk-insensitive value as 90 DPD.

3.1.2 Delinquency: the leitmotif in risk models

The advent of loan application credit scoring (as discussed in section 2.2) made necessary a more

methodical manner of measuring credit risk. Bankers required an automated proxy of sorts

for capturing what is essentially the development of mistrust between bank and borrower, as

instalments go unpaid over time. In this sense, any ‘accrued’ mistrust (or delinquency) can abate

over time once the borrower posts a series of overpayments, thereby reducing the arrears amount.

In turn, this gradually restores some confidence that the original credit agreement will again
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be honoured. The potential for either worsening or abating mistrust suggests that ‘delinquency’

itself is not a fixed state, but instead a flexible level of incurred mistrust over time, as defined in

Def. 3.1 within this study.

Loan delinquency

Definition 3.1. Loan delinquency is a time-dependent measurable quantity that repre-

sents the extent of eroded trust between bank and borrower in honouring the original

credit agreement. Let g denote such a delinquency measure wherein an increased value of

g signifies increased mistrust, and vice versa for a decreased value of g.

The number of payments in arrears is a commonly constructed and accountancy-based

measure of delinquency wherein the unpaid portion of an instalment is aged into increasingly

severe bins as each 30-day calendar month lapses: 30 days, 60 days, 90 days, and so forth, as

discussed in the introduction of Cyert et al. (1962). The most severe bin attained finally becomes

the delinquency measurement itself, which is referred to as the g0-measure in this research.

More formally, g0 is constructed using the arrears amount At (measured at time t) and a fixed

instalment I, as assembled in Def. 3.2 with an appropriate rounding function f that maps the

input to the number of payments in arrears. This measure is most sensible within the context of

amortising loans or credit facilities with a contingent series of regular payments due, e.g., credit

cards or drawn/utilised overdrafts. That said, it can be generalised to other credit commitments

without regular instalments becoming overdrawn, by calculating an artificial ‘instalment’ that

settles the overdrawn portion (effectively an ‘arrears’ amount) over a set period. Regardless, the

g0-measure has many variations in practice, with the most common variant thereof given in

Def. 3.2. Moreover, the present study will later examine some of the flaws of the g0-measure6 in

subsection 3.3.1 towards devising a more robust variant thereof called the g1-measure.

Banks commonly specified 90 DPD (or approximately whenever g0(t)≥ 3 payments in arrears)

as the point of default, long before the introduction of Basel II when building application score-

cards. This particular point, however, is largely informed by managerial discretion and can vary

from 30 days up to 180 days, depending on data availability and the particular loan portfolio, as

discussed in Thomas et al. (2002, pp. 123–124), Siddiqi (2005, pp. 32–42), Van Gestel and Baesens

(2009, pp. 208–212), and Baesens et al. (2016, pp. 90, 115). Factors that influence this default

threshold d ∈ Z≥0 include the type of security (or collateral) underlying credit commitments,

e.g., secured mortgages vs. unsecured term loans. Another factor is the contractual loan term,

which imposes some reasonable bounds on the chosen default threshold. This is perhaps best

6The g0-measure carries many names, e.g., the number of missed instalments, payments in arrears, contractual
delinquency (or CD-level), and arrears categories. Though a more robust variant g1 is later developed in this study,
the name ‘CD-measure’ is retained for both g0 and g1, given their conceptual similarities.
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demonstrated when considering a very short term 2-month pay-day loan versus a standard

60-month vehicle loan. In this case, a default threshold of d ≥ 3 is clearly nonsensical for the

2-month loan, though it demonstrates the principle. Lastly, the bank’s risk appetite is arguably

the most important factor when deciding the default threshold. The basic principle hereof is that

the higher the appetite for arrears, the more forgiving/greater the default threshold d, and vice

versa.

Payments in arrears (g0-measure)

Definition 3.2. If At denotes the accumulated amount in arrears at a given loan time

t = 0, . . . ,T with T being the contractual maturity (or fixed time horizon), and if I represents

the level instalment, then the payments in arrears delinquency measure (henceforth

called the g0-measure) is defined as

g0(t)= f
(

At

I

)
, (3.1)

where f is a chosen rounding function f :R→N0 that maps the real-valued input to the

non-negative integer-valued output, which denotes the number of payments in arrears.

The use of a loan delinquency measure such as g0 is widespread and deeply entrenched

across the various divisions and functions of a typical modern bank (especially retail banking).

Measuring delinquency is commonplace in almost every piece of analytics or statistical model

employed in retail banking, which are called ‘exercises’ in this work. A basic (but non-exhaustive)

taxonomy of these exercises is given in Fig. 3.2; see Finlay (2010) for more detailed discussion.

Many of these account-level models focus on predicting the default event itself (e.g., PD models)

by way of collapsing the delinquency measure into binary ‘default/non-default’ outcomes via the

chosen default definition. Models of this particular kind are commonly used to support various

operational decisions typically found across the first three phases (Marketing, Acquisition,

and Customer Management) in Finlay’s credit life cycle model, as discussed in Thomas et al.

(2002, pp. 169–171) and previously in section 2.2. The first model group includes prescreening

and preapproval scorecard models in which the default risk of potentially new customers are

predicted using any available data. The subjects are then risk-ordered and perhaps selectively

culled, thereby producing a list of ‘marketing leads’ whom the lender can then solicit during the

Marketing-phase. Secondly, application scorecard models are perhaps the best known example

wherein default risk is predicted, upon which a credit offer decision is subsequently made by the

lender during the Acquisition-phase. Lastly, behavioural scoring and the PD-component within

capital and loss provisioning models (see section 2.6) continuously predict default risk throughout

loan life.
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FIG. 3.2: The various credit risk-related models and types of analyses used across
the five-phase credit life cycle of retail banking. The common factor amongst these
‘exercises’ is the use of a delinquency measure, used either directly or indirectly
alongside a default definition.

The remaining exercises in Fig. 3.2 use this delinquency measure as well, though not neces-

sarily as an outcome variable or within a predictive setting. Instead, collection and litigation

scoring commonly use it as an input variable when predicting the likelihood of successful col-

lection or even successful litigation amidst debt recovery proceedings, as discussed in Thomas

et al. (2002, pp. 176). Some lenders may deploy advanced default risk models to aid them in

restructuring a delinquent account in such a way that the risk of ‘re-default’ is minimised, which

naturally requires using a delinquency measure. Furthermore, risk-based pricing commonly

uses default risk models to help determine the interest rate (or other contract variables, e.g., the

loan amount) of a new loan, as explained in Thomas et al. (2002, pp. 174–175, 227–228) and

Thomas (2009a, pp. 152–156). Outside of modelling, a delinquency measure is commonly used

in producing various pieces of portfolio analytics within credit reports (e.g., default rates), or to

investigate more ad hoc phenomena, e.g., finding a new trend of increasing arrears within some

portfolio.

Perhaps most noteworthy is the use of a delinquency measure g within the very structure of

capital and loss provisioning models when modelling the expected loss7 of a portfolio. Specifically,

the default definition itself conditions the various modelling samples used in estimating each of

the three risk parameters, i.e., PD, LGD, and EAD. Moreover, many PD models use delinquency

measurements as an input variable itself, apart from already using it in labelling the default

event that PD-models typically seek to predict. In estimating LGD, loan accounts that are at

risk of a loss can only feasibly include defaulted loans, which means their histories are observed

from the moment of entering the default state, up to their resolution (if resolved). Sensibly,

using a different default threshold, e.g., d = 1, will likely alter the starting point of the workout

period when preparing data, which will likely in turn affect the realised loss itself, as calculated

from historically written-off accounts. The statistical distributions of various characteristics of

defaulted loans may change when changing d within a default definition, simply due to sampling

7For a thorough treatise on modelling the generic aspects of quantifying credit risk, refer to Thomas (2009a,
pp. 289–293), Van Gestel and Baesens (2009, §4, §6), and Baesens et al. (2016, §5–11).
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at a different starting point. Lastly, the sample sizes themselves will likely change given each

candidate threshold d, especially when modelling default risk – not unlike the floodgates of a

dam changing the water flow as it opens or closes.

In summary, measuring loan delinquency and using these measurements in predictive models

seems ubiquitous in modern banking. Choosing a threshold d on the domain of a delinquency

measure as part of defining loan ‘default’, e.g., g0(t)≥ 3, appears to be a deeply embedded practice

in many of these modelling exercises. This ubiquity is unsurprising given that the very business

model of a bank relies on accurately quantifying credit risk, which implicitly belies some internally

agreed default threshold. However, the supposed suitability of any particular default threshold,

as used within a wider default definition, still remains questionable – regardless of whether

the threshold was decreed by a regulator or chosen arbitrarily by the bank itself for whichever

purpose. The particular modelling exercise in which it operates, albeit capital modelling or

application scoring, becomes almost superfluous, especially if the underlying principle of any

default threshold remains that of approximating the "point of no return" in probability. Intuitively,

changing the default point will likely have cascading effects across all exercises built upon the

default definition – almost unfathomable when considering the modern regulatory environment.

3.1.3 Roll rate analyses as decision-support tools

Practitioners often conduct a statistical analysis called a roll rate analysis in providing quan-

titative assurance on a chosen default threshold, as explained in Siddiqi (2005, pp. 41–42). At

its core, a roll rate analysis is a cross-tabulation of observed transition rates amongst various

ordinal-valued (and increasingly severe) arrears categories across a length of time, called the out-

come period. These categories include the newly-chosen and so-called "default state" as imposed

via a pre-selected value for d. An individual roll rate expresses the proportion of a portfolio (or

segment) that transitioned from a particular pre-defined delinquency level to another. This can

include transitioning to a worse state (rolling forwards), recovering or curing back to a better

state (rolling backwards), or staying within a particular state (milling). When analysed together,

roll rates summarise the delinquency dynamics amongst loans, from which the overall risk profile

of a given loan portfolio can be characterised.

It is worthwhile to discuss the typical structure of most loan datasets before estimating these

roll rates, as illustrated in Fig. 3.3. A bank generally disburses approved loans continuously over

time as part of actively growing its portfolio, which translates into a loan distribution that is

staggered over time in the underlying dataset. For most kinds of risk modelling, the first decision

is to choose the epoch in time from which to sample loan accounts, i.e., the sample window as

shown in Fig. 2.4, with associated trade-offs previously discussed in section 2.2. Part of this

decision relates to whether the analysis is solely focused on new loans or the entire portfolio. In
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FIG. 3.3: Illustrating the role of an outcome period within roll rate analyses and
within most cross-sectional models. A particular subject (e.g., a loan along with its
characteristics) is observed at a specific starting point in time, called a ‘snapshot’
or a cross-section, whereupon it is merged with a follow-up observation (e.g.,
repayment status) after the outcome period has lapsed.

other words, only using new loans implies that the starting time of each loan within the greater

sample window will be t = 0, which is appropriate when building application credit scoring

models. Alternatively, the starting time can simply refer to a specific cross-section (or ‘snapshot’)

of accounts taken of the portfolio at a particular time, e.g., monthly cohorts, which can include

both newly-originated (at the time) and existing accounts. This design has a few extensions of

the starting point in practice, though most are more applicable to building behavioural scoring

models than credit risk models. From Baesens et al. (2016, pp. 118–120), one such extension is

based on an additional behavioural window, during which some characteristics are aggregated

over time up to the starting point, e.g., the average utilisation of the borrower’s approved credit

limit. Naturally, this extension is only relevant for those accounts with sufficient history prior to

the starting point.

A secondary set of decisions relate to observing the repayment performance of each loan

from the starting time across a given outcome period of k periods (e.g., 12 months), thereby

forming pooled cross-sectional data, as discussed in Thomas (2000) and Siddiqi (2005, pp. 33–

36). Other than choosing k itself, the practitioner has to decide the manner of aggregating loan

performances across the outcome period. This can be as simple as recording the latest delinquency

value g0(t+k) of each loan after the outcome period has lapsed, or by taking the worst delinquency

value across the outcome period, i.e., max g0(t′) for t′ = t, . . . , t+k. The latter so-called worst-ever

approach takes into account a wider span of data and can aid in the detection of distressed debt

restructuring during the outcome period, as noted in R. Anderson (2007, pp. 339–340). However,

the worst-ever approach can be more punitive towards curing behaviour in that an isolated case

of delinquency will persist throughout the remainder of the outcome period, despite subsequent

repayments. As such, choosing the more risk-averse worst-off approach can deliberately skew the

portfolio’s assessed risk profile away from reality, especially if a portfolio has significant curing
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behaviour.

FIG. 3.4: An illustrative cohort analysis of cumulative default rates across various
candidate outcome periods k, given a particular default definition. This hypothet-
ical analysis is conducted in retrospect at a particular point in time, e.g., July
2019.

Practitioners often conduct a so-called cohort (or vintage) analysis to help select an appropriate

outcome period k. This analysis, as explained in Siddiqi (2005, pp. 33–35), considers a particular

cohort of loans, e.g., January-2018, whereupon the cumulative default rate for that cohort is

iteratively calculated across various candidate outcome periods, e.g., k = 1, . . . ,24. Thereafter,

these calculations are repeated for subsequent cohorts, thereby forming a triangular matrix

as illustrated in Fig. 3.4. As an example, 3.59% of the January-2018 cohort were in default 8

months later. More recent cohorts will likely have less data available than older cohorts, which

is testament to the intrinsic right-censoring effect present in most real-world ‘incomplete’ loan

portfolios. Furthermore, the resulting cohort analysis is unique to a particular default definition,

sample window, loan portfolio (or segment therein), and even product type. By implication, a

cohort analysis does not lend itself flexibly to analysing various candidate default thresholds d

themselves, which is problematic when the lender is unsure of a particular criterion within its

default definition.

Performing a cohort analysis becomes more valuable once the default rates from Fig. 3.4

are summarised across the various candidate periods under consideration, as shown in Fig. 3.5.

Shorter periods usually coincide with default rates that are still in flux, while longer periods

typically yield default rates that have stabilised, as exemplified by large (or small) changes in the

standard deviation of each period. The practitioner often selects a period from the latter group

with more stable default rates simply due to risk-aversion, i.e., default rates should preferably
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FIG. 3.5: The development of the average default rate across candidate outcome
periods as a summary of the cohort analysis from Fig. 3.4. The grey-shaded area
shows outcome periods during which the portfolio is still immature, while the
blue-shaded area shows outcome periods yielding more mature average default
rates.

be overstated rather than understated. From Thomas et al. (2002, pp. 91) and Van Gestel and

Baesens (2009, pp. 101–102), the outcome period generally varies from 6–24 months, though

literature guiding its selection optimally is fairly limited.

In fact, the work of Kennedy et al. (2013) experimented with various outcome periods in

predicting default risk using binary logit models on Irish data. Shorter periods exhibited greater

volatility in default/curing rates due to seasonal effects and/or insufficient loan maturity, which

may misrepresent the ‘true’ default/curing rates. On the other hand, longer periods may no

longer represent current market conditions nor reflect the portfolio’s original risk composition.

The authors found that classifier accuracy decreases for increasingly longer outcome periods.

Too long a window may also fail to capture unusually rapid delinquency movements, e.g., an

oscillating series of defaults and cures, as argued in Kelly and O’Malley (2016). Lastly, Kennedy

et al. suggests that using an outcome period between 3–12 months (and a worst-ever approach

in assigning the class label) will yield the most accurate model of default risk on average. This

result was corroborated in Mushava and Murray (2018) wherein nine different classification

algorithms were investigated using South African data across various outcome periods.

Having selected an outcome period k, an epoch of time, and a method of aggregating loan
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performance, the practitioner is finally able to conduct a roll rate analysis. As a typical example,

consider Fig. 3.6 wherein a large proportion of accounts (80%) remained up to date with their

payments following a 12-month outcome period. Similarly, consider the 60% of accounts that

remained 90+ DPD (the supposed default state for this hypothetical), and consider the measly

10% of accounts previously in ‘default’ that cured completely. The principle, at least when building

application scorecards, is based on back-solving for stability in that accounts identified as ‘lost’

should stay lost at the end of the outcome period. This is to find the "point of no return" at which

only a minimum of accounts recover from a supposed default state as imposed via d, which gives

more confidence in the overall stability of the default definition using this d over time – in this

case, 90 DPD. By extension, this instils confidence in any subsequent model that seeks to predict

‘default’, or use the predicted default probability in some way or another.

FIG. 3.6: An illustrative roll-rate analysis showing the transitions rates amongst
arrears categories across a period of time (12-months).

As a more advanced form of a roll rate analysis, the sophisticated practitioner can use a

Markovian approach instead. Specifically, one can model the conditional transition probability

itself given several starting and ending delinquency states, in estimating a Markov chain. This

was first explored in Cyert et al. (1962) as part of loss provisioning, wherein a time-homogeneous

discrete-space Markov chain was built to model the transitions amongst arrears categories.

Specifically, the balances of accounts receivable at a particular time point t were classified

into n+1 delinquency levels (or states) denoted as B0, . . . ,Bn where B0 denotes all balances
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with g0(t) = 0 payments in arrears, Bn−1 signifies all balances with g0(t) = n−1 payments in

arrears, and Bn represents all remaining balances to be written-off with g0(t)≥ n payments in

arrears. Afterwards, the balances can again be reclassified at time t+1, although it becomes

necessary to define an additional (absorbing) state 0̄ to cater for the balances of settled/prepaid

accounts denoted as B0̄. This leads to calculating an n+2 square matrix B wherein the individual

element Bi j denotes balances in state i at time t that moved to state j at time t+1 for all states

i, j = 0̄,0,1, . . . ,n, which is expressed as

B =



B0̄0̄ B0̄0 · · · B0̄ j · · · B0̄n

B00̄ B00 · · · B0 j · · · B0n
...

...
...

...

Bi0̄ Bi0 · · · Bi j · · · Bin
...

...
...

...

Bn0̄ Bn0 · · · Bn j · · · Bnn


. (3.2)

Naturally, one can estimate an n+2 transition matrix P from B that measures the likelihood

of transiting amongst the delinquency states over the same time period. The element Pi j is

therefore defined as the conditional probability of one rand in state i at time t transiting to state

j at time t+1 for all states i, j = 0̄,0,1, . . . ,n. The repayment history of each account constitutes

a repeated observation of the underlying Markov chain formed by the sequence of random

variables B(0), B(1), . . . over time t = 0,1, . . . that can each assume states 0̄,0,1, . . . ,n respectively,

as discussed in T. W. Anderson and Goodman (1957). Assuming stationarity, the maximum

likelihood estimate (MLE) for each Pi j is defined as

Pi j = P
(
B(t+1)= j

∣∣B(t)= i
)= Bi j∑n

k=0̄ Bik
∀ i, j = 0̄,0,1, . . . ,n . (3.3)

The work of Cyert et al. (1962) provided useful theorems using Markov theory for directly

estimating the allowance for bad debts (state n). This is achieved by calculating the particular

absorption probability, followed by estimating its variance – as illustrated in Appendix A.1 for

n = 2. Using these theorems, the loss expectancy rates can be estimated for each delinquency

state, as well as provide the steady state distribution into which the Markov chain will settle over

time. Their work was later extended in Corcoran (1978) wherein account balances were stratified

according to size before estimating a transition matrix P for each stratum, which improved

the overall predictive power. The transition matrix itself was exponentially-smoothed each

lapsing month to counteract the assumption of time-homogeneity and to incorporate subsequent

repayment behaviour. Lastly, Cyert et al. (1962) used an unconventional approach (the so-called

"total balance" method) in ageing balances across delinquency states, which is based on retaining

the oldest amount due despite partial payments posted subsequently. The ageing procedure
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was modified in Van Kuelen et al. (1981) such that collections are no longer understated when

estimating the transition matrix.

In general, Markovian approaches are quite prolific in the credit risk modelling literature,

even though they are perhaps not commonplace in practice yet. As an example, the bankruptcy

process of firms was modelled in Jarrow et al. (1997) as a Markov chain across various credit

rating states and an absorbing ‘default’ state. Specifically, the time distribution of the chain

first entering the default state was explicitly modelled, from which a probability of default over

a certain term structure can be estimated. In agreement with Corcoran (1978) on the Markov

chain being time-dependent in reality, a non-stationary forecasting model with a Markovian

structure was developed in Smith and Lawrence (1995) using US mortgage loans from the 1970’s

and 1980’s. Each transition probability Pi j(t, t+1) was modelled separately as a multinomial

logistic regression explicitly containing the age covariate t, amongst others. The state space of the

eventual Markov chain was limited to four states, which implies that this approach can quickly

become extreme for larger though more realistic state spaces.

