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ABSTRACT Autonomous mobile robots are becoming more prominent in recent time because of their
relevance and applications to the world today. Their ability to navigate in an environment without a need
for physical or electro-mechanical guidance devices has made it more promising and useful. The use
of autonomous mobile robots is emerging in different sectors such as companies, industries, hospital,
institutions, agriculture and homes to improve services and daily activities. Due to technology advancement,
the demand for mobile robot has increased due to the task they perform and services they render such
as carrying heavy objects, monitoring, search and rescue missions, etc. Various studies have been carried
out by researchers on the importance of mobile robot, its applications and challenges. This survey paper
unravels the current literatures, the challenges mobile robot is being faced with. A comprehensive study
on devices/sensors and prevalent sensor fusion techniques developed for tackling issues like localization,
estimation and navigation in mobile robot are presented as well in which they are organised according to
relevance, strengths and weaknesses. The study therefore gives good direction for further investigation on
developing methods to deal with the discrepancies faced with autonomous mobile robot.

INDEX TERMS Autonomous mobile robot, sensor fusion, devices, estimation, localization, and navigation.

I. INTRODUCTION
An autonomous mobile robot is a system that operates in
an unpredictable and partially unknown environment. This
means the robot must have the ability to navigate without
disruption and having the capability to avoid any obstacle
placed within the confinement of movement. Autonomous
Mobile Robot (AMR) has little or no human intervention for
its movement and it is designed in such a way to follow a
predefined path be it in an indoor or outdoor environment.
For indoor navigation, themobile robot is based on floor plan,
sonar sensing, Inertial Measurement Unit (IMU) etc. The first
autonomous navigation was based on planar sensors such
as laser range finder such that they navigate without human
supervision. For an autonomous mobile robot to perform its
task, it must have a range of environmental sensors. These
sensors are either mounted on the robot or serve as an external
sensor positioned somewhere in the environment. The num-
ber of different type of sensors mounted on the mobile robot
to perform complex tasks such as estimation and localization
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makes the design of the overall system very tasking [1]–[3].
The basics of mobile robotics consist of locomotion, percep-
tion and navigation.

A. LOCOMOTION
Locomotion system is an important aspect of mobile robot
design which does not only rely on the medium in which the
robot moves but also on other factors such as manoeuvra-
bility, controllability, terrain conditions, efficiency, stability,
and so on [4]. The design of mobile robot is dependent on
the service to be rendered; therefore, a mobile robot can
be designed to walk, run, jump, fly etc. With the require-
ment of the designed robot, they are categorised into sta-
tionary and mobility: on land, water or air. Mobile robots
especially autonomous are in high demand because of their
ability and capacity to perform tasks that may seem diffi-
cult for humans. Examples of such designed mobile robots
are wheeled, legged, walking or hybrid. Legged, wheeled,
and articulated bodies are the main ways how mobile robot
locomote [5]. The wheeled robots are suited to ground either
soft or hard ground while the legged and articulated bodies
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requires a certain degree of freedom and therefore greater
mechanical complexity sets in [6]. The wheel has been by far
the most famous locomotion mechanism in mobile robotics
and in vehicles in general. The advantages of wheel are
efficiencies and simplicity. The use of wheels is easier and
cheaper to build, design and program than its other counter-
parts. The control is less complex, and they cause minimum
wear and tear on the surface where they move on. Another
advantage is that they do not have issues with balancing
because of its consistent contact with their mobility areas.
The shortcoming of wheels is that they are not suitable at
navigating over obstacles, such as stony terrain, unsmooth
surfaces [4]. To design and develop the locomotion system,
the terrain type for the mobile robot must be identified. The
types of terrain are: Uneven, Level Ground, Stair Up, Stair
Down and Nontraversable [5]. Another factor to consider
when designing a mobile robot is stability. Stability is not
usually a great problem in wheeled robot, because they are
designed in such that all the wheels are always in contact
with the ground. The use of four-wheeled is more stable than
three, two and one because the Center of Gravity (COG)
is located at the centre space of the wheels. In recent time,
mobile robots are being designed to operate in two or more
modes to improve performance. In [7], the author proposed a
mechanism structure for the mobile robot with the advantage
of adaptability using hybrid modes with active wheels. On a
rough terrain the robot locomote using the leg mode while
for smooth terrain it makes use of the wheeled locomotion by
roller-skating using the passive wheels. The challenging part
is that the wheels are usually very heavy and huge because
they require driving actuators, steering and braking devices.
Therefore, installation of the active wheels usually adds up to
the whole weight of the vehicle which is already hefty enough
limiting the versatility of the leg mechanism. To improve
the localization of a mobile robot irrespective of the terrain,
a technique has to be deployed. Dead reckoning has been
already extended to the case of a mobile robot moving on
uneven terrain. It gives information about positioning for
mobile robots by directly computing the parameters such as
position, velocity and orientation [8].

B. PERCEPTION
It is very important for an autonomousmobile robot to acquire
information from its environment, sense objects around itself,
or its relative position. Perception is an imperative aspect in
mobile robot study. If a mobile robot is unable to observe
its environment correctly and efficiently, to perform tasks
such as estimating the position of an object accurately maybe
an issue [9]. To achieve this, information are perceived by
the use of sensors and other related devices [10]. Sensors
make it possible to autonomously perform robot localization.
They are also used for data collection, object identification,
mapping and representation. Sensors used in the area of data
collection is categorised into two major aspect; Propriocep-
tive/ exteroceptive sensors and active/passive sensors. Pro-
prioceptive sensors measure values internally to the system

(robot), e.g. battery level, wheel position, joint angle, motor
speed etc. These sensors can be encoders, potentiometers,
gyroscopes, compasses, etc. Exteroceptive sensors are used to
extract information from the environments or objects. Sonar
sensors, Infrared (IR) sensitive sensors, ultrasonic distance
sensors are some examples of exteroceptive sensors. Active
sensors emit their own energy into the environment, and then
measure the environmental response. They often achieved a
good performance due to their ability to manage interactions
with the environment. Furthermore, an active sensor may suf-
fer from interference between its signal and environment [11].
Examples of active sensors include sonar sensors, radars etc.
While passive sensors receive energy to make observation
like camera such as Charge Coupled Device (CCD) or Com-
plementary Metal Oxide Semiconductor (CMOS) cameras,
temperature sensors, touch sensors etc. These sensors are
most applicable in relation to specificity and achievement in
the design of an autonomousmobile robot. Table 1 gives types
of sensors used by an autonomous mobile robot.

