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Abstract 

Within Southern African biomes, droughts are recurrent with devastating impacts on 
ecological, economic, and human wellbeing. In this context, understanding the drought 
impact on vegetation is of extreme importance. However, information on drought impact on 
natural vegetation at the biome level is scanty and remains poorly understood. Most studies 
of drought impact on vegetation have largely focussed on crops. The few existing studies on 
natural vegetation are based on experiments and field measurements at individual tree level 
which are not representative of biomes. In this study, we mapped the spatial extent and 
severity of drought using the Standardized Precipitation Evapotranspiration Index (SPEI) and 
then quantified the drought impact on Southern African biomes using the Vegetation 
Condition Index (VCI) for the period 1998 to 2017. To compare drought impact across the 
biomes, we computed the percentage area of the biome with seasonal VCI <30. The drought 
trend for each biome was computed for each pixel using a linear regression model in R 
software using the seasonal VCI images from 1998 to 2017. Our result showed that extreme 
drought impact on vegetation was mainly confined to the southwestern biomes (i.e. the Nama 
karoo and desert biomes) with most drought occurring during the first half of the season. We 
also observed an increasing trend of VCI (1998 to 2017) across all biomes and this increasing 
VCI trend might be explained by woody encroachment which is prevalent in the Savannah 
and Grassland biomes. The results of this study provide baseline information on drought 
hotspots. 
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1. Introduction 

Southern African biomes provide important ecological services particularly to rural 
populations in the region (Small, Munday, and Durance 2017). These biomes are however 
increasingly coming under pressure from climate change-induced droughts (Dai 2013). A 
number of studies on drought have reported an increasing trend in meteorological drought 
occurrence over Southern Africa (Rouault and Richard 2005; Trenberth et al. 2013). 
Simultaneously, the Southern African countries are also experiencing rapid population 
growth which puts more pressure on vegetation resources (CARIAA 2015). In addition, the 
Southern African biomes support several wildlife National Parks, e.g. Central Kalahari Game 
Reserve in Botswana, Kruger National Park in South Africa, Gonarezhou National Park in 
Zimbabwe. As such, monitoring the spatial distribution of drought impact on vegetation can 
provide the National park authorities with important information for drought early warning 
systems (Kusserow 2017) which can help to minimize drought impact on the wildlife. 

The determination of drought impact on vegetation at sub-continental scales and over diverse 
landscapes is complex due to the differences in elevation, soil, climate, and geology (Kogan 
1990). As such, these landscape differences should be accounted for in order to accurately 
assess meteorological drought impact on vegetation (i.e. weather impact on vegetation) 
(Kogan 1990). This calls for robust drought indices which can accommodate landscape 
variations and are also standardized to enable the comparison of drought impact across the 
diverse vegetation landscapes. Traditionally, most studies of drought impact on vegetation 
are based on precipitation anomalies derived from meteorological ground stations. The 
resultant drought impact on vegetation is viewed as proportional to the water deficit (Gouveia 
et al. 2017). The most frequently used rainfall based drought indices are, (i) Standardized 
Precipitation Index (SPI); (ii) Palmer Drought Severity Index (PDSI); (iii) Aridity anomaly 
index (Leelaruban et al. 2009); and (iv) Standardized Precipitation Evapotranspiration Index 
(SPEI). The advantage of SPEI is that it incorporates the estimate of the effects of 
evapotranspiration in drought assessment (Bento et al. 2018; Barbosa et al. 2019). The 
general weakness of meteorological drought indices is that they do not provide direct 
information on drought impact on vegetation. As such, rainfall-based meteorological indices 
need to be complemented by vegetation-based drought indices which capture the direct 
impact of drought on vegetation (Zou et al. 2020). 

The availability of remotely-sensed satellite data has given rise to a suite of vegetation-based 
indices which provide direct information on vegetation health condition (Bajgain et al. 2015). 
Among the satellite-based vegetation indices, the Normalized Difference Vegetation Index 
(NDVI) is the most commonly used spectral index for monitoring vegetation condition. The 
NDVI values range from −1 to 1, with low NDVI values indicating a weak level of 
photosynthetic activity which translates to low productivity (Unganai and Kogan 1998). 
Thus, NDVI is useful for the assessment of the intra-annual and inter-annual weather-related 
drought impact vegetation (Peter 2006; Leelaruban et al. 2009). 