Alternatively, the Markovian approach followed in Grimshaw and Alexander (2011) proposed

modelling only certain transitions within the matrix as time-dependent multinomial logits,

which was illustrated using US subprime home loans data. The remainder of the transition

matrix can instead be estimated as simple intercept-only models. Additionally, the authors

introduced new empirical Bayes estimators that are appropriate for estimating non-stationary

and heterogeneous transition matrices. This heterogeneity recognises that certain segments

within a loan portfolio may have fundamentally different transition rates. Furthermore, the

authors compared estimating the transition matrix based on the actual dollar movement amongst

states (value-based) versus the number of accounts that transited (volume-based). The former

value-based approach was originally used in Cyert et al. (1962) and Van Kuelen et al. (1981).

While both approaches are statistically unbiased, the value-based approach was shown to be

inefficient due to exhibiting greater variance than the volume-based approach.

In modelling the insurance purchase behaviour of customers, the time-homogeneity and

first-order assumptions of Markov chains were relaxed in Bozzetto et al. (2005). Portfolio-level

credit risk models for corporate exposures were translated into the retail banking context using a

Markovian approach, as investigated in Thomas (2009b). The same study argued that the implicit

assumption in most Markov models of independent default behaviours amongst borrowers is

likely flawed due to the default contagion principle in a given market. Lastly, a four-state non-

homogeneous Markov chain was built as part of a larger suite of intensity models in Leow and

Crook (2014) for credit card delinquencies. Other examples of Markovian approaches applied to

the credit risk context are reviewed in Hao et al. (2010).
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Both a roll rate analysis and its more advanced form, a Markov chain, can be iteratively

used to analyse the impact of a proposed threshold d within a larger default definition, based on

attaining stability. Whether or not a candidate d passes managerial muster will likely depend

on the particular portfolio, regulatory restrictions, and the associated curing rate implied by d.

Such an analysis, however, often depends on other design parameters that may influence any

inference drawn from it, including the sample window and the length of the outcome period. For

greater assurance, the practitioner can laboriously repeat the same analysis a few times using

slightly different parameter choices each time. Given the bank-wide ubiquity, complexity, and

implied impact of varying d within any default definition, it is perhaps unsurprising that most

practitioners (and regulators) simply interpret the default definition as something fixed.

3.2 Towards opportune loan recovery: analysing true ‘default’

Although various regulations exist that constrict the default definition for Basel and IFRS 9 types

of credit risk modelling, there are areas in retail banking that can benefit from a new ‘philosophy’

of default – in particular, that of application scoring and optimising the collections process,

including related policy decisions. Consider that the original premise of a default definition

is reaching a rather probabilistic "point of no return", which may differ for every portfolio (or

segment therein) in reality. Therefore, ‘default’ is reinterpreted in this study by simply using d

as a threshold upon the domain of a delinquency measure g, which is deliberately divorced from

current practices and from relevant regulations. This more fundamental meaning becomes useful

when attempting to optimise the recovery decision’s timing later in section 3.4, i.e., finding the

best time at which the lender should forsake the loan and instead pursue debt recovery, including

seizing any collateral.

As discussed in subsection 3.1.3, the choice of outcome period and the sample window from

which loan performances are drawn can clearly complicate any roll rate-based analysis. This is

further exacerbated when trying to choose the ‘best’ threshold d to approximate the "point of no

return" based on these roll rate results, at least without expending a great deal of additional

analytic effort. As an example, it would be difficult to decide if a particularly low curing rate

is artificially due to an overly short outcome period, testament of the portfolio’s risk profile, or

shifting market conditions – without conducting additional analysis. Moreover, a roll rate-based

approach ignores the competing financial and opportunity costs that may be in play when varying

d itself, e.g., legal and administration costs, collection staff salaries, loss provision increases, as

well as overall effort. While stability in these roll rate analyses is a noble criterion for finding d,

a better alternative may be to consider the direct loss implications associated with any chosen

d instead. For these reasons, a roll rate analysis is deemed unfit as an approach for finding an

ideal threshold d, and an alternative becomes necessary.
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The work of Harris (2013b) and Harris (2013a) first broached the subject of varying d within

a default definition and studied the subsequent effects thereof on model accuracy8. Specifically,

support vector machines were used as default-classifiers and it was found that those classifiers

trained with increasingly intolerable definitions (or ‘broader’, e.g., 30 DPD) had progressively

higher accuracy on validation datasets pre-classified with gradually more tolerable definitions (or

‘narrower’, e.g., 120 DPD). In other words, models built with intolerable definitions are seemingly

more accurate in predicting defaults that are defined more tolerably (or more severe cases of

delinquency). This seems counter-intuitive as one would expect models built with a specific

definition to be the best at predicting that very same definition – surely they ought to outperform

models built with another definition trying to do the same. However, larger values of d yield

decreasing sample sizes since greater severities of delinquency typically occur less frequently, as

noted in Thomas et al. (2002, pp. 124) and Siddiqi (2005, pp. 38), and corroborated by anecdotal

experience. These decreasing sample sizes of ‘defaults’ afford less opportunity for the classifier to

learn overall patterns of delinquency. This explains the improved accuracy of classifiers trained

with smaller values of d, since they inherently had more training samples.

However, these findings – while proving that d significantly influences model accuracy – say

little about the direct impact on profitability. As originally argued in Hand and Henley (1997) and

Hand (2001), a lender is primarily interested in the underlying profitability of a credit decision,

with credit risk being but a facet thereof. This is to say that lower default risk borrowers are not

necessarily the most profitable since default risk is merely a proxy for profitability, amongst other

factors. There is certainly some truth to the idea that borrowers with no arrears (considered

as ‘good’ risks) will likely yield a profit for the bank. Conversely, those accounts with sufficient

arrears (enough to prompt a default decision) will likely lead to losses and are justifiably ‘bad’

risks. Using 90 DPD as a heuristic rule therefore seems apt and fitting with the historical

pragmatism in banking analytics, as discussed in section 2.2. However, the presumption of

profitability underlying this particular rule has little objective evidence in literature, with little

research effort spent on the topic as a whole.

Loan profitability itself depends on much more than just delinquency, with loan pricing

amidst credit market dynamics representing another major factor. As explored in Edelberg

(2006), Thomas (2009a, §3), and Phillips (2013), most lenders employ default risk-based pricing

by charging higher prices for riskier borrowers, as compensation for the greater credit losses

expected in aggregate. This practice, having started with mortgage lenders from the mid-1990s,

only became feasible as default risk estimates of the individual borrower became available,

which was in turn enabled by lower data storage costs and improvements in both technology

and underwriting models. The basis of risk-based pricing is to segment a loan portfolio into a

few ordinal-valued risk grades and define a rate factor lk specific to the kth segment, e.g., a

8Accuracy was measured using the area under the curve (AUC) and a cross-validation setup.
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rate based on the segment’s average expected loss. The final customer rate rk is then given as

rk = rc +m+ lk where rc is the overall cost of capital and m is a desired profit margin targeted

by the bank. Moreover, the work of Edelberg (2006) showed that the difference in rk (or risk

premium) between high- and low-risk borrowers almost doubled for secured loans on average

during the 1990s, and increased for most unsecured loans. In turn, lower-risk households had an

incentive to increase borrowing given the lower costs, while higher-risk households gained better

credit access overall. Risk-based pricing as a practice clearly has demonstrable benefits, not only

to borrowers, but also to the base profitability of a bank.

However, risk-based pricing suffers from adverse selection wherein riskier borrowers are less

price-sensitive than their lower-risk counterparts in accepting a higher-priced loan. Adverse

selection, as induced by loan pricing, may lead to banks rationing credit at certain price intervals,

which was famously explored in Stiglitz and Weiss (1981). As a secondary market-driven effect,

adverse selection implies that the volume of higher-risk borrowers may exceed the lender’s

original expectation a posteriori. It was first empirically evidenced in Ausubel (1999) using

the results of several "market experiments" that were conducted by a major US bank. Several

pre-approved and varied credit card offers were issued in randomised trials. Evidently, the risk

characteristics of respondents were inferior to those of the non-respondents, which confirms the

so-called "Winner’s Curse9" phenomenon in the auctions literature. Furthermore, those customers

who accepted inferior offers were substantially more likely to default. These inferior offers

include higher introductory (or teaser) rates, shorter teaser periods, and higher post-teaser rates.

Adverse selection was further demonstrated in Cressy and Toivanen (2001), wherein the variation

and trade-offs amongst interest rates, loan sizes, and collateral requirements were empirically

modelled given imperfect information. Finally, price-driven adverse selection was incorporated

in Phillips and Raffard (2011) by developing a consumer pricing model based on differential

price-sensitivity.

Another interesting phenomenon related to profitability is that of price-based risk wherein a

higher price may itself contribute to higher default rates. One of the many drivers of the 2008 GFC

was the prevalence of so-called adjustable-rate mortgages (ARMs), wherein the interest rate rose

after an introductory period (usually 1-2 years) by contractual design. Perhaps unsurprisingly,

the associated default rates rose significantly as rates increased and house prices fell, which

was demonstrated in Campbell and Cocco (2015) using rational expectations theory. Moreover,

credit-constrained borrowers with uncertain incomes were found to favour ARMs, especially

when the offered teaser rates were low. It so happened that this scenario attracted ever riskier

borrowers into ARM-portfolios leading up to the crisis, i.e., adverse selection. As the crisis started

to unfold, some borrowers exercised a "default decision" to avert negative home equity as house

9In the absence of adverse selection, there should be no difference in the characteristics between respondents and
non-respondents, as explained in Ausubel (1999).
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prices started to fall. In tandem, unemployment shocks meant that more borrowers wanted

to access home equity, and the resulting oversupply exacerbated the decline in house prices.

However, the interest rates declined rapidly during the crisis as well, which would ordinarily

imply lower default rates in these ARMs. The authors explains that as home equity became

negative, many borrowers rather chose to default strategically than to repay their mortgages;

thereby explaining the higher default rates in spite of decreasing interest rates.

The notion of price elasticity can be incorporated into price-based risk as well. In particular,

price elasticity of loan demand, or the so-called price-response elasticity, is typically expressed in

economics literature as a differential that measures the change in the volume of a good/service

demanded by consumers, given a change in the price – see Thomas (2009a, §3). In fact, the work

of Oliver and Thaker (2013) helped develop a price-risk-response trifecta by defining so-called

price-response and price-risk elasticities. While the former is familiar, the latter measures the

change in the PD given changes in the loan price. Taken together, these two elasticities were

incorporated into an equation that reveal how risk behaviours and response preferences are

simultaneously exchanged as the underlying price is varied. Moreover, it was demonstrated

in Phillips and Raffard (2011) and Phillips (2013) that a necessary condition for price-based

risk to exist is for higher-risk customers to be less price-sensitive in their take-up decision than

lower-risk customers. In summary, both price-driven adverse selection and price-based risk are

intricate market-related phenomena that influence overall profitability beyond risk-based pricing.

More importantly, both phenomena rely on a chosen threshold d within a default definition,

which implies that their dynamics on profitability are largely unknown when varying d itself – a

rich avenue of future pricing research. Regardless, the pricing literature explored so far suggests

that evaluating different values of d, based on their relative contribution to financial loss, may

be a viable approach.

The reasons underlying consumer loan ‘default’ are numerous, though can be crudely grouped

into either fraud ("won’t pay") or financial distress ("can’t pay"), which are explored in Thomas

(2009a, pp. 282) and Bravo et al. (2015). The first group is rather self-explanatory, however,

though the pursuit of modelling fraud events is valuable in its own right, it is an unnecessary

complication that is best left outside the ambit of credit risk modelling. More interesting is the

second group of default reasons, which can include simple financial naivety. As an example hereof,

the borrower may not have understood (or appreciated) the financial discipline that is necessary

to service the loan, and may therefore become overburdened in its repayment. Financial distress

can include life altering-events that are outside of the borrower’s control, e.g., loss of employment

or marital breakdown, that compromises the borrower’s ability to repay his loans, despite his

best intentions or efforts. However, the exact reasons for delinquency are difficult to substantiate

since lenders rarely keep record of them. In this regard, the administrative burden alone may

prove too costly for a bank to track (and validate) all possible default reasons. Perhaps a more
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tangible avenue is to consider whether this impairment in repayment ability is either persistent

or temporary – and the costs of either case.

A sufficiently patient lender may afford some distressed borrowers enough time to recover,

which will likely prompt them to resume their repayment schedule. In this case, the borrower’s

arrears will at first increase over time due to the distress, after which it will decrease again as

the borrower regains his ability to repay (e.g., by finding new employment), as shown in Fig. 3.7

for the first loan. The account has recovered from what has clearly been a temporary episode of

financial distress, which was enabled by not yet writing-off the loan. In effect, the lender trusts

that the borrower’s ‘distress’ only reaches an inflection point of sorts, after which arrears will

hopefully subside again. Critically, the lender also trusts that this inflection point is below a

certain threshold, in line with the bank’s risk appetite. On the other hand, being patient for too

long a period may prove naive and costly. The borrower may simply never reach this turning

point and instead continue deeper into arrears, which may unnecessarily delay debt recovery and

incur liquidity and other opportunity costs. Specifying a default threshold may therefore serve

as a margin of tolerance towards accruing arrears before spurring a lender into taking recovery

action and forsaking the credit relationship.

FIG. 3.7: Illustrating the stylised speeds at which two hypothetical delinquent ac-
counts can accumulate arrears over time. Both loans reach an inflection point, after
which arrears subside again due to a supposedly recovered ability of a borrower
to repay. The arrears of the second loan breached the bank’s margin of tolerance
while that of the first loan did not. This discrepancy casts doubt on the default
threshold as a supposed "point of no return".

As a contrived example, consider the second loan in Fig. 3.7 that breached this tolerance
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level at some point, though cured again from default at another point in time. One can argue

that the overall tolerance level was perhaps too strict, even punitive if the lender subsequently

wrote-off this curable loan. More generally, the mere possibility of curing from ‘default’ (as fixed

via d) inherently injects uncertainty into any chosen d as the supposed "point of no return".

Multi-period ‘episodes’ of delinquency are actually more widespread in practice than one would

otherwise believe, corroborated in part by anecdotal experience. In fact, the work of Thomas et al.

(2016) demonstrated this oscillating regime-switching effect wherein borrowers have stochastic

episodes of payment and non-payment. Specifically, the authors modelled the collections process

of defaulted UK loans using both a four-state homogeneous Markov chain and a time-sensitive

hazard rate model. Amongst other things, these models demonstrated how LGD modelling can

partially depend on the write-off policy of a bank, which typically constrains overall loan recovery.

To this point, a write-off policy is similar in its objective to that of imposing a certain "point of no

return" via setting d, which suggests another worthy research avenue to explore in time.

In fact, candidate write-off policies may be indirectly tested by incorporating them as boundary

conditions for loan duration within their base models, according to Thomas et al. (2016). However,

the authors admitted that this may not really be an appropriate solution for directly trying

to find the ‘best’ write-off policy. Instead, the seminal contribution of Mitchner and Peterson

(1957) investigated the optimal pursuit duration of overall loan recovery, which was based on

maximising the net profit of a collections department. Using US personal loans, the authors

found that pursuing loan recovery should cease (and the remaining balance written-off) whenever

the one-period expected repayment equals the cost of pursuing loan recovery itself, which is quite

intuitive. However, the authors admitted that their results depend critically on a few simplifying

assumptions, which may not realistically hold. One of these assumptions is that a defaulted

borrower is forever absorbed into a paying regime, once entered. Regardless, their work offers

valuable insights into trying to optimise the write-off decision’s timing.

Collections optimisation was explored more explicitly in De Almeida Filho et al. (2010)

wherein a dynamic programming model was devised to find both the ideal type of recovery

action and its pursuit duration for the "average" debtor over discrete monthly time intervals.

Using unsecured European personal loans, the authors maximised the net recovery rate in their

dynamic approach by pursuing a particular action for a set period. In order of severity, these

actions include telephonic calls, various letters, house visits, legal redress, and write-off. However,

the state space formulation excludes any repayment success (or cash flows) from previous periods

or indeed those from the future. Their work was later extended in So et al. (2019) wherein

a Bayesian approach was instead followed to obtain similarly optimised outputs, though on

the individual debtor-level. Within the same context, the work of Liu et al. (2019) devised a

Markov-based decision process wherein the optimal collection action is theoretically found across

possible delinquency state progressions over time, using designed data. A schedule of optimal
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collection actions is then calculated accordingly, which was shown to supersede a static policy

based on maximising the expected net present value. However, the authors made some strong

simplifying assumptions when designing both their ‘data’ and elements within their method,

which may have implications for their end-results when trying to use their method on real data.

In addition, they impose explicit write-off criteria exogenously within the state space of their

Markov chain, instead of structuring it as a candidate collection action.

Another extension is the work of Duman et al. (2017) wherein outputs similar to that of

De Almeida Filho et al. (2010) were sought using Turkish data, though on a finer daily time

scale. The authors posited that each recovery action may have unintended consequences on

subsequent customer loyalty, which they incorporated into their optimisation along with collection

capacity constraints. Chehrazi et al. (2019) examined the same collection problem and formulated

repayments as a complex self-exciting point process in continuous time. As a stochastic control

problem, the authors allowed both the size and the timings of receipts to influence each other.

Both of these random processes are in turn perturbed by pursuing a particular recovery action.

Matuszyk et al. (2010) provided another perspective on optimising collections by developing a

decision tree-based approach to inform the overall collection strategy. Candidate strategic choices

included keeping collections in-house, outsourcing collections to external agencies, and selling

the debt itself. Their work formed part of subsequently modelling the LGD using a two-stage

approach and unsecured personal loans. Lastly, Han and Jang (2013) extended this by showing

the positive effects of including collection action history within LGD models, using Korean data.

Using a delinquency-based approach for optimising the recovery decision presupposes that

a single measure thereof is used. In fact, Rosenberg and Christen (1999) surveyed a few other

ways of quantifying loan delinquency, which can serve as important diagnostic tools in managing

and modelling credit risk. Three broad classes of so-called ‘delinquency ratios’ were discussed

and compared. The first of these are those assembled from an arrears-basis as overdue amounts

divided by total loan amounts (or instalments), e.g., the g0-measure from Def. 3.2. The second

kind are those that compare amounts actually received from borrowers against amounts that fell

due within the same period. These ratios measure delinquency from a cash-flow perspective10

with variants thereof constructed across different lengths of time periods. The third class of

delinquency ratios measures the portion of the portfolio at risk, which is commonly expressed

as the remaining loan balances (plus unpaid instalments) divided by the portfolio’s outstanding

balance. Other than these three types of delinquency ratios, the literature appears limited on

more advanced methods of quantifying loan delinquency.

In this regard, the work of Moffatt (2005) is of particular interest since it advocates a two-

staged approach (or a so-called "double hurdle" model) for ‘measuring’ loan delinquency and then

10From this basis, a more robust delinquency measure is later developed in subsection 3.3.1.
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modelling it. Not only was the number of payments in arrears considered (the "first hurdle") in

classifying the conventional default event, but also the extent of the arrears amount itself (the

"second hurdle"). Using two dimensions in defining ‘default’ inherently recognises that there is a

subset of borrowers who will never let a cent go unpaid in any circumstance. More importantly, it

recognises that not all unpaid payments are equal in their cash flow impact and that defining

the "point of no return" can be more nuanced than currently espoused by the industry11. In fact,

the work of Kelly and McCann (2016) demonstrated exactly this heterogeneity using mortgage

defaults from the Irish market. A legal peculiarity during 2009–2013 made it extremely difficult

for Irish lenders to liquidate troubled mortgages, which led to some borrowers venturing into a

disproportionately deep level of arrears. A multinomial logit model was subsequently estimated

using different severities of delinquency (measured in DPD) as the levels of the output variable,

i.e., 0–89 (or ‘early default’, also the reference level), 90–359, and 360+ (or ‘deep default’). Even

when controlling for the time spent in arrears, the overall delinquency and curing experiences

were markedly different amongst these severities, which can be interpreted as different default

thresholds within a grander default definition. Amongst other things, these results cast doubt

on the supposed finality of classical default definitions that ought to serve as the "points of no

return".