Pp=Proprioceptive, Ep=Exteroceptive, A=Active,
P=Passive, A/P=Active and passive

C. NAVIGATION
Navigation is a fundamental problem in robotics and other
important technologies. In order for the mobile robot to
autonomously navigate, the robot has to know where it is at
present, where the destination is, and how it can reach the
destination [12]. The most important aspect in the design of
a mobile robot is navigation abilities. The objective is for the
robot to navigate from one destination to another either in a
recognized or uncontrolled environment. Most of the time,
the mobile robot cannot take the direct route from its starting
point to the ending point, which means that motion planning
techniques must be incorporated. This means that the robot
must depend on other aspects, such as perception (valuable
data acquired by the mobile robot through the use of sensors),
localization (position and configuration to be determined by
the robot), cognition (decision made by the mobile robot on
how to achieve its goals), and motion control (the robot must
estimate its input forces on the actuators to accomplish the
anticipated trajectory).

In robotics, another area to consider is the use of com-
puter vision applications to aid navigation and localization.
In computer vision, object recognition and feature matching
are a significant task to be performed for accurate positioning.
Object recognition has long been adopted in mobile robot to
detect or identify objects present in an image. The technique
can either be used to determine coordinates of the object
detected or calculate in relative to a proposed object identified
in an image. Feature matching or image matching on the
other hand performs the task of establishing correspondence
between two images of the same scene/object.

Examples of features associated between the images could
be points, edges or lines, and these features are often called
keypoints features [13], [14]. To perform the task of object
recognition and feature matching, several algorithms were
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TABLE 1. Classification of sensor system [11].

adopted and some of the algorithms were mentioned and
discussed later in the paper.

Mobile robots attract attention more and more because of
the increase in applications in various areas such as surveil-
lance for security and monitoring home for health and enter-
tainment, research and education etc., [15]–[17]. Surveillance
robots are now being installed in homes for domestic use,
they are simple and easy to deploy, they are connected to
Wi-Fi home network or smart environment to monitor and
report activities going on in the environment. They have been
designed further to engage in house cleaning, positioning
objects where and when required. Recently, home robots
are now being used by elderly people in a situation where
emergency case arises. Therefore, these robots have helped to
promote technology that aids to detect and react to events that
demand immediate response [18]. Another area wheremobile
robot is trending is the section of education. Educational
robotics is primarily focused on creating a robot that will
assist users to develop more practical, didactic, and cognitive
skills. This approach is intended also to stimulate interest
for research and science through set of different activities
designed to support strengthening of specific areas of knowl-
edge and skills. Introduction of mobile robot has increased
not only on tertiary level and scientific research institutions,
but also in lower grades such as secondary and primary
schools [19]. These have therefore improved the knowledge
of people about mobile robot worldwide.

Furthermore, mobile robot is gaining more interest in the
area of mining industry [20]. The use of mobile robot has

FIGURE 1. Applications of mobile robot.

increased the efficiency and safety of miners. The robot
assists in tracking people, robots and machines as well
as monitor environmental conditions in mines. The mobile
robotic platform is coupled with a set of range finders, ther-
mal imaging sensors, and acoustic systems, all of which are
functioned with neural networks. They navigate into different
environments and identify potential risk areas before the
workers go in. Figure 1 shows some applications of mobile
robots but not limited to the areas mentioned. Furthermore,
other applications includes firefighting, agriculture, museum
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and library guides, planetary exploration, patrolling, recon-
naissance, petrochemical applications as well as for both
domestic and industrial applications [4] etc.

The other sections of this paper are as follows:
Section 2 commences by presenting the challenges mobile
robots are faced with. This is followed by sensors and tech-
nique used to determine the positioning of mobile robots such
as to improve accuracy in Section 3. Section 4 discusses the
different types of methods used for object recognition and
feature matching. Furthermore, related work on sensor fusion
techniques were presented in Section 5. Section 6 presented
the classification of sensor fusion algorithms. Section 7 high-
lighted the importance of sensor fusion techniques while
Section 8 discusses the areas where researchers can further
investigate on the issues challenging mobile robot navigation
and localization in both known and unknown environment
and Section 9 concludes the paper.

FIGURE 2. Challenges of mobile robot.

II. CHALLENGES OF AUTONOMOUS MOBILE ROBOT
Autonomous mobile robots have proven to be a system that
cannot be without as a result of increase in demand for
diverse applications. Regardless, the potential and prospect,
they are yet to attain optimal performance, this is because of
inherent challenges that they are faced with. These challenges
(see Figure 2) have enabled more researchers to develop
more interest in recent times. Some of the main challenges
are navigation and path planning, localization and obstacle
avoidance.

A. NAVIGATION AND PATH PLANNING
As earlier said in Section I that autonomous navigation of a
mobile robot is an issue in robotics field. There are majorly
two ways by which navigation problem is categorised into:
local and global navigation. The local and the global naviga-
tion problem varies in terms of distances, scales and obstacle
avoidance and inability for the goal state to be observed. For
local navigation, occupancy grid of map is used to determine

the navigation direction and for global navigation, landmark
approach based on topological map is used. This have a
compact representation of the environment and do not depend
on the geometric accuracy. The limitation of this approach
is that they are downgraded by the noise generated from the
sensor. Mobile robot navigation systems depend on the level
of abstraction of the environment representation. To accu-
rately determine the position and orientation of the mobile
robot, it is imperative for the environment to be modelled in a
simple and understandable structure. Three main techniques
for representing the environment are given as: geometric,
topological and semantic [21].

1) GEOMETRIC
This is used to describe robot environment by parameterizing
primitive geometric object such as curves, lines and points.
The geometric representation of the environment is closer to
the sensor and actuator world and it is the best one to perform
local navigation. In [22], the author proposed the use of Prin-
cipal Components Analysis (PCA) - Bayesian based method
with grid map representation to compress images and reduce
computational resources. The PCA was also use to reduce
dimensionality and model the parameter of the environment
by considering the pixels of an image as feature vectors of
the data set [23]. In [24], Markov localization method was
proposed to provide accuracy and multimodality to represent
probability distribution of diverse kind but require signifi-
cant processing for update, hence it is impractical for large
environment.

2) TOPOLOGICAL
This is considered by defining reference elements of the
environment according to the distinct relations between them.
A conventional method for modelling the robot’s environ-
ment is to discretize the environmental model by using a
topological representation of the belief state, where each
likely pose of the mobile robot is connected to a node in a
topological map [25]. In [26], the proposed approach uses
visual features extracted from a pair of stereo images as
landmarks. While the new landmarks are fused into the map
and transient landmarks are removed from the map over time.
Topological representation of the environment uses graphs to
model the environment and it is used in large navigation tasks.