However, previous studies have noted some limitations of NDVI (e.g. sensitivity to 
atmospheric contamination, saturation in high biomass areas) (Spanner et al. 1990). The 
development of other alternative indices to NDVI (e.g. the Enhanced Vegetation Index (EVI) 
and the Soil-Adjusted Vegetation Index (SAVI)) aimed at minimizing the NDVI 
shortcomings still presents a challenge. For example, Eumetrain (2010) noted that EVI 
produces accurate results than NDVI in areas with high biomass due to the fact that it does 
not saturate easily. However, in an effort of trying to correct for biomass saturation, the main 
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disadvantage of EVI is that it tends to portray relatively low values in sparsely vegetated 
areas (Eumetrain, 2010). Notwithstanding the limitations of NDVI described above, NDVI 
remains the most widely used indicator for drought monitoring (Carlson and Ripley 1997; 
Tucker et al. 1981; Kuri et al. 2014; Chikodzi and Mutowo 2014; Barbosa et al. 2019). 

In drought monitoring studies, the current NDVI is usually compared to the long-term 
average, maximum, or minimum (e.g. the Vegetation Condition Index (VCI)) as a way of 
quantifying drought impacts on vegetation (Ansari et al. 2014). The concept of VCI is that 
the maximum vegetation is associated with optimal weather and the minimum vegetation 
activity is associated with dry and hot weather (Kogan 1990). Therefore, the maximum and 
the minimum NDVI defines the upper (favorable weather) and the lower (unfavorable 
weather) limits of the ecosystem resources in response to extreme weather conditions, i.e. the 
pixel’s ‘carrying capacity’ (Kogan 2002). VCI therefore provides a quick overview of how 
well the vegetation is growing and helps to identify potential drought hotspots which might 
need further attention (Kogan 2002). VCI has been tested in different parts of the globe 
(Africa, America, Europe, and Asia) for a drought impact assessment on vegetation (Unganai 
and Kogan 1998; Zribi et al. 2016; Kogan 1997). 

Within the Southern African region, most recent studies of drought impact on vegetation are 
localized and focus mainly on crops (Kuri et al. 2018; Chikodzi and Mutowo 2014; Unganai 
and Kogan 1998). Consequently, the drought impact on natural vegetation in Southern 
African biomes is still a research challenge. Therefore, the main objectives of this study were 
to: (i) analyze the meteorological drought trends and the associated impact on vegetation 
across the Southern African biomes over a 20-year period (1998 to 2017), and (ii) determine 
drought hotspots, i.e. identification of biomes which are frequently affected by drought. 

2. Materials and methods 

The study area covers Southern African biomes and lies between 6° N and 35° S and between 
10° E and 41° E (Figure 1). The study area is covered by eight biomes with the Savannah 
covering the greater part of the area. One of the key phenomena regulating precipitation and 
the resultant droughts in Southern Africa is the variation in the ocean temperatures (Morioka, 
Tozuka, and Yamagata 2011; Reason 2001), the so-called El Niño-Southern Oscillation 
(ENSO) (Lindesay 1988). Greater parts of Southern Africa, with the exception of the Western 
Cape of South Africa, receives rainfall mainly between October and April (Daron 2014). The 
Southern tip of Africa receives winter rainfall which occurs between May and September. 
The average annual rainfall for Southern Africa varies between 100 and 2500 mm. The 
rainfall is highly variable and the Southern African region is frequently affected by drought 
with the recent 2015–2016 being the most severe since the 1980s (Archer et al. 2017). 
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Figure 1. Study area showing Southern African biomes based on Rutherford biome classification 
method (Mucina and Rutherford 2006) 

2.1. Input data and preparation 

In this study, we used remotely sensed NDVI and SPEI data. The drought impact on 
vegetation was analyzed at dekadal (10 days) and seasonal time-scales to capture both the 
intra-seasonal and inter-seasonal variability of drought impact on vegetation. The VCI 
seasonal computations were done using the following months: (a) May–September for the 
Fynbos biome which receives winter rainfall and (b) October–April for the rest of the biomes 
which receives summer rainfall. 
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2.1.1. NDVI data 

