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Highlights 
• 

 The Test Positivity (TP) rate is an important measure of COVID-19 illness burden. 
 Pairs of countries with similar versus discrepant TP rates were compared. 

 For discrepant TP rates, both frequentist and Bayesian methods indicated genuine 
between-country differences. 

 For similar TP rates (0.009 vs. 0.007), only the Bayesian method indicated no difference. 

 When TP rates are similar and sample sizes are large, frequentist methods can be 
misleading. 
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Abstract 
The test positivity (TP) rate has emerged as an important metric for gauging the illness 

burden due to COVID-19. Given the importance of COVID-19 TP rates for understanding 
COVID-related morbidity, researchers and clinicians have become increasingly interested in 
comparing TP rates across countries. The statistical methods for performing such comparisons 
fall into two general categories: frequentist tests and Bayesian methods. Using recent data from 
ourworldindata.org, we performed comparisons for two prototypical yet disparate pairs of 
countries: Bolivia versus the United States (large vs. small-to-moderate TP rates), and South 
Korea vs. Uruguay (two very small TP rates of similar magnitude). Three different statistical 
procedures were used: two frequentist tests (an asymptotic z-test and the ‘N-1’ chi-square test), 
and a Bayesian method for comparing two proportions (TP rates are proportions). Results 
indicated that for the case of large vs. small-to-moderate TP rates (Bolivia versus the United 
States), the frequentist and Bayesian approaches both indicated that the two rates were 
substantially different. When the TP rates were very small and of similar magnitude (values of 
.009 and .007 for South Korea and Uruguay, respectively), the frequentist tests indicated a highly 
significant contrast, despite the apparent trivial amount by which the two rates differ. The 
Bayesian method, in comparison, suggested that the TP rates were practically equivalent—a 
finding that seems more consistent with the observed data. When TP rates are highly similar in 
magnitude, frequentist tests can lead to erroneous interpretations. A Bayesian approach, on the 
other hand, can help ensure more accurate inferences and thereby avoid potential decision errors 
that could lead to costly public health and policy-related consequences. 
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1. Introduction 
The test positivity (TP) rate is defined as the proportion of all tested individuals who test 

positive for a particular illness or disease. In March of 2020, the World Health Organization [1] 
emphasized the importance of assessing SARS-CoV-2 test positivity. From that point forward 
the TP rate has emerged as a critical metric for gauging the illness burden due to COVID-19. TP 
rates are routinely reported by news media outlets and by many online data repositories, such as 
ourworldindata.org. Given the importance of COVID-19 TP rates for understanding COVID-
related morbidity between nations, researchers and clinicians have become increasingly 
interested in comparing TP rates across countries. If country A has a lower TP rate than country 
B, it would appear that country A has a lower disease burden. Perhaps country A mobilized a 
more effective public health campaign that emphasized the importance of consistent social 
distancing and mask use. But how do we determine whether country A truly has a lower TP rate 
than country B? The question is an important one that has both public health and policy-related 
ramifications. For example, if decision makers in country B mistakenly conclude that country A 
has a substantially, or significantly, lower TP rate, then country B might devote considerable 
resources and enact policy-related changes in order to mimic the apparent success of country A. 
Such efforts, however, will be in vain because in this example the TP rates for country A and 
country B are not meaningfully different. How then should a researcher or public health 
professional decide whether two TP rates are substantially different? One approach that is 
sometimes used, but is fraught with error and thus not recommended, is the eyeball approach 
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(i.e., unaided human judgment). In a seminal article on this topic, Dawes and colleagues [2] 
discussed the issue in terms of clinical versus actuarial judgment—with actuarial methods 
(statistical and mathematical models) consistently outperforming human clinical judgments. 

Regarding statistical and mathematical approaches, there are several methods that could 
be used to compare TP rates (which, statistically speaking, are proportions bounded between 0 
and 1). These methods can be divided into two groups: classical or frequentist methods and 
Bayesian methods. Frequentist methods for comparing two proportions, such as TP rates, include 
the asymptotic z-test [3] and the ‘N-1’ chi-squared test [4]. One limitation of these frequentist 
tests is that with very large sample sizes, such as those forming the basis of TP rate calculations 
at the country-wide level, standard error estimates become very small which results in high 
statistical power and a high probability of rejecting the null hypothesis. When comparing two 
proportions, the null hypothesis states that there is no difference between the two values. 
However, when the sample size is very large, rejecting the null means that the researcher 
concludes there is a substantial/significant difference between the two proportions, even though 
the actual difference between the two values might be quite small. Related to the above point, a 
second limitation of frequentist methods is that results generated by these approaches are almost 
always interpreted from the perspective of Null Hypothesis Significance Testing (NHST). A key 
limitation of NHST is that the probability value (p-value) resulting from the test statistic 
measures the probability of the result (or one more impressive) occurring, assuming that the null 
hypothesis is true. The p-value does not provide direct evidence for or against the alternative 
hypothesis; that is, whether the two proportions (TP rates) truly differ from each other under the 
assumption that the null hypothesis is false. Frequentist confidence intervals don’t eliminate this 
concern because they, too, rely on a p-value based interpretation (e.g., if the interval excludes 
zero, the two proportions are statistically significantly different). A third limitation of frequentist 
methods concerns their emphasis on dichotomous decision making: either the null hypothesis is 
supported or it is not supported. In contrast to frequentist-based NHST with its focus on rejecting 
or retaining the null hypothesis, it is the alternative hypothesis that is almost always of interest to 
the researcher. Unlike frequentist methods, Bayesian approaches directly evaluate the alternative 
hypothesis. 