3) SEMANTIC
The current development in robotics is to alleviate from
representation models that are closest to the robot’s hardware
such as geometric models to those models closer to human
reasoning, with which the robot will interact. It is proposed
to relate model with the way robots represent the environment
and the way humans do. Robots that are providedwith seman-
tic models of the environments where they operate have a
larger decision autonomy, and become more robust and more
efficient [27].

An integrated approach for efficient online 3D semantic
map building of urban environments and the subsequent
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extraction of qualitative spatial relationships between the
different objects was presented, this enables efficient task
planning [28]. Semantic information constitutes a better solu-
tion for interaction with humans [29], the representation is
the most abstract representation model and adds concepts
such as utilities or meanings of the environment elements in
the map representation. Semantic navigation is considered as
a navigation system that considers semantic information to
model that includes conceptual and physical representation
of objects and places, utilities of the objects, and semantic
relation among objects and places. This model allows the
robot to manage the environment and to make queries about
the environment in order to do plans for navigation tasks [21].
Environmental model requires improved representation to
enable successful result, better accuracy and as well reduce
the computational cost [30]. For this to prevail, the environ-
ment must be well represented, simple technique must be
adopted and be incorporated in to the robot’s representation
of its environment [31].

Safe and efficient mobile robot navigation requests an effi-
cient path planning technique since the quality of the gener-
ated path affects extremely the robotic applications [32]–[34].
In an environment with several obstacles, finding a path
without collision with obstacles from the initial point to the
final point becomes an issue such as shortness and simplicity
of route are important criteria affecting the optimality of
selected routes. Considering the length of the path travelled
by the robot, energy consumption and its performance time,
and an algorithm that finds the shortest possible route [35]
is most appropriate. Basically, there are two types of envi-
ronment: static and dynamic. While dynamic environment is
divided into global and local path planning [33]. Global nav-
igation strategy deals with a completely known environment
while local navigation strategy deals with the unknown and
partially known environment. Figure 3 shows the breakdown
of path planning categories.

FIGURE 3. Classifications of mobile robot path planning methods [36].

Quite a number of studies have been investigated on path
planning in dynamic environments. Authors in [37] proposed
a new method to decide the optimum route of the mobile
robot in an unknown dynamic environment, they used Ant
Colony Optimization (ACO) algorithm to decide the optimal
rule table of the fuzzy system. Other related algorithms are
Bacterial Foraging Optimization (BFO) [33], and Probabilis-
tic Cell Decomposition (PCD) [38].

A new mathematical method that is based on the con-
cepts of 3D geometry is proposed to generate the route
of the mobile robot. The mobile robot decides its path in
real time to avoid randomly moving obstacles [39]. Other
intelligent algorithms studied by researchers used by mobile
robot to navigate in diverse environment are Differential
Evolution (DE) algorithm [40], [41], Harmony Search (HS)
algorithm [42], Bat Algorithm (BA) [43], and Invasive Weed
Optimization (IWO) [44].

B. LOCALIZATION
Localization is another fundamental issue encountered in
mobile robot which requires attention as well. The chal-
lenging part of localization is estimating the robot position
and orientation of which this information can be acquired
from sensors and other systems. So, to tackle the issue
of localization, a good technique should be proposed to
deal with errors, downgrading factors, improper measure-
ment and estimations. The techniques are divided into two
categories [45]–[48]: relative and absolute localization.

1) RELATIVE LOCALIZATION TECHNIQUES
This method estimate the position and orientation of the
mobile robot by integrating information produced by diverse
sensors through the combination of information presented
by different sensors, usually encoder or inertial sensors. The
integration starts from the initial position and continuously
update in time. The relative positioning alone can be used
only for a short period of time.

2) ABSOLUTE LOCALIZATION TECHNIQUES
This method permits the mobile robot to search its location
directly from the mobile system environment. Their numer-
ous methods usually depend on navigation beacons, active or
passive landmarks, maps matching or satellite-based signals
such as the Global Positioning System (GPS). For absolute
localization, the error growth is alleviated when measure-
ments are accessible. The position of the robot is externally
determined, and its accuracy is usually time and location
independent. In other words, integration of noisy data is not
required and thus there is no aggregation of error with time
or distance travelled. The limitation is that one cannot keep
track of the robot for short distances.

C. OBSTACLE AVOIDANCE
Obstacle avoidance is a vital task in the field of robotics,
because it is important that the mobile robot get to its des-
tination without being obstructed by any obstacle or an event
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of collision on its path. To this effect, collision free algorithm
is a prerequisite of autonomous mobile robot, since it offers
the safe trajectory and proves convergence [49]. Some of the
main algorithms that can be used for obstacle avoidance are
discussed in this section. Bug algorithm [50] is one of the
earliest algorithms. It enables the robot to navigate the entire
circumferences of the obstacle encountered and decide on
the most appropriate point to leave towards the goal. The
robot therefore moves to the best leaving position and later
moves towards the object. The benefit of this algorithm is
that it is easy to determine if an object is unreachable or
not. However, the algorithm takes time to achieve its goal.
Another algorithm is Vector Field Histogram (VFH) [51]
which is an improvement of the short coming of Virtual
Force Field (VFF) algorithm [52]. VFH allows detection
of unknown obstacle and avoids collision while simulta-
neously piloting the mobile robot towards the target. This
algorithm employs a 2-stage data reduction process in order
to compute the desired control command for the robot. This
ensure accurate computation of the robot path to the tar-
get, but it consumes more resources like memory, processor
and power. Hybrid navigation algorithm with roaming trails
(HNA) [53] is an algorithm that is able to deal very effi-
ciently with environments where obstacles are encountered
by the robot during motion. During navigation the robot
can deviate from its path to avoid obstacles on the basis of
reactive navigation strategies, but it is never permitted to
exit from the area. Since the robot is controlled to move
within a convex area which includes the location of the
target node, in presence of static obstacles it is guaranteed
to reach the target by following a straight line. In some
cases, the mobile robot has to either avoid the obstacles or
simply stop in front of the obstacle. Another method that
is similar to HNA is the New Hybrid Navigation Algo-
rithms (NHNA) [54]. The algorithm uses D-H bug algorithm
(Distance Histogram bug) to avoid obstacle. It enables the
robot to rotate freely at angle less than 90 degrees to avoid
obstacle. If the rotation is 90 degrees or greater and it is
required to avoid an obstacle, it acts as bug-2 algorithm [50]
and starting moving to destination when path is clear from
obstacles. Conclusively, collision free algorithm is a require-
ment for autonomous mobile robot, since it provides safe
trajectory.

