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Abstract

In this dissertation we study a five-dimensional two-step nilpotent matrix Lie group. Some basic
group properties are investigated. The structure of the Lie algebra’s subspaces is investigated;
a complete set of scalar invariants is given for the Lie algebra’s subspace structure. Following
this, we classify the left-invariant sub-Riemannian structures on this Lie group up to isometry.
The normal geodesics of the rank three left-invariant sub-Riemannian structure are determined
as an illustrative case.
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Chapter 1

Introduction

Around 1870, Sophus Lie was inspired by Galois theory to develop an analogous theory of
differential equations and their “symmetries”, which generally form continuous groups[20]. The
great idea of Sophus Lie was to look at elements “infinitesimally close to the identity” in a Lie
group, and to use them to infer the behaviour of ordinary elements. The modern version of
Lie’s idea is to infer properties of the Lie group from properties of its tangent space[20]. In
principal, Lie’s theory reduces problems on Lie groups, of an analytical nature, to algebraic
problems on Lie algebras[5].

A sub-Riemannian structure on a smooth manifold consists of a bracket generating distribution
with a Riemannian metric on this distribution. Sub-Riemanninan structures often occur in the
study of constrained systems in mechanics, such as the ball and plate problem where the motion
of a ball that rolls without slipping is considered. The smooth manifold often represents the
configuration space of the system, with the restriction — the non-slip condition in the ball and
plate case — modelled by the distribution[9][12]. Smooth motion from one state to the next
may be realized as a curve on the manifold. Curves that in addition respect the restrictions on
the system are termed admissible curves. Additionally, the distribution’s Riemannian metric
allows us to assign length to these curves.

The Chow-Raschevskii Theorem (see, e.g.[6]) states that the bracket generating condition suf-
fices to guarantee the existence of an admissible curve between any two points q0 and q1 of
a sub-Riemannian manifold M . Admissible curves need not be unique. Given admissible
curves joining q0 and q1 the question of the existence of length minimizers naturally arises—
the geodesic problem. From a geometric control point of view, necessary conditions to charac-
terizing length minimizes are given by Pontryagin’s Maximum Principle [6].

A Lie group is an abstract group that is also a smooth manifold. The group and smooth
manifold structures are compatible in the sense that the group operation and group inverse map
are smooth maps. The group structure endows the symmetry of a group onto the manifold.
Given a sub-Riemannian structure on a Lie group, we may require that the distribution and
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Chapter 1: Introduction 7

Riemannian metric also be compatible with the group’s symmetry. In this case we have a
left-invariant sub-Riemannian structure on the Lie group.

Given a mathematical structure such as this, a standard problem is to classify all such structures
up to some equivalence. The classification of left-invariant sub-Riemannian structures has taken
two approaches. The first is to conduct a systematic study on low-dimensional Lie groups while
the second is to classify the structures of infinite families of sufficiently well behaved Lie groups.
Here we conduct a study on a low-dimensional nilpotent Lie group.

We are primarily interested in investigating the left-invariant sub-Riemannian structures on the
matrix Lie group

T =




1 x1 x4 x5

0 1 x2 x3

0 0 1 0
0 0 0 1

 : x1, x2, x3, x4, x5 ∈ R

 ,

a contribution to the above mentioned classification effort. This matrix Lie group is the lowest
dimensional two-step nilpotent Lie group beyond the Heisenberg group. The left-invariant
sub-Riemannian structures of the family of (2n+ 1)-dimensional Heisenberg groups have been
investigated by various authors (see[4] and the references within). This is a family of two-step
nilpotent Lie groups with one-dimensional commutator subgroups, thus the two-dimensional
commutator subgroup of T represents a step up in complexity.

Chapter 2 establishes basic group properties of T such as the centre, nilpotency and simplicity.
The Lie group T is established as a connected matrix Lie group. That is, a connected closed
subgroup of the general linear group GL(4,R). We also compute the Lie algebra t of T, its Lie
bracket operation and the exponential map from t to T.

In Chapter 3 we investigate the subspace structure of the Lie algebra. We compute the auto-
morphism group Aut(t) of invertible Lie bracket preserving linear maps from t to itself. An
equivalence relation on subspaces of t is defined by regarding subspaces s and w as equivalent
if they are related be an automorphism. That is, ϕ · s = w for some ϕ ∈ Aut(t). The subspaces
of the Lie algebra are given up to this equivalence. Additionally, we obtain a characterizing set
of scalar invariants for the subspace structure of t.

In Chapter 4 we classify the left-invariant sub-Riemannian structures on T up to isometry. As
isometries on nilpotent metric Lie groups are affine, that is the composition of an automorphisim
and a left translation [10], the problem is reduced to finding sub-Riemannian structures up to a
Lie group automorphism. A Lie group-Lie algebra correspondence result then allows use of the
results of Chapter 3 on the Lie algebra t for the computation of the sub-Riemannian structures
of the Lie group T. We end this chapter by computing the isotropy groups of the left-invariant
sub-Riemannian structures.

Lastly, in Chapter 5, we compute the normal geodesics of the rank 3 left-invariant sub-Riemannian
structure on T. Here we utilize a result of Biggs and Nagy [4] based on Pontryagin’s Maximum
Principle.

The appendix collects standard results of linear algebra, abstract algebra, topology and smooth
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Chapter 1: Introduction 8

manifold theory for the readers reference. The definitions of particular objects that appear in
the main body of the text, such as the Heisenberg group, are also given here. An alphabetical
index is provided at the end. This includes an index of the notation used.
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Chapter 2

Lie group and Lie algebra
properties

In this chapter we introduce a five-dimensional two-step nilpotent Lie group, denoted by T. This
will be our object of study throughout this dissertation. In the first section we give some basic
properties of T. The second section includes computation of the Lie algebra t corresponding to
T as well as the exponential map from t to T.

2.1 The Lie group T

Consider the collection of 5× 5 real matrices

T =




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 : p1, p2, p3, p4, p5 ∈ R

 .

Given any P,Q ∈ T,

PQ =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1




1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1



=


1 p1 + q1 p4 + p1q2 + q4 p5 + p1q3 + q5

0 1 p2 + q2 p3 + q3

0 0 1 0
0 0 0 1

 ∈ T.

9
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Chapter 2: Lie group and Lie algebra properties 10

For an arbitrary element P of T, we have

P−1 =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


−1

=


1 −p1 p1p2 − p4 p1p3 − p5

0 1 −p2 −p3

0 0 1 0
0 0 0 1

 ∈ T

with PI4 = I4P = P . We thus have that T, with the associative matrix multiplication, is
indeed an abstract group.

Proposition 2.1.1. The centre of the group T is

Z(T) =




1 0 z1 z2

0 1 0 0
0 0 1 0
0 0 0 1

 : z1, z2 ∈ R

 .

Proof. Suppose P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 ∈ Z(T) and Q =


1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1

 is an arbitrary

element of T. Then PQ−QP = 0. That is,
0 0 p1q2 − p2q1 p1q3 − p3q1

0 0 0 0
0 0 0 0
0 0 0 0

 = 0.

Thus p1q2 − p2q1 = 0 and p1q3 − p3q1 = 0 for all q1,q2,q3 ∈ R. This is true only if

p1 = p2 = p3 = 0. Thus P =


1 0 p4 p5

0 1 0 0
0 0 1 0
0 0 0 1

 and elements of the centre are of the desired

form.

As Z(T) 6= T, T is a non-commutative group.

Proposition 2.1.2. The commutator subgroup of T is Z(T).

Proof. Let P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 and Q =


1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1

 be elements of T, then a general
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Chapter 2: Lie group and Lie algebra properties 11

commutator of T is an element of the form

PQP−1Q−1 =


1 0 p1p2 − (p1 + q1) p2 + p1q2 p1p3 − (p1 + q1) p3 + p1q3

0 1 0 0
0 0 1 0
0 0 0 1



=


1 0 z1 z2

0 1 0 0
0 0 1 0
0 0 0 1


where z1 = p1p2 − (p1 + q1) p2 + p1q2 and z2 = p1p3 − (p1 + q1) p3 + p1q3. With appropriate
choices for P and Q, z1 and z2 may vary independently over R. Therefore, elements of the form
PQP−1Q−1 coincide with elements of the centre Z(T). We thus have that the commutator
subgroup of T coincides with the centre Z(T) of T. That is, T′ = Z(T).

Proposition 2.1.3. The derived series of T is T ≥ Z(T) ≥ {I4}.

Proof. By the definition of the derived series of a group (Definition A.2.3), we have T(0) = T
and T(1) = T′ = Z(T). Now, T(2) = T(1)′ = Z(T)′. That is, the subgroup generated by
the commutators of Z(T). These commutators are elements of the form PQP−1Q−1 where
P ,Q ∈ Z(T). We have,

PQP−1Q−1 = PP−1QQ−1 = I4,

as P and Q are central. Therefore T(2) = {I4}.

Proposition 2.1.4. The lower central series of T is T . Z(T) . {I4}.

Proof. By Definition A.2.2 γ1(T) = T and γ2(T) = [γ1(T),T] = [T,T] = Z(T). Now,
γ3(T) = [γ2(T),T] = [Z(T),T]. That is, γ3(T) is generated by elements of the form PQP−1Q−1

where P ∈ Z(T) and Q ∈ T. We have,

PQP−1Q−1 = QPP−1Q−1 = QI4Q
−1 = I4,

as P is central. Thus γ3(T) = {I4}.

Proposition 2.1.5. T has no maximal torus.

Proof. Suppose Tmax is a maximal torus for T. As every torus contains T1 = S1 as a subgroup
and T1 contains {+1,−1} as a two element cyclic subgroup, it follows that there exists a two

element cyclic subgroup of Tmax and thus of T. Let P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 be an arbitrary
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Chapter 2: Lie group and Lie algebra properties 12

element of T. We suppose that P is an element of T that generates a two element cyclic
subgroup and thus P 3 = P . That is,

1 3p1 3p1p2 + 3p4 3p1p3 + 3p5

0 1 3p2 3p3

0 0 1 0
0 0 0 1

 =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 .
This implies that 3p1 = p1, 3p2 = p2, 3p3 = p3. This is true if and only if p1 = p2 = p3 = 0.
Further, 3p1p2 + 3p4 = p4 and 3p1p3 + 3p5 = p5 give 3p4 = p4 and 3p5 = p5. This is true if and
only if p4 = p5 = 0. Thus P = I4. However, as I4 generates a one element subgroup of T, this
contradicts the supposition that P generates a two element subgroup. Therefore no element of
T generates a two element subgroup. This contradicts the supposition that T has a maximal
torus Tmax.

Proposition 2.1.6. T is not a simple group.

Proof. The centre Z(T) of T is a non-trivial normal subgroup of T. It follows from Definition
A.2.4 that T is not a simple group.

Proposition 2.1.7. T is a path-connected group with respect to the relative topology inherited
from GL(4,R) (see Definition B.2.16).

Proof. T is a path-connected group as the function f : [0, 1] −→ T defined by

f(t) =


1 tp1 tp4 tp5

0 1 tp2 tp3

0 0 1 0
0 0 0 1

 defines a continuous path from I4 to


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 in T, and

thus any two points of T can be connected by a continuous path in T.

Proposition 2.1.8. T is a closed subgroup of GL(4,R).

Proof. Let (Pn) =




1 p1n p4n p5n

0 1 p2n p3n

0 0 1 0
0 0 0 1


 be a convergent sequence in GL(4,R) contained

in T. The component sequences (pin), for i = 1, 2, 3, 4, 5, are convergent sequences in R and
thus, respectively, converge to real numbers pi, for i = 1, 2, 3, 4, 5. It follows that the sequence

(Pn) converges to P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

. As P ∈ T, T contains all its limit points, thus

Theorem A.3.2 implies that T is a closed subset of GL(4,R).

It follows from Definition B.2.16 that T is indeed a matrix Lie group.
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Chapter 2: Lie group and Lie algebra properties 13

Proposition 2.1.9. The quotient of T by any one-dimensional central subgroup is isomorphic,
as an abstract group, to the product group H3 × R (see Example B.2.17).

Proof. Suppose G is an arbitrary one-dimensional central subgroup of T then G is of the form

G =




1 0 tx1 tx2

0 1 0 0
0 0 1 0
0 0 0 1

 : t ∈ R

 , were x1 and x2 are fixed real numbers, x2
1 + x2

2 6= 0.

We show that G is the kernel of some onto homomorphism from T to H3 × R and obtain the
result using Theorem A.2.6. Assuming x1 6= 0, consider the function f : T −→ H3 × R defined
by

f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


 =

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p2

 .

Given P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

, Q =


1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1

 ∈ T

f(P ·Q) = f




1 p1 + q1 p4 + p1q2 + q4 p5 + p1q3 + q5

0 1 p2 + q2 p3 + q3

0 0 1 0
0 0 0 1




=

1 p1 + q1 −x2(p4 + p1q2 + q4) + x1(p5 + p1q3 + q5)
0 1 −x2(p2 + q2) + x1(p3 + q3)
0 0 1

 , p2 + q2


=

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p2

 ∗
1 q1 −x2q4 + x1q5

0 1 −x2q2 + x1q3

0 0 1

 , q2


= f(P ) ∗ f(Q),

where ∗ is the product group operation on H3 × R. Thus f is a group homomorphism.

Further, given m =

1 m1 m2

0 1 m3

0 0 1

 ,m4

 ∈ H3 × R there exists M ∈ T, namely M =
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Chapter 2: Lie group and Lie algebra properties 14


1 m1 0 m2

x1

0 1 m4
m3+x2m4

x1

0 0 1 0
0 0 0 1

, such that f(M) = m. Thus f is onto. We now find the kernel of f ;

ker(f) =

P ∈ T : f(P ) =

1 0 0
0 1 0
0 0 1

 , 0


=




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 :

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p2

 =

1 0 0
0 1 0
0 0 1

 , 0

 .

This implies that for P ∈ ker(f), p1 = 0, p2 = 0, (−x2p4 + x1p5) = 0 and (−x2p2 + x1p3) = 0.
We thus have that (−x2 · 0 + x1p3) = 0 and from the assumption x1 6= 0 we have p3 = 0. It
remains that (−x2p4 + x1p5) = 0 and thus p5 = x2

x1
p4, p4 ∈ R. That is, the pairs (p4, p5) define

a one-dimensional subspace of R2. We thus have that (p4, p5) = t(x1, x2), t ∈ R. Therefore,

ker(f) =




1 0 tx1 tx2

0 1 0 0
0 0 1 0
0 0 0 1

 : t ∈ R

 = G.

It follows from Theorem A.2.6 that we have the group isomorphism T/G u H3 × R.

If, on the other hand, x1 = 0, then x2 6= 0 as G is one-dimensional. Consider the function
f : T −→ H3 × R defined by

f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


 =

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p3

 =

1 p1 −x2p4

0 1 −x2p2

0 0 1

 , p3

 .

Similar to the previous case, f may be shown to be a group homomorphism. Given m =1 m1 m2

0 1 m3

0 0 1

 ,m4

 ∈ H3×R, there existsM ∈ T with f(M) = m, namelyM =


1 m1 −m2

x2
0

0 1 −m3

x2
m4

0 0 1 0
0 0 0 1

.

We therefore have that f is onto. For the kernel of f , we have

ker(f) =




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 :

1 p1 −x2p4

0 1 −x2p2

0 0 1

 , p3

 =

1 0 0
0 1 0
0 0 1

 , 0

 .

This implies that for P ∈ ker(f), p1 = 0, p3 = 0, −x2p4 = 0 and −x2p2 = 0. As x2 6= 0, we
have p2 = p4 = 0. We, more conveniently, parametrize p5 ∈ R as p5 = tx2, t ∈ R. Therefore,

ker(f) =




1 0 0 tx2

0 1 0 0
0 0 1 0
0 0 0 1

 : t ∈ R

 =




1 0 tx1 tx2

0 1 0 0
0 0 1 0
0 0 0 1

 : t ∈ R

 = G.
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Chapter 2: Lie group and Lie algebra properties 15

It follows from Theorem A.2.6 that we have the group isomorphism T/G u H3 × R. Thus, in
general T/G u H3 × R.

The group epimorphism f : T −→ H3×R is in fact a Lie group epimorphism. For this, we show
that f is in addition a smooth map.

In the case where x1 6= 0, the function f was given by

f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


 =

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p2

 .

This is indeed a smooth map as its representative f̂ with respect to the smooth structures of T
and (H3×R) is a smooth map. That is, where the smooth structure of T is given by the global
smooth chart φ : T −→ R5 with

φ :


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 7→ (p1, p2, p3, p4, p5)

and the smooth structure of H3×R is given by the global smooth chart ρ : H3×R −→ R4 with

ρ :

1 r1 r3

0 1 r2

0 0 1

 , r4

 7→ (r1, r2, r3, r4).

To verify, f̂ = ρ ◦ f ◦ φ−1 : R5 −→ R4. For p = (p1, p2, p3, p4, p5)

f̂(p) = ρ ◦ f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1




= ρ

1 p1 −x2p4 + x1p5

0 1 −x2p2 + x1p3

0 0 1

 , p2


= (p1,−x2p2 + x1p3,−x2p4 + x1p5, p2).

Clearly a smooth map.

In the case where x1 = 0, f similarly has coordinate representation

(p1, p2, p3, p4, p5) 7→ (p1,−x2p2 + x1p3,−x2p4 + x1p5, p3)

which is a smooth map. Hence, in all cases, f : T −→ H3 × R is a smooth map.
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Chapter 2: Lie group and Lie algebra properties 16

Proposition 2.1.10. The quotient of T by any one-dimensional central subgroup is Lie group
isomorphic to the Lie group H3 × R (see Example B.2.17).

Proof. As the map f : T −→ H3 × R defined above is an epimorphism of Lie groups, Theorem
B.2.3 gives a Lie group isomorphism

T/N ∼= H3 × R,

where N = ker(f) is a (normal) one-dimensional central subgroup of T.

The quotient of T with its centre Z(T), T/Z(T), has as its elements cosets of the form

PZ(T) = {PC : C ∈ Z(T)} =




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1




1 0 z1 z2

0 1 0 0
0 0 1 0
0 0 0 1




=




1 p1 p4 + z1 p5 + z2

0 1 p2 p3

0 0 1 0
0 0 0 1


 ,

where P ∈ T.

As z1 and z2 range through R, this gives

PZ(T) =




1 p1 x1 x2

0 1 p2 p3

0 0 1 0
0 0 0 1

 : x1, x2 ∈ R

 .

We note that T/Z(T) is isomorphic, as an abstract group, to (R3,+,0). This result follows
from Theorem A.2.6 and the observation that the function f : (T, ·, I4) −→ (R3,+,0) defined
by

f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


 = (p1, p2, p3)

is an onto group homomorphism with ker(f) = Z(T). We state this as the following proposition.

Proposition 2.1.11. The quotient of T by its centre Z(T) is group isomorphic to R3. That is,

T/Z(T) ∼= (R3,+,0).
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Chapter 2: Lie group and Lie algebra properties 17

Proof. We show that the function f above has the desired properties. Let P =


1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


and Q =


1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1

 where P ,Q ∈ T. Then

f(P ·Q) = f




1 p1 + q1 p4 + p1q2 + q4 p5 + p1q3 + q5

0 1 p2 + q2 p3 + q3

0 0 1 0
0 0 0 1




= (p1 + q1, p2 + q2, p3 + q3)

= (p1, p2, p3) + (q1, q2, q3)

= f(P ) + f(Q).

Thus f is a group homomorphism.

Given (r1, r2, r3) ∈ R3, there exist R ∈ T such that f(R) = (r1, r2, r3). Namely,

R =


1 r1 0 0
0 1 r2 r3

0 0 1 0
0 0 0 1

. Thus f is onto.

We now compute the kernel of f .

ker(f) = {P ∈ T : f(P ) = (0, 0, 0)}

=




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1

 : (p1, p2, p3) = (0, 0, 0)


=




1 0 p4 p5

0 1 0 0
0 0 1 0
0 0 0 1

 : p4, p5 ∈ R


= Z(T).

From Theorem A.2.6, we have the group isomorphism T/Z(T) u R3.

The group epimorrphism f : (T, ·, I4) −→ (R3,+,0) defined by

f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1


 = (p1, p2, p3)
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Chapter 2: Lie group and Lie algebra properties 18

with ker(f) = Z(T) is in fact an epimorphism of Lie groups as f is smooth. This can be seen

form the fact that its representation f̂ : R5 −→ R3 with respect to the global charts of the
smooth structures of T and R3 is a smooth map. That is, for p = (p1, p2, p3, p4, p5) ∈ R5

f̂(p) = IdR3 ◦ f ◦ φ−1(p)

= f




1 p1 p4 p5

0 1 p2 p3

0 0 1 0
0 0 0 1




= (p1, p2, p3)

is a smooth map.

Proposition 2.1.12. The quotient of T with its centre Z(T) is Lie group isomorphic to R3.

Proof. As the map f : T −→ R3 defined above is a smooth epimorphism of Lie groups with
ker(f) = Z(T), Theorem B.2.3 gives a Lie group isomorphism

T/Z(T) ∼= R3.

2.2 The Lie algebra t

As T is a matrix Lie group, its smooth structure is given by a global coordinate chart defined
by its entries. Here we choose the global chart φ : T −→ R5 with

φ :


1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1

 7→ (q1, q2, q3, q4, q5).

As, by construction, φ is smooth when considered as a map between the manifolds T and R5,
we have that the differential d1φ is a linear isomorphism between the tangent spaces at identity
T1T = t and T0R5. We then have that t has a basis{

d0φ
−1 · ∂

∂xi

∣∣∣∣
0

}5

i=1

.

We note that d0φ
−1, with respect to the smooth structure (T, φ) and its choice of coordinates,

is represented by the identity linear map in these coordinates. The tangent space t therefore

has basis
{

∂
∂xi

∣∣∣
0

}5

i=1
, with respect to the given smooth structure of T.
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Chapter 2: Lie group and Lie algebra properties 19

We note that the curve γ1 : (−ε, ε) −→ T given by

γ1(t) =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1


is a smooth curve based at identity ( γ1(0) = I4) with d

dt

∣∣
t=0

γ1(t) given by

d

dt

∣∣∣∣
t=0

γ1(t) :=
d

dt

∣∣∣∣
t=0

φ ◦ γ1(t) =
d

dt

∣∣∣∣
t=0

(t, 0, 0, 0, 0) = (1, 0, 0, 0, 0) =
∂

∂x1
.

That is, the tangent vector of γ1 at t = 0 coincides with the first basis vector of the tangent
space t — where the basis for t and the tangent vector of γ1 are with respect to the global
smooth chart (φ,T). Note that the smooth curve γ1(t) is in fact defined for all t ∈ R.

We shall use the notation [q1, q2, q3, q4, q5] to denote the element
1 q1 q4 q5

0 1 q2 q3

0 0 1 0
0 0 0 1


of T. With this, define the smooth curves

γ2(t) = [0, t, 0, 0, 0],

γ3(t) = [0, 0, t, 0, 0],

γ4(t) = [0, 0, 0, t, 0] and

γ5(t) = [0, 0, 0, 0, t].

We then similarly have that

d

dt

∣∣∣∣
t=0

γ2(t) :=
d

dt

∣∣∣∣
t=0

φ ◦ γ2(t) =
d

dt

∣∣∣∣
t=0

(0, t, 0, 0, 0) = (0, 1, 0, 0, 0) =
∂

∂x2
,

d

dt

∣∣∣∣
t=0

γ3(t) :=
d

dt

∣∣∣∣
t=0

φ ◦ γ3(t) =
d

dt

∣∣∣∣
t=0

(0, 0, t, 0, 0) = (0, 0, 1, 0, 0) =
∂

∂x3
,

d

dt

∣∣∣∣
t=0

γ4(t) :=
d

dt

∣∣∣∣
t=0

φ ◦ γ4(t) =
d

dt

∣∣∣∣
t=0

(0, 0, 0, t, 0) = (0, 0, 0, 1, 0) =
∂

∂x4
and

d

dt

∣∣∣∣
t=0

γ5(t) :=
d

dt

∣∣∣∣
t=0

φ ◦ γ5(t) =
d

dt

∣∣∣∣
t=0

(0, 0, 0, 0, t) = (0, 0, 0, 0, 1) =
∂

∂x5
.

We rename the ordered basis (
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

)
of t to (I, J,K,L,M). The vectors of the tangent space at identity t may be extended to
left-invariant vector fields on T. That is, given X(1) ∈ t we may define the vector field

X : T −→ TT
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Chapter 2: Lie group and Lie algebra properties 20

by
X(q) = d1Lq ·X(1).

We will identify a left-invariant vector field X with the vector X(1) ∈ t.

Further, for any left-invariant vector field X on T with

X(1) = x1I + x2J + x3K + x4L+ x5M = (x1, x2, x3, x4, x5) ∈ t,

we have the Cauchy problem{
q̇(t) = X(q(t)) = d1Lq(t) ·X(1)

q(0) = q0.