In conclusion, there are some gaps between the collections and credit risk modelling literatures

regarding the principal meaning of ‘default’ as the supposed point of initiating recovery action.

The present study is closest in form to the collection optimisation works of De Almeida Filho et al.

(2010) and Liu et al. (2019). However, a different and more general approach is followed in this

work based on delinquency measures that leverage the entire portfolio instead of only defaulted

loans. Moreover, the focus is more fundamentally on if and when to forsake a loan based on

delinquency progression over time, instead of attempting to compile a menu of collection actions.

Regarding an optimisation basis, financial loss can serve as a unifying framework into which a

wide array of competing costs and opportunities can be incorporated and weighted accordingly.

This basis aligns directly with the main profit-based objective of a lender when making decisions.

Furthermore, exploring other ways of quantifying loan delinquency may be worthwhile when

delinquency is to be used as a central criterion in optimising the timing of the recovery decision.

3.3 Measures of loan delinquency

In measuring the severity of eroded trust between bank and borrower for a fixed-term amortising

loan contract, three quantities that track the severity of delinquency are presented and discussed,

called delinquency measures. Firstly, a variant of the widely-used g0-measure from Def. 3.2 is

11Arguably, this idea may have inspired Basel II’s paragraph 452 on requiring a material balance for default
considerations, which was later enforced by Article 178(1)(b) of the EU’s CRR. In turn, this led to the materiality tests
imposed by the UK’s PRA (2019), as discussed in subsection 3.1.1.
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refined into a more robust measure in subsection 3.3.1, called the g1-measure (or CD-measure).

The g1-measure uses a weighting scheme based on specifiable risk-aversion towards accrued

arrears, which solves many of the challenges of the original g0-measure. Secondly, a more concise

algorithm is contributed in subsection 3.3.2 that creates the Macaulay Duration Index from Sah

(2015), called the g2-measure (or MD-measure). This measure is best interpreted as an index of

the weighted average time to recover the capital portion of a loan. Lastly, a modified but novel

variant of g2 is introduced in subsection 3.3.3, called the g3-measure (or DoD-measure). This

measure incorporates the extent of disrupted cash flows into the base assessment of delinquency.

3.3.1 Contractual Delinquency (CD): the g1-measure

As a common delinquency measure, the g0-measure from Def. 3.2 is not without its flaws,

predominantly the choice of the rounding function. Many practitioners simply round the ratio

between arrears At and the level instalment I upwards to the nearest integer-valued ceiling,

thereby calculating the number of payments in arrears. However, this is quite stringent in that

even a small difference I t −Rt = ε< ZAR 1.00 will increase the delinquency measurement, purely

due to rounding. While the prevalence of this rounding error surely depends on the overall

volatility of Rt over time, it makes little business sense to penalise a borrower when ε is but a few

cents. That said, there must intuitively exist some upper limit on ε> 0 at which point delinquency

should be incremented; otherwise, the concept of delinquency (and measures thereof) becomes

meaningless if delinquency can never increase. This suggests a boundary of sorts by which ε

ought to be constrained when measuring loan delinquency. Relatedly, should the ratio between At

and I instead be rounded to the nearest integer, then a change in g0(t) over time [t1, t2] depends

entirely on whether At/I is above or below 50%. This implied ‘threshold’ of 50% seems arbitrary,

inflexible, and devoid of any risk consideration, which surely contrasts the risk-sensitive practices

of a bank, at least in spirit.

A simple solution to this rounding problem may be to ignore rounding all together and use

the arrears ratio At/I directly. This will, however, revert the domain of g0 back to a real-valued

construct and therefore no longer honour its definition. Furthermore, there are still quite a few

situations in which arrears categories (constructed from this arrears ratio) can be useful. For

example: 1) modelling the transition probabilities amongst these arrears categories; 2) compiling

portfolio analytics showing the incidence rates over time within various stages of arrears; or

3) modelling the repayment behaviour within a particular arrears category. Inevitably, these

situations require the collapse of the arrears ratio back into some category, e.g., 2≤ At / I < 3 =⇒ 2

payments in arrears, which again circles back to the original rounding problem. As a consequence

of a particular rounding function f (or rounding ‘threshold’), the g0-measure can potentially lag

overall measurement by one (or more) periods when a significant overpayment is immediately

followed by a severe underpayment the following month, simply due to rounding. In turn,
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this "measurement error" has negative implications for the true accuracy of any models using

delinquency in some fashion, especially default risk models.

Another flaw of the g0-measure is its inherent reliance on the accrued arrears amount At.

This dependence is not necessarily a problem when At is simply the sum of partial instalments

not yet paid. However, At becomes ‘impure’ when the same quantity accrues interest on itself or

attracts delinquency-related penalty fees of sorts (even if indirectly via the outstanding balance).

Specifically, it becomes possible for a g0-measured value to change simply due to these exogenous

factors, especially when considering the aforementioned rounding problem. In turn, the lender

may inadvertently inflate/deflate delinquency measurement; not as a result of the fundamental

breakdown of trust, but instead due to its own pricing structures or system constraints at the

time. Lastly, the construction of g0 quickly becomes cumbersome when the instalment has the

potential to vary over time (e.g., prime rate-linked), as is common for secured lending. Short of

ignoring this feature (and simply using the latest instalment available), the practitioner has little

choice but to construct a haphazard and nested variant of g0, which may very well present its

own set of unstudied risks and flaws as a delinquency measure.

Therefore, a more comprehensive variant, called the Contractual Delinquency (CD) g1-

measure, is presented here that circumvents some of these challenges. In particular, g1 incorpor-

ates a boundary parameter z between the receipt and the instalment beneath which delinquency

is increased, which may be set (and later optimised) by the lender. Furthermore, it does not rely

on the corruptible arrears amount and instead measures the erosion of trust between bank and

borrower purely from a cash flow perspective. Let the receipt vector be R = [R0,R1, . . . ,RT ] with

its elements (or receipt amounts) Rt ≥ 0, and let the instalment vector be I = [I0, I1, . . . , IT ] with

its elements I t > 0 (instalment amounts). Both vectors are defined for a specific loan account

across its discrete time periods t = 0, . . . ,T, with t = 0 representing the origination point and

T denoting the tenure (or current loan age). Note that T may exceed the contractual term tc,

especially in unsecured lending or cases of extreme delinquency. The repayment ratio ht ∈ [0,∞)

is then defined as

ht = Rt

I t
∀ t = 1, . . . ,T and h0 = 0 . (3.4)

A boundary z ∈ [0,1] for ht is then specified accordingly. If the ht-value of an account equal or

exceed this given z parameter, then the account is considered current at time t; otherwise it

is considered delinquent for that particular period’s expected cash flow. As an illustration, this

boundary is set as z = 90% in this study, though the lender should certainly adjust (or optimise)

this z parameter for its particular context. Next, an interim Boolean-valued decision function

d1(t) ∈ {0,1} is defined for t = 1, . . . ,T, using Iverson brackets [a] that outputs 1 if the enclosed

statement a is true, and 0 if false, as

d1(t)= [
ht < z

]
. (3.5)
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Memory of past delinquency is introduced by defining another integer-valued function m(t) ∈
{−1,0,1, . . . } for t = 1, . . . ,T, which outputs the reduction in accrued delinquency (if any), as

m(t)=
(⌊

ht

z

⌋
−1

)(
1−d1(t)

)
−d1(t)

=
⌊

ht

z

⌋(
1−d1(t)

)
−1 . (3.6)

This function m(t) gives the magnitude by which the measured delinquency at time t should

be reduced (if at all) in catering for past delinquency. When overpaying, i.e., Rt > I t, the ratio

between ht and z in Eq. 3.6 signifies the total number of ‘payments’ by which accrued delinquency

should be decreased, as weighed by z. Moreover, the rounding problem is inherently resolved when

dividing by the z-parameter since its value reflects the lender’s tolerance towards underpayment

by design. Therefore, taking the floor of this particular ratio ht/z does not detract from the

previous discussion of the flaws of g0. Instead, it is merely intended for g1 to be an integer-valued

delinquency measure, signifying the z-weighted number of payments in arrears. Furthermore, the

currently-owed instalment should be recognised first before reducing any accrued delinquency,

which is achieved by subtracting one instalment. For sufficient underpayment, i.e., Rt < zI t, the

delinquency is sensibly increased by one payment, which resolves to m(t)=−1 when d1(t)= 1.

To indicate previous cases of delinquency using g1 at time t−1, let d2(t) ∈ {0,1} be another

Boolean-valued decision function for t = 1, . . . ,T, which is defined using Iverson brackets again, as

d2(t)= [
g1(t−1)= 0

]
. (3.7)

The reduction in delinquency m(t) at time t is subtracted from delinquency as measured at the

previous period t−1, thereby giving the net delinquency. Finally, the Contractual Delinquency (or

CD) g1-measure is then formally defined as in Def. 3.3. Note the necessary starting condition of

g1(0)= 0, since a newly-disbursed loan account cannot yet be delinquent. In extraordinary cases

where a lender has temporarily suspended the expected instalment (perhaps as part of a payment

holiday), the practitioner can artificially set the I t very close to zero in order to calculate g1.

Contractual Delinquency (CD): the g1-measure

Definition 3.3. Let the Boolean-valued decision functions d1 and d2 be defined as in

Eq. 3.5 and Eq. 3.7 respectively. Let the memory function m be as defined in Eq. 3.6 by

which accrued delinquency is reduced, respective to the z ∈ [0,1] boundary parameter for

the repayment ratio ht as defined in Eq. 3.4. The integer-valued Contractual Delinquency

g1-measure is then defined such that g1(t) ≥ 0 for t = 1, . . . ,T and g1(0) = 0, recursively

expressed as

g1(t)=max
[
0, d1(t)d2(t) + (

1−d2(t)
)(

g1(t−1)−m(t)
)]

. (3.8)
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The output of the g1-measure is best interpreted as the z-weighted number of payments
in arrears, weighed by the lender’s tolerance (or appetite) towards accrued arrears. This ap-

petite level is represented by the boundary parameter z that constrains the repayment ratio ht

accordingly when assessing delinquency. Since delinquency only increases if ht < z by definition,

a higher value of z effectively translates to greater risk-aversion towards accrued arrears, and

vice versa for lower z-values.

3.3.2 Macaulay Duration (MD): the g2-measure

The Macaulay Duration Index, recently introduced as a measure of delinquency in Sah (2015), is

an index based on the idea of bond duration, i.e., the weighted average time to recover the capital

portion of a loan. In its assessment of delinquency, this measure incorporates the loan’s interest

rate as well as the arrears balance, weighed by the time value of money. It is constructed as a

ratio between the actual and the expected loan duration, which is reformulated in this study as

the g2-measure. The values of g2 cannot be compared directly to those of the previous g1-measure

since the domains of both functions – and the meaning of measurements taken within these

domains – differ from each other.

Let ∆t = I t −Rt be the difference between the instalment I t and the receipt Rt at every

time point t = 0, . . . ,T during the life of a loan, including at disbursement t = 0 to capture any

applicable initiation fees. Considering the time value of money, let v j = (1+ r)− j be a discounting

function that uses a nominal monthly interest rate r. In addition, let δ be the continuously

compounded rate with its nominal variant δ(p) = δ/p and with an annual compounding period

p = 12. Let LP denote the loan amount (or principal) that is to be amortised. Ordinarily, the

Macaulay Duration is calculated (perhaps once) at origination as the weighted average time to

recover sunk capital from future cash flows. However, here it is recursively calculated instead at

each subsequent period t = 0, . . . ,T across the remaining m instalments as at each t. Naturally,

this expected duration quantity, denoted as fED , tends towards zero over time as it nears the end

of loan life, expressed as

fED(t)=
T∑

m=t

[(
Imvm−t

LP

)(
m− t

p

)]
∀ t = 0, . . . ,T . (3.9)

However, Eq. 3.9 assumes that instalments I are free of uncertainty. When substituting these

instalments with the actual receipts R, a significant difference is intuitively expected. Moreover,

it becomes necessary to track the arrears balance as it develops (if it does) over the loan life.

In line with Sah (2015), any arrears at any time are added to the last expected (contractual)

instalment at t = tc, since it represents the last contractual opportunity to repay any such arrears,

short of the lender intervening and restructuring the loan. This last instalment is then recursively

updated at each subsequent period t, using the available arrears information at each t. Note

105 of 178



CHAPTER 3. THE BANKER’S GAUGE OF ERODED TRUST

that Rt does not enter the calculation directly but instead via its effect on the arrears at each t.

In turn, accrued arrears will affect the last instalment, which is denoted as I ′(T). The vector I ′

itself equals instalments I at the outset. Lastly, the actual duration f AD(t) value is recursively

calculated, each time starting again at t = 0 up to the ‘current’ loan age T. This is illustrated using

pseudo-code in Algorithm 1. Finally, the Macaulay Duration (or MD) g2-measure is expressed as

the ratio between the actual duration and the expected duration, as formally defined in Def. 3.4.

Algorithm 1 Calculating g2

1: I ′ := I , where I = [
I0, . . . , IT

]
and T ≤ tc

2: f AD(0) := fED(0)
3: for t = 0, . . . ,T do . such that T ≤ tc

4: I ′(T) := I ′(T) + ∆t

(
1+ δ(p)

p

)T−t
, ∀ t = 1, . . . ,T . Add any arrears to I ′(T)

5: f AD(t) :=∑T | T≤tc
m=t

[(
I ′mv(m−t)

LP

)(
m−t

p

)]
, ∀ t = 1, . . . ,T

6: end for

Macaulay Duration (MD): the g2-measure

Definition 3.4. Let fED be defined as in Eq. 3.9, and let f AD(t) be calculated recursively

at every time period t = 0, . . . ,T for a loan account aged T ≤ tc, following Algorithm 1.

The real-valued Macaulay Duration g2-measure is then defined such that g2(t) ≥ 0 for

t = 0, . . . ,T −1, which is expressed as

g2(t)= f AD(t)
fED(t)

. (3.10)

3.3.3 Degree of Delinquency (DoD): the g3-measure

From a cash flow perspective, an ideal delinquency measurement should penalise the non-

payment of a larger loan’s instalment to a greater degree than that of a smaller loan’s instalment,

given the relatively larger impact on a bank’s cash flow. Furthermore, the differences in risk

concentration between a larger number of small loans versus a small number of larger loans

should also be incorporated by the ideal delinquency measure. As a possible solution, the actual

duration f AD from Eq. 3.10 can be altered such that the eventual g2(t) value is greater for larger

loans than for smaller loans by defining an appropriate multiplier (or function thereof).

Note that g2 is only defined up to the contractual term tc. However, delinquency can continue

even past the contractual term T ≥ tc of a loan, likely due to persisting underpayment. Ignoring

loan write-off policies for the moment, let d3(t) ∈ {0,1} be a Boolean-valued decision function that

returns 1 if the given time point t precedes the contractual term tc, and 0 if otherwise. Using

Iverson brackets, this is expressed as

d3(t)= [
t ≤ tc

]
. (3.11)
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When t > tc, any arrears can clearly no longer be added to the last contractual instalment (since

it has lapsed), as is the case with I ′(T) when calculating g2 in Algorithm 1. Instead, at least

one more payment, albeit out-of-contract, can reasonably be expected as time lapses, provided

that collection efforts are still actively pursued. Therefore, delinquency can now be computed up

to time T instead of the previous T, with T either representing the contractual term tc when

t < tc, or a moving target T = t when t ≥ tc. Note that both I and R will incrementally expand

with additional elements for as long as collection efforts12 continue past the contractual term. A

revised algorithm is given in Algorithm 2.

Algorithm 2 Calculating g3

1: I ′ := I , where I = [
I0, . . . , IT

]
and 0< tc ≤ T

2: T := tc
3: for t = 0, . . . ,T do
4: α := I ′(T ) . This refers to the element at the T th position of I ′

5: T := tcd3(t) + t
(
1−d3(t)

)
. T is either equal to tc or to t ≥ tc

6: I ′(T ) := I ′(T )d3(t) + ∆t

(
1+ δ(p)

p

)T −t + α
(
1−d3(t)

)(
1+ δ(p)

p

)
, ∀ t = 1, . . . ,T

7: β(m) := m− t+1−d3(t), ∀ t = 1, . . . ,T . Discounting period, see next 3 lines
8: fED(t) :=∑T

m=t

[(
Imvβ(m)

LP

)(
β(m)

p

)]
, ∀ t = 0, . . . ,T

9: f AD(t) := fED(t), for t = 0

10: f AD(t) :=∑T
m=t

[(
I ′mvβ(m)

LP

)(
β(m)

p

)]
, ∀ t = 1, . . . ,T

11: end for

Afterwards, let λ(LM ,LP , s) denote a multiplier function that inflates the value f AD(t) at

every relevant period t. Regarding this function’s arguments, let LM > 0 denote the maximum

loan size and let s ∈ [0,1] be a real-valued sensitivity that represents the ‘strength’ at which

to apply this inflationary effect. Let d4(t) ∈ {0,1} be another Boolean-valued decision function

that returns 1 if there is currently any accrued delinquency at t, and 0 otherwise, defined using

Iverson brackets as

d4(t)= [
f AD(t)> fED(t)

]
. (3.12)

As a simple example, this multiplier is defined as

λ(LM ,LP , s)= s
(
1− LM −LP

LM

)
. (3.13)

This particular multiplier function simply measures the percentage deviation between the

maximum size allowed by a lender and the size of the particular loan’s principal. This base value

is then further adjusted by the multiplicative factor s. The inflated variant of f AD , denoted as

f̃ AD , is at last expressed as

f̃ AD(t)= f AD(t)
(

d4(t)λ(LM ,LP , s) + 1
)

. (3.14)
12It is typically the role of the collections department of a bank to negotiate new repayment schedules with the

customer (or his debt councillor) once a loan agreement lapses its contractual term or becomes sufficiently delinquent.
This includes reduced instalments and interest rates.
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By including d4 into f̃ AD in Eq. 3.14, accrued delinquency will not be inflated when overpaying

at some period t. Once f AD(t)≤ fED(t) as indicated by d4(t)= 0, then either significant or persistent

overpayment is implied. In this case, the benefit of a depressed actual duration would be lost if

f AD(t) is still inflated when assessing delinquency. Finally, the real-valued Degree of Delinquency

(or DoD) g3-measure is defined as in Def. 3.5.

Degree of Delinquency (DoD): the g3-measure

Definition 3.5. Let f̃ AD be defined as in Eq. 3.14, and let fED(t) and fED(t) be calculated

recursively at every time period t = 0, . . . ,T for a loan account aged T, following Algorithm 2.

The real-valued Degree of Delinquency g3-measure is then defined such that g3(t)≥ 0 for

t = 0, . . . ,T −1, which is expressed as

g3(t)= f̃ AD(t)
fED(t)

=
(

g2(t)
f AD(t)

)
f̃ AD(t)= g2(t)

(
d4(t)λ(LM ,LP , s) + 1

)
. (3.15)

The sensitivity s, which is fixed in this study at s = 100% (though should ideally be optimised),

represents a universal and intuitive lever at the lender’s disposal. Its adjustment can align with

the lender’s (or loan portfolio’s) particular risk appetite and tolerances. The g3-measure still

collapses back into g2 when setting s = 0, though at values s > 0, the g3-measure purposefully

resembles a more risk-averse form of g2. Delinquency measurements are more varied than those

of g2 due to the sensitivity to loan principals that is intrinsic to g3 by design.

In summary, three measures of loan delinquency are formulated in this section, each pro-

gressively catering for identifiable weaknesses, albeit at the cost of increasing complexity. The

outputs of these measures are illustrated in section A.2 using a simple two-loan case study to aid

interpretation. These measures can be applied to the performance history of each loan within

a greater portfolio, thereby yielding vectors of delinquency measurements respective to each

loan across its history, for each measure g ∈ {g1, g2, g3}. To find the optimal point where trust

between bank and borrower has historically collapsed, is conjectured to be a certain threshold

on the domain of each measure g, after having combined all of these vectors of measured loan

delinquencies. Given that these measures cater differently for under– and overpayments, it may

very well be that each measure g signals recovery at different times for the same loan, whenever

breaching the threshold (if at all) of each measure.