In conclusion, challenges faced by mobile robot must be
tackled to ensure effective performance. Navigation is one of
the most important aspect to be considered when it comes
mobile robot because it requires planning algorithms and
appropriate information about robot’s location. This will nav-
igate the robot through its pre-defined path. In as much as
navigation is important so also is trajectory planning. This
will determine the path the robot must follow in order to reach
its destination. Therefore, a path must be planned accordingly
to avoid collision and obstacles. Different algorithms are
considered for obstacle avoidance depending on the goal to
be achieved. Finally, the robot must know its position and
direction per time. In this regard, an effective localization

technique and reliable sensors are required to gather precise
information.

III. SENSORS AND TECHNIQUES IN MOBILE ROBOT
POSITIOING
To ensure accuracy in localization, sensors and effective posi-
tioning system has to be considered. Objects positioning [55],
robotics, and Augmented Reality (AR) tracking [56] have
been of interest in the literature of recent. This section will
discuss the existing technologies that aim at determining
mobile robot’s position within its environment.

A. INERTIAL SENSORS
Inertial based sensor methods are also known as IMU
(Inertial Measurement Units) which is a combination of
accelerometers, gyroscopes and sometimes magnetometers.
These sensors have become ubiquitous because many devices
and system depend on them to serve a large sum of applica-
tions. They rely on measurement of acceleration, heading and
angular rates, which can be acquired without external refer-
ence. Each of these sensors are deployed in robots, mobile
devices and navigation systems [57]–[59]. The benefits of
using these sensors is solely to calculate the position and
orientation of a device and/or object.

1) ACCELEROMETER
Accelerometer as a sensor measures the linear acceleration,
which is the rate of change of velocity of an object. They
measure in meters per second (m/s2) or in gravity (g). They
are useful for sensing vibration in system or for orientation in
applications [60]. Velocity is determined from it if integrated
once and for position, integration is done twice. Using a
standalone sensor like accelerometer could be simple and
of low cost as stated by the author in [61], but the linear
increasing error does not give a high-level of accuracy. The
use of accelerometer alone may not be suitable because they
suffer from extensive noise and accumulated drift. This can
be complemented with the use of gyroscope.

2) GYROSCOPE
Gyroscope sensor measures the angular velocity in degrees
per second (◦/s) or Revolution Per Second (RPS) and by
integrating once, rotation angle can be calculated. Although
gyroscope is small in size and inexpensive but run at a high
rate inwhich they are able to track fast and abruptmovements.
Another advantage of using gyroscope sensor is that it is not
affected by illumination and visual occlusion [55]. However,
their performances are degraded by accumulation of mea-
surement errors for long periods. Consequently, the fusion
of both accelerometer and gyroscope sensor is appropriate
to determine the pose of an object and to make up for the
weakness of one over the other.

3) MAGNETOMETER
Magnetometer is another sensor used to calculate the heading
angle by sensing the earth magnetic field. They are combined
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with technologies to determine pose estimation [62].
However, magnetometer may not be so useful for indoor
positioning because of the existence ofmetallic objects within
the environment that could affect data collected through mea-
surements [55]. Other methods that be used to determine
indoor localization includes infrared, Wi-Fi, Ultra-Wideband
(UWB), Bluetooth, Wide Local Area Network (WLAN),
fingerprinting etc., [63]–[66]. However, these methods have
their inadequacies, it is therefore necessary that two or more
schemes be combined to attain accurate result.

B. MONOCULAR VISION POSITIOING SYSTEM
Monocular vision positioning uses a single camera to deter-
mine the pose estimation of a mobile device or static objects.
Another type of vision positioning system is called binocular
vision. Binocular stereo vision uses two cameras to estimate
location of a mobile robot. Although it has the advantage of
better performance in the regard of accuracy, but it is more
expensive and complex to compute [67]. While monocular
vision on the other hand is simple to set-up and of low
cost. Information collected from the environment captured
by the camera can be in form of an image or video. This
information is therefore processed to estimate the position
and orientation of the robot per time. This poses a spatial rela-
tionship between the 2D image captured and the 3D points
in the scene. According to Navab [68], the use of marker in
augmented reality (AR) is very efficient in the environment.
It increases robustness and reduces computational require-
ment. However, there are exceptional cases where markers
are placed in the area and they need re-calibration from time
to time. Therefore, the use of scene features for tracking in
place of markers is reasonable especially when certain parts
of the workplace do not change over time. Placing fiducial
markers [47] is a way to assist robot to navigate through its
environments. In new environments, marker often need to be
determined by the robot itself, using sensor data collected
by IMU, sonar, laser and camera. Markers’ locations are
known, but the robot position is unknown, and this is a chal-
lenge for tracking a mobile robot. From the sensor readings,
the robot must be able to infer its most likely position in the
environment. With monocular vision (one camera), a good
solution in terms of scalability and accuracy is provided. The
monocular vision is low in cost because only one camera is
required, and this technique demands less calculation unlike
stereo vision with high complexity. With the aid of other
sensors such as ultrasonic sensor or barometric altimeter,
the monocular vision can also provide the scale and in-depth
information of the image frames. To calculate the pose of
the mobile robot with respect to the camera based on the
pinhole camera model. The monocular vision positioning
system [69], can be use to estimate the 3D camera from 2D
image plane [70]. The relationship between a point in the
world frame and its projection in the image plane can be
expressed as:

λp = MP (1)

where λ is a scale factor, p = [u, v, 1]T and P =

[Xw,Yw,Zw, 1]T homogenous coordinates of p and P, and
M is a 3× 4 projection matrix.
Equation (1) can further be expressed as:

λ

 uv
i

 = M (Rwctwc)


Xw
Yw
Zw
1

 (2)

The projection matrix depends on both camera intrinsic
and extrinsic parameters. The intrinsic parameters contain
five parameters: focal length f , principal point u0, v0 and the
skew coefficient between x and y axis and is often zero.

M =

 ax γ u0
0 ay v0
0 0 1

 (3)

Extrinsic parameters:R,T defines the position of camera cen-
ter and the camera’s heading in world coordinates. Camera
calibration is to obtain the intrinsic and extrinsic parameters.
Therefore, the projection matrix of a world point in the image
is expressed as:

C = −R−1T = −RTT (4)

where T is the position of the origin of the world coordinate,
and R is the rotation matrix.

C. LANDMARKS
Landmark is the feature information recognized through
robot’s sensors perception. For an autonomous robot, how to
identify landmarks quickly and accurately plays an important
role in localization and navigation. Robot navigation system
based on landmarks research areas include landmark selec-
tion, landmark design, landmark detection, landmark naviga-
tion, environmental characterization and path planning, etc.
Generally, landmarks are classified into two types: marker-
less (also known as natural landmark) and marker-based (also
known as artificial landmark) [71].