Transforming this differential equation on T into one on R5. That is, writing it in coordinates
by using the global smooth structure of T, we have

q̇(t) = d1Lq(t) ·X(1) ∈ Tq(t)T
q̇1(t)
q̇2(t)
q̇3(t)
q̇4(t)
q̇5(t)

 = [d1Lq(t)] ·


x1

x2

x3

x4

x5

 ∈ Tφ(q(t))R5,

where [d1Lq(t)] : T0R5 −→ Tφ◦Lq(t)◦φ−1(0)R5 is the matrix of the linear map d1Lq(t) with respect
to the coordinate basis given by the global smooth chart (T, φ). That is, [d1Lq(t)] is the Jacobian

matrix of the representation L̂q(t) = φ ◦ Lq(t) ◦ φ−1 : R5 −→ R5. Writing this out, we have
q̇1(t)
q̇2(t)
q̇3(t)
q̇4(t)
q̇5(t)

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 q1(t) 0 1 0
0 0 q1(t) 0 1



x1

x2

x3

x4

x5

 =


x1

x2

x3

x4 + q1(t)x2

x5 + q1(t)x3

 .

This gives the solutions

q1(t) = tx1 + q1(0)

q2(t) = tx2 + q2(0)

q3(t) = tx3 + q3(0),

leaving

q̇4 = q1(t)x2 + x4 = (tx1 + q1(0))x2 + x4

q̇5 = q1(t)x3 + x5 = (tx1 + q1(0))x3 + x5,
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Chapter 2: Lie group and Lie algebra properties 21

and finally giving

q4(t) =
1

2
t2x1x2 + tx4 + tq1(0)x2 + q4(0)

q5(t) =
1

2
t2x1x3 + tx5 + tq1(0)x3 + q5(0).

That is, the coordinate form of our Cauchy problem has solution
q1(t)
q2(t)
q3(t)
q4(t)
q5(t)

 ∈ R5.

Transforming this back to the manifold T gives the solution q(t) = [q1(t), q2(t), q3(t), q4(t), q5(t)].
That is,

q(t) =


1 tx1 + q1(0) 1

2 t
2x1x2 + tx4 + tq1(0)x2 + q4(0) 1

2 t
2x1x3 + tx5 + tq1(0)x3 + q5(0)

0 1 tx2 + q2(0) tx3 + q3(0)
0 0 1 0
0 0 0 1



q(t) =


1 q1(0) q4(0) q5(0)
0 1 q2(0) q3(0)
0 0 1 0
0 0 0 1




1 tx1
1
2 t

2x1x2 + tx4
1
2 t

2x1x3 + tx5

0 1 tx2 tx3

0 0 1 0
0 0 0 1



q(t) = q0 ·


1 tx1

1
2 t

2x1x2 + tx4
1
2 t

2x1x3 + tx5

0 1 tx2 tx3

0 0 1 0
0 0 0 1

 .

As for every q0 ∈ T the integral curve q(t) to the left-invariant vector field X is defined for all
t ∈ R, every left-invariant vector filed X on T is complete.

Given the basis (I, J,K,L,M) for the Lie algebra t, using Definition B.2.14 we now compute
the Lie bracket on t. Firstly, with reference to the above Cauchy problem, we note that the
flow of the left-invariant vector field X with X(1) = (x1, x2, x3, x4, x5) on the manifold T is
given by

etX(q) = q · exp(tX),

with

exp(tX) =


1 tx1

1
2 t

2x1x2 + tx4
1
2 t

2x1x3 + tx5

0 1 tx2 tx3

0 0 1 0
0 0 0 1

 .
That is, the flow etX of the vector field X operates on the points q of T by right multiplication
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Chapter 2: Lie group and Lie algebra properties 22

with the curve exp(tX) ∈ T. Noting that

exp(tI) = [t, 0, 0, 0, 0]

exp(tJ) = [0, t, 0, 0, 0]

exp(tK) = [0, 0, t, 0, 0]

exp(tL) = [0, 0, 0, t, 0]

exp(tM) = [0, 0, 0, 0, t]

for q ∈ T, Definition B.2.14 gives

[I, J ]|q =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tI ◦ esJ ◦ etI(q)

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [0, s, 0, 0, 0, 0] · [−t, 0, 0, 0, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [−t, s, 0, 0, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [0, s, 0, ts, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

[q1, q2 + s, q3, q4 + ts+ q1s, q5]

= (0, 0, 0, 1, 0) ∈ TqT
= d1Lq · L(1)

= L(q) = L|q,

and thus [I, J ] = L.

Similarly,

[I,K]|q =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tI ◦ esK ◦ etI(q),

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [0, 0, s, 0, 0] · [−t, 0, 0, 0, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [−t, 0, s, 0, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [0, 0, s, 0, ts]

=
∂

∂s∂t

∣∣∣∣
t=s=0

[q1, q2, q3 + s, q4, q5 + ts+ q1s]

= (0, 0, 0, 0, 1) ∈ TqT
= M |q

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 2: Lie group and Lie algebra properties 23

and

[I, L]|q =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tI ◦ esL ◦ etI(q),

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [0, 0, 0, s, 0] · [−t, 0, 0, 0, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [t, 0, 0, 0, 0] · [−t, 0, 0, s, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

q · [0, 0, 0, s, 0]

=
∂

∂s∂t

∣∣∣∣
t=s=0

[q1, q2, q3, q4 + s, q5]

= (0, 0, 0, 0, 0) ∈ TqT
= 0|q,

the zero vector field. Similar computations show that all other Lie brackets involving the basis
vectors of t give the zero vector field. Therefore, the non-trivial Lie brackets on the Lie algebra
t of the Lie group T are determined by

[I, J ] = L and [I,K] = M.

We note that the centre z of t is the subspace of t spanned by L and M .

Lemma 2.2.1. Given any vectors A = a1I + a2J + a3K + a4L + a5M and B = b1I + b2J +
b3K + b4L+ b5M of t we have that

[A,B] = (a1b2 − a2b1)L+ (a1b3 − a3b1)M.

Proof. Bilinearity of the Lie bracket and the fact that z = 〈L,M〉 is the centre of t give

[A,B] = [A, b1I + b2J + b3K + b4L+ b5M ]

= [A, b1I + b2J + b3K] + [A, b4L+ b5M ]

= [A, b1I + b2J + b3K] + 0

= [a1I + a2J + a3K + a4L+ a5M, b1I + b2J + b3K]

= [a1I + a2J + a3K, b1I + b2J + b3K] + [a4L+ a5M, b1I + b2J + b3K]

= [a1I + a2J + a3K, b1I + b2J + b3K] + 0

= [a1I + a2J + a3K, b1I + b2J + b3K]

= a1b1 [I, I] + a1b2 [I, J ] + a1b3 [I,K]

+ a2b1 [J, I] + a2b2 [J, J ] + a2b3 [J,K]

+ a3b1 [K, I] + a3b2 [K,J ] + a3b3 [K,K]

= 0 + a1b2 [I, J ] + a1b3 [I,K] + a2b1 [J, I] + 0 + 0 + a3b1 [K, I] + 0 + 0

= a1b2L+ a1b3M − a2b1L− a3b1M

= (a1b2 − a2b1)L+ (a1b3 − a3b1)M.
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Chapter 3

Subspace classification

In this chapter our aim is to classify the subspaces of the Lie algebra t. That is, we wish
to categorize the subspaces of t up some equivalence. In the first section we compute the
automorphism group of t. Regarding a subspace s of t as equivalent to its image ϕ · s by
an automorphism ϕ of t gives an equivalence relation on the subspaces of t. It is up to this
equivalence that we classify subspaces of t into subalgebras, ideals, fully characteristic ideals
and generating subspaces.

3.1 Preliminaries

3.1.1 The automorphism group Aut(t)

We now present the group of automorphisms of the Lie algebra t. Throughout, we represent
elements of t as column vectors with respect to the ordered basis (I, J,K,L,M). The notation
〈E1, ..., En〉 will denote the linear span of the vectors E1, ..., En. We will identify an automor-
phism ϕ ∈ Aut(t) (see Definition B.2.6) with its 5 × 5 matrix representation with respect to
this basis.

Proposition 3.1.1. Let ϕ : t −→ t be a linear map, then ϕ ∈ Aut(t) if and only if the matrix
representation of ϕ with respect to the ordered basis (I, J,K,L,M) is a real matrix of the form

ϕ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3

 ,
with i1 6= 0 and j2k3 − j3k2 6= 0.

24
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Chapter 3: Subspace classification 25

Proof. Suppose ϕ ∈ Aut(t). That is, ϕ : t −→ t is a linear isomorphism that preserves Lie
brackets. Let

ϕ =


i1 j1 k1 l1 m1

i2 j2 k2 l2 m2

i3 j3 k3 l3 m3

i4 j4 k4 l4 m4

i5 j5 k5 l5 m5


be the matrix representation of ϕ relative to the ordered basis (I, J,K,L,M).

As ϕ preserves Lie brackets, using Lemma 2.2.1 we have

ϕ · [I, J ] = [ϕ · I, ϕ · J ]

ϕ · L = [i1I + i2J + i3K + i4L+ i5M , j1I + j2J + j3K + j4L+ j5M ] ,

and thus
l1I + l2J + l3K + l4L+ l5M = (i1j2 − i2j1)L+ (i1j3 − i3j1)M.

This implies that l1 = l2 = l3 = 0, l4 = (i1j2 − i2j1) and l5 = (i1j3 − i3j1).

Similarly,

ϕ · [I,K] = [ϕ · I, ϕ ·K]

ϕ ·M = [i1I + i2J + i3K + i4L+ i5M,k1I + k2J + k3K + k4L+ k5M ] ,

and so
m1I +m2J +m3K +m4L+m5M = (i1k2 − i2k1)L+ (i1k3 − i3k1)M.

This implies that m1 = m2 = m3 = 0, m4 = (i1k2 − i2k1) and m5 = (i1k3 − i3k1).

Further,

ϕ · [J,K] = [ϕ · J, ϕ ·K]

ϕ · 0 = [j1I + j2J + j3K + j4L+ j5M,k1I + k2J + k3K + k4L+ k5M ]

0 = (j1k2 − j2k1)L+ (j1k3 − j3k1)M.

This gives (j1k2 − j2k1) = 0 and (j1k3 − j3k1) = 0. We thus have that

ϕ =


i1 j1 k1 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 (i1j2 − i2j1) (i1k2 − i2k1)
i5 j5 k5 (i1j3 − i3j1) (i1k3 − i3k1)

 .

Now, as ϕ is invertible, det(ϕ) 6= 0. That is,

det(ϕ) = i1(i3(j1k2 − j2k1) + i2(j3k1 − j1k3) + i1(j2k3 − j3k2))2 6= 0.
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Chapter 3: Subspace classification 26

Using (j1k2 − j2k1) = 0 and (j1k3 − j3k1) = 0, we have

i1(i1(j2k3 − j3k2))2 6= 0

i31(j2k3 − j3k2)2 6= 0.

That is i1 6= 0 and j2k3 − j3k2 6= 0.

We have that (j1k2 − j2k1) = 0, (j1k3 − j3k1) = 0 and j2k3 − j3k2 6= 0. Suppose j1 6= 0, then
k2 = j2k1

j1
, k3 = j3k1

j1
and j2k3 6= j3k2. Therefore,

j2k3 6= j3k2

j2

(
j3k1

j1

)
6= j3

(
j2k1

j1

)
.

However, this is a contradiction. Thus j1 = 0. Similarly, suppose k1 6= 0, then j1k2
k1

= j2,
j1k3
k1

= j3 and j2k3 6= j3k2. Therefore,

j2k3 6= j3k2(
j1k2

k1

)
k3 6=

(
j1k3

k1

)
k2.

This is clearly a contradiction, thus k1 = 0.

Now, j1 = k1 = 0 reduces the three relations (j1k2 − j2k1) = 0, (j1k3 − j3k1) = 0 and
j2k3 − j3k2 6= 0 to just j2k3 − j3k2 6= 0. We therefore have that if ϕ ∈ Aut(t), then ϕ is
represented by a matrix of the form

ϕ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3

 ,
with i1 6= 0 and j2k3 − j3k2 6= 0.

Conversely, suppose ϕ : t −→ t is represented by a matrix of this form with respect to the
ordered basis (I, J,K,L,M). We show that ϕ preserves Lie brackets. Using Lemma 2.2.1, we
have

[ϕ · I, ϕ · J ] = [i1I + i2J + i3K + i4L+ i5M, 0 · I + j2J + j3K + j4L+ j5M ]

= (i1j2 − i2 · 0)L+ (i1j3 − i3 · 0)M

= i1j2L+ i1j3M

= ϕ · L
= ϕ · [I, J ] ,

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3: Subspace classification 27

[ϕ · I, ϕ ·K] = [i1I + i2J + i3K + i4L+ i5M, 0 · I + k2J + k3K + k4L+ k5M ]

= (i1k2 − i2 · 0)L+ (i1k3 − i3 · 0)M

= i1k2L+ i1k3M

= ϕ ·M
= ϕ · [I,K] ,

and

[ϕ · J, ϕ ·K] = [0 ·1 I + j2J + j3K + j4L+ j5M, 0 · I + k2J + k3K + k4L+ k5M ]

= (0 · k2 − i2 · 0)L+ (0 · k3 − i3 · 0)M

= 0

= ϕ · 0
= ϕ · [J,K].

Lie brackets involving central elements vanish. As

ϕ(a1L+ a2M) = (a1i1j2 + a2i1k2)L+ (a1i1j3 + a2i1k3)M,

images of central elements of t under ϕ are themselves central elements of t. Lie brackets
involving the images of central elements under ϕ therefore also vanish. It follows that ϕ preserves
Lie brackets involving central elements, in particular those involving the basis vectors L and
M . It follows that ϕ preserves the Lie bracket on t.

Now, ϕ is an invertible map as det(ϕ) = i21(j3k2 − j2k3)2, which is nonzero by the conditions
i1 6= 0 and j2k3 − j3k2 6= 0. Thus indeed ϕ ∈ Aut(t).

3.1.2 Lie algebra subspaces

Here we give definitions and results relating to various kinds of subspaces of a Lie algebra that
are of interest. In the following sections we use these results to classify the subspaces of the
Lie algebra t, up to equivalence, into these categories. The relation of two subspaces by an
automorphism provides our notion of equivalence.

Definition 3.1.2. Let s and w be subspaces of a Lie algebra g. Then s and w are said to be
equivalent, denoted s ∼ w, if there exists ϕ ∈ Aut(g) such that ϕ · s = w.

Lemma 3.1.3. The relation ∼ of Definition3.1.2, is an equivalence relation on the collection
of all subspaces of the Lie algebra g.

Proof. Suppose s, w and u are subspace of g. As the identity automorphism idg is an element
of Aut(g) and idg · s = s, we have that s ∼ s. Thus ∼ is reflexive.

If s ∼ w, then there exists ϕ ∈ Aut(g) such that ϕ·s = w. This implies that ϕ−1 ·(ϕ·s) = ϕ−1 ·w,
and thus ϕ−1 · w = s. Now, ϕ−1 ∈ Aut(g) as ϕ ∈ Aut(g) and Aut(g) is a group, thus w ∼ s.
This proves symmetry.
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Chapter 3: Subspace classification 28

If s ∼ w and w ∼ u, then there is ϕ, ψ ∈ Aut(g) such that ϕ · s = w and ψ · w = u. Thus
ψ · (ϕ · s) = ψ ·w = u. That is, (ψ ◦ ϕ) · s = u, were ψ ◦ ϕ ∈ Aut(g) as Aut(g) is a group under
composition, so s ∼ u. This proves transitivity, therefore ∼ is an equivalence relation.

Definition 3.1.4. Let g be a Lie algebra with s and w as subspaces, we define

[s,w] = span ({[V,W ] : V ∈ s,W ∈ w}) .

Definition 3.1.5. Let g be a Lie algebra with V ∈ g and s a subspace, we define

[V, s] = {[V,W ] : W ∈ s}.

It follows from the bilinearity of the Lie bracket on g that the collection [V, s] is a subspace of
g.

Definition 3.1.6. Let g be a Lie algebra, with Lie bracket [·, ·], and s be a vector subspace of
g, then:

• s is called a subalgebra if [s, s] ⊆ s,

• an ideal if [g, s] ⊆ s,

• a fully characteristic ideal if it is an ideal with ϕ · s = s for any automorphism ϕ of g,

• generating if the smallest subalgebra of g containing s is g itself.

Remark 3.1.7. For a Lie algebra g, every fully characteristic ideal is an ideal and every ideal
is a subalgebra.

Consider a Lie algebra g, by the subspace structure of g we refer to the classification of the
subspaces of g, up to automorphism, into subalgebras, ideals, fully characteristic ideals, gener-
ating subspaces and general subspaces. For convenience we introduce the following convention
for presenting the subspace structure of a Lie algebra:

SA: non-ideal subalgebras

I: non-fully characteristic ideals

FCI: fully characteristic ideals

S: subspaces that are neither generating nor subalgebras

Gen: generating subspaces.

The following lemmas verify that the position of a subspace in this classification is invariant
up to equivalence. We note that a proper subalgebra of a Lie algebra cannot be generating.
It thus follows that every proper subspace of a Lie algebra falls into exactly one of the above
categories. That is, the only subspace of a Lie algebra that is both generating and a subalgebra
is, trivially, the entire Lie algebra.

Lemma 3.1.8. Let g be a Lie algebra and s1 and s2 be equivalent subspaces of g. Then s1 is
a subalgebra of g if and only if s2 is a subalgebra of g.
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Chapter 3: Subspace classification 29

Proof. Suppose s1 is a subalgebra of g. As s1 ∼ s2, there exists ϕ ∈ Aut(g) such that ϕ ·s1 = s2.

If Wα,Wβ ∈ s2, then Wα = ϕ · Vα and Wβ = ϕ · Vβ for some Vα, Vβ ∈ s1. We then have that

[Wα,Wβ ] = [ϕ · Vα, ϕ · Vβ ]

= ϕ · [Vα, Vβ ]

= ϕ · Vκ,

where Vκ = [Vα, Vβ ] ∈ s1, as s1 is a subalgebra. Thus ϕ · Vκ ∈ s2 and s2 is a subalgebra.

The converse follows from the symmetry of the equivalence relation ∼.

Lemma 3.1.9. Let g be a Lie algebra with equivalent subspaces s1 and s2, then s1 is an ideal
of g if and only if s2 is an ideal of g.

Proof. Suppose s1 is an ideal of g. As s1 ∼ s2, there exists ϕ ∈ Aut(g) such that ϕ · s1 = s2.

Let Wα ∈ s2 and Y ∈ g, there exists Vα ∈ s1 such that ϕ · Vα = Wα and X ∈ g such that
ϕ ·X = Y . Now,

[Wα, Y ] = [ϕ · Vα, ϕ ·X]

= ϕ · [Vα, X]

= ϕ · Vκ,

where Vκ = [Vα, X] ∈ s1 as s1 is an ideal. Therefore, ϕ · Vκ ∈ s2 and s2 is an ideal of g.

The converse follows from the symmetry of the equivalence relation ∼.

Lemma 3.1.10. If s1 is a fully characteristic ideal of a Lie algebra g, then s1 ∼ s2 if and only
if s2 is a fully characteristic ideal of g.

Proof. Suppose s1 ∼ s2 with ϕ · s1 = s2 for some ϕ ∈ Aut(g). As s1 is a fully characteristic
ideal, ϕ · s1 = s1. Therefore, s1 = s2 and s2 is a fully characteristic ideal.

Definition 3.1.11. Let s be a subspace of the Lie algebra g. We recursively define the following
sequence of subspaces,

s(0) = s,

s(k) = s(k−1) +
[
s(k−1), s(k−1)

]
, for k ≥ 1.

That is, s(k) is the vector subspace of g generated by s(k−1) and all Lie brackets of s(k−1).

The following lemma regarding generating subspaces is required before we can show that a
generating subspace may only be equivalent to another generating subspace.
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Chapter 3: Subspace classification 30

Lemma 3.1.12. Let g be a Lie algebra, then a subspace s is generating if and only if

∞⋃
k=0

s(k) = g = s(n)

for some natural number n. Further, n is bounded above, with n ≤ dim(g).

Proof. Let s ⊆ g be generating. For every natural number k ≥ 1, s(k−1) ⊆ s(k); therefore,
dim

(
s(k−1)

)
≤ dim

(
s(k)
)
. If dim

(
s(k−1)

)
< dim

(
s(k)
)

for every k ≥ 1, then dim
(
s(k)
)
≥

dim
(
s(k−1)

)
+ 1. Induction on k gives dim

(
s(k)
)
≥ dim (s) + k for k ≥ 1. Therefore

dim
(
s(ng+1)

)
≥ dim (s) + (ng + 1) ≥ 0 + (ng + 1) = (ng + 1),

were ng = dim(g). This is a contradiction as s(ng+1) ⊆ g, and so dim(s(ng+1)) ≤ dim (g) =
ng < ng + 1. Thus, for some natural number n ≥ 1, dim

(
s(n−1)

)
= dim

(
s(n)

)
. We then have

that s(n−1) = s(n) and thus s(n−1) is a subalgebra of g. Now,

∞⋃
k=0

s(k) =
n⋃
k=0

s(k) ∪
∞⋃

k=n+1

s(k)

=
n⋃
k=0

s(k) ∪
∞⋃

k=n+1

s(n)

=

n⋃
k=0

s(k) ∪ s(n)

=
n⋃
k=0

s(k).

However, as s(k−1) ⊆ s(k) for every k ∈ N, we have

∞⋃
k=0

s(k) =
n⋃
k=0

s(k) = s(n).

To prove s(n) = g we observe that for every k ∈ N, s(k) is a subspace of g and that
⋃∞
k=0 s

(k) is
by definition closed under Lie brackets. Suppose

g *
∞⋃
k=0

s(k) = s(n),

as s(n) is closed under Lie brackets it is a subalgebra of g. That is, s(n) is a proper subalgebra
of g containing s. This contradicts the fact that s is generating. Thus

g ⊆
∞⋃
k=0

s(k) = s(n).
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Chapter 3: Subspace classification 31

As, clearly, s(n) ⊆ g we have that g = s(n).

Conversely, if the above relation holds, then g = s(n) is a subalgebra containing s. Suppose
there exists a subalgebra w such that w ( g with s ⊆ w. As w is closed under Lie brackets and
s ⊆ w ,

s(1) = s + [s, s] ⊆ w.

An induction argument on k gives, s(k) ⊆ w for every k ∈ N. Therefore,

g = s(n) =
∞⋃
k=0

s(k) ⊆ w.

That is, g ⊆ w and thus g = w. This contradicts the supposition that w ( g, therefore no such
subalgebra w exists and thus s is generating.

As n ∈ N is determined by the property dim(s(n−1)) = dim(s(n)) and consecutive subspaces
s(k−1) and s(k) that do not satisfy this property differ in dimension by at least 1; with s(0)

having dimension at least 1, it follow that the sequence of subspaces

s(0) ⊆ s(1) ⊆ · · · ⊆ s(k−1) ⊆ s(k) ⊆ · · ·

has at most dim(g) − 1 distinct subspaces. That is, subspaces with dim(s(k)) = k + 1 for
k < dim(g) and dim(s(k)) = dim(g) for k ≥ dim(g). Therefore, n can be at most dim(g).

Lemma 3.1.13. Let g be a Lie algebra with equivalent subspaces s and w, then s is generating
if and only if w is generating.

Proof. Suppose s is generating and ϕ · s = w for some ϕ ∈ Aut(g), then ϕ · s(0) = w(0).

Suppose ϕ · s(k) = w(k) for some k ≥ 0, then

s(k+1) = s(k) +
[
s(k), s(k)

]
ϕ · s(k+1) = ϕ ·

(
s(k) +

[
s(k), s(k)

])
= ϕ · s(k) + ϕ ·

[
s(k), s(k)

]
= ϕ · s(k) +

[
ϕ · s(k), ϕ · s(k)

]
= w(k) +

[
w(k),w(k)

]
= w(k+1).

Thus an induction argument on k implies that

ϕ · s(k) = w(k)

for every k ≥ 0. As, for some natural number n, g = s(n) we have that g = ϕ·g = ϕ·s(n) = w(n).
That is, w(n) = g and thus Lemma 3.1.12 implies that w is generating. The converse follows
by the symmetry of the relation ∼.
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Chapter 3: Subspace classification 32

3.2 Invariants

Certain properties of a subspace s ⊆ t remain invariant under automorphisms of t. A simple
invariant is the dimension of a subspace. That is, given a subspace s and ϕ ∈ Aut(t) we have
dim(s) = dim(ϕ · s). Another invariant is the the dimension of the intersection of a subspace
with a fully characteristic ideal. In light of this, we establish the fully characteristic ideals of t
ahead of the rest of the subspace classification. An additional invariant, particular to the Lie
algebra t, is established. These scalar invariants are used in the next section to help classify
the subspaces of t. It is later shown, in the last section of this chapter, that the established
invariants fully characterize the subspaces of t up to equivalence.

Lemma 3.2.1. The centre Z(g) of a Lie algebra g is a fully characteristic ideal.

Proof. For any elements C ∈ Z(g) and V ∈ g we have that [C, V ] = 0 ∈ g, thus [g,Z(g)] =
{0} ⊆ Z(g), and thus Z(g) is an ideal. Suppose ϕ ∈ Aut(g) and g has n-dimensional centre
Z(g) = 〈B1, ..., Bn〉, then ϕ · Z(g) = 〈ϕ ·B1, ..., ϕ ·Bn〉. Lemma B.2.8 implies that ϕ ·Bi ∈ Z(g)
for i = 1, ..., n. Therefore, as ϕ is an automorphism, ϕ · Z(g) is an n-dimensional subspace of g
contained in Z(g), and thus ϕ · Z(g) = Z(g) as required.