3.4 Optimising loan recovery times: the LROD-procedure

In this section, an expert system is developed, called the Loss-based Recovery Optimisation

across Delinquency (LROD) procedure. This procedure helps to find the ‘best’ delinquency-based
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threshold for a given delinquency measure g ∈ {
g1, g2, g3

}
at which the portfolio’s recovery

decision is loss-optimised, as illustrated in Fig. 3.8. The following two points are noted regarding

the procedure’s design. Firstly, using loss (instead of profit) as the optimisation basis is intuitively

preferable since ‘default’ implies a continuous stream of non-payments, which can only induce

losses in principle. Secondly, construing the threshold choice as a delinquency-based criterion is

convenient since delinquency measurements are scale-invariant across the portfolio, while still

containing all necessary behavioural information on the borrower.

FIG. 3.8: Illustrating the loss optimisation of the recovery decision across several
delinquency measures. As a result, Measure 3 is chosen as the best measure with
its minimum loss attained at threshold c.

Consider a portfolio of N loans, indexed by i = 1, . . . , N, and let g(i, t) denote the value of a

particular measure g ∈ {
g1, g2, g3

}
at periods t = 0, . . . , tci with tci representing the contractual

term of the ith account. Let v(a)
t and v(b)

t be standard discounting functions that use an alternative

risk-free interest rate and the loan interest rate respectively in discounting back t periods, both

expressed as annual effective rates and parametrised later. Let R i
t and I i

t represent the receipt

and expected instalment respectively at time t for the ith account. Then, let R(i, t) be the present

value of the sum of discounted receipts from origination up to given time t = 0, . . . , tci of the ith

account, expressed as

R(i, t)=
t∑

l=0
R i

l v
(a)
l . (3.16)

For the expected outstanding balance, let O(i, t) denote the present value of the sum of discounted
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instalments from given time t = 0, ..., tci up to maturity tci of the ith account, defined as

O(i, t)= v(a)
t

tci∑
l=t+1

I i
l v

(b)
l−t, O(i, t)= 0 for t = tci . (3.17)

Finally, to cater for instalments (or portions thereof) in arrears, let A(i, t) represent the present

value of the sum of discounted differences (or shortfalls) between instalments and receipts from

origination up to given time t = 1, ..., tci of the ith account, which is given by

A(i, t)=
t∑

l=0

(
I i

l −R i
l

)
v(a)

l . (3.18)

Financial loss can only be realised when the lender disposes of the impaired asset, regardless

of the extent of the impairment. This implies that a loan must first become non-performing

before sensibly writing-off the non-recoverable part as a loss. For now, all provisioning-related

technicalities and regulatory requirements are discarded when defining default; see Novotny-

Farkas (2016), Xu (2016), Cohen, Edwards Jr et al. (2017), and Skoglund (2017) for a comparison

between IAS 39 and IFRS 9 accounting frameworks regarding loss provisioning. In this study,

‘default’ is interpreted as a variable state, which will become useful for optimising the eventual

recovery decision. Having breached some threshold based on some g (thereby signifying broken

trust), the lender’s objective immediately changes to collecting the most it can from the distressed

borrower within the shortest amount of time possible. As a simplifying assumption, a fixed

portion of the loan is immediately written-off upon entering ‘default’. In reality, this portion will

likely depend on many factors, including the workout period itself. This assumption can certainly

be relaxed in future research when refining this optimisation procedure and what is essentially

its LGD-component.

Accordingly, let rE ∈ [0,1] be a loss rate levied on the expected balance O(i, t) to help reflect

any underlying opportunity costs of forsaking future revenue. Moreover, assume that any amount

in arrears A(i, t) is partly written-off though at a different loss rate rA ∈ [0,1] to account for

impairment. Using two different loss rates recognises that the recovery success may differ

between these two components (expected balance and arrears). Simultaneously, it unifies the

loss calculation on the arrears portion for both performing and non-performing loans. This setup

accounts for implicit trade-offs between forsaking future revenue versus accruing arrears for

a given t respective to Eq. 3.17 and Eq. 3.18. Ideally, these loss rates serve as placeholders for

the output from more sophisticated loss models (or expert knowledge of the loss experience),

presumably including all other costs. Furthermore, let l(i, t) be the discounted "blended loss" for

the ith account assessed at the given time t = 0, ..., tci , expressed as

l(i, t)=O(i, t)rE + A(i, t)rA . (3.19)

The notation (g,d) is adopted wherein a particular threshold d is coupled with the domain of a

particular delinquency measure g, as formalised in Def. 3.6.
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The notion of (g, d)-defaulting accounts

Definition 3.6. Let g(i, t) denote the value of a delinquency measure g ∈ {
g1, g2, g3

}
applied on a particular loan i = 1, . . . , N at every loan period t = 0, . . . , tci where tci is its

particular contractual term. Then, let d ≥ 0 be a delinquency threshold applicable to the

domain of a particular delinquency measure g such that the ith account is considered

as (g,d)-defaulting if and only if g(i, t) ≥ d at any particular time t = 0, . . . , tci during its

lifetime. Accordingly, let SD be the subset of all loan accounts within the portfolio that

may be considered as (g,d)-defaulting at a particular point in time such that

SD = {
i
∣∣ ∃ t ∈ [

0, tci

]
: g(i, t)≥ d

}
. (3.20)

Since an account may enter and leave the (g,d)-default state multiple times in reality, let

t(g,d)
i be the earliest moment of ‘default’ for the ith (g,d)-defaulting account, defined as

t(g,d)
i =min

(
t : g(i, t)≥ d

)
, ∀ i ∈ SD . (3.21)

Similarly, let SP be the subset of all loan accounts within the portfolio that may be considered as

(g,d)-performing such that

SP = {
i : g(i, t)< d ∀ t ∈ [0, tci ]

}
. (3.22)

The main difference in assessing the loss between a (g,d)-defaulting and a (g,d)-performing

account is simply the time of assessment, which is set at either t = t(g,d)
i or t = tci respectively

within l(i, t) from Eq. 3.19. At each time t, the lender effectively decides an account’s membership

between SD or SP , based on accrued delinquency g(i, t) and a particular (g,d)-configuration. The

latter is to be adopted as a portfolio-wide delinquency-based collection policy at the outset t = 0.

In a sense, accrued delinquency forms the time-invariant action space of a Markov Decision

Process (MDP) in choosing d, whereas accrued delinquency formed the state space in Liu et al.

(2019). Accordingly, the state space in this work is set membership itself, i.e., either SP or SD . A

classical MDP framework is not employed, instead opting for a simpler approach that facilitates

choosing a static (g,d)-policy. Both ‘payoff ’ and the element of time is already accounted for in

Eq. 3.19 by having discounted the associated loss to t = 0 for a given (g,d)-policy. As such, the

objective function is simply the total portfolio loss Lg(d) for a particular (g,d)-configuration, as

formalised in Def. 3.7 and used throughout this study.
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A simple portfolio loss model for a given (g,d)-configuration

Definition 3.7. Given a (g,d)-configuration as defined in Def. 3.6 and Eq. 3.22, and

given a loss function l(i, t) as defined in Eq. 3.19, let the argument t denote the time

of loss assessment either at the earliest moment of (g,d)-default t(g,d)
i for the ith (g,d)-

defaulting account or at the contractual maturity tci for the ith (g,d)-performing account.

The discounted portfolio loss for a (g,d)-configuration is then given by the value of the

objective function Lg(d), expressed as

Lg(d)= ∑
i∈SD

l
(
i, t(g,d)

i

)
+ ∑

i∈SP

l
(
i, tci

)
. (3.23)

Losses are iteratively calcul1ated across a range of thresholds d ∈Dg using Lg from Eq. 3.23

in Def. 3.7 with a particular measure g ∈ {
g1, g2, g3

}
. To summarise then, the practitioner should

complete three preparatory steps before conducting loss optimisation:

1. Delinquency must be measured for every account and across its history using g ∈ {
g1, g2, g3

}
;

2. Select appropriate thresholds d ∈Dg on the domain of a particular g for optimisation;

3. A portfolio loss model Lg must be applied for every chosen threshold d ∈Dg of each g.

The procedure now becomes a search for a minimum in Lg and output the associated threshold

d from the search space Dg for a given measure g. By dividing the main optimisation problem

into smaller (g,d)-based sub-problems, the ideal (g,d)-policy can be found. More specifically,

for each (g,d)-iteration, the associated portfolio loss Lg(d) is calculated and stored centrally

as an element within a wider collection. As formalised in Def. 3.8, there may exist a global

minimum loss m(g) at threshold d(g) respective to each g. Delinquency measures themselves

become indirectly comparable on the portfolio-level by minimising across the set formed by m(g)

for g ∈ {
g1, g2, g3

}
. The optimal measure g∗ is then the g that yielded the lowest loss at its

corresponding threshold, as illustrated in Fig. 3.8, though expressed more formally as

g∗ = argg min
g∈{g1,g2,g3}

[
m(g1),m(g2),m(g3)

]
. (3.24)

Note that this procedure can also be used with a single measure, e.g., g1. In this case, the

optimisation problem from Eq. 3.26 simply resolves to finding d(g1) ∈Dg1 , that is, finding the

optimal input argd minLg1(d) that minimises Lg1 .
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Loss-optimising the recovery decision: the LROD-procedure

Definition 3.8. Assume delinquency thresholds d ∈ Dg respective to a delinquency

measure g ∈ {
g1, g2, g3

}
are adequately chosen, and that portfolio losses are calculated at

each chosen threshold d using a loss model Lg, e.g., as in Def. 3.7. The function Lg :Dg →R

is adopted as the objective function with its smaller search space Dg within the domain of

g. Using an iterative approach, the optimisation problem then seeks a threshold d′ ∈Dg

such that Lg(d′)≤ Lg(d) for all chosen d ∈Dg. More generally, the minimum loss m(g) and

optimal input argument d(g) for a particular measure g are respectively expressed as

m(g) = min
d∈Dg

Lg(d) and (3.25)

d(g) = argd min
d∈Dg

Lg(d) . (3.26)

The optimisation’s feasibility relies on having an adequately populated search space Dg.

However, the choice of g affects Dg, which can complicate choosing thresholds d in practice.

Imagine that an underlying real-valued loss curve Lg exists but cannot be specified in closed-form.

Its functional shape only becomes apparent by iteratively calculating Lg(d) across a sufficiently

wide range d ≥ 0. This is trivial for the integer-valued g1-measure since any finite integer interval

[d1,d2] ∈Dg is countable. However, this is not the case for g2 and g3, with an infinite number of

possible real-valued thresholds that may be chosen between the now real-valued points d1 and

d2. In this case, one may calculate the derivative of Lg with respective to d at certain points d∗

within [d1,d2], e.g., using finite difference methods. The approximated derivatives L′
g(d∗) can

then be inspected across the chosen points d∗ for sign-changes, i.e., negative to positive, to help

isolate neighbourhoods containing minima. Upon finding such a neighbourhood, this scheme can

be repeated across a smaller range of points located closer to where the sign changed.

However, the practical assembly (or approximation) of Lg remains challenging since these

thresholds are still selected manually, even if using numerical differentiation. There are two

competing interests when populating Dg with thresholds. Firstly, inadequate threshold choices

may lead to failure in materialising the true shape of Lg, which can obscure hidden optima and

ruin the optimisation. Secondly, too large a set of chosen thresholds can become computationally

burdensome in evaluating Lg, especially as loans increase in either contractual term or number.

As a practical expedient, Dg for g1 is simply populated in this study by choosing d = 0, . . . ,dN

where dN corresponds to a reasonable (but admittedly arbitrary) proportion of the maximum

contractual term, e.g., 60%. In addition to lowering computation time, a lower value for dN

is sensible since it would be unintuitive to search for optimal thresholds that are near the

contractual term in value, especially for longer term loan portfolios. To populate Dg for the real-

valued measures g2 and g3, the output of these functions are simply binned using a combination
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of equal-width discretisation, some numerical differentiation, and a healthy dose of discretion.

3.5 Concluding remarks

Having reviewed the international standards relating to default definitions, lenders are clearly

afforded some discretion in defining ‘default’. Individual regulators may, however, prescribe the

definition thereof to varying degrees, though it seems that many of these prescriptions still

coalesce around "unlikeliness to repay" as a central tenet. Regardless, prescribing an admittedly

probabilistic idea by fiat may render the default event into little more than a standardised static

hurdle. In principle, reaching ‘default’ is impetus for the lender to forsake the credit agreement in

having reached a certain "point of no return". This implies that there must surely exist different

consequences when varying the timing of the recovery decision, lest the idea of ‘default’ itself

becomes meaningless.

The notion of loan delinquency is widely used in many other (less regulated) contexts outside

of modelling capital and loss provisions, most notably that of application and collection scoring.

It is perhaps this level of ubiquity that exacerbates the fact that little scientific evidence exist

for decreeing any threshold (e.g., 90 DPD) as an optimised absolute, regardless of context. That

said, using a roll rate analysis (instead of regulation) to inform a delinquency threshold d is

common practice in some modelling contexts. However, such an analysis can lead to spurious

results simply due to arbitrary settings in its design, e.g., the choice of outcome period and the

particular sample window. Moreover, roll rate-based approaches are oblivious to any competing

financial and opportunity costs when varying the threshold d, in addition to using stability

instead of financial loss as a base criterion. All of these factors complicate finding the ideal

threshold d when using a roll rate-based approach, which calls for devising a more appropriate

and optimisation-friendly method. A chosen threshold d can serve as a time-sensitive margin

of tolerance towards accruing arrears, beyond which the associated costs for keeping the loan

would trump any benefit thereof. Financial loss can therefore be used as an optimisation basis

for finding the ideal threshold d on a given measure g. Accordingly, this work has explored and

refined a few ways of quantifying delinquency itself, thereby enumerating the choice of g with

a few functional forms. These alternative measures can potentially enhance any subsequent

optimisation given g-measurable delinquency.

Finally, the philosophy underlying the recovery decision is framed anew as a loss-based

nonlinear optimisation problem. The LROD-procedure manifests this problem by trying to find an

ideal threshold d (the main decision variable, apart from the choice of g) such that loan recovery

occurs neither too early nor too late, if at all. Too strict a threshold will surely marginalise some

loan accounts that would otherwise have resumed payment, had the bank been more trusting. Yet

too forgiving a threshold will naively tolerate increasing arrears amounts at the cost of greater
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liquidity risk, increased capital buffers, and overall higher levels of credit risk. Ultimately, the

"net cost" of each candidate threshold is assessed and collated into a g-specific collection, thereby

forming a loss curve that may be inspected for optima. As such, debt ought to be recovered at this

optimum (or ‘default’ point) whereupon the portfolio loss is minimised in aggregate. Pursuing loan

collection any further beyond this point would be sub-optimal, which agrees more fundamentally

with ‘default’ translating into a variable "point of no return" on the banker’s imagined gauge of

eroded trust.
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4
OPTIMISING LOAN RECOVERY TIMING: A COMPUTATIONAL STUDY

The prevailing philosophy when timing loan recovery is framed as a hypothetical delinquency-

based optimisation problem, such that loans are forsaken neither too early nor too late, if

at all. In this chapter, the LROD-procedure is tested from "first principles" using portfolios

that are meaningfully generated across the entire range of credit risk scenarios. In particular,

a few probabilistic techniques and their associated parameters are described in section 4.1 by

which the cash flows of any portfolio can be generated, guided by expert judgement and industry

experience. Accordingly, various parameter searches are conducted in section 4.2 to identify

a set of ideal parametrisations for which recovery optimisation becomes feasible, i.e., yielding

optima. Finally, this chapter is concluded in section 4.3, which includes a discussion on directions

for future research. Overall, the results demonstrate that the timing of loan recovery depends

greatly on the inherent risk level of a given loan portfolio and its composition. A research article

titled "Simulation-based optimisation of the timing of loan recovery across different portfolios"

is associated with this chapter, published in the journal Expert Systems with Applications; see

Botha et al. (2021). The associated source code is available in Botha (2020a).

4.1 Portfolio generation: a testbed for the LROD-procedure

A real-world portfolio inherently suffers from censoring insofar that delinquent loans are only

kept on the balance sheet up to a certain point, as controlled by the bank’s write-off policies.

Although eventually optimising the recovery decision of a real-world portfolio would be ideal, it

is arguably prudent first to demonstrate the efficacy hereof from "first principles" on designed

data. In this section, a broad but simple simulation-based setup is described, guided by expert
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judgement and industry experience. Using this setup as a testbed, replicable loan portfolios

of varying risk levels are iteratively generated in testing the LROD-procedure. This testbed is

subsequently used to identify a certain range of credit risk profiles for which optima are found,

simply by varying the simulation parameters.

Some delinquent accounts will simply never recover in reality, which implies a continuous

stream of zeros in their receipts R = [
R1,R2, . . . ,Rtc

]
after some point. Given a measure g ∈{

g1, g2, g3
}

and a so-called truncation parameter k ≥ 0, this effect is simulated from a certain

starting point t′ = min
(

j : g( j) ≥ k
)

that only exists when delinquency has accrued sufficiently,

i.e., the earliest period j ∈ [0, tc] at which g( j) ≥ k is potentially triggered. A process, called

(k, g)-truncation, then changes R to R′ by

R′ =


[
R1,R2, . . . ,Rt′ ,0, . . . ,0

]
if t′ exists

R otherwise
. (4.1)

Consider N = 10,000 standard amortising loan accounts that are indexed by i = 1, . . . , N, with

a fixed contractual term of tc = 60 months, a fixed effective annual interest rate of 20%, and

a fixed principal amount such that the level instalment is I t = 100 at every period t = 1, . . . , tc.

Admittedly, these quantities are oversimplified and will typically vary in a real portfolio based

on the level of credit risk and loan demand. However, sampling them instead from stylised1

distributions did not have nearly the same effect as that of credit risk in the optimisation itself.

These simplifications are therefore justified for the time being. Furthermore, an effective annual

risk-free rate of 7% is used in discounting, which is realistic for the South African market. Let

the maximum loan size be LM = 5,000 and let rE = 40% and rA = 70% with the rationale that

losses on arrears ought to be penalised more than losses on expected balances. The latter is a

decreasing quantity while the former increases over time for a persistently delinquent loan. All

of these parameter values represent expert knowledge though can certainly be varied in practice,

which will be demonstrated later for some of these parameters.

In simulating the receipt vector R of each loan account, three probabilistic techniques are now

described. As a basic technique (called random defaults), let ut ∈ [0,1] be a randomly generated

number at every period t = 1, . . . , tc and let b be the probability of payment, i.e., P(Rt = I)= b with

I denoting the level instalment. Note that b = 80% is chosen as a default value, though this is

later varied. Each element Rt within R is then populated with either I or 0, expressed as

Rt =
I if ut < b

0 otherwise
. (4.2)

1In particular, a beta distribution was first parametrised to resemble the typically right-skewed distributional
shape of unsecured retail loan rates in the South African market, thereby reflecting expert knowledge and risk-based
pricing practises. Secondly, the loan amount was also sampled from a similarly parametrised distribution, again based
on the authors’ experience in the industry.
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Despite its simplicity, random defaults do not feasibly generate periods of consecutive non-

payments followed by resumed payment, which frequently occurs in practice as "episodic de-

linquency". Therefore, the so-called episodic defaults technique is devised wherein pD = 50%

represents the overall probability of default, i.e., half the portfolio is bound to have a default

episode by design. Let l j be the number of consecutive non-payments to be simulated for the

jth delinquent account within the defaulting-segment. This episode length l j ∈ [1,k] is sampled

from the uniform distribution up to k, coinciding with (k, g1)-truncation. When applying (k, g1)-

truncation, accounts will only cure if they had less than k consecutive non-payments, as a limiting

condition. Thereafter, the starting point o j ∈ [1, tc − l j] of the episode is sampled from the uniform

distribution up to tc − l j, which is to say the entire episode must fit within the remaining loan

life. Finally, each element Rt within R of the jth delinquent account is then simulated as

Rt =
0 if o j ≤ t ≤ (o j + l j)

I otherwise
. (4.3)

Realistically, an account may experience multiple default episodes during its life, though the

previous episodic technique only produces one such episode. Therefore, and similar to Thomas

et al. (2016), the Markovian defaults technique is defined where X t ∈ {P,D,W} denotes a random

variable that can assume one of three states at each period t; the paying state P : Rt = I, the

delinquent state D : Rt = 0, and the absorbing write-off state W : Rt≥t′ = 0 from a certain point t′

onwards. Then, let X1, X2, . . . be a sequence of random variables that form a discrete-time first-

order Markov chain. One can reasonably assume that every account starts off as non-delinquent,

i.e., P(X1 = P) = 1 while P(X1 ∈ {D,W}) = 0. Subsequently, the one-period transition probability

from the current state i at t to the future state j at t+1 is denoted as Pi j. However, let the

write-off probabilities be sensibly set to 0.1% and 1% respective to the starting states P and

D. These values agree with general industry experience of an unsecured portfolio, though can

certainly be tweaked to the individual portfolio in practice. The remaining elements in the

transition matrix can now be derived from but two probabilities, PPP and PDD. In turn, both of

these can be systematically varied to generate a portfolio’s cash flows according to a certain level

(or profile) of credit risk. The transition matrix is accordingly expressed in Table 4.1.