Artificial Landmark: Artificial landmarks refer to the spe-
cial designs of the objects or markers placed in an environ-
ment which can be detected by laser, infrared, sonar and
vision sensors. The uniqueness of the marker is important
with the features for quick recognition and high reliability,
these landmarks can be identified accurately at various visual
conditions [71], [72]. Localization based on artificial land-
marks is used more widely than other methods because the
artificial landmarks are easy to detect and allowed to achieve
high speed and precision. An artificial landmark could be
any object whether static or mobile which could vary in size,
shape, feature or color as long as it is placed in the envi-
ronment with the purpose of robot localization. The author
in [73] use a sticker and LED array as an artificial landmark.
These makers are easier to detect and describe because the
details of the objects used are known in advance. These
methods are used because of their simplicity and easy setup.
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However, they cannot be adopted in an extensive environment
where large numbers of markers are deployed.

Natural Landmark: Natural landmarks are objects or fea-
tures that are part of the environment and have a function
other than robot navigation. Examples of natural landmarks
are corridors, edges, doors, wall, ceiling light, lines, etc.
The choice of features is vital because it will determine the
complexity in the feature description, detection and match-
ing [55]. Although the natural landmarks have little influ-
ence on the environment, it is rarely used in the practical
applications for its low stability and bad adaptability. Visual
features are divided into three categories: point feature, line
feature, block feature. Amongst the three categories, point
feature is the easiest to extract, relatively stable and contain
abundant information [74]. Several work has dealt with the
issue of using natural landmarks to extract feature that will aid
robot localization using Scale-Invariance feature Transform
(SIFT) features [75] and Speeded Up Robust Feature (SURF)
features [76], [77]. Figure 4 shows an example of natural
landmarks extracted using SURF algorithm.

FIGURE 4. SURF feature points from the scene image [77].

IV. OBJECT RECOGNITION AND FEATURE MATCHING
In this section we presented the proposed method of object
recognition and matching features. Object recognition under
uncontrolled, real-world conditions is of vital importance in
robotics.

It is an essential attribute for building object-based rep-
resentations of the environment and for the manipulation
of objects. Different methods of scale invariant descrip-
tors and detectors are currently being adopted because of
their affine transformations to detect, recognize and clas-
sify objects. Some of these methods are Oriented Fast and
Rotated BRIEF (ORB), Binary Robust Invariant Scalable
Keypoints (BRISK), Difference of Gaussians (DoG), FERNS
[78] SIFT [13] and SURF [76]. More details of these method

can be found in reference [79]. Object detection and recog-
nition can be done using computer vision whereby an object
will be detected in image or video sequence. The recognised
object is used as a reference to determine the pose of a
mobile device. Basically, object detection can be categorised
into three aspects: appearance based, color based and fea-
tures based. All these methods have their advantages and
limitations [80].

Appearance based objects are recognised based on the
changes in color, size and shape. The techniques used are
edge matching, divide and conquer search, greyscale match-
ing, gradient matching etc. The color based techniques are
based on the Red, Green and Blue (RGB) features to repre-
sent and match images. They provide cogent information for
object recognition. While the feature-based technique finds
the interest points of an object in image and matches them to
the find object in another image of similar scene. Features
extracted are surfaces, patches, corners and linear edges.
The methods used to extract feature are interpretations trees,
hypothesize and test, pose consistency, geometric hashing,
SIFT, and SURF.

Mostly, finding the correspondences is a difficult image
processing problem where two tasks have to be solved [81].
The first task consists of detecting the points of interest
or features in the image. Features are distinct elements in
the images, examples are corners, blobs, edges. The most
widely used algorithm for detection includes the Harris cor-
ner detector [82]. It is based on the eigenvalues of the sec-
ond moment matrix. Other types of detectors are correlation
based: Kanade-Lucas-Tomasi tracker [83] and Laplace detec-
tor [84]. For feature matching, the two most popular meth-
ods for computing the geometric transformations are: Hough
transform and Random Sample Consensus (RANSAC) algo-
rithm [79], [85], [76]. They could estimate parameter with a
high degree of accuracy even when a substantial number of
outliers are present in the data set.

A. SPEEDED-UP ROBUST FEATURES (SURF)
SURF was first introduced by Bay et al. [76]. SURF out-
performs formerly proposed scheme SIFT with respect to
repeatability (reliability of a detector for finding the same
physical interest points under different viewing conditions),
distinctiveness, and robustness, yet can be computed much
faster. The descriptors are used to find correspondent features
in the image. SURF detect interest points (such as blob)
using Hessian matrix because of its high level of accuracy
(See equations 5 and 6). This is achieved by relying on
integral images for image convolutions; by building on the
strengths of the leading existing detectors and descriptors
(specifically, using a Hessian matrix-based for the detector,
and a distribution-based for the descriptor); and by simplify-
ing thesemethods to the essential. This leads to a combination
of novel detection, description, and matching steps. SURF is
used to detect key points and to generate its descriptors. Its
feature vector is based on the Haar Wavelet response around
the interested features [80]. SURF is a scale-and rotation-
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invariant, that means, even with variations on the size and on
the rotation of an image, SURF can find key points.

I (X ) =
i≤x∑
i=0

j≤y∑
j=0

I (x, y) (5)

H (x, σ ) =
[
Lxx(x, σ ) Lxy(x, σ )
Lxy(x, σ ) Lyy(x, σ )

]
(6)

X = (x, y) is an image I , Hessian matrix H = (x, σ ) in x
at scale σ is defined.
Where Lxx(x, σ ) is the convolution of the Gaussian sec-

ond ∂

∂x2
2
g(σ ) with the image in point x and derivative for

Lxy(x, σ ) and Lyy(x, σ ).

B. RANDOM SAMPLE CONSENSUS (RANSAC)
RANSAC is feature matcher which works well with SURF
when matching detected objects in images. RANSAC was
first published by Fischler and Bolles [85] in 1981 which is
also often used in computer vision. It simultaneously unravel
the correspondence problem such as, fundamental matrix
related to a pair of cameras, homograph estimation, motion
estimation and image registration [86]–[91]. It is an itera-
tive method to estimate parameters of a mathematical model
from a set of observed data which contains outliers. Standard
RANSAC algorithm of this method is presented as follows:

Assuming a 2D image corresponds to a 3D scene point.
(xi, wXi).Assuming that some matches are wrong in the data.
RANSAC uses the smallest set of possible correspondence
and proceed iteratively to increase this set with consistent
data.