We used the Satellite Pour l’Observation de la Terre vegetation (SPOT VGT) & Project for 
On-Board Autonomy – Vegetation (PROBA-V) Normalized Difference Vegetation Index 
(NDVI) data (1998–2017) to calculate VCI which was then used for assessing the drought 
impact on vegetation. The NDVI data were downloaded from the Copernicus website 
(https://land.copernicus.eu/global/products/ndvi). The SPOT VGT& PROBA-V is provided 
by Vision on Technology (VITO) as a 10-day synthesis at 1 km spatial resolution. Daily near-
infrared bands (RNIR) and red bands (RRed) are used to compute daily NDVI which is later 
aggregated at the end of 10 days (dekad) using the maximum value composite (MVC) 
technique. 

The NDVI is calculated as  

           (1)  

where RNIR is the near-infrared reflectance and RRed is the visible-red reflectance (Vicente-
Serrano 2007). The NDVI data is provided together with a status map which provides 
information on the quality of the NDVI (e.g. shadow and cloud effect). This status map is 
used for masking out contaminated NDVI pixels (Wolters et al. 2016). To reduce the impacts 
of cloud contamination, we filtered the NDVI data using a Savitzky–Golay smoothing filter 
(five window filter, 5th order polynomial) following Cho, Ramoelo, and Dziba (2017) using 
Timesat software (Jonsson and Eklundh 2002). The filtered NDVI was then used to compute 
the VCI for assessing the impact of drought on vegetation. 

2.1.2. Calculation of vegetation condition index (VCI) 

In order to accurately assess the drought impact on vegetation at different time-scales, we 
calculated dekadal and seasonal VCI over a 20-year period (1998 to 2017). The VCI was 
computed using the Monitoring for Environment and Security in Africa (MESA) Drought 
Monitoring Software (DMS). The VCI compares the NDVI of a given period and pixel 
(NDVI) with its minimum (NDVImin) and maximum (NDVImax) and is calculated as  

          (2)  

where NDVI is the 10 day or seasonal NDVI value, NDVImax and NDVImin are the long-term 
maximum and minimum, respectively, calculated for each pixel for each dekad or season 
from the NDVI time-series data. The resulting VCI values are fixed in the range of 0 to 100. 
According to the United Nations Platform for Space-based Information for Disaster 
Management and Emergency Response (UN-SPIDER) VCI values, less than 40 are indicative 
of drought impact on vegetation (UN-SPIDER, 2017). VCI values less than 30 represents 
moderate to extreme drought conditions (Kogan 1997). Based on this formulation, we 
mapped the vegetation affected by drought as pixels with VCI < 30, i.e. moderate to extreme 
drought impact. 
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2.1.3. Standardized precipitation evapotranspiration index (SPEI) 

We used the SPEI data to map drought severity and extent across the biomes. The SPEI data 
used are provided on a 0.5° spatial resolution and the data is available from 1900 to 2015. For 
this study, we only used the data starting from 1998 to match the start date of the NDVI data. 
The SPEI data were downloaded from http://digital.csic.es/handle/10261/153475 website. 
SPEI is a robust drought indicator which takes into account the impact of both rainfall and an 
estimate of evapotranspiration in determining drought. The SPEI values are interpreted using 
the classification shown in Table 1 (Mckee et al., 1993).  

Table 1. Standardized precipitation evapotranspiration index (SPEI) classification based on (Mckee et 
al., 1993) 

 

To analyze the spatial extent and severity of meteorological droughts at a seasonal timescale, 
we developed 6-month SPEI maps covering the October–March period for each year. In order 
to evaluate the part of the season with the most severe meteorological droughts, we generated 
SPEI maps for the first half of the rainfall season (October–December) and the second half of 
the season (January–March). 