Lemma 3.2.2. Let g be a Lie algebra and w be a fully characteristic ideal of g. Then for any
subspace s ⊆ g and any automorphism ϕ ∈ Aut(g),

dim (s ∩w) = dim ((ϕ · s) ∩w) .

Proof. As w is a fully characteristic ideal, we have that

(ϕ · s) ∩w = (ϕ · s) ∩ (ϕ ·w)

= ϕ · (s ∩w) .

Further, using the fact the ϕ is an automorphism, we get

dim ((ϕ · s) ∩w) = dim(ϕ · (s ∩w))

= dim (s ∩w) .

Corollary 3.2.3. Let g be a Lie algebra and Z(g) its centre. Then for any subspace s ⊆ g and
any automorphism ϕ ∈ Aut(g),

dim (s ∩ Z(g)) = dim (ϕ · s ∩ Z(g)) .

Lemma 3.2.4. The subspace 〈J,K,L,M〉 is a fully characteristic ideal of t.

Proof. Let V ∈ 〈J,K,L,M〉 and W ∈ t, then using Lemma 2.2.1

[V,W ] = (0 · w2 − v2w1)L+ (0 · w3 − v3w1)M

= −v2w1L− v3w1M ∈ 〈J,K,L,M〉.

Thus 〈J,K,L,M〉 is an ideal. It is clear from the matrix representation of ϕ ∈ Aut(t) in
Proposition 3.1.1 that ϕ · 〈J,K,L,M〉 = 〈J,K,L,M〉.
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Corollary 3.2.5. For any subspace s ⊆ t and any automorphism ϕ ∈ Aut(t),

dim (s ∩ 〈J,K,L,M〉) = dim (ϕ · s ∩ 〈J,K,L,M〉) .

Proof. Follows from Lemmas 3.2.2 and 3.2.4.

We now move towards establishing a scalar invariant dependent on the structure of the Lie
algebra t, particularly with regards to the fully characteristic ideals c = 〈J,K,L,M〉 and its
centre z = 〈L,M〉.

Lemma 3.2.6. If s is a subspace of the Lie algebra t and ϕ ∈ Aut(t), then

dim (s ∩ z ∩ [I, s]) = dim (ϕ · s ∩ z ∩ [ϕ · I, ϕ · s]) .

Proof. Suppose s is a subspace of the Lie algebra t and ϕ ∈ Aut(t). Using the facts that ϕ
preserves Lie brackets and z is a fully characteristic ideal, we have:

dim (ϕ · s ∩ z ∩ [ϕ · I, ϕ · s]) = dim (ϕ · s ∩ ϕ · z ∩ ϕ · [I, s])
= dim (ϕ · (s ∩ z) ∩ ϕ · [I, s])
= dim (ϕ · (s ∩ z ∩ [I, s])) .

As ϕ is an invertible linear map, it preserves dimension and thus

dim (ϕ · (s ∩ z ∩ [I, s])) = dim (s ∩ z ∩ [I, s]) .

We thus have the required

dim (ϕ · s ∩ z ∩ [ϕ · I, ϕ · s]) = dim (s ∩ z ∩ [I, s]) .

Corollary 3.2.7. If s is a subspace of t and ϕ ∈ Aut(t) is such that ϕ · I = λI, λ 6= 0, then

dim (s ∩ z ∩ [I, s]) = dim (ϕ · s ∩ z ∩ [I, ϕ · s]) .

Proof. This follows from the fact that [ϕ · I, s] = [λI, s] = λ[I, s] = [I, s]. This results from [I, s]
being a subspace of t (see Definition 3.1.5) and thus being invariant with respect to nonzero
scaling.

Lemma 3.2.8. Suppose s is a subspace of t with s ⊆ 〈J,K,L,M〉. For any ϕ ∈ Aut(t),there
exists ψ ∈ Aut(t) with ψ|s = ϕ|s and ψ · I = λI, λ 6= 0.

Proof. Suppose ϕ ∈ Aut(t) and s ⊆ 〈J,K,L,M〉. We identify ϕ with its matrix representation
with respect to the ordered basis (I, J,K,L,M), given by

ϕ =


i1 0 0 0 0
i2 j2 k1 0 0
i3 j3 k2 0 0
i4 j4 k3 i1j2 i1k2

i5 j5 k4 i1j3 i1k3

 ,
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in accordance with Proposition 3.1.1. The automorphism ψ ∈ Aut(t) given by

ψ =


i1 0 0 0 0
0 j2 k1 0 0
0 j3 k2 0 0
0 j4 k3 i1j2 i1k2

0 j5 k4 i1j3 i1k3

 ,
also with respect to the ordered basis (I, J,K,L,M) of t, coincides with ϕ on 〈J,K,L,M〉 and
thus on s. We also have that ψ · I = i1I. That is, ψ ∈ Aut(t) with ψ|s = ϕ|s and ψ · I = λI,
were λ = i1 6= 0, by Proposition 3.1.1.

Proposition 3.2.9. Let s be a subspace of t and c = 〈J,K,L,M〉. For any ϕ ∈ Aut(t) we have

dim(s ∩ z ∩ [I, s ∩ c]) = dim(ϕ · s ∩ z ∩ [I, ϕ · s ∩ c]).

Proof. As z ⊆ c and c is a fully characteristic ideal of t,

dim(ϕ · s ∩ z ∩ [I, ϕ · s ∩ c]) = dim((ϕ · s ∩ c) ∩ z ∩ [I, ϕ · s ∩ c])

= dim((ϕ · s ∩ ϕ · c) ∩ z ∩ [I, (ϕ · s ∩ ϕ · c)]).

Now, s ∩ c is a subspaces of t that is contained in c = 〈J,K,L,M〉. Lemma 3.2.8 gives the
existence of ψ ∈ Aut(t) with ψ|s∩c = ϕ|s∩c — thus ψ·(s∩c) = ϕ·(s∩c) and (ψ·s∩ψ·c) = (ϕ·s∩ϕ·c)
— and ψ · I = λI for some scalar λ 6= 0. This gives,

dim((ϕ · s ∩ ϕ · c) ∩ z ∩ [I, (ϕ · s ∩ ϕ · c)])
= dim((ψ · s ∩ ψ · c) ∩ z ∩ [I, (ψ · s ∩ ψ · c)]).

Corollary 3.2.7 implies that

dim((ψ · s ∩ ψ · c) ∩ z ∩ [I, (ψ · s ∩ ψ · c)])
= dim((s ∩ c) ∩ z ∩ [I, (s ∩ c)])

= dim(s ∩ (c ∩ z) ∩ [I, s ∩ c])

= dim(s ∩ z ∩ [I, s ∩ c]),

proving the result.

Proposition 3.2.10. Let s and w be subspaces of t and c = 〈J,K,L,M〉. If subspaces s and
w are equivalent then

dim(s) = dim(w),

dim(s ∩ z) = dim(w ∩ z),

dim(s ∩ c) = dim(w ∩ c) and

dim(s ∩ z ∩ [I, s ∩ c]) = dim(w ∩ z ∩ [I,w ∩ c]).

Proof. For any subspace u ⊆ t, define the map

S(u) = (dim(u),dim(u ∩ z),dim(u ∩ c),dim(u ∩ z ∩ [I, u ∩ c])) ∈ R4.
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As the components of S(·) are invariant under automorphism, S(·) itself is invariant under
automorphisms. We prove the equivalent statement that if s ∼ w then S(s) = S(w).

Suppose s and w are equivalent subspaces of t, then there exists ϕ ∈ Aut(t) with ϕ ·s = w. The
fact that automorphisms preserve dimension, Corollary 3.2.3, Corollary 3.2.5 and Proposition
3.2.9 imply(componentwise) that S(s) = S(w).

Lemma 3.2.11. Let PI : t −→ R be the map defined by

PI : V = v1I + v2J + v3K + v4L+ v5M 7→ v1.

For any s ⊆ t we have that

dim(PI · s) = dim(s)− dim(s ∩ 〈J,K,L,M〉).

Proof. Suppose s is a subspace of t. Now,

s ∩ 〈J,K,L,M〉 = {V ∈ s : V = v1 · I + v2J + v3K + v4L+ v5M,v1 = 0}.

If s ⊆ 〈J,K,L,M〉, then s = s ∩ 〈J,K,L,M〉 and thus PI · s = {0}. That is,

dim(s) = dim(s ∩ 〈J,K,L,M〉)
0 = dim(s)− dim(s ∩ 〈J,K,L,M〉)

dim(PI · s) = dim(s)− dim(s ∩ 〈J,K,L,M〉).

If s * 〈J,K,L,M〉, then there exists W = w1I + w2J + w3K + w4L + w5M ∈ s with w1 6= 0.
As PI · W 6= 0 and the range of the linear map PI is a subspace of R, it follows that 1 ≤
dim(PI · s). Now, dim(PI · s) = 1 as it is a subspace of R. Let s = 〈W,X1, ..., Xn〉 with Xi =[
xi1 xi2 xi3 xi4 xi5

]>
, then s = 〈W, (X1 − x11

w1
W ), ..., (Xn − xn1

w1
W )〉 with (Xi − xi1

w1
W ) ∈

〈J,K,L,M〉 for i = 1, 2, ..., n. It follows that dim(s) = n + 1 and dim(s ∩ 〈J,K,L,M〉) = n
giving

dim(PI · s) = dim(s)− dim(s ∩ 〈J,K,L,M〉).

Corollary 3.2.12. If s is a subspace of t and ϕ ∈ Aut(t), then

dim(PI · s) = dim(PI · (ϕ · s)).

Proof. Follows from the fact that dim(PI · s) is a function of dim(s) and dim(s ∩ 〈J,K,L,M〉)
which are invariant under automorphisms of t — as seen in Proposition 3.2.10.

3.3 Subspace classification

We now proceed with the computation of the subspace structure of the Lie algebra t. We
use the ordered basis (I, J,K,L,M) of t in our computations and denote the column vector[
v1 v2 v3 v4 v5

]>
by the corresponding upper case V , unless specified otherwise.
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3.3.1 One-dimensional subspace structure

Proposition 3.3.1. Every one-dimensional subspace of t is equivalent to exactly one of the
subspaces

〈I〉 , 〈J〉 or 〈L〉 .

Proof. Suppose 〈V 〉 is a one-dimensional subspace of t. We have that dim (〈V 〉 ∩ z) ∈ {0, 1}
and dim (〈V 〉 ∩ 〈J,K,L,M〉) ∈ {0, 1}. If dim (〈V 〉 ∩ z) = 0 and dim (〈V 〉 ∩ 〈J,K,L,M〉) = 0,
then V /∈ 〈J,K,L,M〉. Therefore v1 6= 0 and

ϕ =


v1 0 0 0 0
v2 1 0 0 0
v3 0 1 0 0
v4 0 0 v1 0
v5 0 0 0 v1

 ∈ Aut(t)

is such that ϕ · 〈I〉 = 〈V 〉.

If dim (〈V 〉 ∩ z) = 0 and dim (〈V 〉 ∩ 〈J,K,L,M〉) = 1, then V ∈ 〈J,K,L,M〉 and V /∈ 〈L,M〉.
Therefore v1 = 0 and v2

2 + v2
3 6= 0, so

ϕ =


1 0 0 0 0
0 v2 v3 0 0
0 v3 −v2 0 0
0 v4 0 v2 v3

0 v5 0 v3 −v2

 ∈ Aut(t)

is such that ϕ · 〈J〉 = 〈V 〉.

If dim (〈V 〉 ∩ z) = 1, then V ∈ z. Therefore, v1 = v2 = v3 = 0 with v2
4 + v2

5 6= 0 and

ϕ =


1 0 0 0 0
0 v4 v5 0 0
0 v5 −v4 0 0
0 0 0 v4 v5

0 0 0 v5 −v4

 ∈ Aut(t)

is such that ϕ · 〈L〉 = 〈V 〉. Therefore every one-dimensional subspace 〈V 〉 of t is equivalent to
at least one of the stated subspaces. It is left to show that 〈V 〉 is equivalent to exactly one of
these subspaces. For this we show that the stated subspaces are mutually nonequivalent.

Now, dim(〈I〉 ∩ z) = 0, dim(〈J〉 ∩ z) = 0 and dim(〈L〉 ∩ z) = 1, so by Corollary 3.2.3 〈I〉 � 〈L〉
and 〈J〉 � 〈L〉. Further dim(〈I〉 ∩ 〈J,K,L,M〉) = 0 and dim(〈J〉 ∩ 〈J,K,L,M〉) = 1, therefore
Corollary 3.2.5 implies 〈I〉 � 〈J〉.

Remark 3.3.2. We thus have the following equivalence classes:

[〈I〉] = {〈V 〉 : dim(〈V 〉 ∩ z) = 0 and dim(〈V 〉 ∩ 〈J,K,L,M〉) = 0}
[〈J〉] = {〈V 〉 : dim(〈V 〉 ∩ z) = 0 and dim(〈V 〉 ∩ 〈J,K,L,M〉) = 1}
[〈L〉] = {〈V 〉 : dim(〈V 〉 ∩ z) = 1} .
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Equivalently,

[〈I〉] = {〈V 〉 : v1 6= 0}
[〈J〉] =

{
〈V 〉 : v1 = 0 and v2

2 + v2
3 6= 0

}
[〈L〉] =

{
〈V 〉 : v1 = v2 = v3 = 0 and v2

4 + v2
5 6= 0

}
.

Corollary 3.3.3. Given V ∈ t and ϕ ∈ Aut(t) with ϕ · V = W , then

1. v1 6= 0 if and only if w1 6= 0,

2. v1 = 0 and v2
2 + v2

3 6= 0 if and only if w1 = 0 and w2
2 + w2

3 6= 0 and

3. v1 = v2 = v3 = 0 and v2
4 + v2

5 6= 0 if and only if w1 = w2 = w3 = 0 and w2
4 + w2

5 6= 0.

Proof. Follows from Proposition 3.3.1, the closure of the equivalence classes [〈I〉] , [〈J〉] and [〈L〉]
under automorphisms and their defining conditions.

Proposition 3.3.4. The one-dimensional subspace structure of t is given by

SA: 〈I〉, 〈J〉
I: 〈L〉.

Proof. We prove that every one-dimensional subspace 〈V 〉 is a subalgebra of t. Suppose 〈V 〉 is
a one-dimensional subspace of t and V1 = aV , V2 = bV are vectors in 〈V 〉 with a,b ∈ R. Then,
bilinearity and anti-symmetry of the Lie bracket give

[V1, V2] = [aV, bV ] = ab [V, V ] = −ab [V, V ] ,

thus,

2ab [V, V ] = 0̄.

As this holds for arbitrary a, b ∈ R, it follows that [V, V ] = 0̄ and

[V1, V2] = 0̄ ∈ 〈V 〉.

Thus 〈V 〉 is closed under the Lie bracket operation and is thus a subalgebra of t.

The subspace 〈I〉 is not an ideal as I ∈ 〈I〉, J ∈ t, but [I, J ] = L /∈ 〈I〉. The subspace 〈J〉 is
not an ideal as J ∈ 〈J〉 , I ∈ t, but [I, J ] = L /∈ 〈J〉. However, 〈L〉 is an ideal as given any
X = aL ∈ 〈L〉 and V ∈ t, we have

[X,V ] = [aL, V ] = a [L, V ] = 0̄ ∈ 〈L〉

from the fact that L is a central element.
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The ideal 〈L〉 is not a fully characteristic ideal as ϕ · 〈L〉 = 〈M〉 6= 〈L〉 where ϕ is the automor-
phism given by

ϕ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

3.3.2 Two-dimensional subspace structure

Proposition 3.3.5. Every two-dimensional subspace of t is equivalent to exactly one of the
following subspaces

〈I, J〉, 〈I, L〉, 〈J,K〉, 〈J, L〉, 〈J,M〉 or 〈L,M〉.

Proof. Let 〈V,W 〉 be a two-dimensional subspace of t.

Case 1: Suppose dim(〈V,W 〉∩z) = 0, then 〈V,W 〉 contains no central elements. If dim(〈V,W 〉∩
〈J,K,L,M〉) = 1, then we may assume W ∈ 〈J,K,L,M〉 and V /∈ 〈J,K,L,M〉. That is,
w1 = 0, w2

2 + w2
3 6= 0 and v1 6= 0. We therefore have that

ϕ =


v1 0 0 0 0
v2 w2 w3 0 0
v3 w3 −w2 0 0
v4 w4 0 v1w2 v1w3

v5 w5 0 v1w3 −v1w2

 ∈ Aut(t)

is such that ϕ · 〈I, J〉 = 〈V,W 〉. Thus 〈V,W 〉 ∼ 〈I, J〉.

If dim(〈V,W 〉∩〈J,K,L,M〉) = 2, then 〈V,W 〉 ⊆ 〈J,K,L,M〉 and so v1 = w1 = 0. As V and W
are non-central elements of t, we have that the vectors I, V,W,L,M are linearly independent.
That is, the matrix [I|V |W |L|M ] with I, V,W,L and M for its columns is invertible with
determinant v2w3 − w2v3 6= 0. Thus

ϕ =


1 0 0 0 0
0 v2 w2 0 0
0 v3 w3 0 0
0 v4 w4 v2 w2

0 v5 w5 v3 w3

 ∈ Aut(t)

is such that ϕ · 〈J,K〉 = 〈V,W 〉, hence 〈V,W 〉 ∼ 〈J,K〉.

Case 2: Suppose that dim(〈V,W 〉 ∩ z) = 1. We may, without loss of generality assume that
W is central and that V is not central. That is, we may assume that w1 = w2 = w3 = 0 with
w2

4 + w2
5 6= 0 and that v1, v2 and v3 are not all zero.
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If dim(〈V,W 〉∩〈J,K,L,M〉) = 1, then clearly V /∈ 〈J,K,L,M〉, as W ∈ 〈L,M〉 ⊆ 〈J,K,L,M〉,
therefore v1 6= 0. We thus have that

ϕ =


v1 0 0 0 0
v2 w4 w5 0 0
v3 w5 −w4 0 0
v4 0 0 v1w4 v1w5

v5 0 0 v1w5 −v1w4

 ∈ Aut(t)

is such that ϕ · 〈I, L〉 = 〈V,W 〉, hence 〈I, L〉 ∼ 〈V,W 〉.

If dim(〈V,W 〉∩ 〈J,K,L,M〉) = 2, then 〈V,W 〉 ⊆ 〈J,K,L,M〉 and thus v1 = 0 with v2
2 +v2

3 6= 0
(as V is not central). If in addition dim(〈V,W 〉 ∩ z ∩ [I, 〈V,W 〉 ∩ 〈J,K,L,M〉]) = 1, then

dim(〈V,W 〉 ∩ z ∩ [I, 〈V,W 〉 ∩ 〈J,K,L,M〉])
= dim(〈W 〉 ∩ [I, 〈V,W 〉])
= 1.

It follows that 〈W 〉 = [I, 〈V,W 〉]. Therefore [I, V ] = λW were λ ∈ R — this follows from
the bilinearity of the Lie bracket and the fact that W is central. Now, λ 6= 0 for if so, then
[I, 〈V,W 〉] = {0̄} 6= 〈W 〉. The nontrivial Lie brackets of t determine that [I, V ] = λW if and
only if v2 = λw4 and v3 = λw5. We thus have that

ϕ =


1 0 0 0 0
0 λw4 w5 0 0
0 λw5 −w4 0 0
0 v4 0 λw4 w5

0 v5 0 λw5 −w4

 ∈ Aut(t)

is such that ϕ · 〈J, L〉 = 〈V,W 〉, hence 〈J, L〉 ∼ 〈V,W 〉.

However, if in addition dim(〈V,W 〉 ∩ z ∩ [I, 〈V,W 〉 ∩ 〈J,K,L,M〉]) = 0. We have that

dim(〈V,W 〉 ∩ z ∩ [I, 〈V,W 〉 ∩ 〈J,K,L,M〉])
= dim(〈W 〉 ∩ [I, 〈V,W 〉])
= 0.

This implies that [I, 〈V,W 〉] 6= 〈W 〉. The bilinearity of the Lie bracket, the definition of the Lie
bracket on t (and the fact that W is central) imply that it is not the case that (v2 = λw4 and
v3 = λw5) for 0 6= λ ∈ R. We thus have that the matrix1 0 0

0 v2 w4

0 v3 w5


has linearly independent columns and is thus invertible with determinant v2w5 − v3w4 6= 0. It
follows that

ϕ =


1 0 0 0 0
0 v2 w4 0 0
0 v3 w5 0 0
0 v4 0 v2 w4

0 v5 0 v3 w5

 ∈ Aut(t)
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is such that ϕ · 〈J,M〉 = 〈V,W 〉, hence 〈J,M〉 ∼ 〈V,W 〉.

Case 3: Supposing dim(〈V,W 〉 ∩ z) = 2 clearly implies that 〈V,W 〉 = 〈L,M〉 = z, thus
〈L,M〉 ∼ 〈V,W 〉.

We have shown that every two-dimensional subspace of t is equivalent to at least one of
the stated subspaces. Mutual non-equivalence of these subspaces follows from the fact that
they have been distinguished by the scalar invariants of Proposition 3.2.10. Thus every two-
dimensional subspace of t is equivalent to exactly one of the stated subspaces.

Proposition 3.3.6. The two-dimensional subspace structure of t is given by

SA: 〈J,K〉, 〈I, L〉, 〈J,M〉
I: 〈J, L〉

FCI: 〈L,M〉
S: 〈I, J〉

Proof. Let V,W ∈ t. We consider the two-dimensional subalgebras. 〈I, J〉 is not a subalgebra
as I,J ∈ 〈I, J〉, but [I, J ] = L /∈ 〈I, J〉. Suppose V,W ∈ 〈J,K〉 , then Lemma 2.2.1 gives

[V,W ] = (0w2 − v20)L+ (0w3 − v30)M

= 0̄ ∈ 〈J,K〉.

Thus 〈J,K〉 is a subalgebra. Similarly, suppose V,W ∈ 〈I, L〉, then

[V,W ] = (v1 · 0− 0 · w1)L+ (v1 · 0− 0 · w1)M

= 0̄ ∈ 〈I, L〉.

Thus 〈I, L〉 is a subalgebra. Suppose V,W ∈ 〈J,M〉, then

[V,W ] = (0 · w2 − v2 · 0)L+ (0 · 0− 0 · 0)M

= 0̄ ∈ 〈J,M〉.

Thus 〈J,M〉 is a subalgebra.

Now we look at the ideals. Subspace 〈J,K〉 is not an ideal as J ∈ 〈J,K〉, I ∈ t, but [I, J ] = L /∈
〈J,K〉. Subspace 〈I, L〉 is not an ideal as I ∈ 〈I, L〉, K ∈ t, but [I,K] = M /∈ 〈I, L〉. Suppose
V ∈ 〈J, L〉 and W ∈ t, then

[V,W ] = (v1w2 − v2w1)L+ (v1w3 − v3w1)M

= (0w2 − v2w1)L+ (0w3 − 0w1)M

= −v2w1L ∈ 〈J, L〉.

Thus 〈J, L〉 is an ideal. Subspace 〈J,M〉 is not an ideal as J ∈ 〈J,M〉, I ∈ t, but [I, J ] = L /∈
〈J,M〉.
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Next we find the fully characteristic ideals. The ideal 〈J, L〉 is not fully characteristic as ϕ ·
〈J, L〉 = 〈K,M〉 6= 〈J, L〉, where ϕ is the automorphism given by

ϕ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .
By Lemma 3.2.1 〈L,M〉 is a fully characteristic ideal as it is the centre z.

Finally we find the generating subspaces. Subspace 〈I, J〉 is not generating as [I, J ] = L, thus
〈I, J〉 generates the vector subspace 〈I, J, L〉. Given V,W ∈ 〈I, J, L〉,

[V,W ] = (v1w2 − v2w1)L+ (v1w3 − v3w1)M

= (v1w2 − v2w1)L+ (v10− 0w1)M

= (v1w2 − v2w1)L ∈ 〈I, J, L〉.

Thus no larger subspace than 〈I, J, L〉 6= t can be generated by 〈I, J〉. Therefore 〈I, J〉 is not
generating.

3.3.3 Three-dimensional subspace structure

Proposition 3.3.7. Every three-dimensional subspace of t is equivalent to exactly one of the
subspaces

〈I, J,K〉, 〈I, J, L〉, 〈I, J,M〉, 〈I, L,M〉, 〈J,K,L〉 or 〈J, L,M〉.

Proof. Let 〈V,W,X〉 be a three-dimensional subspace of t.

Case 1: Suppose dim(〈V,W,X〉 ∩ z) = 2, then without loss of generality we may assume that
〈V,W,X〉 = 〈V,L,M〉.

If dim(〈V,L,M〉 ∩ 〈J,K,L,M〉) = 2, then there exists some element of 〈V,L,M〉 with nonzero
I-component. Without loss of generality, we may let this element be V — that is, v1 6= 0. Now,

ϕ =


v1 0 0 0 0
v2 v1 0 0 0
v3 0 v1 0 0
v4 0 0 v1 0
v5 0 0 0 v1

 ∈ Aut(t)

is such that ϕ · 〈I, L,M〉 = 〈V,L,M〉. Therefore 〈V,W,X〉 = 〈V,L,M〉 ∼ 〈I, L,M〉.