- draw a minimal number of randomly selected correspon-
dences Sk (random sample)

- compute the pose from these minimal set of point corre-
spondences using () POSIT, DLT

- determine the number Ck of points from the whole set of
all correspondence that are consistent with the estimated
parameters with a predefined tolerance. If Ck >C∗ then
retain the randomly selected set of correspondences Sk
as the best one: S∗ equal Sk and C∗ equal Ck

- repeat first step to third step.
The correspondences that partakes to the consensus obtained
from S∗ are the inliers and the outliers are the rest. It has
to be noted that the number of iterations which ensures a
probability p that at least one sample with only inliers is
drawn can be calculated. Let p be the probability that the
RANSAC algorithm selects only inliers from the input data
set in some iteration. The number of iterations is denoted
as [92]–[94]:

k =
log(1− p)

log (1− (1− w)n)
(7)

where w is the proportion of inliers and n is the size of
the minimal subset from which the model parameters are
estimated.

Steps to detect and identify object in a scene:
- Input training image
- Convert the image to grayscale

- Get rid of lens distortions from images
- Initialise match object
- Detect feature points using SURF
- Check the image pixels
- Extract feature descriptor
- Use RANSAC algorithm to match query image with
training image

- If inliers > threshold then
- Compute Homography transform Box
- Draw box on object and display.

V. SENSOR FUSION TECHNIQUES
Several definitions of sensor fusion are given in the literature.
Sensor fusion or data fusion as defined by Joint Directors of
Laboratories (JDL) workshop [95] is a multi-level procedure
dealing with the association, correlation, integration of data
and information from single and multiple sources to attain
distinguished position, determine estimates and complete
timely assessments of situations, threats and their signifi-
cance. Also, Hall and Llinas [96] presented the following
well-known meaning of data fusion: ‘‘data fusion techniques
combine data from multiple sensors and related information
from associated databases to achieve improved accuracy and
more specific inferences that could be achieved by the use
of a single sensor alone’’. According to the authors in [97]
and [98], sensor fusion was defined as the cooperative use
of information provided by multiple sensors to aid on per-
forming a function while several others authors [99]–[101]
defined data fusion algorithms as the combination of data
from multiple sources in order to enhance the performance of
mobile robot. Regardless of different definition given, sensor
fusion is the integration of information from multiple sources
to improve accuracy and quality content, also with the aim to
reduce cost. The technique finds wide application in many
areas of robotics such as object recognition, environment
mapping, and localization. Fusion techniques are therefore
regarded as the most appropriate method to track objects and
determine their locations. The advantages of sensor fusion
are as follows: reduction in uncertainty, increase in accuracy
and reduction of cost. It is therefore suggested by various
researchers that to attain a level of accuracy, integration of
more than one sensor is most suitable because the inadequacy
of one sensor can be complemented by another. For exam-
ple, the image captured by the camera was used to correct
the abnormalities of inertial sensors [102], [103]. The data
fusion techniques deployed is influenced by the objective of
applications in which it aids in building amore accurate world
model for the robot to navigate and behavemore successfully.
The three fundamental ways of combining sensor data are the
following [99], [104]:

A. COMPETITIVE
The sensors are configured competitively to produce indepen-
dent measurements of the same property. i.e. diverse kinds of
sensors are used to measure same environment characteris-
tic. This means data from different sensors can be fused or
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TABLE 2. Related works of different sensor fusion algorithms.

measurement from a single sensor taken at different periods
can be fused. A special case of competitive sensor fusion is
fault tolerance. Fault tolerance requires an exact requirement
of the service and the failure modes of the system. This con-
figuration therefore reduces the risk of incorrect indication
that could be caused by one of the sensors. Most importantly,
this might result in an increase in the reliability, accuracy or
confidence of data measured by the sensors. This technique
can also provide robustness to a system by combining redun-
dant information [105], [106]. However, the robust system
provides a degraded level of service in the presence of faults
while this graceful degradation is weaker than the accom-
plishment of fault tolerance. The method performs better in
terms of resource need and work well with heterogenous data
sources. Another name for competitive sensor configuration
is also called a redundant configuration. An example of com-
petitive is the reduction of noise by combining two overlaying
camera images.

B. COMPLEMENTARY
This type of sensor configuration ensures that the sensors
do not depend on each other but rather complement them-
selves with different measurements. This resolves the incom-
pleteness of sensor data. This type is the most common for
localization. Example is when vision is complemented by
the short coming of accumulated errors in IMU. Another
example of complementary configuration is the employment
of several cameras each observing different area of themobile
robot surrounding to build up a picture of the environment.
Generally, fusing complementary data is simple, since the
data from independent sensors can be appended to each other,
but the disadvantage is that under certain conditions the sen-
sors maybe ineffective, such as when camera used in poor
visibility [107].

C. COOPERATIVE
This method uses the information made available by the two
separate sensors to originate data that would not be obtain-
able from the single sensors. An example of a cooperative
sensor configuration is stereoscopic vision by combining two
dimensional images from two cameras at slightly dissimilar
viewpoints in which 3D of the detected scene is derived.
According [107], cooperative sensor configuration is themost
difficult system to design due to their sensitivity to impreci-
sions in all individual participating sensors. Thus, in contrast
to competitive fusion, cooperative sensor fusion generally
decreases accuracy and reliability.

Conclusively, competitive fusion combinations increase
the robustness of the perception, while cooperative and
complementary fusion provide extended and more complete
views. The methods particularly used in the fusion level
is subject to the availability of components. Furthermore,
these three combinations of sensor fusion are not mutually
exclusive. Therefore, many applications implement aspects
of more than one of the three types.

VI. CLASSIFICATION OF SENSOR FUSION ALGORITHMS
The sensor fusion algorithms are required to translate the
diverse sensory inputs into reliable evaluations and environ-
mentmodels that can be used by other navigation subsystems.
The methods usually implement iterative algorithms to deal
with linear and non-linear models. In order to localize robot,
many sensors have been adopted and fusion methods devel-
oped. These algorithms are a set of mathematical equations
that provide competent computational means to estimates the
state of a process. Table 2 also shows work based on the
classification of sensor fusion method. Some of the sensor
algorithms used are categorised into the following [108]:

A. STATE ESTIMATION METHOD
The state estimation methods are used to ascertain the state
of an anticipated system that is continuously changing given
some observations or measurements. State estimation phase
is a common step in data fusion algorithms since the target’s
observation could come from different sensors or sources,
and the final goal is to acquire a global target state from the
observations. Table 3 shows related study carried primarily
based on state estimate methods. The two major methods
discussed are kalman filter and particle filter.

1) KALMAN FILTER
Kalman filter (KF) is an efficient estimator used in various
fields to estimate the unknown state of the system. Sev-
eral applications were developed with the implementation
of Kalman filter such applications include navigation, local-
ization and object tracking. It involves using vision camera
to perform real time image processing for robot tracking.
Kalman filter is established to estimate the positions and
velocities of vehicles or any moving object and provide track-
ing on such objects at a visible condition.

