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Abstract

Over the last couple of years, we have seen much advancement in mathematical analysis
and computational capabilities. This advancement, coupled with the increased availability
of big data, has made it possible to commoditise machines and enable them to act as risk
managers and financial analysts. In this dissertation, we will briefly review machine
learning and consumer credit risk/scoring. We look at different methods and models
proposed in the literature and thoroughly explore the mathematical theory behind deep
learning. We then apply this knowledge and other recent advancements in the field to
build a fully connected feed-forward deep neural network using open source credit card
default data from a large Taiwanese retail bank. Our deep neural network aims to improve
upon other models proposed in the literature regarding accuracy and other metrics such as
ROC-AUC, Cohen’s Kappa, precision, recall and F1-score. We then conclude that deep
neural networks are competitive in terms of performance compared to other machine
learning models and outperform traditional models. We highlight the potential that deep
learning has yet to achieve in finance and pay close attention to the hurdles faced in
complexity, development costs and regulatory roadblocks.

Keywords: machine learning, neural networks, deep learning, consumer credit risk,
credit scoring



“It ain’t what you don’t know that gets you into trouble. It’s what you know for sure
that just ain’t so.” - Mark Twain (1835–1910)
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Glossary of Frequently Used Terms

Artificial Intelligence is a branch of computer science dealing with the develop-
ment of machines or computers. These machines can perform tasks that humans
normally perform because they require human intelligence and discernment, such
as visual perception, speech recognition, decision-making, and translation between
languages.

Machine Learning is an application of artificial intelligence that provides sys-
tems with the ability to learn and improve from experience without being explicitly
programmed. Put differently, machine learning is a type of artificial intelligence
that enables self-learning from data and then applies that learning without human
intervention.

Data Science is the field of study that combines domain expertise, programming
skills, and knowledge of mathematics and statistics to extract meaningful insights
from large amounts of complex data or big data.

Big Data is a term used to refer to massive data sets that can only be analysed
computationally to reveal patterns, trends, and associations, especially relating to
human behaviour and interactions.

Neural Network is a subset of machine learning, and it refers to systems of neu-
rons, artificial. This system of neurons is a series of algorithms that aim to recognise
underlying patterns and relationships in a set of data through a process that mimics
how the human brain operates, i.e. learning by example (or trial and failure).

Deep Learning is a subset of machine learning and neural networks where the
networks contain many layers of neurons (making the network deep) so that it is
capable of learning from data that is unstructured or unlabeled. Deep learning is
also known as deep neural learning or deep neural networks.
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Chapter 1

Introduction

”Essentially risk management involves getting data, analysing it, and making
decisions based on the results. The first two parts of that process usually
require someone to write some code. But risk managers rarely have the luxury
of large teams of dedicated technologists which a front office managing director
can call upon. They have to be highly resourceful, and do more with less.
Often much of the grunt work has to be done in house. To do this well
requires knowledge of an esoteric set of coding languages and tools.” - Robert
Carver.

1.1 Background

In the wake of the 2008 Global Financial Crisis (GFC), monitoring consumer behaviour
and credit risk has moved into centre focus for all banks and creditors. Because of this,
any tools that provide prospective insights regarding consumer credit from historical data
have become invaluable.

Luckily, recent advancements in software, computational hardware, mathematical
analysis, combined with the increased availability of big data, have made it possible
to commodify machines that can learn to operate in a similar way to credit analysts and
risk managers. Much research has been done over the past two decades into how ML can
be used to measure and manage credit risk (this is detailed in Section 1.3).

The focus of this study is two-fold: Consumer credit scoring (CCS) and artificial in-
telligence (AI)/machine learning (ML) modelling techniques, specifically neural networks
(NN)/deep learning (DL).

1.2 Motivation

There are many decisions involved and factors to consider when considering whether or
not to extend a line of credit in the consumer lending business. These necessitate reliance
on algorithms and models over the use of human discretion, as models and algorithms
base decisions on rules and hard information, for example, the characteristics contained
in a consumer’s credit file that credit agencies have collected.

This is where credit scoring models play their role. Credit scoring is a discipline
that was developed in the 1960s and has since been widely adopted and dubbed ”the
grease” that supports decision-making in countless businesses and banks around the world
(Anderson 2007). However, until 2008 the volume of literature available in this vital field
was scarce.
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A credit scoring model is used to generate numerical scores to summarise the creditwor-
thiness of a credit client/applicant. The issue is that, although these models are generally
able to produce reasonably accurate ordinal measures, they fail to adjust quickly over time
and can be quite insensitive to changing market conditions (Khandani et al. 2010). This
failure is a significant drawback considering how quickly consumer credit can deteriorate.
It has become apparent that there is a clear need from banks and regulators for more
timely cardinal credit risk measures (Khandani et al. 2010). That is why we consider the
use of ML in this dissertation.

ML is simply a collection of algorithms designed to address computationally demand-
ing pattern recognition problems with enormous data sets. Consumer credit risk (CCR)
analytics often deal with large sets of highly complex data. The possible relationships
among transactional data and consumer characteristics are so convoluted that humans
cannot analyse them. Some of the methods used in ML literature are ideally suited to
this exact problem.

Another major challenge in consumer credit, especially in emerging economies, is that
the cost of credit is often remarkably high. This high cost sometimes results in the financial
exclusion of small borrowers such as households and SMEs. These small borrowers play
a significant role in contributing to the prosperity and growth of a country (Sahay 2015).

Recent advances in computing technology, the boom in the availability of big data,
and the FinTech industry’s growth have made lending to these borrowers more accessible
by reducing the cost of credit and thereby increasing financial inclusion. The AI/ML
methods that lie at the heart of these FinTech lending solutions are not without their
faults as they have mainly been considered a black box for regulators and a non-technical
audience.

While the idea of machines with human levels of intelligence is not a new concept, the
success in creating AI machines has been scarce over the decades since its proposal. AI
mostly seemed to be a failed concept (Culkin & Das 2017) due to the lack of computing
power required to realise its true potential. That is, until the aforementioned technological
revolution. The field of AI/ML has gained new momentum, and in recent years they
have come to dominate some industries and now, after many years of resistance from
regulators, AI/ML is now moving from the research desk to the application stack. This
new momentum has created a renaissance in computational modelling, of which CCR
modelling is just one of many recent examples. Other examples include: credit card fraud
detection (Maes et al. 2002, Awoyemi et al. 2017, Yee et al. 2018), derivative pricing
(Culkin & Das 2017, De Spiegeleer et al. 2018, Antonov et al. 2020), algorithmic trading
(Andersen & Mikelsen 2012, Colianni et al. 2015) and portfolio management (Agarwal
et al. 2006, Yun et al. 2020) to name a few.

In this dissertation, we consider the use of NNs, which are a sub-field of ML (see
Figure 1.1 for details of AI and all its general sub-fields fit together). In 1950s the first
perceptron model was created based of work done by Rosenblatt (1958) combined with
Hebb (1949)’s model of brain cell interaction and with Samuel (1959)’s ML efforts.
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Figure 1.1: An illustration of how artificial intelligence, machine learning and neural
networks fit together.

(Source: (Hauptfleisch 2016))

The perceptron (see Figure 1.2) was the first neural network and consisted of a set of
input nodes (organised in a layer) which were all connected to an output node. Through
a series of simple linear regression models and a specific training algorithm, the sim-
ple model can learn many types of relationships between input and output variables.
Since then, the field has grown significantly. As a result, we have gained many different,
consequential types of neural network architectures (each far more advanced than the per-
ceptron), including DL architectures that include multi-layer perceptrons, convolutional
neural networks, and recurrent neural networks. Each serves a specific role in solving
different problems, from spam filters to time-series forecasting to image recognition and
much more.

Figure 1.2: A simple perceptron model. Here the xis are the input to the model.

The adjective ”deep” in deep learning refers to the use of multiple layers in the network
as seen in Figure 1.3.
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Figure 1.3: An illustration of a deep neural network.

(Source: (MathWorks n.d.))

Deep learning networks or deep neural networks (DNNs) are known to theoretically
be powerful enough to approximate any function (Hornik et al. 1989) (i.e. learn/find
an underlying relationship in a data set, should one exist). The greater availability of
data has made it possible to showcase the advantages that NNs have over traditional ML
and the advantage that DL has above both. The real power of DL can only be utilised
once we have large amounts of data on which to train our model. Figure 1.4 gives an
illustration comparing the performance of DNNs versus other methods as the amount of
data available.adjective ”deep” in deep learning refers to the use of multiple layers in the
network as seen in Figure 1.3.

Figure 1.4: A comparison of the performance of DNNs, ANNs and Traditional ML as the
amount of data available for training increases.

(Source: (Wasicek 2018))

Because of this potential power that DNNs have, we have selected them as our credit
default prediction tool of choice. In this dissertation, we will put them to the test against
other ML algorithms used in practice and proposed in the literature.
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1.3 Literature Review

While we acknowledge that using ML in credit default prediction is no new research topic,
we found that the literature provides mixed results. We wanted to put the power of DL to
the test for ourselves by also utilising modern data science and ML techniques to obtain
the best possible results.

There are a few different case studies that fall under the blanket term ”credit default”.
These include consumer credit defaults (credit card delinquencies -our focus- and loan
defaults), peer-to-peer lending loan defaults, commercial and corporate defaults (loan
defaults and business failures). Discriminant and logit analyses have traditionally been
the most popular approaches to predicting each of these situations (Gepp et al. 2010).
However, there is also a range of promising non-parametric techniques in ML that can
alternatively be applied. We briefly review some of the ML models used in the literature
to provide some context for the rest of the dissertation. We will only provide a high-level
overview of the models themselves, as they will be described in greater detail in Section
4.3. We will consider decision tree classifiers, support vector machines and artificial neural
networks.

1.3.1 Decision Tree Classifiers

Decision trees, also referred to as classification and regression trees (CART), are simply
sets of cascading questions that perform either classification or regression, depending on
whether the response variable is categorical or numeric. With classification trees, we start
with a data point (or, more specifically, a set of features and their values) and then use the
value of the given feature to answer a question. By answering each question, the decision
rule will then determine the next question. At the end of this sequence of questions, we
will have a probability of the data point belonging to a specific class. Figure 1.5 is a simple
but clear illustration of this process. This method will be described more completely in
Section 4.3.1.

Figure 1.5: An example of a simple decision tree classifier.

(Source: (Chowdary 2020))

One of the earliest papers mentioning ”decision trees” was by Belson (1959). Since
then, decision trees have evolved significantly with the advent of big data and the ad-
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vancement of computational power. Modern variations or adaptions of decision trees
include random forests (Breiman 2001) (which is an application of bootstrap aggregation
(Efron 1992) or bagging) and gradient boosted trees (GBTs) (Friedman 2001) (including
algorithms such as XGBoost (Chen et al. 2015) and LightGBM (Ke et al. 2017)). These
are examples of ensemble-based learning techniques where a set of weaker ML algorithms
are grouped to achieve better results (ensemble methods are described in Section 3.4.2).
These are beyond the scope of this research but are well worth looking into in the future.

In a similar way to Figure 1.5, decision trees can and have been used to determine the
probability of a customer/business/corporate defaulting on their credit obligations based
on a set of inputs.

These models have proven very powerful in this aspect. They have been widely studied
in literature from as early as 2000 by Galindo & Tamayo (2000) to as recently as 2021 by
Madaan et al. (2021).

To start with, we look at Galindo & Tamayo (2000) who found that CART models
provided the best estimation for default with an average 8.31% error rate for a training
sample of 2,000 records. The second was NNs with an average error of 11.00%, and
the third was the K-Nearest Neighbour algorithm with an average error rate of 14.95%.
The models above outperformed the standard probit algorithm, which attained an average
error rate of 15.13%. Later, Lee et al. (2006) used CART models and multivariate adaptive
regression splines (MARS) to demonstrate the effectiveness of credit scoring on banking
credit card data using these techniques. Their results showed that CART and MARS
outperform other methods such as logistic regression, NNs, discriminant analysis and
support vector machines in terms of accuracy.

Looking more into modern variations of decision trees Bastos (2007) proposed a credit
scoring model based on boosted decision trees. When benchmarked against the multi-
layer perceptron and support vector machines, they showed that a boosted decision tree
is a competitive technique for implementing credit scoring models when evaluated using
credit card application data sets. Later work in consumer credit card default prediction
was done by Khandani et al. (2010) who applied the CART models on a combination
of customer transaction data and credit bureau data. They then constructed out-of-
sample forecasts that significantly improve the classification rates of credit card holder
delinquencies and defaults. In the same year, Gepp et al. (2010) suggested, based on their
results, that decision trees could be superior predictors of business failure as compared to
discriminant analysis.

More recently, Chang et al. (2016) integrated bootstrap aggregating (Bagging) with
a synthetic minority over-sampling technique (SMOTE) into a credit risk model to im-
prove the decision tree stability and its performance on unbalanced data. The results of
their experiment on a real-world case of SME loan data from Taiwan showed that their
proposed model’s classifying recall rate and the precision rate was superior to the logistic
regression and Cox proportional hazards models. Later, Sayjadah et al. (2018) provided
a performance evaluation of credit card default prediction. Comparing logistic regression,
decision trees, and random forests, they found that random forest proved to have the
higher accuracy and area under the curve. are used to test the variable in predicting
credit default, and random forest proved to have the higher accuracy (82%) and area
under the curve (77%).

Chang et al. (2018) used eXtreme gradient boosted trees (XGBoost) to build a credit
risk assessment model for financial institutions. They used cluster-based under-sampling
to process imbalanced data and the area under the receiver operative curve, and the ac-
curacy of classifications to assess their model’s performance. When compared to logistic
regression and support vector machines, they found that the XGBoost classifier achieved
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better results than the other models and can serve as a superior tool for developing credit
risk models for financial institutions. Similarly, Zhou et al. (2019) applied gradient boost-
ing decision trees (GBDT), XGBoost and light gradient boosting machine (LightGBM)
to create an ensemble learning-based default prediction model to predict defaults in peer-
to-peer lending. In comparison with benchmark models, they found that their prediction
model achieved desirable results and could effectively solve the challenge of predictions
based on high-dimensional and imbalanced data, as is familiar with peer-to-peer lending
data.

Furthermore, Golbayani et al. (2020) compared bagged decision trees, multi-layer per-
ceptrons, support vector machines and random forests when trying to predict corporate
defaults. Their results show superior performance for decision tree-based models.

1.3.2 Support Vector Machines

A support vector machine (SVM) is a robust ML algorithm that attempts to classify
points in a feature space by finding a hyperplane that separates these points based on
the value of the response variable. Figure 1.6 gives a simple illustration of this, but this
method will be described more thoroughly in Section 4.3.2.

Figure 1.6: A simple illustration of a support vector. In this example our feature space
is 2D and the axes represent the values of our two features.

(Source: (iUnera n.d.))

The use of this algorithm has been prevalent in literature. It has delivered impressive
results against other popular algorithms. The groundwork for the algorithm was proposed
by Vapnik & Chervonenkis (1964). SVMs close to their current form was first introduced
by Boser et al. (1992) and the current standard version we use today was introduced by
Cortes & Vapnik (1995).

As far back as 2003, Van Gestel et al. (2003) experimented with the use of least
squares support vector machines, which at that stage was a newly modified version of
SVMs. They reported significantly better results when contrasted with the classical tech-
niques. Baesens et al. (2003) who studied the performance of various modern classification
algorithms (including logistic regression, discriminant analysis, NNs, SVMs and decision
trees) reported the same results in favour of SVMs.

Soon after Shin et al. (2005) and Min & Lee (2005) investigated SVMs when applied
to bankruptcy prediction problems. They showed that their approach outperformed NNs

7



in the problem of corporate bankruptcy prediction. They also showed that their models’
accuracy and generalisation performance were better than that of NNs as the training set
size decreases.

Later Li et al. (2006) developed a consumer loan application evaluation model using
SVMs. In addition, they also developed a visual decision-support tool to be used in loan
application evaluation. Their tests using real-world data concluded that SVMs surpass
traditional neural network models in generalisation performance. The visualisation via
the tool mentioned above helps decision-makers determine appropriate loan evaluation
strategies. Adding to the expansion of interpretability of SVMs, Martens et al. (2007)
use rule extraction techniques on SVMs to increase human interpretability. They test
these techniques on several classification problems, including credit scoring on publicly
available data sets. They conclude that rule extraction techniques sacrifice only a small
percentage in performance and therefore rank at the top of comprehensible classification
techniques.

Using the data sets from UCI Machine Learning Database, Huang & Scott (2007)
compared the use of NNs, genetic programming, and decision tree classifiers with an
SVM classifier. They showed that the SVM achieved an identical classification accuracy
to the other models with relatively few input features. Additionally, they combined genetic
algorithms with an SVM classifier in the hybrid GA-SVM strategy. Experimental results
showed that SVMs are a promising addition to existing data mining methods.

Bellotti & Crook (2009) tested SVMs against methods such as discriminant analysis
and logistic regression using an extensive credit card database. Their findings showed
that SVMs are competitive and can be used to identify the most statistically significant
features in determining default risk. Shortly after, Kim & Sohn (2010) provided an SVM
model for predicting the default of funded SMEs in Korea by considering various input
variables such as financial ratios, economic indicators, and technology evaluation factors.
Their results showed that their SVM model outperformed back-propagation NNs and
logistic regression when measuring the accuracy of predictions.

Moreover, recently Khemakhem & Boujelbene (2017) performed a comparative study
of logistic regression, artificial NNs and SVMs when used to determine the probability
of default as a tool to measure credit risk in a Tunisian commercial bank. Their results
show that SVMs using the radial basis function outperformed the other models.

1.3.3 Artificial Neural Networks

NNs or artificial neural networks (ANNs) are powerful ML algorithms that can perform
regression or classification tasks. Their use in credit default prediction has been widely
studied. With non-payment predictions, Charitou et al. (2004) suggested that the logit
models are superior when compared to other methods. However, it was also suggested
that traditional ANNs and Logit models are equally superior in overall predictive ability.
Koh et al. (2006) noted that logistic regression is the most stable model despite ANNs
having the best overall accuracy rate. Vojtek et al. (2006) suggested that even though the
AI-based methods such as ANNs can perform with missing values and multi-collinearity
issues, the processes are mathematically demanding, and some techniques are complicated
to elaborate. Finally, even though ANNs can create fantastic results, their failure to give
details of the outcome is a real drawback (Eddy & Abu Bakar 2017). As a summary,
we will look at some of the other literature that put NNs to the test against some non-
traditional models.

As early as 1992, Jensen (1992) studied the use of back-propagation NNs to predict
loan defaults based on credit applicant characteristics, achieving an accuracy of up to
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80%. Some time later West (2000) found that multi-layer perceptrons outperformed
methods such as linear discriminant analysis, logistic regression, k nearest neighbour,
kernel density estimation, and decision trees in credit scoring applications. Soon after,
Atiya (2001) developed a neural network model for bankruptcy prediction and proposed
novel indicators for the model. Their results show that these indicators and traditional
financial ratios provide significant improvement in the out-of-sample prediction accuracy.

Further down the line, Angelini et al. (2008) developed both a standard feed-forward
network and a network with special-purpose architecture. They tested their models on
real-world data (Italian small business loans). They showed that NNs, with careful data
analysis and data pre-processing, successfully learn and estimate the default tendency of
a borrower. Khashman (2010) and Eletter et al. (2010) both proposed NNs to decide
whether to approve or reject a credit application. Their results suggest which neural
network model with which learning scheme delivers the most optimal performance.