To
P D W

F
ro

m

P PPP 1−PPP −0.1% 0.1%
D 1−PDD −1% PDD 1%
W 0% 0% 100%

TABLE 4.1: A conceptual transition matrix for the Markovian defaults technique,
wherein the rates PPP and PDD are to be systematically varied.
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4.2 Computational results of recovery optimisation

In this section, the LROD-procedure is demonstrated and tested across a wide array of credit risk

scenarios, generated using the testbed described in section 4.1. The computational results are

grouped below by technique, followed by suggestions given in subsection 4.2.4 for applying the

LROD-procedure on real-world data.

4.2.1 Random defaults

(a) Using (4, g1)-truncation (b) Using (6, g3)-truncation

FIG. 4.1: Losses (as a proportion of summed principals) across thresholds d by mea-
sure g ∈ {

g1, g2, g3
}

using the random defaults technique. In (a), loans are (4, g1)-
truncated, while they are (6, g3)-truncated in (b). In both cases, the zoomed plots
show that global minima occur at or near the truncation point, d = k.

This technique leverages (k, g)-truncation to control the portfolio generation itself, thereby

serving as a sanity check when testing the optimisation results and its underlying logic. Intuit-

ively, the lowest loss should be at threshold d = k, since receipts are zeroed after having breached

k by design. As an illustration, (4, g1)-truncation is applied in Fig. 4.1(a), which shows the lowest

loss occurs at d = 4 for g1 as expected. However, the choice of g ∈ {
g1, g2, g3

}
when truncating

introduces bias in the timing of cash flows, such that this g will likely contain the lowest loss as

well. This is demonstrated in Fig. 4.1(b) when using (6, g3)-truncation instead, where the min-

imum loss now occurs approximately at d = k = 6 for g3. Whilst seemingly artificial, truncation is

merely used as an intuitive testing tool. However, the notion of truncation is plausibly similar to

default contagion during a real-world economic downturn, during which borrowers may default

systematically at some level of accrued delinquency k on average.

Minimum losses ought to occur wherever d = k in applying (k, g)-truncation on receipts. This

intuition is largely confirmed in Fig. 4.2 wherein truncation parameters k = 1, . . . ,10 are applied
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FIG. 4.2: Losses (as a proportion of summed principals) across thresholds d for the
g1-measure with (k, g1)-truncation, using the random defaults technique. Several
truncation points k = 1, . . . ,10 are used, with the zoomed plot confirming that global
minima in losses occur at each truncation point d = k.

during portfolio generation. As a result, loss minima occur consistently at the truncation point

d = k as expected, while holding other factors constant. Each increasing value of k also yielded a

smaller minimum loss as a result of the overall lessening truncation effect. Since receipts are

truncated less frequently as k increases, generated portfolios exhibit overall less delinquency (or

credit risk), which explains both lower loss curves and lower loss minima. Although not shown,

this result holds similarly for g2 and g3 when used in truncation. Therefore, the optimisation is

deemed sensitive to systematic defaults and can react accordingly should the defaulting behaviour

of borrowers converge, as simulated by truncation.

Besides truncation, this technique has another parameter that is arguably more relevant:

that of the one-period repayment probability b. Each value of b corresponds to a particular level

of credit risk during portfolio generation. By varying b, the effect of credit risk can be broadly

tested when optimising loan recovery, as shown in Fig. 4.3. Applying (6, g1)-truncation as a

benchmark, loss minima still occur at d = k = 6 as expected, though only for a certain range of

0.5 < b < 0.94. This suggests that optimising loan recovery in practice is infeasible for either

very risky loan portfolios or near riskless portfolios. In particular, the two boundary cases of

b = 0 and b = 1 in Fig. 4.3 support this idea in that loans should be forsaken at the outset when

b = 0, as evidenced by the loss minimum at d = 0, since all receipts will be zero-valued by design.
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Conversely, if there is no credit risk, i.e., b = 1, then no loss is made at any d > 0 and loan recovery

itself becomes a moot point. These computational results can directly translate into practical

value when estimating the parameter b from a real-world portfolio, as well as estimating the

extent of any underlying truncation effect.

FIG. 4.3: Losses (as a proportion of summed principals) across thresholds d for the g1-
measure with (6, g1)-truncation, using the random defaults technique and several
probabilities of payment b ∈ [0,1]. The zoomed plot shows a smaller range of
0.65≤ b ≤ 0.91 where loss minima occur at the chosen truncation point.

Intuitively, the loss experience (or LGD) of a particular portfolio ought to affect the results of

recovery optimisation as well, especially when considering loan security in the event of default.

This is testable by varying the loss rate rA during portfolio generation while holding other factors

constant, as illustrated in Fig. 4.4 using g1 (though similar results hold for g2 and g3). As a

proxy for more secure portfolios, smaller values of rA lead to flatter loss curves, until reaching

a point where recovery optimisation becomes infeasible. Conversely, larger values of rA yield

loss curves with a greater ‘bend’ at the chosen truncation point, which signifies the greater risk

involved with more unsecured portfolios. Since b is held constant, one can conclude that once

default does occur, the viability of recovery optimisation only increases with the risk of loss, which

is intuitively sensible. This is to say that unsecured portfolios will likely benefit even more from

recovery optimisation than secured portfolios.
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FIG. 4.4: Losses (as a proportion of summed principals) across thresholds d for the g1-
measure with (6, g1)-truncation, using the random defaults technique and several
arrears loss rates rA ∈ [0,1]. The zoomed plot shows a smaller range of loss rates
0.62≤ rA ≤ 1 where loss minima occur at the chosen truncation point.

4.2.2 Episodic defaults

Since this technique is tightly coupled with (k, g1)-truncation by design, portfolios are generated

accordingly for k = 1, . . . ,10, as shown in Fig. 4.5 for g1 (with similar results for g2 and g3).

Clearly, the shapes of loss curves are different, even though loss minima are still found at each

successive truncation point. Furthermore, accounts only resume payment provided that the

length of the default episode is less than k. Longer episodes (higher k) seem to absorb the loss

that is specifically introduced by truncation itself, which is signified by flattening loss curves for

d ≥ k. Since higher k implies that truncation will occur less frequently, a greater proportion of

accounts with an episode length less than k will resume payment. In turn, arrears stabilise given

less frequent truncation, which explains the flattening slopes of loss curves for greater k.

In general then, small k implies shorter episode lengths but more truncated accounts, while

large k means longer episode lengths but fewer truncated accounts. It seems this technique

generates portfolios with an interesting trade-off between default episode length and truncation

frequency, regarding their credit risk compositions. Since loss minima are still obtained at

each truncation point as hoped, it suggests that recovery optimisation will likely remain viable

in practice when facing portfolios with these more interesting characteristics. This includes
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FIG. 4.5: Losses (as a proportion of summed principals) across thresholds d for the
CD-measure g1 with (k, g1)-truncation, using the episodic defaults technique with
pD = 50% and several truncation points k = 1, . . . ,10. The zoomed plot shows that
loss minima occur at each successive truncation point.

portfolios wherein truly delinquent accounts (as proxy for truncation) occur more frequently (e.g.,

unsecured lending), but are also more prone to recover from shorter bouts of delinquency, and

vice versa.

4.2.3 Markovian defaults

This technique affords greater flexibility in generating portfolios with more sporadic repayment

histories. Accordingly, the LROD-procedure is demonstrated in Fig. 4.6 using some of the para-

metrisations of the underlying Markov chain that yield optima across all delinquency measures.

Evidently, the g1-measure appears to outperform the other measures since it yields the lowest

loss within each of these settings, including a number of other parametrisations not shown.

However, summarily concluding the supremacy of g1 across all portfolios would be disingenuous.

It is still possible that some real-world portfolios may be better served using measures other

than g1 within the LROD-procedure (or more broadly in risk management). The current objective

is not to determine the best measure conclusively. Indeed, conducting such an empirical study

would require expansive real-world data on all types of portfolios across the risk spectrum, which

is prohibitively impractical at this stage. That said, the g1-measure is henceforth used in this

section given its supremacy in this instance.
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FIG. 4.6: Losses across thresholds d by measure g ∈ {
g1, g2, g3

}
using the Markovian

defaults technique to generate three different loan portfolios. Each panel explores
a specific setting of the transition matrix, using the titular probabilities within the
matrix defined in Table 4.1. Encircled points indicate loss minima at associated
thresholds d(g).

Using this technique, a broad iterative scheme is devised to generate portfolios systematically

across the entire credit risk spectrum, as measured with g1. In particular, PDD is held constant

at a certain value while varying PPP, followed by fixing PDD to a different value and varying PPP

again, and so on. This scheme allows for suitably varying the transition matrix in Table 4.1 using

fixed intervals, with some of the resulting loss curves and associated loss minima presented in

Fig. 4.7. The subplots in both panels (A) and (I) represent boundary cases that confirm intuition.

Specifically, panel (A) demonstrates recovery optimisation for portfolios with highly transitive

delinquency states such that accounts immediately exit this state in the next period, once entered.

Accordingly, the loss curves increasingly resemble a near risk-less case as the value of PPP tends

towards 1, which is similar to setting b = 1 in Fig. 4.3 when using random defaults. In turn,

recovery optimisation itself becomes progressively infeasible in tandem with PPP approaching

1. Conversely, panel (I) showcases the loss curves of extremely risky portfolios, which are again

similar to setting b = 0 in Fig. 4.3 as PPP approaches 0. More importantly, the fact that loss

minima occur at very small thresholds agrees intuitively with cutting losses sooner rather than

later, especially for extreme default risk.

The remaining panels in Fig. 4.7 are perhaps the most instructive. As the delinquency state

becomes more absorbing (or less transient), i.e., moving from panel (B) to (F), the loss-optimal

thresholds d(g1) become increasingly staggered across both axes. This is to say that d(g1) becomes

progressively more sensitive to both the threshold d and the value of PPP. Moreover, it is sensible

that ever greater losses (at d(g1)) are associated with lower values of PPP since the latter implies
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FIG. 4.7: Losses across thresholds d for the g1-measure using the Markovian defaults
technique with several transition rates PPP ∈ [0,1] and PDD ∈ [0,1]. Encircled points
indicate loss minima at associated thresholds d(g1).

less time being spent in the paying state, even as the delinquency state becomes less transient.

Furthermore, consider that d(g1) increases in threshold-value when PPP decreases and PDD

increases, i.e., moving from curve (i) down to curve (a) whilst moving across panels (B) to (F).

This suggests that gradually postponing loan recovery is the better strategy even as delinquency

becomes more likely, at least up until a certain point, in this case, panel (G). However, this

suggestion is counter-intuitive since one would rather cut losses sooner than later when risk

supposedly increases, which implies selecting lower thresholds instead.
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Two factors help explain this phenomenon. Firstly, the relevant portfolios are increasingly

turbulent by design when PPP changes from higher to lower values in each successive panel. The

effect hereof is that loans start to oscillate quite rapidly between the paying and delinquent states

as PPP decreases. The slightly increased rate of absorption into the delinquent state (when moving

across panels) is not sufficient to support earlier loan recovery as intuition would otherwise

suggest, especially so when an account still frequently exits the delinquent state. This has the

side-effect of muting the severity of ‘default’, which is plausible when curing from ‘default’ itself

becomes increasingly likely due to the same turbulence. Therefore, the associated opportunity

cost of forsaking the loan earlier is too high when future repayments are still likely to be received

over the longer run, albeit sporadic. Accordingly, greater turbulence in a portfolio requires greater

patience to collect upon these repayments, which is why postponing loan recovery (by virtue of

d(g1) increasing) would be loss-efficient. Secondly, even if d(g1) increases in value, the associated

loss minimum reassuringly increases alongside PDD, as expected from more turbulent and riskier

portfolios.

There is little need for applying (k, g)-truncation on these results since the Markovian

technique already has a realistically-set write-off state that achieves the same effect. While

additional truncation will surely confound the results, (12, g1)-truncation is experimentally

applied in the interest of completeness. The results (not shown) are largely similar to that of

random defaults in that loss minima still occur at or near k = 12 across most portfolios. The

exceptions are the two boundary cases, i.e., at or close to panels (A) and (I). Furthermore, the

Markovian technique is especially geared towards generating "regime-switching" portfolios where

accounts suffer from episodes of delinquency that vary in length, as controlled by the state

probabilities. In this regard, episodic delinquency is more common a phenomenon in practice

than one would think, which is why investigating recovery optimisation for these cases is more

valuable than exploring explicit truncation/write-off any further in this section.

4.2.4 Applying the LROD-procedure on real-world data

The steps in section 3.4 require data to be in a longitudinal-format, having measured delinquency

in retrospect across all accounts and time (usually monthly), based on expected instalments and

actual receipts. Letting the contractual term, loan and risk-free rates, and even the loss rates

vary across the portfolio ought not to impede the practical use of the LROD-procedure. However,

the portfolio is assumed to be fully observed (or ‘completed’) in this study, with little consideration

given to any right-censoring and its effect on the receipt history of an account. This particular

avenue is further explored in Botha et al. (2020), thereby demonstrating the empirical use of the

procedure on real-world data. That said, simply excluding incomplete accounts from the dataset

can sidestep this possible issue, though at the cost of a reduced sample size. The effect hereof will

likely vary based on the typical tenure of the loan product.
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The results, particularly those from subsection 4.2.3, can easily translate into practical value

with relatively little analytical effort. For example, one can fit the same three-state Markov

chain on a real portfolio’s delinquency progressions, just to obtain the associated transition rate

estimates. In turn, these estimates can be used as a rough guide in finding a corresponding loss

curve amongst all those presented in Fig. 4.7, i.e., a look-up exercise. The associated optimised

threshold can provide a high-level idea of recovery optimisation, provided the assumptions are

reasonably met. That said, applying the LROD-procedure remains the imperative in order to

capture all idiosyncrasies of a particular portfolio and the prevailing market conditions.

4.3 Concluding remarks

The results demonstrate that optimising the timing of the recovery decision using the LROD-

procedure is sensitive to the level of credit risk of a portfolio and its particular composition.

This rather intuitive result rests upon weighing two competing interests against each other: the

prospect of reaping future revenue from troubled loans versus the cost of retaining these loans

any further. In addition, the LROD-procedure is formulated in such a way that it can be used

with multiple loan delinquency measures. This facilitates the objective testing of alternative

measures, e.g., those provided in the appendix, that may better suit the recovery optimisation (or

even broader risk management) of a portfolio. That said, the study objective is not to establish

the best measure conclusively, which would likely be a data-intensive and costly endeavour.

Regarding results, a simple simulation-based setup is first described in which the LROD-

procedure (and its goal of recovery optimisation) is closely examined from "first principles". Using

this setup as a testbed, a broad computational study is conducted wherein basic amortising

loan portfolios are systematically generated by varying the simulation parameters, though still

constrained by expert judgement. Having spanned the entire credit risk spectrum (as measured

with the payment probability b), the computational results show that optimising the recovery

decision’s timing is viable across most risk levels, except at the extremes. The results further

indicate that optimised recovery times are sensitive to systematic defaults that may structurally

affect a portfolio during an economic downturn, as approximated by the notion of (k, g)-truncation

in the testbed. Another factor is that of collateral and the portfolio’s loss experience (or LGD),

insofar that optima were successfully found across most of the loss spectrum (as measured with

the loss rate rA). Moreover, recovery optimisation seems to become an increasingly viable practice

as the risk of loss increases.

In addition, recovery optimisation is tested on more turbulent portfolios wherein borrow-

ers repay intermittently, thereby causing episodic delinquency. Once accounts oscillate rapidly

between paying and nonpayment, ‘default’ itself diminishes in severity, especially when cur-

ing also becomes more likely as a result of the very same turbulence. Accordingly, optimised
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thresholds are shown to increase in value as turbulence develops, though only up to a point.

Postponing loan recovery in tandem with greater turbulence is therefore strategically optimal

since it allows greater scope to collect upon these repayments, albeit sporadic. As a secondary

contribution, the testbed itself can serve as a valuable tool in exploring the strategic viability of

the LROD-procedure. Once appropriately parametrised, the testbed can generate a wide variety

of portfolios, which allows a bank to investigate (at least preliminarily) the prospects of recovery

optimisation for a certain type of portfolio. Ultimately, the LROD-procedure can be used to tweak

existing collection policies and, perhaps in time, default definitions themselves.

Future studies can focus on refining the LROD-procedure using real-world portfolio data.

So-called ‘incomplete’ portfolios, i.e., those wherein many loans have not yet reached contractual

maturity, may prove a challenge for recovery optimisation at this stage. The simplest solution

would be to exclude the incomplete accounts, though unfortunately reducing the sample size

as well. Alternatively, one can perhaps explore an appropriate forecasting approach in future

work. Furthermore, homogeneity is currently assumed in that the optimised threshold is a

portfolio-wide criterion. However, exploring segmentation schemes may be worthwhile such that

the LROD-procedure yields an ideal threshold for each identified segment within the portfolio.

Lastly, the current loss model Lg can be refined by incorporating historical loss experiences and

transforming it into a more dynamic component. As an example, calculating the realised LGD

generally requires a specific point of entering ‘default’. From this point, cash flows are observed

during its workout up to the applicable write-off point. By introducing d as the (g,d)-default

state, the starting points of cash flows will naturally vary with d, thereby impacting the LGD

calculation itself for each (g,d)-policy. Intuitively, longer or shorter workout periods will affect

the loss experience, which will influence recovery optimisation based on the study results. This

particular refinement will likely intersect with the existing literature on credit loss modelling

and IFRS 9, which as a field is currently quite in vogue.
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5
RECOVERY OPTIMISATION USING REAL-WORLD DATA WITH

FORECASTING

The LROD-procedure from section 3.4 allows for the objective comparison, evaluation, and

optimisation of a bank’s recovery decision (i.e, foreclosure) across competing delinquency

measures. This procedure was demonstrated in chapter 4 as an optimisation problem

using toy portfolios in such a way that loans are forsaken neither too early nor too late, if at all. In

this chapter, the same LROD-procedure is extended and refined using a rich real-world portfolio

of 20-year residential mortgages, provided by a large South African bank. However, real-world

amortising loan portfolios typically suffer from right-censoring in that the many of its constituent

loan accounts have not yet reached contractual maturity, barring those that were settled early or

written-off historically. Older monthly cohorts will have more observable history available than

those cohort originated more recently. Consequentially, the cash inflows (or receipts) of these

active loan accounts can only be observed up to the most recent time point t0 and no further.

More formally, a loan account has the receipt vector R = [
R1,R2, . . . ,Rt0 ,Rt1 , . . . ,Rtc

]
of which

elements are observed from data only up to time t0 ≤ tc with tc denoting the contractual term.

The remaining future elements at times t1, . . . , tc (where t0 < t1 ≤ tc) are right-censored and

therefore unobservable.

Accordingly, censored portfolios present a secondary challenge since the LROD-procedure

was originally developed within the context of uncensored ‘completed’ portfolios. It is also quite

challenging to procure a real-world uncensored though still data-rich portfolio from a willing

lender. However, even if procured, its use may become questionable since the completed portfolio
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may no longer reflect current market conditions, which may adversely affect recovery optimisation.

Moreover, the unsurprising reality is that most loan portfolios will be censored to some degree

since they are being actively grown every month, which suggests that censoring will remain a

prevalent problem whenever seeking to apply the LROD-procedure in practice. Failure to treat

for this censoring leads to unusable and counter-intuitive results1. Arguably, it would be more

feasible to use available data and try to forecast the remaining cash flows of each censored

account up to its contractual term, as originally depicted in Fig. 1.3. Performing this necessary

step will then in turn enable the empirical use of the LROD-procedure.