Before outlining the merits of Bayesian analysis, let’s first briefly define the goal of 
statistical inference: the results obtained in a sample (or samples) are used to make inferences 
about the population (or populations) from which the sample(s) are drawn. All else being equal, 
the sample-based statistics are interpreted as the best single estimates of the underlying true 
population values (i.e., the population parameters). In the present study, the parameter of interest 
is the true difference between the TP rates of two different countries. In a Bayesian analysis, a 
key assumption is that because parameters are estimated with error (sampling error, 
measurement error, etc.), some parameter estimates are better, or more credible, than others. In 
Bayesian inference, the goal is to ascertain which parameter value, or range of values, is most 
credible. When performing Bayesian estimation, greater credibility is allocated toward parameter 
values that are consistent with the data, and less credibility is given to parameter values that are 
inconsistent with the data. By “data”, what is technically meant are the observed sample data 
combined with, or informed by, previous theory and/or research. In Bayesian estimation the 
previous theory and/or knowledge is codified in the form of a ‘prior distribution’. The prior 
distribution, which is a type of probability distribution selected by the researcher (see the Method 
section below for more details), combines with/informs the observed data to give rise to a 
posterior distribution of parameter estimates. The process is an iterative one: thousands of 
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samples of parameter estimates are drawn and examined, using a procedure called Markov Chain 
Monte Carlo (MCMC) sampling, to identify the most credible parameters of interest (i.e., the 
values that are most likely to occur in the population of interest). The collection of credible 
parameter estimates constitutes the ‘posterior distribution’. 
 The purpose of this study was to conduct pairwise, between-country comparisons of 
recent COVID-19 TP rates using three different methods: the asymptotic z-test and the ‘N-1’ chi-
squared test (both are widely used frequentist methods), and a Bayesian procedure for comparing 
proportions. All three methods are designed to compare statistically independent proportions. In 
this study, because the TP rates are derived from different countries, and because different 
countries contain non-overlapping populations, any pair of proportions (TP rates) are considered 
to be statistically independent. There were two important aims of the analyses: (1) to examine 
whether the results of the two methodological approaches (frequentist and Bayesian) lead to 
similar or different inferences, and (2) if the two approaches lead to different inferences, then 
which approach (frequentist or Bayesian) appears to be more accurate? By “accurate” we mean 
which approach seems more consistent with the observed between-country data. 

 
2. Method 

The TP rate data used in this study were obtained from ourworldindata.org, which is a 
freely available online data repository. The database is updated frequently and the analyses 
performed in this study used the version of the database updated on September 18, 2020. All data 
were processed and analyzed using IBM SPSS and R. The z-score calculator available at 
www.socscistatistics.com/tests/ztest/default2.aspx was used to conduct the asymptotic z-test. To 
perform the ‘N-1’ chi-squared test, the online MedCalc calculator was used (available at 
www.medcalc.org/calc/comparison_of_proportions.php). To perform the Bayesian analysis for 
comparing proportions, the prop.diff.eq R function written by Reza Norouzian was used 
(available at raw.githubusercontent.com/izeh/i/master/i.r). For the Bayesian analysis, the prior 
distribution that we used was a Beta (1.2, 1.2) probability distribution. The two values of 1.2 are 
hyper-parameters for the two probabilities being compared (i.e., the two TP rates). The specifics 
about hyper-parameters are not important for our purposes. What is important is that this prior 
distribution is commonly used when comparing proportions; it is a conservative distribution that 
depicts most of the proportions between 0 and 1 as being fairly equally likely to occur. The 
exceptions are the extreme proportions near 0 and 1, which are depicted as occurring notably less 
frequently. A picture of the Beta (1.2, 1.2) distribution is presented in Figure 1. 