Exploring DL, Sun & Vasarhelyi (2018) developed a credit default prediction system
using a deep neural network. They used credit card data from customers of a large bank
in Brazil. Similarly, Wang et al. (2018) also used DL to predict loan defaults in the peer-
to-peer lending sector. Motivated by the research in natural language processing, the
authors used online operation behaviour data of borrowers. They proposed a consumer
credit scoring method based on an attention mechanism called a long-short term memory
(LSTM) network (a type of recurrent neural network), a novel application of DL. Their
results showed that the proposed solution could effectively increase the predictive accuracy
compared with the traditional models.

More recent work by Hsu et al. (2019) developed a DL model, in the form of a recurrent
neural network (RNN), to predict credit card client defaults. Numerical experiments
confirmed that the RNN model provides the best performance compared to the other
benchmark models. Finally, Giudici et al. (2019) proposed to enhance credit risk accuracy
of peer-to-peer platforms by leveraging topological information embedded into similarity
networks derived from borrowers’ financial information. Topological coefficients describing
borrowers’ importance and community structures are employed as additional explanatory
variables, leading to the improved predictive performance of credit scoring models.

1.4 Goals of the Dissertation

It is necessary to give the reader a clear indication of the goals of this dissertation. We
outline the three primary goals as follows:

The first goal of this dissertation is to explore the topics of credit risk/credit scoring
as well as introduce the unfamiliar reader to the concept of ML. We will tie these two
topics together and review credit scoring methods and models used in practice today and
proposed in the literature. The main focus of this dissertation is NNs and DL, so once the
basics of ML are covered, we want to explore NNs and the mathematics that underpin
them.

The second goal of this dissertation is to develop an ANN model for consumer credit
default prediction. We will use actual consumer credit card data to train the model, and
we will then test this model against other credit scoring models. We will also build a
DNN while also using recent advancements to improve accuracy and reduce overfitting.
Compared to other ML models such as logistic regression, naive Bayes, decision trees
and traditional ANNs, DNNs have been shown to have a better overall predictive perfor-
mance. They have produced the highest F1 scores and area under the receiver operating
characteristic curve (Sun & Vasarhelyi 2018).

The third and final goal is to tune our chosen ANN and DNN and see if we can
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outperform the other models currently proposed in the literature by running rigorous
tests.

1.5 Structure of the Dissertation

Here we provide an outline of this dissertation with a short description of the contents of
each chapter. This description is supplemented by Figure 1.7, which gives the reader a
clear indication of how each chapter fits together.

Part I - Theory

Chapter 2: Consumer Credit Risk and Scoring

This chapter will look at credit scoring by introducing the concept of credit risk and,
more specifically, consumer credit risk. We will go over some of the basic concepts related
to credit risk, such as measurement and management, and other related concepts, such
as risk-based pricing. We will then introduce scorecards and the rationale behind them.
This chapter will be crucial for the reader unfamiliar with finance and credit risk.

Chapter 3: A Brief Overview of Machine Learning

This chapter will be a gentle non-technical introduction to ML and its various sub-fields.
This chapter will provide some background on the field and give a slightly more compre-
hensive view than is necessary for the dissertation. However, ultimately it will open up
the discussion to the power of NNs and DL.

Chapter 4: Credit Scoring Methods, Models and Evaluation

We will review the various methods and models that have been developed in the field. We
will also look at various metrics used to evaluate our models and review some techniques
from Data Science to increase the predictive ability of our models. This chapter illustrates
the cross-field nature of this dissertation and brings together concepts from Chapters 2
and 3.

Chapter 5: Mathematics of Neural Networks and Deep Learning

Here we start to build an understanding, in a mathematical sense, of the tools used in this
dissertation. We start with some background to the field and construct a neural network
model by starting with a single perceptron model and eventually arriving at a deep neural
network. It is crucial to note that this chapter will focus on the mathematics of the model
as it is required, along with a technical understanding of the model, to prove in theory
that it is possible to build an accurate credit scoring model. More importantly, it will also
provide a better understanding of how NNs are so superior at function approximation.

Chapter 6: Challenges and Advancements in the field of Neural Networks and
Deep Learning

This final chapter of the theoretical background takes a look at recent advances in the field
of DL. We also see how they address some of the issues with training deep networks. We
explore various methods designed to increase the accuracy, execution speed and reliability
of NNs.
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Part II - Application

Chapter 7: A Neural Network Model for Credit Default Prediction

This chapter starts by looking at our data set and exploring what features are available to
us. We then proceed to ”fix” the class imbalance issue in our data set and then prepare our
data set for training. We will then describe the experiment design and examine the five
models we will be training and comparing. The ultimate goal is to create a highly accurate
Deep Neural Network. We then review and compare the results from our experiments and
analyse each model’s performance in different aspects and rank them accordingly.

Chapter 8: Conclusion and Suggestions for Future Study

This final chapter concludes whether DL is an excellent alternative to conventional and
other credit scoring models. We also highlight some of the drawbacks and challenges that
DL approaches face in the financial sector (especially in banking, where regulatory hurdles
are plenty) and consider some resolutions. We also provide an overview of the potential
future research options related to this work.

Figure 1.7: How each chapter ties together.
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Theoretical Context
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Chapter 2

Consumer Credit Risk and Scoring

”Pay to all what is owed to them: taxes to whom taxes are owed, revenue
to whom revenue is owed, respect to whom respect is owed, honour to whom
honour is owed.” - Romans 13:7

2.1 Introduction

In this chapter, we will look at credit scoring by introducing the concept of credit risk
and, more specifically, consumer credit risk. We will consider some basic concepts related
to credit risk, such as measurement and management, and other related concepts, such
as risk-based pricing. We will then introduce scorecards and the rationale behind them.
This chapter will be crucial for the reader unfamiliar with finance and credit risk.

2.2 Background

Since the GFC, banks have increased effort to understand their total credit risk profile
better. This increased effort was followed by much attention being placed on counterparty
credit risk (which is defined as the likelihood or probability that one of those involved in
a transaction might default on its obligation), as is highlighted in Figure 2.1∗.

∗This data was queried and extracted from https://app.dimensions.ai/analytics/publication/

overview/timeline. The results were obtained by running a search across all major journal publications,
from 2005 to 2020, for papers where the title or abstract mentioned ”counterparty credit risk” and
”consumer credit risk” or ”retail credit risk”.
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Figure 2.1: On average, over the last 15 years, counterparty credit risk has been studied
in 40% more papers than consumer credit risk.

However, it is apparent that consumer credit risk also deserves attention and stands
to benefit from recent technological innovation. In this dissertation, we will be exclusively
focusing on credit scoring in the context of consumer credit risk and not in counterparty
credit risk.

2.3 What is Credit Risk?

The Bank for International Settlements (1999) defines credit risk as:

Definition 1 Credit risk is the potential that a borrower or counterparty will fail
to meet its obligations per agreed terms.

UniCredit (2012) distinguish between three types of credit risk:

– Credit default risk, which is the risk of a borrower is unable to repay their debt
obligations in full or is past due more than 90 days on their credit obligation leading
to financial loss for the lender.

– Concentration risk, which is the risk that arises in credit portfolios when borrow-
ers all face common risk factors (such as exchange rates and interest rates). This
could be an issue for the lender since they affect both the borrower’s ability and
willingness to meet their debt obligations which could amount to large simultaneous
losses.

– Country risk, which is the risk of loss arising due to sovereigns failing to meet
foreign debt obligations (be it intentional or not); this type of risk is associated
with a country’s macroeconomic conditions as well as political stability.

We will be concerned with credit default risk. According to De Laurentis et al. (2010),
default risk can be broken down further into three sub-categories:

– Default Risk, which relates to a borrower’s inability to make promised payments
and is measured by probability of default (PD), which can be determined using
various methods.
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– Recovery Risk, which is the risk that the recovered amount, in the event of default,
is less than the full nominal amount that is due. It is measured using recovery
rate (RR), which is the extent to which principal and accrued interest on defaulted
debt can be recovered, expressed as a percentage of face value. It is the inverse of
loss given default (LGD), which is the share of principal and accrued interest that
is lost in the event of a default. LGD is simply 1 – RR.

– Exposure Risk, which is the risk that a credit exposure at the time of default
increases relative to its current exposure. It is measured by exposure at default
(EAD).

The key parameters mentioned above - that is PD, LGD and EAD - are defined by
The Bank for International Settlements (2003) as follows:

Definition 2 Probability of default measures the likelihood that the borrower will
default over a given time horizon.

Definition 3 Loss given default measures the proportion of the exposure lost if a
default occurs.

Definition 4 Exposure at default, which for loan commitments measures the
amount of the facility that is likely to be drawn if a default occurs and is deter-
mined as follows:

EAD = drawn amount + (limit− drawn amount)× LEQ,

where:
drawn amount is the amount of the credit facility currently used,
limit is the maximum amount granted by a bank to the borrower and
LEQ is the loan equivalency factor (rate of usage of available limit beyond ordinary
use).

2.4 Credit Risk Measurement and Management

The most important concepts in understanding the management and measurement of
credit risk are expected loss, unexpected loss and economic capital.

2.4.1 Expected and Unexpected Losses

First we consider the definition of expected loss as presented in Schroeck (2002):

Definition 5 Expected loss (EL) is the mean loss in the long run generated from
credit facilities. The EL is calculated as

EL = PD × LGD × EAD. (2.1)

EL is determined based on expectations and is a cost that is incorporated into business
and credit decisions (Schroeck 2002). Credit losses are not constant over time. The
business normally provisions for EL and attempt to bear it as part of normal operating
cash flows. However, EL might differ from actual losses. Finally, the EL of a portfolio P
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is equal to the sum the individual ELis,

ELP =
∑
i

PDi × LGDi × EADi, (2.2)

where i is the number of obligors.
Next, we consider the definition of unexpected loss as presented by Ebrary.net (nd.):

Definition 6 Unexpected losses (ULs) are loss percentiles (Lα) in excess of the EL,
i.e. the additional loss beyond the EL and up to the loss percentile used for defining
the credit value at risk (CV aRα).

CV aRα − Lα − EL. (2.3)

Unexpected losses do not include exceptional losses beyond the loss percentile defined
by a prescribed confidence level α (established by an institution’s risk tolerance or
- in compliance terms - by regulatory authorities, such as the Basel Committee on
Banking Supervision) (See Figure 2.2).

Figure 2.2: An illustration of expected loss and unexpected loss using a credit loss distri-
bution curve.

(Source: (Genest & Brie 2013))

For a single exposure UL is calculated as follows (Schroeck 2002, Farid 2014):

UL = EAD ×
√
PD × σ2

LGD + LGD2 × σ2
PD, (2.4)

where

σ2
PD = PD × (1− PD). (2.5)

It is essential to point out some assumptions made here. In Eq. (2.4) we assume that
PD and LGD are uncorrelated. Also, in Eq. (2.5) we assume that a default event is a
random variable with a Bernoulli distribution with parameter PD, hence σ2

PD is simply
the variance of a Bernoulli random variable.

Finally, if we had to calculate the UL for a portfolio P we would use

ULP =

√√√√ n∑
i

n∑
j

ρijULiULj, (2.6)
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where ρij is the correlation between the PD of asset i and asset j.
Credit losses, both expected and unexpected, are very important to measure, estimate

and monitor. ULs present a problem because they can jeopardise the viability of a bank
as a going concern and, if not managed correctly, can grow. To cover itself against these
ULs, a bank must hold sufficient capital. Capital is built up in good times from profits
and is designed to absorb ULs in stressed times. Banks can derive PDs from clients’ credit
scores/ratings and use internal or regulatory models to estimate clients’ LGD and EAD.
These are important in determining the overall capital contributions needed by banks.

2.4.2 Economic Capital

Credit risk events can cause catastrophic economic losses for the bank. As soon as the
bank has calculated its EL on its loan portfolio (ELP ), it must set aside reserves in
anticipation to absorb these losses. On the other hand, to guard against the ULs it is
estimating at a predetermined confidence level, the bank needs to hold additional capital
over and above normal reserves, known as economic capital.

Definition 7 Jones & Mingo (1998) defines economic capital (EC) as the level of
capital a financial institution needs to hold in order to cover its losses at a certain
probability or confidence level, which is related to the desired rating. It is calculated
as the difference between expected loss and unexpected loss at a specific confidence
level (α):

EC = ULαP − ELP . (2.7)

Figure 2.3 gives a good illustration of the EL, UL and EC by describing it on a credit
loss distribution curve. For a more mathematical explanation of how EC is calculated,
consider the following derivation by Schroeck (2002):

Let XT be a random variable representing the loss and let z be the confidence level.
Also, let v be the minimum EC required to keep the bank solvent over horizon t, then:

P (XT ≤ v) = z. (2.8)

Now, given the desired confidence level of z we can determine the amount of EC to hold
as

P (Xt − ELP ≤ EC) = z, (2.9)

we define the capital multiplier C as

C =
EC

ULP
, (2.10)

and then

P

(
XT − ELP

ULP
≤ C

)
= z. (2.11)
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Figure 2.3: An illustration of expected loss and unexpected loss and how economic capital
is determined.

(Source: (Ebrary.net nd.))

2.4.3 Credit Loss Distributions

When we want to model credit risk, we are primarily concerned with the distribution’s
right tail. It is also important to note that the normal distribution is not appropriate
here as credit losses are highly skewed. Also, credit losses are limited below at zero, and
although extreme losses can happen, they are quite rare. It is because of this that the
beta distribution used to be the favoured distribution (Schroeck 2002).

Today, the Vasicek distribution, pioneered by Vasicek (2002), is the preferred distribu-
tion to model portfolio credit losses. This distribution was adopted by Basel (Chatterjee
2015), and provides more accurate results compared to the Beta distribution.

2.5 Consumer Credit Risk

Definition 8 Consumer credit risk (CCR) or retail credit risk, is the risk of default
by a consumer on a consumer credit product.

CCR is one of the most significant risks faced by retail banks (Crouhy et al. 2006,
Ghosh 2012). The retail banking industry primarily focuses on taking deposits from
clients and then lending those deposits to consumers and SMEs. When we use the term
loan, we are referring to lines of credit which include home mortgages, personal loans,
vehicle finance, small business loans and revolving credit facilities like overdrafts and
credit cards, to name a few. From the bank’s perspective, these individual loans or lines
of credit together form an extensive portfolio designed to reduce the incremental risk to
anyone exposure.

In the years leading up to the GFC, banks offered customers products they could not
afford with risks that were more than what customers could bear (Ellis 2008). Loan-to-
value (LTV) ratios (where LTV = Mortgage Amount

Property Value
(Hayes 2020)) on mortgaged properties

were very high and borrowers with weaker credit were given mortgages (Goodman &
Zhu 2018). These strategies backfired when housing prices collapsed, which resulted in
mortgages often exceeding the value of the properties themselves (Ellis 2008).

As mentioned before, when measuring CCR, we require estimates of PD, LGD, and
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EAD. When each line of credit is issued, the bank will have to determine PD for each
customer, not only at the outset but also throughout the life of the credit product, to
understand and effectively manage their risk. PD is difficult to estimate, but De Laurentis
et al. (2010) provides some methods that are used to determine a customer’s PD:

– Analysing historical default frequencies of a borrower;

– Using mathematical and statistical tools to measure risk on an ex ante basis (i.e.,
before an event);

– Using a hybrid approach that combines mathematical and judgmental analyses. The
mathematical results are generated automatically and are corrected using qualitative
analysis.

Default risk is typically measured over one year. However, measuring cumulative
probabilities of default beyond one year is also essential (De Laurentis et al. 2010).

2.5.1 Corporate Credit vs Consumer Credit

There are several differences between consumer and corporate credit risk. The first no-
ticeable distinction is the size of the exposures. First, let us define corporate credit risk.

Definition 9 Corporate credit risk, is the risk of default by a corporate entity on
corporate credit products, such as loans, bonds, revolving credit facilities, etc.

Retail portfolios are mainly comprised of many small exposures, while corporate port-
folios are made up of a few significant exposures. A single default in the retail portfolio
has little impact on the lender’s portfolio, whilst a single default in the corporate portfolio
can have far-reaching economic consequences.

Because of the inherent diversification of a retail credit portfolio and its behaviour in
regular markets, estimating its default percentage allows a bank to effectively treat this
loss as a cost of doing business and factor it into the prices that it charges its customers
(Crouhy et al. 2006).

Banks will have the opportunity to take pre-emptive action to reduce retail credit
risk when it appears that customer behaviour is changing and there is a potential rise in
defaults. This is because retail portfolio ELs are calculated based on PDs that the bank
calculates internally based on its models so that ratings can be adjusted quickly (The
Bank for International Settlements 2001). Pre-emptive actions could entail marketing to
lower risk customers and raising interest rates for riskier customers (risk-based pricing).
This signalling usually does not occur with corporate portfolios, as most banks rely on
external ratings (Santos 2009) produced by rating agencies (which may take time to adjust
their ratings). The bank might only detect problems when it is too late (Crouhy et al.
2006).

2.6 Credit Pricing, Monitoring and Other Consider-

ations

2.6.1 Risk Based Pricing

More lenders have moved to risk-based pricing (RBP) and away from charging a single
price for a product to all customers as they have recognised that this may lead to adverse
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selection (Wolff 2020). RBP involves lenders charging different customers different prices
based on their risk profiles. RBP is often used in the retail financial sector for credit
cards, home mortgages, and auto loans (Luthi 2018).

Along with credit scoring, lenders use product and customer profit scoring measures
to evaluate the potential profitability of a specific product and the potential profitability
of a specific customer. According to Crouhy et al. (2006), in determining the price to
charge a borrower, the following key factors are considered:

– the probability that the customer will accept the product,

– the client’s credit risk profile (i.e. PD, LGD and EAD),

– the cost of capital (interest rate) and whether the lender can bear it,

– cost of capital that needs to be allocated to the transaction and

– operating expenses.

Prices are split into tiers, and allocation is based on credit score bands. To provide an
example of credit score bands, we will look at FICO scores (a credit scoring system used
mainly in the US) which are split into the following bands (Akin 2020):

– scores between 800 and 850 are exceptional,

– scores between 740 and 799 are very good,

– scores between 670 and 739 are good,

– scores between 580 and 669 are fair and

– scores between 300 and 579 are fair,

The lender can then map pricing strategies to metrics such as profit/loss, revenue,
market share, and risk-adjusted return at the various score bands. Effectively utilising
RBP allows senior management to evaluate the inevitable trade-offs among profitability,
market share, and risk with the short and long-term goal of increasing shareholder value
(Crouhy et al. 2006).

2.6.2 Importance of Credit-Line Risk Management

When a bank has extended a line of credit to a customer, they must then actively monitor
the customer’s creditworthiness. Whether the customer’s creditworthiness improves or
deteriorates, their line of credit may be increased or decreased, and their interest rate
may be lowered or raised. Therefore, CCS and ongoing monitoring should be the primary
concern of any retail credit business. Decisions on whether a credit line is to be extended
or not should therefore be based on a model. This will ensure that changes in risk profiles
are captured accurately and promptly and enable the bank to take corrective action if
needed, e.g. for high-risk customers taking action by reducing credit limits, raising interest
rates, or even both.

2.6.3 Trade-off between Profitability and Creditworthiness

A bank’s primary concern is not just risk and creditworthiness; they also base their
decision making on profitability. For example, suppose a credit card is issued to a customer
with a very high credit score (i.e. low risk of default). They settle their debt in full each
month or utilise a minimal amount of their credit line. In that case, the bank is going to
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earn little to no interest from that customer. On the other hand, if the bank issues that
same credit card to a customer with a low credit score (i.e. greater risk of default), they
may earn more interest and face the risk that the customer will default. In this default
event, they might not be able to recover the capital amount in full.