This chapter is begun by outlining two candidate forecasting techniques in section 5.1 by

which a censored portfolio can be completed. Each technique is parametrised from 20-year resid-

ential mortgage data and assessed on its forecasting quality in section 5.2. The LROD-procedure

is then applied on the now-completed portfolio in section 5.3, accompanied by a discussion of the

ensuing results. A Monte Carlo-based refinement to the procedure is demonstrated in subsec-

tion 5.3.2 by which the variance of the underlying forecasts can be analysed, thereby granting

additional assurance on the stability of the optimisation results. Finally, this chapter is concluded

in section 5.4, which includes a discussion on limitations and avenues for future research. Over-

all, the timing of a bank’s recovery decision is successfully illustrated as a delinquency-based

optimisation problem using real-world data. This work can therefore facilitate the revision of

relevant bank policies or strategies towards optimising the loan collections process. A research

article titled "The loss optimisation of loan recovery decision times using forecast cash flows" is

associated with this chapter, accepted for publication in the Journal of Credit Risk. A preprint is

published in Botha et al. (2020) while the associated source code is available in Botha (2020b).

5.1 Two techniques to forecast future loan receipts

Two techniques are presented in this section to forecast the future cash flows Rt1 , . . . ,Rtc up to the

contractual term tc of each censored loan account, using its observed receipt history R1, . . . ,Rt0 .

These techniques include a simple probabilistic technique called random defaults as well as a

more sophisticated eight-state Markov chain-based technique called Markovian defaults. Note

that both techniques are data-driven extensions of those used in chapter 4.

5.1.1 Random defaults with empirical truncation

Let ut ∈ [0,1] be a randomly generated number from the uniform distribution at every loan period

t = t1, . . . , tc that is to be forecast. Let b be an estimable probability of payment, i.e., P(Rt = Ic)= b

with Ic being the calculated level instalment. This instalment is calculated such that it amortises

1Using an untreated real-world portfolio in the procedure did not yield loss-optimised thresholds on any measure,
regardless of the chosen loss rate – see Appendix A.3.
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the most recent outstanding balance as observed at time t0 to zero at time tc, using the most

recent client interest rate observed from data. The receipt is then initially forecast as

Rt =
Ic if ut < b

0 otherwise
. (5.1)

A truncation effect is introduced (similar to section 4.1) via a structural break in the forecast

receipt vector at a certain point (if at all) and replacing elements thereafter with zeros. Tempering

the predicted receipts in this way mimics the fact that some loan accounts will simply never

resume payment in reality. This is similar to Thomas et al. (2016) wherein the parameters

controlling the payment and non-payment sequences were fixed after reaching some point in the

process. More formally, consider all periods j = t0 , . . . , tc within the now-forecast receipt vector

R of a particular account, with the measure g1 applied accordingly across all periods. Let k ≥ 0

be a truncation parameter above which the receipts are truncated. The starting period of this

truncation, denoted as tk ≥ 0, may then exist if the account has experienced sufficient delinquency

g1( j) ≥ k at some j, i.e., tk = min
(

j : g1( j) ≥ k
)
. Conversely, if delinquency has not breached k,

then this time point tk does not exist. A process called (k, g1)-truncation then changes R to R′ by

R′ =


[
Rt1 , . . . ,Rtk ,0 , . . . ,0

]
if tk exists

R otherwise
. (5.2)

In estimating this truncation parameter k (as opposed to fixing it previously in section 4.2),

consider that the maximum delinquency across time can be obtained for each account in a loan

portfolio, using g1 for simplicity’s sake. In turn, the histogram of these maxima is plotted, followed

by fitting statistical distributions to these maxima. One can then draw a random sample k̂i from

an appropriately fitted distribution for each account and finally (k̂i, g1)-truncate the initially

forecast receipt vector. This introduces some realistic variance to the overall truncation effect.

Lastly, consider an indicator function I (i)
t that signals payment using the receipt R i

t and

instalment I i
t of the ith account at its historical periods t = 1, . . . , t0(i). This I (i)

t is then formally

defined as

I (i)
t =

1 if R i
t ≥ I i

t

0 otherwise
t = 1, . . . , t0(i) . (5.3)

The probability of payment b can be estimated by b̂, which is defined as

b̂ = 1
N

∑
i

1
t0(i)

∑
t
I (i)

t ∀ i = 1, . . . , N and t = 1, . . . , t0(i) . (5.4)

5.1.2 Markovian defaults

Let X t ∈ {x0, . . . , x7} be a random vector that can assume one of eight increasingly-severe de-

linquency states derived from g1, across all historical periods t = 1, . . . , t0 of an account. The
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states x0 , . . . , x5 correspond to g1(t) having the respective values 0, . . . ,5 at any t. State x6 is

semi-absorbing such that g1(t)≥ 6 at any t and the state x7 denotes write-off (fully-absorbing).

The sequence X1, . . . , X t0 then forms a discrete-time first-order Markov chain from which receipts

can be forecast, based on the predicted states X t1 , . . . , X tc at future periods t = t1, . . . , tc. Note that

g1 can only ever increase in value by one delinquency level, while it can decrease by several

levels depending on the magnitude of the overpayment Rt > I t. Lastly, previous studies used

Markov chains with fewer states to characterise the delinquency process (see subsection 3.1.3).

However, more delinquency states should theoretically translate into better capturing a portfolio’s

delinquency dynamics over time. While this claim is not explicitly tested, an eight-state Markov

chain is deemed a reasonable compromise between greater sophistication and simplicity.

To generate receipts at these future periods, temporarily ignore write-off (x7) and consider the

one-period delinquency difference δt, defined as δt = g1(t)− g1(t−1). A positive difference δt > 0

implies Rt < htIc since delinquency has increased and Rt is therefore simply zeroed. Secondly,

δt = 0 implies Rt = Ic since the delinquency level remained unchanged. Finally, δt < 0 implies

Rt ≥ 2Ic since δ−1 extra payments are needed to decrease the delinquency level beyond the

instalment normally due at the time. When X t = x6, the account remains semi-absorbed as long

as g1(t)≥ 6, which implies either increasing or constant delinquency. For the sake of prudence,

the former case is assumed (i.e., δt > 0) and Rt is zeroed accordingly. These ideas (barring x7) are

combined into forecasting the receipt as

Rt =


−Ic(δt −1) if δt < 0

Ic if δt = 0

0 if δt > 0

. (5.5)

Note that truncation is effectively incorporated whenever an account transitions to the absorbing

write-off state x7 at a supposed time point tw that only exists when X tw = x7 with t1 ≤ tw ≤ tc.

This inherently implies zeroed receipts from that point forward, i.e., Rt = 0 for t = tw, . . . , tc if tw

exists.

In estimating the transition matrix of this Markov chain, note that the receipt history of each

loan account effectively signifies a repeated observation of the underlying chain, as discussed in

T. W. Anderson and Goodman (1957). Assuming stationarity, the maximum likelihood estimates

(MLEs) for the transition probabilities pi j from state i to state j are then p̂i j = ni j/n∗
i where

ni j is the number of observed transitions across all time periods from state i to j and n∗
i is the

observed number of total transitions starting in state i. In this context, it is not necessary to

estimate initial state probabilities since the starting delinquency state is simply observed from

the last available time point t0 of an account.
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5.2 Calibrating the forecasting techniques to mortgage data

The aforementioned forecasting techniques are calibrated in this section using credit data on a

rich portfolio of ordinary home loans granted to the lower-income segment of the South African

market. Although shorter-term matured loans would be ideal for this study, only mortgage data

was available. This longitudinal dataset has monthly loan performance observations over time

t = 1, . . . , t0(i) for account i = 1, . . . , N with N = 61,648 single-advance 20-year mortgage accounts.

These mortgages were originated from April 2004 (and beyond) and observed throughout up

to December 2017, thereby yielding 3,271,534 raw monthly observations of loan performance.

This data includes actual net cash flows (receipts), expected instalments (including credit life

insurance add-ons and fees, or special arrangements), variable interest rates, original loan

principals, month-end balances, write-off amounts and indicators, asset sale proceeds, and early

settlement indicators.

FIG. 5.1: The difference between the theoretically observable loan tenure (as mea-
sured at December 2017 in retrospect) and the remaining contractual term across
monthly loan cohorts. The mean and median loan ages per monthly cohort are
overlaid.

As measured at December 2017, the difference between the maximum theoretical loan tenure

and the remainder of the contractual term is shown in Fig. 5.1 at every historical monthly loan

cohort, with aggregates overlaid. Clearly, these aggregates are below the theoretical maximum

135 of 178



CHAPTER 5. RECOVERY OPTIMISATION USING REAL-WORLD DATA WITH FORECASTING

for most cohorts, which demonstrates some additional right-censoring. To this point, mortgage

loans can exit the portfolio pre-maturely either via write-off or via early settlement, e.g., private

sales, bond cancellations, or transfers. Moreover, the volatility in both of these aggregates at

earlier times attests to low sample sizes, which is unsurprising for a fledgling loan portfolio at the

time. This volatility, however, gradually subsides until both aggregates approach the theoretical

maximum. This is sensible since more recently originated mortgages have less time available to

develop write-off or early settlement outcomes than their older counterparts.

In estimating the various parameters of the forecasting techniques, the data is partitioned to

form three specific samples: S1 as the full dataset, S2 as the delinquents-only sample (all accounts

that had at least one payment in arrears historically, or were eventually written-off), and S3 as

the write-offs sample. These samples and the relationships amongst them are illustrated with a

Venn diagram shown in Fig. 5.2. Some accounts will simply never experience any delinquency

and their exclusion in S2 and S3 removes an optimism bias during model training. There is

little practical benefit to finding the best time for loan recovery on a near risk-less portfolio.

Furthermore, recovery optimisation is only sensible for loans likely to become delinquent in the

first place, which is predicated upon forecasting them as such. Likewise, it would be pointless

to forecast cash flows of closed accounts, though their repayment histories are retained for

model training purposes. Lastly, this particular partitioning scheme is an experimental proxy for

risk compositions that differ across both product and risk appetites in reality. As an example,

mortgages typically have a much lower default rate than unsecured personal loans, which is

catered for in the current setup.

FIG. 5.2: A Venn diagram showing the relative sizes and overlaps amongst the three
main samples of mortgage accounts: S1 (full sample), S2 (delinquents), and S3
(write-offs). These samples are used both in training the forecasting techniques
and during the subsequent loss optimisation.
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5.2.1 Calibrating the random defaults technique

FIG. 5.3: A histogram and empirical density curve of the maximum delinquency level
observed per account, drawn for the samples S2 (delinquents) and S3 (write-offs).
A theoretical distribution is then fit on each sample (see Appendix A.4), from
which the truncation parameter k is drawn randomly for each loan account prior
forecasting.

The aforementioned probability of payment b used in this technique is estimated from

samples {S1,S2,S3} respectively as b̂1 = 87%, b̂2 = 81%, and b̂3 = 45%. The descending values are

plausible given that each successive sample contains a greater proportion of delinquency by design.

Note that the random truncation of forecasts that accompanies this technique is only sensibly

performed for delinquent cases, which implies k > 0. Therefore, ignoring S1, the distribution of

the maximum delinquency level per account, i.e., max g1(t) across all historically observed periods

t = 1, . . . , t0, is given in Fig. 5.3 for both samples S2 and S3. A few statistical distributions were

tested against the data (see Appendix A.4), though the exponential and two-parameter Weibull

distributions are chosen for S2 and S3 respectively, denoted as Exp(λ) and Weibull(λ,φ). The

MLEs of these parameters are λ= 0.1378555 for the exponential distribution, scale λ= 24.449566

and shape φ = 1.688026 for the Weibull distribution. The truncation parameter then follows

either one of these distributions, i.e., k ∼Exp(λ) for both S1 and S2, as well as k ∼Weibull(λ,φ)

for S3, as part of a comparative study. Note that the exponentially-distributed k has a stronger
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truncation effect since it generally yields lower values of k than those yielded by its Weibull-

distributed counterpart. This is also evidenced by the sample mean of k estimated from S2 being

7.25 versus that from S3 being 21.58.

5.2.2 Calibrating the Markovian defaults technique
Ending state

x0 x1 x2 x3 x4 x5 x6 x7

St
ar

ti
ng

st
at

e

x0 0.9477 0.0521 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
x1 0.0942 0.8074 0.0980 0.0000 0.0000 0.0000 0.0000 0.0004
x2 0.0138 0.0502 0.7735 0.1621 0.0000 0.0000 0.0000 0.0004
x3 0.0064 0.0084 0.0481 0.7372 0.1993 0.0000 0.0000 0.0006
x4 0.0064 0.0030 0.0082 0.0488 0.6957 0.2371 0.0000 0.0007
x5 0.0051 0.0020 0.0029 0.0081 0.0469 0.6846 0.2496 0.0009
x6 0.0044 0.0006 0.0007 0.0009 0.0021 0.0095 0.9756 0.0061
x7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

TABLE 5.1: Maximum likelihood estimates for the transition matrix of the multi-
state Markov chain, estimated from the delinquents sample S2. States x0, . . . , x5
correspond to g1 having the respective values 0, . . . ,5 (weighted payments in ar-
rears). States x6 (semi-absorbing) and x7 (absorbing) indicate g1 ≥ 6 and write-off
respectively.

Ending state
x0 x1 x2 x3 x4 x5 x6 x7

St
ar

ti
ng

st
at

e

x0 0.8820 0.1126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0054
x1 0.0962 0.5387 0.3534 0.0000 0.0000 0.0000 0.0000 0.0117
x2 0.0254 0.0453 0.4607 0.4600 0.0000 0.0000 0.0000 0.0086
x3 0.0136 0.0103 0.0430 0.3824 0.5393 0.0000 0.0000 0.0114
x4 0.0117 0.0032 0.0093 0.0412 0.3187 0.6048 0.0000 0.0112
x5 0.0079 0.0037 0.0037 0.0053 0.0293 0.3181 0.6194 0.0127
x6 0.0076 0.0006 0.0005 0.0007 0.0012 0.0035 0.9474 0.0385
x7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

TABLE 5.2: Maximum likelihood estimates for the transition matrix of the multi-state
Markov chain, estimated from the write-offs sample S3. States x0, . . . , x5 correspond
to g1 having the respective values 0, . . . ,5 (weighted payments in arrears). States
x6 (semi-absorbing) and x7 (absorbing) indicate g1 ≥ 6 and write-off respectively.

The MLEs for the transition matrices, as used in this technique, are estimated only from the

samples S2 and S3, shown respectively in Tables 5.1–5.2. Note that the estimates using S1 differ

from those yielded by using S2 only in the first row, which is sensible since S1 contains the same

delinquent accounts (and therefore the same transitions) as S2 by design. The estimates are

realistic in that an account in any particular delinquency state (barring write-off) can increase

its delinquency level only by one level within a monthly period. Additionally, these estimates

reflect the fact that an account can significantly overpay and thereby recover either partially or
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entirely from distress. The probability of staying within a particular starting state is greatest,

though it decreases gradually as the delinquency level increases, at least for states x0, . . . , x5.

Simultaneously, the probability of becoming even more delinquent increases as the starting

delinquency level increases, which agrees with anecdotal experience in the industry. This is

corroborated by the increasing probability of write-off, effectively representing an increasing

probability of truncation.

5.2.3 Assessing the quality of forecasts

Although forecasts are trained specifically on {S1,S2,S3}, the forecast quality itself is examined in

this section by following a more general k-fold cross-validation approach as additional assurance.

However, the available mortgage portfolio did not have a single completed 20-year loan, against

which the receipt forecasts could be validated across all periods. Nonetheless, available loan data

up to t0(i) is still used within a k = 5 cross-validation setup, despite the censoring-related bias

this likely introduces into measuring the forecast error. Moreover, the main objective is not to

produce the most accurate or robust forecasting model on the account-level, although that is

certainly a worthwhile endeavour. Instead, the present focus is more fundamental: using different

forecasts (regarding accuracy) when optimising the timing of loan recovery, which suggests using

multiple forecasting techniques.

Metric Random defaults (Ta) Markovian defaults (Tb)

Mean Absolute Error (MAE) of cash flows 3,233.19 1,414.03
Instalment-scaled MAE 103.7% 45.3%
Delinquency Forecast Error (DFE): Mean 30.3 5.5
DFE: Median 22.2 0
Portfolio Arrears Rate (PAR) 6.715% (-1.64%) 0.695% (-1.64%)
Mean parameter %-difference 0.00012% -0.0068%

TABLE 5.3: The results of various measures, calculated and averaged across a 5-fold
cross-validation setup. The receipt forecasts are validated using MAE against the
actual receipts within the kth subset per technique, having trained the technique
on the rest of the data. The DFE-metric compares the g1-based delinquency levels
underlying forecasts against the actual values by taking the difference thereof
at each period and averaging. The PAR-metric expresses the sum of discounted
shortfalls (essentially ‘arrears’) between instalments and forecasts as a proportion
of all gross advances, using 7% as the discounting rate. The actual PAR-value is
-1.64% on average, which is negatively signed due to large historical overpayments
at earlier periods.

A few measures are used that span forecast error, portfolio impact, and overall parameter

stability, with the results thereof given in Table 5.3. These results reflect the significant differences

between each technique’s performance, which is unsurprising given that the simpler technique
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(Ta) deliberately ignores the possibility of curing. Another factor that affects the forecast accuracy

is the ability of the Markovian technique (Tb) to produce forecasts based on the level of accrued

delinquency. This advantage gave a Mean Absolute Error (MAE) of less than half that of Ta, which

is perhaps made more contextual when expressing the error as a proportion of the overall mean

instalment. The receipt forecasts are perhaps less important themselves than the delinquency

calculations that they enable, as eventually used during recovery optimisation. Accordingly, the

Delinquency Forecast Error (DFE) quantifies the ‘error’ in measured delinquency levels when

replacing historical cash flows with their forecast-counterparts. As a result, the DFE also suggests

a clear preference for Tb with its much lower error, regardless of taking the mean or median

of these account-level errors. On the other hand, the Portfolio Arrears Rate (PAR) reflects the

portfolio-wide arrears rate as implied when using each technique’s forecasts of historical receipts.

Again, the PAR of Tb is much closer to the actual rate than that of Ta. Regarding parameter

stability, the mean %-difference in parameter estimates is reassuringly close to 0, as calculated

between using all data versus using each training fold.

5.3 Optimising the recovery decision: an empirical illustration

The parameters of each forecasting technique were previously estimated three times, each from

a progressively worse sample, thereby recognising that a portfolio’s historical risk composition

itself will bias the forecast receipts. Naturally, the LROD-procedure itself can be applied on

each of these subsequent samples. The locations of the recovery thresholds at which losses are

minimised (if found) are expected to differ significantly, given the different risk profiles. That said,

this procedure is imagined to be applied on the entire loan portfolio when loss-optimising a bank’s

recovery decision in practice. It is, however, iteratively applied in this study as an experimental

and artificial proxy for various risk compositions found in reality, as if each sample is a stand-

alone portfolio. Moreover, the sample Si from which a forecasting technique is parametrised (or

trained) may differ from the sample S j on which the LROD-procedure is applied, where both i

and j are indexes that signify samples {S1,S2,S3}. Apart from using data more efficiently, this

approach approximates the reality of a portfolio’s historical risk composition changing in the

future. As an example, parametrising a forecasting technique from S3 but optimising recovery

thresholds on S1 simulates the context of a proportionally lower-risk portfolio (S1) undergoing

heavy financial strain in the future (by using forecasts trained from S3). Additionally, this

proposed setup aligns with the IFRS 9 accounting standard, which requires expected credit losses

to be estimated based on various macroeconomic scenarios, as stated in IFRS 9 (2014, §5.5).

Therefore, the experimental setup is illustrated as a 3×3 matrix in Table 5.4 wherein each cell

si j represents the results from a specific scenario. Greater values of j denote riskier portfolios,

while greater values of i represent more pessimistic forecasts.

