Status and prospects of life-cycle assessments, carbon- and water footprinting studies in South Africa

Kevin G. Harding^{a*}, Elena Friedrich^b, Henry Jordaan^c, Betsie le Roux^d, Philippa Notten^e, Valentina Russo^f, Nydia Suppen-Reynaga^g, Michael van der Laan^d, Taahira Goga^a

^aIndustrial and Mining Water Research Unit, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa (<u>kevin.harding@wits.ac.za</u>)
^bCivil Engineering Programme, University of KwaZulu-Natal (<u>friedriche@ukzn.ac.za</u>)
^cDepartment of Agricultural Economics, University of the Free State (<u>jordaanh@ufs.ac.za</u>)
^dDepartment of Plant and Soil Sciences, University of Pretoria (<u>Michael.vanderlaan@up.ac.za</u>)
^eThe Green House (<u>pippa@tgh.co.za</u>)
^fDepartment of Chemical Engineering, Environmental & Processing Engineering Research Group, University of Cape Town (<u>valentina.russo@uct.ac.za</u>)
^gCenter for LCA and Sustainable Design (<u>nsuppen@centroacv.mx</u>)

ORCID:

Harding: 0000-0003-2708-4323 Friedrich: 0000-0003-1023-3054 Jordaan: 0000-0003-4845-1727 le Roux: 0000-0002-2079-5539 Notten: 0000-003-1023-3054 Russo: 0000-0001-8691-4193 van der Laan: 0000-00018656-623X Goga: 0000-0002-4990-6669

Abstract

Purpose Using the current state of life-cycle assessment (LCA), carbon-, water footprinting, and EPDs in South Africa, this work explores the challenges and opportunities for scholarly development in these areas in the country. *Methods* Being a relatively small LCA community in South Africa, academics, consultants, and other stakeholders were approached to provide lists of known studies, with further reports, that may have been missed, obtained through internet searches. Information was collated on database development, capacity building, and other aspects and presented here in a single paper.

Results and Discussion While the authors are aware of companies working on LCA and related studies, hidden in confidential reports, we were able to find 27 LCA, 17 water-, 12 carbon footprinting, and 10 EPD studies. Although these studies have potential advantages for policymaking and business, their number, implementation, and impact remain limited.

Conclusion While previously seen as an academic exercise, life-cycle thinking has been adopted by industry, private consultants, and the South African National Cleaner Production Centre (NCPC-SA), amongst others. Growing interest has led to the creation of several training courses available at academic institutes, the NCPC-SA, and consulting firms, ranging from basic understanding to advanced use of software packages and modeling techniques. The development of a national LCI database, and further exposure and opportunity for LCA studies, are important steps to hopefully spur LCA in southern Africa in the future.

Keywords: South Africa; Life-cycle assessment; Water footprint; Carbon footprint; Sustainability

1. Introduction

1.1. South Africa as a country

South Africa is located on the southern tip of the African continent covering an area of 1 219 090 km² (CIA Factbook 2020), with a population estimated at 57.7 million as of 1 July 2018 (Statistics South Africa 2018). The economy ranked 35th in the world and 2nd in Africa with a Gross Domestic Product (GDP) of USD 317 568 billion in 2017 (WorldAtlas 2017). The World Bank puts the country in the category of upper-middle-economy countries making it one of only four countries in this category on the continent. Traditionally, the primary and secondary sectors of the South African economy include agriculture, mining, and manufacturing, with tertiary sectors including finance, business, trade, government, transport, and personal services (WorldAtlas 2017).

1.2. Sustainable development and environmental challenges in the local context

In 1992, the United Nations Conference on Environment and Development (UNCED) signaled the increasing focus on environmental matters in the context of political and business decision making. One of the calls was for national governments to report local environmental data. South Africa produced two key reports ('National State of the Environment' and the 'South Africa Environment Outlook') in 1999 and 2006 respectively, with updates to the 'South Africa Environmental Outlook' report in 2012 and 2018. The National Development Plan has also stated that environmental impacts are an integral part of the country's development agenda (National Planning Commission 2012). Other more specific environmental information is available through detailed reports, such as the "National Biodiversity Assessment" reports, "Greenhouse Gas Inventory" reports, "Environmental Sustainability Indicators", and more (https://www.environment.gov.za/otherdocuments/reports and http://soer.environment.gov.za/soer/.

The challenge for South Africa is to limit environmental impacts in the context of a growing population and increased urbanization around a few South African urban nodes (The World Bank 2018). Historically, this has led to a loss of natural habitat, increased pollution, and declining environmental quality. This rapid urbanization process, and other factors, were seen as drivers to the process which gave rise to one of the most unequal societies in the world (The World Bank 2018). In terms of implications for the environment, it means that the country faces mass consumption (increased consumerism and associated resource use and waste generation) from a limited upper class and an increasing middle class, as well as consequences due to citizens living in abject poverty. Additionally, the country still has a strong dependence on coal-based energy, resulting in high air pollution.

Therefore, quantitative tools such as LCAs, carbon- and water footprints are becoming more important, not only as process tools but also as a source of environmental indicators.

1.3. Problem statement and objectives of the study

In the past 20 years, public awareness surrounding sustainable development has grown, as has the number of LCA studies, as can be seen through various country-specific review studies (Croft et al.; Chen et al. 2014; Hou et al. 2015; Estrela 2015; Zanghelini et al. 2016; Maepa et al. 2017; Burman et al. 2018; Engelbrecht et al. 2018; Bodunrin et al. 2018; Wiloso et al. 2019; Ladenika et al. 2019). In South Africa, environmental performance has become increasingly significant in the context of escalating sustainable economic growth and development. This has led to an increase in the use of quantitative environmental assessment tools such as LCAs. This paper presents an overview of the implementation and utilization of LCA-related assessments in South Africa over the period 2011-2019. While there are several assessment methods available, the focus is limited to LCA, water-, and carbon footprint studies as well as environmental product declarations (EPD) as the core tools. Studies that utilized assessment methods such as eco-efficiency, social-LCA, or other qualitative assessments, were excluded due to the limited number of local studies published. This work further summarizes the country's involvement in the Sustainable Recycling Industries (SRI) program (SRI 2020) in South Africa. From the findings, the paper explores challenges and opportunities for LCA developments in South Africa.

2. Methodology

Members from the South Africa LCA community, through formal collaborations, informal networks, mailing lists, as well as participation at yearly LCA workshops, were approached in person, or via email to provide information regarding existing LCA-related studies (LCA, water- and carbon footprint studies) that they had produced, or knew of in their extended networks. These included research organizations, academic institutions, and environmental consulting companies. Additional studies were identified through internet searches (Google/Google Scholar and Scopus) using combinations of the terms 'life-cycle assessment', 'carbon footprint', 'water footprint', and 'South Africa'. Additionally, environmental product declarations (EPDs) were included for an additional perspective on environmental awareness in the country. This study further reports on the LCI data collection activities in South Africa (through the Sustainable Recycling Industries program). Within the SRI program (SRI 2020), South Africa has developed several LCI datasets, and at the same time organized capacity-building workshops across the country. The challenges and opportunities this have shown are also given.

The results presented in this paper are restricted to studies published during the period 2011-2019. For a prior snapshot of the status of LCA in South Africa, the paper by Brent and colleagues is recommended (Brent et al. 2002). Studies that are based on lifecycle thinking, such as life-cycle management, life-cycle costing, and social life-cycle assessment were excluded due to the relatively small number of published studies reported for South Africa. Studies where reports were not available online, nor published in (open access or subscription) journals, were excluded, e.g. studies from private consulting projects, since rigor and findings could not be validated. Studies with a scope specifically outside the borders of South Africa, even if the work was co-authored by South Africans, were also excluded. Research studies leading to academic degrees were not included, except for the peer-reviewed outputs of these degrees. Database results that are available in LCA software packages were also not included in this study e.g. in openLCA Nexus, which lists 14 865 data sets for South Africa, including potential duplicates of unit vs system processes and consequential vs cutoff scenarios (GreenDelta GmbH 2019).

3. Results and Discussion

LCA, carbon- and water footprinting studies, as well as EPDs available addressing South African cases, are presented (Figure 1).

3.1. Life-cycle assessment (LCA)

For the period 2011-2019, a total of 27 publicly available LCA studies were reported (Table 1). Nine studies were published between 2011 and 2014 while the remainder were published after this period. Fifteen out of 27 studies were available in peer-reviewed journals, while ten were available as research reports, and two as full conference papers. It should be noted that conference papers or abstracts that later became full journal papers were not included to avoid double counting.

Eight studies were for the agricultural sector, which included assessments of dairy, livestock, and crop products and processes. Furthermore, seven studies centered on the energy industry, including activities such as biofuel and biogas production. Three studies were conducted for the mining sector focusing on the environmental impacts of the mining process of Platinum Group Metals (PGMs) and sandstone. LCA studies were also conducted for the value chains of certain textile products such as t-shirts and towels. Other studies were conducted for the infrastructure, water, and packaging sectors (Figure 2). The share of LCA studies in the manufacturing (38%) and agriculture (31%) sectors do not correspond to their contribution to the South African GDP (13 and 1% respectively), which is dominated by financial services, government, and trade (20-, 18 and 17% respectively) (Statistics South Africa 2020). It is noted that the GDP figures change from quarter to quarter, and the impact of COVID could play a role in future numbers. Given that most progress has been made, and more experiences exist for 'product' LCAs, it is understandable that there are substantial gaps in the tertiary sector, to address financial services and trade, which contribute significantly to the country's GDP. GDP figures for trade also relate to other sectors of the GDP through, for example, manufacturing and agricultural products, such that the representation here may not be completely accurate based purely on GDP values.

Only three out of 27 these studies were initiated and funded by government research organizations. The rest were supported by private companies and professional associations with strong international links. Therefore, it appears that the drivers for LCAs are mainly from industry (with some international motivation due to exports) and less from government entities.

3.2. Water footprinting

Seventeen water footprint studies have been conducted in South Africa between 2012 and 2019 (Table 2). Between 2012 and 2017, published water footprint research has increased annually with 43% of studies being published in 2017. Only one study was published in 2012 and 2013, respectively. Most water footprint studies (76%) were for the agricultural industry, with eight studies on vegetables and fruits and one on wheat production for bread. Four studies were conducted on livestock production of which three studies were in terms of dairy production and one study on beef. Three water footprint studies were done for processes in the mining industry. A single study was conducted for water management purposes. No water footprint studies were found for any other industries, such as forestry, energy, waste, and textile industries.