While it is challenging for banks to manage this trade-off efficiently, it is even more
challenging to correctly identify customers’ risk profiles, i.e. determining which customers
are genuinely high-risk and are in danger of falling behind on repayments. If done incor-
rectly, many low-risk customers could be incorrectly classified as high-risk (opportunity
cost) or many high-risk customers incorrectly classified as low-risk (greater subsequent
delinquencies and losses).

This trade-off is common and is present in all classification problems. It is the sta-
tistical trade-off between type I and type II errors. In the context of CCR management,
this trade-off represents a cost/benefit analysis of false positives (FP) or type I errors vs
false negatives (FN) or type II errors. By adjusting the threshold, we can attempt to
optimise some criterion function in which such costs and benefits are inputs (Khandani
et al. 2010).

2.7 Credit Scoring

It is crucial to determine a customer’s PD. It enables the lender to price the product offered
correctly and enables them to hold the correct amount of capital to compensate for the
risk they are taking on. A credit scoring model takes information about an applicant,
typically from a credit scorecard, and outputs a number to be used for assessing credit risk.
It is simple: a high number means a low probability of default by the borrower. Credit
scoring models process large amounts of customer information and produce a single risk
measure, all in a single automated process.

Due to recent advancements in computing technologies and the availability of afford-
able computing power, credit scoring has become the cornerstone in modern credit risk
management (Mashanovich 2017). Now, banks and lenders, especially micro-lenders and
SME financiers, can not only apply credit scoring in assessing lending decisions, but they
can also now use it as a tool to perform ongoing credit risk management and collection
strategies (Khandani et al. 2010) (credit-line risk management).

Credit scorecards are used to gather information from credit bureau reports and cus-
tomer applications. Weights are then assigned to each element of the scorecard depending
on their importance. Some of the questions/entries can include any of the following: Size
and source of income, education, employment record and status, age, residential address,
monthly expenses, marital status and number of dependents (Mashanovich 2017).

The attributes are the responses to these questions. The scoring models will then
determine if these attributes are positive or negative and assign a weight to each attribute
based on historical data points and the associated probability of default. In addition to
these questions, each individual’s credit file contains the following information (Equifax
nd.):

– Personal information (which is not factored into the scoring model);

– Records of credit inquiries when a file is accessed;

– Data on collections, reported by entities that provide credit or agencies that collect
outstanding debts;

– Legal (public) records on bankruptcies, tax liens, and judgments;
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– Account and trade line information gathered from receivables information sent to
credit bureaus by grantors.

2.8 Conclusion

The idea of consumer credit scoring is simple: the lender wants to know whom they are
lending money to know their risk. Beyond that, a borrower’s circumstances change, so
it is clear that ongoing monitoring of risk is necessary. Finally, now that it has been
established that credit scoring is so valuable, we can see it is clear that powerful and
highly accurate tools are required to help measure and monitor this risk.

We have formed a clear understanding of the concepts of CCR. We now look at the
tools used in practice and others that have been proposed in the literature. To achieve
this, it is necessary first to get acquainted with the concept of ML. The next chapter
provides a gentle introduction to the concept of ML for the unfamiliar reader.
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Chapter 3

A Brief Overview of Machine
Learning

“Machine learning uses patterns in data to label things. Sounds magical?
The core concepts are actually embarrassingly simple. I say “embarrassingly”
because if someone made you think it’s mystical, they should be embarrassed.”
- Cassie Kozyrkov, Chief Decision Scientist at Google.

3.1 Introduction

This chapter provides a gentle non-technical introduction to machine learning and its var-
ious sub-fields. This chapter will provide some background on the field and give a slightly
more comprehensive view than is necessary for the dissertation. However, ultimately it
will prompt a discussion of the power of neural networks and deep learning.

3.2 What is Machine Learning

Machine learning, which is a sub-field of AI, enables machines (computers) to learn by
themselves. By using different algorithms, the machine can sometimes identify complex
patterns in observed data sets and then build models that attempt to explain the natural
world and make predictions without having explicit pre-programmed rules and models
(Maini & Sabri 2017).

Using a combination of mathematical and statistical models and sets of data, we
attempt to fit a suitable model to a set of data. We attempt to build models, using
observed data, that are ultimately able to make predictions using new data, i.e. that
generalise well. An elementary example is linear regression, where we attempt to fit a
straight line to data. However, ML problems frequently deal with more complex models.

The notion of ML is not new. In the 1950s, Samuel (1959) created a computer pro-
gram that could play checkers and also designed mechanisms that allowed his program to
improve (or learn). Arthur Samuel is credited with coining the phrase “machine learning”
in 1952 (Foote 2019).

ML, and AI in general, had initially been seen as a failure (due to the lack of necessary
computational power), and it is only in the last few decades that we have seen a resur-
gence in the field (Culkin & Das 2017). This resurgence was primarily due to advances
made in computer processing power and the availability of Big Data. ML can be divided
into classical ML, reinforcement learning, ensemble methods and neural networks/deep
learning.

23



3.3 Classical Machine Learning

Classical ML can be split into two fields: Supervised and unsupervised learning.

3.3.1 Supervised Learning

In this case, the machine is given labelled data, i.e. the input set with its respective
output. The machine then uses these training examples (instances) to learn and identify
relationships. The two main problems of supervised learning are:

– Classification: When the output variable is a category. Using models like Logistic
Regression, Decision Trees, K-nearest Neighbours, SVMs.

– Regression Problems: When the output variable is a real value. Using models
like Linear Regression, Polynomial Regression, Ridge/LASSO regression.

To illustrate how supervised learning works, let us consider, for example, the simple
linear regression model

y = βx+ ε. (3.1)

When training the machine (also referred to as learning the model), we will provide
it with an input x and an output y. Given enough labelled data, the supervised learning
algorithm can approximate the relationship (should one exist) between the inputs and
outputs, i.e. approximate β and ε (this can is done using various optimisation methods).
After a model has been trained, it can make predictions for y based on unseen x values. If
the model’s predictions are reasonably accurate (close to the actual y), we have a model
which generalises well.

3.3.2 Unsupervised Learning

In this case, the machine is presented with unlabelled data and tasked with sorting them
and finding underlying patterns. The two main problems of unsupervised learning are:

– Clustering Problems: Where the objective is to discover inherent groupings in
the data.

– Association Problems: Where the objective is to discover rules that describe
large segments of the data.

In Table 3.1 we summarise the different classical machine learning problems with some
examples of the models used and the application thereof.
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Problem
Type

Description Models/Models Application

Regression Fitting a line that
best explains the data
points.

Linear regression,
Ridge/LASSO re-
gression, polynomial
regression.

The two primary uses
for regression in busi-
ness are forecasting
and optimisation, e.g.
helping managers pre-
dict such things as fu-
ture demand for their
products by looking at
past trends.

Classification Categorising a set of
data points based on
their features.

Logistic regression,
support vector ma-
chine, K-Nearest
Neighbours, decision
trees.

Popular use cases in-
clude tumor classifi-
cation, flower species
identification and con-
sumer and corporate
credit classification.

Clustering Discovering inherent
groupings in a set of
unlabelled data.

Partitioning methods,
hierarchical cluster-
ing, model-based
clustering, density-
based clustering.

Spam filtering, iden-
tifying fake news,
marketing and sales
targeting.

Association Discovering a set of
rules that describe a
large portion of the
data set.

Apriori algorithms,
eclat algorithm and
FP-growth algorithm.

Web usage mining,
intrusion detection,
continuous produc-
tion, recommender
systems and bio-
informatics.

Table 3.1: A summary of the descriptions and applications of the main classical machine
learning problems.

3.4 Beyond Classical Machine Learning

As mentioned, the other areas of ML include ensemble methods, reinforcement learning
and NN/DL.

3.4.1 Reinforcement Learning

Reinforcement learning (Sutton 1992) (also known as semi-supervised learning) is a very
popular and essential midpoint between unsupervised and supervised learning. Here we
make use of both labelled and unlabelled data. Unlike supervised learning, where the
model is given labelled data, reinforcement learning models learn through trial and error
while performing a task and maximising long-term reward. Through this type of learning,
we can develop a system that can learn how to function in real-world scenarios (Maini &
Sabri 2017).

We provide an example of how reinforcement learning works at a high level. There is
always an agent (the model) trying to accomplish a task or action in an environment in
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reinforcement learning. Take, for example, a machine trying to walk across a terrain. The
agent is the machine, the task is walking, and the environment is the terrain it is trying
to cross. For the machine to learn to navigate the terrain (the goal), it must be provided
with feedback. For example, the machine could fall or stumble over uneven terrain or
bump into an object. This is negative feedback, and the machine learns from it. Next
iteration of walking it would know to avoid the activity that caused it to fail so that it
manages to walk further without making a mistake. This is the reward. The process is
summarised in Figure 3.1.

Figure 3.1: Illustration of the process of reinforcement learning.

(Source: (Bhatt 2018))

Some real-world examples of reinforcement learning include:

– Google’s DeepMind: A computer program that was able to beat the top-rated
GO player and then later the top-rated chess program.

– Robotics: The field of robotics very often relies upon reinforcement learning to help
robots to learn to perform better in the environment they are in, e.g. self-driving
cars.

3.4.2 Ensemble Methods

The core idea behind ensemble methods (Dasarathy & Sheela 1979, Hansen & Salamon
1990, Schapire 1990) is to combine different ML algorithms in an attempt to construct
more accurate and efficient predictive models. These various models are combined strate-
gically to solve specific problems. The premise is simple: by combining predictions from
different models, we will average out idiosyncratic errors and produce more accurate pre-
dictions overall. Figure 3.2 presents a basic ensemble procedure:
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Figure 3.2: Illustration of an ensemble method.

(Source: (Keim 2019))

Some popular ensemble methods include:

– Bagging (also known as Bootstrap Aggregation): Bootstrap (Efron 1992) is
a sampling technique, whereby we randomly select several observations from a data
set. After creating our bootstrapped samples, we train separate models (or the same
model) on these samples. The individual outputs are averaged to produce our final
prediction.

– Boosting: Boosting (Schapire 1990) is a sequential learning technique. We train
our model on the entire training set, then build subsequent models. Each subsequent
model’s prediction is weighted by accuracy, and more attention is given to those data
points that were mispredicted by the previous one. Each of the predictions is then
given weighted accuracy scores, and the results are aggregated to arrive at a final
prediction.

– Voting-based ensemble learning: Voting ensemble learning (Polikar 2009, Brown
2010) is when we create multiple separate models using a common data set. Then
the voting-based model aggregates all predictions. We can then use this construction
to make predictions on unseen data. Each sub-model’s (called ensemble members)
predictions are assigned weights using stacked aggregation, which is used to learn
how to weigh these predictions in the best possible way.

3.4.3 Neural Networks and Deep Learning

Neural networks (Rosenblatt 1958) are a specific set of algorithms created to mimic the
way the human brain works, i.e. by receiving a range of stimuli (input) and then parsing
it through layers of neurons that learn to associate input with output. They are so flexible
and efficient that they can be applied to almost any ML problem with a complex mapping
from the input to the output variables. NNs can solve classification (e.g. logistic regres-
sion) and regression problems (e.g. linear regression) and can be applied to supervised
and unsupervised learning problems. Some applications include:

– function approximation,
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– object identification on photos and videos,

– speech recognition and synthesis,

– image processing, style transfer and

– machine translation.

The basic layout of a NN is a collection (layer) of neurons and their respective con-
nections. A neuron is represented by a function (called activation functions) provided
with a set of aggregated inputs and then mapped to one output. Figure 3.3 represents a
simple perceptron model. In ML, the perceptron is an algorithm for supervised learning
of binary classifiers and is the simplest form of a neural network.

Figure 3.3: Illustration of a simple perceptron. In this illustration, x, y, z represents
the inputs to the model, the wis the weights associated with each input, Σ represents the
aggregation and the Sigmoidal symbol represent the application of the activation function.

(Source: (Paul 2018))

The connections between neurons feed outputs from one neuron to inputs for neurons
in the next layer. Each connection has only one parameter – weight (wi). This weight can
be interpreted as the strength of the signal. All of the neurons are not randomly linked
but by layers. Neurons in the same layer are not connected, but each layer is connected
to the previous and subsequent layers. In feed-forward NNs, data flow strictly from the
input layer to the output layer. Layers between the input and output layers are called
hidden layers (all of this is illustrated in Figure 3.4). When a network has two or more
hidden layers, we refer to it as a deep neural network. In practice, we do not physically
construct neurons and connections. Instead, we represent the network as a set of matrices.
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Figure 3.4: Illustration of a multi-layered perceptron with one hidden layer.

After a network is constructed, the task assigns weights to each input so that neurons
will react correctly to incoming signals. As with supervised learning, during the training
of the network, we have labelled data. We start by randomly assigning each input variable
xi with a weight wi. Data then flow through the network and arrive at an output ŷ. We
then check the prediction against the actual y and adjust each weight if the prediction
is off. After many such cycles of ”infer-check-punish”, the idea is that the weights are
corrected and act as intended. This process is called back-propagation.

DL excels at approximating unknown functions, particularly in situations where the
data are complex. ANNs are known as universal function approximators because they
can learn any function, proved by the Universal Approximation Theorem (Cybenko 1989).
An informal version of the theorem follows:

Theorem 3.4.1 The Universal Approximation Theorem states that feed-
forward NNs constructed of artificial neurons can approximate real-valued continu-
ous functions on compact subsets of Rn, to arbitrary accuracy.

The theorem thus implies that a simple NN can, in principle, be applied to nearly
any problem (given enough features and training instances), as they can approximate
essentially any function of interest. Early versions of the theorem by Cybenko (1989) and
Hornik (1991) considered networks of arbitrary width (number of nodes per layer). A
simple general formulation was given by Pinkus (1999). Later versions by Lu et al. (2017)
and Hanin & Sellke (2017) considered the ”dual” problem for networks of arbitrary depth
(number of layers). The point, however, is clear; DNNs are proving to be extremely
effective in practice. Fan et al. (2019) provides a more in-depth discussion of this theorem
as well as providing proof.

3.5 Conclusion

The Universal approximation theorem clearly illustrates the power NNs have over tradi-
tional ML, and the advantage DL has over both.

There also exist many different NN architectures for different problems. Chapter 5
will consider a mathematical investigation of feed-forward NNs and delve deeper into
the theory behind it. Other architectures include convolutional NNs, recurrent NNs,
generalised adversarial networks and auto-encoders.

We can now start examining the different models (statistical-based and machine learning-
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based) used in practice and literature and consider some methods used to measure their
performance and increase it as well. In the next chapter, we will do just this.
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Chapter 4

Credit Scoring Methods, Models and
Evaluation

“Essentially, all models are wrong, but some are useful.” - George E.P. Box

4.1 Introduction

We will review the various methods and models that have been developed in the field. We
will also look at various metrics used to evaluate our models and review some techniques
from data science to increase the predictive ability of our models.

Credit scoring is used to determine who receives credit and how much is given as
well as helping with ongoing monitoring of borrowers. Because of this, it is imperative
that the models used are highly accurate or at least give the lender an excellent idea of
the credit risk they are facing. We start by looking at the two types of scoring models:
statistical-based and ML-based models.

4.2 Statistical-Based Models

4.2.1 Probit and Logit Models

Probit models (Abdou & Pointon 2011) and logit models (Bolton et al. 2010) are tech-
niques for estimating the probability of an event occurring (a borrower defaulting) by
predicting a binary dependent outcome Y based on a set of independent inputs X (at-
tributes).

Consider working with default data where the outcome of the dependent variable Y is
either Y = 1 for non-default or Y = 0 for default. Rather than modelling Y , probit and
logit models model the probability that Y is equal to 1 (non-default) or 0 (default), i.e.
p = P (Y = 0) is then the probability of default.

P (Y = 0|balance), the probability the a customer will default, given their balance
owing, or P (balance) for short, will have a value between 0 and 1. We can predict
the probability of default given a value for balance. For example, one might predict
Y = 0 for any individual for whom P (balance) > 0.5. However, if the bank prefers a
conservative approach in predicting which borrowers might default, then they can choose
a lower threshold, for example, P (balance) > 0.45. The goal is to model the probability
of default p by specifying the model,

p = f(α + βXi), (4.1)
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where

α is the intercept and

βi is the coefficients for respective Xi.

For probit models we use the cumulative normal distribution function. Eq. (4.1) becomes

p =

∫ α+β

−∞

1√
2π
exp

(
−1

2
t2
)
dt. (4.2)

For logit models the formula is

logit(p) = log

(
p

1− p

)
= α + β1X1 + ... + βnXn. (4.3)

To estimate the parameters, we use maximum likelihood estimation, which is a method
of estimating the parameters of a probability distribution by maximising a likelihood
function so that under the assumed statistical model, the observed data are most probable.

Bolton et al. (2010) suggested that when it comes to credit scoring, logistic regression
is easy to elaborate and execute. It is for this reason that the technique has been
the chosen method in the banking industry.

4.2.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) (Bansal et al. 2008) is a technique that assumes
there are two populations, the defaulters and the non-defaulters. The population is then
categorised into these two classes based on a set of attributes X using

Z = α +
n∑
i=1

βiXi, (4.4)

where Xis are the explanatory variables or attributes and α and β are the intercept
and coefficients, respectively, with Z being the discriminant z-score. Z is used to classify
an observation (borrower) into a particular class based on a certain pre-defined threshold.
This method is one of the early statistical techniques that have been used to build credit
scoring models. The drawback is that it is quite restrictive in its assumptions and is quite
sensitive to outliers, and the size of the smallest group must be larger than the number
of predictors variables.

Using LDA we assume (Büyüköztürk & Çokluk-Bökeoğlu 2008):

– Independent variables are normal for each level of the grouping variable;

– Variances among group variables are the same across levels of predictors (homoscedas-
ticity);

– Predictive power can decrease with an increased correlation between predictor vari-
ables (multicollinearity);

– The score for one variable is assumed to be independent of scores for other variables.

These statistical assumptions are seldom satisfied in real life (Eddy & Abu Bakar
2017).
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4.2.3 Markov Chain Analysis

A Markov chain or transition matrix (Smith & Lawrence 1995, Greenidge & Grosvenor
2010) is another tool that is used to define the probability that a borrower will move from
one state (good) to another (bad) or vice versa. The matrix (see Figure 4.1) is developed
based on available data with each entry defining a transition probability Pi,j of going
from state i to state j. The time to transit from one state to another ranges from one
hour to one year or even longer. The matrix is then converted to a steady-state long-run
probability of the borrower being good or bad.

Figure 4.1: An illustration of a transition matrix.

4.3 AI/ML-based Models

The core focus of this dissertation is to explore the use of NNs/DL in credit default
prediction. These models are based on the structure of the human brain and “learn”
through experience. An ANN processes specific characteristics (independent variables of
features) and produces output or responses similar to the human brain. Their success in
credit default prediction has been demonstrated (Angelini et al. 2008, Khashman 2010,
Eletter et al. 2010, Alabi et al. 2013).

We will aim to replicate these results for ourselves and attempt to understand their
potential while also applying modern techniques to boost their performance. However,
in order for us to demonstrate their power, we need other ML models used in literature
to compare our results with. We have decided to use two of the most popular models:
CART models and SVMs. Hence, we will proceed to describe how these models work in
order to provide a better understanding of what our neural networks will be measured
against. We will dedicate Chapter 5 to describing how neural networks work; hence we
will not go into further detail here.