In a Bayesian analysis, it is important to select an appropriate prior distribution. As noted 
above, when comparing two independent proportions, the Beta (1.2, 1.2) distribution is an 
appropriate choice because this distribution (a) is not biased toward (does not favor) any 
particular proportion value, and (b) assumes that in most real-world applications extreme 
proportions are, probabilistically speaking, less likely to occur. When researchers are conducting 
a study in which prior research has been performed and/or there is strong theory, then the past 
research or theory can inform the selection of a particular type of prior distribution. In contrast, 
for scenarios in which past research and compelling theory are lacking, the researcher can select 
what is known as a non-informative prior distribution. A commonly selected non-informative 
prior is the Uniform distribution, in which all empirical values are considered to be equally likely 
to occur. The Beta family of distributions is a popular choice for generating prior distributions 
because, depending on the particular hyper-parameters selected, Beta distributions can assume 
the characteristics and shapes of many different distributions. To give some examples, Beta (1, 
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1) is the Uniform distribution, Beta (5, 5) is the Normal distribution, Beta (2, 8) is a Positively 
Skewed distribution, and Beta (8, 2) is a Negatively Skewed distribution. Graphs of these 
particular Beta distributions are presented in Figure 2. 
 

Figure 1. A Beta (1.2, 1.2) probability distribution. 

Density Plot 

 

 

Figure 2. Examples of different Beta distributions. Panel A: A Uniform [Beta (1, 1)] distribution. Panel 

B: A Normal [Beta (5, 5)] distribution. Panel C: A Positively Skewed [Beta (2, 8)] distribution. Panel D: 

A Negatively Skewed [Beta (8, 2)] distribution. 

Panel A 
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Panel B 
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3. Results and Discussion 
Given the large number of countries in the world, there are, obviously, a multitude of 

pairwise comparisons that could be conducted. Rather than performing a large number of 
comparisons, it is perhaps instructive to examine a few prototypical yet disparate cases. One such 
case involves Bolivia and the United States; these two countries have large and small-to-
moderate TP rates, respectively. In the 9-18-20 update of the Our World in Data database 
(ourworldindata.org), the TP values for Bolivia and the United States were .337 and .045. The 
discrepancy between these two proportions is quite large. In such cases, where there are large 
between-country differences, both frequentist and Bayesian analyses will converge on the same 
conclusion: that there are significant/substantial differences between the two TP rates. 

A second instructive case involves the scenario in which the TP rates for the two 
countries are quite similar. An example of this scenario involves the TP rates for South Korea 
and Uruguay: the values from the 9-18-20 update of the Our World in Data database were .009 
and .007, respectively. These TP rates are very close together and would appear to not 
meaningfully differ from each other. However, despite this intuition, the p-values from both 
frequentist tests were highly statistically significant (z = 9.32, p < .00001; χ2 = 86.94, p < .0001). 
Due to the extremely large sample sizes (close to 20,000 citizens in South Korea tested positive), 
both frequentist tests had very high statistical power and easily rejected the null hypothesis of 
equal TP rates. 

In contrast, the Bayesian procedure, which generates a distribution (a posterior 
distribution) of credible parameter estimates by analyzing the observed data as informed by the 
prior distribution, indicated that the two TP rates were practically equivalent. To be more 
precise, the Bayesian results showed that although the difference between the two proportions 
(TP rates) is not exactly equivalent to zero, the difference can be regarded as being practically 
equivalent to zero. This result is diametrically opposed to the frequentist findings and aligns 
more closely with the observation of a .002 difference between the two TP rates—an amount that 
appears to be quite trivial. A graph of the Bayesian results depicting the posterior distribution of 
credible parameter estimates is presented in Figure 3. In actuality, this graph contains several 
quantities of interest that warrant discussion. First, the 95% credible interval is indicated by the 
solid black line on the x-axis that is situated beneath the posterior distribution curve. As can be 
seen in the graph, the interval ranged from -.16% to -.24% (when converted to proportions, these 
values are -.0016 and -.0024). This credible interval can be interpreted as follows: there is a 95% 
probability (or, equivalently, we are 95% certain) that the true difference between the two 
proportions (the two TP rates) ranges between -.0016 and -.0024. The mean posterior parameter 
estimate, which in this case is the mean difference between the two TP rates, is labelled in Figure 
3 as ∆(p2-p1). As indicated in the graph, this mean estimate was -.20% (which, when converted to 
a proportion, equals -.002). This mean estimate can be interpreted as follows: there is a 95% 
probability (or, equivalently, we are 95% certain) that the true mean difference between the two 
TP rates is -.002. Note how straightforward it is to interpret the mean posterior parameter 
estimate and accompanying 95% credible interval. In contrast, if one calculated the arithmetic 
mean and corresponding 95% confidence interval (i.e., a frequentist analysis was performed), the 
interpretation of the confidence interval would be as follows: if the researcher drew a very large 
number of random samples (with replacement) from South Korea and Uruguay (samples of the 
same size as those examined in the actual study), and for each pair of random samples the 
researcher calculated the mean difference between the two TP rates and the accompanying 95% 
confidence interval, then 95% of the 95% confidence intervals would contain the true difference 
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between the two TP rates. We strongly suspect that most researchers would find the 
interpretation of frequentist confidence intervals to be substantially more convoluted and less 
illuminating than the interpretation of Bayesian credible intervals. By the way, for all of the 
Bayesian results discussed above, the signs of the values are irrelevant—whether they are 
positive or negative is merely a function of which country was labelled group 1 versus group 2 in 
the Bayesian analysis. 