If dim(〈V,L,M〉 ∩ 〈J,K,L,M〉) = 3, then 〈V,L,M〉 ⊆ 〈J,K,L,M〉 and thus V ∈ 〈J,K,L,M〉
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so v1 = 0. As V cannot be central, it follows that v2
2 + v2

3 6= 0. Now,

ϕ =


1 0 0 0 0
0 v2 v3 0 0
0 v3 −v2 0 0
0 v4 0 v2 v3

0 v5 0 v3 −v2

 ∈ Aut(t)

is such that ϕ · 〈J, L,M〉 = 〈V,L,M〉 = 〈V,W,X〉. It follows that 〈V,W,X〉 ∼ 〈J, L,M〉.

Case 2: Suppose dim(〈V,W,X〉 ∩ z) = 1, we may then assume that X is central. That is,
x1 = x2 = x3 = 0 and x2

4 + x2
5 6= 0. Now, Corollary A.1.5 gives

2 ≤ dim(〈V,W,X〉 ∩ 〈J,K,L,M〉) ≤ 3

and so 〈V,W,X〉 contains at least two linear independent elements in 〈J,K,L,M〉. As X ∈
〈J,K,L,M〉, we may further assume thatW ∈ 〈J,K,L,M〉 and thus w1 = 0. By Proposition 3.3.1
we have that β ·W = J for some β ∈ Aut(t). Therefore,

β · 〈V,W,X〉 = 〈β · V, J, β ·X〉 = 〈V̄ , J, X̄〉,

where Lemma B.2.8 gives that X̄ is central. As 〈V̄ , J, X̄〉 ∼ 〈V,W,X〉, Proposition 3.2.10 allows
us to proceed by examining the invariants of 〈V̄ , J, X̄〉.

If dim(〈V̄ , J, X̄〉 ∩ 〈J,K,L,M〉) = 2, it follows that V̄ /∈ 〈J,K,L,M〉 as J, X̄ ∈ 〈J,K,L,M〉
and so v̄1 6= 0.

If, in addition, we have

dim(〈V̄ , J, X̄〉 ∩ z ∩ [I, 〈V̄ , J, X̄〉 ∩ 〈J,K,L,M〉]) = 1,

then

dim(〈X̄〉 ∩ [I, 〈J, X̄〉]) = 1

dim(〈X̄〉 ∩ [I, 〈J〉]) = 1

dim(〈X̄〉 ∩ 〈L〉) = 1.

This implies that 〈X̄〉 = 〈L〉 and thus X̄ = λL for some real scalar λ 6= 0. Without loss of
generality, we may assume X̄ = L and thus 〈V̄ , J, X̄〉 = 〈V̄ , J, L〉. The automorphism

ϕ =


v̄1 0 0 0 0
v̄2 v̄1 0 0 0
v̄3 0 v̄1 0 0
v̄4 0 0 v̄1 0
v̄5 0 0 0 v̄1

 ∈ Aut(t)

is such that ϕ · 〈I, J, L〉 = 〈V̄ , J, L〉 ∼ 〈V,W,X〉. Therefore 〈V,W,X〉 ∼ 〈I, J, L〉.

If however, we have

dim(〈V̄ , J, X̄〉 ∩ z ∩ [I, 〈V̄ , J, X̄〉 ∩ 〈J,K,L,M〉]) = 0,
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we have that
dim(〈X̄〉 ∩ 〈L〉) = 0.

That is, X̄ = x̄4L+ x̄5M with x̄5 6= 0. It follows that

ϕ =


v̄1 0 0 0 0
v̄2 1 x̄4 0 0
v̄3 0 x̄5 0 0
v̄4 0 0 v̄1 v̄1x̄4

v̄5 0 0 0 v̄1x̄5

 ∈ Aut(t)

is such that ϕ · 〈I, J,M〉 = 〈V̄ , J, X̄〉 ∼ 〈V,W,X〉. That is, 〈V,W,X〉 ∼ 〈I, J,M〉.

If dim(〈V̄ , J, X̄〉 ∩ 〈J,K,L,M〉) = 3, then 〈V̄ , J, X̄〉 ⊆ 〈J,K,L,M〉 and thus V ∈ 〈J,K,L,M〉,
so v̄1 = 0. The subspace 〈J, X̄〉 ⊆ 〈V̄ , J, X̄〉 ⊆ t is a two-dimensional subspace with

dim(〈J, X̄〉 ∩ z) = 1

and
dim(〈J, X̄〉 ∩ 〈J,K,L,M〉) = 2.

It follows from the proof of Proposition 3.3.5 that 〈J, X̄〉 ∼ 〈J, L〉 or 〈J, X̄〉 ∼ 〈J,M〉.

If β · 〈J, X̄〉 = 〈J, L〉 for some β ∈ Aut(t), then β · 〈V̄ , J, X̄〉 = 〈β · V̄ , J, L〉 where β · V̄ = ¯̄V ,

with ¯̄v1 = 0. Now 〈 ¯̄V, J, L〉 = 〈( ¯̄V − ¯̄v2J), J, L〉 and thus we may assume that ¯̄v2 = 0. Since ¯̄V
is not central we have that ¯̄v3 6= 0. The automorphism

ϕ =


1 0 0 0 0
0 1 0 0 0
0 0 ¯̄v3 0 0
0 0 ¯̄v4 1 0
0 0 ¯̄v5 0 ¯̄v3


is such that ϕ · 〈J,K,L〉 = 〈 ¯̄V, J, L〉. Therefore,

〈J,K,L〉 ∼ 〈 ¯̄V, J, L〉 ∼ 〈V̄ , J, X̄〉 ∼ 〈V,W,X〉

and so 〈J,K,L〉 ∼ 〈V,W,X〉.

On the other hand, if β ·〈J, X̄〉 = 〈J,M〉 for some β ∈ Aut(t), then β ·〈V̄ , J, X̄〉 = 〈β ·V̄ , J,M〉
where β · V̄ = ¯̄V , with ¯̄v1 = 0. Now 〈 ¯̄V, J,M〉 = 〈( ¯̄V − ¯̄v2J), J,M〉 and thus we may assume

that ¯̄v2 = 0. Since ¯̄V is not central we have that ¯̄v3 6= 0. The automorphism

ϕ =


1 0 0 0 0
0 1 0 0 0
0 0 ¯̄v3 0 0
0 0 ¯̄v4 1 0
0 0 ¯̄v5 0 ¯̄v3


is such that ϕ · 〈J,K,M〉 = 〈 ¯̄V, J,M〉. Therefore,

〈J,K,M〉 ∼ 〈 ¯̄V, J,M〉 ∼ 〈V̄ , J, X̄〉 ∼ 〈V,W,X〉
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and so 〈J,K,M〉 ∼ 〈V,W,X〉. Now, 〈J,K,L〉 ∼ 〈J,K,M〉 as ϕ · 〈J,K,L〉 = 〈J,K,M〉 where

ϕ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 ∈ Aut(t).

We may thus conclude that if dim(〈V̄ , J, X̄〉 ∩ 〈J,K,L,M〉) = 3, then 〈V,W,X〉 ∼ 〈V̄ , J, X̄〉 ∼
〈J,K,L〉.

Case 3: Suppose dim(〈V,W,X〉 ∩ z) = 0. CorollaryA.1.5 gives that

2 ≤ dim(〈V,W,X〉 ∩ 〈J,K,L,M〉) ≤ 3.

There thus exists at least two linearly independent elements of 〈V,W,X〉 in 〈J,K,L,M〉. With-
out loss of generality, we may let these elements be W and X, we thus have w1 = x1 = 0. As
W and X cannot be central, we have w2

2 + w2
3 6= 0 and x2

2 + x2
3 6= 0. As W and X are linearly

independent, [I|W |X|L|M ] is a 5× 5 matrix with linearly independent columns I,W ,X,L and
M . It follows that [I|W |X|L|M ] is invertible with determinant w2x3 − x2w3 6= 0.

Now, dim(〈V,W,X〉∩〈J,K,L,M〉) = 2; for if dim(〈V,W,X〉∩〈J,K,L,M〉) = 3 then V,W,X,L
and M would be five linearly independent vectors of the four-dimensional space 〈J,K,L,M〉—
a contradiction. Thus 〈V,W,X〉 contains at least one element not in 〈J,K,L,M〉, we let this
be V and thus v1 6= 0. We therefore have that

ϕ =


v1 0 0 0 0
v2 w2 x2 0 0
v3 w3 x3 0 0
v4 w4 x4 v1w2 v1x2

v5 w5 x5 v1w3 v1x3

 ∈ Aut(t)

is such that ϕ · 〈I, J,K〉 = 〈V,W,X〉 and thus 〈I, J,K〉 ∼ 〈V,W,X〉.

We have shown that every three-dimensional subspace of t is equivalent to at least one of
the stated subspaces. Mutual non-equivalence of these subspaces follows from the fact that
they have been distinguished by the scalar invariants of Proposition 3.2.10. Thus every three-
dimensional subspace of t is equivalent to exactly one of the stated subspaces.

Proposition 3.3.8. The three-dimensional subspace structure of t is given by

SA: 〈J,K,L〉, 〈I, J, L〉
I: 〈I, L,M〉, 〈J, L,M〉

S: 〈I, J,M〉
Gen: 〈I, J,K〉.

Proof. We first find the three-dimensional subalgebras. The subspace 〈I, J,K〉 is not a subal-
gebra as I, J ∈ 〈I, J,K〉, but [I, J ] = L /∈ 〈I, J,K〉. The subspace 〈I, J,M〉 is not a subalgebra
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as I, J ∈ 〈I, J,M〉, but [I, J ] = L /∈ 〈I, J,M〉. If V,W ∈ 〈I, J, L〉, then

[V,W ] = (v1w2 − v2w1)L+ (v1w3 − v3w1)M

= (v1w2 − v2w1)L+ (v1 · 0− 0 · w1)M

= (v1w2 − v2w1)L ∈ 〈I, J, L〉.

Thus, 〈I, J, L〉 is a subalgebra. Suppose V,W ∈ 〈J,K,L〉, then

[V,W ] = (0 · w2 − v2 · 0)L+ (0 · w3 − v3 · 0)M

= 0̄ ∈ 〈J,K,L〉.

Thus 〈J,K,L〉 is a subalgebra.

We now find the ideals. We have that I ∈ 〈I, J, L〉 and K ∈ t, however [I,K] = M /∈ 〈I, J, L〉.
Thus 〈I, J, L〉 is not an ideal. If V ∈ 〈I, L,M〉 and W ∈ t, then

[V,W ] = (v1w2 − 0 · w1)L+ (v1w3 − 0 · w1)M

= v1w2L+ v1w3M ∈ 〈I, L,M〉.

Thus 〈I, L,M〉 is an ideal. Suppose V ∈ 〈J, L,M〉 and W ∈ t, then

[V,W ] = (0 · w2 − v2w1)L+ (0 · w3 − 0 · w1)M

= −v2w1L ∈ 〈J, L,M〉.

Thus 〈J, L,M〉 is an ideal. Now, K ∈ 〈J,K,L〉 and I ∈ t, however [I,K] = M /∈ 〈J,K,L〉, so
〈J,K,L〉 is not an ideal.

We prove that there is no three-dimensional fully characteristic ideal of t. The ideal 〈J, L,M〉
is not a fully characteristic ideal as ϕ · 〈J, L,M〉 = 〈K,L,M〉 6= 〈J, L,M〉 where ϕ is the
automorphism

ϕ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .
The ideal 〈I, L,M〉 is not a fully characteristic ideal as ϕ · 〈I, L,M〉 6= 〈I, L,M〉, as ϕ · I /∈
〈I, L,M〉 where ϕ is the automorphism given by

ϕ =


1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Finally we consider the generating subspaces. Consider the subspace 〈I, J,K〉. As [I, J ] = L
and [I,K] = M , the subspace 〈I, J,K〉 generates all of t and is thus generating. Consider the
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subspace 〈I, J,M〉. As [I, J ] = L, 〈I, J,M〉 generates the subspace 〈I, J,M,L〉. Let V and W
be elements of 〈I, J,M,L〉, then

[V,W ] = (v1w2 − v2w1)L+ (v1 · 0− 0 · w1)M

= (v1w2 − v2w1)L ∈ 〈I, J, L,M〉.

Thus 〈I, J, L,M〉 is a subalgebra of t and 〈I, J,M〉 can generate no larger subspace of t. It
follows that 〈I, J,M〉 is not a generating subspace.

3.3.4 Four-dimensional subspace structure

Proposition 3.3.9. Every four-dimensional subspace of t is equivalent to exactly one of the
subspaces

〈J,K,L,M〉, 〈I, J, L,M〉 or 〈I, J,K,L〉.

Proof. Let 〈V,W,X, Y 〉 be a subspace of t.
Case 1: Suppose dim(〈V,W,X, Y 〉∩〈J,K,L,M〉) = 4, then clearly 〈V,W,X, Y 〉 = 〈J,K,L,M〉.

Case 2: Suppose dim(〈V,W,X, Y 〉 ∩ 〈J,K,L,M〉) = 3.

If dim(〈V,W,X, Y 〉 ∩ z) = 1, then z = 〈L,M〉 * 〈V,W,X, Y 〉. Without loss of generality,
suppose z ∩ 〈V,W,X, Y 〉 = 〈Y 〉. The subspace 〈V,W,X〉 therefore contains no nonzero central
elements. That is,

dim(〈V,W,X〉 ∩ z) = 0.

The proofs of Proposition 3.3.7 and Proposition 3.2.10 imply that 〈V,W,X〉 ∼ 〈I, J,K〉 as it is
the only three-dimensional subspace of t, up to equivalence, with no nonzero central elements.
That is, there exists some β ∈ Aut(t) with β · 〈V,W,X〉 = 〈I, J,K〉.

Now, β · 〈V,W,X, Y 〉 = 〈I, J,K, β · Y 〉 where β · Y = Ȳ ∈ z by Lemma B.2.8. We thus have
that ȳ1 = ȳ2 = ȳ3 = 0 and ȳ2

4 + ȳ2
5 6= 0. Hence, 〈V,W,X, Y 〉 ∼ 〈I, J,K, Ȳ 〉. The automorphism

ϕ =


1 0 0 0 0
0 ȳ4 ȳ5 0 0
0 ȳ5 −ȳ4 0 0
0 0 0 ȳ4 ȳ5

0 0 0 ȳ5 −ȳ4


is such that ϕ · 〈I, J,K,L〉 = 〈I, J,K, Ȳ 〉 ∼ 〈V,W,X, Y 〉. Therefore, 〈V,W,X, Y 〉 ∼ 〈I, J,K,L〉.

If dim(〈V,W,X, Y 〉∩z) = 2, then z ⊆ 〈V,W,X, Y 〉 and without loss of generality we may assume
that 〈V,W,X, Y 〉 = 〈V,W,L,M〉. In addition, as dim(〈V,W,X, Y 〉∩〈J,K,L,M〉) = 3, we have
that 〈V,W,L,M〉 contains a non-central element of 〈J,K,L,M〉. Letting this element be W ,
we have w1 = 0 and w2

2 + w2
3 6= 0. As 〈V,W,L,M〉 ∩ 〈J,K,L,M〉 = 〈W,L,M〉, we have that
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V /∈ 〈J,K,L,M〉 and thus v1 6= 0. The automorphism

ϕ =


v1 0 0 0 0
v2 w2 w3 0 0
v3 w3 −w2 0 0
v4 w4 0 v1w2 v1w3

v5 w5 0 v1w3 −v1w2

 ∈ Aut(t)

is such that ϕ · 〈I, J, L,M〉 = 〈V,W,L,M〉 and thus 〈V,W,X, Y 〉 ∼ 〈I, J, L,M〉.

We have shown that every four-dimensional subspace of t is equivalent to at least one of
the stated subspaces. Mutual non-equivalence of these subspaces follows from the fact that
they have been distinguished by the scalar invariants of Proposition 3.2.10. Thus every four-
dimensional subspace of t is equivalent to exactly one of the stated subspaces.

Proposition 3.3.10. The four-dimensional subspace structure of t is given by

I: 〈I, J, L,M〉
FCI: 〈J,K,L,M〉

Gen: 〈I, J,K,L〉

Proof. We first consider the four-dimensional subalgebras. The subspace 〈I, J,K,L〉 is not a
subalgebra as I,K ∈ 〈I, J,K,L〉, but [I,K] = M /∈ 〈I, J,K,L〉.

Now, for the ideals. Suppose V ∈ 〈I, J, L,M〉 and W ∈ t, then Lemma 2.2.1 gives

[V,W ] = (v1w2 − v2w1)L+ (v1w3 − 0 · w1)M

= (v1w2 − v2w1)L+ v1w3M ∈ 〈I, J, L,M〉.

Thus 〈I, J, L,M〉 is an ideal.

Now, for the fully characteristic ideals. The ideal 〈J,K,L,M〉 is a fully characteristic ideal,
by Lemma 3.2.4. The ideal 〈I, J, L,M〉 is not a fully characteristic ideal as ϕ · 〈I, J, L,M〉 =
〈I,K,L,M〉 6= 〈I, J, L,M〉 where

ϕ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 ∈ Aut(t).

Finally, we look at the generating subspaces. Consider the subspace 〈I, J,K,L〉. We have that
[I,K] = M , thus the subspace 〈I, J,K,L〉 generates the subspace 〈I, J,K,L,M〉 = t and is
thus generating.
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3.4 Summary

Table 3.1 presents the subspaces of the Lie algebra t, up to equivalence, along with the scalar
invariants of Proposition 3.2.10. These invariants fully distinguish the subspaces of t, up to
equivalence as the proofs of Proposition 3.3.1, Proposition 3.3.5, Proposition 3.3.7 and Proposi-
tion 3.3.9 determine these representative by running through all possible values of the invariants
of Proposition 3.2.10. Proposition 3.2.10 is thus in fact bi-conditional, we give this as Proposi-
tion 3.4.1 below. Theorem 3.4.2 collects Proposition 3.3.1, Proposition 3.3.5, Proposition 3.3.7
and Proposition 3.3.9 and displays the full subspace classification of t.

Table 3.1: Subspace structure and invariants

Subspace s dim(s) dim(s ∩ c) dim(s ∩ z) dim(s ∩ z ∩ [I, s ∩ c])

〈I〉 1 0 0 0

〈J〉 1 1 0 0

〈L〉 1 1 1 0

〈I, J〉 2 1 0 0

〈I, L〉 2 1 1 0

〈J,K〉 2 2 0 0

〈J,M〉 2 2 1 0

〈J, L〉 2 2 1 1

〈L,M〉 2 2 2 0

〈I, J,K〉 3 2 0 0

〈I, J,M〉 3 2 1 0

〈I, J, L〉 3 2 1 1

〈I, L,M〉 3 2 2 0

〈J,K,L〉 3 3 1 1

〈J, L,M〉 3 3 2 1

〈I, J,K,L〉 4 3 1 1

〈I, J, L,M〉 4 3 2 1

〈J,K,L,M〉 4 4 2 2

〈I, J,K,L,M〉 5 4 2 2
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Proposition 3.4.1. Let s and w be subspaces of t and c = 〈J,K,L,M〉. The subspaces s and
w are equivalent if and only if

dim(s) = dim(w),

dim(s ∩ z) = dim(w ∩ z),

dim(s ∩ c) = dim(w ∩ c) and

dim(s ∩ z ∩ [I, s ∩ c]) = dim(w ∩ z ∩ [I,w ∩ c]).

Theorem 3.4.2. The subspace structure of the Lie algebra t is given by

SA: 〈I〉, 〈J〉, 〈J,K〉, 〈I, L〉, 〈J,M〉, 〈J,K,L〉, 〈I, J, L〉
I: 〈L〉, 〈J, L〉, 〈I, L,M〉, 〈J, L,M〉, 〈I, J, L,M〉

FCI: 〈L,M〉, 〈J,K,L,M〉
S: 〈I, J〉, 〈I, J,M〉

Gen: 〈I, J,K〉, 〈I, J,K,L〉.
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Chapter 4

Classification of sub-Riemannian
structures

In this chapter we classify, up to isometry, the left-invariant sub-Riemannian structures on the
Lie group T. For this we employ a Lie group-Lie algebra correspondence result. This allows us
to convert results on the Lie algebra t, established in Chapter 3, into corresponding results on
the Lie group T. With these and the affine nature of isometries on nilpotent metric Lie groups
we produce the desired classification. The chapter ends with a computation of the linearised
isotropy groups of the left-invariant sub-Riemannian structures obtained in the classification.

4.1 Preliminaries

Definition 4.1.1. [cf. 4, Section 2] A left-invariant sub-Riemannian structure is a triple
(G,D,g) where G is a real, finite-dimensional, connected Lie group, D is a smooth bracket
generating left-invariant distribution on G, and g is a left-invariant Riemannian metric on D.
That is, D(1) is a linear subspace of g with

D(g) = d1Lg · D(1) for every g ∈ G

and g1 is a positive definite, symmetric bilinear form on D(1) with

gg(d1Lg ·A, d1Lg ·B) = g1(A,B) for every A,B ∈ D(1).

Definition 4.1.2. [4, Section 2] An isometry between two left-invariant sub-Riemannian
structures (G,D,g) and (G′,D′,g′) is a diffeomorphism φ : G −→ G′ such that

φ∗D = D′ and g = φ∗g′,

where φ∗D and φ∗g′ are as in DefinitionB.1.3.

50
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Chapter 4: Classification of sub-Riemannian structures 51

Definition 4.1.3. We shall denote the group of isometries of the structure (G,D,g) by
Iso(G,D,g). The isotropy subgroup of g ∈ G, denoted by Isog(G,D,g), is the subgroup of
isometries that fix g.

Remark 4.1.4. As the distribution D and metric g are left-invariant, they are completely
determined by their values at the identity D(1) and g1.

Lemma 4.1.5. Given a left-invariant distribution D, the push forward φ∗D of D by an auto-
morphism φ is left-invariant.

Proof. Suppose D is a left-invariant distribution on a smooth manifold G. As D is left-invariant,

D(x) = d1Lx · D(1)

for every x ∈ G. For any automorphism φ of G,

(φ∗D)(x) = ((φ−1)∗D)(x)

= dφ−1(x)φ · D(φ−1(x))

= dφ−1(x)φ · d1Lφ−1(x) · D(1)

= d1(φ ◦ Lφ−1(x)) · D(1).

As φ ∈ Aut(G), it is a Lie group homomorphism and thus for any h ∈ G we have(
φ ◦ Lφ−1(x)

)
(h) = φ

(
(φ−1(x))h

)
= (φ(φ−1(x)))(φ(h))

= x(φ(h))

= (Lx ◦ φ)(h).

That is, φ ◦ Lφ−1(x) = Lx ◦ φ and thus

(φ∗D)(x) = d1(φ ◦ Lφ−1(x)) · D(1)

= d1(Lx ◦ φ) · D(1)

= d1Lx · d1φ · D(1)

= d1Lx · (φ∗D)(1).

This proves that φ∗D is left-invariant.

Lemma 4.1.6. Given a left-invariant sub-Riemannian structure (G,D,g) and φ ∈ Aut(G), the
pull back φ∗g is left-invariant.

Proof. Suppose (G,D,g) is a left-invariant sub-Riemannian structure, then the Riemannian
metric g is left-invariant, that is

gx(d1Lx ·A, d1Lx ·B) = g1(A,B)
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for every x ∈ G and A,B ∈ g. Now,

(φ∗g)x(d1Lx ·A, d1Lx ·B) = gφ(x)(dxφ · d1Lx ·A, dxφ · d1Lx ·B)

= g1(dφ(x)Lφ(x)−1 · (dxφ · d1Lx ·A), dφ(x)Lφ(x)−1 · (dxφ · d1Lx ·B))

= g1(dx(Lφ(x)−1 ◦ φ) · d1Lx ·A, dx(Lφ(x)−1 ◦ φ) · d1Lx ·B).

As φ ∈ Aut(G), it is a Lie group homomorphism and thus for any h ∈ G we have

(Lφ(x)−1 ◦ φ)(h) = Lφ(x)−1(φ(h))

= φ(x)−1φ(h)

= φ(x−1)φ(h)

= φ(x−1h)

= (φ ◦ Lx−1)(h).

That is, (Lφ(x)−1 ◦ φ) = (φ ◦ Lx−1) and thus

(φ∗g)x(d1Lx ·A, d1Lx ·B) = g1(dx(Lφ(x)−1 ◦ φ) · d1Lx ·A, dx(Lφ(x)−1 ◦ φ) · d1Lx ·B)

= g1(dx(φ ◦ Lx−1) · d1Lx ·A, dx(φ ◦ Lx−1) · d1Lx ·B)

= g1(d1φ · (dxLx−1 · d1Lx ·A), d1φ · (dxLx−1 · d1Lx ·B))

= g1(d1φ ·A, d1φ ·B)

= (φ∗g)1(A,B).

This proves that (φ∗g) is left-invariant.

Proposition 4.1.7. Given left-invariant sub-Riemannian structures (G,D,g) and (G,D′,g′)
on a simply connected matrix Lie group G, then

there exists φ ∈ Aut(G) such that

φ∗D = D′

g = φ∗g′.

if and only if there exists ψ ∈ Aut(g) such that

ψ · D(1) = D′(1)

g1(A,B) = g′1(ψ ·A,ψ ·B),

where A,B ∈ g and 1 is the unit element of G.