4.3.1 Classification and Regression Trees (CART)

Decision trees also referred to as classification and regression trees (CART) (Breiman
et al. 1984), are simply sets of cascading questions that perform either classification or
regression, depending on whether the response variable is categorical or numeric. With
classification trees, we start with a set of features and then use the value of a given feature
to answer a question. By answering each question, the decision rule will then determine
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the next question. At the end of this sequence of questions, we will have a probability of
the data point belonging to a specific class.

A decision tree is an upside-down structure that branches out from the initial node
(the root node). From each node, there are two branches are leading to new nodes. Each
new node represents a partition of the feature space that satisfies the condition of the
question at the previous node. A node on the left branch includes the data points in the
feature space for which the condition of the previous node was true, with the remaining
data points being included in the node on the right branch. The terminal nodes at the
end of the tree are used to perform classification or regression and are referred to as the
tree leaves. The nodes in between the terminal and initial nodes are called intermediate
nodes, and they are used to arrive at the final prediction. Figure 4.2 provides an example
of a decision tree being applied in the approval of loans.

Figure 4.2: An example of a decision tree classifier for approving loans. In this case, the
features are age, education, own vehicle, house owned and income. Moreover, as we can
see, each branch represents and answers the question about the respective feature.

(Source: (Aleksandrova 2017))

The challenging part of decision trees is to understand how they are built. The question
is, how do we set up this cascading sequence of questions and determine the optimal split
created by each decision rule?

We start with our entire feature space as one region. Then, through a numerical proce-
dure called recursive binary splitting, the algorithm iterates through all the dimensions of
our feature space and determines what split would lead to the most significant reduction
in error (as this is a supervised learning algorithm, and we measure the predicted value
against the actual value during the training/creation of our tree model). Once a split has
been performed, and a decision rule determined, the algorithm repeats the process on the
new sub-regions created due to the split. This process is repeated until a specific stopping
criterion is met (e.g. we stop if the current sub-region, represented by a leaf node on the
tree, contains a certain amount of the data set, referred to as the leaf).

This process of continual splitting is also called a greedy approach since the algorithm
determines the split based on the most significant reduction in error without considering
the sequence of partitions that would follow from that split onward. So, in reality, the first
split might lead to the most significant reduction, but it might not be the most optimal
split that could be made.

We consider a simple example. Let us start with a two-dimensional feature space of
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{x1, x2} as in Figure 4.3.

Figure 4.3: A 2 dimensional feature space with two input variables {x1, x2}

In the example we are using, the tree performs classification trying to determine if
an outcome is either good or bad. The algorithm first determines that the optimal split
is determined by the decision rule x1 < L1, thereby splitting the feature space into
two regions (in the Cartesian plane in Figure 4.4, the partitioning is performed by the
vertical line at L1). The tree model creates its first split creating two branches and two
intermediate nodes. So, our first question is, is x1 < L1? The data points for which
this statement is true are split to the node on the left and the other to the node on the
right (the standard layout of a decision tree is that the node on the left corresponds to
the ”true” or yes answer to question whilst the other corresponds to the ”false” or no
answer).

Figure 4.4: On the left, our feature space after being partitioned and on the right, a view
of our decision tree.

Next, the algorithm will determine the most optimal split in each of the two new
sub-regions. First, on the region or left of L1, the algorithm determines that the most
optimal split is determined by the rule x2 < L2, while in the other region, it is x1 < L3.
These rules lead to two new partitions of each sub-region or four total sub-regions (as
illustrated in Figure 4.5).
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Figure 4.5: On the left, our feature space after two additional partitions and on the right,
our decision tree with four additional branches.

The process continues until the stopping criterion is reached. The final model (Fig-
ure 4.6) implies that all realisations of {x1, x2} in which x1 < L1 and x2 < L2 are
categorised as a bad outcomes, and all realisations {x1, x2} in which x1 < L1 and x2 ≥ L2

are categorised as a good outcomes, etc. In general, the {Li}s are chosen to minimise the
error in the fitted values for the dependent variable using the appropriate metric (usually
mean-squared error).

Figure 4.6: A CART model with two input variables {x1, x2} and a binary dependent
variable with two possible values (bad or good).

Once the model has been trained, optimised and finalised, forecasts can easily be made
for new realisations {x̃1, x̃2} by starting at the top of the decision tree and moving along
the tree from its top to bottom.

The reason why CART models have gained much popularity is that it overcomes the
drawbacks of, for example, probit and logit models where dependent variables are forced
to fit a single linear model throughout the entire input space (Khandani et al. 2010).
CART models can detect non-linear relationships between input and output variables and
produce interpretable results with clearly laid out logic. This aspect is vital in banking
sector applications, where ”black-box” models are viewed with scepticism (Khandani et al.
2010).
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Over the past two decades, tree-based algorithms have proven to be very powerful but
are likely to overfit the data, leading to a poor test set performance (James et al. 2013).
It is essential to keep this in mind, as it might be necessary to apply techniques such
as pruning to improve the generalisation of our model. This technique is described and
demonstrated in Section 7.4.3.

Modern variations or adaptions of decision trees include random forests (Breiman
2001) (which is an application of bootstrap aggregation (Efron 1992) or bagging) and
gradient boosted trees (GBTs) Friedman (2001) (including algorithms such as XGBoost
(Chen et al. 2015) and LightGBM (Ke et al. 2017)).

4.3.2 Support Vector Machines (SVM)

A support vector machine (SVM) (Boser et al. 1992, Guyon et al. 1993, Drucker et al.
1997) is a robust ML algorithm that attempts to classify points in a feature space by
finding a hyperplane/decision boundary that separates these points in the feature space
based on the value of the response variable. Once the model is trained, new instances can
then be mapped into that same space and classified into a category based on the side of the
hyperplane or gap on which they fall. More formally, an SVM constructs a hyperplane
or set of hyperplanes in a high- or infinite-dimensional space, which can be used for
classification, regression, or other tasks like outlier detection. SVMs are more commonly
used in classification problems, and as such, we will focus on this. SVM classifiers are
non-probabilistic binary linear classifiers.

As before, we will describe the model using a two-dimensional feature space (see
Figure 4.7). We start by defining the hyperplane. In this case, the hyperplane is a line.
When we train the model, the goal is to find a line that best separates the points in
the feature space based on their characteristics. The points in each of the two subsets
(assuming binary classification) represent a particular class (measured by the response
variable).

Next, we need to define the support vectors. These are the data points nearest to the
hyperplane. If these points were to be removed, it would alter the position of the dividing
hyperplane. It is for this reason that these points are considered the critical elements
of a data set. Lastly, we need to define the margin of the model. Margin is simply the
distance between the support vectors. Intuitively, a good separation in the feature space is
achieved by the hyperplane with the largest distance to the nearest training-data point of
any class. In general, the larger the margin, the lower the generalisation error of any class
of the classifier. So the margin is an important measure to compare different hyperplanes.
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Figure 4.7: A simple illustration of a support vector. In this example, our feature space
is two-dimensional, and the axes represent the values of our two features.

(Source: (iUnera n.d.))

The final question that remains is what happens if there is no clear hyperplane? In
practice, data are rarely as clean as in our simple example. Data points from separate
classes will often be mixed, making a clear linear separation impossible in the current
dimension. To overcome this, we need to move away from a two-dimensional view of the
data to a three-dimensional representation, i.e. we need to map our data into a higher
dimension. This process is known as kernelling and is illustrated in Figure 4.8. The
name kernelling derives from the use of kernel functions. Popular kernel functions in
the construction of SVMs include linear kernels, polynomial kernels and the radial basis
functions (Pedregosa et al. 2011).

Figure 4.8: An example illustrating how kernelling transforms our feature space into a
higher dimensional space to attempt to find a clearer separation.

(Source: (Sharma 2019))

Now, because our data is represented in three dimensions, our hyperplane can no
longer be a line and must be a plane (or decision surface), as shown in the example above.
This process aims to continue to map our feature space into higher and higher dimensions
until a hyperplane can be formed to segregate it.

SVMs have been shown to perform well in many applications and are considered by
some as one of the best “out of the box” classifiers (James et al. 2013). Some of the
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benefits of SVMs include their high level of accuracy. They work well with smaller sets of
data and they can be very efficient because they use a subset of training points instead
of the entire feature space. On the other hand, the drawbacks are that they are not well
suited to large data sets and are less effective if our data set is noisy. These models have
also been applied with much success in credit default prediction (Min & Lee 2005, Shin
et al. 2005, Kim & Sohn 2010, Khemakhem & Boujelbene 2017).

4.4 Evaluation of Statistical and AI/ML-Based Credit

Classification Methods

We will look at an often used performance measurement tool in ML called the confusion
matrix which is a 2× 2 contingency table as shown in Figure 4.9.

Figure 4.9: A confusion matrix.

The columns of the matrix represent the classes predicted by the model or the ex-ante
classifications. In the case of credit classification, the classes would be ”defaulted” and
”non-defaulted”. The rows, on the other hand, represent the actual classes or ex-post
realisations of delinquency.

As seen in Figure 4.9 the lower-right entry is called the true negative (TN) or a type-I
error. The upper-left entry is called true positive (TP) or a type-II error. Our goal is
to decrease the type-II error subject to a set type-I error. Put differently, we want to
maximise the power of our model subject to a fixed size.

Based on the entries of the matrix we can now calculate the following six performance
metrics:

1. Precision, which measures the model’s accuracy when it classified a customer as
bad and is calculated as TN/(TN + FN).

2. Recall, which measures the number of bad customers correctly classed by the model
over the actual number of bad customers and is given by TN/(TN + FP ).

3. TP Rate, which is given by TP/(TP + FN).

4. FP Rate, which given by FP/(FP + TN).
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5. The rate of incorrectly classified instances given by Pe = (FP + FN)/N .

6. The rate of correctly classified instances given by Pa = (TP + TN)/N .

An ideal situation is one where we have a model with high precision and recall or
one that has low FP rate and a high TP rate.

Next, we will look at the percentage of incorrectly and correctly classified instances.
This may not necessarily be a sufficient measure of a model’s predictive power when the
distribution of the predicted variable is highly skewed (i.e. many customers never default).
Because of this, we also need to consider a few more sophisticated measures.

Another tool we can use to evaluate our model is the receiver operating character-
istic (ROC) curve. By applying our model and using different classification thresholds,
we can visualise the trade-off between TP and FP as seen in Figure 4.10.

Figure 4.10: An example of a ROC curve.

(Source: (Sukhadeve 2017))

The blue and red lines are the ROC curve and are essentially pairwise plots of the TP
and FP rates for different thresholds (represented by the black line). The blue line would
represent a good model, while the red line would represent a bad one. The trade-off is
non-linear.

When analysing the ROC curve we can also calculate the area under the curve (or
ROC-AUC score) (Bradley 1997) to compare models. ROC-AUC can be interpreted
as the probability of the classifier assigning a higher score, i.e., a higher probability of
an instance from class 1 being labelled as being from class 1 than from a class 0. Some
important characteristics of the ROC-AUC Score are:

– ROC-AUC ∈ [0, 1]:

• If our model’s predictions are 100% wrong then ROC-AUC = 0.0

• If our model’s predictions are 100% correct then ROC-AUC = 1.0.

• If our model is just a random classifier we will have a ROC-AUC of 0.5 (for
balanced data).

– ROC-AUC score is independent of the threshold set for classification because it only
considers the rank of each prediction and not its absolute value.
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It is calculated as:

AUC =
1 + TPrate − FPrate

2
. (4.5)

The kappa statistic, or Cohen’s kappa (Cohen 1960), is a score that measures the
prediction successes in a classification problem, where success is measured relative to
purely random classifications. It is calculated as follows:

κ =
Pa − Pe
1− Pe

. (4.6)

A κ between 0.6 and 0.8 indicates substantial agreement, and a κ greater than 0.8
implies almost perfect agreement (Landis & Koch 1977).

Finally, we will consider the F1 Score, which can also indicate significant predictive
power and is the harmonic mean∗ of the model’s precision and recall and is given by:

F1 =
2× Recall× Precision

Recall + Precision
and F1 ∈ [0, 1]. (4.7)

When our positive class is small, then the F1 score is preferred to the ROC-AUC score.
Unbalanced classes are prevalent in credit classification problems as people are far more
likely not to default than they are default.

4.5 Cross-validation

Cross-validation is a method used to measure the skill of an ML model. It is commonly
used in applied ML to evaluate and compare models. It is easy to interpret, simple to
implement, and the metrics resulting from the process tend to have a lower bias than
other methods. Cross-validation is the gold standard to evaluate these models
but can be very time consuming to execute (Ghosh et al. 2020).

k-fold cross-validation is the most popular form of cross-validation. When we have
a situation where we have a small data set, and we want to preserve as much data as
possible for the model’s training, we will use k-fold cross-validation. The procedure is
quite simple but powerful. We start by splitting up the data set into k subsets, called
folds, where each fold is used as the test set, and the rest of the data are used as the
training set, and this is repeated n number of times (see Figure 4.11). After all the folds
have been fitted, the results (performance metrics) are averaged to give the final result.

∗The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of
the given set of observations.
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Figure 4.11: An illustration of the k-fold cross-validation procedure.

(Source: (Scikit-Learn 2020))

Variations on Cross-Validation
There are different versions of the cross-validation procedure. These include:

– Train/Test Split: k can be set to 2 such that a single training and testing data
split is created.

– LOOCV: k can also be set to the total number of observations in the data set.
This allows each test sample to be used in the hold-out data set. This process is
called leave-one-out cross-validation (LOOCV).

– Stratified: Here, each fold is split in such a way that the categorical split of the
data represents the split in the data set.

– Repeated: Here the k-fold cross-validation procedure is repeated n times. The
data is also shuffled before each cycle which results in a different split of the sample.

– Nested: This is essentially splitting each fold into another set of folds. This process
is often used to perform hyper-parameter tuning during model evaluation.

Before performing cross-validation, we need to determine how many folds we need to
fit (i.e. choose k). We can choose k such that each of the samples are large enough to
be statistically representative of the broader data set. The preferred method in practice
seems to be k = 10 as it has shown to produce model skill estimates with low bias and
modest variance (Brownlee 2020a).

4.6 Class Imbalance Problem

One of the greatest issues facing classification problems, particularly credit classification
problem, is the class-imbalance problem (Brown & Mues 2012, Bischl et al. 2016).
Class imbalance is when the number of instances in one class is far less than the other
instances. It is a pervasive problem in practice, especially in credit default data sets, since
a default event is far less likely to occur than a non-default.

Most ML algorithms learn more effectively when the data set is roughly balanced.
When the split is heavily skewed to the one side, problems arise, such as the algorithm not
having enough examples of the minority class to effectively learn the decision boundary.
When it comes to solving this problem, there are a few methods to consider.
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4.6.1 Cost function based approaches

Here we will, for example, weigh a false negative more heavily if we believe that one FN
is worse than one FP, and then the ML algorithm will try to make fewer FNs compared
to FPs as it is less costly (lower error).

4.6.2 Sampling-based approaches

Some sampling-based techniques include:

– Undersampling involves removing some majority class instances. The drawback
here is that we are decreasing our sample size.

– Oversampling involves duplicating some minority class instances. The drawback
here is that we are synthetically increasing our sample size, which might affect our
model’s ability to generalise.

– Hybrid approach involves combining oversampling and undersampling approaches.
This approach gives us the advantages and drawbacks of both approaches, i.e. we
will be increasing our sample size synthetically by less than before since our ma-
jority class has already been downsampled (by less than was required before due to
oversampling of the minority class).

4.6.3 Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE (Chawla et al. 2002) involves selecting instances that are close in the feature
space and sampling new points along the line between the two instances in the feature
space.

We start by randomly choosing an instance of the minority class, and then a number of
the nearest points (observations) are found (typically five). One of the points is randomly
chosen, and a synthetic example is then created by randomly selecting a point between
the two points in the feature space.

This newly created instance can create as many synthetic instances as needed for the
minority class. It is suggested to use SMOTE for oversampling after random
undersampling of the majority class has been applied to balance the class distri-
bution (Chawla et al. 2002). The downside of this approach is that these new instances
are created without considering the proximity of instances from the majority class. This
can lead to ambiguous instances being created when there is a substantial overlap of the
classes.

4.6.4 Other Approaches

Other approaches have been proposed in the literature, such as Underbagging (Barandela
et al. 2003), RUSBoost (Seiffert et al. 2008) and SMOTEBagging (Wang & Yao 2009) and
are all regarded as improvements on SMOTE. SMOTE, however, remains popular
due to its simplicity.

4.7 Classification Thresholds

As mentioned earlier, in the context of CCR management, the trade-off between profitabil-
ity and creditworthiness represents a cost/benefit analysis of FPs or Type-I errors vs FNs
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or Type-II errors. Therefore, we can adjust the classification threshold and attempt to
optimise some criterion function in which such costs and benefits are inputs.

First, we need to define a classification threshold. ML algorithms perform classification
by looking at the probability of an instance being in one class. This is done using a
threshold (default = 0.5) where all values greater or equal than that threshold are mapped
to one class, and all other values are mapped to another class.

In a practical context, this serves a strategic purpose: If the bank aims to identify high-
risk customers by using a lower threshold aggressively, this will result in more incorrect
classifications of less risky customers as high risk. This will lead to the opportunity cost
of lost interest income that could have been earned from those customers who will then
have their credit lines cut or not increased (Crouhy et al. 2006).

When our data set has a severe class imbalance, the default threshold could result in
poor performance. We can improve our model by tuning the threshold that is used to
map probabilities to class labels.

We can use the ROC Curve to calculate the optimal threshold directly, or we can also
use a GridSearch algorithm (Pedregosa et al. 2011) (a hyper-parameter tuning algorithm
which is applied in Chapter 7) to tune the threshold and find the optimal point.

4.8 Conclusion

It is clear that when it comes to model choice and performance metrics, there are several
options. It just depends on what the problem and goal at hand are. When it comes to
performance-boosting, a great understanding of the data and the problem is required and
the model being used (this is where the field of data science comes in).

One thing is clear; we now have the understanding and tools necessary to start to
build an effective credit classification tool. We first need to build a deeper understanding
of our chosen tool; the neural network. In the next chapter, we will consider a more
mathematical description of neural networks and examine some of the intricacies of model
hyper-parameters.
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Chapter 5

Neural Networks and Deep Learning

”Thou shalt not make a machine to counterfeit a human mind.” — Frank
Herbert

5.1 Introduction

Here we start to build an understanding, in a mathematical sense, of the tools used in
this dissertation. We will begin by giving some background to the field and constructing
a neural network model by first considering a single perceptron model and eventually
arriving at a deep neural network. It is crucial to note that this section will focus on the
mathematics of the model as it is required, along with a technical understanding of the
model, to prove in theory that it is possible to build an accurate credit scoring model.
More importantly, it will also provide a better understanding of how neural networks are
so superior at function approximation.

5.2 Background

ANNs are popular machine learning techniques that simulate the mechanism of learning in
biological organisms (Aggarwal 2018). Rosenblatt (1958) combined Hebb (1949)’s model
of brain cell interaction with Samuel (1959)’s ML efforts and created the perceptron (see
Figure 5.1) . In ML, the perceptron is a binary classifier that can decide whether or not
an input, represented by a vector of numbers, belongs to some specific class.

Figure 5.1: A simple perceptron. The xis represent the input into the model.