In 2019, 62% of the freshwater water resources in South Africa were used by the agricultural sector, 27% by municipalities, 3% by industries, 3% by mining activities, and 2% each by forestry and energy sectors. This breakdown of water use is mirrored in the number of water footprint studies, with most of them in the agricultural sector, followed by water footprint studies in industries and mining activities (Figure 3). It has to be stated that the country is deemed as water-scarce, with extreme rainfall variations and uneven geographical distribution of water resources (GreenCape 2019). Also, severe droughts have been recorded and current water usage exceeds reliable water supply in some areas.

The majority (78%) of water footprints used the Hoekstra methodology (Hoekstra et al. 2011). Two studies (presented as a publication, thesis, and technical report) compared the applicability of the Hoekstra method(Hoekstra et al. 2011) versus a regional water stress index approach (Milà I Canals et al. 2009; Pfister et al. 2009; Ridoutt and Pfister 2010) and a hydrologically-based method (Deurer et al. 2011). It should be noted that six of the 17 studies were funded by the government through the Water Research Commission of South Africa (WRC) and centered around crops or value chain goods. Industry is linked to six of the 17 studies and catchment management agencies and regional organizations are associated with eight studies.

Therefore, the drivers for water footprint studies appear to differ from the drivers for LCAs. Water footprints are connected mainly to government research organizations, such as the Water Research Commission, who provide more funding than the private sector to academic institutes and consulting firms.

3.3. Carbon footprinting

Twelve academic, peer-reviewed carbon footprinting studies were reported (Table 3). Most of the studies (seven) were centered on the agricultural sector, with research conducted for vegetable and fruit crops, sugarcane, wine, and livestock. Two studies were undertaken for the mining process of platinum group metals. Although private companies conduct their carbon footprint studies and publish the results in annual sustainability reports, these were not included in this paper since different quality control and review procedures were used, hence no validation was possible. In this context, the Carbon Disclosure Project (CDP), adopted through the National Business Initiative (partnered with the World Business Council for Sustainable Development (WBCSD)), needs to be mentioned. In 2010, this initiative resulted in the publication of carbon footprint information for 100 companies from different sectors listed on the Johannesburg Stock Exchange (CPD - Carbon Disclosure Project 2011). However, this initiative has not been updated and most figures for the carbon footprints will be outdated.

An analysis of the distribution of published carbon footprints per sector in South Africa shows no correspondence with their levels of contribution to the GDP. (Figure 4). The latest GHG inventory for South Africa (2012) showed that the energy sector is a significant contributor to carbon dioxide and other emissions with a 67.8% allocation. Other sectors such as industry, transport, 'agriculture, forestry, and other land use' (AFOLU) and waste contributed with 12.8%, 9.2%, 6%, and 4.2%, respectively (Department of Environmental Affairs 2018). None of the academic carbon footprint studies published in the last few years have investigated the highest emitting

sectors in the country. The energy and transport sectors are dominated by government-controlled parastatal companies (i.e. Eskom, Transnet, and Sanral) and this highlights the need for detailed, consistent peer-reviewed carbon footprints not only in the private sector but more importantly for government parastatals.

From the experience of the authors, there are many carbon footprinting studies conducted for internal use. The drivers in these studies are thus either for internal company consumption or from a business perspective, rather than at a basic research level, as seen in the reports listed in the Johannesburg Stock Exchange.

3.4. Environmental Product Declarations (EPD)

EPDs present quantified environmental information on the life cycle of a product and are based on independently verified LCA data (International Organization of Standardization (ISO) 2006). Since 2016, ten EPDs have been published. Belgotex Floors has three EPDs registered in the Global Green Tag EPD program; the LCA studies considered the production of carpets and other flooring applications in Pietermaritzburg, South Africa in 2014 (Belgotex Floors 2016a, b, c). Chevron Crushtech, a supplier of post-consumer recycled filling and building sands, also registered EPDs in the Global Green Tag. There is one EPD for building sand (Blu-Core Building Sand) and three for fillings (Blu-Core G5, G6, and G7 filling) where the LCA considered applications in industrial sectors and the 2017 production in South Africa (Chevron Crushtech 2018a, b, c, d). Five more EPDs from Gyproc Saint Gobain were found in the International EPD System, showing the results of the LCA studies of their Rhinoboard products, a calcium sulfate-based material to build drywall and/or ceilings. Data for these EPDs was collected from the production site in Cape Town for the year 2016 and in Brakpan for the year 2017 (Gyproc Saint Gobain 2018a, b, 2019). While the exact drivers for EPDs are not clear, their number and awareness about these are both increasing.

3.5. LCI data collection and local expertise projects: Sustainable Recycling Industries (SRI) program and REAL project

The Sustainable Recycling Industries (SRI) program was funded by the Swiss State Secretariat for Economic Affairs (SECO) and jointly implemented by the Swiss Federal Laboratories for Materials Science and Technology (EMPA), the World Resources Forum (WRF), and the ecoinvent Association. The SRI Component A, coordinated by ecoinvent, aimed at building LCA/LCI expertise through training events, and at building life-cycle inventory (LCI) data (industrial, agricultural, and other sectors) for newly industrialized countries, including

Brazil, India, and South Africa. The creation of reliable, consistent, and transparent regionalized LCIs represented a core purpose of the SRI program Component A.

The SRI Component A was constructed on three pillars:

- Setting up regional LC networks;
- Developing local LCI/LCA expertise; and
- Building LCI datasets.

UNEP's LCInitiative, together with the ecoinvent Association and the European Commission, developed a program to promote national databases. The 'Resource Efficiency through Application of Life cycle thinking' (REAL) project, which included South Africa, ran from October 2018 to August 2019 (LCInitiative 2019). A Roadmap for developing the South African LCI Database was proposed in the outcomes of the REAL project (Notten and Von Blottnitz).

3.5.1. South African LCI datasets

With this international support, over 70 South African specific LCI datasets were developed in five data projects involving several South Africa universities and organizations: Blue North Sustainability, The Green House, University of Cape Town, the University of Johannesburg, and the University of the Witwatersrand, Johannesburg (Charikinya et al. 2018; Muigai and Pradhan 2018; Notten and Patel 2018; Russo and von Blottnitz 2018; Russo et al. 2018). Coverage of the data projects included (Figure 5):

- Major primary sectors of the South African economy key agriculture products (maize, fruit, beef, wheat), key metals and minerals (coal, gold, platinum, ferrochrome, and heavy mineral sands), and electricity generation;
- Some manufacturing sectors cement and concrete; synthetic fuels and chemicals; and
- Road and rail freight and domestic liquid fuels markets.

South African specific datasets on water supply and infrastructure, liquid fuels (petroleum refining), and solid waste disposal were also developed under the SRI program but that did not involve South African partners.

The new datasets are available in the ecoinvent database, through standard license agreements, with a subset of theses provided in the Global LCA Access Data (GLAD). Sectoral reports are available for the South African SRI LCI datasets, which describe the data collection and modeling of the datasets.

3.5.2. LCA capacity building in South Africa

The capacity building activities of the SRI program were delivered through a framework, with a consortium formed by the National Cleaner Production Centre of South Africa (NCPC-SA), the University of Cape Town (UCT), the Center for LCA Sustainable Design (CADIS), and Quantis. This consortium was also mandated to develop and organize "capacity building" events, with the purpose to increase the capacity for conducting LCA, and promote life-cycle thinking across the different sectors of the society in South Africa.

A baseline assessment carried out by UCT (Von Blottnitz and Russo 2018) provided insights into the knowledge gaps, and recommended to prioritize capacity building, and provide custom- made training for South Africa. A survey was done to determine the level of understanding of life-cycle thinking in the country. There were 51 respondents with a major presence from government departments (22%), followed by academia (20%), corporate (13%), consultants (12%), and others (33%). 80% of the respondents were familiar with the LCA framework. Respondents from academia, corporate, consultants, and self-employed (~57%) sectors generally possessed a satisfactory knowledge of LCA, and respondents from the government as well as industry associations (~26%) were shown have limited knowledge. Agriculture and related topics, followed by water treatment and management, specific products, and biofuels were the main subjects of their previous studies. The respondents highlighted the need for integration of life-cycle thinking into companies' existing management and resource efficiency systems. Environmental LCA, with carbon- and water footprints, as well as life-cycle costing, emerged as the preferred topics for the training, with limited requests for EPDs.

Based on this feedback, training contents and practical exercises were developed using Story Telling and Participlan (Thomas 2014; New York University 2019). The training sessions were carried out in Durban and Pretoria (May 2018) with 29 and 53 participants, respectively. The profile of participants was mixed from industry, government, consultants, and academia. Participant's knowledge ranged from a lack of previous LCA knowledge to intermediate knowledge.

4. Challenges, opportunities, and recommendations

Most research projects identified have been undertaken by several academic institutions and environmental consulting companies with few (available) studies emanating from private corporations, local and national government.

Although LCA, carbon- and water footprint studies have potential advantages for decision-making in business and policy, their implementation and impact remain limited. While the exact reasons are potentially different for their use in policy and business, specific challenges related to conducting LCAs in South Africa could include the accuracy and availability of data as well as the confidentiality of key parameters (Sevitz et al. 2003; Hoogevorst 2004; Buckley et al. 2011). Other aspects limiting the use of LCA are the scarcity of local expertise and the perceived high costs. Other limitations simply include the lack of will, policy drivers, or the understanding of how LCA could add value to existing systems. Some of these limitations are interlinked and solving one could remove other limitations as well. These may also be valid for the carbon- and water footprints; however, given that these types of studies are less data-intensive, results could be made available at a lower price. The impact of coal-based energy in South Africa should also be emphasized. There is a potential concern that LCA results could often lean towards a significant impact from coal emissions, overshadowing all other impacts. There is also a shortage of LCA studies in the tertiary sector, with more 'product' LCA studies available, suggesting an area for future growth.