On interpreting the following results, the LROD-procedure’s particular loss model from
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j
S1 S2 S3

i
S1 s11 s12 s13
S2 s21 s22 s23
S3 s31 s32 s33

TABLE 5.4: The experimental setup containing nine scenarios wherein row i repre-
sents the sample used for parametrising a forecasting technique, and column j
denotes the sample on which optimisation is performed.

section 3.4 assumes that a portion of the expected balance and arrears amount are immediately

lost upon entering (g,d)-default. In effect, this equates the actual default and write-off events

to a single point, which implies that a loss-optimised threshold is not necessarily the suggested

starting point of legal proceedings, but rather the optimal ending point. For that matter, finding

the optimal starting point of legal proceedings will likely lead to a workout period that varies

in its length, depending on the starting point. Data collection is likely to be challenging since a

lender would have to delay debt recovery deliberately for enabling such an experiment. Other

than these data challenges, there may be a few operational and legal factors (e.g., jurisdictions

differing in their legal processes) that influence the workout length, which could require a more

sophisticated portfolio loss model than the one used in this study. Therefore, pursuing the best

starting point of debt and/or legal proceedings is left as an avenue of future investigation.

5.3.1 Optimisation results using S1, S2, and S3 respectively

The first set of results are presented in Fig. 5.4 wherein all loss curves exhibit minima at certain

thresholds d∗ when loss-optimising the recovery decision on the full sample S1, i.e., results

based on the first column in Table 5.4. In this case, optimising on S1 represents a historically

lower-risk portfolio, while training forecasts from {S1,S2,S3} represents increasingly dire credit

risk scenarios in future. Specifically, the loss minimum increases both in value as well as occur

at decreasing thresholds as the forecast scenario worsens, i.e., progressing from s11 → s21 → s31

when parametrising the forecasting technique. Furthermore, overall losses across all thresholds

increase as the forecast scenario deteriorates, which is evidenced by the steeper slope of the

loss curve after having reached its minimum at d∗. This agrees with the intuition of cutting

losses sooner rather than later when facing increasingly higher credit risk on future cash flows.

Moreover, the s31-results yielded the lowest thresholds d∗ = {4,6} respective to each technique,

whose values seem close to the current practice of using d = 3 with the g0-measure as a default

definition. Therefore, training forecast models from S3 may serve as a conservative ‘boundary’

case, thereby deliberately introducing risk aversion when optimising the recovery decision itself.

Regarding the techniques, the base scenario s11 clearly gives two very different loss minima

at d∗ = 5 for random defaults versus d∗ = 13 for Markovian defaults. Incidentally, the latter also
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FIG. 5.4: Loss rates across recovery thresholds d for measure g1 on the full sample
S1 across various forecasting scenarios, using the random defaults technique with
k ∼Exp(λ) truncation, and using the Markovian defaults technique independently.
Solid lines indicate base scenarios wherein both optimisation and training forecasts
use the same sample. Zoomed plot and encircled points show global minima for
each loss curve, also bracketed in the legend.

yielded lower loss rates at less stringent (higher) values of d∗ in general, when compared to

those given by random defaults across all scenarios si1. Moreover, the difference between d∗

yielded by each technique becomes smaller as the forecast scenario worsens. In fact, Markovian

defaults for s31 gives a loss curve that is similarly shaped to those produced by random defaults

irrespective of forecast scenario, which suggests some connection. Consider that the underlying

transition matrix in Table 5.2 is generally much more transient than the one in Table 5.1, with

far greater conditional probabilities of transiting to worse states. As the possibility of curing back

to a better state declines, the Markovian technique increasingly resembles the simpler technique

in effect. The latter provides inherently less realistic forecasts since it deliberately ignores curing,

which means the larger cash flows associated with curing events are not generated. Since the

Markovian forecasts are demonstrably more accurate, they are therefore clearly preferable,

though the random forecasts are kept for expositional purposes, including model risk.
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FIG. 5.5: Loss rates across recovery thresholds d for measure g1 on the delinquents
sample S2 across various forecasting scenarios, using the random defaults tech-
nique with k ∼ Exp(λ) truncation, and using the Markovian defaults technique
independently. Graphical formatting follows that of Fig. 5.4.

The same trends hold true in Figs. 5.5–5.6 when optimising on samples S2 and S3 instead,

i.e., scenarios from the second/third columns in Table 5.4. As the main result, optima are still

obtained (though at different locations) across all techniques and forecast scenarios, thereby

demonstrating the LROD-procedure’s sensitivity to the inherent risk profile of a portfolio. In

particular, optimising across increasingly riskier portfolios (S1 → S2 → S3) remains viable,

even if the loss curves become somewhat vertically compressed relative to lower-risk samples.

Moreover, d∗ seem to increase across riskier samples. The base scenarios {s11, s22, s33}, i.e., the

diagonal in Table 5.4, demonstrate this phenomenon with loss minima found at d∗ = {5,10,35} for

random defaults and d∗ = {13,23,35} for Markovian defaults. That said, the recoveries realised

from selling the underlying asset largely explains this phenomenon. Since these recoveries are

generally recognised only at the write-off point after a typically long workout period, the suddenly

large receipt will dramatically decrease the delinquency level at the last period. Therefore, when

optimising on S3, it is indeed statistically better to wait strategically and collect some of these
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FIG. 5.6: Loss rates across recovery thresholds d for measure g1 on the write-offs
sample S3 across various forecasting scenarios, using the random defaults tech-
nique with k ∼ Weibull(λ,φ) truncation, and using the Markovian defaults tech-
nique independently. Graphical formatting follows that of Fig. 5.4.

large cash flows. This is evidenced by the relatively high threshold d∗ = 35, which indicates the

optimal ending point of legal proceedings. The fact that both loss minima and their thresholds

change when optimising on S3 → S2 → S1 merely attests to the dilution of written-off cases as a

proportion of the overall portfolio.

While the CD-measure g1 is primarily used in this study, loss-optimality was also found for

the other two measures g2 and g3 across the experimental setup for both forecasting techniques.

Interestingly, the d∗ yielded by g2 and g3 are much less varied than those yielded by g1, which

suggests these measures are not as sensitive as g1 to the choice of technique, risk level, or

forecast scenario. Specifically, the loss minima for g2 and g3 occur within the threshold ranges

[1.2,1.9], [1.3,2.3], and [3.2,6] when optimising respectively across {S1,S2,S3}. However, the loss

minima themselves are greater than those yielded by g1 with the percentage difference thereof

averaging at 3.6% (excluding S3). Evidently, the LROD-procedure suggests that the g1-measure is

objectively the best delinquency measure for signalling loan recovery – at least for this particular
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mortgage portfolio.

5.3.2 Monte Carlo simulations for analysing the variance of optima

FIG. 5.7: Average loss rates (solid lines) across thresholds d for measure g1, estimated
from n = 500 Monte Carlo trials, for scenario s11. Forecasts are iteratively and
independently made using the random defaults technique with k ∼Exp(λ) trunca-
tion, and the Markovian defaults technique. The averages are accompanied by a
99% shaded confidence band with error bars. Zoomed plots show global minima for
each loss curve, also bracketed in the legend. Box-and-whiskers mini-plots within
the zoomed plots summarise the overlaid loss estimates at each d.

Given that forecast receipts are inherently probabilistic, their subsequent use within a

delinquency measure injects uncertainty into the latter’s output as well as into the optimisation

itself. Therefore, any loss minimum that is found at a certain threshold may, in fact, be spurious.

As an example, a random but systemic perturbation at some time point in the underlying forecasts

can produce an alternative minimum at an entirely different threshold, which has implications for

the overall precision of the optimisation. Confidence in this supposed minimum can be enhanced

by conducting a variance study on the loss curve. One approach to this problem is to produce
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multiple sets of forecasts of the portfolio’s future cash flows using simple Monte Carlo simulation

and the laws of large numbers. Each iteration thereof will have its own independent loss curve

using a particular set of random forecasts generated from a specific technique. As an example,

consider n such Monte Carlo trials, thereby resulting in n loss rate estimates at each threshold d,

from which a sample mean µd is calculated at each d. The corresponding sample variance s2
d is

estimated, which is finally used in constructing a standard 99% confidence interval for the mean

as µd ±2.58 sd/
p

n.

Monte Carlo simulation is illustrated in Fig. 5.7 for both forecasting techniques using the

s11 base scenario after 500 runs. The forecasts yielded by the simpler technique appear to be

quite robust since the resulting loss rates had relatively little variation and retained the overall

shape of the original loss curve in Fig. 5.4. These results, particularly the difference in the widths

of the confidence intervals per technique, attest to the bias-variance trade-off phenomenon in

statistical learning, as the model’s complexity varies. More specifically, the simpler technique

with its relatively invariant forecasts is also much less accurate than the Markovian technique.

Reassuringly, the lowest sample mean still occurs at d∗ = 5 as it did previously. However, the

same cannot be said for the Markovian forecasts since the minimum now occurs at d∗ = 10 (down

from the previous d∗ = 13). While the overall shape of the Markovian loss curve is still the same,

the loss rate estimates exhibit greater variance than those of the simpler technique. Moreover,

the loss curve is relatively flat in the region near d∗ = 10 (as in Fig. 5.4), which helps explains

the ‘ease’ at which the minimum shifted in this particular scenario.

Conducting these Monte Carlo simulations clearly refines the LROD-procedure one step

further by controlling for the uncertainty within forecasts. That said, it is not necessarily true

that the average minimum loss will always occur at a different threshold, as it did in Fig. 5.7.

In fact, the average minima remained at the same thresholds as they did in Figs. 5.5–5.6, when

running these Monte Carlo simulations for the other base scenarios s22 and s33 in Fig. 5.8,

regardless of forecasting technique. Moreover, the general shape of each loss curve in Fig. 5.8

remained the same, all of which provides combined assurance on the precision of the optimisation

results. Lastly, the practitioner may consider a smaller and more focused range of thresholds,

especially within the general region of optima, when conducting these Monte Carlo simulations

in practice. In contrast, a larger range is chosen in this study simply to demonstrate the LROD-

procedure (and its viability) as a "proof of concept".
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(a) Scenario s22 (delinquents)

(b) Scenario s33 (write-offs)

FIG. 5.8: Average loss rates (solid lines) across thresholds d for measure g1, estimated
from n = 500 Monte Carlo trials, for scenarios s22 and s33. Forecasts are iteratively
and independently made using the random defaults technique with k ∼ Exp(λ)
truncation in (a) and with k ∼ Weibull(λ,φ) truncation in (b), with Markovian
forecasts provided in both panels. Graphical formatting follows that of Fig. 5.7.



CHAPTER 5. RECOVERY OPTIMISATION USING REAL-WORLD DATA WITH FORECASTING

5.4 Concluding remarks

The timing of the recovery decision is empirically illustrated as a delinquency-based optimisation

problem, such that loans are forsaken neither too early nor too late, if at all. This empiricism,

however, has to contend with the non-trivial practicalities of a real-world portfolio, most notably

that of extensive right-censoring wherein most loan accounts have not yet reached their full

contractual maturity. The LROD-procedure, previously presented in section 3.4, only caters for

‘completed’ uncensored loan portfolios, which poses an additional challenge2. While an uncensored

portfolio would be ideal, the paucity of both data and lenders willing to avail sufficiently rich

data makes this difficult. Moreover, most portfolios are actively grown by banks, which causes

right-censoring and implies that recovery optimisation will likely remain problematic in practice.

A more feasible remedy is demonstrated wherein available data is first used to forecast the

residual cash flows of each account up to its contractual maturity. This step ‘completes’ the

portfolio and enables the practical use of the LROD-procedure for optimising the bank’s recovery

decision.

As a secondary contribution, two forecasting techniques are proposed, parametrised, and

applied on the portfolio before optimisation. This includes a simple probabilistic technique and a

more sophisticated eight-state Markov chain, both of which are subsequently used in forecasting

cash flows independently. However, the manner in which receipts are forecast will greatly affect

the portfolio’s subsequent credit risk profile, which influences the timing of loan recovery at which

the minimum loss is subsequently attained. Accordingly, forecasts are artificially differentiated

by training them from different account subsets (or samples), where each sample contains a

progressively greater proportion of delinquent accounts by design. Effectively, each sample

approximates a different risk composition typically found in reality, e.g., mortgages vs. unsecured

loans, as if each sample is a stand-alone portfolio. Furthermore, the sample that is optimised may

differ from the sample from which forecasts are trained. This simulates the reality of a portfolio’s

historical risk composition changing in the future by forecasting receipts accordingly, while also

making more efficient use of data. Additionally, this setup aligns with IFRS 9 by using various

macroeconomic scenarios when estimating expected losses.

Within each scenario of this experimental setup, a so-called ‘Goldilocks’-region is found that

contains an ideal delinquency threshold at which the portfolio loss is minimised. This setup

demonstrates that the LROD-procedure is sensitive to the historical risk profile of a portfolio.

Moreover, riskier forecasts yield smaller (or more stringent) optimal delinquency thresholds,

which agrees intuitively with cutting losses sooner rather than later as risk expectations de-

teriorate. Another contribution is that of a Monte Carlo-based refinement to the procedure that

can provide additional assurance on the stability of optima, especially given the uncertainty

2Ignoring the censoring is ill-advised since it leads to unusable results, see Appendix A.3
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underlying all forecasts. To this point, the choice of forecasting technique itself affects recovery

optimisation, which is demonstrated by the significant differences between each technique’s

optima. By design, the Markovian technique is much more realistic since it allows for curing

backwards to lower delinquency levels, which affects the size of forecasts. Conducting a 5-fold

cross-validation further verified the superior quality of Markovian forecasts. However, the sim-

pler technique is retained for expositional purposes since it clearly demonstrates the dangers of

model risk when forecasting. That said, an ensemble of forecasting techniques suggests that a

meta-learning approach may be viable, which can certainly be further examined in future work.

For example, optima can be averaged across technique and forecast scenario using a weighting

scheme of sorts. Besides optimisation, there is also practical value for developing these forecast

models within an IFRS 9-compliant loss provisioning context.

Regarding limitations, historical cash flows are surely affected by past collection strategies

(and their subsequent success or failure) that were employed by the bank at the time. Therefore,

training a forecast model from the same data carries the unavoidable risk of embedding the

effects of previous strategies into the optimisation, as additional data ‘noise’. Future research can

perhaps focus on controlling for the bank’s strategic influence on these cash flows over time when

forecasting receipts. Another avenue of future study is to explore a finer-grained segmentation

scheme during the optimisation step. Partitioning data into three increasingly riskier samples

correctly assumes homogeneity within each sample. However, recovery decision times can surely

be further optimised within certain segments of the portfolio, instead of yielding a portfolio-wide

criterion. This may attenuate the LROD-procedure further to the idiosyncrasies of a portfolio,

though one will have balance greater segmentation against too little data within a segment.

Furthermore, future work can certainly explore a less censored (and therefore richer) portfolio

of shorter-term loans, perhaps from different epochs of time. Doing so can reduce the necessary

forecasting extent as well as improve the forecasting ability. Lastly, future studies can expand

upon the current loss model by incorporating dynamic cost components more explicitly, e.g.,

funding costs. The static loss rates rE and rA may be converted into proper LGD-models instead

such that loss rates are estimated from the time of entering the (g,d)-default state. Pursuing

this particular avenue will likely intersect with the literature on credit risk modelling and IFRS

9, which can enhance model sophistication given that the field itself is currently in vogue.
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CONCLUSION

Bankers and merchants have plied their trades for millennia in what is ostensibly a

commercial symbiosis. The tradesman’s wealth invariably gravitates to the security and

convenience of the banker’s vaults, which initiates the cycle of trust. In fact, the banker’s

integrity is what attracts deposits in the first place; exemplified by the ancient temples and their

divine sanctity, the state-owned grain banks spread across Ptolemaic Egypt, the Bank of Delos

within Apollo’s temple, and the Catholic castles of the Knights Templar. With capital pooled

together, the banker is undoubtedly better placed to facilitate transactions amongst his depositors.

Merchants soon trusted their bankers to conduct exchanges amongst the many currencies in

which they traded. However, flourishing trade also increases the overall demand for money, which

is precisely when bankers transform stored wealth into loan assets, thereby easing the money

demand in what is perhaps their greatest feat. It is this last role that establishes the banker

more as a catalyst for trade than its enabler, e.g., granting business loans for risky sea-faring

ventures. Lending completes the cycle of trust wherein credit flows freely between depositor and

banker and again between bank and borrower. This symbiosis continues in perpetuum unless

trust erodes sufficiently between any two agents in this triad.

Although the history of banking dates back to antiquity, the use of statistical and mathemat-

ical models in driving decision-making has only entered the discourse during the last few decades.

Credit risk still poses the single largest source of bank risk, especially since the credit losses from

even a few defaulting borrowers may trigger a liquidity crisis – or even an outright bank failure.

Accordingly, reserving capital and raising write-off provisions are perhaps the greatest examples

of model-driven decision-making in modern-day banking. Another example is that of application

151 of 178



CHAPTER 6. CONCLUSION

scorecards, which have revolutionised and largely automated the credit granting decision in the

1960s. This advent has both spurred and was made necessary by the extreme growth of consumer

credit since that time. The recent introduction of IFRS 9 requires even greater sophistication

when modelling expected losses, which only further embeds the use of statistical models beyond

the level already required by Basel II.

The breakdown of trust between bank and borrower has remained a largely unavoidable

risk, despite the increasing prevalence of statistical models. While there are certainly model-

based strategies for managing credit risk, most of these strategies arguably depend on first

tolerating a certain level of eroded trust before their activation. It is at this level (or threshold)

at which confidence in loan repayment is supposedly lost entirely. As a consequence, the bank

renounces the relationship and proceeds with debt recovery, presumably safe in its assumption

that retaining the impaired loan asset any longer will inevitably lead to deeper delinquency.

The idea of reaching a so-called "point of no return" is believed to be the historical basis of a

"default definition", predating the prescripts of Basel II and most related regulations. However, it

is argued that the various contexts and jurisdictions in which ‘default’ is used (or decreed) today

has made the very concept thereof utterly incoherent in trying to serve so many ‘masters’ at once.

Even if the ‘default’ point becomes uniform across all contexts and jurisdictions, the optimality

thereof remains questionable and without objective evidence.

A more fundamental meaning of ‘default’ is explored in this thesis; posited as the risk-based

"point of no return" beyond which loan recovery becomes sub-optimal, thereby answering Question

1 in part. Any impairment in a borrower’s repayment ability may either persist indefinitely or

simply turn out to be a momentary weakness. Deciding exactly where this dichotomy fractures,

however, is a non-trivial decision. On the one hand, sufficient patience may afford some distressed

borrowers enough time to recover and ultimately to resume their repayments. However, too much

patience may prove naive and costly, especially since the inevitably greater arrears will require

more capital, thereby crowding out new loans. To specify a ‘default’ threshold therefore serves as

a margin of tolerance towards accumulating arrears. In this study, the admittedly abstract notion

of trust and its subsequent erosion is first made concrete using a mathematical delinquency

measure g. In this regard (and that of Question 3), a few measures are re-examined in this

work, followed by presenting three refined measures. Secondly, the ‘default’ point is reinterpreted

as simply exceeding a variable threshold d upon the domain of g, which better aligns with

the rather probabilistic idea of breaching the aforementioned "point of no return". As such, a

novel optimisation procedure (LROD) is contributed that yields the ideal time (or delinquency

threshold) for recovering debt, thereby answering Question 2.

The LROD-procedure weighs two competing interests against each other: extracting the

residual revenue from troubled loans versus the risk-adjusted cost thereof. Each distinct (g,d)-
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pair serves as a candidate collection policy that carries a "net cost" if applied to a portfolio.

Keeping the choice of g constant, the procedure iterates across values of d (or ‘policies’) and

calculates the overall portfolio loss of each d. Doing so produces a loss curve for each g, which is

then inspected for a certain threshold at which the lowest loss occurs, thereby concluding the

optimisation. By way of its formulation, the LROD-procedure indirectly facilitates the objective

comparison and evaluation of competing delinquency measures, which satisfies Question 4.

Alternative measures may better suit a given portfolio’s recovery optimisation, or even enhance

risk modelling more broadly. However, establishing the best measure conclusively would be

data-intensive and costly in its own right, and therefore left as future work.

The LROD-procedure is tested by conducting a comprehensive computational study to exam-

ine its optimisation ability. To this end, a simulation-based system (or testbed) is devised wherein

loan portfolios are meaningfully generated by systematically varying the underlying parameters.