Rosenblatt (1958) ’s perceptron software was intended for image recognition. Although
the perceptron did look promising, it could not recognise many visual patterns (such as
faces). This setback caused much frustration, and NN research was stalled (Foote 2019).
Progress in the field was slow for several years (known as the AI winter) until its resurgence
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in the 1990s. Since then, significant advancements have been made in the computing
power of machines and the availability of data, considerably boosting the limits of what
NN algorithms could achieve (Foote 2019).

5.3 A Neural Network Model

This section will set up a mathematical representation of a simple neural network (a
perceptron model) and systematically build up a robust neural network with multiple
layers (multi-layered perceptron).

5.3.1 Model Set-Up and Notation

Most of this chapter follows a derivation adapted from Lindholm et al. (2019) which has
also been supplemented by work from Fan et al. (2019). Consider a function describing
the output variable y as a non-linear function of n inputs xi

y = f(x1 + x2 + ...+ xn;θ) + ε, (5.1)

where ε is the residual term θ represents the parameters of function f . For convenience,
we will define the output as z without the residual term ε

z = f(x1 + x2 + ...+ xn;θ). (5.2)

Suppose f is the multivariate linear regression model

z = β1 + ω1x1 + ...+ ωnxn. (5.3)

In Eq. (5.3), z is simply the sum of all terms ωixi and offset term β∗. Next, we introduce
and apply a non-linear scalar function, termed the activation function, Φ : R→ R, to
describe the relationship between x = [1 x1 x2 ... xn]T and z. Equation (5.3) is now called
a generalised linear regression model and is given by

z = Φ(β1 + ω1x1 + ...+ ωnxn). (5.4)

Figure 5.2 illustrates the distinction between a linear regression model and a gener-
alised linear regression model.

Figure 5.2: (a) Linear regression model. (b) Generalised linear regression model.

∗β is also often referred to as the bias term
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When it comes to the choice of activation function Φ, there are a few options. For
regression problems the most widely used include:

– Sigmoid function: Φ(x) = 1
1+e−x

.

– Rectified Linear Unit (ReLU): Φ(x) =

{
0 if x ≤ 0

x if x > 0
.

– Hyperbolic Tangent: Φ(x) = tanh(x) = ex−e−x
ex+e−x

.

Figure 5.3 gives a graphical illustration of these functions.

Figure 5.3: Examples of the most widely used activation functions: (a) Sigmoid (b)
hyperbolic tan (c) ReLU

In the past, the sigmoidal function has been the function of choice for practitioners.
However, recently the ReLU activation function has gained much popularity in modern
NNs due to the ease in training multi-layered NNs (Aggarwal 2018). At this point, it
might be clear that Eq. (5.3) is not yet capable of modelling/explaining very complex
relationships between z and x. To achieve this, we will now stack several of these models
to construct a layer. Each layer consists of a set of nodes that act by aggregating all
weighted inputs received, applying the activation function and producing a single output
(as shown in Figure 5.4). Hence each node is a generalised linear model.

We will then stack these individual layers sequentially to form a multi-layered
feed-forward neural network. Sequential stacking means that the nodes from each layer
are connected to the nodes in the next layer and not randomly. By ”feed-forward”, we
mean that each neuron’s output from one layer will become an input to neurons in the
next layer.

We will now start constructing our multi-layered NN of arbitrary width. For this,
we will have an input layer containing all the inputs {xi}ni=1, the output layer and one
intermediate layer called a hidden layer. Each of the M nodes in the hidden layer will
receive input variables from the previous layer (the input layer), weight and aggregate
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them using the generalised linear model (GLM) (using the set of weight and bias param-
eters specific to that node). The node will then apply the activation function, producing
a single output. That output, the node’s output, is then passed as input to each node in
the next layer, which has a new set of parameters. Figure 5.4 illustrates the process.

Figure 5.4: Illustration of how inputs flow through a neuron.

The parameters of the i-th GLM (or node) of layer one are denoted as βi, ω1i, ... ωni
and output is denoted by hi, so that we have

hi = Φ(βi + ω1ix1 + ...+ ωnixn) for i = 1, ...,M. (5.5)

These intermediate outputs hi are called hidden units, and each of the M units
{hi}Mi=1 will feed forward as input to the next layer

z = β + ω1h1 + ...+ ωMhM . (5.6)

In order to separate layers, we add superscripts (1) and (2) to distinguish between
layer one and layer two. Thus

h1 = Φ(β
(1)
1 + ω

(1)
11 x1 + ...+ ω

(1)
n1 xn),

h2 = Φ(β
(1)
2 + ω

(1)
12 x1 + ...+ ω

(1)
n2 xn),

...

hM = Φ(β
(1)
M + ω

(1)
1Mx1 + ...+ ω

(1)
nMxn),

z = β(2) + ω
(2)
1 h1 + ...+ ω

(2)
M hM .

(5.7)

Let us recap what our model looks like so far. We have an input layer consisting of
n inputs {xi}ni=1. Following this layer, we have our single hidden layer (denoted with
superscript (1)), which has M nodes, or hidden units, which are essentially individual
GLM models, each with their own set of weight and bias parameters (the collection of

which is denoted by θ
(1)
i ). The hidden layer is parametrised by θ(1), which is defined

as θ(1) =
[
θ
(1)
1 , ..., θ

(1)
M

]
and the activation function Φ for each node is defined per layer.

Also, each node in the input layer is connected to each hidden unit in the hidden layer.
Finally, we have our output layer, which, in our case, consists of a single node, which is
also a GLM with its own activation function and set of parameters θ(2). Each hidden unit
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in the hidden layer is again connected to the output node, which weights and aggregates
all inputs {hi}Mi=1 received from the hidden units and applies the activation function to
produce the final output of the network (denoted by z). Figure 5.5 gives us an illustration
of the model we have constructed up to now.

Figure 5.5: A multi-layered neural network one output node and one hidden layer.

5.3.1.1 Matrix Notation

For convenience and compactness Lindholm et al. (2019) rewrite the system of equations
in Eq. (5.7) in matrix form as

b(1) =
[
β
(1)
1 . . . β

(1)
M

]
, W(1) =

ω
(1)
11 . . . ω

(1)
1M

... . . .
...

ω
(1)
n1 . . . ω

(1)
1M

 , b(2) =
[
β(2)
]
, W(2) =

ω
(2)
1
...

ω
(2)
M

 ,
where W is the weight matrix and b is the offset/bias vector. Now our model

can be rewritten as

h = Φ(W(1)Tx + b(1)T ), (5.8)

z = W(2)Th + b(2)T , (5.9)

where subscript T indicates the transpose of the vector/matrix. Note that our activa-
tion function Φ acts element-wise. We also denote the parameters of our model as

θ =
[
vec
(
W(1)

)T
b(1) vec

(
W(2)

)T
b(2)
]T
, (5.10)

where vec(W(l)) represents the vectorisation of W(l)†.

†In mathematics the vectorisation of a matrix is a linear transformation which converts the matrix
into a column vector.
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5.3.2 Loss Function

The most important part of a neural network is its loss function, as this is what enables
the model to train and improve. Neural networks are very versatile and can be used to
solve either regression problems or classification problems. The distinction lies in the loss
function used.

5.3.2.1 Loss Function for Regression Networks

The loss function is a crucial choice in defining the outputs in a way that is sensitive to the
problem at hand (Aggarwal 2018). Let’s consider the training data set T = {(xi,yi)}pi=1,
consisting of p samples of input x and true output y‡. This set is a subset of our full
data set D = {(xi,yi)}qi=1, so T ⊂ D and p < q. In order to measure the accuracy of our
prediction z, and therefore train the model, we use the square error loss function

θ = min
θ

J(θ), (5.11)

where

J(θ) =
1

p

p∑
i=1

L(xi, yi,θ) and L(xi, yi,θ) = |yi − f(xi,θ)|2 = |yi − zi|2,

where J and L are called the cost function and loss function respectively and
θ is a matrix representing all the parameters of the entire network. For most multi-
layered networks finding a global minimum is computationally infeasible because the
number of parameters of the model increases significantly as the network grows. Hence
instead of trying to compute exact θ, we will simplify our analysis by making a quadratic
approximation of our cost function J in the neighbourhood of the value of the weights
that obtains minimal unregularised training cost

θ̂ = arg min
θ

J(θ). (5.12)

In Eq 5.12, arg min (or arguments of the minima) are the points of the domain of the
function at which the cost function values are minimised. To solve this problem, we will
need to employ numerical optimisation methods like gradient descent.

5.3.2.2 Loss Function for Classification Networks

Before defining the loss function for a classification network, we need to make a slight
modification to our output layer. For us to be able to use our network for binary classifi-
cation problems, where outputs are either z ∈ [0, 1], we can change the activation function
(see Eq. (5.13)) of our single output node in the output layer to the sigmoid function.
For multi-class classification, we can extend our prior network by adding the softmax
activation function (see Eq. (5.14)) to each of the now multiple nodes (one for each class)
in the output layer.

Φ(z) =
1

1 + e−z
. (5.13)

‡note here that we are using vector notation to specify a vector of outputs and vector of inputs
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Φ(z) =
1∑K

j=1 e
zj

[ez1 . . . ezK ]T . (5.14)

Adding these functions to the nodes in the final layer(s) of the network, will mean
that our final output is determined as follows:

p(1|xi) = Φ(z) for the sigmoid activation

OR

[p(1|xi) . . . p(K|xi)] = Φ(z) for the softmax activation

(5.15)

The softmax function essentially maps the final layer’s output z, which is the weighted
sum of outputs from the final layer, to the modelled class probabilities p(1|xi), . . . , p(K|xi),
i.e. Φ(z) : RK → [0, 1]K . In this case, elements of z are referred to as logits. Also, because
of the way the softmax function is constructed, all class outputs from this function will
sum to 1. The sigmoid function works similarly, but in that it maps the final layers
output z to a single probability, Φ(z) : R → [0, 1]. These probabilities are then used, in
conjunction with classification thresholds, to determine whether a data point belongs to
a specific class. The mapping for binary classification is done in the following way:

ŷ =

{
0 if z < tc

1 if z ≥ tc,
(5.16)

where ŷ is the predicted class, and t is the classification threshold, which is usually 0.5.
Now we turn our attention to the loss function. As before the training data set

T = {(xi,yi)}pi=1, consisting of p samples of input x and true output y. For multi-
class classification we will use what is called one-hot encoding for output yi. This
works as follows: for a problem with K different classes (i.e. yi consists of K elements
yi = [yi1 . . . yiK ]T ), if point i belongs to class k then yik = 1 and yij for j 6= k. For our
multi-class classification network we will use the cross-entropy loss function

L(xi,yi,θ) = −
K∑
k=1

yik log p(k|xi,θ). (5.17)

This function approaches its minimum as p(k|xi,θ) approaches 1 for k where yik = 1.
For our binary classification network we will use the binary cross-entropy loss function

L(xi,yi,θ) = − (y log p(1|xi,θ) + (1− y) log(1− p(1|xi,θ))) . (5.18)

5.4 A Deep Neural Network Model

Now that we have the essential parts of our model architecture set up and defined, we
can now increase the depth (number of layers) of our model. To realise an ANN’s real
descriptive power and to model complicated relationships, we need to stack intermediate
or hidden layers. We construct a deep neural network, i.e. any ANN with two or more
hidden layers called a deep neural network.
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We begin by enumerating the layers of the model with index l. Again, each layer has
its own set of parameters W(l) and b(l). There are also multiple layers of hidden units

and each of those layers have Ml hidden units h(l) =
[
h
(1)
1 , ..., h

(l)
Ml

]
. Mapping from layer

l − 1 to layer l is denoted as

h(l) = Φ(W(l)Th(l−1) + b(l)T ). (5.19)

A DNN with L layers can be described mathematically as

h(1) = Φ(W(1)Tx + b(1)T ),

h(2) = Φ(W(2)Th(1) + b(2)T ),

...

h(L−1) = Φ(W(L−1)Th(L−2) + b(L−1)T ),

z = W(L)Th(L−1) + b(L)T ,

(5.20)

with parameters

θ =
[
vec
(
W(1)

)T
. . . vec

(
W(L)

)T
b(1) . . . b(L)

]T
. (5.21)

Finally, it is important to take note of the different dimensions of each layer’s param-
eters. Note that, in DL it is not uncommon to have multiple outputs, so z could be a
vector z = [z1, ..., zK ]. Table 5.1 provides a summary of these dimensions.

Layer Weight Matrix Offset Vector

l = 1 W(1) : n×M1 b(1) : 1×M1

l = 2, ..., L− 1 W(l) : Ml−1 ×Ml b(l) : 1×Ml

l = L W(L) : ML−1 ×K b(L) : 1×K

Table 5.1: Parameter dimensions per layer.

5.5 Training a Network

In order for us to construct a model that can make good predictions, we need to find an
estimate for θ, the actual set of network parameters. To do this, we need to solve

θ̂ = arg min
θ

J(θ) where J(θ) =
1

p

p∑
i=1

L(xi,yi,θ). (5.22)

The form of function J depends on the problem at hand. The optimisation problem in
Eq. (5.22) cannot be solved in closed-form and requires the use of numerical optimisation.
For DNNs, it is common to use gradient descent methods.

We start off by initialising θ0, we then update the parameters as θt+1 = θt−λ∇θJ(θt)
for t = 1, 2, ... and then stop once some criteria is met and set θ equal to the last θt. λ is
the step size and is often referred to as the learning rate.
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Picking θ0 could be challenging since cost functions in the training of neural network
are not necessarily convex. It means that training is very sensitive to θ0 (convexity being
ideal since it guarantees convergence regardless of θ0). Typically initialisation is random,
and each parameter is set to some random number such that we ensure that different
hidden units encode different aspects of the data. If the ReLU function is used, the
elements of ω0 are initialised to small, non-negative numbers to operate in the positive
range of the ReLU function.

5.5.1 Back-Propagation and Stochastic Gradient Descent

Back-propagation (BP) is widely used in training feed-forward NNs. While we are train-
ing the NN, we will compute the gradient of L w.r.t. to the weights/parameters of the
network. The BP algorithm can efficiently calculate the gradient, which works very well
with optimisation methods such as gradient descent or stochastic gradient descent. To-
gether these methods update the weights to minimise loss. BP works by computing the
gradient of the L w.r.t. each weight by using the chain rule, computing the gradient layer
by layer and then iterating backwards from the last layer to avoid redundant calculations
(Goodfellow et al. 2016).

When working with multi-layer networks, the loss function becomes a complex com-
position of all weights in every layer. The gradient of this loss function is computed using
the BP algorithm. As mentioned before, this algorithm uses the chain rule of differential
calculus, which allows us to represent the error gradients as a sum of local gradient prod-
ucts over the various paths from a node to the output. As the network becomes wider
and deeper and the number of components (paths) increases, the size of the error gradi-
ent increases exponentially. However, using BP, which is a direct application of dynamic
programming, we can compute the gradient efficiently. BP consists of two main phases,
the forward phase and the backward phase.

1. Forward Phase: Here a single x with the current θi is fed forward through the
network resulting in calculations being done layer by layer from input layer to output
layer resulting in an output z. This output is then compared to the true output y
and we calculate λ∇θJ(θ) which is the derivative of the cost function w.r.t. θi in
all layers in the backwards phase.

2. Backward Phase: Next, the algorithm will attempt to approximate the actual
gradient of the loss function w.r.t. different θi by applying the chain rule. This
approximation, along with the step size, is used to update θi. From here, the
forward phase starts again until a stopping criterion is reached.

5.5.2 Gradient Descent Optimisation

The next consideration is the method of optimisation to use. As eluded to earlier, we will
now be looking at stochastic gradient descent (SGD) which was first presented by
Robbins & Monro (1951). In stochastic (or ”on-line”) gradient descent, the true gradient
∇θJ(θ) for example, is approximated by ĝt, the gradient at a single instance

θt+1 = θt − λĝt. (5.23)

As the algorithm runs through the training set, it performs the above update after
every training pass. The number of passes made over the training set is called epochs
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(denoted by E). After each epoch, the data is shuffled to prevent cycles. In pseudocode,
SGD can be described as follows (Lindholm et al. 2019):

Algorithm 1: Stochastic gradient descent algorithm

Initialise all the parameters θ in the network and set t← 1.;
for k = 1 to E do

a.) Randomly shuffle the training data {(xi,yi)}pi=1;
b.) Approximate the gradient of the loss function using
ĝt = 1

p

∑p
i=1∇θL(xi,yi,θ)

c.) Do a gradient step θt+1 = θt − λĝt
d.) Update the iteration index t← t+ 1

end

The question now arises, how well does SGD perform theoretically in terms of min-
imising J(θ)? When it comes to the convex case, it is well understood in the literature
that, with proper choices of the step sizes λ, SGD is guaranteed to achieve both consis-
tency and asymptotic normality (Robbins & Monro 1951, Kiefer et al. 1952, Polyak &
Juditsky 1992, Bottou 1998, Kushner & Yin 2003).

However, this all changes when we consider non-convex loss functions in DL. In this
case, finding a global minimum is computationally infeasible at worst. Fortunately, recent
work by Du et al. (2019) and Allen-Zhu et al. (2019) finds a way around this problem.
They show that, as long as the NN is sufficiently over-parametrised, SGD converges
linearly towards a global minimum. If this condition is met and there is also random
initialisation of parameters, faster convergence of the SGD algorithm is ensured.

As Fan et al. (2019) notes, basic SGD does come with a set of challenges when training
DNNs. Firstly, slow convergence even though there are theoretical guarantees for well-
behaved problems. Second, the computational cost of calculating the gradient for the
entire training set for each epoch. Lastly, the learning rates (λ) can be challenging to
tune in practice. In the following section, we will consider a few variants of SGD, namely
mini-batch SGD, momentum-based SGD, and SGD with adaptive learning rates.

5.5.3 Learning Rate

The learning rate λ, or the step size of the gradient descent algorithm, is a crucial hyper-
parameter in SGD. A hyper-parameter is one whose value is used to adjust the learning
procedure. Another hyper-parameter, for example, is the number of epochs. There are
many more hyper-parameters to tune, which will be introduced in the next chapter.

When picking λ, one needs to consider the trade-off between the rate of convergence
and the likelihood of overshooting the global minima. While the direction of descent
determined by ∇θJ(θ), the λ determines the step size in that direction (Nesterov 2013).
When working with SGD, one strategy is to pick a constant λ. However, there are risks
to this strategy, as too big a step size may cause the algorithm to over-shoot the minima,
and too small a step could cause our algorithm to converge very slowly (as illustrated in
Figure 5.6).

54



Figure 5.6: Illustration of the consequences of incorrect learning rate in finding the minima
of the objective function. In these graphs, we plot the value of the objective function
against the network’s parameters. On each plot, we see the red points on the curve,
which represent the incremental updates of the estimate for θ, which shows the step sizes.
On the left, we see that step sizes that are too small may cause the algorithm to converge
very slowly. On the right, we see that step sizes that are too big may cause the algorithm
to over-shoot and oscillate over the minima (also causing slow convergence, if it even
converges at all).

(Source: (Lindholm et al. 2019))

To ensure faster convergence and prevent oscillations, the learning rate is updated as
training progresses (as in Figure 5.7). This updating is done either according to a learning
rate schedule, using learning rate decay or using what is referred to as adaptive learning
techniques such as momentum-based learning techniques or parameter-specific learning
rates (Lau 2017). These will be discussed in more detail in the next chapter.