Kalman filter is an algorithm that estimates the state of
a discrete time-controlled process described by the linear
stochastic equation. It processes the state from the previ-
ous time step with the current measurement to calculate
the estimate of the current state. Kalman filters are famous
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TABLE 3. Related works of state estimate sensor fusion algorithms.

techniques in theory of stochastic dynamic systems, which
can be used to improve the value of estimates of unknown
quantities [109]. It is one of the most useful and common esti-
mation techniques where it is easy to implement on linear sys-
tems. Equations for Kalman filter are given as follows [110]:

x̂k = Fk x̂k−1 + Bkuk (8)

Pk = FkPk−1FTk + Qk (9)

Vector x̂k is the estimate state of the system xk . Pk is the pre-
dicted covariance matrix. F is the matrix that denote the
dynamics of the system. B is the control matrix and Q is the
noise covariance.

The Kalman filter equation are used to generate new esti-
mates with the addition of an external unit for correction. The
Kalman filter involve another stage to update the estimate.
This is given by equations below:

x̂ ′k = x̂k + K ′(zk − Hk x̂k ) (10)

P′k = Pk − k ′HkPk (11)

where K ′ = PkHT
k (HkPkH

T
k + Rk )

−1

From the above equations: zk is the measurement vector
which is a reading from the sensors. H is the transformation
matrix, R is the covariance matrix of the measurement noise
and k is the time interval. The Kalman gain (K) describes
the amount of update needed at each recursive estimation

which can be as the weighting factor that considers the rela-
tionship between the accuracy of the predicted estimate and
the measurement noise. To analyze the statistical behavior of
the measured values, KF is an optimal estimator that can be
used. Most of the real time problem, the systems may not pro-
vide linear characteristic, so we use extended Kalman filter,
which will linearize the system. The main benefit of Kalman
filter is its computational competence but it can signify only
unimodal distributions. So Kalman filters are best when the
uncertainty is not too high. Other types of sensor fusion based
on Kalman filter is EKF. The Extended Kalman Filter (EKF)
is one of the most effective probabilistic solutions to simul-
taneously estimate the robot pose estimation based on sensor
information.

Comparing Kalman filter to EKF, author [111] proves that
that EKF algorithm is among the best method which ensures
better performance and optimal result in determining robot
localization. Another derivates of KF apart from EKF is
Unscented Kalman filtering (UKF). According to the litera-
ture, it is stated that UKF delivers better results on data fusion
compared to Kalman filter or EKF solutions [112].

2) PARTICLE FILTER
Particle Filter (PF), with the ability of approximating Prob-
ability Density Functions (PDFs) of any form, has received
substantial attention among researchers. PF method is a
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Sequential Monte Carlo (SMC) technique for the solution of
the state estimation problem, using the so-called Sequential
Importance Sampling (SIS) algorithm and including a resam-
pling step at each instant. This method builds the consequent
density function using several random samples called parti-
cles. Particles are propagated over time with the integration
of sampling and resampling steps. At each iteration, the sam-
pling step is employed to reject some particles, increasing
the significance of regions with advanced posterior proba-
bility. The particle algorithm is comprise of the following
steps [97], [113]–[117]:

Particle generation:
Generate N {x1(0), x2(0), x3(0), . . . , xN (0)} initial particles

according to the initial probability density function (PDF)
p(x(0))

Prediction:
For each particle xi(k), propagate the xi(k + 1) particle

according to the transition PDF p(x(k + 1) |x(k)). Here, each
particle accounts for the sum of the random noise to simulate
the noise effect.

Sampling: For each particle xi(k + 1), generate
wi(k + 1) = p[z(k + 1)|xi(k + 1)]

Normalization and rejected sampling:
Weights of the particles are normalized. Particles with

low weight are removed and particles with high weight are
replicated such that each particle has the same weight.

PF is considered as an alternative for real-time applica-
tions, which are typically approached by model based tra-
ditional Kalman filter technique implementations. With the
advantages of accuracy and stability, PF is currently being
considered in the field of traffic control (car or people video
monitoring), military field (radar tracking, air-to-ground pas-
sive tracking), mobile robot positioning and self-localization.

B. DECISION FUSION METHOD
Decision fusion is one form of data fusion that combines the
decisions of many classifiers into a mutual decision about the
activity that happened. The fusion method reduces the level
of uncertainty by maximizing a measure of evidence [118].
These techniques frequently use symbolic information, and
the fusion process requires to reason while accounting for
the uncertainties and constraints. The two types of decision
method discussed here are BayesianApproach andDempster-
Shafer Approach.

1) BAYESIAN APPROACH
Bayesian approach is a basic method to deal with conditional
probability more precisely it relates the condition probability
of more than two events. They are practically used for more
complex relationship description [119]. The method provides
a theoretical framework for dealing with this uncertainty
using an underlying graphical structure. They are ideal for
taking an event that happened and envisaging the likelihood
that any one of numerous possible known causes was the
contributing factor. Bayesian method can be mathematically

presented as [113]:

P(C|D) =
P(C|D)P(C)

P(D)
(12)

where P(C) is the probability of eventC without any effect of
any other event. P(D) is the probability of the eventDwithout
any effect of any other event and P(D|C) is the probability of
eventD given thatC event is true. The result ofP(C|D) condi-
tion probability will be in range between zero and one [1 0].
Which means either the event P(C|D) will occur. Bayesian
method is computationally simpler, has higher probabilities
for correct decision and it provides point estimates and pos-
terior pdf [120]. However, they have the following demerits:
difficulty in describing the uncertainty of decision, com-
plexity when there are multiple potential hypothesis and
a substantial number of events that depend on conditions,
difficulty in establishing the value of a prior probabilities.
Bayesian method is applicable to solve image fusion, where
no prior knowledge in available. Also, it is applied in robotics
learning by imitation. The approach enables the robot to study
internal models of their environment through self-experience
and employ the model for human intent recognition, skill
acquisition from human observation.