The above-mentioned points have been partially overcome thanks to the SRI program, which were not limited to LCIs data collection but also aimed at building LCA/LCI expertise through dedicated training and workshops. The creation of regionalized LCIs represented a core purpose of the SRI program and these datasets now form a reliable pool of data for some South African sectors value chains which enhance the assessments of the environmental performance of local activities and products. This is an opportunity as they build a foundation that allows for the development of a South African national life cycle database as a repository of credible datasets useful in evidence-based policy- and decision-making advancing sustainable development. While the SRI program datasets are a long way off from being a complete database, the reliability of local South African LCA studies has been strengthened through their development. Even with a small number of datasets, the motivation and knowledge the project provided to the south African LCA community should allow for immediate incremental steps in advancing a database.

To enhance the accessibility and promote local data gathering, a first step is the need to establish a common data platform to consolidate available data in the country. A second step is the development of protocols to ensure and validate the quality of data in such an open-access database. The custodian of the database would need to be carefully considered to ensure the quality and continuity is maintained. This rigor will encourage a greater number of studies and might lead to wider uptake of LCA in the country, where in the past, costs of commercially available data sets were perceived as high for low returns.

Furthermore, with LCA being part of the draft Extended Producer Responsibility (EPR) regulations as a future legal requirements: "to conduct life cycle assessment in relation to product, in accordance with the relevant South African Bureau of Standards on International Organisation for Standardisation standards (ISO 14040 & ISO 14044)" in the Extended Producer Responsibility measure in the National Environmental Management: Waste Act, 2008 (Act no. 59 of 2008), there is growing pressure from Government to implement LCA at a broader scale in South Africa.

5. Conclusions

A total of 66 studies were located, including 27 LCA studies, 17 water- and 12 carbon footprinting studies as well as 10 EPDs. The number of local LCA-related research has increased in the past five years, which indicates a growing interest in life-cycle based thinking in South Africa. Academic institutions and environmental consulting companies have undertaken most studies. Few studies are publicly available from the private sectors. Many of the studies have been conducted for the agriculture and mining sectors, which are traditionally the major industries in South Africa. Future studies could include the packaging, energy, transport (road, rail, and air), and related industries which were not well represented.

The drivers for water footprint studies differed from LCAs as WF drivers were mainly connected to the Water Research Commission, and less to the private sector. This reflects the increased importance of water as a national strategic resource and more studies are encouraged to address gaps regarding water operations. More water footprints should be encouraged in sectors that have high water demand and have not been investigated before via a water footprint. These include municipalities, forest plantations, and various other water-intensive industry sectors. Geographically, seven of the water footprint studies were applied at a national level and nine at a regional

or catchment level, with one at a municipal or local level. Considering that South African municipalities are large consumers, this is a research gap that needs further investigation and analysis.

While fewer carbon footprints are available in academic style literature, more companies are reporting carbon footprint results through carbon disclosure projects. In addition to the need for increasing the quantity of academic carbon footprint studies, the quality of the carbon footprints calculated by companies needs to be consistent. As a long-term goal, standardized carbon footprint methods (e.g. ISO or PAS) should be used as well as peer reviews for studies where results are published. There are also fewer environmental product declaration studies, but these are increasing.

The quality and quantity of environmental assessments improved in the last years through initiatives such as the SRI program, which is a noteworthy input in this regard. However, the outputs, e.g. datasets, of similar initiatives, particularly from international projects, could be placed in commercial paid-for LCA databases limiting their availability for local practitioners. Agreements for free-to-use or discounted access, especially for local providers of data, is one way to address this concern around those datasets. Once the core set of LCA datasets has been developed for the major industrial activities (mining, agriculture, energy), with more experience and background data LCA studies for other local markets and products (transport, services, and other industries) may follow more easily.

Overall, capacity-building activities in the country are still needed to further the implementation of life-cycle management practices in South Africa. While there are LCA studies and related methods in the country, the development of such in business and industrial spaces is perceived as a gap. Collaboration and communication between academia, business, governmental and non-profit organizations could lead to a stronger LCA community in general. It was also seen that a greater focus is needed in capacity building, to enable users to extract useful information from existing and future LCA studies.

Acknowledgments

The authors wish to acknowledge the inputs of all fellow South African LCA practitioners in putting this work together, and for guiding us along the paths to find as many relevant studies as possible, and finding new LCA collaborators to the informal networks.

References

- Agwa-Ejon JF, Pradhan A (2018) Life cycle impact assessment of artisanal sandstone mining on the environment and health of mine workers. Environ Impact Assess Rev 72:71–78. https://doi.org/10.1016/j.eiar.2018.05.005
- Belgotex Floors (2016a) Structured Needle Punch Carpet Environmental Product Declaration. Global Green Tag BELCT001-B-2015
- Belgotex Floors (2016b) SDX Tufted Bitumen Back Carpet Tile Environmental Product Declaration. Global Green Tag BELCT001-A-2015
- Belgotex Floors (2016c) SDX Tufted Miraclebac Carpet Environmental Product Declaration. Global Green Tag BELCT001-C-2015
- Bodunrin MO, Burman NW, Croft J, et al (2018) The availability of life-cycle assessment, water footprinting, and carbon footprinting studies in Brazil. Int J Life Cycle Assess 23:1701–1707. https://doi.org/10.1007/s11367-018-1484-2
- Brent AC, Rohwer MB, Friedrich E, Von Blottnitz H (2002) Status of life cycle assessment and engineering research in South Africa. Int J Life Cycle Assess 7:167–172. https://doi.org/10.1007/BF02994051
- Buckley C, Friedrich E, von Blottnitz H (2011) Life-cycle assessments in the South African water sector: a review and future challenges. Water SA 37:719–726
- Burman NW, Croft J, Engelbrecht S, et al (2018) Review: life-cycle assessment, water footprinting, and carbon footprinting in Portugal. Int J Life Cycle Assess 23:1693–1700. https://doi.org/10.1007/s11367-018-1483-3
- Charikinya E, Broadhurst J, Dlamini R, et al (2018) Primary production of precious and scarce metals: South Africa, In Metals. Zurich
- Charles RG, Davies ML, Douglas P, et al (2019) Sustainable energy storage for solar home systems in rural Sub-Saharan Africa – A comparative examination of lifecycle aspects of battery technologies for circular

economy, with emphasis on the South African context. Energy 166:1207–1215. https://doi.org/10.1016/J.ENERGY.2018.10.053

- Chen H, Yang Y, Yang Y, et al (2014) A bibliometric investigation of life cycle assessment research in the web of science databases. Int J Life Cycle Assess 19:1674–1685. https://doi.org/10.1007/s11367-014-0777-3
- Chevron Crushtech (2018a) Blue Core G6 Filling Environmental Product Declaration. Global Green Tag CHC-003-2018
- Chevron Crushtech (2018b) Blue Core G5 Filling Environmental Product Declaration. Global Green Tag CHC-002-2018
- Chevron Crushtech (2018c) Blue Core G7 Filling Environmental Product Declaration. Global Green Tag CHC-004-2018
- Chevron Crushtech (2018d) Blue Core Building Sand Environmental Product Declaration. Global Green Tag CHC-001-2018
- CIA Factbook (2020) South Africa The World Factbook Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/sf.html. Accessed 28 May 2020
- CPD Carbon Disclosure Project (2011) CDP South Africa JSE 100 Report 2011 Partnering for a low carbon future
- Croft J, Engelbrecht S, Ladenika AO, et al Review: the availability of life-cycle studies in Sweden
- de Kock L, Russo V, von Blottnitz H (2019) Carbon intensive but decarbonising quickly? Retrospective and prospective Life Cycle Assessments of South African pome fruit. J Clean Prod 212:139–150. https://doi.org/10.1016/J.JCLEPRO.2018.12.026
- Department of Environmental Affairs (2018) South Africa's low emision development strategy. Pretoria
- Deurer M, Green SR, Clothier BE, Mowat A (2011) Can product water footprints indicate the hydrological impact of primary production? - A case study of New Zealand kiwifruit. J Hydrol 408:246–256. https://doi.org/10.1016/j.jhydrol.2011.08.007
- Devers L, Mathijs E, Kleynhans T (2012) Comparative life cycle assessment of Flemish and Western Cape pork production. Agrekon 51:105–128
- Engelbrecht S, Ladenika AO, MacGregor OS, et al (2018) A discussion on the availability of life-cycle assessment studies in New Zealand. Int J Life Cycle Assess 23:1708–1713. https://doi.org/10.1007/s11367-018-1485-1
- Estrela S (2015) I publish, therefore I am. Or am I? A reply to A bibliometric investigation of life cycle assessment

research in the web of science databases by Chen et al. (2014) and Mapping the scientific research on life cycle assessment: a bibliometric analysis by Hou et al. (2015). Int J Life Cycle Assess 20:1601–1603. https://doi.org/10.1007/s11367-015-0951-2

- Eustice T, van der Laan M, Van Antwerpen R (2011) Comparison of greenhouse gas emissions from trashed and burnt sugarcane cropping systems in South Africa. In: Proceedings of the Annual Congress-South African Sugar Technologists' Association. pp 326–339
- Farzad S, Mandegari MA, Görgens JF (2017a) Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresour Technol 239:37–48
- Farzad S, Mandegari MA, Guo M, et al (2017b) Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol Biofuels 10:87. https://doi.org/10.1186/s13068-017-0761-9

Fontes J (2015) Handbook for Product Social Impact Assessment: Roundtable for Product Social Metrics

- Gobin A, Sparks D, Okedi J, et al (2019) Assessing the energy and carbon footprints of exploiting and treating brackish groundwater in Cape Town. Water SA 45:63–74
- Goga T, Friedrich E, Buckley C (2019) Environmental Life Cycle Assessment for Potable Water Production A Case Study of Seawater Desalination and Mine Water Reclamation in South Africa. Water SA 45:700–709
- GreenCape (2019) Market Intelligence Report: Water. Cape Town
- GreenDelta GmbH (2019) openLCA Nexus
- Gyproc Saint Gobain (2018a) Rhinoboard 12.5 mm (Cape Town) Environmental Product Declaration. International EPD System S-P-01271-2018-02-28
- Gyproc Saint Gobain (2018b) Rhinoboard 9.0 mm (Cape Town) Environmental Product Declaration. International EPD System S-P-01270-2018-02-28
- Gyproc Saint Gobain (2019) Rhinoboard 9.0 mm (Brakpan) Environmental Product Declaration. International EPD System S-P-01568-2019-06-03
- Haggard EL, Sheridan CM, Harding KG (2015) Quantification of water usage at a South African platinum processing plant. Water SA 41:279–286. https://doi.org/10.4314/wsa.v41i2.14
- Harding G, Courtney C, Russo V (2017) When geography matters. A location-adjusted blue water footprint of commercial beef in South Africa. J Clean Prod 151:494–508. https://doi.org/10.1016/J.JCLEPRO.2017.03.076
- Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen M (2011) The Water Footprint Assessment Manual: Setting the Global Standard. London