Proof. As φ ∈ Aut(G), we have that d1φ ∈ Aut(g). Now,

D′ = φ∗D =
(
φ−1

)∗D
thus for x ∈ G we have

D′(x) = dφ−1(x)φ · D
(
φ−1(x)

)
.
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Taking x = 1 and noting that φ−1(1) = 1 we get

D′(1) = d1φ · D (1) .

As
g = φ∗g′,

we have that

gx (d1Lx ·A, d1Lx ·B) = g′φ(x) (dxφ · d1Lx ·A, dxφ · d1Lx ·B)

for x ∈ G and A,B ∈ g. Taking x = 1 and noting that φ(1) = 1, we get

g1 (A,B) = g′1 (d1φ ·A, d1φ ·B) .

Therefore taking ψ = d1φ gives (2).

Conversely, as G is simply connected, Corollary B.2.12 implies that there exists φ ∈ Aut(G)
such that d1φ = ψ. As

φ∗D = (φ−1)∗D,

we have that
φ∗D(x) = dφ−1(x)φ · D

(
φ−1 (x)

)
for x ∈ G. Taking x = 1, we have

φ∗D(1) = d1φ · D (1)

= ψ · D (1)

= D′(1).

By Lemma 4.1.5, D′ and φ∗D are left-invariant distributions that agree at identity, we thus
have

φ∗D = D′.

For A,B ∈ g and x ∈ G

(φ∗g′)x(d1Lx ·A, d1Lx ·B) = g′φ(x)(dxφ · d1Lx ·A, dxφ · d1Lx ·B).

Taking x = 1, we have

(φ∗g′)1(A,B) = g′φ(1)(d1φ ·A, d1φ ·B)

= g′1(ψ ·A,ψ ·B)

= g1(A,B).

Therefore φ∗g′1 = g1. By Lemma 4.1.6, as φ∗g′ and g are left-invariant Riemannian metrics
that agree at identity, we have that

g = φ∗g′.
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Remark 4.1.8. The matrix Lie group T is simply connected as it is diffeomorphic to R5 with
the diffeomorphism φ : T −→ R5 given by

φ :


1 x1 x4 x5

0 1 x2 x3

0 0 1 0
0 0 0 1

 7→ (x1, x2, x3, x4, x5).

Theorem 4.1.9. [10, Theorem 1.2] Isometries between nilpotent metric Lie groups are affine.
That is, every isometry φ is the composition of a left translation and a Lie group homomorphism.

Corollary 4.1.10. For a nilpotent metric Lie groups G, if Φ ∈ Iso1(G,D,g), then Φ ∈ Aut(G).

Proof. Suppose Φ ∈ Iso1(G,D,g), then Theorem 4.1.9 implies that

Φ = Lg ◦ F,

where Lg is left translation by some g ∈ G and F is a Lie group homomorphism. Now,

Φ(1) = Lg(F (1))

1 = Lg(1) = g.

Therefore Φ = F , a Lie group homomorphism. As Φ is invertible, it follows that Φ ∈ Aut(G).

We denote by dIso1(G,D,g) the group

{d1φ : φ ∈ Iso1(G,D,g)} ∼= Iso(G,D,g)

of linearised isotropies. For a sub-Riemannian structure (G,D,g) on a simply connected
nilpotent Lie group, we have that the isotropy subgroup Iso1(G,D,g) is given by

Iso1(G,D,g) = {φ ∈ Aut(G) : d1φ · D(1) = D(1),g1(A,B) = g1(d1φ ·A, d1φ ·B)} .

As for φ ∈ Aut(G), d1φ = ϕ ∈ Aut(g), we have that dIso1(G,D,g) ⊆ Aut(g).

Proposition 4.1.11. If (G,D,g) is a left-invariant sub-Riemannian structure, then Iso(G,D,g)
is a semidirect product of the subgroup of left translations GL by the isotropy group at identity
Iso1(G,D,g). That is,

Iso(G,D,g) = GL o Iso1(G,D,g).

Proof. Suppose (G,D,g) is a left-invariant sub-Riemannian structure. The isometry group
Iso(G,D,g) has as subgroups, the subgroup of left translations of G, GL, and subgroup Iso1(G,D,g)
of isometries that fix the identity. As the only left translation that fixes the identity is the
identity transformation, we have that GL ∩ Iso1(G,D,g) = {IdG}. That is, Iso1(G,D,g) is a
complement, in the sense of Definition A.2.7, of GL in Iso(G,D,g).
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Given any left translation Lg : h 7→ g ·h and b ∈ Iso(G,D,g), Lemma 4.1.9 gives that b = Lx ◦a
for some a ∈ Aut(G), and we have that

(b ◦ Lg ◦ b−1)(h) = (Lx ◦ a ◦ Lg ◦ a−1 ◦ Lx−1)(h)

= Lx(a(g · a−1(x−1h)))

= Lx(a(g) · a(a−1(x−1h)))

= x · (a(g) · x−1h)

= Lx·a(g)·x−1(h),

a left translation. Therefore GL / Iso(G,D,g). That is, GL is a normal subgroup of Iso(G,D,g).

Given any Φ ∈ Iso(G,D,g), LΦ(1) ∈ GL and LΦ(1)−1 ◦ Φ ∈ Iso1(G,D,g) with Φ = (LΦ(1)) ◦
(LΦ(1)−1 ◦ Φ). Definition A.2.8 implies that

Iso(G,D,g) = GL oφ Iso1(G,D,g)

with φ : Iso1(G,D,g) −→ Aut(GL) defined by φ(k) = φk for k ∈ Iso1(G,D,g) where
φk : Lg 7→ k ◦ Lg ◦ k−1 and product

(Lg, k) · (Lh, k′) = (Lg ◦ φk(Lh), k ◦ k′)
= (Lg ◦ (k ◦ Lh ◦ k−1), k ◦ k′)
= (Lg ◦ Lk(h), k ◦ k′)
= (Lg·k(h), k ◦ k′),

from Theorem A.2.11.

As the homomorphism φ is not trivial, by Theorem A.2.12, this semidirect product is not a
direct product.

The correspondence between Lie algebra automorphisms and Lie group automorphisms given
in Proposition 4.1.7 allows us to use the results of Chapter 3 on the Lie algebra t to compute the
left-invariant sub-Riemannian structures of T up to Lie group automorphism. This computation
is executed in the sections that follow.

4.2 Sub-Riemannian structures

Left-invariant sub-Riemannian structures (T,D,g) and (T,D′,g′) on the Lie group T are said
to be isometric if there exists an isometry φ, in the sense of Definition 4.1.2, between them. We
will denote such an isometry by

(T,D,g) ≡ (T,D′,g′).

If the isometry φ is in addition a group isomorphism of the Lie group T — that is, it is an
automorphism — we will denote the automorphy between these structures by

(T,D,g) ∼= (T,D′,g′).
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In the following sections, utilizing the observations of the previous section, we proceed to classify
the left-invariant sub-Riemannian structures (T,D,g) of the Lie group T up to automorphy,
before later generalising this classification to isometries.

Lemma 4.2.1. Let (G,D1,g) be a left-invariant sub-Riemannian structure on a simply con-
nected matrix Lie group G and D2 be a left-invariant distribution on G. If there exists φ ∈
Aut(G) such that φ∗D1 = D2, then there exists a metric g′ on D2 such that

(G,D1,g) ∼= (G,D2,g
′).

Proof. Let (G,D1,g) be a left-invariant sub-Riemannian structure on a simply connected matrix
Lie group G and D2 be a left-invariant distribution on G. Suppose φ ∈ Aut(G) is such that
φ∗D1 = D2. That is, for h ∈ G

(φ∗D1)(h) = dφ−1(h)φ · D1(φ−1(h)) = D2(h).

As D1(h) = d1Lh · D1(1), we have that

D2(h) = dφ−1(h)φ · d1Lφ−1(h) · D1(1).

Define g′ = φ∗g. That is, for h ∈ G and A,B ∈ D2(1) ⊆ g

g′h(d1Lh ·A, d1Lh ·B) = (φ∗g)h(d1Lh ·A, d1Lh ·B)

= gφ−1(h)(dhφ
−1 · d1Lh ·A, dhφ−1 · d1Lh ·B).

Now, if h ∈ G and A ∈ D2(1), then

d1Lh ·A ∈ dφ−1(h)φ · d1Lφ−1(h) · D1(1).

We then have that

dhφ
−1 · d1Lh ·A ∈ dhφ−1 · dφ−1(h)φ · d1Lφ−1(h) · D1(1)

= dφ−1(h)(φ
−1 ◦ φ) · d1Lφ−1(h) · D1(1)

= dφ−1(h)IdG · d1Lφ−1(h) · D1(1)

= d1Lφ−1(h) · D1(1)

= D1(φ−1(h)).

We thus have that the g′ is well defined.

Suppose h ∈ G and A,B ∈ D1(1).

(φ∗g′)h(d1Lh ·A, d1Lh ·B) = g′φ(h)(dhφ · d1Lh ·A, dhφ · d1Lh ·B)

= (φ∗g)φ(h)(dhφ · d1Lh ·A, dhφ · d1Lh ·B)

= gφ−1(φ(h))(dφ(h)φ
−1 · dhφ · d1Lh ·A, dφ(h)φ

−1 · dhφ · d1Lh ·B)

= gh(dh(φ−1 ◦ φ) · d1Lh ·A, dh(φ−1 ◦ φ) · d1Lh ·B)

= gh(dhIdG · d1Lh ·A, dhIdG · d1Lh ·B)

= gh(d1Lh ·A, d1Lh ·B).
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This implies that g = φ∗g′. As we in addition have that φ∗D1 = D2, Proposition 4.1.7 and
Definition 4.1.2 give

(G,D1,g) ∼= (G,D2,g
′).

Lemma 4.2.2. Let (G,D,g) be a left-invariant sub-Riemannian structure on a simply connected
matrix Lie group G and H a left-invariant distribution on G with ϕ · D(1) = H(1) for some
ϕ ∈ Aut(g). Then there exists a sub-Riemannian metric g′ on H such that

(G,D,g) ∼= (G,H,g′).

Proof. For every left-invariant generating distribution D on G, Lemma 3.1.13 gives that if D(1)
is a generating subspace of g, then ϕ · D(1) = H(1) is a generating subspace of g. The proof
of Proposition 4.1.7 gives that there exists φ ∈ Aut(G) such that φ∗D = H. Lemma 4.2.1 then
implies that

(G,D,g) ∼= (G,H,g′),

for some appropriately defined sub-Riemannian metric g′.

Definition 4.2.3. Suppose s is a subspace of a Lie algebra g and let GL(s) be the collection of
all invertible linear maps from s to itself. Define

Auts(g) = {ψ ∈ GL(s) : ∃ψ̃ ∈ Aut(g), ψ̃ · s = s and ψ̃|s = ψ}.

Definition 4.2.4. Suppose (G,D,g) is a left-invariant sub-Riemannian structure, we define
the matrix Xg to be the matrix representation of g1 with respect to some ordered basis of D(1).
The matrix Xg is a positive definite matrix.

Lemma 4.2.5. Let (G,H,g) and (G,H,g′) be left-invariant sub-Riemannian structures on a
simply connected matrix Lie group G. We have that Xg′ = ψ>Xgψ for some ψ ∈ AutH(1)(g) if
and only if (G,H,g) ∼= (G,H,g′).

Proof. Suppose Xg′ = ψ>Xgψ for some ψ ∈ AutH(1)(g). Let A,B ∈ H(1), then

g′1(A,B) = A>Xg′B

= A>(ψ>Xgψ)B

= (ψ ·A)>Xg(ψ ·B)

= g1(ψ ·A,ψ ·B).

As ψ ∈ AutH(1)(g) ,there exists ψ̃ ∈ Aut(g) such that ψ̃ · H(1) = H(1) and ψ̃|H(1) = ψ. We
thus have that

g1(ψ ·A,ψ ·B) = g1(ψ̃ ·A, ψ̃ ·B), for A,B ∈ H(1) ⊆ g.

Thus there exist ψ̃ ∈ Aut(g) such that

g′1(A,B) = g1(ψ̃ ·A, ψ̃ ·B)
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for A,B ∈ H(1) and
ψ̃ · H(1) = H(1).

Proposition 4.1.7 implies that (G,H,g) ∼= (G,H,g′).

Conversely, suppose (G,H,g) and (G,H,g′) are automorphic left-invariant sub-Riemannian
structures on G. Proposition 4.1.7 implies that there exists ϕ̂ ∈ Aut(g) such that

ϕ̂ · H(1) = H(1)

and
g1(A,B) = g′1(ϕ̂ ·A, ϕ̂ ·B)

for every A,B ∈ H(1).

Define ϕ ∈ GL(H(1)), by ϕ · A = ϕ̂ · A for every A ∈ H(1), we then have that ϕ ∈ AutH(1)(g)
and in addition

g1(A,B) = g′1(ϕ̂ ·A, ϕ̂ ·B) = g′1(ϕ ·A,ϕ ·B)

for any A,B ∈ H(1).

With Xg and Xg′ as the positive definite matrix representations of g1 and g′1 with respect to
some basis of H(1), in coordinates this gives

A>XgB = (ϕ ·A)>Xg′(ϕ ·B)

= A>(ϕ>Xg′ϕ)B,

for all A,B ∈ H(1). This implies that Xg = ϕ>Xg′ϕ.

Now we specialize the previous Lemmas to left-invariant sub-Riemannian structures on our
particular Lie group T. We define H3, H4 and H5 to be the left-invariant bracket generating
distributions on T havingH3(1) = 〈I, J,K〉,H4(1) = 〈I, J,K,L〉 andH5(1) = 〈I, J,K,L,M〉 =
t.

Corollary 4.2.6. Consider arbitrary left-invariant sub-Riemannian structures (T,D3,g
a), (T,D4,g

b)
and (T,D5,g

c) on T, of rank 3, 4 and 5 respectively. There exists metrics g(3), g(4) and g(5)

on H3, H4 and H5 respectively such that

1. (T,D3,g
a) ∼= (T,H3,g

(3)),

2. (T,D4,g
b) ∼= (T,H4,g

(4)) and

3. (T,D5,g
c) ∼= (T,H5,g

(5)).

Proof. Follows from Theorem 3.4.2, Lemma 4.2.2 and the fact that H3, H4 and H5 are gener-
ating distributions.

We now specify Auts(t) when s is taken to be one of the bracket generating subspaces H3(1),
H4(1) and H5(1) of t.
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Lemma 4.2.7. .

1.

Aut〈I,J,K〉(t) =


i1 0 0
i2 j2 k2

i3 j3 k3

 : i1 6= 0 and j2k3 − k2j3 6= 0


were the matrix representations of the elements ϕ of Aut〈I,J,K〉(t) are written with respect
to the ordered basis (I, J,K) of 〈I, J,K〉.

2.

Aut〈I,J,K,L〉(t) =



i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j2

 : i1 6= 0 and j2k3 6= 0


were the matrix representations of the elements ϕ of Aut〈I,J,K,L〉(t) are written with re-
spect to the ordered basis (I, J,K,L) of 〈I, J,K,L〉.

3. Autt(t) = Aut(t).

Proof. Let

ψ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3

 ∈ Aut(t),

with respect to the ordered basis (I, J,K,L,M) of t. That is, i1 6= 0 and j2k3 − k2j3 6= 0 (see,
Proposition 3.1.1).

Proof of (1): If ψ̃ is such that ψ̃ · 〈I, J,K〉 = 〈I, J,K〉, then it simplifies to the form

ψ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
0 0 0 i1j2 i1k2

0 0 0 i1j3 i1k3

 .

Define ψ ∈ GL(〈I, J,K〉) by ψ · A = ψ̃ · A for all A ∈ 〈I, J,K〉. We then have that ψ ∈
Aut〈I,J,K〉(t), as ψ · 〈I, J,K〉 = 〈I, J,K〉 and ψ̃ ∈ Aut(t) with ψ̃|〈I,J,K〉 = ψ. The matrix
representation of ψ with respect to the ordered basis (I, J,K) of 〈I, J,K〉 is given by

ψ =

i1 0 0
i2 j2 k2

i3 j3 k3

 .
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Proof of (2): If ψ̃ is such that ψ̃ · 〈I, J,K,L〉 = 〈I, J,K,L〉, then it simplifies to the form

ψ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 0 k3 0 0
i4 j4 k4 i1j2 i1k2

0 0 0 0 i1k3

 .

Define ψ ∈ GL(〈I, J,K,L〉) by ψ · A = ψ̃ · A for all A ∈ 〈I, J,K,L〉. We then have that
ψ ∈ Aut〈I,J,K,L〉(t), in a similar way to the proof of (1). The matrix representation of ψ with
respect to the ordered basis (I, J,K,L) of 〈I, J,K,L〉 is given by

ψ =


i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j2

 .

Proof of (3): This follows immediately from the definition of Autt(t). We have shown that
elements of GL(s) of the desired form are elements of Auts(t). Conversely, we show that any
element of Auts(t) is of the desired form.

Converse of (1): Suppose

ϕ =

ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33

 ∈ Aut〈I,J,K〉(t)

were the matrix representation of ϕ is with respect to the ordered basis (I, J,K) of H3(1) =
〈I, J,K〉. We have that ϕ·〈I, J,K〉 = 〈I, J,K〉 and that there exists ϕ̃ ∈ Aut(t) with ϕ̃|〈I,J,K〉 =
ϕ.

Let ϕ̃ have matrix representation

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3


with respect to the ordered basis (I, J,K,L,M) of t. By Proposition 3.1.1 we have that i1 6= 0
and j2k3−k2j3 6= 0. As ϕ̃·〈I, J,K〉 = ϕ·〈I, J,K〉 = 〈I, J,K〉, ϕ̃ preserves the subspace 〈I, J,K〉
of t. This implies that its matrix representation takes the form

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
0 0 0 i1j2 i1k2

0 0 0 i1j3 i1k3

 .
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We have that the matrix representation of ϕ with respect to the ordered basis (I, J,K) of
〈I, J,K〉 is given by

ϕ =

 | | |
ϕ · I ϕ · J ϕ ·K
| | |

 .
As ϕ̃|〈I,J,K〉 = ϕ, we have

ϕ · I = ϕ̃ · I = i1I + i2J + i3K

ϕ · J = ϕ̃ · J = 0 · I + j2J + j3K

ϕ ·K = ϕ̃ ·K = 0 · I + k2J + k3K

and thus

ϕ =

i1 0 0
i2 j2 k2

i3 j3 k3


with i1 6= 0 and j2k3 − k2j3 6= 0.

Converse of (2): Suppose

ϕ =


ϕ11 ϕ12 ϕ13 ϕ14

ϕ21 ϕ22 ϕ23 ϕ24

ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44

 ∈ Aut〈I,J,K,L〉(t)

were the matrix representation of ϕ is with respect to the ordered basis (I, J,K,L) of H4(1) =
〈I, J,K,L〉. We have that ϕ · 〈I, J,K,L〉 = 〈I, J,K,L〉 and that there exists ϕ̃ ∈ Aut(t) with
ϕ̃|〈I,J,K,L〉 = ϕ.

Let ϕ̃ have matrix representation

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3


with respect to the ordered basis (I, J,K,L,M) of t. By Proposition 3.1.1 we have that i1 6= 0
and j2k3−k2j3 6= 0. As ϕ̃ · 〈I, J,K,L〉 = ϕ · 〈I, J,K,L〉 = 〈I, J,K,L〉, ϕ̃ preserves the subspace
〈I, J,K,L〉 of t. This implies that its matrix representation takes the form

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 0 k3 0 0
i4 j4 k4 i1j2 i1k2

0 0 0 0 i1k3

 .
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We have that the matrix representation of ϕ with respect to the ordered basis (I, J,K,L) of
〈I, J,K,L〉 is given by

ϕ =

 | | | |
ϕ · I ϕ · J ϕ ·K ϕ · L
| | | |

 .
As ϕ̃|〈I,J,K,L〉 = ϕ, we have

ϕ · I = ϕ̃ · I = i1I + i2J + i3K + i4L

ϕ · J = ϕ̃ · J = 0 · I + j2J + 0 ·K + j4L

ϕ ·K = ϕ̃ ·K = 0 · I + k2J + k3K + k4L

ϕ · L = ϕ̃ · L = 0 · I + 0 · J + 0 ·K + i1j2L

and thus

ϕ =


i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j2


with i1 6= 0 and j2k3 6= 0.

4.3 Sub-Riemannian structures of T

With the above theory established, we now proceed with the computation of the left-invariant
sub-Riemannian structures of the Lie group T.

Lemma 4.3.1. Let (T,H3,g) be a left-invariant sub-Riemannian structure, then

(T,H3,g) ∼= (T,H3,h
3)

where the metric h3 is specified by Xh3 = I3 with respect to the ordered basis (I, J,K) of
H3(1) = 〈I, J,K〉.

Proof. Suppose (T,H3,g) is a left-invariant sub-Riemannian structure. Concretely,

Xg =

h1 a1 a2

a1 h2 a3

a2 a3 h3

 ,
a positive definite matrix. Let

ψ1 =

 1 0 0
a1h3−a2a3
a23−h2h3

1 0
a2h2−a1a3
a23−h2h3

− a3
h3

1

 ∈ Aut〈I,J,K〉(t).
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The entries of ψ1 are well defined as (a2
3 − h2h3) and h3 are positive reals — following from

Lemma A.1.2 and the pricipal minors −(a2
3 − h2h3) and h3 of Xg. Direct computation gives

the positive definite matrix

ψ>1 Xgψ1 =


h3a

2
1−2a2a3a1+a23h1+h2(a22−h1h3)

a23−h2h3
0 0

0 h2 − a23
h3

0

0 0 h3

 .
Relabelling, we have that

ψ>1 Xgψ1 =

b1 0 0
0 b2 0
0 0 b3

 .
Lemma 4.2.5 implies that

(T,H3,g) ∼= (T,H3,g
′)

where g′ is specified by Xg′ = ψ>1 Xgψ1.

Now, let

ψ2 =


1√
b1

0 0

0 1√
b2

0

0 0 1√
b3

 ∈ Aut〈I,J,K〉(t).

The entries of ψ2 are well defines as b1, b2 and b3 are positive by Lemma A.1.2 as they are
principal minors of the matrix Xg′ = ψ>1 Xgψ1. Direct computation gives

ψ>2 Xg′ψ2 =

1 0 0
0 1 0
0 0 1

 = I3.

Lemma 4.2.5 thus gives that
(T,H3,g

′) ∼= (T,H3,h
3).

The desired result,
(T,H3,g) ∼= (T,H3,h

3)

follows by the transitivity of the relation ∼=.

Lemma 4.3.2. Let (T,H4,g) be a left-invariant sub-Riemannian structure, then

(T,H4,g) ∼= (T,H4,h
4,α)

where the Riemannian metric h4,α is specified by Xh4,α = αI4, α > 0, with respect to the
ordered basis (I, J,K,L) of H4(1) = 〈I, J,K,L〉. Furthermore, for distinct α, β > 0, the sub-
Riemannian structures (T,H4,h

4,α) and (T,H4,h
4,β) are non-automorphic.

Proof. Suppose (T,H4,g) is a left-invariant sub-Riemannian structure. Concretely,

Xg =


h1 a1 a2 a3

a1 h2 a4 a5

a2 a4 h3 a6

a3 a5 a6 h4

 ,
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a positive definite matrix. Let

ψ1 =


1 0 0 0
0 1 0 0
0 0 1 0
− a3
h4
− a5
h4
− a6
h4

1

 ∈ Aut〈I,J,K,L〉(t).

As h4 > 0, the entries of ψ1 are well defined — by Lemma A.1.2. Direct computation gives the
positive definite matrix

ψ>1 Xgψ1 =


h1 − a23

h4
a1 − a3a5

h4
a2 − a3a6

h4
0

a1 − a3a5
h4

h2 − a25
h4

a4 − a5a6
h4

0

a2 − a3a6
h4

a4 − a5a6
h4

h3 − a26
h4

0

0 0 0 h4

 .
Relabelling, we have that

ψ>1 Xgψ1 =


h′1 a′1 a′2 0
a′1 h′2 a′4 0
a′2 a′4 h′3 0
0 0 0 h′4

 .
Lemma 4.2.5 implies that

(T,H4,g) ∼= (T,H4,g
′)

where g′ is specified by Xg′ = ψ>1 Xgψ1.

Now, let

ψ2 =


1 0 0 0

a′1h
′
3−a

′
2a
′
4

a′4
2−h′2h′3

1 − a′4
h′2

0
a′2h
′
2−a

′
1a
′
4

a′4
2−h′2h′3

0 1 0

0 0 0 1

 ∈ Aut〈I,J,K,L〉(t).

As a′4
2 − h′2h′3 > 0, the matrix ψ2 is well defined — by Lemma A.1.2 as a′4

2 − h′2h′3 is a principal
minor of the matrix Xg′ . Direct computation gives the positive definite matrix

ψ>2 Xg′ψ2 =


h′3a
′
1
2−2a′2a

′
4a
′
1+a′4

2h′1+h′2(a
′
2
2−h′1h

′
3)

a′4
2−h′2h′3

0 0 0

0 h′2 0 0

0 0 h′3 −
a′4

2

h′2
0

0 0 0 h′4

 .

Relabelling, we have that

ψ>2 Xg′ψ2 =


b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4

 .
Lemma 4.2.5 implies that

(T,H4,g
′) ∼= (T,H4,g

′′)
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where g′′ is specified by Xg′′ = ψ>2 Xg′ψ2.