2) DEMPSTER-SHAFER
Dempster-Shafer (DS) has become very famous in which its
application extends to pattern recognition methods which are
widely used in signal solving and recognition. The method
has a better adaptability of grasping unknown and uncertain
problem when it is regarded as an uncertainty method. It also
provides a vital formula which fuse diverse evident of dif-
ferent sources. Dempster-Shafter theory has been considered
for a variety of perceptual activities including sensor fusion,
scene interpretation, object target recognition, and object
verification. In [109], DS theory was successfully used in
building occupancy map to improve reliability. D-S approach
is more robust to perturbations such as noise and imprecise
prior information [120]. The method is based on concept
of combining information from different sources such as
sensors. It uses belief and plausibility values to represent
the evidence and corresponding uncertainty [121], [122]. The
method uses ‘belief’ rather than probability. Belief function is
used to represent the uncertainty of the hypothesis [123]. The
hypothesis is represented by a probability mass function m.
The amount of belief to a hypothesis (A) is denoted by a belief
function [124]:

Bel(A) =
∑
B⊆A

m(B) (13)

Equation (13) is the sum of the mass probabilities assigned to
all subsets ofA bym. The availability of two ormore evidence
is integrated using the combination rule in equation below:∑

i,j

m1 (Bi) · m2
(
Cj
)

m(A) =
Bi ∩ Cj = A

1− k
(14)
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where 1 − k is a normalization factor in which k is the total
of all non-zero values given to the null set hypothesis ∅. The
decision on the class of a feature can be decided based on a
maximum belief decision rule, which is assigned a feature to
a class A if the total amount of belief supporting A is more
than that supporting its negation:

Bel)A) ≥ Bel(Ā) (15)

VII. IMPORTANCE OF SENSOR FUSION TECHNIQUES
Techniques that employ sensor fusion methods has several
advantages over single sensor systems. Combined informa-
tion reduces the set of uncertain interpretations of the mea-
sured value. Expected benefits of sensor fusion techniques
are presented as follows [104]:
Reduction in Uncertainty: Data provided by sensors is

sometimes subjected to some level of uncertainty and dis-
crepancy. Multi-sensor data fusion techniques reduce the
uncertainty by combining data from numerous sources [125].
It is therefore imperative to compensate using other sensors
by fusing their data together using data fusion algorithms.
Authors in [126] was able to minimize uncertainty in robot
localization based on EKF and PF. The measurement from
the kinetic sensor was used to correct the error accumulated
by odometry in order to estimate the pose of the mobile robot.
Increase in Accuracy and Reliability: Integration of multi-

ple sensor sources will enable the system to provide inherent
information even in case of partial failure.
Extended Spatial and Temporal Coverage: Area covered

by one sensor may not be covered by the other sensor, there-
fore the coverage or measurement of one is dependent on the
other and this complements each other. An example is inertial
sensor such as accelerometer or gyroscope and vision. The
coverage of a camera as vision sensor cannot be compared
to the use of accelerometer which only takes measurement
about the navigation route.
Improved Resolution: The resolution resulting value of

multiple independent measurements fused together is better
than a singular sensor measurement.
Reduce System Complexity: System where sensor data is

preprocessed by fusion algorithms, the input to the control-
ling application can be standardized autonomously of the
employed sensor kinds, consequently simplifying application
implementation and providing the option of modifications in
the sensor system concerning number and type of employed
sensors without alterations of the application software.

VIII. FUTURE RESEARCH AREAS
Navigation and localization of a mobile robot in an arbitrary
environment is a challenge due to the intricacy and diversity
of environments, methods and sensors that are involved. It is
therefore necessary to continue to research on new systems
and new methods with the aim to unravel specific sensor
fusion problems for robot navigation and localization. Several
directions seem to call for further investigation, despite other
related work carried out in the literature.

3D Indoor Environmental Modelling: 3D models of indoor
environments are significant in many applications, but they
usually exist only for newly constructed buildings [127].
For robot navigation purpose, 3D models are required in an
indoor operation environment to ensure safe movement. The
model is also expected to be used for recognition and location
by robots. To develop a method to model 3D, simplicity and
accuracy must first be put into consideration. A 3D model
can convey more useful information than 2D maps used in
many applications. For example, in an indoor environment
where additional features are present and are also unresolved
problems in modelling. This kind of environment requires
more sophisticated models in order to determine the abil-
ity characteristics of the environment. Several methods are
adopted in modelling the environment. Reference in [132]
proposed a method of obtaining 3D models by a mobile
robot with a laser scanner and a panoramic camera while
Thrun et al. [133] proposed a multi-planar model from dense
range data and image data using an improved Expectation-
Maximization (EM) algorithm. Some authors worked with
generation of precise 3D models using sufficient amount
of data and expatiate statistical and geometrical estimation
technique. Environment models are required for localization,
object recognition/detection. Recently, 3Dmodels are usually
attained by hand-guided scanning which is very hard and
time-demanding task for the human operator. Therefore, a
robotic system to obtain 3D models of environment is highly
beneficial [134].
Landmarks and Feature Extraction: Localization methods

using vision are active research areas, especially in studies
related with the identification of objects and the position and
estimation of the recognized objects [135]. Another aspect
to look into is the appearance changes of target objects over
time; this also as a research area has gained much attention
in the literature but with the limitation of robust detection
algorithm.
Distinct Object: To improve localization for a mobile robot

in a structured or unstructured environment, it is suggested
that distinct or specific objects are to be detected. Despite the
work done, this is still an open problem.
Topological Modelling and Localization: Several tradi-

tional localization approaches attempt to determine geo-
metrically the position and the direction of the robot; new
approaches are to be considered and compared. Recent
approaches look for methods to build topological models
once features and landmarks are detected and for topological
estimation of the robot’s state.
Perception Planning and World Modelling: Motion

planning and path planning are factors that can also cause
uncertainty in mobile robot. In a situation whereby the robot
accidentally takes another route and misses it path, how
such event is handled is an aspect that requires attention.
Therefore, new techniques are suggested to determine motion
plan for mobile robot. Also, a model of the environment
is to be built for safe motion planning for the robot to
operate in.
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IX. CONCLUSION
Through the mobilization of autonomous mobile robot, busi-
nesses are increasing flexibility and diversifying applications.
The new technologies have improved and ease the way of life
of human beings in which their exposure and environmental
dangers and hazard have been reduced to the minimum.

In this paper, we have been able to provide a background
and identify the challenges of an autonomous mobile robot.
These problems such as navigation and localization are what
limit the performance of the robot. Therefore, some tech-
niques have been presented in this paper on how to tackle
the challenges. Such techniques are using sensors which are
coupled on the mobile robot for effective performance. Using
a single sensor to determine the pose of an object may not
be reliable and accurate therefore, the use of multi-sensor
is encouraged. Their objective is to integrate multiple data
sources to produce more consistent, accurate, and useful
information.

Methods used to extract information from environment
using computer vison were also discussed. These methods
are categorized into artificial and natural landmarks. They
are used to detect/identify objects and match with the train-
ing image. The strength and weakness of these approaches
were also presented. Exploring the conceptualizations and
benefits, as well as existing methodologies, sensor are cat-
egorized into how to relate to one another, this is called
sensor configuration. They are cooperative, complementary
and competitive. The mostly used sensor configuration for
autonomous mobile robot is complementary.

Also, benefits of using sensor fusion algorithms were iden-
tified in this paper. Finally, the paper highlighted some of the
research areas that can be investigated for further work.
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