Hoogevorst A (2004) Integrated Environmental Management Information Series: Life Cycle Assessment

- Hou Q, Mao G, Zhao L, et al (2015) Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int J Life Cycle Assess 20:541–555. https://doi.org/10.1007/s11367-015-0846-2
- International Organization of Standardization (ISO) (2006) ISO 14025:2016 Environmental labels and declarations Type III environmental declarations Principles and procedures. Switzerland

Janse van Vuuren P, Pineo C, Basson L (2015a) Regional Resource Flow Model: Fruit Sector

Janse van Vuuren P, Pineo C, Basson L (2015b) Regional Resource Flow Model: Wine Sector

JRC-IES (2011) ILCD handbook

- Ladenika AO, Bodunrin MO, Burman NW, et al (2019) Assessing the availability of life cycle assessments in Austria. Int J Life Cycle Assess 24:614–619. https://doi.org/10.1007/s11367-018-1524-y
- LCInitiative (2019) Development of National LCA Database Roadmaps Life Cycle Initiative. https://www.lifecycleinitiative.org/development-of-national-lca-database-roadmaps/. Accessed 28 May 2020
- Le Roux B, van der Laan M, Gush MB, Bristow KL (2018) Comparing the usefulness and applicability of different water footprint methodologies for sustainable water management in agriculture. Irrig Drain 67:790–799. https://doi.org/10.1002/ird.2285
- le Roux B, van der Laan M, Vahrmeijer T, et al (2016) Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit. Water 8:473. https://doi.org/10.3390/w8100473
- le Roux B, van der Laan M, Vahrmeijer T, et al (2018) Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa. Water 10:539
- le Roux B, van der Laan M, Vahrmeijer T, et al (2017) Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress. Sci Total Environ 599– 600:1119–1129. https://doi.org/10.1016/J.SCITOTENV.2017.04.170
- Letete TCM, Mungwe NW, Guma M, Marquard A (2011) Carbon footprint of the University of Cape Town. J Energy South Africa 22:. https://doi.org/10.17159/2413-3051/2011/v22i2a3208
- Mabiza MJ, Mbohwa C (2015a) Life Cycle Inventory Assessment of Smelting Process of Platinum Group Metals at the Anglo American Platinum Ltd, South Africa. In: The World Congress on Engineering. London
- Mabiza MJ, Mbohwa C (2015b) Quantifying CO2-eq Emissions of Ore-based PGM Concentration Process in South Africa and Identification of Immediate Environmental Impacts, South Africa. In: The World Congress

on Engineering 2015. London

- Mabiza MJ, Mutingi C, Mbohwa M (2014) Life cycle inventory analysis and equivalent carbon dioxide emissions calculation of the mining and ore concentration processes of PGM at the anglo American Platinum Ltd, South Africa. In: 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Selangor, pp 1018–1022
- Maepa M, Bodunrin MO, Burman NW, et al (2017) Review: life cycle assessments in Nigeria, Ghana, and Ivory Coast. Int J Life Cycle Assess 22:1159–1164. https://doi.org/10.1007/s11367-017-1292-0
- Mandegari MA, Farzad S, Görgens JF (2017a) Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill. Bioresour Technol 224:314–326
- Mandegari MA, Farzad S, Rensburg E van, Görgens JF (2017b) Multi-criteria analysis of a biorefinery for coproduction of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioprod Biorefining 11:971– 990
- Masindi V, Chatzisymeon E, Kortidis I, Foteinis S (2018) Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa. Sci Total Environ 635:793–802. https://doi.org/10.1016/j.scitotenv.2018.04.108
- Milà I Canals L, Chenoweth J, Chapagain A, et al (2009) Assessing freshwater use impacts in LCA: Part I -Inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42. https://doi.org/10.1007/s11367-008-0030-z
- Mohlotsane PM, Owusu-Sekyere E, Jordaan H, et al (2018) Water footprint accounting along the wheat-bread value chain: Implications for sustainable and productive water use benchmarks. Water (Switzerland) 10:1167. https://doi.org/10.3390/w10091167

Muigai R, Pradhan P (2018) Cement, concrete and related industries, South Africa, In Building materials. Zurich

Naicker V, Cohen B (2016) A life cycle assessment of e-books and printed books in South Africa. J Energy South Africa 27:68–77

National Planning Commission (2012) National Development Plan 2030: Our future - make it work. Pretoria

Ncongwane MS, Broadhurst JL, Petersen J (2018) Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings. Int J Greenh Gas Control 77:70–81. https://doi.org/10.1016/J.IJGGC.2018.07.019

New York University (2019) Storytelling in Teaching and Learning

Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Life cycle assessment and multi-criteria analysis of sugarcane

biorefinery scenarios: Finding a sustainable solution for the South African sugar industry. J Clean Prod 239:118039. https://doi.org/10.1016/J.JCLEPRO.2019.118039

- Notten P, Mason-Jones K (2012) Life cycle assessment of fresh milk and long life milk, with an emphasis on packaging, retail and distribution
- Notten P, Mason-Jones K (2010) Life Cycle Assessment of Milk Production in the Western Cape
- Notten P, Patel I (2018) Life Cycle Inventories of Coal mining and electricity production in South Africa. Zurich
- Notten P, Patel I (2013a) Screening Life Cycle Assessment of Textiles Retailed in South Africa
- Notten P, Patel I (2013b) Life Cycle Carbon Footprint of the North-South Corridor Road Network
- Notten P, Patel I, Konz J (2015a) Life cycle Sustainability Assessment of Two South African Textile Value Chains: Cotton t-shirt and Cotton Towel: Technical Report
- Notten P, Patel I, Logan A, Pieterse R (2015b) Life Cycle Assessment of South Africa and Namibian Beef Retailed in South Africa
- Notten P, Von Blottnitz H Development of National LCA Database Roadmaps, including further Development of the Technical Helpdesk for National LCA Databases Deliverable D 4.3: final roadmap report for South Africa
- Nyambo P, Wakindiki I (2015) Water footprint of growing vegetables in selected smallholder irrigation schemes in South Africa. Water SA 41:571–578. https://doi.org/10.4314/wsa.v41i4.17
- Osman A, Crundwell F, Harding KG, Sheridan CM (2017) Application of the water footprinting method and water accounting framework to a base metal refining process. Water SA 43:722. https://doi.org/10.4314/wsa.v43i4.18
- Owusu-Sekyere E, Jordaan H, Chouchane H (2017a) Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecol Indic 83:32–40. https://doi.org/10.1016/j.ecolind.2017.07.041
- Owusu-Sekyere E, Scheepers ME, Jordaan H (2017b) Economic Water Productivities Along the Dairy Value Chain in South Africa: Implications for Sustainable and Economically Efficient Water-use Policies in the Dairy Industry. Ecol Econ 134:22–28. https://doi.org/10.1016/j.ecolecon.2016.12.020
- Owusu-Sekyere E, Scheepers ME, Jordaan H (2016) Water footprint of milk produced and processed in South Africa: Implications for policy-makers and stakeholders along the dairy value chain. Water (Switzerland) 8:322. https://doi.org/10.3390/w8080322
- Patel I, Notten P (2013) Life cycle assessment of sugar production in South Africa

Pegasys (2012) Water Footprint Analysis for the Breede Catchment, South Africa draft report. Cape Town

- Pengelly C, Seyler H, Fordyce N, et al (2017) Managing Water as a Constraint to Development with Decision-Support Tools That Promote Integrated Planning: The Case of the Berg Water Management Area
- Petersen AM, Knoetze JH, Görgens JF (2015) Comparison of Second-Generation Processes for the Conversion of Sugarcane Bagasse to Liquid Biofuels in Terms of Energy efficiency, Pinch Point Analysis and Life Cycle Analysis. Energy Convers Manag 91:292–301
- Pfister S, Koehler A, Hellweg S (2009) Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ Sci Technol 43:4098–4104. https://doi.org/10.1021/es802423e
- Pineo C, Janse van Vuuren P, Basson L (2015a) Regional Resource Flow Model: Grain Sector. Cape Town
- Pineo C, Janse van Vuuren P, Basson L (2015b) Regional Resource Flow Model: Livestock and Game Sectors. Cape Town
- Pryor SW, Smithers J, Lyne P, van Antwerpen R (2017) Impact of agricultural practices on energy use and greenhouse gas emissions for South African sugarcane production. J Clean Prod 141:137–145. https://doi.org/10.1016/J.JCLEPRO.2016.09.069
- Ranchod N, Sheridan CM, Pint N, et al (2015) Assessing the blue-water footprint of an opencast platinum mine in South Africa. Water SA 41:287. https://doi.org/10.4314/wsa.v41i2.15
- Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20:113–120. https://doi.org/10.1016/j.gloenvcha.2009.08.003
- Russo V, de Kock L, Muir K, et al (2018) Life Cycle Inventories of South African Agricultural Products, In Agriculture, forestry and animal husbandry. Zurich
- Russo V, von Blottnitz H (2017) Potentialities of biogas installation in South African meat value chain for environmental impacts reduction. J Clean Prod 153:465–473
- Russo V, von Blottnitz H (2018) Life Cycle Inventories of synthetic fuel production from coal and domestic fuel markets in South Africa. Zurich
- Sango (2014) Case Study Report: Decision Making for Integrated Waste Management: Developing and Evaluating Waste Management Scenarios for Stellenbosch Municipality, 2014-2015
- Scheepers ME, Jordaan H (2016) Assessing the blue and green water footprint of lucerne for milk production in South Africa. Sustainability 8:49

Sevitz J, Brent AC, Fourie AB (2003) An environmental comparison of plastic and paper consumer carrier bags

in South Africa : implications for the local manufacturing industry. South African J Ind Eng 14:67-82