Figure 5.7: An illustration of the benefits of an adaptive learning rate in finding the
minima of the objective function. Here, as we approach the minima, the descent algorithm
adapts the step sizes by making the steps smaller and therefore slow down to not over-
shoot.

(Source: (Lindholm et al. 2019))
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5.6 Conclusion

A neural network is a powerful tool. The issue that is made clear in this chapter is that a
few parameters require some expertise to ”tune” correctly to realise the full potential of
a neural network. The reality is that the more complex the function we are trying to ap-
proximate, the more complex our neural network and the more numerous the parameters
are to tune (which becomes harder to tune correctly).

In the next chapter, we will consider some challenges faced in deep learning and
proposed techniques to approach them. We will also consider various proposed techniques
to fine-tune model performance and efficiency.
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Chapter 6

Challenges and Advancements in
Deep Learning

”But spectacular advances in information technology suggest we are approach-
ing a historical discontinuity in humanity’s relationship with machines” -
Phillip E. Tetlock, Super Forecasting

6.1 Introduction

In this chapter we take a look at recent advances in the field of deep learning and how they
address some of the issues experienced with training deep networks. We explore various
methods that were designed to increase the accuracy, execution speed and reliability of
neural networks.

Despite NN’s reputation as universal function approximators, there still exists some
considerable challenges w.r.t. actually training them to provide this level of performance.
The most important of these challenges is most certainly overfitting (Aggarwal 2018). In
addition, computational efficiency and convergence is also of high importance hence we
will look at methods that help us to overcome these obstacles.

6.2 Mini-Batch Gradient Descent

Mini-batch gradient descent (MBGD) is a variation of the gradient descent algorithm that
splits the training data into smaller batches. These smaller batches are used to calculate
the prediction error of the model and update model coefficients accordingly.

Suppose that when training the network, p (the size of our data set) is very large (in
the order of hundreds of thousands of data points). The BP algorithm’s execution might
be very costly. We, therefore, assume that many of the data points are similar. This
assumption means that we can also assume the gradient for, e.g. the first half of the data
set is the same as for the other half, i.e.

∇θJ(θ) ≈

p
2∑
i=1

∇θL(xi,yi,θ) ≈
p∑

i= p
2
+1

∇θL(xi,yi,θ), (6.1)

where all variables are defined as in Chapter 5.
It is, therefore, unnecessary to compute the gradient for the entire training set. So we

proceed to calculate the gradient based on the first half of the data set, then update the
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parameters and calculate the gradient again based on the last half of the data. Hence,
the computation time is roughly reduced by half.

An extreme variation of this approach could be to compute the gradient after each
step. However, this would be very costly computationally. MBGD is a good compromise.
Before using the algorithm, we need to define pmb, which is the size of each mini-batch.
Hence we perform an update of the gradient after each mini-batch of pmb training examples
using

θt+1 = θt − λ
pmb∑
i=1

∇θL(xi,yi,θt). (6.2)

So, in simple terms, we are updating the gradient more frequently for smaller subsets
of the data to improve computational efficiency. Algorithm 1 can therefore be extended
by using smaller sets for training. The size of a mini-batch can range from pmb = 10 to
pmb = 100 to pmb = 1000, depending on the size of the overall data set. It is important
is to ensure these mini-batches represent the data set by drawing the points at random.
This random drawing is achieved by shuffling the data before dividing the data set. This
modified procedure executes as follows:

Algorithm 2: Mini-batch gradient descent algorithm. Source: (Lindholm et al.
2019)

Initialise all the parameters θ in the network and set t← 1.;
for k = 1 to E do

a.) Randomly shuffle the training data {(xi,yi)}pi=1;
b.)for j = 1 to p

pmb
do

I.) Approximate the gradient of the loss function using the mini-batch
{(xi,yi)}jpmbi=(j−1)pmb+1

ĝt = 1
pmb

∑jpmb
i=(j−1)pmb+1∇θL(xi,yi,θ)|θ=θt

II.) Do a gradient step θt+1 = θt − λĝt
III.) Update the iteration index t← t+ 1

end

end

6.3 Regularisation Techniques

Building a DNN that generalises well is not a simple task due to the issue of overfitting.
Overfitting occurs when our model performs well on the training set but predicts poorly
on unseen data, i.e. it does not generalise well. Overfitting is the biggest issue in applied
ML, and it happens when a model learns too well. It starts to explain the noise in the
training data, i.e. the random fluctuations in the training data are learned as concepts
by the model. The problem is that this noise does not apply to unseen data. We want to
limit this as much as possible as it negatively impacts the model’s performance on new
data. The more complex the model, the more likely overfitting becomes.

It is common practice when evaluating ML algorithms to hold back a validation data
set to monitor and limit overfitting. This subset of the training data is held separate
from our training data. After the initial setup of our model, it will learn on the training
set while the validation set is used throughout training to evaluate the learned model.
This ongoing evaluation provides us with an idea of how the model might perform out of

58



sample, i.e. on unseen data and helps us monitor overfitting. If we have a large set of
data, using a validation data set is highly recommended.

The most important thing to keep in mind during this section is that a neural network
learns a set of weights that best map inputs to outputs. The longer we train the network,
the more specialised the weights will become to the training data, overfitting the training
data. The weights will grow in size to handle the specifics of the examples seen in the
training data. Large weights make the network unstable. Although the weight will be
specialised to the training data set, minor variation or statistical noise on the expected
inputs will result in significant differences in the output.

One approach to improve generalisation is to use a high capacity model and apply
regularisation during training. In ML, regularisation is the process of adding information
in order to solve an ill-posed problem or to prevent overfitting (Buühlmann & Geer 2012).
Regularisation can be seen as a way to control the learning process to avoid overfitting.
Regularisation has proven to reduce overfitting, lead to faster optimisation of the model
and greater general performance. We will look at four of the most common and effective
techniques.

6.3.1 Parameter Norm Penalty

This form of regularisation is one of the simplest and perhaps most common regularisation
methods. It entails simply adding a penalty to L, the loss function in proportion to the
size of the weights of our model.

We penalise the loss function based on complexity. Of all functions f , f = 0 is surely
the most simple function, hence measuring a functions complexity would entail simply
measuring its distance from zero. One way we can do this for a function f(x) = ωTx is by
calculating ||ω||2. We then add the norm as a penalty term to the minimisation problem
by replacing the objective function J(θ) with JR(θ) as follows

JR(θ) = J(θ) + αR(θ) where α ∈ R+, (6.3)

where R(θ) is called the regularisation term. Adding this penalty term to the cost function
and penalising larger weights more heavily (larger penalty), we force the optimisation
algorithm to push the model to have smaller weights. In other words, we want to keep
the weights no larger than needed to perform well on the training data set.

The two most popular penalty methods are L1 and L2 regularisation∗. In these meth-
ods, the norm used in the regularisation term is the 1- and 2-norm, respectively.

6.3.1.1 L2 parameter regularisation

L2 or Tikhonov regularisation is one of the most common forms of regularisation and has
been very effective over the past few decades for simple linear models and NNs. It is also
known as ridge regression or weight decay.

When learning a linear function f(x) = ωTx, one can add the L2-norm of the vector
ω to the objective function† in order to prefer solutions with smaller norms. Here R(θ)
from before is 1

2
||ω||22 = 1

2

∑
i ω

2
i = 1

2
ωTω. The objective function is expressed as:

∗Elastic Net is a regularised regression method that linearly combines the L1 and L2 penalties of
the LASSO and ridge methods.

†note that only the weight vector is penalised and not the bias vector. The biases typically require
less data to fit accurately than the weights.
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JR(θ) = J(θ) + α||w||22 where α ∈ [0,∞) (6.4)

= J(α) +
α

2
ωTω. (6.5)

and our objective function in Eq. (5.12) becomes

∇θJR(θ) = αω +∇θJ(θ). (6.6)

When taking a single gradient step we make the update

θt+1 ← θt −∇θJR(θt). (6.7)

So we have multiplicatively shrunk ω by a constant factor on each step prior to performing
a gradient update.

6.3.1.2 L1 parameter regularisation

L1 regularisation is another common form of regularisation and is also known as least
absolute shrinkage and selection operator; or LASSO. It is used most commonly in feature
selection. It simplifies the ML problem by picking the best subset of features. Here R(θ)
from before is 1

2
||ω||1 = 1

2

∑
i |ωi|. The objective function is expressed as:

JR(θ) = J(θ) + α||w||1 where α ∈ [0,∞) (6.8)

= J(α) +
α

2

∑
i

|ωi|, (6.9)

and our objective function in Eq. (5.12) becomes

∇θJR(θ) =
α

2

∑
i

ωi
|ωi|

+∇θJ(θ). (6.10)

6.3.2 Weight Constraint

Unlike weight regularisation, a weight constraint is a trigger that forces weights above a
pre-defined magnitude threshold to be below that threshold, which forces weights to be
small. It is very similar to parameter norm penalties in that both force the weights to be
small. The critical difference is that weight constraint directly keeps the weights small
while the penalty method achieves it by penalising the cost function.

Some examples of constraints that could be used include limiting ||ω||1 < 1.0 or
limiting ||ω||∞. The L∞-norm, also called max-norm, is a popular constraint because it
is less aggressive than other norms such as the unit norm, simply setting an upper bound.

6.3.3 Dropout

Dropout (Hinton, Srivastava, Krizhevsky, Sutskever & Salakhutdinov 2012, Srivastava
et al. 2014) is the practice of randomly dropping out subsets of features during training.
It was a significant discovery in deep learning that solved the issue of overfitting and
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expanded the possibilities of NNs. The main problem it was able to solve was co-adaption,
where, if all weights are trained together, some connections have more predictive power
than others. The strength of these connections is being overstated because they are over-
trained. Some connections may have shown promising results in a few training epochs.
Thus the algorithm keeps promoting it even though it might not necessarily be correct, in
turn leading to weaker connections (which might be of importance) being under-trained
to the point that they stop participating. Weight decay might seem like a good solution;
however, this technique regularises based on predictive abilities to exacerbate the issue.
Some features become close to deterministic in choosing and rejecting weights (Srivastava
et al. 2014). Dropout has the effect of making the training process noisy. It forces
nodes within a layer to probabilistically take on more or less responsibility for the inputs
(Brownlee 2018).

With dropout, we drop nodes from the network randomly for each epoch. This process
creates a sub-network of the original network, as illustrated in Figure 6.1. Sampling is
done randomly with pre-defined probability ρ, of which units to drop. Each collection of
dropped units is independent of the collection of dropped units in another sub-network.
Units that are dropped also have their connection (incoming and outgoing) dropped.
Hidden units, as well as input nodes, can be dropped. The benefit is that since each
network is a sub-network of the same original network, they all share some parameters.
This sharing of parameters means that we can train the ensemble of sub-networks in an
efficient manner.

Figure 6.1: Dropout Neural Network Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the network
on the left. Crossed units have been dropped.

(Source: (Srivastava et al. 2014))

When training with dropout, we use MBGD. Each mini-batch at each gradient step
of the algorithm approximates the gradient and is computed as before. The difference is
that instead of computing the gradient for the entire network, we only have to compute
it for a random sub-network. The gradient is computed as if the dropped units were not
present, and a gradient step is then performed. Updates are only made to parameters
present in the sub-network. This process is repeated until some stopping condition is met.

For the l-th layer of our NN, instead of propagating all the features in h(l) for later
computations, the dropout procedure randomly omits some of its entries by

h
(l)
drop = h(l) �maskl, (6.11)
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where � represents element-wise multiplication and maskl is a vector of i.i.d Bernoulli
random variables‡ with P (δi = 1) = ρ (see Figure 6.2).

maskl =

 δ1...
δM

 where δi ∼ Bernoulli(ρ). (6.12)

Figure 6.2: Comparison of the basic operations of a standard and dropout network. The
mask is applied to each incoming connection of the nodes in the layer. The mask acts as a
type of ”information gate”. If δi = 1 the information is permitted to flow through whereas
δi = 0 means that the connection is blocked, essentially dropping that connection.

(Source: (Srivastava et al. 2014))

The outputs of each layer, h(l), are multiplied (element-wise) with the mask vector,

which is re-sampled each time. This creates h
(l)
drop. These thinned outputs are then used

as input in the next layer. This process is repeated at each layer. For learning, the
derivatives of the L are back-propagated through the sub-network. When we test our
network on the test data set, we scale the weights using ω

(l)
train = ρω(l). So, the NN used

for testing is used without dropout. The final node output for a classification network is
modified as

p(1|xi) = σ
[
W(L)T

(
h(L−1) �mask(L−1)

)
+ b(L)T

]
. (6.13)

6.3.4 Early Stopping

Early stopping is a regularisation technique that prevents overfitting when training a
model using an iterative method, like SGD or MBGD. These methods update the model
parameters to improve the fit on the training data with each iteration. This process im-
proves the model’s out-of-sample performance up to a point after which further improving

‡There is also a variation of dropout called Gaussian Dropout where δi ∼ N (1, σ2)
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the fit to the training data leads to a rise in the out-of-sample error or overfitting starts to
occur. Early stopping involves stopping training when this point is reached or when the
model’s performance no longer improves. The rule for early stopping provides guidance
as to how many iterations can be run before the model starts to overfit. These rules have
been used in various ML methods, with varying amounts of theoretical foundation.

As mentioned before, we will have a validation set apart from our training set during
training to help monitor the generalisation error. If this error rises while the error of the
training set continues to decrease (as in Figure 6.3), we know that the model is overfitting.
At this point, we wish to stop the training as training longer will only make the model
worse. However, it is essential not to stop after a slight rise in the out-of-sample error;
in fact, it is advisable to continue training just a few more epochs to be sure. This is
sometimes referred to as the patience parameter (Brownlee 2020b).

Figure 6.3: Illustration of when to terminate training early to prevent overfitting. As the
error in the validation test set begins to rise while the error in the training set continues
to decrease, the algorithm will terminate training as overfitting is occurring.

(Source: (Flitton 2018))

One way to think of early stopping is as a very efficient hyper-parameter selection
algorithm. In this view, the number of training steps is just another hyper-parameter
(Goodfellow et al. 2016). The stopping point is determined in hindsight. Each time
the out-of-sample error decreases, we save a copy of the parameters. As soon as the
algorithm terminates, the best set of parameters is recalled and chosen as our final set of
parameters. The algorithm terminates when no parameters have improved over the best-
recorded validation error (εvalidation) for some pre-specified number of iterations (called
patience). This procedure is specified more formally in Algorithm 3. The advantages of
this regularisation technique are clear: it is easy to implement, can be used in conjunction
with other techniques, and is effective. The drawback is that we require additional data
for validation. Consider the following pseudo-code:
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Algorithm 3: The early stopping meta-algorithm for determining the best
amount of time to train. Source: (Lindholm et al. 2019)

Let n be the number of steps between evaluations.
Let p be the ”patience”, the number of times to observe worsening validation set
error (εvalidation) before stopping.

Let θ0 be the initial parameters.
θ ← θ0
i← 0
j ← 0
v ←∞
θ∗ ← θ
i∗ ← i
while j < p do

Update θ by running the training algorithm for n steps.
i← i+ n
v́ ← εvalidation(θ)
if v́ < v then

j ← 0
θ∗ ← θ
i∗ ← i
v ← v́

end
else

j ← j + 1
end

end
Result: Best parameters are θ∗ , best number of training steps is i∗

6.3.5 Regularisation Recommendations

If our training set T does not consist of millions of points, it is recommended that you
include some forms of regularisation from the start (Goodfellow et al. 2016). The general
rule of thumb is to design an under-constrained NN that uses regularisation to prevent
overfitting. Early stopping is almost universally recommended in addition to methods such
as those mentioned in this section Goodfellow et al. (2016) suggests some combinations:

– Classical - using early stopping with weight decay.

– Alternate - using early stopping with weight constraint.

– Modern - using early stopping and dropout with weight decay.

6.4 Batch Normalisation

Training DNNs with many layers can be challenging due to their sensitivity to initial
random weights and learning algorithm configuration. One possible reason for this dif-
ficulty is that the distribution of the inputs to layers deep in the network may change
after each mini-batch when the weights are updated. This will slow down or even prevent
the convergence of the learning algorithm. This change in distribution is called internal
covariate shift.

Batch normalisation is a technique for training DNNs and works by standardising
inputs to a layer after each mini-batch. This technique stabilises the learning process
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and significantly reduces the training time required. The algorithm does this by scaling
the output of the layer per mini-batch. Standardisation refers to rescaling the data to
have a mean of zero and a standard deviation of one, e.g. a standard Gaussian. Batch
normalisation can also reduce the generalisation error and, when used, allows dropout
to be omitted (due to the noise in the estimate of the statistics used to normalise each
variable) (Goodfellow et al. 2016).

6.5 Learning Rates

While normal MBGD may provide an improvement over SGD, there are still issues as
good convergence is not guaranteed. The previous chapter also clarifies that a constant
learning rate is not desirable because it poses a dilemma to the analyst. The challenge
is the choice of learning rate. If λ is too small, it can lead to slow convergence, while
large λ can lead the algorithm to quickly approach the minima but then oscillate around
the point for a long time, or diverge in an unstable way, if the high rate of learning is
maintained. The basic approach here should be straightforward: update the learning rate
as training progresses.

One approach is to use learning rate schedules (Robbins & Monro 1951) to try to
adjust the learning rate during training by reducing λ according to a pre-defined schedule
or when the change in objective between epochs falls below a threshold. The issue,
however, is that these schedules and thresholds must be defined in advance and cannot
adapt to our data set’s characteristics (Darken et al. 1992). Additionally, if our data set
is sparse, and the features differ in frequencies, updating them to the same extent might
not be desirable. We might want to perform more significant updates for rarely occurring
features.

Another challenge we might face when training NNs is minimising highly non-convex
error functions and avoiding getting stuck at saddle points that are usually located at or
near plateaus of values with similar errors. This makes it notoriously hard for algorithms
like MBGD to escape, as the gradient is close to zero in all dimensions. We will discuss
several strategies to avoid these issues.

6.5.1 Learning Rate Decay

Learning rate decay involves setting the learning rate to a decreasing function of the
epoch. So as training progresses, the step sizes get smaller. Two of the most common
decay functions are inverse and exponential decay. Before we continue, we have to define
λt as the learning rate during epoch t. For each model respectively, λt is defined as

λt =
λ0

1 + kt
, or (6.14)

λt = λ0e
−kt. (6.15)

Here λ0 represents the initial step size, and k is the parameter determining the rate
at which step sizes decay. Another simple approach is to reduce the step size by a
particular factor after every few epochs, e.g. the learning rate might be multiplied by some
factor every few epochs. The approach in practice is to track the loss of the validation
set and then reduce the learning rate as soon as the validation error stops decreasing.
This approach is very commonly used along with different gradient descent algorithms.
However, it does not address many of the other issues discussed.
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Another approach involves starting with a relatively high learning rate λmax and then
having it decay to a certain level λmin using the rule

λt = λmin + (λmax − λmin)e−
t
τ . (6.16)

So as t → ∞, λmax → λmin. However, picking λmin and λmax is more an art than an
exact science. Under certain conditions and if the Robbins-Monro condition (Robbins &
Monro 1951) holds:

∑∞
t=1 λt = ∞ and

∑∞
t=1 λ

2
t < ∞, then the SGD algorithm almost

surely converges to a local minima. In order to satisfy the Robbins-Monro condition, we
need λt → 0 as t→∞. However, this is not typically the case in practice, so we instead
choose λmin > 0 and use a scheme like Eq. (6.16). This has proven to work better in most
cases while we knowingly sacrifice theoretical convergence of the algorithm (Lindholm
et al. 2019).