Using this testbed, the different types of portfolios wherein threshold optima are found can be

broadly determined across the entire credit risk spectrum, in line with Question 5. In fact, the

results demonstrate that optimising the recovery decision’s timing is viable across most levels of

default risk1, though to different degrees. Furthermore, systematic defaults2 occurring during an

economic downturn are shown to affect recovery optimisation; itself affected by the extent of a

portfolio’s loss experience (or LGD). Lastly, recovery optimisation is explored on more turbulent

portfolios wherein borrowers repay intermittently, thereby causing episodic delinquency. In this

case, postponing loan recovery in response to greater turbulence is demonstrably the strategic

optimum (though only up to a point) since it affords greater scope to collect upon sporadic

repayments.

Real-world loan portfolios are often right-censored in that many loan accounts have not

yet reached contractual maturity. This is unsurprising given that most portfolios are being

actively grown by banks, thereby causing ‘perpetual’ right-censoring (unless loan origination

stops entirely). However, the LROD-procedure itself was designed for ‘completed’ portfolios and

not treating the inherent right-censoring yields unintuitive results, as explored in section A.3.

Furthermore, guiding subsequent policy design based on such flawed results is downright dan-

gerous. As a remedy, a forecasting step is introduced into the procedure, wherein the residual

cash flows of each censored loan are first forecast up to its contractual maturity. Accordingly, this

step enables the practical and feasible application of the LROD-procedure on a now-completed

portfolio, thereby answering Question 6.

Armed with forecasts trained from real-world data, the results show that riskier forecasts

1In this case, default risk is measured by the payment probability b, as defined in section 4.1.
2The notion of (k, g)-truncation approximates the idea of systematic defaults in the testbed; see section 4.1.
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lead to earlier recovery times3 during optimisation. This finding agrees intuitively with cutting

losses sooner rather than later, especially when risk expectations deteriorate. Another factor

that affects the optimisation is that of choosing (and calibrating) a forecasting technique. A

more sophisticated technique (like the Markovian method) produces more accurate forecasts,

thereby increasing the credibility of the LROD-procedure’s optima. However, having compared

a few forecasting techniques by design, an ensemble of forecasting techniques may actually be

more useful than a single technique; a worthy avenue of future research. Regarding Question

7, the factors that influence optimisation include the portfolio’s historical risk composition, its

subsequent forecast (i.e., macroeconomic or other strategic factors), and the level of modelling

sophistication. Lastly, the uncertainty underlying any forecast may destabilise subsequent

threshold optima. As a solution (that satisfies Question 7), the censored cash flows are repeatedly

forecast in an additional Monte Carlo-based step in the LROD-procedure. This approach allows

one to analyse the variance of both forecasts and resulting optima, thereby inspiring greater

confidence.

The thesis of the recovery decision and its timing is successfully demonstrated as a nonlinear

optimisation problem, both theoretically and empirically. Balancing risk against reward is at

the core of the LROD-procedure such that loans are forsaken neither too early nor too late, if

at all. This study has significant implications for the policy design of most banks, especially in

tweaking their collection policies. In particular, the quantitative aspects thereof can be better

informed using the LROD-procedure than relying on arbitrary discretion alone. Moreover, related

business strategies and certain default-driven models (e.g., application credit scorecards, pricing

and collection models) can be similarly enhanced. Another more fundamental implication is that

a default definition’s quantum (e.g., 90+ DPD) can itself be optimised within capital modelling or

broader portfolio management. That said, optimising ‘default’ in this way undoubtedly raises

legal questions about the contractual design of credit agreements, not to mention the existing

regulatory prescriptions relating to ‘default’. However, there remains little scientific evidence

for the supposed optimality of using 90+ DPD as a default criterion in the first place. In this

regard, my work attempts to bridge the gap in literature between credit risk modelling and

collection optimisation. Using the LROD-procedure may become standard practice in time, which

is certainly preferable to regulators prescribing ‘default’ by fiat alone. In turn, optimising a

definition in this way would likely have a tremendous impact on credit risk modelling and its

improvement.

Regarding limitations, the LROD-procedure currently assumes homogeneity in that a single

threshold is sought that serves as a portfolio-wide criterion. This assumption may be relaxed

in future work by exploring a simple segmentation scheme, thereby yielding a segment-specific

optimised threshold. However, finer segmentation must be balanced against having too little

3When slotting in riskier forecasts, the optimised thresholds decreased in value; see subsection 5.3.1.

154 of 178



data (as a result) when attenuating the procedure to a portfolio. Furthermore, one can refine the

procedure’s current loss model by converting its static components into dynamic probabilistic

models, conditioned on a given (g,d)-default state, e.g., converting the static loss rate rE into a

model rE(g,d). Calculating the realised LGD requires that cash flows be observed from a certain

starting point, which will naturally vary with the value of d. Regarding calibration, a future

study can further validate the LROD-procedure by exploring a less censored portfolio of shorter-

term loans. While doing so will surely lessen the forecasting burden, it will not resolve another

challenge, i.e., controlling for a bank’s own influence in past data. Since historical cash flows

are inevitably affected by past collection strategies, any model trained on this data will likely

embed the effects thereof into the subsequent optimisation, at least to some degree. Therefore,

future work can devise and examine remedies for what basically amounts to a bit of data noise or

‘contamination’. Lastly, future researchers can compare the output from the LROD-procedure to

that of a typical roll rate analysis. However, the latter cannot directly compete with the former

given the considerable differences in sophistication.

In conclusion, there is no doubt that the erosion of trust will remain fixed in the banker’s

mind. As the economy waxes and wanes over its many cycles, so too will its influence on the

borrower’s disposable income; itself subject to other life-altering events. The borrower’s measured

ability to service his debt cannot be an absolute nor can it be time-invariant. Moreover, future

defaults may soon be predicted even better, given the current era of machine learning and overall

greater sophistication in risk modelling. For these reasons, isolating the ideal default point every

so often should henceforth be structured as a modelling exercise in its own right, especially

when modelling credit risk. Such an exercise certainly fits the banker’s supposed prerogative in

defining what is essentially a dynamic and context-sensitive ‘true’ default state.
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ANCILLARY MATERIAL ON VARIOUS UNRELATED SUBTOPICS

The following sections are ancillary to this study. This includes an illustration of using

Markov theory in base loss reservation in section A.1. A few delinquency measures are

compared in section A.2 using a simple two-loan case study. The dangers of not treating

a real-world portfolio for right-censoring during recovery optimisation are demonstrated in

section A.3. In section A.4, various statistical distributions are fit to the maximum delinquency

observed at the account-level using a real-world portfolio.

A.1 An example of loss reservation using Markov theory

The theorems developed in Cyert et al. (1962) using Markov theory can be simplistically applied

to loss reservation as an illustration of using a Markov chain in practice. In a nutshell, loss

reservation involves calculating the relevant absorption probability and applying it to a balance

vector, which is then modified by adding/subtracting a few standard deviations as needed. This

is achieved firstly by re-ordering the states in the transition matrix P (as estimated in Eq. 3.3)

so that the two absorbing states are put first, i.e., the settled state 0̄ and the write-off state

n, followed by the remaining transient delinquency states 0,1, . . . ,n−1. As a simple though

unrealistic example, suppose n = 2 with the correspondingly re-ordered matrix P given as

P =



0̄ 2 0 1

0̄ 1 0 0 0

2 0 1 0 0

0 .2 0 .6 .2

1 .4 .2 .3 .1

 . (A.1)
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Following Kemeny-Snell notation, the matrix P can be partitioned as

P =
[

I O

R Q

]
, (A.2)

where I is the 2×2 identity matrix; O is a 2×n zero matrix; R is an n×2 absorption matrix; and

Q is an n×n matrix of the remaining transient states. The inverted matrix N = (1−Q)−1 is the

so-called fundamental matrix of the absorbing Markov chain. Finally, the entries of the resulting

n×2 matrix NR, yield the absorption probabilities into either state 0̄ or n. Using the example

matrix P from Eq. A.1, the corresponding partition matrices are

R =
[

.2 0

.4 .2

]
, Q =

[
.6 .2

.3 .1

]
, and N = (I −Q)−1 =

[
.4 −.2

−.3 .9

]−1

=
[

3 .67

1 1.33

]
. (A.3)

The absorption probabilities in NR are then calculated as

NR =
[

3 .67

1 1.33

][
.2 0

.4 .2

]
=

[
.87 .13

.73 .27

]
. (A.4)

If β= (B0,B1, . . . ,Bn−1) represents a balance vector of balances at time t classified across all

0,1, . . . ,n−1 transient delinquency states, then Cyert’s first theorem states that the 2-component

vector βNR will output the expected settled and write-off amounts respectively. As an example,

suppose that β=
[
70 30

]
is the balance vector observed at t for the transient states B0 and B1,

in which case, βNR will yield 82.67 and 17.33 as the expected settled and write-off amounts

respectively. Furthermore, if b is the sum of all elements in β and β′ = 1
bβ is the probability

vector denoting the fraction of balances observed across all transient delinquency states, then

Cyert’s first theorem caters for the variance as follows. Let A be a two-component vector that

gives the variances of settlements and write-offs (per example), which is formally defined as

A = b
(
β′NR− (β′NR)sq

)
, (A.5)

where (•)sq is a matrix operation that outputs the square of each element. If β′ =
[
.7 .3

]
as an

example, then the corresponding variances using Eq. A.5 are calculated as

A = 100

[
.7 .3

][
.87 .13

.73 .27

]
−

([
.7 .3

][
.87 .13

.73 .27

])
sq


= 100

([
.8267 .1733

]
−

([
.8267 .1733

])
sq

)
=

[
14.33 14.33

]
. (A.6)

This particular theorem allows for customising the loss reserve beyond its expectation at 17.33 in

a simple way, e.g., raising it by one standard deviation
p

14.33= 3.79 as 17.33+3.79= 21.12.
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A.2. ILLUSTRATING THREE DELINQUENCY MEASURES: A CASE STUDY

Loan age
Small Loan
History 1

Large Loan
History 1

Small Loan
History 2

Large Loan
History 2

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 265 4,000 265 4,000
4 795 12,000 397.50 6,000
5 300 4,528.30 132.50 2,000
6 0 0 0 0
7 0 0 0 0
8 265 4,000 265 4,000
9 795 12,000 397.50 6,000
10 300 4,528.30 132.50 2,000
11 0 0 0 0
12 0 0 0 0
13 265 4,000 265 4,000
14 795 12,000 397.50 6,000
15 300 4,528.30 132.50 2,000
16 0 0 0 0
17 0 0 0 0
18 265 4,000 265 4,000
19 795 12,000 397.50 6,000
20 300 4,528.30 132.50 2,000

TABLE A.1: Hypothetical repayment histories (denominated in ZAR) for two loan
accounts: a case study.

A.2 Illustrating three delinquency measures: a case study

Consider two 20-month amortising loans with the same interest rate as in Sah (2015), but with

significantly different instalments: a small loan and a large loan. Assume a fixed instalment

of ZAR 265 (with principal ZAR 5,000) and ZAR 4,000 (with principal ZAR 75,471.54), both

using a continuously compounded interest rate δ= 6.7% expressed per annum. Further assume

that the receipt elements R1,R2, . . . ,RT coinciding with loan periods 1,2, . . . ,T of each loan

account are generated by one of two possible vectors containing a specific cyclic pattern, with

I ∈ {265,4000} denoting the instalment of each loan: [0 0 I 3(I) 1.13(I) ] for a particular receipt

history; [0 0 I 1.5(I) 0.5(I) ] for another particular receipt history. Applying these two patterns

repeatedly will give two hypothetical receipt histories for each loan in populating the elements of

R, as detailed in Table A.1.

Delinquency is then calculated using a few distinct delinquency measures on these two loans

as a case study. Fig. A.1 illustrates the g1-measure using a repayment ratio z = 90% that was

set within reason. Clearly, the g1-measure cannot differentiate in delinquency between loans
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of different sizes but with proportionally equal receipts, as evidenced by the curves of both the

small and large loan being equal to each other. Moreover, g1 cannot account for the effects of

overpayments when assessing delinquency beyond its zero-valued lower bound, i.e., amounts

paid in advance. Lastly, the impact of unpaid interest amounts when delinquent is completely

disregarded insofar that g1 considers the incurred delinquency to be independent of its timing

within the life of the loan. From a cash flow perspective of an amortising loan, non-payment at

larger t, i.e., closer to contractual maturity, should reasonably be considered with greater urgency

than at smaller t. The rationale for this is that there is simply less contractual time available to

repay any accumulated arrears, without restructuring such a loan.

FIG. A.1: The g1-measure for a two-loan case study (different loan sizes) with two par-
ticular receipt histories over time, as detailed in Table A.1. A reasonable repayment
ratio threshold of z = 90% is used for illustration purposes.

To this last point, the inability of g1 to capture the timing of delinquency relative to residual

maturity is perhaps best seen when studying Fig. A.2. Specifically, the g2-measure is showcased

using the same two-loan setup, clearly showing that g2 can assign greater (or lesser) delinquency-

values than g1 as their particular receipt patterns manifest cyclically over loan life t → T (or

t → 0). This apparent sensitivity of the g2-measure to loan life seems sensible when considering

it from a cash flow perspective. However, the relative insensitivity of delinquency to earlier loan

life may be naive from a risk perspective. Whether this sensitivity is either a boon or a distinct

disadvantage is unknown, especially in the absence of a comparative framework. Factors that

may be considered within such a framework include loan contract variables (e.g., loan amount, or
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interest rate), portfolio and borrower characteristics, and the macroeconomic reality.

FIG. A.2: The g2-measure for a two-loan case study (different loan sizes) with two
particular receipt histories over time, as detailed in Table A.1.

In addition, the g2-measure accounts for the effects of overpayments beyond the case of

zero-valued arrears, which is evident whenever g2(t)< 1. Overpayment itself, i.e., Rt > I t at any

t ∈ [0,T], may very well be considered positively in that the borrower has beaten the monthly

expectation, which leaves the bank with marginally more cash and with a slightly better liquidity

position. On the other hand, overpayment can become a profit-related concern since habitual

overpayment can cause overall loan life to become shortened. This will in turn inhibit the force of

interest and therefore compromise profit margins. Regardless, the g2-measure incorporates both

under– and overpayments as apparent polar opposites in its assessment of delinquency, which

seems more flexible when compared to the g1-measure.

Despite these improvements over g1, the g2-measure still cannot differentiate in delinquency

between the proportionally equal receipts of the small and the large loan. This is clear from

Fig. A.2 where g2(t) of either loan is equal to each other at every time period t. On the other

hand, the g3-measure remedies this and is sensitive to loan principal sizes when assessing

delinquency. This is evident in Fig. A.3 using the first1 receipt history across three sensitivities

s ∈ [0%;50%;100%], wherein g3(t) differs at every period t, for both loan sizes. This result strongly

suggests that g3 can uniquely pivot the delinquency assessment itself in accordance to the

1The second receipt history is excluded since it has very similar results.
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severity of the unpaid (or underpaid) instalment, relative to other instalments. Amongst other

factors, the disruption in cash flow of a particular loan is therefore assessed on its magnitude

relative to other differently-sized loans.

FIG. A.3: The g3-measure for a two-loan case study (different loan sizes) using the
first receipt history as detailed in Table A.1, for sensitivities s ∈ [0;50%;100%].

On interpretation, the g1-measure is best interpreted as the z-weighted number of payments

in arrears, as weighed by the risk appetite of a lender towards accrued arrears. The g2-measure

is the extent at which the expected duration is increased (or penalised/contorted). As a simple

example, the value g2(t)= 1.5 at a particular t represents a 50% penalty in the expected time to

recover the loan capital originally lent by the bank, accounting for the residual maturity, arrears

balance, and the force of interest. Furthermore, the g3-measure carries a very similar meaning

in its output, albeit merely nuanced/inflated given a discretionary sensitivity s towards loan

principal differences. Lastly, it is quite clear that these delinquency measures g1 vs. g2 and g3

represent different things and even operate on different measurement scales (interval vs. ratio

scales respectively). As such, their measurements cannot be compared directly to one another,

especially so at the account-level, without becoming meaningless.

A.3 Failing to forecast before recovery time optimisation

As an illustration, the LROD-procedure devised in section 3.4 is applied on a real-world loan

portfolio that is left untreated. This is to say that the receipt vector R = [
R1,R2, . . . ,Rt0

]
only
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contains elements as observed from data up to the most recent time point t0 < tc. The remaining

future elements t1, . . . , tc are unobservable and deliberately ignored in this illustration to demon-

strate the effect of foregoing any forecasting on the results of the LROD-procedure. Furthermore,

the balances of each account are observed at relevant time periods and simply multiplied with a

static loss rate lα ∈ [0,1], as a simpler loss model. More specifically, the most recent balance at

time t0 is used for a (g,d)-performing account whilst the balance at the default time τ≤ t0 is used

for a (g,d)-defaulting account, as signalled by a particular (g,d)-configuration. In both cases,

the observed balance is simply discounted back to time t = 1 (loan origination) using the same

7% risk-free rate. Selecting a range of loss rates at will, the LROD-procedure is then iteratively

applied on the entire portfolio. The resulting loss curves are presented in Fig. A.4 using the

CD-measure g1. There are no significant differences in the shapes of loss curves for loss rates

exceeding 50%.

FIG. A.4: Total losses (expressed as a % of the summed principals) across default
thresholds d for the CD-measure g1, using a range of static loss rates lα ∈ [0,1]
and an untreated real-world loan portfolio.

No global minima in losses exist at any particular threshold, regardless of the chosen loss

rate. Instead, all losses tend toward a certain asymptote that is influenced by the loss rate,
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which renders the optimisation of the recovery threshold a moot point. Moreover, the resulting

loss curves suggest that one should simply ignore any accrued delinquency, except for very low

thresholds d ≤ 2, which coincide with the greatest losses. Although unusual, consider that the

majority of the portfolio’s receipts are still pending. The LROD-procedure’s particular loss model

recognises this and logically suggests never to recover a single account. Regardless, ignoring

accrued delinquency at large is intuitively false and ill-advised for a credit risk-based business

like a bank. Instead, this result rather attests to the breakdown of the LROD-procedure itself

when foregoing the necessary forecasting of a loan portfolio’s cash flows.

A.4 Fitting statistical distributions to the truncation
parameter k

In calibrating the random defaults technique to forecast cash flows, a truncation effect simulates

the reality that some accounts will simply never resume payment. This is achieved when the

forecast receipts are zero-valued after a certain point tk coinciding with a certain k-threshold

in measured delinquency. In estimating this k truncation parameter, the maximum observed

delinquency (using g1) per account is calculated with the resulting empirical distributions of these

maxima shown in Fig. 5.3, respective to each sample S2 (delinquents) and S3 (write-offs). Several

candidate statistical distributions are then fit using maximum likelihood on each respective

sample, with the fitted probability density function overlaid on the histogram, as shown in

Fig. A.5 for some of these candidates.

In selecting the best fit, both Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit

tests are conducted for each candidate distribution against the standard 5% significance level.

However, all of the null hypotheses are rejected for both S2 and S3, presumably due to the

heavily right-skewed distributions of maxima in both cases. Secondly, the Akaike Information

Criterion (AIC) reveals that the Dagum, log-normal, Pareto, Weibull, exponential, and gamma

distributions were amongst the best fitting candidates for S2. Though the Dagum distribution

had the best AIC, the exponential distribution is chosen owing to its simplicity and its somewhat

greater popularity in statistical literature. Furthermore, the exponential distribution is strictly

decreasing for x, which is deemed more appropriate given the histogram’s shape. Similarly, the

AIC for S3 suggests that the Dagum, Burr (Type 12), Weibull, Gumbel, Gamma, and Logistic

distributions were the better-fitting candidates. Of these, the Weibull distribution is chosen since

it best approximates the histogram visually without lending too much credence to the left-tail

though still yielding a sufficiently heavy right-tail.
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(a) Using the delinquents sample S2

(b) Using the write-offs sample S3

FIG. A.5: Candidate statistical distributions fit on the maximum of the weighted
payments in arrears max g1(t) observed per account across historical periods
t = 1, . . . , t0. These maxima are respectively calculated from the S2 sample (de-
linquents) in (a) and S3 (write-offs) in (b), with a histogram of maxima given in
each case.
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