- Siracusa V, Ingrao C, Lo Giudice A, et al (2014) Environmental assessment of a multilayer polymer bag for food packaging and preservation: An LCA approach. Food Res Int 62:151–161. https://doi.org/10.1016/j.foodres.2014.02.010
- SRI (2020) About Sustainable Recycling Industries (SRI) Sustainable Recycling Industries. https://www.sustainable-recycling.org/about-sri/. Accessed 13 Oct 2020
- Statistics South Africa (2018) Mid-year population estimates 2018 (http://www.statssa.gov.za/publications/P0302/Media_Presentation.pdf). Pretoria
- Statistics South Africa (2020) Gross domestic product: 4th quarter 2019 (http://www.statssa.gov.za/publications/P0441/GDP%202019%20Q4%20(Media%20presentation).pdf)
- Steyn JM, Franke AC, van der Waals JE, Haverkort AJ (2016) Resource use efficiencies as indicators of ecological sustainability in potato production: A South African case study. F Crop Res 199:136–149. https://doi.org/10.1016/J.FCR.2016.09.020
- The World Bank (2018) Overcoming poverty and inequality in South Africa An assessment of drivers, constraints and opportunities. Washington

Thomas P (2014) Participlan - Group Facilitation

UNEP/SETAC (2009) Guidelines for social life cycle assessment of products

- van der Laan M (2017) Application of water footprint accounting for selected fruit and vegetable crops in South Africa. Pretoria
- van der Laan M, Jumman A, Perret SR (2015) Environmental benefits of improved water and nitrogen management in irrigated sugar cane: A combined crop modelling and life cycle assessment approach. Irrig Drain 64:241–252
- Von Blottnitz H, Russo V (2018) Baseline study and LCA capacity building needs in South Africa. Cape Town
- Vosloo P, Harris H, Holm D, et al (2016) Life Cycle Assessment of Clay Brick Walling in South Africa. The Clay Brick Association of South Africa: Technical Report 7A
- Wettstein S, Muir K, Scharfy D, Stucki M (2017) The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize. Sustainability 9:1772
- Wiloso EI, Nazir N, Hanafi J, et al (2019) Life cycle assessment research and application in Indonesia. Int J Life Cycle Assess 24:386–396. https://doi.org/10.1007/s11367-018-1459-3

WorldAtlas (2017) The Economy Of South Africa. In: WorldAtlas. https://www.worldatlas.com/articles/the-

economy-of-south-africa.html. Accessed 20 May 2020

Zanghelini GM, de Souza Junior HRA, Kulay L, et al (2016) A bibliometric overview of Brazilian LCA research. Int J Life Cycle Assess 21:1759–1775. https://doi.org/10.1007/s11367-016-1132-7

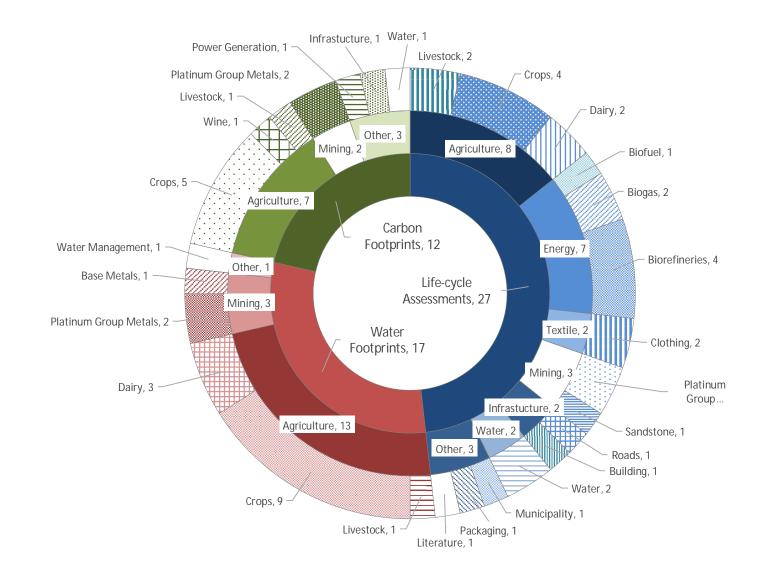


Figure 1: Summary of LCA-related environmental studies available in the literature for South Africa (2011-2019) (number of studies)

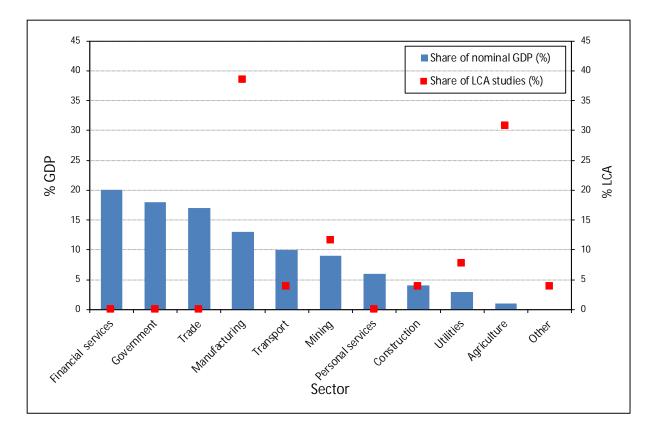


Figure 2: Relationship between the percentage share of nominal GDP (Q4, 2019) (Statistics South Africa 2020) and LCA studies in South Africa

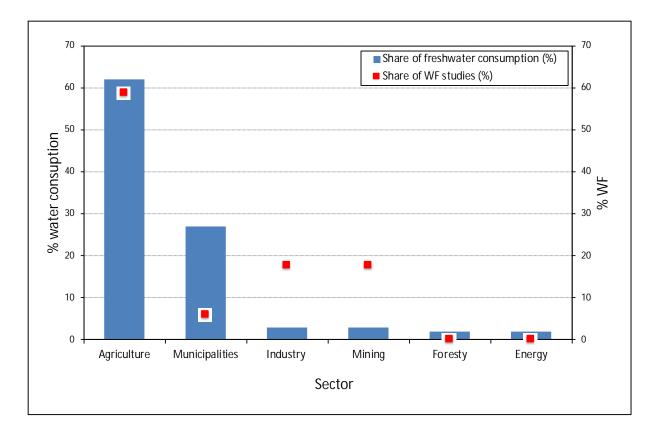


Figure 3: Relationship between the share of freshwater consumption (2019) (GreenCape 2019) and WF studies in South Africa

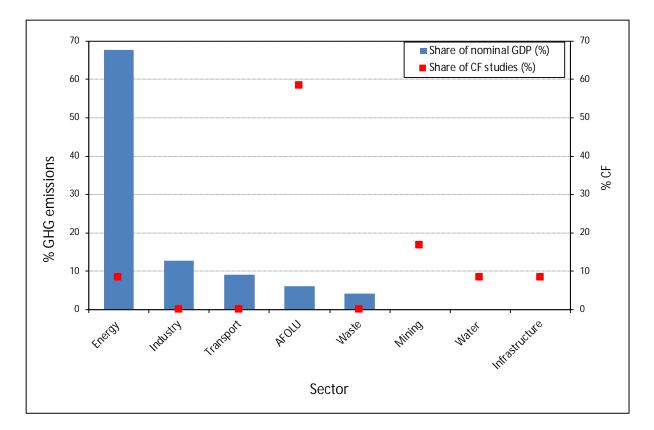


Figure 4: Relationship between the contribution to GHG emissions (2012) (Department of Environmental Affairs 2018) and CF studies in South Africa

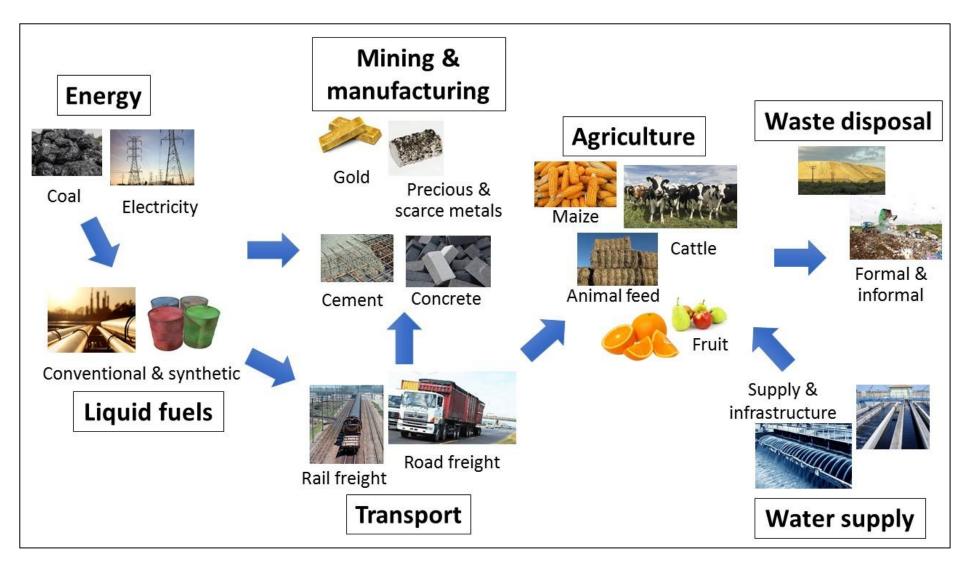


Figure 5: Building blocks to the start of a possible LCI database for South Africa

	Sector	Project Title	Client*	Project Description	Location	Software	Impact Assessment Method/ Categories	Significant Findings	Reference
1	Agriculture	LCA of beef retailed in SA	WWF-SA/ Woolworths	Different beef production processes (free- range & feedlot) & the value chain incl. slaughtering, processing, packaging, distribution & retail	South Africa & Namibia	SimaPro	Regional methods for water stress, land use, acidification & eutrophication	Insight into beef production that will support Woolworths' promotion of farming practices	(Notten et al. 2015b)
2		LCA of Sugar	WWF-SA/ Sugar Association of SA (SASA)	Possible end uses of secondary products (molasses & bagasse), especially potential for renewable energy. generation	South Africa	SimaPro	ReCiPe 2008 & water footprint	The choice of optimal use of secondary products is not a simple one since it requires trade-offs between impacts.	(Patel and Notten 2013)
3		Comparative LCA of fresh milk & long-life (UHT) milk	Tetra Pak South Africa	Various milk products available on the SA market over the entire value chain: production, processing, packaging, distribution, retail, consumer use & packaging disposal	South Africa	SimaPro	ReCiPe 2008, focus on carbon footprint & (blue/ extractive) water footprint	Long-life milk has lower environmental impacts than chilled fresh milk across all impacts considered (largely due to lower returns/ losses & refrigeration savings at retail).	(Notten and Mason- Jones 2012)