6.5.2 Momentum-Based Learning Techniques

SGD has trouble navigating ravines (areas where the surface curves much more steeply
in one dimension than in another). In this case, the SGD algorithm will oscillate across
the ravine slopes while making plodding progress towards the local minima. Consider
Figure 6.4. The figure represents an objective function surface, with the inner-most part
representing the local minimum. The lines illustrate how the standard SGD algorithm
would oscillate down this ravine-like slope whilst approaching the minimum.

Figure 6.4: An illustration of SGD without momentum.

(Source: (Orr 1999))

These oscillations result from highly contradictory steps that cancel out one another
and slow the progress in the correct direction. Momentum (Qian 1999) is a method
that accelerates the SGD algorithm in the correct direction and dampens the effect of
oscillations. This is achieved by adding a fraction γ of the update vector vt to the
current update vector vt+1. Essentially in momentum-based descent, vt is modified with
exponential smoothing, where γ ∈ (0, 1) is a smoothing parameter

vt+1 = γvt + λĝt, (6.17)

θt+1 = θt − vt, (6.18)
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with γ usually initialised to 0.9. Large γ values assist in picking up a consistent
velocity in the correct direction. When γ = 0, Eq. (6.17) is just plain SGD or MBGD. We
can therefore think of γ as the momentum parameter or the friction parameter§.
In essence, our momentum term will increase at points where gradients point in the same
directions and decrease where gradients change directions. As a result, we gain faster
convergence (momentum) in the correct direction, and the effect of oscillations will be
reduced as shown in Figure 6.5.

Figure 6.5: The effect of momentum on convergence.

(Source: (Orr 1999))

6.5.3 Parameter-Specific Learning Rates

When using momentum methods, we are leveraging consistency in the gradient direction
of specific parameters. This consistency speeds up the updates. The same result can
be achieved by having different learning rates for each parameter. We will consider four
examples discussed by Ruder (2016): AdaGrad, AdaDelta, RMSProp and Adam.

6.5.3.1 AdaGrad

Adagrad (Duchi et al. 2011) is an algorithm that assigns different learning rates to each
parameter, e.g. performing smaller updates (smaller λ) for frequently occurring features
and more significant updates (larger λ) for the parameters of infrequently occurring fea-
tures. This methodology makes Adagrad perfect for sparse data sets. So, essentially, this
means that we control the size of our gradient descent step in each dimension.

UUp to now every parameter θi has used the same λ so we have performed an update
for all parameters θ at the same time. The AdaGrad algorithm uses a different λ for
every θi at every time step t, which is denoted as λt,i and is vectorised as λt. We will
denote the partial derivative of the cost function w.r.t. θi at step t by

gt,i = ∇θtJ(θt,i). (6.19)

The update rule for θi at step t is given by

θi,t+1 = θi,t − λt,i · gt,i. (6.20)

§The word ”friction” is derived from the fact that small values of γ act as ”brakes”, much like friction
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In this rule, the general learning rate λ is modified at each step t for each θi based on
past gradients computed for θi

λt,i =
λt√

Gt,ii + ε
. (6.21)

Here Gt ∈ Rd×d is a diagonal matrix where each diagonal element is the squared sum
of gradients w.r.t. θi up to step t, while ε is a smoothing term that avoids division by
zero. So now Eq. (6.20) is written in matrix form as an element-wise multiplication of Gt

and gt

θt+1 = θt −
λt√

Gt,ii + ε
� gt, (6.22)

where � is defined as in Eq. (6.11).
The main benefit of the AdaGrad algorithm is that the need to tune the learning rate

manually is eliminated. It also has a significant drawback: the cumulative sum of the
squared gradients in the denominator will keep growing during training. This is because
each term added is positive. This growth in the denominator results in the learning rate
becoming infinitesimally small. At this point, the algorithm is no longer able to acquire
additional knowledge.

6.5.3.2 AdaDelta

Adadelta (Zeiler 2012) aims to solve AdaGrad’s fatal flaw by seeking to reduce its ag-
gressive, monotonically decreasing learning rate. Instead of accumulating all past squared
gradients, AdaDelta restricts the window of accumulated past gradients to some fixed size
u. We calculate the running average of the u previous squared gradients E [g2]t at time
step t as a fraction γ of the running average at the previous step and the current gradient¶

E
[
g2
]
t

= γE
[
g2
]
t−1 + (1− γ)g2

t . (6.23)

We can now rewrite the plain SGD update as:

∆θt = −λt · gt,i (6.24)

θt+1 = θt + ∆θt. (6.25)

The parameter update vector of AdaGrad that we derived previously thus takes the form

∆θt = − λt√
Gt + ε

� gt. (6.26)

Now we replace Gt with E [g2]t

∆θt = − λt√
E [g2]t + ε

gt, (6.27)

¶We set γ to a similar value as the momentum term, around 0.9.
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and see that the denominator is simply the root mean squared error (RMSE) criterion of
the gradient RMS [g]t, so:

∆θt = − λt√
RMS [g]t + ε

gt. (6.28)

6.5.3.3 RMSprop

Root Mean Square Propagation (RMSprop) has an interesting history. It was devised by
Hinton, Srivastava & Swersky (2012) while suggesting a random idea during an online
lecture.

RMSprop and AdaDelta were developed independently around the same time. Their
development stemmed from the need to resolve the one fatal drawback of AdaGrad.
These two algorithms have identical update vectors. Hinton, Srivastava & Swersky (2012)
suggests γ = 0.9 and λ = 0.001.

6.5.3.4 Adam

Adaptive Moment Estimation (Adam) (Kingma & Ba 2014) is a method of computing
adaptive learning rates for each parameter while storing an exponentially decaying average
of past squared gradients vt (as with AdaDelta and RMSprop). Similar to momentum-
based methods, it also keeps an exponentially decaying average of past gradients mt

mt = γ1mt−1 + (1− γ1)gt, (6.29)

vt = γ2vt−1 + (1− γ2)g2
t . (6.30)

mt and vt are estimates of the mean and uncentered variance (first and second mo-
ments) of the gradients respectively. mt and vt are initialized as zero vectors, thus the
authors observe that the estimates are biased towards zero at t = 0, and more so when
γ1 and γ2 are close to 1. To counteract these biases they compute the bias-corrected
estimates:

m̂t =
mt

1− γt1
, (6.31)

v̂t =
vt

1− γt2
. (6.32)

The update rule can then be written as

θt+1 = θt −
λt√

v̂t + ε
m̂t. (6.33)

Kingma & Ba (2014) propose default values of γ1 = 0.9 and γ2 = 0.999 and ε = 10−8.
They go on to show empirically that Adam works well in practice and compares favourably
to other adaptive learning-method algorithms.

6.5.3.5 Which optimiser is best?

There are many other methods in literature such as Nesterov Accelerated Gradient (NAG)
(Nesterov 1983) (a way to give our momentum term in momentum-based methods a rough
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idea of where our parameters are going to be, i.e. to know to slow down before the next
uphill), AdaMax (Kingma & Ba 2014) (a generalisation of the Adam update rule to the
lp norm) and Nadam (Dozat 2016) (which incorporates NAG into Adam) to name a few.
For this dissertation, we will consider only the principal methods described previously.

Ruder (2016) provides the following comparison: RMSprop can be viewed as an ex-
tension of Adagrad, and aside from the fact that Adadelta uses the RMS of parameter
updates in the numerator update rule (see Eq. (6.22) vs Eq. (6.28)), Adadelta and Ada-
Grad are also identical. In addition, the Adam algorithm also adds bias correction and
momentum to RMSprop. Given all the above, the algorithms we have considered are very
similar in most cases. However, Kingma & Ba (2014) shows that bias-correction gives
Adam a slight advantage over RMSprop towards the end of optimisation as gradients
become sparser. Hence, Adam is considered to be the best overall choice.

6.6 Conclusion

Overfitting is by far the biggest hurdle in deep learning. Fortunately, there are a few
techniques that we can employ to overcome this problem (and the simpler ones turn
out to be the most powerful). This chapter has also provided many different techniques
created to improve the performance of our model and fine-tune our most important hyper-
parameters. This tuning will allow us to create a powerful and efficient classifier.

In the next part of this dissertation, we will build our neural network and deep neural
network, and various other models to be used as benchmarks. We will be applying a lot
of the concepts and techniques we have discussed and considered in this part, and we will
attempt to demonstrate the power of deep learning.
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Part II

Application
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Chapter 7

A Neural Network Model for Credit
Default Prediction

”Model building is the art of selecting those aspects of a process that are
relevant to the question being asked. As with any art, this selection is guided
by taste, elegance, and metaphor; it is a matter of induction, rather than
deduction. High science depends on this art.” - John Henry Holland

7.1 Introduction

This chapter will start by looking at our data set and exploring what features are available
to us. We then proceed to ”fix” the class imbalance issue in our data set and prepare our
data set for training. We will also describe the experiment design and look at the five
models we will be training and comparing. The ultimate goal is to create a highly accurate
deep neural network and then review and compare the results from our experiments. We
will then analyse each model’s performance in different aspects and rank them accordingly.
All code for the models can be found on Github. All models were built-in Python 3.8
using both the Sci-kit learn and TensorFlow (with Keras back-end) libraries.

7.2 Experiment Design

We will start by analysing our data set and then prepare it for training. Next, we will build
and describe four initial models: a logistic regression model, a support vector machine, a
CART model and an artificial neural network.

We will then perform hyper-parameter tuning on each of them using the Grid Search
technique to find the best parameters for the most accurate results from each model.
Grid search (Pedregosa et al. 2011) is a tuning technique that attempts to compute the
optimum values of hyper-parameters. It is an exhaustive search performed on the specific
parameter values of a model and is available via the Sci-kit learn library in python.

We will then train our model on a training set and test it on a hold outset to perform
some initial evaluations such as looking at the confusion matrix, ROC curve and Kappa
score. Then, each model will undergo repeated stratified 10-fold cross-validation to fully
evaluate them using metrics such as accuracy, precision, recall, F1 score and ROC-AUC.
Each of the model-building processes will follow a similar flow (see Figure 7.1).
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Figure 7.1: Model Building Process Flow

7.3 The Data Set

The data set we will use for our analyses was extracted from UCI Machine Learning
repository∗ (Yeh & Lien 2009). It represents Taiwanese credit card defaults in the year
2005 along with three months payment history up to the month of default. We will
attempt to determine if these features can allow us to predict the three-month default
probability using our various models and compare their performance, and then attempt
to show the advantage deep learning theoretically has over the other models.

7.3.1 Data Description

The data set comprises credit card customer data from a large retail bank in Taiwan
for April to September 2005. It contains one binary dependent variable (Y ) and 23
independent variables (X1-X23). There are 30,000 individual records in the data.

The response variable is binary. It labels whether the customer has defaulted on a
payment (defaulted = 1, non-defaulted = 0). The independent or explanatory variables
are as follows:
X1: Credit amount given (NT dollar). This includes individual consumer credit and
family (supplementary) credit.
X2: Gender (1 = male; 2 = female).
X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
X4: Marital status (1 = married; 2 = single; 3 = others).

∗This data set is licensed under a CC0 1.0 License

73

https://archive.ics.uci.edu/ml/data sets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/data sets/default+of+credit+card+clients
https://creativecommons.org/publicdomain/zero/1.0/


X5: Age (year).
X6-X11: Past payment history (0 = pay on time; 1 = payment delayed for one month, . . . ,
9 = payment delayed for nine months or more). The records are for April to September
and are described using the following variables:

X6 = the repayment status in September, 2005;

X7 = the repayment status in August, 2005;

. . .

X11 = the repayment status in April, 2005.

X12-X17: Amount of bill statement (NT dollar).

X12 = bill for September, 2005;

X13 = bill for August, 2005;

. . .

X17 = bill for April, 2005.

X18-X23: Previous payment amount (NT dollar).

X18 = amount paid in September, 2005;

X19 = amount paid in August, 2005;

. . .

X23 = amount paid in April, 2005.

7.3.2 Data Exploration

The data set contains 30,000 unique rows of data. The distribution of the response
variables can be seen in Figure 7.2 :

Figure 7.2: Histogram of response variable distribution before resampling.

As we can see, our data set is highly skewed. This skew is called a class imbalance
problem. The class imbalance will negatively affect our model’s ability to learn the deci-
sion boundary effectively and accurately predict both classes as the training algorithms
are biased towards Y = 0.
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7.3.3 Data Preparation

Since this a well-studied problem and the data set is very commonly used, the data itself
is very clean. It contains no missing values, and all variables are numeric. There are no
duplicates and no redundant entries. This leaves only two tasks to perform before we can
start our analyses: resampling and scaling.

7.3.3.1 Resampling

The first step in our preparation of the data is to correct the skew of the class variable Y .
For this we will use a combination of undersampling of the majority class and SMOTE
to up-sample the minority class. After applying these techniques, our response variable
distribution is shown by Figure 7.3 :

Figure 7.3: Histogram of response variable distribution after resampling.

Our minority class is no longer under-represented, and class imbalance will not affect
our models’ performance.

7.3.3.2 Scaling

The scaling of a data set is standard in many ML applications. Our models’ performance
could be unstable if the individual features are not approximately standard normally
distributed data, as the objective function of our learning algorithms assumes this. If a
feature has a standard deviation much larger than that of the others, it might dominate the
objective function. This domination would make the estimator unable to learn from other
features correctly. Observing Figure 7.4, we can see what our data looks like unscaled.
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Figure 7.4: Sample of raw data unscaled.

We need to scale our data. There are two methods for this: min-max scaling and
standard scaling. Through experimentation, we have found that standard scaling works
best in our case. So, simply put, we will standardise features by removing the mean and
scaling to unit variance. This is done as follows:

Xscaled
i =

(Xi − µi)
σi

,

where Xi is the feature, µi its mean and σi its standard deviation. After scaling, our data
can be shown as in Figure 7.5 :

Figure 7.5: Sample of scaled data.

7.3.3.3 Splitting

When performing our initial evaluation, we will need our data to be split into a training
set, a testing set, and for our neural networks, a validation set. First is the train-test
split, where we randomly sample 20% of our data into a test set and the other 80% to be
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used for training. We will use the testing set as a validation set for our neural network
during training to monitor convergence and overfitting.

7.3.3.4 Feature Selection

Usually, in practice, as part of the initial data exploration and model building, we will
perform feature selection which is the process of selecting those inputs that have the
more explanatory power when it comes to predicting our output. In our case, we look at
the correlation plot (see Figure 7.6) and the SHAP values (Roth 1988) produced by our
initial logistic regression model to find which features have the most explanatory power.
In doing this, we created a different subset of our data set. However, at best, we could
only match our accuracy on all models with one of the subsets while the other subsets
performed much worse. It is for this reason that we will stick to the 23 features from the
original data set.

Figure 7.6: Correlation matrix of our features and response variables.

7.4 Building All Models

Now we will build, tune, evaluate and compare each of our five models. We will first
describe four models: logistic regression, support vector machine, CART classifier and
an artificial neural network with one hidden layer. For each model, we perform Grid
Search to find the most optimal set of hyper-parameters. Then each model will be fit
to a training set, and we will perform some initial evaluation. Next, we run each of our
models through stratified 10-fold cross-validation repeated three times. We evaluate the
following metrics: accuracy, ROC-AUC, precision, recall and F1 score. We will calculate
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the mean value of the scores across all folds and the standard deviation. The final results
will be summarised at the end of this chapter in Table 7.5.

7.4.1 Logistic Regression

The first of our models is a simple but powerful and widely used logistic regression Model.
We build this model using the Scikit-learn ML library. The first step is performing Grid
Search. The hyper-parameters are given in Table 7.1 :

Hyper-
parameter

Description Grid Values

Penalty Used to specify the norm used in the
penalisation.

L1, L2, Elastic Net

C The inverse of regularisation strength.
It must be a positive number.

0.1, 1, 10, 100

Table 7.1: Grid Search parameters for logistic regression.

We will run the Grid Search algorithm using 3-fold cross-validation while scoring the
model on accuracy. The algorithm will essentially fit eight (4 × 2) different models fitting
three folds for each. This procedure tells us that the best hyper-parameter combination
is C = 1 using L2 norm penalisation.

The second step is to fit our model, using the parameters above, to our training set
(training time: 0:00:00.22) and then evaluate it using our testing set. We can now look
at the confusion matrix (Figure 7.7a), ROC curve (Figure 7.7b) and Kappa score.

(a) Logistic regression model confusion matrix. (b) Logistic regression model ROC curve.

Figure 7.7: Preliminary results for our Logistic Regression model

Cohen’s Kappa: 0.45

7.4.2 Support Vector Machine

Next, we fit a support vector machine to our data set. This model is a popular alternative
to the logit model and has been proposed many times in literature. The hyper-parameters
are given in Table 7.2 :
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Hyper-
parameter

Description Grid Values

Kernel Specifies the kernel type to be used in
the algorithm.

radial basis function,
polynomial, sigmoid,
linear.

C Regularisation parameter. 0.1, 1, 10, 100

Gamma Kernel coefficient. 1, 0.1, 0.01, 0.001

Table 7.2: Grid Search parameters for our support vector machine.

Next, we run the Grid Search algorithm using three-fold cross-validation while scoring
the model on accuracy. This time the algorithm will fit 64 (43) different models fitting
three folds for each. This procedure tells us that the best hyper-parameter combination
is C = 1 and gamma = 0.1 using the Radial Basis Function as the kernel function.

The second step is to fit our model, using the parameters above, to our training set
(training time: 0:00:40) and then evaluate it using our testing set. We can now look at
the confusion matrix (Figure 7.8a), ROC curve (Figure 7.8b) and Kappa score.

(a) SVM model confusion matrix. (b) SVM model ROC curve.

Figure 7.8: Preliminary results for our Support Vector Machine model

Cohen’s Kappa: 0.54

7.4.3 Decision Tree

Here we will construct a CART model. Since CART models are very likely to overfit, we
require some extra care in the construction of this model. We will begin by performing
grid search on two hyper-parameters which are given in Table 7.3 :
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Hyper-parameter Description Grid Values

Splitting Criterion The function to measure the quality of
a split.

Gini impu-
rity, Entropy
(information
gain)

Min Samples per Leaf
(min leaves)

The minimum number of samples re-
quired to be at a leaf node. A split
point at any depth will only be con-
sidered if it leaves at least min leaves
training samples in each of the left and
right branches.

1,...,50

Table 7.3: Hyper-parameters for our Decision tree.

We will run the Grid Search algorithm using three-fold cross-validation while scoring
the model on accuracy. The algorithm will essentially fit 100 (50 × 2) different models
fitting three folds for each. The results of this procedure are:

Criterion: Gini

Min samples per leaf : 49

Next, we fit the model to check its accuracy. The learning algorithm constructs a
tree with a depth of 34 and 4918 leave nodes. We find an accuracy of 75.52%. Next, we
perform Cost Complexity Pruning, which involves pruning back our full tree to obtain a
sub-tree such that we get the lowest test error rate or highest accuracy, i.e. we are trying
to reduce the effects of overfitting. To achieve this, we need to find a sub-tree with the
lowest α associated with it. Cost complexity pruning is a form of regularisation similar
to parameter norm penalties, where α is used to define the cost-complexity measure that
is similar to Eq. (7.1):

Rα(T ) = R(T ) + α|T |, (7.1)

where |T | is the number of terminal nodes in T and R(T ) is traditionally defined as
the total miss-classification rate of the terminal nodes.