Finally, we let

ψ3 =


1√
b1

0 0 0

0 1√
b2

0 0

0 0 1√
b3

0

0 0 0 1√
b1
√
b2

 ∈ Aut〈I,J,K,L〉(t).

This matrix is well defined as b1, b2, b3, b4 > 0 by LemmaA.1.2. Direct computation gives

ψ>3 Xg′′ψ3 =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 b4
b1b2

 .
Lemma 4.2.5 implies that

(T,H4,g
′′) ∼= (T,H4,g

(3))

where g(3) is specified by Xg(3) = ψ>3 Xg′′ψ3.

Let λ = b4
b1b2

and

ψ4 =


1√
λ

0 0 0

0 1√
λ

0 0

0 0 1√
λ

0

0 0 0 1
λ

 ∈ Aut〈I,J,K,L〉(t).

We then have that

ψ>4 Xg(3)ψ4 =


1
λ 0 0 0
0 1

λ 0 0
0 0 1

λ 0
0 0 0 1

λ

 .

Lemma 4.2.5 implies that
(T,H4,g

(3)) ∼= (T,H4,h
4,α)

where h4,α is specified by Xh4,α = ψ>4 Xg(3)ψ4 = 1
λI4 = αI4, where α = 1

λ = b1b2
b4

> 0.
Transitivity of the automorphism relation ∼= gives the result

(T,H4,g) ∼= (T,H4,h
4,α).

We now show that each positive real α determines a unique left-invariant sub-Riemannian
structure up to automorphy. That is, given α, β > 0

(T,H4,h
4,α) ∼= (T,H4,h

4,β)

if and only if α = β. Clearly, if α = β > 0 then we have that (T,H4,h
4,α) ∼= (T,H4,h

4,β).
Conversely, suppose α, β > 0 and

(T,H4,h
4,α) ∼= (T,H4,h

4,β).

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 4: Classification of sub-Riemannian structures 66

By Lemma 4.2.5 we have that Xh4,β = ψ>Xh4,αψ for some ψ ∈ Aut〈I,J,K,L〉(t). It follows that

Xh4,β = ψ>Xh4,αψ if and only if ψ>(αI4)ψ = βI4.

Let Eq(i, j) be the scalar equation determined by the (i,j)-entry in the matrix equation
ψ>(αI4)ψ = βI4, where

ψ =


ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44

 .
The equations

Eq(4, 1) : αψ11ψ22ψ41 = 0

Eq(4, 2) : αψ11ψ22ψ42 = 0

Eq(4, 3) : αψ11ψ22ψ43 = 0

imply that ψ41 = ψ42 = ψ43 = 0 or ψ22 = 0 as ψ11 6= 0. However if ψ22 = 0 we have that
0 = αψ2

11ψ
2
22, contradicting

Eq(4, 4) : αψ2
11ψ

2
22 = β > 0.

Thus ψ41 = ψ42 = ψ43 = 0 and ψ22 6= 0.

Also,
Eq(3, 2) : α(ψ22ψ23 + ψ42ψ43) = 0.

That is, α(ψ22ψ23) = 0. As ψ22, α 6= 0, we have ψ23 = 0. Now, βI4 = ψ>(αI4)ψ reduces to

βI4 =


α
(
ψ2

11 + ψ2
21 + ψ2

31

)
αψ21ψ22 αψ31ψ33 0

αψ21ψ22 αψ2
22 0 0

αψ31ψ33 0 αψ2
33 0

0 0 0 αψ2
11ψ

2
22

 .
As α 6= 0, ψ22 6= 0 and αψ21ψ22 = 0 we have that ψ21 = 0. As αψ2

33 = β 6= 0, we have ψ33 6= 0.
It then follow that αψ31ψ33 = 0 implies that ψ31 = 0. Our matrix equation then reduces to

βI4 =


αψ2

11 0 0 0
0 αψ2

22 0 0
0 0 αψ2

33 0
0 0 0 αψ2

11ψ
2
22

 .
From equations Eq(1, 1), Eq(2, 2) and Eq(3, 3) it follows that ψ11 = ψ22 = ψ33 =

√
β
α . This

reduces Eq(4, 4) to β = β2

α and thus β = α as required.

Lemma 4.3.3. Let (T,H5,g) be a left-invariant sub-Riemannian structure, then

(T,H5,g) ∼=
(
T,H5,h

5,(α,β)
)
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where the metric h5,(α,β) is specified by

Xh5,(α,β) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 α 0
0 0 0 0 β


for some α, β > 0, with respect to the ordered basis (I, J,K,L,M) of H5(1) = t. Furthermore,
every left-invariant sub-Riemannian structure (T,H5,g) is automorphic to a unique structure
(T,H5,h

5,(α,β)) with α ≥ β > 0.

Proof. Suppose (T,H5,g) is a left-invariant sub-Riemannian structure. Concretely

Xg =


h1 a1 a2 a3 a4

a1 h2 a5 a6 a7

a2 a5 h3 a8 a9

a3 a6 a8 h4 a10

a4 a7 a9 a10 h5

 ,
a positive definite matrix. Let, with the use of Lemma 4.2.7,

ψ1 =


1 0 0 0 0
0 1 0 0 0
0 −a10h5

1 0 0

0 0 0 1 0

− a4
h5

a10a9−a7h5

h5
2 − a9

h5
−a10h5

1

 ∈ Aut(t).

The entries of ψ1 are well defined, as h5 > 0 — by Lemma A.1.2. Direct computation gives a
positive definite matrix of the form

ψ>1 Xgψ1 =


h1

(1) a1
(1) a2

(1) a3
(1) 0

a1
(1) h2

(1) a5
(1) a6

(1) 0

a2
(1) a5

(1) h3
(1) a8

(1) 0

a3
(1) a6

(1) a8
(1) h4

(1) 0

0 0 0 0 h5
(1)

 .

Lemma 4.2.5 implies that
(T,H5,g) ∼= (T,H5,g

(1))

where g(1) is specified by Xg(1) = ψ>1 Xgψ1.

Let

ψ2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

− a3
(1)

h4
(1) − a6

(1)

h4
(1) − a8

(1)

h4
(1) 1 0

0 0 0 0 1

 ∈ Aut(t).
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The entries of ψ2 are well defined, as h4
(1) > 0 — by Lemma A.1.2. Direct computation give a

positive definite matrix of the form

ψ>2 Xg(1)ψ2 =


h

(2)
1 a

(2)
1 a

(2)
2 0 0

a
(2)
1 h

(2)
2 a

(2)
5 0 0

a
(2)
2 a

(2)
5 h

(2)
3 0 0

0 0 0 h
(2)
4 0

0 0 0 0 h
(2)
5

 .

Lemma 4.2.5 implies that
(T,H5,g

(1)) ∼= (T,H5,g
(2))

where g(2) is specified by Xg(2) = ψ>2 Xg(1)ψ2.

Let

ψ3 =



1 0 0 0 0
0 1 0 0 0

− a
(2)
2

h
(2)
3

− a
(2)
5

h
(2)
3

1 0 0

0 0 0 1 0

0 0 0 − a
(2)
5

h
(2)
3

1

 ∈ Aut(t).

The entries of ψ3 are well defined, as h
(2)
3 > 0 — by Lemma A.1.2. Direct computation gives a

positive definite matrix of the form

ψ3Xg(2)ψ3 =


h

(3)
1 a

(3)
1 0 0 0

a
(3)
1 h

(3)
2 0 0 0

0 0 h
(3)
3 0 0

0 0 0 h
(3)
4 0

0 0 0 0 h
(3)
5

 .

Lemma 4.2.5 implies that
(T,H5,g

(2)) ∼= (T,H5,g
(3)),

where g(3) is specified by Xg(3) = ψ>3 Xg(2)ψ3.

Let

ψ4 =


1 0 0 0 0

− a
(3)
1

h
(3)
2

1 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ∈ Aut(t).

The entries of ψ4 are well defined, as h
(3)
2 > 0 — by Lemma A.1.2. Direct computation gives a
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positive definite matrix of the form

ψ>4 Xg(3)ψ4 =


b1 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5

 .
Lemma 4.2.5 implies that

(T,H5,g
(3)) ∼= (T,H5,g

(4))

where g(4) is specified by Xg(4) = ψ>4 Xg(3)ψ4.

Let

ψ5 =


1√
b1

0 0 0 0

0 1√
b2

0 0 0

0 0 1√
b3

0 0

0 0 0 1√
b1
√
b2

0

0 0 0 0 1√
b1
√
b3

 ,
Now, ψ5 is well defined as bi > 0 for i = 1, 2, ..., 5 by Lemma A.1.2. Direct computation gives

ψ>5 Xg(4)ψ5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 b4
b1b2

0

0 0 0 0 b5
b1b3

 .

Lemma 4.2.5 implies that
(T,H5,g

(4)) ∼= (T,H5,h
5,(α,β))

where h5(α,β) is specified by Xh5(α,β) = ψ>5 Xg(4)ψ5 — taking α = b4
b1b2

and β = b5
b1b3

.

Transitivity of the automorphism relation ∼= gives the result

(T,H5,g) ∼= (T,H5,h
5,(α,β)).

We determine which left-invariant sub-Riemannian structures of the form (T,H5,h
5,(α,β)) are

automorphic. Suppose α1, β1, α2, β2 > 0 and (T,H5,h
5,(α1,β1)) ∼= (T,H5,h

5,(α2,β2)) By Lemma
4.2.5 we have that Xh5,(α1,β1) = ψ>Xh5,(α2,β2)ψ for some ψ ∈ Aut(t). Let

ψ =


ψ11 0 0 0 0
ψ21 ψ22 ψ23 0 0
ψ31 ψ32 ψ33 0 0
ψ41 ψ42 ψ43 ψ11ψ22 ψ11ψ23

ψ51 ψ52 ψ53 ψ11ψ32 ψ11ψ33

 .
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If ψ23 = 0, then Xh5,(α1,β1) = ψ>Xh5,(α2,β2)ψ gives the component equations

Eq(5, 1) : β2ψ11ψ33ψ51 = 0

Eq(5, 2) : β2ψ11ψ33ψ52 = 0

Eq(5, 3) : β2ψ11ψ33ψ53 = 0

Eq(5, 3) : β2ψ
2
11ψ32ψ33 = 0.

As β2 > 0 and Proposition 3.1.1 implies that ψ11 6= 0 and ψ22ψ33−ψ23ψ32 6= 0 — thus ψ33 6= 0
— we have that ψ51 = ψ52 = ψ53 = 0 and ψ32 = 0.

Taking this into account we have the reduced component equations:

Eq(4, 1) : α2ψ11ψ22ψ41 = 0

Eq(4, 2) : α2ψ11ψ22ψ42 = 0

Eq(4, 3) : α2ψ11ψ22ψ43 = 0.

As α2 > 0 and by Proposition 3.1.1 ψ11 6= 0 and ψ22ψ33 − ψ23ψ32 6= 0 — implying ψ22 6= 0 —
we have that ψ41 = ψ42 = ψ43 = 0.

Component equations Eq(2, 1) and Eq(3, 1) reduce to

Eq(2, 1) : ψ21ψ22 = 0

Eq(3, 1) : ψ31ψ33 = 0,

thus we have that ψ21 = ψ31 = 0.

The matrix equation Xh5,(α1,β1) = ψ>Xh5,(α2,β2)ψ reduces to
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 α1 0
0 0 0 0 β1

 =


ψ2

11 0 0 0 0
0 ψ2

22 0 0 0
0 0 ψ2

33 0 0
0 0 0 α2ψ

2
11ψ

2
22 0

0 0 0 0 β2ψ
2
11ψ

2
33

 .
Thus, ψ2

11 = ψ2
22 = ψ2

33 = 1, and so α1 = α2 and β1 = β2.

On the other hand, if ψ23 6= 0 then Xh5,(α1,β1) = ψ>Xh5,(α2,β2)ψ gives the component equation

Eq(5, 4) : ψ2
11(α2ψ22ψ23 + β2ψ32ψ33) = 0,

which gives ψ22 = −β2ψ32ψ33

α2ψ23
. As Proposition 3.1.1 gives ψ22ψ33 − ψ23ψ32 6= 0, we have that(

−β2ψ32ψ33

α2ψ23

)
ψ33 − ψ23ψ32 6= 0. That is, ψ32

((
− β2ψ33

α2ψ23

)
ψ33 − ψ23

)
6= 0. Therefore ψ32 6= 0.

Solving the component equations

Eq(5, 1) : ψ11(α2ψ23ψ41 + β2ψ33ψ51) = 0

Eq(5, 2) : ψ11(α2ψ23ψ42 + β2ψ33ψ52) = 0

Eq(5, 3) : ψ11(α2ψ23ψ43 + β2ψ33ψ53) = 0
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for ψ41, ψ42 and ψ43, noting that ψ11 6= 0, we have ψ41 = −β2ψ33ψ51

α2ψ23
, ψ42 = −β2ψ33ψ52

α2ψ23
,

ψ43 = −β2ψ33ψ53

α2ψ23
. Solving the reduced component equations

Eq(4, 1) : β2ψ11ψ32ψ51

(
α2β2ψ

2
33

α2
2ψ

2
23

+ 1

)
= 0

Eq(4, 2) : β2ψ11ψ32ψ52

(
α2β2ψ

2
33

α2
2ψ

2
23

+ 1

)
= 0

Eq(4, 3) : β2ψ11ψ32ψ53

(
α2β2ψ

2
33

α2
2ψ

2
23

+ 1

)
= 0

gives ψ51 = ψ52 = ψ53 = 0. This implies that ψ41 = ψ42 = ψ43 = 0.

We have the reduced component equation

Eq(3, 2) :
ψ32ψ33(α2 − β2)

α2
= 0.

Thus, as ψ32 6= 0, α2 = β2 or ψ33 = 0. If α2 6= β2, then ψ33 = 0. Further,
ψ22 = −β2ψ32ψ33

α2ψ23
= −β2ψ32·0

α2ψ23
= 0.

This reduces Xh5,(α1,β1) = ψ>Xh5,(α2,β2)ψ to

Xh5,(α1,β1) =


ψ2

11 + ψ2
21 + ψ2

31 ψ31ψ32 ψ21ψ23 0 0
ψ31ψ32 ψ2

32 0 0 0
ψ21ψ23 0 ψ2

23 0 0
0 0 0 β2ψ

2
11ψ

2
32 0

0 0 0 0 α2ψ
2
11ψ

2
23

 .

We then have that ψ31ψ32 = 0 and ψ21ψ23 = 0 implies ψ31 = ψ21 = 0. Thus ψ2
11 +ψ2

21 +ψ2
31 = 1

gives ψ2
11 = 1. We also have ψ2

32 = ψ2
23 = 1, thus α1 = β2ψ

2
11ψ

2
32 and β1 = α2ψ

2
11ψ

2
23 give

α1 = β2 and β1 = α2.

If α2 = β2 = β, then Eq(2, 1) and Eq(3, 1) reduce to

Eq(2, 1) : ψ32

(
ψ31 −

ψ21ψ33

ψ23

)
= 0

Eq(3, 1) : ψ21ψ23 + ψ31ψ33 = 0.

as ψ32 6= 0, we have ψ31 = ψ21ψ33

ψ23
. Thus

ψ21ψ23 + ψ31ψ33 = 0

ψ21ψ23 +

(
ψ21ψ33

ψ23

)
ψ33 = 0

ψ21ψ23

(
1 +

ψ2
33

ψ2
23

)
= 0.
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Thus, as ψ23 6= 0, ψ21 = 0 and ψ31 = ψ21ψ33

ψ23
= 0·ψ33

ψ23
= 0.

As a result, Eq(1, 1) reduces to ψ2
11 = 1 and

Xh5,(α1,β1) =


1 0 0 0 0

0 ψ2
32

(
ψ2

33

ψ2
23

+ 1
)

0 0 0

0 0 ψ2
23 + ψ2

33 0 0

0 0 0
βψ2

32(ψ
2
23+ψ2

33)
ψ2

23
0

0 0 0 0 β
(
ψ2

23 + ψ2
33

)

 .

As ψ2
23 + ψ2

33 = 1 we have that ψ33 = sin(x), ψ23 = cos(x) for some x ∈ [0, π]. Eq(5, 5) gives
β1 = β. Eq(2, 2) gives ψ2

32 = 1
sec2(x) . Finally, Eq(4, 4) simplifies as follows

βψ2
32

(
ψ2

23 + ψ2
33

)
ψ2

23

= α1

β · 1

sec2(x)
· 1

cos2(x)
= α1

β = α1.

Thus α1 = β = α2 and β1 = β = β2.

We have shown that the left-invariant sub-Riemannian structure (T,H5,g) is automorphic to
some left-invariant sub-Riemannian structure (T,H5,h

5,(α,β)) for α, β > 0. We have in addition

shown that the only left-invariant sub-Riemannian structures of the form (T,H5,h
5,(α̂,β̂)) with

α̂, β̂ > 0 that (T,H5,h
5,(α,β)) may be automorphic to are the ones for which (α̂, β̂) = (α, β)

(itself) or (α̂, β̂) = (β, α). Next we show that these two structures are always automorphic,
which implies that a left-invariant sub-Riemannian structure (T,H5,g) is automorphic to a
unique structure (T,H5,h

5,(ᾱ,β̄)) with ᾱ ≥ β̄ > 0. Indeed,

(T,H5,h
5,(α,β)) ∼= (T,H5,h

5,(β,α))

by Lemma 4.2.5 as Xh5,(β,α) = ψ>Xh5,(α,β)ψ for

ψ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 ∈ Aut(t).

Proposition 4.3.4. For any left-invariant sub-Riemannian structure (T,D,g) we have that:

1. If dim(D(1)) = 3, then
(T,D,g) ∼= (T,H3,h

3)

2. If dim(D(1)) = 4, then
(T,D,g) ∼= (T,H4,h

4,α)
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3. If dim(D(1)) = 5, then
(T,D,g) ∼= (T,H5,h

5,(α,β))

where (T,H3,h
3) , (T,H4,h

4,α) and (T,H5,h
5,(α,β)) are as in Lemmas 4.3.1,4.3.2 and 4.3.3.

Proof. Given a left-invariant sub-Riemannian structure (T,D,g), for dim(D) = 3, 4 and 5
respectively, Corollary 4.2.6 respectively gives

(T,D,g) ∼= (T,H3,g
3),

(T,D,g) ∼= (T,H4,g
4),

and
(T,D,g) ∼= (T,H5,g

5)

for an appropriately defined Riemannian metric gi, for i = 3, 4 and 5.

Respective use of Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.3 followed by use of the transitivity
of the relation ∼= will give the desired results 1. 2. and 3.

We recall that the isometry of Propositon 4.3.4 is that of Proposition 4.1.7. In particular,
isometries φ of Proposition 4.1.7 are Lie group automorphisms as defined in Appendix B.2.
That is, φ ∈ Aut(T) and preserves the group structure of T in addition to its smooth manifold
structure.

In the following we use the classification of Proposition 4.3.4 up to automorphism and the
affine nature of isometries between nilpotent Lie groups — as given by Theorem 4.1.9 — to
give a classification of the left-invariant sub-Riemannian structures on T up to general isometry
(as defined in Definition 4.1.2). For this, we change to the language of equivalence relations,
partitions and equivalence classes.

Denote by U the collection of all left-invariant sub-Riemannian structures on T. Consider
the equivalence relations ∼= and ≡ on U , where for left-invariant sub-Riemannian structures
(T,D,g), (T,D′,g′) ∈ U we have

(T,D,g) ∼= (T,D′,g′)⇔ ∃φ : (T,D,g) −→ (T,D′,g′), φ ∈ Aut(T)

and
(T,D,g) ≡ (T,D′,g′)⇔ ∃φ : (T,D,g) −→ (T,D′,g′), φ ∈ Diff(T),

where φ is an isometry in both cases.

Proposition 4.3.4 gives the following corollary.

Corollary 4.3.5. The equivalence relation ∼= partitions U into the following equivalence classes:

[(T,H3,h
3)]∼=,

[(T,H4,h
4,α)]∼= for α > 0,

and
[(T,H5,h

5,(α,β))]∼= for α ≥ β > 0.
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As Lie group automorphisms are in particular diffeomorphisms, Aut(T) ⊆ Diff(T) and we
have that [(T,D,g)]∼= ⊆ [(T,D,g)]≡ for any structure (T,D,g) ∈ U . It follows that for any
(T,D,g) ∈ U

[(T,D,g)]≡ =
⋃

(T,D′,g′)∈[(T,D,g)]≡

[(T,D′,g′)]∼=.

That is, every ≡-equivalence class is the union of ∼=-equivalence classes. In fact, as distinct
∼=-equivalence classes are disjoint, [(T,D,g)]≡ can be represented as the disjoint union of ∼=-
equivalence classes

[(T,D,g)]≡ =
⊔
r∈∆

[(
T,D(r),g(r)

)]
∼=
,

for some index set ∆.

We claim that [(T,D,g)]≡ is the disjoint union of exactly one ∼=-equivalence class.

Proof of Claim: Let (T,D,g) ∈ U . Now, [(T,D,g)]∼= ⊆ [(T,D,g)]≡. Suppose [(T,D′,g′)]∼= is
another ∼=-equivalence class contained in [(T,D,g)]≡. As (T,D,g), (T,D′,g′) ∈ [(T,D,g)]≡,
there exists an isometry φ : (T,D,g) −→ (T,D′,g′), φ ∈ Diff(T). By Theorem 4.1.9 we have
that φ = Lg◦ψ for some ψ ∈ Aut(T). Now, ψ = Lg−1◦φ : (T,D,g) −→ (T,D′,g′) is an isometry
of left-invariant sub-Riemannian structures on T as it is the composition of the isometries φ
and Lg−1 . We thus have that

(T,D,g) ∼= (T,D′,g′)
and so (T,D′,g′) ∈ [(T,D,g)]∼=. This gives

[(T,D′,g′)]∼= = [(T,D,g)]∼=.

As this holds for all pairs of ∼=-equivalence classes contained in [(T,D,g)]≡ we have that

[(T,D,g)]≡ =
⋃

(T,D′,g′)∈[(T,D,g)]≡

[(T,D′,g′)]∼=

= [(T,D,g)]∼=,

proving the claim.

In light of the above, we have the following result.

Proposition 4.3.6. The equivalence relation ≡ partitions U into the following equivalence
classes:

[(T,H3,h
3)]≡,

[(T,H4,h
4,α)]≡ for α > 0,

and
[(T,H5,h

5,(α,β))]≡ for α ≥ β > 0.

Proof. This is a direct consequence of the fact that for any left-invariant sub-Riemannian struc-
ture (T,D,g) on T we have

[(T,D,g)]≡ = [(T,D,g)]∼=

and Corollary 4.3.5.
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The classification of left-invariant sub-Riemannian structures on T up to isometries that are Lie
automorphisms, given in Proposition 4.3.4, can thus be improved to the following classification
up to isometry.

Proposition 4.3.7. For any left-invariant sub-Riemannian structure (T,D,g) we have that:

1. If dim(D(1)) = 3, then
(T,D,g) ≡ (T,H3,h

3).

2. If dim(D(1)) = 4, then

(T,D,g) ≡ (T,H4,h
4,α) for some α > 0.

3. If dim(D(1)) = 5, then

(T,D,g) ≡ (T,H5,h
5,(α,β)) for some α ≥ β > 0.

4.4 Isotropy groups of T

In this section we compute the linearised isotropy groups of the left-invariant sub-Riemannian
structures of the Lie algebra T — obtained in Proposition 4.3.7. As a consequence of Proposition
4.1.11, these sufficiently characterize the isometry groups of the left-invariant sub-Riemannian
structures (T,D,g) on T. The isotropy groups of the left-invariant sub-Riemannian structures
(T,D,g) on T are merely semidirect products of the group of left-translations by these isotropy
groups.

Proposition 4.4.1. The linearised isotropy groups of the left-invariant sub-Riemannian struc-
tures on T are given by

i)

dIso1(T,H3,h
3)

=




σ1 0 0 0 0
0 cos θ σ2 sin θ 0 0
0 sin θ −σ2 cos θ 0 0
0 0 0 σ1 cos θ σ1σ2 sin θ
0 0 0 σ1 sin θ −σ1σ2 cos θ

 ∈ Aut(t) : σ1, σ2 = ±1, θ ∈ R


∼= Z2 × O(2).

ii)

dIso1(T,H4,h
4,α) =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ1σ2 0
0 0 0 0 σ1σ3

 ∈ Aut(t) : σ1, σ2, σ3 = ±1


∼= Z2 × Z2 × Z2.
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iii) 1.

dIso1(T,H5,h
5,(α,β)) =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ1σ2 0
0 0 0 0 σ1σ3

 ∈ Aut(t) : σ1, σ2, σ3 = ±1


∼= Z2 × Z2 × Z2,

for α > β > 0.

2.

dIso1(T,H5,h
5,(α,α))

=




σ1 0 0 0 0
0 cos θ σ2 sin θ 0 0
0 sin θ −σ2 cos θ 0 0
0 0 0 σ1 cos θ σ1σ2 sin θ
0 0 0 σ1 sin θ −σ1σ2 cos θ

 ∈ Aut(t) : σ1, σ2 = ±1, θ ∈ R


∼= Z2 × O(2),

were α > 0.