Table 1: Summary of available life-cycle assessment (LCA) studies in South Africa

4	LCA of fresh	WWF-SA/	Impacts of dairy	Western Cape	SimaPro	ReCiPe 2008	For the carbon	(Notten and
	milk in the	Woolworths	production along a	······································		& CML 2001	footprint, the farm	Mason-
	Western Cape of		full supply chain.			method. Water	stage is significant.	Jones 2010)
	South Africa		Functional unit:			& biodiversity	Milk processing,	00100 2010)
	200000000000		1000 L of Fat &			indicators also	retail & the consumer	
			Protein Corrected			developed.	also accounted for	
			Milk (FPCM) at the			ae veropea.	significant impacts.	
			consumer				Significant impress	
5	Regional	Western Cape	The goal was to	Representative	Umberto	ReCiPe (2008)	1) There is a	(Pineo et al.
0	Resource Flow	Department of	demonstrate the	farms in the	NXT	method,	significant difference	2015a)
	Model: Grain	Economic	complexity &	West Coast	Universal	valuation	between irrigated &	
	Sector Report	Development	variability within	district of the	e in crown	systems	dry land wheat	
	Sector Report	and Tourism	grain production &	Western Cape		available in	production;	
		(DEDAT)	examine the	western cupe		ecoinvent®,	2) The reduced	
		(22211)	feasibility &			using midpoint	impact of dry land	
			application of life-			metrics over a	production is due to	
			cycle based			100-year	water & electricity	
			approaches for			timeframe,	required for	
			regional resource			with no	irrigation;	
			analyses			normalization	3) Eutrophication is	
			unuryses			normanzation	similar across	
							systems per hectare	
							of planted wheat.	
6	Comparative	SAPPO (the	Cradle-to-gate	Western Cape in	GaBi	Global	Flemish global	(Devers et
0	LCA of pork	South African	assessment to	South Africa &	GuDi	warming	warming potential,	al. 2012)
	production	Pork Producers	compare impacts of	Flanders in		potential,	eutrophication	un 2012)
	production	Organisation)	producing pork	Belgium		eutrophication	potential,	
		organisation)	locally & exporting	2 or Brown		potential,	acidification potential	
			it to Flanders vs			acidification	& energy use were	
			pork in Flanders &			potential &	56-, 65-, 62- & 59-	
			delivering it to the			energy use.	respectively of	
			same location.				Western Cape	
			Functional unit of				equivalents. The	
L			i uncuonai unit oi				equivalents. The	

			1 kg of Western Cape or Flemish pork (carcass weight) delivered to distribution centers in Antwerp.				exporting of pork accounts for less than 8% of environmental impacts in all impact categories.	
7	LCA of irrigated maize & potential emission reduction		To determine the environmental mitigation potential of replacing grid- powered irrigation in SA maize production with photovoltaic irrigation systems; including the value chain of maize production from cultivation to storage.	South Africa	SimaPro	Climate change, non- renewable energy, freshwater & marine eutrophication, land use, particulate matter, acidification, water footprint	Replacing grid electricity with photovoltaic- generated electricity leads to a 34% reduction in global warming potential of maize produced under irrigation & applied at a national level could potentially reduce SA greenhouse gas emissions by 536,000 t CO _{2-eq} per year. Non-renewable energy demand, freshwater eutrophication & acidification are also significantly lowered.	(Wettstein et al. 2017)
8	LCA of irrigated sugarcane production	South African Sugarcane Research Institute	Mechanistic crop modeling combined with LCA to investigate the impacts of producing 1 tonne of	Pongola, South Africa	DSSAT- Canegro	Eco-Indicator 95, non- renewable energy consumption, global	Application of excess water & nitrogen to these systems has multiple impacts. The more judicious use of water & nitrogen	(van der Laan et al. 2015)

				extractable sucrose, with a focus on the impact of irrigation water & nitrogen fertilizer management.			warming potential, acidification (air) & eutrophication (water) potentials, water consumption	according to crop demands can lead to a 20% reduction in non-renewable energy consumption & 25% reduction in greenhouse gas emissions.	
9	Energy	LCA of sugarcane biorefinery scenarios	The Sugarcane Technology Enabling Programme for bioenergy (STEPBio) & the Sugar Milling Institute of South Africa (SMRI)	The sustainability of 6 biorefinery scenarios was assessed to identify potential problem areas & compare the impacts of the bio- products to one another, as well as to their fossil reference products.	South Africa	SimaPro	IPCC, GWP 100a	Sugarcane cultivation contributed most to the abiotic depletion, aquatic ecotoxicity, eutrophication & acidification impact categories which could be mitigated by increasing railway transport & applying effective fertilizer measures.	(Nieder- Heitmann et al. 2019)
10		LCA of biogas in the SA livestock industry		Investigating a biogas plant's potential to reduce emissions from poor waste management both at the feedlot & at the abattoir stage of the SA beef & pork value chain	South Africa	SimaPro	Global warming potential, eutrophication potential, acidification potential	Electricity generation from biogas & usage of co-produced heat would reduce GHG emissions by about 1.56 Mt CO _{2-eq} per year, reducing the carbon footprints of beef & pork by 10- & 30% respectively. Significant reductions of impacts	(Russo and von Blottnitz 2017)

						should be achievable by avoiding landfilling of wastes & over-fertilization	
11	LCA of alternative routes for converting sugarcane residues to biofuel	Detailed techno- economic evaluation & LCA were applied to model alternative routes for converting sugarcane residues (bagasse & trash) to selected biofuel and/or biochemicals in a biorefinery system.	South Africa	SimaPro	CML-IA baseline 3.02 & water scarcity	of soils. Modeling has demonstrated that biomass cultivation played an important role in the environmental burden, which demonstrated the importance of sustainable agricultural management on bio- based chemical production.	(Farzad et al. 2017b)
12	LCA of co- producing ethanol and electricity from sugarcane residues	Detailed economic & environmental analysis of different scenarios for co- production of ethanol & electricity was carried out & the results compared to the current case (where the bagasse is burnt in boilers of the sugar mill & trash is burnt on the field)	South Africa	SimaPro	CML-IA baseline 3.02	All investigated scenarios showed environmental benefit over the consumption of bagasse in the sugar mill, while the scenario with zero co-combustion of coal delivered the lowest environmental burden	(Mandegari et al. 2017a)

13	Sustainability	4 potential	South Africa	SimaPro	CML-IA	The LA production	(Mandegari
	assessment of	biorefinery			baseline 3.02	scenario showed the	et al. 2017b)
	lactic acid and	scenarios were				most favorable	
	ethanol co-	developed to				economic	
	production from	produce LA &				performance, while	
	sugarcane	EtOH as single				the bioethanol-only	
	residue	products or co-				production presented	
		produce LA from				the minimum IRR,	
		glucose and EtOH				but the least	
		from xylose & vice				contribution to	
		versa. Simulations				environmental	
		were developed				burdens across all	
		using Aspen Plus				impact categories.	
		software, & used for					
		economic, energy &					
		LCA evaluation.					
14	Economic and	Lignocellulose	South Africa	SimaPro	CML-IA	The economic	(Farzad et
	environmental	biorefineries			baseline 3.02	evaluation indicated	al. 2017a)
	analysis of	annexed to a typical			& water	that bio-based BD	
	butadiene	sugar mill were			scarcity	production scenarios	
	production from	investigated to				were not profitable.	
	sugarcane	produce either				BD production from	
	residue	ethanol or 1,3-				biomass had the	
		butadiene (BD),				potential to decrease	
		utilizing bagasse &				GHG emissions by	
		trash as feedstock.				about 85% compared	
						to current practice,	
						whereas bio-energy	
						self-sufficient	
						scenarios delivered	
						the best	
						environmental	
						performance across	
						most categories.	

15		Comparison of		Energy efficiency	South Africa	SimaPro	Global	Results indicate that	(Petersen et
		second-		study using process			warming	advanced biological	al. 2015)
		generation		modeling, Process			potential;	route increased	
		processes for the		Environmental			acidification;	efficiency & local	
		conversion of		Assessments &			abiotic	environmental	
		sugarcane		LCA on 3			depletion;	impacts while	
		bagasse to liquid		alternative liquid			eutrophication	thermochemical	
		biofuels		transportation			& human	routes have the	
				biofuels produced			toxicity	highest efficiencies	
				from sugar cane				& low life cycle	
				bagasse.				impacts.	
16	Textile	Life cycle	Southern African	To provide a	South Africa	SimaPro	Indicator set	Demonstrated the	(Notten et
		sustainability	Sustainable	baseline of the			developed	usefulness of the	al. 2015a)
		assessment of 2	Textile &	sustainability			specifically for	LCA method in	
		pilot textile	Apparel Cluster	performance of the			textiles in	capturing the	
		value chains in	(SASTAC)	SA textiles industry			South Africa:	sustainability	
		Southern Africa		& to pilot LCA			Environmental	performance of value	
				against 2 cotton			indicators	chains; provided	
				textile value chains			(JRC-IES	insights into the	
				- the cotton t-shirt			2011), social	socio-economic &	
				& towel.			indicators	environmental	
							(UNEP/SETA	performance of	
							C 2009; Fontes	textiles produced in	
							2015)	SA.	
17		LCA of textiles	Woolworths	High-level LCA of a	Global	SimaPro	ReCiPe 2008	Cotton production	(Notten and
		retailed in South		t-shirt retailed in SA	production mix		end-point	can have a negative	Patel 2013a)
		Africa		focusing on the 2	(representative		categories &	impact in terms of	
				main points of	of garment		carbon	water & chemical	
				environmental	imports to SA);		footprint	use. Polyester has a	
				leverage – the type	South African			lower water impact,	
				of raw material used	retail,			but recycled	
				& the consumer use	distribution, use			polyester was the	
				phase	& disposal.				