2.2. Drought impact and trends analysis 

To analyze the spatial extent of the vegetation affected by drought, we computed the 
percentage area of each biome affected by drought during the rainfall season. We only have 
focussed on vegetation pixels with moderate to extreme drought conditions (i.e. VCI <30) as 
defined by UN-SPIDER (2017). 

2.2.1. Intra-annual analysis 

To understand the intra-annual variability of drought impact on vegetation, we extracted 
dekadal mean VCI values for each biome during the summer-growing season (October–
April) and the winter growing season (May–September) using the Software for the 
Processing and Interpretation of Remotely Sensed Image Time Series (SPIRITS). The 
SPIRITS software can be downloaded from the European Commission website 
(https://mars.jrc.ec.europa.eu/asap/download.php). We then created a temporal matrix of VCI 
in order to show the dekadal trends of drought impact on vegetation over a 20-year period 
(1998 to 2017). 
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2.2.2. Inter-annual analysis 

To establish the general trend of drought impact on vegetation, we computed a pixel-wise 
linear regression model in R software using seasonal VCI values for each biome (R Core 
Team 2018). The linear regression is computed using Equation (3):  

          (3)  

where y is the seasonal (October–April) or (May–September) VCI value from 1998 to 2017; 
X is the year (1998 to 2017); β0 and β1 are the intercept and slope of the seasonal VCI, 
respectively; and ϵ is the error term, the component of y which is not accounted for by the 
regression model (R Core Team 2018). In order to determine the magnitude of the VCI 
change, we calculated the average slope in R software and multiplied it by the number of the 
years from 1998 to 2017 (i.e. 20 years). To determine the statistical significance of the trends 
(α = 0.05), we calculated the p-value using the R software. 

3. Results 

3.1. Spatio-temporal patterns of meteorological drought 

Figures 2, 3, and 4 shows the spatio-temporal patterns of meteorological droughts from 1998 
to 2015. At the seasonal timescale, (Figure 2) the meteorological drought spatial extent (SPEI 
<-1) does not match the spatial extent of moderate to extreme drought (i.e. VCI <30) (Figure 
6). This is mainly due to the fact that a single event of heavy rainfall can offset the negative 
water balance. However, such events might have a limited impact on vegetation recovery 
from drought especially if the rainfall is not well distributed. 

According to the data presented in Figures 3 and 4, the first half 2015 to 2016 rainfall season 
comes out as the driest, with severe drought conditions covering the central and southern half 
of the study area. 

The spatio-temporal extent of vegetation affected by drought (i.e. VCI <30) (Figure 6) is 
closely linked to meteorological droughts occurring during the early part of the season 
(October–December). The second half of the season (January–March) is generally 
characterized by wetter conditions (Figure 4). 
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Figure 2. Spatio-temporal patterns of 6-month SPEI covering (October to March) 
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Figure 3. 3-month SPEI for October–December period 
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Figure 4. 3-month SPEI for January–March period 

3.2. Intra-annual drought impact trends 

The VCI matrix (Figure 5) shows the intra-annual drought impact from 1998 to 2017 based 
on dekadal VCI data. The Forest, Savannah, and Montane biomes were the least affected 
biomes by drought. Even the most recent drought impact of 2014 to 2015 and 2015 to 2016 
seasons was not pronounced in these three biomes (Figure 5). Extreme drought impact on 
vegetation conditions was mainly restricted to the southwestern biomes, i.e. the Nama karoo 
and Desert biomes. 
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Figure 5. Temporal variation of drought impact on vegetation based on dekadal VCI 

 

3.3. Inter-annual drought impact on vegetation based on the seasonal average VCI 

The seasonal spatio-temporal patterns of drought impact on vegetation are illustrated in 
Figure 6. The yellow to red color depicts the increasing drought impact on vegetation based 
on the VCI. The patterns and the spatial extent of the drought impact closely resemble the 3-
month SPEI (Figure 3) for October to December period which covers the early part of the 
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season. This suggests that droughts occurring during the first half of the season have more 
impact than droughts occurring during the second half of the season. 

 

Figure 6. Seasonal VCI trends. Yellow to red depicts increasing impact of drought on the vegetation. 
Note: the year indicates the start of the season for summer rainfall region e.g. 1999 represents season 
1999 to 2000 

The year indicates the start of the season for summer rainfall region, e.g., 1999 represents season 1999 
to 2000. 
 