 
Figure 3. Bayesian Posterior distribution of credible parameter estimates for the difference between TP 

rates for South Korea and Uruguay on September 18, 2020. 

 

 
There are several reasons as to why a Bayesian analysis provides richer information than 

frequentist tests. First, unlike NHST procedures, Bayesian approaches directly evaluate the 
alternative hypothesis, which, in the present study is that the two TP rates are truly different. 
Second, a mean Bayesian parameter estimate is accompanied by a credible interval, which can be 
interpreted as a range of values that contain, with a specified degree of probability, the true 
parameter estimate/true population value [5]. As mentioned in the previous paragraph, we 
believe that credible intervals are easier to interpret than frequentist confidence intervals. The 
major take home message from this study is that when TP rates are very similar, performing a 
Bayesian, rather than frequentist, analysis can avoid a potentially costly false positive decision 
error. Specifically, the Bayesian approach will, in all likelihood, prevent researchers and policy 
makers from mistakenly concluding that two TP rates of similar magnitude differ significantly 
from each other. 
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Our emphasis throughout this article has been to compare and contrast Bayesian and 
frequentist methods for analyzing TP rates. We did not discuss factors that could influence a 
test’s actual positivity rate. Although a number of factors could be relevant, we believe that two 
in particular deserve mention – the sensitivity of the test and the prevalence of the disease in the 
communities where testing is administered. A test’s sensitivity is its ability to correctly identify 
those individuals infected or with the disease. If a test is highly sensitive, it will have a high 
accuracy rate when it comes to correctly identifying those infected or with the disease. Recall 
that a test’s positivity rate represents the proportion of all tested individuals who test positive for 
a particular disease. In any group of individuals who are tested, there will be a certain 
number/proportion of people who have the disease. A highly sensitive test will be effective at 
correctly identifying such disease-positive individuals which, relative to a less sensitive test, will 
result in a larger proportion of the individuals testing “positive” for the disease in question. In 
other words, all else being equal, a test with a higher (versus lower) level of sensitivity will result 
in a higher test positivity rate. Another characteristic of a test is its level of specificity, which is 
defined as a test’s ability to correctly identify those individuals without the disease. Because a 
test’s positivity rate is concerned solely with identifying individuals who have the disease, the 
concept of specificity is less relevant for TP rates. An interesting issue to consider regarding the 
SARS-CoV-2 virus concerns the recent variants that have been identified. To the extent that the 
structures and/or biomolecular properties of the variants affect the sensitivities of SARS-CoV-2 
tests, then the test positivity rates of those tests could likewise be affected when the variant 
viruses are driving infection rates. Regarding the second influential factor that we believe 
deserves mention (i.e., the prevalence of disease in communities being tested), Usher-Smith and 
colleagues [6] found that tests developed and evaluated in communities/settings with high 
disease prevalence may have lower sensitivity when used in lower disease prevalence settings. 
The lower sensitivity in lower disease prevalence settings implies, by extension, that test 
positivity rates could also be affected by cross-setting differences in disease prevalence.  

Finally, regarding the issue of statistical software, the Bayesian R function that we used 
in this study was easy to implement. However, there are other Bayesian programs for comparing 
two independent proportions, including the Fully Bayesian Evidence Synthesis online 
application (see bre-chryst.shinyapps.io/BayesApp/) and the Bayesian First Aid package for R 
(available at www.sumsar.net/blog/2014/01/bayesian-first-aid/). There also are other frequentist 
tests (see [3] for alternatives), but the two that we selected are among the most commonly used. 
In conclusion, although frequentist hypothesis tests for comparing proportions are widely 
implemented, their use for comparing between-country TP rates, when those rates are similar in 
magnitude, can result in erroneous interpretations which could then lead to costly public health 
and policy-related consequences. 
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