								most environmentally responsible choice.	
18	Mining	Mining & ore concentration of platinum group metals (PGMs)	Anglo American Platinum	Environmental impacts of PGM mining & ore concentration activities in South Africa. A functional unit of 1 tonne of ore mined was selected.	South Africa	Umberto	Emissions to air, water & soil in terms of global warming potential	Indirect emissions came mainly from the use of electric power produced from energy mix with 88% from coal-fired power generation. Conversely, direct emissions came from the direct consumption of non- renewable energy resources such as coal, petrol, diesel & LPG.	(Mabiza et al. 2014)
19		Smelting process of PGMs	Anglo American Platinum	Life cycle analysis of emissions from the smelter section of PGM recovery was developed & equivalent carbon dioxide emissions were quantified.	South Africa	Umberto	Emissions to air, water & soil in terms of global warming potential	For one metric ton of ore milled, a total of 2084.72 kg CO _{2-eq} was associated with the smelting process. Notable airborne emissions were identified as sulfur dioxide efflux.	(Mabiza and Mbohwa 2015a)
20		LCIA of artisanal sandstone mining (ASAM)		Evaluation of the impact of ASAM on the environment & human health	QwaQwa, Free State	SimaPro	IPCC 2013 GWP 20a and IMPACT 2002+	Fossil fuel used during transportation was the highest contributor in most categories. High demand for physical labor also found to	(Agwa-Ejon and Pradhan 2018)

								have a detrimental effect on the health of miners.	
21	Infrastructure	LCA of the North-South Corridor Road network	TradeMark SA	The study included all phases in a road's life cycle including construction, maintenance, use & rehabilitation with the selected functional unit being the infrastructure & operation of the road network for 50 years.	Botswana, DRC, Malawi, Mozambique, Tanzania, Zambia, Zimbabwe, South Africa	SimaPro	CML 2001	The use of the road infrastructure is more significant in terms of a carbon footprint than construction & maintenance. The reduction of operational emissions should take priority.	(Notten and Patel 2013b)
22		LCA of clay brick walling	Clay Brick Association of South Africa	Cradle-to-gate, gate- to-end-of- operational-life & demolition, waste & recycle phases of the life cycle of clay bricks.	South Africa	SimaPro	Impact 2002+	Kilns that utilize a continuous firing process generally have lower impacts. There is also great potential to improve the environmental performance of the local clay brick manufacturing industry.	(Vosloo et al. 2016)
23	Water	Comparative LCA for the provision of potable water from alternative sources		Comparison of water treatment processes that use alternative sources of water such as	KwaZulu-Natal & Mpumalanga	SimaPro	ReCiPe	For the water sources investigated, the most significant stage was the operational stage; attributed to electricity use. Using	(Goga et al. 2019)

				seawater & mine- affected water.				solar & wind- generated electricity can reduce the impacts to levels comparable to the current purification of river water.	
24		Assessing the sustainability of acid mine drainage (AMD) treatment		The sustainability of acid mine drainage (AMD) treatment was examined where an integrated active process, <i>i.e.</i> magnesite, lime, soda ash & CO ₂ treatment, was used.	Mpumalanga	SimaPro	IPCC 2013 and ReCiPe 2008	South Africa's fossil- fuel dependent energy mix & liquid CO ₂ consumption were the major environmental areas of concern.	(Masindi et al. 2018)
25	Other	LCA & carbon footprinting for Western Cape Municipalities	Western Cape Government	Tailoring of EASETECH – a Danish LCA model – to the SA context, & use in determining the current impact of Stellenbosch Municipality's waste management system as well as the future impact of implementing alternative systems.	Stellenbosch Local Municipality	EASETE CH model	IPCC 2007 - For this project, primarily focused on GWP	The biggest contributor to GWP occurs because of the high organic content of the municipal waste, & a predominantly landfill-based waste management system.	(Sango 2014)
26		LCA of a multilayer polymer bag		A screening LCA of a bi-layer film bag for food packaging	South Africa	SimaPro	Impact 2002+	The damage assessment showed that the most	(Siracusa et al. 2014)

		was carried out. Such packages are made of films obtained matching a				impacting phases are the production of the Polyamide (PA6) & Low-Density	
		layer of PA				Polyethylene (LDPE)	
		(Polyamide) with				granules due to the	
		one of LDPE (Low-				consumption of	
		Density				primary resources,	
		Polyethylene) with				such as natural gas &	
		the functional unit				crude oil.	
		chosen as 1 m ² of					
		plastic film					
		delivered to the food					
		production &					
		packaging firm.					
27	Comparative	Environmental	South Africa	SimaPro	ReCiPe &	Results demonstrate	(Naicker
	LCA of e-books	demands of reading			cumulative	that the print system	and Cohen
	& printed books	printed books (print			energy	has lower impacts	2016)
		system) vs reading			demand	than the digital	
		e-books from an				system in the impact	
		Apple Air iPad				categories of	
		(digital system),				freshwater	
		with a specific focus on the production of				eutrophication, freshwater	
		books & use of both				ecotoxicity, marine	
		options locally.				ecotoxicity & metal	
		options locally.				depletion, whilst the	
						digital system has	
			1				
						lower impacts in the	

* Missing values: Confidential clients or academic projects not explicitly mentioning clients

	Sector	Project Title	Client [*]	Project Description	Location	Method	Significant Findings	Reference
1	Agriculture	WF of commercial beef		To assess a range of stressed-adjusted blue/consumptive WFs for commercial beef in SA. A comprehensive top-down approach & a model of a generic herd was developed, by using elements of an LCA approach as a guide.	South Africa	WSI (Water Stress Index)	The base-case, unadjusted blue WF for beef is 437 L/kg carcass weight (CW); ranging between $105- \& 2820 \text{ L}_{eq}/\text{kgCW}$. The best-feasible case result is a WF _{eq} of $276 \text{ L}_{eq}/\text{kgCW}$. The study highlighted the central interior of SA as an environmental hotspot.	(Harding et al. 2017)
2		Estimating WF of vegetable crops: Influence of growing season, solar radiation data & functional unit	Water Research Commission (WRC)	Assessing WFs of vegetable crops: carrots, cabbage, beetroot, broccoli & lettuce & grain crops maize & wheat. Unraveling the complexities of calculating these WFs.	Tarlton, South Africa	Hoekstra	Planting dates & inter- annual weather conditions & using different functional units affected WFs. Joining measures & estimated weather datasets affected model outcomes, which in turn impacted on WFs.	(le Roux et al. 2016)
3		Quantification of the WF of important fruit & vegetable crops produced in SA.	Water Research Commission (WRC)	WFs were undertaken using various approaches for significant fruit & veg crops growing in South Africa.	Gauteng & Western Cape	Hoekstra, LCA, hydrological- based	WFs were estimated for key fruit & vegetable crops grown in SA. WFs were also estimated using crop nutritional value as the functional unit. Upscaling exercises were conducted for the Steenkoppies Aquifer & Olifants-Doorn Water Management Area.	(van der Laan 2017)

4	WF of Vegetable	Water	Water footprints were	Tarlton, South	Hoekstra	The highest percentage of	(le Roux et
	Crop Wastage	Research	calculated for wastage of	Africa		wastage occurs at the	al. 2018)
	along the Supply	Commission	carrots, cabbage, beetroot,			packhouse level, some	
	Chain in Gauteng,	(WRC)	broccoli & lettuce produced			crops have higher wastage	
	South Africa		on the Steenkoppies Aquifer			than others; lettuce (38%)	
			along the supply chain.			compared to cabbage	
						(14%). Wastage varied	
						between seasons. Blue	
						water lost on the aquifer	
						due to vegetable crop	
						wastage (4 mm ³ / year)	
						represented 25% of	
						estimated blue water	
						volume that exceeded	
						sustainable limits (17	
						mm ³ /year).	
5	Comparisons of	Water	Based on a case study	No specific	Hoekstra,	The WFN approach was	(Le Roux et
	different WF	Research	centered around apple	location.	LCA,	judged to be most useful to	al. 2018)
	methodologies for	Commission	production in SA, 3		hydrological-	water resource managers	
	application in	(WRC)	common WF methodologies		based	in SA due to its	
	agriculture in SA		were evaluated.			quantitative approach,	
						while the LCA approach	
						appears best for the	
						comparison of different	
						products. No single WF	
						metric can be used to	
						inform wise consumer	
						decisions due to the	
						complexity involved.	
6	A WF framework	Water	Part of a 4-year study to	Steenkoppies	Hoekstra	A catchment-scale water	(le Roux et
	to assess the	Research	explore the use of water	Aquifer,		balance was estimated	al. 2017)
	sustainability of	Commission	footprint accounting in SA	Gauteng		using WF accounting.	
	blue water use for	(WRC)				Results indicated that	

	an aquifer under	irrigated fruit & vegetable			irrigation on the aquifer is	
	stress	production.			currently unsustainable. It	
	SHESS	production.			5	
					was proposed that the	
					simple framework	
					developed can be used for	
					real-time water resources	
					management.	
7	Assessing the blue	WFs were calculated for	Vaalharts	Hoekstra	The WF of milk	(Scheepers
	& green WF of	lucerne (Medicago sativa)	irrigation		production is	and Jordaan
	lucerne for milk	that serves as livestock feed	scheme,		environmentally	2016)
	production in SA	for milk production.	Northern		sustainable & highlighted	
			Cape, South		the importance of	
			Africa		reporting WFs with a	
					sustainability assessment.	
8	WF of growing	WFs were calculated for the	Eastern Cape,	Hoekstra	WFs varied between	(Nyambo and
	vegetables in	cultivation of various crops,	KwaZulu		irrigation systems & over	Wakindiki
	selected	including cabbage,	Natal &		time. Variations are due to	2015)
	smallholder	tomatoes, spinach, potatoes	Limpopo		different weather	, ,
	irrigation schemes	& green beans cultivated	Provinces,		conditions, planting season	
	in South Africa.	under different smallholder	South Africa		& field management	
		irrigation schemes.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		practices.	
9	WF analysis for the	Water footprints were	Breede	Hoekstra	WFs provided important	(Pegasys
	Breede Catchment,	calculated for agriculture in	Catchment,		information for water	2012)
	South Africa draft	the Breede Water	South Africa		allocation decisions, e.g.	,
	report, Breede	Management Area & were			apples produced in	
	Overberg	considered to assess water			Overberg West created	
	Catchment	used in terms of economic			more jobs than those	
	Management	gains & job creation.			produced in the Central	
	Agency	Sum et joe er eu tom			Breede per volume of	
	1.5000				water; apples & tables	
					grapes created more jobs	
					& income than wine	
					grapes per volume of	