Proof. (i) Consider the left-invariant sub-Riemannian structure (T,H3,h
3). Now, if

ϕ̃ ∈ dIso1(T,H3,h
3), then ϕ̃ ∈ Aut(t) with ϕ̃ · H3(1) = H3(1) = 〈I, J,K〉, that is ϕ̃ preserves

the subspace H3(1), then (by Proposition 3.1.1) ϕ̃ has matrix representation

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
0 0 0 i1j2 i1k2

0 0 0 i1j3 i1k3


with respect to the ordered basis (I, J,K,L,M) of t. As ϕ̃ ·H3(1) = H3(1) = 〈I, J,K〉, we may
define the map ϕ : H3(1) −→ H3(1) as the restriction of ϕ̃ to the subspace H3(1) ⊆ t. With
respect to the ordered basis (I, J,K) for H3(1) we have that ϕ has matrix representation

ϕ =

i1 0 0
i2 j2 k2

i3 j3 k3

 .
We also have that ϕ preserves the inner product h3

1 on 〈I, J,K〉. That is, for
A,B ∈ H3(1) = 〈I, J,K〉

h3
1(A,B) = h3

1(ϕ ·A,ϕ ·B) ⇐⇒ A>I3B = (ϕ ·A)>I3(ϕ ·B),

where the right-hand side of the bi-conditional is written in coordinates with respect to the
ordered basis (I, J,K) of H3(1). More explicitly, taking A = a1I + a2J + a3K and
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B = b1I + b2J + b3K, we have

A>I3B = A> · (ϕ>I3ϕ) ·B

[
a1 a2 a3

] b1b2
b3

 =
[
a1 a2 a3

] i1 i2 i3
0 j2 j3
0 k2 k3

i1 0 0
i2 j2 k2

i3 j3 k3

b1b2
b3

 .
As this holds for all A,B ∈ H3(1), we have I3 = ϕ>ϕ when written with respect to the basis
(I, J,K) of H3(1). That is, the matrix

ϕ =

i1 0 0
i2 j2 k2

i3 j3 k3


is an orthogonal matrix. This implies that the columns and rows of this matrix form an
orthonormal basis for R3. As a result, the first row of the matrix is a unit vector, implying that
i1 = σ1, where σ1 = ±1. As the first column is also a unit vector, we can further deduce that
i2 = i3 = 0. We thus have the matrix

[ϕ](I,J,K) =

σ1 0 0
0 j2 k2

0 j3 k3

 .
As [ϕ](I,J,K) ∈ O(3), the submatrix

[
j2 k2

j3 k3

]
∈ O(2). That is,[

j2 k2

j3 k3

]
=

[
cos θ σ2 sin θ
sin θ −σ2 cos θ

]
for some θ ∈ R and σ2 = ±1.

We therefore have that

dIso1(T,H3,h
3)

=




σ1 0 0 0 0
0 cos θ σ2 sin θ 0 0
0 sin θ −σ2 cos θ 0 0
0 0 0 σ1 cos θ σ1σ2 sin θ
0 0 0 σ1 sin θ −σ1σ2 cos θ

 ∈ Aut(t) : σ1, σ2 = ±1, θ ∈ R


∼= Z2 × O(2).

(ii) Consider the left-invariant sub-Riemannian structure (T,H4,h
4,α), α > 0. Now, for

ϕ̃ ∈ dIso1(T,H4,h
4,α) we have that ϕ̃ ∈ Aut(t) and ϕ̃ · H4(1) = H4(1) = 〈I, J,K,L〉. We thus

have (by Proposition 3.1.1) that ϕ̃ has the matrix representation

ϕ̃ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 0 k3 0 0
i4 j4 k4 i1j2 i1k2

0 0 0 0 i1k3


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with respect to the ordered basis (I, J,K,L,M) for t. As ϕ̃ · H4(1) = H4(1) = 〈I, J,K,L〉, we
may define the map ϕ : H4(1) −→ H4(1) as the restriction of ϕ̃ to the subspaceH4(1) ⊆ t. With
respect to the ordered basis (I, J,K,L) for H4(1) we have that ϕ has matrix representation

ϕ =


i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j1

 .
We also have that ϕ preserves the inner product h4,α on 〈I, J,K,L〉. That is, for
A,B ∈ H4 = 〈I, J,K,L〉

h4,α
1 (A,B) = h4,α

1 (ϕ ·A,ϕ ·B) ⇐⇒ A>(αI4)B = (ϕ ·A)>(αI4)(ϕ ·B),

where the right-hand side of the bi-conditional is written in coordinates with respect to the
ordered basis (I, J,K,L) of H4(1). More explicitly, taking A = a1I + a2J + a3K + a4L and
B = b1I + b2J + b3K + b4L, we have

α(A>I4B) = α(A>ϕ>I4ϕB)

α
[
a1 a2 a3 a4

] 
b1
b2
b3
b4

 = α
[
a1 a2 a3 a4

] 
i1 i2 i3 i4
0 j2 0 j4
0 k2 k3 k4

0 0 0 i1j1



i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j1

 .
As this holds for all A,B ∈ H4(1), we have that I4 = ϕ>ϕ when written with respect to the
basis (I, J,K,L) of H4(1). That is, the matrix

ϕ =


i1 0 0 0
i2 j2 k2 0
i3 0 k3 0
i4 j4 k4 i1j1


is an orthogonal matrix. This implies that the columns and row of ϕ form an orthonormal bases
for R4. As the first row of ϕ is a unit vector, we have that i1 = σ1 = ±1. From this and the fact
that the first column of ϕ is a unit vector, we deduce that i2 = i3 = i4 = 0. From i3 = 0 and
the fact that the third row of ϕ is a unit vector, we deduce that k3 = σ3 = ±1 . From k3 = σ3

and the fact that the third column of ϕ is a unit vector, we deduce that k2 = k4 = 0. From the
fact that the second row of ϕ is a unit vector, we deduce j2 = σ2 = ±1. Finally, from the fact
that the second column of ϕ is a unit vector and j2 = σ2, we deduce j4 = 0. This results in

ϕ =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ1σ2

 .
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Therefore,

dIso1(T,H4,h
4,α) =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ1σ2 0
0 0 0 0 σ1σ3

 ∈ Aut(t) : σ1, σ2, σ3 = ±1


∼= Z2 × Z2 × Z2.

(iii) Consider the left-invariant sub-Riemannian structure (T,H5,h
5,(α,β)) with α ≥ β > 0.

Now, for ϕ ∈ dIso1(T,H5,h
5(α,β)) we have that ϕ ∈ Aut(t) and ϕ · H5(1) = H5(1) = t, thus

(by Proposition 3.1.1) ϕ has the matrix representation

ϕ =


i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3


with respect to the ordered basis (I, J,K,L,M) of t. We also have that ϕ preserves the inner

product h
5,(α,β)
1 of t = H5(1). That is, for A,B ∈ t,

h
5,(α,β)
1 (A,B) = h

5,(α,β)
1 (ϕ ·A,ϕ ·B) ⇐⇒ A>Xh5,(α,β)B = (ϕ ·A)>Xh5,(α,β)(ϕ · β),

were the right-hand side is in coordinates with respect to the basis (I, J,K,L,M) of H(1) = t.
In coordinates we have

A>Xh5,(α,β)B = A>(ϕ>Xh5,(α,β)ϕ)B

As this holds of all A,B ∈ H5(1), we have that Xh5,(α,β) = ϕ>Xh5,(α,β)ϕ. That is,
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 α 0
0 0 0 0 β



=


i1 i2 i3 i4 i5
0 j2 j3 j4 j5
0 k2 k3 k4 k5

0 0 0 i1j2 i1j3
0 0 0 i1k2 i1k3

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 α 0
0 0 0 0 β

 ·

i1 0 0 0 0
i2 j2 k2 0 0
i3 j3 k3 0 0
i4 j4 k4 i1j2 i1k2

i5 j5 k5 i1j3 i1k3

 .

The fist row of this matrix equation gives the scalar equations

i21 = 1, i1i2 = 0, i1i3 = 0, i1i4 = 0 and i1i5 = 0,
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giving i1 = σ1 = ±1 and i2 = i3 = i4 = i5 = 0.

Therefore, Xh5,(α,β) is equal to the matrix
σ2

1 0 0 0 0

0 j2
2 + k2

2 j2j3 + k2k3 j2j4 + k2k4 j2j5 + k2k5

0 j2j3 + k2k3 j3
2 + k3

2 j3j4 + k3k4 j3j5 + k3k5

0 j2j4 + k2k4 j3j4 + k3k4 j4
2 + k4

2 + j2
2ασ2

1 + k2
2βσ2

1 j2j3ασ
2
1 + k2k3βσ

2
1 + j4j5 + k4k5

0 j2j5 + k2k5 j3j5 + k3k5 j2j3ασ
2
1 + k2k3βσ

2
1 + j4j5 + k4k5 j5

2 + k5
2 + j3

2ασ2
1 + k3

2βσ2
1

 .

Solving j2j5 + k2k5 = 0 and j3j5 + k3k5 = 0 we have that if j2 = 0 then k2 6= 0 and j3 6= 0 as
ϕ ∈ Aut(t) (see Proposition 3.1.1) and so j2j5 + k2k5 = 0 gives k5 = 0 while j3j5 + k3k5 = 0
gives j5 = 0 . If, on the other hand, j2 6= 0 then j2j5 + k2k5 = 0 gives j5 = −k2k5j2

and thus

j3j5 + k3k5 = 0

j3

(
−k2k5

j2

)
+ k3k5 = 0

j3k2k5 = j2k3k5.

This implies k5 = 0, for if not then j3k2 = j2k3 contradicting ϕ ∈ Aut(t). Now, k5 = 0 gives
j5 == −k2k5j2

= 0. Therefore in all cases we have j5 = k5 = 0.

The above reduction gives that Xh5,(α,β) is equal to the matrix
σ2

1 0 0 0 0

0 j2
2 + k2

2 j2j3 + k2k3 j2j4 + k2k4 0

0 j2j3 + k2k3 j3
2 + k3

2 j3j4 + k3k4 0

0 j2j4 + k2k4 j3j4 + k3k4 j4
2 + k4

2 + j2
2ασ2

1 + k2
2βσ2

1 j2j3ασ
2
1 + k2k3βσ

2
1

0 0 0 j2j3ασ
2
1 + k2k3βσ

2
1 j3

2ασ2
1 + k3

2βσ2
1

 .

Similarly, solving j2j4 + k2k4 = 0 and j3j4 + k3k4 = 0 we have that if j2 = 0 then then k2 6= 0
and j3 6= 0 as ϕ ∈ Aut(t) and so j2j4 +k2k4 = 0 gives k4 = 0 while j3j4 +k3k4 = 0 gives j4 = 0.
If, on the other hand, j2 6= 0 then j2j4 + k2k4 = 0 gives j4 = −k2k4j2

and thus

j3j4 + k3k4 = 0

j3

(
−k2k4

j2

)
+ k3k4 = 0

j3k2k4 = k3k4j2.

This implies that k4 = 0, for if not then j3k2 = k3j2 contradicting ϕ ∈ Aut(t). Now, k4 = 0
gives j4 = −k2k4j2

= 0. Therefore in all cases we have j4 = k4 = 0.
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The above reduces Xh5,(α,β) to being equal to
σ2

1 0 0 0 0

0 j2
2 + k2

2 j2j3 + k2k3 0 0

0 j2j3 + k2k3 j3
2 + k3

2 0 0

0 0 0 j2
2ασ2

1 + k2
2βσ2

1 j2j3ασ
2
1 + k2k3βσ

2
1

0 0 0 j2j3ασ
2
1 + k2k3βσ

2
1 j3

2ασ2
1 + k3

2βσ2
1

 .

As j2
2 + k2

2 = 1 and j2
3 + k2

3 = 1, we have j2 = cosx, k2 = sinx, j3 = cos y and k3 = sin y for
some x, y ∈ R. This gives Xh5,(α,β) is equal to

1 0 0 0 0
0 1 cos(x− y) 0 0
0 cos(x− y) 1 0 0

0 0 0 α cos2(x) + β sin2(x)
α cos(x) cos(y)+
β sin(x) sin(y)

0 0 0
α cos(x) cos(y)+
β sin(x) sin(y)

(
α cos2(y) + β sin2(y)

)

 .

As cos(x− y) = 0 we have that x− y = π
2 + nπ for some n ∈ Z. That is, x = y + π

2 + nπ and
thus Xh5,(α,β) is

1 0 0 0 0
0 1 − sin(nπ) 0 0
0 − sin(nπ) 1 0 0

0 0 0 β cos2(πn+y)+

α sin2(πn+y)

β cos(πn+y) sin(y)−
α cos(y) sin(πn+y)

0 0 0 β cos(πn+y) sin(y)−
α cos(y) sin(πn+y)

(
α cos2(y) + β sin2(y)

)

 .

Now,

(β cos(πn+ y) sin(y)− α cos(y) sin(πn+ y)) = 0

(cos y)(sin y)(β − α) = 0.

Case 1: Suppose α 6= β, then (cos y) = 0 or (sin y) = 0 That is, y = π
2n1 for some n1 ∈ Z.

Further,

α sin2(πn+ y) + β cos2(πn+ y) = α

α sin2(y) + β cos2(y) = α

(α− α+ β) cos2(y) + α sin2(y) = α

α+ (β − α) cos2(y) = α

(β − α) cos2(y) = 0.

As β 6= α, we have cos2(y) = 0 - therefore cos(y) = 0 and thus y = π
2 + n2π for some n2 ∈ Z.

Now, sin2(y) = sin2(π2 +n2π) = (±1)2 = 1 and in addition cos2(nπ+y) = 0 and sin2(nπ+y) = 1.
This simplifies our matrix equation into the trivial Xh5,(α,β) = Xh5,(α,β) .

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 4: Classification of sub-Riemannian structures 82

Applying the findings,

i1 = σ1,

i2 = i3 = i4 = i5 = 0,

j5 = k5 = j4 = k4 = 0,

x = y +
π

2
+ nπ

y =
π

2
+ n2π

j2 = cos(x) = cos ((n+ n2 + 1)π) = σ2 = ±1,

k2 = sin(x) = sin ((n+ n2 + 1)π) = 0,

j3 = cos(y) = 0 and

k3 = sin(y) = σ3 = ±1,

we have

ϕ =


σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ1σ2 0
0 0 0 0 σ1σ3

 .
Therefore

dIso1(T,H5,h
4,(α,β)) =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ1σ2 0
0 0 0 0 σ1σ3

 ∈ Aut(t) : σ1, σ2, σ3 = ±1


∼= Z2 × Z2 × Z2.

Case 2: Suppose α = β, as cos2 θ + sin2 θ = 1 and sin(nπ) = 0 for n ∈ N the only nontrivial
scalar equation in our matrix equation is

β cos(πn+ y) sin(y)− α cos(y) sin(πn+ y) = 0.

Thus we have,

α sin
(
πn+ y +

π

2

)
sin(y)− α sin

(
y +

π

2

)
sin(πn+ y) = 0,

an identity, as sin(θ + π
2 ) = sin(θ). We are left with no further possible simplification and
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applying the findings

i1 = σ1,

i2 = i3 = i4 = i5 = 0,

j5 = k5 = j4 = k4 = 0,

x = y +
π

2
+ nπ,

j2 = cos(x) = cos
(
y +

π

2
+ nπ

)
,

k2 = sin(x) = sin
(
y +

π

2
+ nπ

)
,

j3 = cos(y), and

k3 = sin(y),

we have

ϕ =


σ1 0 0 0 0
0 cos

(
y + π

2 + nπ
)

sin
(
y + π

2 + nπ
)

0 0
0 cos y sin y 0 0
0 0 0 σ1 cos

(
y + π

2 + nπ
)

σ1 sin
(
y + π

2 + nπ
)

0 0 0 σ1 cos y σ1 sin y

 .
Now, [

cos
(
y + π

2 + nπ
)

sin
(
y + π

2 + nπ
)

cos y sin y

]
=

[
− sin (y + nπ) cos (y + nπ)

cos y sin y

]
=

[
σ2 sin (y) −σ2 cos (y)

cos y sin y

]
∈ O(2),

where σ2 = ±1.

Therefore,

dIso1(T,H5,h
5,(α,α))

=




σ1 0 0 0 0
0 cos θ σ2 sin θ 0 0
0 sin θ −σ2 cos θ 0 0
0 0 0 σ1 cos θ σ1σ2 sin θ
0 0 0 σ1 sin θ −σ1σ2 cos θ

 ∈ Aut(t) : σ1, σ2 = ±1, θ ∈ R


∼= Z2 × O(2).
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Chapter 5

Geodesics

Given a left-invariant sub-Riemannian structure (G,D,g) a curve γ : [0, t1] → G is termed
admissible if γ̇(t) ∈ D(γ(t)) for every t ∈ [0, t1]. To any admissible curve γ joining two points
γ(0) = q0 and γ(t1) = q1, we can assign a length

`(γ) =

∫ t1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

The existence of an admissible curve γ between any two points q0 and q1 is guaranteed to us
by the bracket generating nature of the distribution D through the Chow-Rashevsky Theorem
(see, e.g.[6]).

The the distance between points q0 and q1 on G, given by the Carnot-Carathéordory distance

d(q0, q1) = inf {`(γ) : γ is an admissible curve joining q0 and q1}

An admissible curve, joining q0 and q1, that realises this distance is called a minimizing geodesic.
Such a curve may not necessarily exist or be unique. However, it turns out that for left-invariant
sub-Riemannian structures on a Lie group G, any two points in G can be joined by a minimizing
geodesic (see e.g.[3], [2])

Necessary conditions for an admissible curve to be a minimising geodesic can be obtained via the
Pontryagin Maximum Principle: any minimising geodesic must be the projection of a normal or
abnormal extremal curve on the cotangent bundle (see e.g. [4]). For invariant sub-Riemannian
structures the normal extremals are integral curves of a single Hamiltonian system on the cotan-
gent bundle (endowed with the canonical symplectic structure). The projections of the normal
extremals are called normal geodesics. It turns out that sufficiently short subarcs of normal
geodesics are in fact minimizing geodesics (see, e.g. [15]).

In this chapter we compute the normal geodesics of the left-invariant sub-Riemannian structures
(T,D,g) on the Lie group T. (We will not consider the abnormal extremals.) We shall make

84
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use of a characterisation of the normal geodesics for sub-Rimannian structures on left-invariant
sub-Riemannian structures in terms of Hamilton-Poisson systems on the dual of the Lie algebra.
This essentially reduces the problem of finding the normal geodesics to solving some differential
equations.

Definition 5.0.1. Given a left-invariant sub-Riemannian structure (G,D,g) with Lie algebra
g of G, we denote by i the inclusion map i : D(1) −→ g and by i∗ its dual i∗ : g∗ −→ D(1)∗.
Furthermore, we have the musical isomorphisms [ : D(1) −→ D(1)∗, A 7→ g(A, ·) and ] = [−1 :
D(1)∗ −→ D(1).

Proposition 5.0.2. [4, Proposition 4] The normal geodesics g(·) of the left-invariant sub-
Riemannian structure (G,D,g), on the matrix Lie group G are given by{

ġ = T1Lg · (i∗p)]

ṗ = ~H(p)

where H(p) = 1
2 (i∗p) · (i∗p)], g ∈ G, p ∈ g∗.

Proposition 5.0.3. Let (G,D,g) be a left-invariant sub-Riemannian structure of rank ` on the
n-dimensional Lie group G. Suppose the following ordered bases are fixed:

1. (E1, E2..., En) for the Lie albegra g,

2. dual basis (E∗1 , E
∗
2 , ..., E

∗
n) for the dual space g∗ and

3. (A1, A2..., A`) for the subspace D(1) ⊆ g.

If Xg is the positive definite matrix representation of g1 with respect to the ordered basis
(A1, A2, ..., A`) for D(1), p ∈ g∗ with representation

[
p1, p2, ..., pn

]
with respect to the ordered

basis (E∗1 , E
∗
2 , ..., E

∗
n) and

B =

 | | |
A1 A2 · · · A`
| | |


is the n × ` matrix with the vectors Ai, i = 1, ..., ` as its columns — where the vectors Ai are
written with respect to the ordered basis (E1, E2, ..., En) of g, then

H(p) =
1

2
pB(X−1

g )>B>p>.

If in addition g ∈ G and Lg is the left translation by g with tangent map at identity T1Lg
represented by an n× n matrix with respect to the basis (E1, E2, ..., En) of g, then

T1Lg · (i∗p)] = T1Lg ·B(X−1
g )>B>p>.

Proof. If p ∈ g∗, then pB is a 1× ` matrix and thus represent a linear functional on D(1).
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Given any W ∈ D(1), where W has coordinates


w1

w2

...
w`

 with respect to the ordered basis

(A1, A2, ..., A`) for D(1), we have that B · W gives the vector W with respect to the basis
(E1, E2, ..., En) for g, as B is a change of basis matrix for the subspace D(1) ⊆ t from the basis
(A1, A2, ...A`) to the basis (E1, E2, ..., En).

From the definition of i∗, we have that

(i∗p) ·W = p ·W.

In coordinates with respect to the basis (E1, E2, ..., En) this gives

(i∗p) ·W = p ·B ·W.

By the definitions of the isomorphisms ] and [, (i∗p)] is a vector R ∈ D(1) such that

(i∗p) ·Q = g1(R,Q), for all Q ∈ D(1).

In coordinates, with respect to the the basis (A1, A2, ..., A`) of D(1), this gives

(pB) ·Q = R>XgQ

(pB) = R>Xg,

where R is given by the ` × 1 matrix


r1

r2

...
r`

 and the second equality follows form the fact that

the first holds for every Q ∈ D(1). As Xg is positive definite, it is invertible, and thus we have

(pB)X−1
g = R>

and so
R = (X−1

g )>B>p>.

From Proposition 5.0.2 we have that the Hamiltonian H of (G,D,g) is given by

H(p) =
1

2
(i∗p) · (i∗p)]

=
1

2
pB ·R

=
1

2
pB(X−1

g )>B>p>.

For g ∈ G, we have that

T1Lg · (i∗p)] = T1Lg · R̂, (5.1)
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where R̂ is the vector R ∈ D(1) written with respect to the ordered basis (E1, E2, ..., En). As
R = (X−1

g )>B>p> with respect to the ordered basis (A1, A2, ..., A`) of D(1), the product BR
with the change of basis matrix B gives R with respect to the basis (E1, E2, ..., En). That is,
R̂ = BR. We thus have that, in coordinates

T1Lg · (i∗p)] = T1Lg ·BR
= [T1Lg]B(X−1

g )>B>p>.

If g =


1 i l m
0 1 j k
0 0 1 0
0 0 0 1

 ∈ T then the left translation by g is given by

Lg :


1 x1 x4 x5

0 1 x2 x3

0 0 1 0
0 0 0 1

 7→


1 x1 + i x4 + l + ix2 x5 +m+ ix3

0 1 x2 + j x3 + k
0 0 1 0
0 0 0 1

 .
That is, in coordinates,

Lg :


x1

x2

x3

x4

x5

 7→


x1 + i
x2 + j
x3 + k

x4 + l + ix2

x5 +m+ ix3

 ,
with tangent map at identity given by the matrix

T1Lg =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 i 0 1 0
0 0 i 0 1


with respect to the ordered basis (I, J,K,L,M) of t.

Consider the rank 3 left-invariant sub-Riemannian structure (T,H3,h) and ordered bases:

1. (I, J,K,L,M) for the Lie algebra t,

2. dual basis (I∗, J∗,K∗, L∗,M∗) for the dual space t∗ and

3. ordered basis (I, J,K) for the subspace H3(1) = 〈I, J,K〉 ⊆ t.

If p ∈ g∗ has representation
[
pi pj pk pl pm

]
with respect to the ordered basis (I∗, J∗,K∗, L∗,M∗)
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Proposition 5.0.2 and Proposition 5.0.3 give the Hamiltonian

H(3)(p) =
1

2
pB(X−1

h )>B>p>

=
1

2
pBI3B

>p>

=
1

2

[
pi pj pk pl pm

]


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


1 0 0 0 0

0 1 0 0 0
0 0 1 0 0



pi
pj
pk
pl
pm


ṗ = H(3)(p) =

1

2

(
p2
i + p2

j + p2
k

)
.

Now, we consider the vector field ~H(3) on t∗. As t∗ is a linear space we have that(
∂
∂I∗ |p,

∂
∂J∗ |p,

∂
∂K∗ |p,

∂
∂L∗ |p,

∂
∂M∗ |p

)
is a basis for the tangent space at p ∈ t∗. We let

~H(3)(p) = h1(p)
∂

∂I∗

∣∣∣∣
p

+ h2(p)
∂

∂J∗

∣∣∣∣
p

+ h2(p)
∂

∂K∗

∣∣∣∣
p

+ h4(p)
∂

∂L∗

∣∣∣∣
p

+ h5(p)
∂

∂M∗

∣∣∣∣
p

,

and we have that the tangent map of the Hamiltonian H(3) at p is given by the matrix repre-
sentative

dH(3)(p) =
[
pi pj pk 0 0

]
with respect to the dual basis (I∗, J∗,K∗, L∗,M∗) of t∗.