Next, we plot out our cost-complexity pruning path in Figure 7.9, which illustrates the
effective alphas of each of the sub-trees during pruning and their corresponding impurities.
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Figure 7.9: Resulting alphas of our cost-complexity pruning path.

Next, for each of these alphas we fit a separate tree to see what the resulting depth is as
seen in Figure 7.10:

Figure 7.10: Effective alpha vs resulting tree depth.

Finally we measure the accuracy of each sub tree and plot out the results as seen in
Figure 7.11:
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Figure 7.11: Effective alpha vs resulting tree accuracy.

By inspection, we can see on Figure 7.11, that the peak accuracy is at α ≈ 0.00025.
We can also see that some pruning is better than no pruning. So we proceed to fit our
final tree using the following parameters:

Criterion: Gini

Alpha: 0.00025

Using the parameters above, fitting our model to our training set (training time:
0:00:01.11) yields a tree with a depth of 13 and 120 leaf nodes. Figure 7.12 gives us a
high level view of our decision tree. This diagram is too large to display here†, but we
aim to illustrate to the reader that the benefit of CART classifiers is that we can visually
interpret how our model makes decisions and arrives at a certain prediction.

†the software used allows us to zoom into this tree structure to observe the decision rules at each
node more clearly
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Figure 7.12: Illustration of our pruned CART model. Each box represents a node on the
tree related to a specific decision rule. The nodes at the end of each branch are the leaves
of the tree, and this is where the model produces its output, i.e. a probability of a data
point belonging to a specific class.

We can now look at the confusion matrix (Figure 7.13a), ROC curve (Figure 7.13b)
and Kappa score:

(a) CART model confusion matrix. (b) CART model ROC curve.

Figure 7.13: Preliminary results for our CART model

Cohen’s Kappa: 0.52

7.4.4 Artificial Neural Network

Finally, we construct an artificial neural network. Here the idea is to create as basic of a
network as possible and then see if we can improve on it using techniques and methods
from Chapter 6, i.e. construct two models.

For the first model, we will aim to keep many of these parameters as basic as possible
while tuning only the necessary. For instance, we will use SGD as our optimisation
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algorithm, no mini-bathes, no adaptive learning rates, no batch normalisation, no early
stopping, no regularisation and no dropout. We will also use Relu and sigmoid as the
activation functions on our hidden and output layers respectively. However, we will tune
the following parameters given in Table. 7.4 :

Hyper-
parameter

Description Grid Values

Epochs Number of training epochs. 50, 100, 200

Nodes Number of nodes on the hidden layer. 5, 12, 24, 40

Table 7.4: Grid Search parameters for our base neural network.

This time the Grid Search algorithm will fit 12 (4 × 3) different models fitting three
folds for each. This procedure tells us that the best hyper-parameter combination is
Epochs = 200 and Nodes = 12. Our model architecture is shown in Figure 7.14.

Figure 7.14: Visualisation of our neural network architecture.

For our second model we will use the same architecture but introduce techniques to
improve performance. Using Grid Search we find that the following hyper-parameters
give optimal results:

Epochs: 200

Mini-batch Size: 500

Kernel Initialisers: Normal

Optimiser: RMSProp

Batch Normalisation: Yes

Early Stopping: Yes
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While training our models, we will evaluate the error (Figure 7.15) and accuracy
(Figure 7.16) of our model on a validation set to monitor overfitting.

(a) Base neural network (b) Boosted neural network

Figure 7.15: Training accuracy vs validation accuracy of our neural networks during
training.

(a) Base neural network (b) Boosted neural network

Figure 7.16: Training loss vs validation loss of our neural networks during training.

As we can see, training is relatively stable, there is fast convergence and there appears
to be no overfitting. We can also see that our boosted model converges much faster. After
fitting both models (training time: 0:02:16 for the base model and 0:00:11 for the boosted
model), we do our initial evaluation, by looking at the ROC curve for the base model
(Figure 7.17a) and the boosted model (Figure 7.17b), as well as the confusion matrix of
the base model (Figure 7.18a) and the boosted model (Figure 7.18), and the results are
compared below:

85



(a) Base neural network (b) Boosted neural network

Figure 7.17: ROC curves of our neural networks.

(a) Base neural network (b) Boosted neural network

Figure 7.18: Confusion matrices of our neural networks.

Base Neural Network Cohen’s Kappa: 0.52
Boosted Neural Network Cohen’s Kappa: 0.52

7.4.5 Summary of Initial Model Results

We will now summarise the results of our cross-validation process for each of our models
in Table. 7.5, to get an idea of what our benchmark is:

Accuracy Precision Recall F1-Score AUC Kappa

Logistic Regression 72.01% 71.46% 68.13% 69.75% 78.51% 0.45

SVM 77.88% 79.22% 72.25% 75.57% 84.76% 0.54

CART 75.53% 77.24% 68.55% 72.62% 82.35% 0.52

ANN (Base) 76.15% 76.84% 71.37% 73.91% 83.52% 0.52

ANN (Modern) 76.58% 77.55% 71.21% 74.23% 83.76% 0.52

Table 7.5: Summary of cross-validation results for initial models

The models perform relatively well so far, with our machine learning models out-
performing the traditional logistic regression model by at least 3% in terms of accuracy.
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However, there is much room for improvement on each of these models. So far, our results
highlight that the SVM model is the superior classifier, but not by a large margin.

There does not appear to be any significant difference between our two networks in
terms of performance. However, the clear advantage that our boosted model has over the
base model is efficiency. Our boosted model trains 12 times faster than our base network,
and from Figure 7.16 we can see it converges much faster. This, combined with the fact
that their performance is almost similar, shows that the techniques in Chapter 5 have
significantly benefited the field of neural networks.

Both these models also outperformed the CART in all metrics except Kappa. The one
clear benefit that the CART model has is that it trains much faster despite being slightly
less accurate. The algorithm can easily visualise the tree, giving the user the benefit of
explaining the tree’s methodology to an extent.

Now we arrive at the central question of this dissertation: can a deep neural network
outperform all these models?

7.4.6 Deep Neural Network

Finally we will build our deep neural network. Our approach follows the recommendation
of Goodfellow et al. (2016) which is to over-parameterise our model (make it very wide
and deep) and then apply regularisation to limit overfitting. Through trial and error we
have used the following NN architecture: five hidden layers with 50, 100, 50, 100 and
50 nodes on each layer respectively. Using multiple runs of the Grid Search algorithm,
we find that the following hyper-parameters, which are given in Table 7.6, give optimal
results:

Hyper-parameter Choice

Epochs 150

Mini-batch Size 500

Weight initialisation Normal

Optimiser Adam

Batch Normalisation Yes

Early Stopping Yes

Dropout Yes with probability of 0.2 on each layer

Table 7.6: Grid Search results for our deep neural network.

We then proceed to fit our model to the training data while monitoring the error of our
model on a validation set to monitor overfitting. Initially, we trained the model without
regularisation, and we can see overfitting occurring (see Figure 7.19a). Hence we applied
regularisation (in the form of dropout, batch normalisation and early stopping), and we
can see that it did remedy the issue (see Figure 7.19b).
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(a) Validation error without regularisation. (b) Validation error with regularisation.

Figure 7.19: Result of applying regularisation to prevent overfitting on our Deep Network

After fitting our deep network model (Training time: 0:01:14), we can now look at the
confusion matrix (Figure 7.20a), ROC curve (Figure 7.20b) and Kappa score:

(a) Deep neural network model’s confusion ma-
trix. (b) Deep neural network model’s ROC curve.

Figure 7.20: Result of applying regularisation to prevent overfitting on our Deep Network

Cohen’s Kappa: 0.56

7.5 Conclusion

We can see that the DNN model performs very well and is a potentially powerful tool.
We will examine the cross-validation results of each model in the next chapter. We will
critically evaluate the drawbacks of each model and highlight a potential improvement to
be made to the experiments. We will then conclude on whether deep learning can rival
traditional and non-traditional models and discuss whether it has a place in finance by
considering multiple arguments.
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Chapter 8

Conclusion and Suggestions for
Future Study

”The point is now indisputable: when you have a well-validated statistical
algorithm, use it” - Phillip E. Tetlock, Super Forecasting

8.1 Introduction

In this final chapter, we conclude whether Deep Learning is an excellent alternative to
conventional and other credit scoring models. We also highlight some of the drawbacks
and challenges that Deep Learning approaches face in the financial sector (especially in
banking), where regulatory hurdles are plenty and consider some resolutions proposed.

8.2 Results and Evaluation

After performing stratified 10-Fold cross-validation repeated three times on each of our
models and averaging the results, we arrive at the results in Table 8.1.

Accuracy Precision Recall F1-Score AUC Kappa

Logistic Regression 72.01% 71.46% 68.13% 69.75% 78.51% 0.45

SVM 77.88% 79.22% 72.25% 75.57% 84.76% 0.54

CART 75.53% 77.24% 68.55% 72.62% 82.35% 0.52

ANN (Base) 76.15% 76.84% 71.37% 73.91% 83.52% 0.52

ANN (Modern) 76.58% 77.55% 71.21% 74.23% 83.76% 0.52

DNN 78.06% 79.9% 71.8% 75.6% 86.07% 0.56

Table 8.1: Final results of cross-validation for all models.

To reiterate, all models perform relatively well, with our machine learning models
outperforming the traditional logistic regression model. In our results, it is necessary
to highlight that the SVM model was superior to the other traditional machine learning
classifiers. The decision tree performed almost as well and had the added benefit of speed
and interpretability.

Turning back to our initial neural networks, it is worth noting that even though they
performed almost the same, the boosted model trained much faster, which is a clear
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indication that the methods we considered in Chapter 6 are adequate. Not only that, but
our neural networks performed very well in all aspects.

However, the main result to highlight is the performance of the deep neural network.
First to note is that it performed better than our standard neural networks, which is what
we expected. Second, our model outperformed all the other classifiers, except the SVM
in terms of recall.

8.3 Conclusion

It is important to note that our deep neural network outperformed the SVM by a very
slim margin; one could say it is statistically insignificant. However, this is still a robust
result, considering that deep neural networks only show their true power the more the
data set increases (Brownlee 2019).

Retail banks would have massive sets and more features. Firstly, we know that deep
neural networks performance increases the more data is used, while traditional models
have a limit, as seen in Figure 8.1. There may be instances where more training examples
will not improve performance, e.g. high bias models will do not benefit from more data.
However, they do benefit from more features (Amatriain 2015). Second, more features
would make it harder for the traditional model to learn the relationship between the fea-
tures and response variable correctly. Theoretically, deep neural networks would perform
well in these situations.

Figure 8.1: Comparison of the performance of DNNs, ANNs and Traditional ML over the
amount of data used.

(Source: (Wasicek 2018))

In an interview with Wired Magazine (Garling 2018), Dr Andrew Ng, chief scientist
at Baidu and one of the leaders of the Google Brain Project, shared the following analogy
for deep learning:

”I think AI is akin to building a rocket ship. You need a huge engine and a
lot of fuel. If you have a large engine and a tiny amount of fuel, you won’t
make it to orbit. If you have a tiny engine and a ton of fuel, you can’t even
lift off. To build a rocket, you need a huge engine and a lot of fuel.”

In summary, all of the above shows that there is potential for deep learning and machine
learning, in general, to replace traditional models in the future. However, as we will note,
later on, there are still some hurdles for machine learning in finance that needs to be
addressed.
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8.4 Final Thoughts: Deep Learning in Finance

The field of AI/ML has gained new momentum, and while the idea of machines with
human levels of intelligence is not a new concept, the success in creating AI machines has
been scarce over the decades since its proposal and seemed, for the most part, to be a
failed concept.

Today, it is undeniable that DL is powerful, and our work barely scratches the surface
of its capabilities. DL has come to dominate some industries in recent years, and now,
after many years of resistance from regulators, AI/ML is moving from the research desk
to the application stack. The finance industry is one of the most influential industries
impacted by new findings in AI. However, ML models are often unfit to be successfully
incorporated into the ongoing risk monitoring of financial institutions. ML models can
be overly complex and sensitive to overfitting data. Their level of complexity makes it
challenging to apply jurisdictionally consistent definitions of data, and the models are too
complex for regulatory purposes as it difficult for auditors to interpret them. They are
primarily considered a ”black box” for regulators and a non-technical audience (Bazarbash
2019).

We will briefly consider some of the arguments for and against DL in finance. We will
also consider some hurdles that may need to be navigated for DL to be fully embraced by
financial analysts and regulators alike.

8.4.1 Arguments For Deep Learning in Finance

As technology evolves, more open-sourced algorithms become available, and the volume of
literature in the field increases, it becomes difficult to imagine a future in financial services
without ML and specifically DL. Some of the current DL applications in finance already
include algorithmic trading, fraud detection, portfolio management (”Robo-advisor”),
loan/insurance underwriting and many more.

As we have seen up to now, there is certainly the potential for DL to help improve
credit decisions and decrease credit risk given the right amount of expertise and enough
data. Beyond this, there are many other potential benefits. Despite the challenges, many
companies are already taking advantage of this technology. De Jager (2018) proposes
other benefits of using DL such as:

– yielding insights humans do not see in large sets of data;

– higher accuracy of predictions over and above our current models;

– removing human biases from decisions;

– increasing productivity and less time spent on laborious tasks.

Also, thanks to the quantitative nature of the financial domain and massive stores
data, DL, as we now know, has the potential to enhance many aspects of the financial
ecosystem.

Another argument for DL and AI is that it allows us to rethink and reconstruct
the traditional credit allocation process to be more inclusive and fair. AI can avoid
traditional credit scoring mechanisms that perpetuate existing bias, making it a unique
opportunity to change the status quo (De Jager 2018). This opportunity to enhance
financial inclusion is created by leveraging non-traditional data sources that may create
a clearer picture of a borrowers potential risk and perhaps enhance the assessment of
their track record. There are, of course, situations such as profound structural changes
occurring, borrowers counterfeiting specific indicators, and agency problems arising from
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information asymmetry, highlighting the importance of data relevance. Because data
plays an essential role in ML-based models, it should always be ensured that data remains
valid and relevant. To ensure digital financial inclusion and avoid redlining, we should
also avoid the use of variables that trigger discrimination when assessing credit ratings
(Bazarbash 2019).

8.4.2 Arguments Against Deep Learning in Finance

AI can have equally unfavourable effects, such as exacerbating existing bias, creating
cycles that reinforce biased credit allocation while making discrimination in lending even
harder to find (Klein 2020). This seems to be the main argument against ML/DL in
finance and credit risk management. This is echoed in the book by O’Neil (2017), titled
”Weapons of Math Destruction”. O’Neil (2017) ’s main argument is that algorithms (such
as the ones that underpin DL) can and do perpetuate inequality. While the O’Neil (2017)
does note the numerous benefits AI can have, they also claim that the algorithms have
”harmful outcomes and often reinforce inequality, keeping the poor poor and the rich
rich”. The author goes on to highlight that:

”[machine learning algorithms] are often proprietary or otherwise shielded from
prying eyes, so they have the effect of being a black box. They affect large
numbers of people, increasing the chances that they get it wrong for some of
them. And they have a negative effect on people, perhaps by encoding racism
or other biases into an algorithm or enabling predatory companies to advertise
selectively to vulnerable people, or even by causing a global financial crisis”.

The black box argument is a sentiment shared by regulators. If a DL algorithm arrives
at a specific forecast/score/classification, it would be impossible for the ML/Data Science
engineer to explain how it got to that answer. This is more prevalent in DL than ML
in general, given the highly complex nature of DL architectures. While much progress
has been made to increase the interpretability of ML models (such as SVMs and decision
trees), the progress in DL seems to be lacking. This is possibly due to the complexity
involved. However, at the rate that AI technology and computing power are evolving and
with the amount of attention and funding going towards research, we may yet see an era
where DL becomes standard in many risk management frameworks.

Another critical argument one can present against deep learning in finance is that,
because many financial disasters have a low probability of occurring and thus might not
be included in the historical data (or might be included highly infrequently), deep learning
models might not be able to correctly learn how to predict these tail events given certain
factors. This is a problem because it means that while deep learning models might be
great at reproducing the belly of a loss distribution, they will almost certainly be unable
to predict tail events. That is a significant shortcoming that needs to be considered when
using these models in risk management. Tail losses, while infrequent, may be devastating
to institutions and would mean that we are understating our losses. This, in turn, means
we are not holding the correct amount of capital to absorb such losses. One proposed
strategy to combat this is to combine deep learning models (or machine learning in general)
with tail-risk protection strategies. Spilak & Härdle (2020) follows this hybrid approach
and produces an ensemble classifier that produces a meta tail risk protection strategy
improving both generalisation and trading performance.
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8.4.3 Challenges for Deep Learning in Finance

Aside from the regulatory challenges discussed above, another straightforward challenge
stands in how DL is fully adopted in finance: DL is complicated. This complexity makes
the adoption of DL technologies difficult for two reasons:

1. it is not easy to convince team members and especially upper management to con-
sider an AI/DL solutions;

2. there is a general lack of education/information on the matter informal education.

To effectively adopt AI/DL in an organisation, there must exist a function that can
educate (Faggella 2021). This may seem like a quick fix, but in reality, teaching most
people about the complexities of a deep learning architecture proves to be difficult as it
requires backgrounds in mathematics, statistics and data science.

Finally, aside from the many benefits that DL holds, most financial services companies
are still not ready to extract the real value from this technology for the following reasons:

– businesses often have completely unrealistic expectations towards machine learning
and its value for their organisations.;

– research and development in ML is costly;

– the shortage of Data Science/ML engineers;

– financial incumbents are not agile enough when it comes to updating data infras-
tructure.

These challenges may plague the financial industry for the decade to come. However,
the point is clear: early and effective adoption of these technologies will not only be an
effective tool to help manage risk effectively, but it will also find or create value where we
would have never thought to look.

8.5 Future Research

Some exciting research avenues are well worth exploring. First, we believe, given some
more recent data sets (which we would ideally source from a large South African bank), we
could increase the accuracy of our deep learning model. Second, deep learning extends be-
yond multi-layered perceptrons. We want to explore the use of recurrent neural networks
and convolutional neural networks to attempt to perform credit default prediction.

Next, there also appears to be some exciting and highly relevant research being done
using machine learning to reduce the costs of credit risk management in the peer-to-
peer lending space. Since this industry is still relatively young, it is mostly unregulated,
meaning it is a great space to deploy these ML models potentially. Another benefit is that
the companies in this industry are still reasonably young (primarily startups). They have
no legacy system issues meaning there is an appetite for innovation. Now, before this can
be realised, more research is needed to find which models present the optimal balance of
accuracy, efficiency, scalability and interpretability. This could be a potential avenue to
explore in the future, and seeing as the data might be different from that used by banks,
the same models might not perform equally as well as in this dissertation. Potential
models for this scenario could include a family of robust ensemble-based CART default
classifiers called gradient boosted trees algorithms. These include popular algorithms such
as XGBoost and LightGBM. These models have proven to be excellent classifiers and tend
to cope well with large sets of data.
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Two other areas of interest in the space of default classification are corporate default
prediction (using publicly available data) and small-business failure prediction. Now both
these differ pretty significantly from the areas mentioned thus far. It would be worth
looking into current research to see what has been done and see where we could improve.
This improvement could be achieved by either building a new model or taking a model
that has already proven effective and potentially expanding it further by utilising newer
techniques in machine learning that are constantly being developed.

Finally, it would be fascinating to see if we could take any of our successful models
from theory to practice by building a proof-of-concept application that could perform
default prediction at loan origination and throughout the life of the loan.
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