					water; & cereals & fodder used water inefficiently.	
10	WF accounting	Water footprint & economic	Bainsvlei &	Hoekstra	The average WF for wheat	(Mohlotsane
	along the wheat-	water productivities of the	Clovelly in		bread was 954.53- in	et al. 2018)
	bread value chain:	wheat-bread value chain	South Africa		Bainsvlei & 1026.53 m ³	
	Implications for	were assessed.			per ton in Clovelly. More	
	sustainable &				than 99% of the water was	
	productive water				used for wheat production.	
	use benchmarks				Approx. 80% of the WF	
					over the entire value chain	
					was blue water.	
11	Economic water	Economic water	South Africa	Hoekstra	Milk production in South	(Owusu-
	productivities along	productivities along the			Africa is economically	Sekyere et al.
	the dairy value	dairy value chain in South			efficient in terms of water	2017b)
	chain in South	Africa were assessed.			use. Future ecological	
	Africa:				footprint assessments	
	Implications for				should consider the value-	
	sustainable &				added to output products	
	economically				& economic water	
	efficient water-use				productivities, rather than	
	policies in the dairy				relying only on water	
	industry				footprint estimates.	
12	WF of milk	Assessing the WF of	South Africa	Hoekstra	Corn, sorghum & lucerne	(Owusu-
	produced &	producing & processing			production under irrigation	Sekyere et al.
	processed in SA:	milk in South Africa.			in the greater Orange	2016)
	Implications for				River basin is sustainable,	
	policymakers &				whereas oats production	
	stakeholders along				for silage in the same	
	the dairy value				catchment area is not	
	chain				sustainable.	
13	Evaluation of WF	Assessment of water	South Africa	Hoekstra	WFs of South Africa's	(Owusu-
	& economic water	footprints & economic			dairy products are higher	Sekyere et al.
	productivities of	water productivities of dairy			than the global averages.	2017a)

		dairy products of SA	products in SA for the periods 1996–2005 & 2006– 2013.			Dairy production under a mixed system is economically productive in terms of water use. Green water contributes the highest to the total water footprint.	
14	Mining	Assessing the blue- water footprint of an opencast platinum mine in South Africa	Mineral extraction at this site occurs by conventional opencast methods. Functional unit is taken as the volume of water consumed to produce 1 tonne of refined platinum (m^3/t) .	Northern region of SA	Hoekstra (Blue only)	The largest consumption of water was due to evaporation from the mineral processing operations (36.8%) & the tailings storage facility (19.4%).	(Ranchod et al. 2015)
15		Quantification of water usage at a South African platinum processing plant	The direct water footprint for 2 concentrators, a smelter & a tailings dam of a platinum processing plant were calculated. This included the sum of the blue-, green- & grey-water footprints.	Northern region of SA	Hoekstra	The water footprint calculated from June 2012 until May 2013 was 201 m ³ /kg PGM (platinum group metals). Overall, the total grey-water footprint made the largest contribution, accounting for 73%, the blue-water footprint was the 2 nd largest (27%), & there was no green-water footprint.	(Haggard et al. 2015)
16		Water accountability & efficiency at a base metal refinery	Survey of the potable & stormwater systems at a base metal refinery to assess the water accountability & determine means for improvement.	Northern region of SA	Hoekstra	The blue & green water footprint was calculated to be 33.4- and 10.5 m ³ /t & respectively. The total water footprint of the refining process was 43.9	(Osman et al. 2017)

						m ³ of water per tonne of	
						base metal produced.	
17	Other	Managing water as	Water	This study aimed to better	Berg Water	Under all climate change	(Pengelly et
		a constraint to	Research	integrate water into	Management	models, irrigated	al. 2017)
		development with	Commission	economic development	Area, Western	agriculture required more	
		decision-support	(WRC) &	planning through the	Cape	water to remain	
		tools that promote	Western	development of decision-		sustainable. When water is	
		integrated planning:	Cape	support tools.		analyzed as a constraint to	
		The case of the	Provincial			the local economy, the	
		Berg Water	Government			West Coast municipalities	
		Management Area				of Swartland, Saldanha	
						Bay & Bergrivier emerge	
						as areas where water is	
						likely to be a significant	
i.						future constraint.	

* Missing values: Confidential clients or academic projects not explicitly mentioning clients

	Sector	Project Title	Client [*]	Project Description	Location	Significant Findings	Reference
1	Agriculture	Regional Resource	Western Cape	Analysis of the carbon	Western Cape	Softer fruits, which require more	(Janse van
		Flow Model: Fruit	Department of	footprint of Western Cape		packaging, have higher carbon	Vuuren et al.
		Sector Report	Economic	fruit using Confronting		footprints than harder fruits. This	2015a)
			Development &	Climate Change carbon		provides incentives for the industry	
			Tourism (DEDAT)	footprint data.		to switch to renewable energy	
						sources & alternative packaging	
						materials.	
2		Regional Resource	Western Cape	Analysis of the CF of	Western Cape	South African wine production	(Janse van
		Flow Model: Wine	Department of	Western Cape wine using		seems to have a larger carbon	Vuuren et al.
		Sector Report	Economic	Confronting Climate		footprint than its international	2015b)
			Development &	Change carbon footprint		competitors, primarily because of	
			Tourism (DEDAT)	data. This was compared to		electricity use & packaging.	
				global industry benchmarks.			
3		Regional Resource	Western Cape	GHG emission estimates	Western Cape	The Western Cape profile for GHG	(Pineo et al.
		Flow Model:	Department of	were developed for	specifically &	contributions from animal	2015b)
		Livestock & Game	Economic	livestock, dairy & game.	South Africa	production differs from that for	
		Sector Report	Development &			South Africa, highlighting different	
			Tourism (DEDAT)			focus areas for national &	
						provincial strategies.	
4		Comparison of	South African	Modeling study to	Mount	Counter-intuitively, sugarcane	(Eustice et al.
		greenhouse gas	Sugarcane	investigate the comparative	Edgecombe,	cropping systems that were trashed	2011)
		emissions from	Research Institute	GHG emissions from burnt	KwaZulu-	before harvest had a higher CF than	
		trashed & burnt		versus trashed sugarcane	Natal, South	systems for which the leaves were	
		sugarcane cropping		cropping systems under	Africa	burnt. In the trashed system, the	
		systems in South		rainfed production.		sequestration of carbon in soil was	
		Africa				only possible up to a certain	
						threshold. The capacity to estimate	
						site-specific emissions	
						mechanistically is limited &	
						requires further work.	

Table 3: Summary of available carbon footprint (CF) studies in South Africa

5		Impact of		An LCA approach was used	North Coast,	Despite higher energy inputs in the	(Pryor et al.
-		agricultural		to model primary fossil fuel	South Africa	irrigated North, GHG	2017)
		practices on energy		energy inputs & GHG		emissions are similar for sugarcane	
		use & greenhouse		emissions associated with		produced in each region. Green	
		gas emissions for		the production of sugarcane		cane harvesting reduces energy	
		SA sugarcane		in two distinct regions, the		inputs & emissions by 4- & 16%,	
		production		irrigated North & the non-		respectively, in both regions.	
		production		irrigated North Coast.		respectively, in courregions.	
6		Prospective LCA		The global warming	South Africa	Results indicated a decrease in the	(de Kock et
0		of South African		potential of South African	bouth / mileu	aggregated GWP of pome fruit	al. 2019)
		pome fruit		apples & pears (pome fruit)		from 1.52- in 2000 to 1.23- in 2010	un 2019)
		pointe ir uit		for the years 2000, 2010 &		and finally 1.02 kg $CO_{2 eq}/kg$ fruit	
				2020 was determined &		in 2020. The life cycle stage with	
				compared to that cultivated		the largest contribution was the	
				& packaged in other		Controlled Atmosphere store.	
				countries.		Controlled Atmosphere store.	
7		Resource use		Assessment and	South Africa	Fertilizers (34%) & irrigation	(Steyn et al.
,		efficiencies as		benchmarking of production	bouth / mileu	(30%) were the greatest	(Biejii et ul. 2016)
		indicators of		regions, representing		contributors to energy use. The	2010)
		ecological		different growing		energy required to pump water was	
		sustainability in		conditions, regarding their		strongly related to the amount of	
		potato production		use of input resources & to		irrigation applied, pumping depth,	
		potuto production		identify resource-intensive		and distance.	
				practices			
8	Mining	Quantifying CO _{2-eq}	Anglo Platinum	Life cycle analysis of ore-	Northern region	For one metric ton of PGM	(Mabiza and
-	8	emissions of Ore-	Limited	concentration was	of SA	concentrate, $1.57 \text{ kg CO}_{2-\text{eq}}$ was	Mbohwa
		based PGM		developed & equivalent		associated with this process.	2015b)
		concentration		carbon dioxide emissions		Important emissions were	
		process in SA &		quantified.		waterborne & emissions to the soil.	
		identification of		1			
		immediate					
		environmental					
		impacts					
		impacts					

9		Assessment of the	Evaluated the viability of	South Africa	Selected processes are carbon	(Ncongwane
		potential CF of	using PGM tailings for		positive <i>i.e.</i> ineffective as net	et al. 2018)
		engineered	carbon sequestration		carbon sinks. The operations	
		processes for the	through mineral carbonation		contributing the most to the overall	
		mineral	based on CF.		emissions are heating and chemical	
		carbonation of			reagent make-up.	
		PGM tailings				
10	Power	A comparative	GWP was assessed to	Durban, South	CF of battery production is useful	(Charles et al.
	Generation	examination of	produce batteries for several	Africa	for a comparative analysis of GWP	2019)
		life-cycle aspects	systems.		but gives only a limited picture of	
		of battery			the environmental impacts of	
		technologies for a			batteries.	
		circular economy				
11	Infrastructure	CF of the	Determine the CF of UCT	Cape Town	CF was found to be about 83 400	(Letete et al.
		University of Cape	for 2007.		tons CO ₂ -eq, with energy	2011)
		Town (UCT)			consumption, transportation &	
					goods & services contributing	
					about 81-, 18- & 1% respectively.	
12	Water	CF of exploiting &	Explored the links between	Cape Town	The centralized approach's energy	(Gobin et al.
		treating brackish	energy usage in the water		intensity was found to be the lowest	2019)
		groundwater	sector & its CF with 3		of the three $(1.16-1.57 \text{ MJ/m}^3)$,	
			scenarios investigated -		while those of the decentralized &	
			'centralized', 'desalination'		desalination approaches ranged	
			& 'decentralized'.		from 3.57- to 7.31 MJ/m ³ & 7.41-	
					to 9.62 MJ/m ³ respectively.	

* Missing values: Confidential clients or academic projects not explicitly mentioning clients