Suppose G ∈ C∞(t∗), then the action of the vector field ~H(3) on the smooth function G is the

smooth function ~H(3)[G](p) = ∂
∂t

(
G ◦ exp(t ~H(3))p

)∣∣∣
t=0

. We thus have, in coordinates, that

~H(3)[G](p) = dG · ~H(3)(p)

=
[
∂G
∂I∗

∂G
∂J∗

∂G
∂K∗

∂G
∂L∗

∂G
∂M∗

]

h1(p)
h2(p)
h3(p)
h4(p)
h5(p)


= h1(p)

∂G

∂I∗
+ h2(p)

∂G

∂J∗
+ h3(p)

∂G

∂K∗
+ h4(p)

∂G

∂L∗
+ h5(p)

∂G

∂M∗

with respect to the dual basis (I∗, J∗,K∗, L∗,M∗) for t∗.

For the smooth functions ProjI : p 7→ pi, ProjJ : p 7→ pj , ProjK : p 7→ pj , ProjL : p 7→ pl and
ProjM : p 7→ pm we have that

dProjI =
[
1 0 0 0 0

]
dProjJ =

[
0 1 0 0 0

]
dProjK =

[
0 0 1 0 0

]
dProjL =

[
0 0 0 1 0

]
dProjM =

[
0 0 0 0 1

]
.
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As ~H(3)[G](p) = −p ([dG(p), dH(p)]) [4, Section 2] we have

~H(3)[ProjI ](p) = −p
([
dProjI(p), dH

(3)(p)
])

h1(p) = −p ([I, piI + pjJ + pkK])

= −p (pjL+ pkM)

= −pjpl − pkpm.

Similarly, we have that

h2(p) = ~H(3)[ProjJ ](p) = pipl

h3(p) = ~H(3)[ProjK ](p) = pipm

h4(p) = ~H(3)[ProjL](p) = 0

h5(p) = ~H(3)[ProjM ](p) = 0.

Now, by Proposition 5.0.2 ṗ = ~H(3)(p) and thus we have the system of differential equations ṗiṗj
ṗk

 =

 0 −pl −pm
pl 0 0
pm 0 0

pipj
pk


ṗl = ˙pm = 0.

This has solutionpipj
pk

 =
1

ρ2

 ρ2 cos(tρ) −ρ sin(tρ)pl −ρ sin(tρ)pm
ρ sin(tρ)pl cos(tρ)p2

l + p2
m (cos(tρ)− 1)plpm

ρ sin(tρ)pm (cos(tρ)− 1)plpm p2
l + cos(tρ)p2

m

pi(0)
pj(0)
pk(0)


pl = pl(0)

pm = pm(0)

where ρ =
√
p2
l + p2

m.

Proposition 5.0.2 also give
ġ = T1Lg · (i∗p)].

Which is given in coordinates as 
i̇

j̇

k̇

l̇
ṁ

 = [T1Lg]BXhB
>p>

by Proposition 5.0.3. That is,
i̇

j̇

k̇

l̇
ṁ

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 i 0 1 0
0 0 i 0 1




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


1 0 0 0 0

0 1 0 0 0
0 0 1 0 0



pi
pj
pk
pl
pm

 ,
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therefore 
i̇

j̇

k̇

l̇
ṁ

 =


pi
pj
pk
ipj
ipk

 .

Integration and the initial condition g(0) = 1 — that is, i(0) = j(0) = k(0) = l(0) = m(0) = 0
— gives ij

k

 =
1

ρ2

 ρ sin(ρt) pl cos(ρt) pm cos(ρt)
−pl cos(ρt) p2

mt+ ρ−1p2
l sin(ρt) plpm(ρ−1 sin(ρt)− t)

−pm cos(ρt) plpm(ρ−1 sin(ρt)− t) ρ−1 sin(ρt)p2
m + p2

l t

pi(0)
pj(0)
pk(0)

+

CiCj
Ck



with

Ci = i(0)− 1

ρ2
(pj(0)pl + pk(0)pm)

Cj = j(0) +
pi(0)pl
ρ2

Ck = k(0) +
pi(0)pm
ρ2

.

That is, the components i, j and k have the form ij
k

 = a0 + a1t+ a2 cos(ρt) + a3 sin(ρt),

where a0,a1,a2 and a3 are 3× 1 constant matrices determined by the initial conditions of p(0)
and g(0). Further,

l(t) = a0 + a1t+ a2 cos(ρt) + a3 sin(ρt) + a4 cos(2ρt) + a5 sin(2ρt),
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with

a0 = −(a2 + a4)

a1 =
1

2ρ4

(
pi(0)

2
ρ2pl − 2pj(0)

2
plp

2
m + pj(0)

2
p3
l

+ 4pj(0)pk(0)p2
l pm − 2pj(0)pk(0)p3

m + 3pk(0)
2
plp

2
m

)
a2 =

1

ρ4
pi(0)pl(pj(0)pl + pk(0)pm) +

1

ρ4
pi(0)pm(pk(0)pl − pj(0)pm)

a3 = − 1

ρ5
pl (pj(0)pl + pk(0)pm)

2
+

1

ρ5
pm(pj(0)pl + pk(0)pm)(pj(0)pm − pk(0)pl)

a4 = − 1

2ρ4
pi(0)pl (pj(0)pl + pk(0)pm)

a5 =
1

4ρ5
pl(pj(0)pl + pk(0)pm)2 − 1

4ρ3
plpi(0)

2

and
m(t) = b0 + b1t+ b2 cos(ρt) + b3 sin(ρt) + b4 cos(2ρt) + b5 sin(2ρt),

with

b0 = −(b2 + b4)

b1 =
1

2ρ4

(
pi(0)

2
ρ2pm + 3pj(0)

2
p2
l pm − 2pk(0)

2
p2
l pm

+ 4pj(0)pk(0)plp
2
m − 2pj(0)pk(0)p3

l + pk(0)
2
p3
m

)
b2 =

1

ρ4
pi(0)pm (pj(0)pl + pk(0)pm)− 1

ρ4
pi(0)pl (pk(0)pl − pj(0)pm)

b3 = − 1

ρ5
pm (pj(0)pl + pk(0)pm)

2
+

1

ρ5
pl (pj(0)pl + pk(0)pm) (pk(0)pl − pj(0)pm)

b4 = − 1

2ρ4
pi(0)pm (pj(0)pl + pk(0)pm)

b5 =
1

4ρ5
pm(pj(0)pl + pk(0)pl)

2 − 1

4ρ3
pmpi(0)2.

Normal geodesics thus have the form

g(t) = c0 + c1t+ c2 cos(ρt) + c3 sin(ρt) + c4 cos(2ρt) + c5 sin(2ρt).

where ci, i = 0, ..., 5 are 5× 1 real column vectors dependent on the initial conditions.
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Chapter 6

Conclusion

Our investigation of the five-dimensional, two-step nilpotent Lie group with two-dimensional
centre T was initiated in Chapter 2 with the establishment of its basic group properties. The
well known approach of studying Lie groups through their associated Lie algebras and inferring
results on the Lie group through Lie group-Lie algebra correspondence results led us to the
study of the Lie algebra t.

In Chapter 3, the Lie algebra’s automorphism group Aut(t) was computed. Relating subspaces
by these automorphisms gave an equivalence relation on the collection of subspaces of the Lie
algebra t. The subspace structure of t was computed up to this equivalence with the assistance
of a full set of scalar invariants determining the structure. This gave three generating subspaces
of t, which give rise to three left-invariant bracket generating distributions on T of ranks 3, 4
and 5 respectively.

The preliminaries to Chapter 4 included a correspondence result between the Lie group auto-
morphisms of a simply connected matrix Lie group G and the Lie algebra automorphisms of
its Lie algebra g. The fact that any diffeomorphism of a metric Lie group decomposes into the
composition of a Lie group automorphism and a left translation reduced the classification of the
left-invariant sub-Riemannian structures on T up to diffeomorphism into a classification up to
Lie group automorphism. As T is a simply connected matrix Lie group, the above mentioned
correspondence of automorphism groups lets us use results on the Lie algebra, from Chapter 3,
to complete the classification.

All rank 3 structure on T were found to be isometric. The matrix Lie group T was found to
have a one-parameter family of rank 4 left-invariant sub-Riemannian structures, parametrized
by the positive reals. The rank 5 structures formed a two-parameter family parametrized by
positive reals α ≥ β > 0.

Our study ended in Chapter 5 with the computation of the normal geodesics of the rank 3
left-invariant sub-Riemannian structure. There we found that the normal geodesics g(t) of T

92
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Chapter 6: Conclusion 93

consist of linear as well as a trigonometric components with weights and frequencies dependent
on initial conditions. That is,

g(t) = c0 + c1t+ c2 cos(ρt) + c3 sin(ρt) + c4 cos(2ρt) + c5 sin(2ρt),

where ci, i = 0, ..., 5 are 5×1 real column vectors and ρ is a constant, determined by the initial
conditions g(0) and ġ(0).
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Appendix A

Algebra and Topology

Here, for convenient reference, we state standard results that are used throughout the main
text. In Appendix A we state standard results of linear algebra, abstract algebra and topology.
We refer to the books of D.Poole[18] and C.Meyer[14] for results on linear algebra and those of
C. Pinter[17] and J.Munkres[16] for results in abstract algebra and topology respectively.

A.1 Linear Algebra

A.1.1 General Results

Definition A.1.1. An n× n symmetric matrix A is positive definite if x>Ax > 0 for every
non-zero column vector x ∈ Rn×1.

A principal submatrix of an n × n matrix A is an r × r submatrix that lies on the same
index set of r rows and columns. An r × r principal minor is the determinant of an r × r
principal submatrix. A leading principal submatrix of A is a submatrix obtained by taking
the first r rows and columns of A. The determinants of these leading principal submatrices are
the leading principal minors of A.

Lemma A.1.2. [cf. 14, Section 7.6] Let A be a real n × n matrix, then the following are
equivalent:

1. A is positive definite,

2. all the leading principal minors of A are positive and

3. all the principal minors of A are positive.

94
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Chapter A: Algebra and Topology 95

Definition A.1.3. Given subspaces X and Y of a vector space V , we define the sum of X and
Y by

X + Y = {x + y : x ∈ X,y ∈ Y }.

The sum X + Y of subspaces X,Y ⊂ V is itself a subspace of V and the smallest subspace
containing the set X ∪ Y .

Theorem A.1.4. [14, Section 4.4] If X and Y are subspaces of a vector space V , then

dim(X + Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).

Corollary A.1.5. If X and Y are subspaces of a vector space V , then

dim(X) + dim(Y )− dim(V ) ≤ dim(X ∩ Y ) ≤ min(dim(X),dim(Y )).

Proof. Follows from the fact that dim(V ) ≥ dim(X + Y ).

A.1.2 Orthogonality

Definition A.1.6. [18, Chapter 5] Vectors v = (v1, v2, ..., vn) and w = (w1, w2, ..., wn) in Rn
are said to be orthogonal if

∑n
i=1 viwi = 0. A set of vectors {v1,v2, ...,vn} in Rn is called an

orthogonal set if all pairs of distinct vectors in the set are orthogonal. A set of vectors in Rn
is an orthonormal set if it is an orthogonal set of unit vectors.

Definition A.1.7. [18, Chapter 5] An n × n matrix Q whose columns form an orthonormal
set is called an orthogonal matrix.

Definition A.1.8. We denote by

O(n) =
{
A ∈ GL(n,R) : AA> = In

}
the orthogonal group of invertible orthonormal n× n real matrices.

As an example we have that the orthogonal group O(2) is given by

O(2) =

{[
σ sin (θ) −σ cos (θ)

cos θ sin θ

]
: σ = ±1, θ ∈ R

}
.

Theorem A.1.9. [18, Theorem 5.7] If Q is an orthogonal matrix, then its rows form an
orthonormal set.
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A.2 Abstract algebra

Definition A.2.1. [19, Chapter2] Given a group G. If a, b ∈ G, the commutator of a and b,
denoted by [a, b], is

[a, b] = aba−1b−1.

The commutator subgroup of G, denoted by G′, is the subgroup of G generated by all the
commutators.

Definition A.2.2. [19, Chapter 5] The lower central series of G is the series of subgroups

G = γ1(G) ≥ γ2(G) ≥ · · · ,

where γi+1(G) = [G, γi(G)] and for subsets H, K of G we define [H,K] as the subgroup of G
generated by commutators of the form [h, k] = hkh−1k−1, h ∈ H, k ∈ K.

Definition A.2.3. [19, Chapter 5] The higher commutator subgroups of a group G are
defined inductively by:

G(0) = G, G(i+1) = G(i)′.

That is, G(i+1) is the commutator subgroup of G(i). The series

G = G(0) ≥ G(1) ≥ G(2) ≥ · · ·

is called the derived series of G.

Definition A.2.4. [19, Chapter 2] A non-trivial group G is said to be simple if it has no
normal subgroups except G and {1G}.

Definition A.2.5. [19, Chapter 5] An automorphism of a group G is an isomorphism
ϕ : G −→ G that maps G to itself. The automorphisms of a group G form a group under the
operation of composition, called the automorphism group of G and denoted by Aut(G).

Theorem A.2.6. [17, Chapter 16] Let f : G −→ H be a group homomorphism of G onto H. If
K is the kernel of f , then

H ∼= G/K.

Definition A.2.7. [[19, Chapter 7] Let K be a (not necessarily normal) subgroup of a group
G. Then a subgroup Q is a complement of K in G if K ∩ Q = {1G} and KQ = G. Here,

KQ = {kq : k ∈ K, q ∈ Q} .

Definition A.2.8. [19, Chapter 7] A group G is a semidirect product of subgroup K by the
subgroup Q, denoted by G = K o Q, if K / G — K is a normal subgroup of G — and K has a
complement Q1 that is group isomorphic to Q.

Definition A.2.9. [19, Chapter 7] Let Q and K be groups, and let θ : Q −→ Aut(K) be a
homomorphism. A semidirect product G of K by Q realizes θ if, for all x ∈ Q and a ∈ K,

θx(a) = xax−1.
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Definition A.2.10. Given groups Q and K and a homomorphism θ : Q −→ Aut(K), define

G = Koθ Q

to be the set of all ordered pairs (a, x) ∈ K× Q equipped with the group operation

(a, x)(b, y) = (aθx(b), xy).

Theorem A.2.11. [19, Theorem 7.23] If G is a semidirect product of K by Q, then there exists
a homomorphism θ : Q −→ Aut(K) with G ∼= Koθ Q. Namely,

θx(a) = xax−1.

Theorem A.2.12. [19, Chapter 7] The semidirect product Koθ Q is a direct product K×Q if
and only if the homomorphism θ : Q −→ Aut(K) is trivial.

A.3 Topology

Definition A.3.1. [16, Section 23] Let X be a topological space. A separation of X is a
pair U, V of disjoint nonempty open subsets of X whose union is X. The space X is said to be
connected if there does not exist a separation of X.

Given points x and y of the topological space X, a path in X from x to y is a continuous map
f : [a, b] −→ X of some closed interval [a, b] of the real line into X such that f(a) = x and
f(b) = y. A topological space X is said to be path-connected if every pair of points of X can
be joined by a path in X.

Theorem A.3.2. A set F ⊆ Rn is closed if and only if for any convergent sequence xn −→ x
in F , x ∈ F .

Definition A.3.3. [1, Definition 0.1.1] Let G be a group and at the same time a Hausdorff
topological space. Suppose in addition that the group operations

(1) (g, h) 7→ gh

(2) g 7→ g−1

are continuous, where in (1) we take the product topology on G × G. We call G a topological
group.

Equivalent to conditions (1) and (2) above is the condition that the map (g, h) 7→ gh−1 is
continuous.

Definition A.3.4. [1, Chapter 0] Let G and H be topological groups. A map f : G −→ H is
called a topological group homomorphism if it is a continuous group homomorphism.
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Appendix B

Lie groups and Manifolds theory

Appendix B presents results on smooth manifolds and Lie groups. It’s results drawing mainly
from the texts Introduction to Smooth Manifolds by J.Lee[11], Basic Lie Theory by H.Abbaspour
and M.Moskowitz[1] and Introduction to Geodesics in Sub-Riemannian Geometry [6]. We as-
sume the reader is familiar with the definition of a smooth manifold, tangent vectors, as well
as those of a smooth map and diffeomorphism between manifolds.

B.1 Results on manifolds

Definition B.1.1. [6, Definition 1.3] A smooth vector field on a smooth manifold M is a
smooth map

X : q 7→ X(q) ∈ TqM.

Given a complete vector field X on a smooth manifold M , we can consider the family of maps

φt : M −→M φt(q) = γ(t; q) t ∈ R,

where γ(t; q) is the integral curve of the vector field X with γ(0) = q. In other words, φt(q) is
the shift for time t along the integral curve of X that starts from q [6].

It follows that φ : R×M −→M,φ(t, q) = φt(q) is smooth in both variables and that {φt, t ∈ R
is a one-parameter subgroup of Diff(M). Additionally, by construction, we have

∂φt(q)

∂t
= X(φt(q)), φ0(q) = q,∀q ∈M.

The family of maps φt is called the flow generated by X. For the flow φt of the vector field
X it is convenient to use the exponential notation φt := etX , for every t ∈ R[6]. Following the
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Chapter B: Lie groups and Manifolds theory 99

exponential notation, we have
d

dt
etX = XetX .

A smooth vector field X induces an action on the algebra C∞(M) of smooth functions on M ,
defined as follows

X : C∞(M) −→ C∞(M), a 7→ Xa,

where

(Xa)(q) =
d

dt

∣∣∣∣
t=0

a(etX(q)), q ∈M.

Definition B.1.2. [cf. 6, Definition 2.3] Let M be a smooth manifold. A distribution D on
M is a family of subspaces

{D(q)}q∈M where D(q) ⊆ TqM .

The dimension of D(q) is called the rank of the distribution at q ∈ M . The distribution D is
said to have constant rank if dim(D(q1)) = dim(D(q2)) for all q1, q2 ∈M .

Definition B.1.3. [cf. 13, Section 2.3] (Pull backs and push forwards)
Let M and N be smooth manifolds with φ : M −→ N a diffeomorphism.

(a) φ∗X, the push forward of a vector field X by φ is the vector field (φ∗X)(φ(z)) = dzφ·X(z)
on N .

(b) φ∗Y , the pull back of the vector field Y on N by φ is the vector field φ∗Y = (φ−1)∗Y on
M .

(c) φ∗(D), the push forward of the distribution D on M by φ, is the distribution φ∗(D)(φ(z)) =
dzφ(D) on N .

(d) φ∗(D), the pull back of the distribution D on N by φ is the distribution φ∗(D) = (φ−1)∗D
on M .

(e) φ∗(g), the push forward of the Riemannian metric g on M by φ is given by the Riemannian
metric φ∗(gφ(z))(dzφ(x), dzφ(y)) = gz(x, y) for z ∈M and x, y ∈ TzM on N .

(f) φ∗(g), the pull back of the Riemannian metric g on N by φ is given by the Riemannian
metric (φ−1)∗(g) on M .

B.2 Lie groups

Definition B.2.1. [1, Section 0.2] We define a real Lie group as a group G which is also a
finite-dimensional real smooth manifold whose operations are smooth. That is, the map G ×
G −→ G given by (g, h) 7→ (gh−1) is C∞ where G × G is endowed with the product manifold
structure.

A subgroup H of a Lie group G is said to be a Lie subgroup if it is a submanifold of the
underlying manifold G[7].
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For Lie groups G and H, a Lie group homomorphism f : G −→ H is a smooth group
homomorphism. A Lie homomorphism f : G −→ H is called a Lie isomorphism if there exists
a smooth inverse f−1 : H −→ G. That is, if f is simultaneously an isomorphism of abstract
groups and a diffeomorphism of manifolds[7]. We denote by Aut(G), the group of Lie group
automorphisms of G. That is, the groups of bijective Lie group homomorphisms φ : G −→ G
with smooth inverses. Given a Lie group G, the left translations Lg : G −→ G, g ∈ G, defined
by Lg(h) = gh, are global diffeomorphisms of G[1].

Theorem B.2.2. [see 7, Theorem 3.2] Let N be a normal Lie subgroup of a Lie group G. Then
the quotient group G/N is a Lie group.

Theorem B.2.3. [see 7, Theorem 3.4] Let f : G −→ H be an epimorphism of Lie groups and
let N = ker(f). Then the map

φ : G/N −→ H, gN 7→ f(g)

is an isomorphism of Lie groups.

Definition B.2.4. [20, Section 3.5] The maximal torus of a Lie group G is a maximal
subgroup of G that is isomorphic to a k-torus

Tk = S1 × S1 × · · · S1 (a k-fold carteasian product).

Definition B.2.5. [1, Definition 0.5.1] Let g be a finite-dimensional vector space over R. We
say that g is a (real) Lie algebra if it possesses an anti-symmetric bilinear product [·, ·] : g×g 7→
g, called the Lie bracket, which satisfies the Jacobi identity,

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0̄

for all X,Y, Z ∈ g.

The left-invariant vector fields form a subalgebra of the Lie algebra of all vector fields on a Lie
group G. Since left-invariant vector fields act transitively on G it follows that a left-invariant
vector field X is fully determined by its value at identity X(1). That is, any v ∈ T1G determines
a left-invariant vector field X(g) = d1Lg(v) ∈ TgG.

The linear map X 7→ X(1) is a vector space isomorphism from the space of left-invariant vector
fields to T1G, which we call the Lie algebra g of G. Therefore, g is — isomorphic to — a finite
dimensional subspace of the vector space of all vector fields on the manifold G[1, Chapter 1].

Definition B.2.6. An automorphism ϕ of a Lie algebra g is an invertible linear map that
preserves the Lie bracket. That is,

[ϕ ·X,ϕ · Y ] = [X,Y ] for every X,Y ∈ g.

Automorphisms of a Lie algebra g form a group under composition called the automorphism
group of g, denoted by Aut(g).

Definition B.2.7. Let g be a Lie algebra. The centre, Z(g), of g is the set of all vectors C ∈ g
such that [C, V ] = 0̄ for every V ∈ g.
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Lemma B.2.8. If ϕ is an automorphism of the Lie algebra g and C is a central element of g,
then ϕ · C is a central element of g.

Proof. Suppose C is a central element of g and V ∈ g, then as C is central and ϕ has an inverse,
we have

[ϕ · C, V ] =
[
ϕ · C,ϕ · (ϕ−1 · V )

]
= ϕ ·

[
C,ϕ−1 · V

]
= ϕ · 0̄
= 0̄.

Thus ϕ · C is a central element of g.

Definition B.2.9. [11, Chapter 8] A vector field X on a Lie group G is said to be left-invariant
if it is invariant under all left translations. That is,

(Lg)∗X = X for each g ∈ G.

Definition B.2.10. [11, Chapter 19] A distribution D on a Lie group G is said to be left-
invariant if it is invariant under every left translation. That is,

L∗g(D) = D for each g ∈ G,

where Lg is left translation by g.

Theorem B.2.11. [8, Theorem 5.6] Let G and H be matrix Lie groups with Lie algebras g and
h, respectively, and let ϕ be a Lie algebra homomorphism. If G is simply connected, then there
exists a unique Lie group homomorphism φ : G −→ H such that φ(eX) = eφ(X) for all X ∈ g.
That is, ϕ = d1φ.

Corollary B.2.12. [8, Corollary 5.6] Suppose G and H are simply connected matrix Lie groups
with Lie algebras g and h, respectively. If ϕ : g −→ h is a Lie algebra isomorphism, then there
exists a unique Lie group isomorphism φ : G −→ H, with d1φ = ϕ.

Theorem B.2.13. [8, Theorem 3.28] The differential at identity of a Lie group homomorphism
is a Lie algebra homomorphism.

Definition B.2.14. [6, Definition 1.21] Let X and Y be smooth vector fields on the smooth
manifold M . We define their Lie bracket as the vector field

[X,Y ] =
∂

∂t

∣∣∣∣
t=0

e−tX∗ Y.

Expanding the above definition, we have that

[X,Y ]|q =
∂

∂t

∣∣∣∣
t=0

(e−tX∗ Y )|q =
∂

∂t

∣∣∣∣
t=0

e−tX∗ (Y |etX(q)) =
∂2

∂s∂t

∣∣∣∣
t=s=0

e−tX ◦ esY ◦ etX(q),

at a point q on the smooth manifold M .
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Definition B.2.15. [1, Chapter 0] The real general linear group, GL(n,R) is the group of
invertible n×n real matrices. Similarly, the complex general linear group GL(n,C) is the group
of invertible n× n complex matrices.

The complex general linear group GL(n,C) inherits the relative topology when considered as a

subset of M(n,C), where M(n,C) is identified with R2n2

equipped with its usual (Euclidean)
topology. With this topology the group M(n,C) is a topological group. With a global smooth
chart defined component-wise M(n,C) is a smooth manifold and in fact a Lie group.

Definition B.2.16. [20, Chapter 8] With the understanding that the topology of all matrix
groups is taken to be relative to GL(n,C), we define a matrix Lie group as a closed subgroup
of GL(n,C).

We present as an example the three-dimensional Heisenberg group, a group which appears in
the text and is studied in [4].

Example B.2.17. By

H3 =


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R


we denote the three-dimensional Heisenberg group. This is a two-step nilpotent matrix Lie group
with one-dimensional centre

Z(H3) =


1 0 z

0 1 0
0 0 1

 : z ∈ R

 .

The Lie algebra h3 is given by

h3 =


0 x z

0 0 y
0 0 0

 = xX + yY + zZ : x, y, z ∈ R


with the non-trivial Lie bracket operation [X,Y ] = Z.
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