From the VCI time-series images, the rainfall seasons 1998 to 1999, 2000 to 2001, 2002 to 
2004, and 2014 to 2017 seasons had severe drought impacts on vegetation. Table 2 shows a 
summary of the seasonal drought impact on vegetation based on the percentage area of the 
biome with moderate to extreme drought conditions (i.e. VCI <30). We observed that in 
general, the water-limited biomes (i.e. desert and Nama karoo) recorded the highest number 
of seasons with more than 20% of the biome’s vegetation area affected by drought. Within 
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Table 2. Percentage of biome area affected by drought (VCI<30) during the rainfall season 
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the Fynbos biome, the 2017 drought was the most severe with 70% of the biome’s vegetation 
area affected by drought  

The year 2000 to 2001 season drought had the worst impact on the vegetation compared to 
the 2015 to 2016 season which recorded the worst meteorological drought since the 1980s 
(Swemmer et al. 2018). During 2000 to 2001 drought, three biomes (Desert 91%, Forest 
14%, Savannah 24%) recorded the highest area affected by drought compared to any other 
year (Table 2). This finding is consistent with the results of Abbas, Bond, and Midgley 
(2019) who also noted insignificant tree mortality during 2015 to 2016 season drought. 

3.4. Inter-annual drought impact trends 

Figure 7 shows the inter-annual VCI time-series aggregated at the biome level. Based on 
inter-annual trend analysis of seasonal VCI, we observed a general increase in the biome 
seasonal VCI over time especially after 2006 to 2007 season across all biomes (Figure 7). 
The increase in VCI translates to a reduction in drought impact on vegetation. As observed at 
the intra-annual timescale (Figure 6), the Karoo and Desert biomes were also the worst 
affected by drought at the inter-annual timescale. On the other hand, the forest, Savannah, 
and montane biomes were the least affected by the past droughts. 

 

Figure 7. Seasonally averaged VCI time-series for biomes. The red line show cut-off for moderate to 
extreme drought (VCI<30) and black-dotted line show cut-off for no drought conditions (VCI>40) 

The results from the pixel-wise linear regression analysis generally showed a significant 
increase (p-value ˂ 0.05) of VCI across the biomes especially over the Savannah biome 
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(Figure 8). We also observed a decreasing trend of VCI mostly around major cities (Figure 8 
(a)). However, this decreasing trend is not statistically significant (Figure 8(b)). 

 

Figure 8. A) VCI changes based on pixel slopes during years 1998 to 2017. b) Map of p-values (p-
value ˂ 0.05 

4. Discussion 

The VCI has been widely applied in drought monitoring studies worldwide. Unlike other 
meteorological drought indices, VCI provides a direct measurement of drought impact based 
on the vegetation’s photosynthetic activity (Kogan 1995). The main advantage of VCI is its 
ability to characterize drought conditions across diverse landscapes. 

Within the Southern African region, although there have been some exceptions, most El Niño 
years result in severe drought conditions mostly during the mid to late part of the season 
(Dec–Jan–Feb). Meque (2015) noted that this period has the highest correlation between the 
El Niño–Southern Oscillation (ENSO) index and the SPEI and consequently any rainfall 
deficit during this period has a severe impact on vegetation. However, based on the seasonal 
VCI (Table 2), the major El Niño event of the 2015 to 2016 season generally had less impact 
on vegetation compared to the other years. This is finding is unusual considering the fact that 
2015 to 2016 season drought was the worst since the 1980s (Archer et al. 2017). The year 
2015 to 2016 drought only severely affected the grassland biome more than any other year, 
with 58% of the grassland biome affected by drought. These results are consistent with the 
findings of Swemmer et al. (2018) who also noted that 2015 to 2016 season drought had less 
impact on vegetation. In addition, Abbas, Bond, and Midgley (2019) in a study entitled ‘The 
worst drought in 50 years in a South African savannah: Limited impact on vegetation’ also 
noted insignificant tree mortality during 2015 to 2016 season drought. In fact, the study 
recorded an increase in tree numbers in 2016 and 2017 relative to the 2012 census which was 
not a drought year (Abbas, Bond, and Midgley 2019). 
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In terms of drought impact, the Montane and Forest biome had the least area affected by 
moderate to extreme drought (i.e. VCI<30) (Table 2). This is probably due to the fact that the 
Forest biome has deep root systems which enables it to withstand drought impact (Pasho et 
al. 2011; Xu, Wang, and Zhang 2016). In addition, the soil type of the Forest and Montane 
biomes has a higher proportion of clay (39% and 26%, respectively) (Harvest Choice 2011). 
This enables water retention which can support the vegetation during extended periods of 
droughts. The low percentage area of vegetation affected by drought during 2015 to 16 
seasons in the Desert (13%), succulent karoo (19), and Fynbos (28%) biomes can be 
explained by the plant’s efficient mechanisms which allows the vegetation to adapt to 
drought conditions which for example allows them to go dormant during drought period 
(Gouveia et al. 2017). In contrast, the grassland biome had the largest area affected by 
drought (58%). This is mainly due to the low levels of the plant’s roots which means that a 
small reduction of soil moisture has a severe impact on the vegetation (Gouveia et al. 2017). 
This is further exacerbated by the fact the grassland biome has the highest livestock density. 
Browsing by livestock helps to reduce the vegetation cover and exacerbates the 
meteorological drought impact on vegetation. 

 

Figure 9. True color composite maps showing bush encroachment in agricultural fields. Map 
extracted from (Cho and Ramoelo 2019) 
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The analysis of VCI trends across Southern African biomes revealed an increasing trend of 
VCI especially over the Savannah biome, translating to a reduction in the intensity of drought 
impact on the vegetation. A plausible hypothesis to explain this is that the proportions of tree 
cover have been increasing over time. This phenomenon is referred to as woody 
encroachment and it is widespread in the Grassland and Savannah biomes (Luvuno et al. 
2018). The causes of woody encroachment are widely debated. Cho and Ramoelo (2019) 
argued that Savannah woody encroachment (Figure 9) occurs as more agricultural land is left 
to fallow due to erratic and declining rainfall. 

The resultant trees that grow as a result of woody encroachment (Figure 9) always green up 
in anticipation of the rainfall season and have a deep root system which can sustain the plants 
during extended drought periods (Cho, Ramoelo, and Dziba 2017). This possibly explains the 
increasing trend of VCI across most biomes and the low drought impact on vegetation during 
2015 to 2016 season drought. However, this increasing tree cover in Savannah could unsettle 
the ecological benefits offered by the grass/tree mosaic of Savannah biome, e.g. the reduction 
of palatable forage which reduces the livestock carrying capacity. 

In this study, we only have focussed on the impact of meteorological drought on the 
Vegetation Condition Index. However, other factors for example wildfires, herbivory, and 
human influence also affect the Vegetation Condition Index and these factors need to be 
investigated in future studies. For example, Bond and Keeley (2005) noted that the wildfire 
helps to maintain biome distribution and plant structure especially in biomes with recurrent 
wildfire outbreaks. In this regard, the drought impact on vegetation cannot be understood 
without understanding the ecology of wildfire (Bond and Keeley 2005). 

5. Conclusion 

We examined the impact of droughts on Southern African biomes over a 20-year period 
based on VCI. The year 2014 to 2016 period was a major drought and is well documented 
(Swemmer et al. 2018) and was captured in the study. This demonstrates the utility of VCI 
for capturing drought impact on vegetation. The majority of meteorological droughts 
occurred during the early part of the season (October–December) and most of the drought 
impact on vegetation was mainly restricted to the biomes on the south and southwestern part 
of the study area. In terms of the drought impact trends, we observed a general decline of 
drought impact across all biomes between 1999 and 2017, especially over the Savannah 
biome. This is despite the fact that the rainfall has been declining over most parts of the 
Southern African region (Marumbwa, Cho, and Chirwa 2019). As with most studies, our 
study laid the foundation for future work. Future studies should also focus on drought impact 
on landscape phenology and the time lag of vegetation response to drought impact. 
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