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Abstract

We use daily data for the period 5 January 2000 to 31 October 2018 to analyse

the impact of structural oil supply, oil demand and financial market risk

shocks on the level, slope and curvature factors derived from the term struc-

ture of interest rates of the U.S. Treasury securities covering maturities of

1–30 years. Linear causality tests detect no evidence of predictability of these

shocks on the three latent factors. However, statistical tests performed on the

linear model provide evidence of structural breaks and nonlinearity, and hence

indicate that the Granger causality test results are based on a misspecified

framework, and cannot be relied upon. Given this, we use a nonparametric cau-

sality in-quantiles test to reconsider the predictive ability of the three shocks on

the three latent factors, with this model being robust to misspecification due to

regime changes and nonlinearity, as it is a data-driven approach. Moreover, this

framework allows us to model the entire conditional distribution of the level,

slope and curvature factors, and hence can accommodate, via the lower qua-

ntiles, the zero lower bound situation seen in our sample period. Using this

robust model, we find overwhelming evidence of causality from the two oil

shocks and the risk shock for the entire conditional distribution of the three fac-

tors, suggesting the predictability of the entire U.S. term structure based on

information contained in oil and financial market innovations. Our results have

important implications for academics, investors and policymakers.
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1 | INTRODUCTION

The existing literature on the impact and oil market
price, returns, volatility, and shocks on the moments of

equity market of the United States, is huge, to say the
least (see, for example, Balcilar, Gupta, and Miller (2015);
Balcilar, Gupta, and Wohar (2017) or Gupta and Wohar
(2017) for detailed reviews in this regard). Interestingly,
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despite the U.S. bond market capitalization of $41.30 tril-
lion being higher than the corresponding value of $30.43
trillion associated with the stock market and basically
representing nearly two-thirds of the value of the global
bond market,1 the literature examining the linkages
between the U.S. government bond and oil markets is neg-
ligible and limited to the published works of Balcilar,
Gupta, Wang, and Wohar (2020), Demirer, Ferrer, and
Shahzad (2020), Ioannidis and Ka (2018), Kang, Ratti, and
Yoon (2014), Nazlioglu, Gupta, and Bouri (2020), and
Nguyen, Nguyen, and Pham (2020). The lack of studies in
this field is surprising given the great importance of the
bond market compared to the stock market, and the fact
that the U.S. government bond market is normally consid-
ered by investors as a safe-haven (Hager, 2017) and the
yield curve of U.S. government bonds is shown to be use-
ful to forecast macroeconomic variables (Hillebrand,
Huang, Lee, & Li, 2018). As a result, the research about
the impact of oil shocks on the term structure of
U.S. government bond yields is of great research value
from the perspectives of both investors and policymakers.

Against this backdrop, this article contributes to this
sparse literature by investigating the impacts of oil and risk
shocks on the term structure of interest rates in the
U.S. Treasury market. Following the suggestion by Kilian
(2009) that ‘not all oil price shocks are alike’, we first distin-
guish oil price changes into demand, supply and financial risk
shocks. Second, as in Ioannidis and Ka (2018), we relate these
shocks to the term structure of U.S. interest rates, utilizing the
dynamic Nelson–Siegel three-factor model of Diebold and Li
(2006). This method decomposes the yield curve into three
latent factors of the slope, curvature and level, which in turn
represent the movements of yields in the short-, medium-
and long-terms (Litterman & Scheinkman, 1991). The three-
factor model of the term structure involving interest rates
associated with U.S. Treasury securities of maturities
1–30 years, along with the decomposition of oil price move-
ments due to various causes, enables us to study the
responses of the yield curve to different types of oil shocks
and investigate the role of these oil shocks in the high-
frequency movements of the term structure of interest rates
in the U.S. Treasury market.

Specifically, we rely on high-frequency, that is, daily, data
for the period 5 January 2000 to 31 October 2018 to obtain
estimates of oil shocks from a SVAR model proposed by
Ready (2018), and relate them to the corresponding daily
movements of the slope, curvature, and level of the
U.S. yield curve using the causality-in-quantiles framework
of Jeong, Härdle, and Song (2012). Ready (2018) proposed a
novel methodology of disentangling oil price shocks
according to the information in traded asset prices, that is,
returns of a stock index consisting of oil-producing firms
internationally. Taking advantage of the forward-looking

nature of traded asset prices, this methodology overcomes
two main shortcomings of the widely used standard oil
shocks decomposition technique of Kilian (2009), in which
too much weight is given to the oil market-specific demand
shocks over the supply shocks, and the applications of the
method being limited to a monthly frequency and not able
to be estimated at higher frequencies. At the same time, the
nonparametric causality-in-quantiles framework of Jeong
et al. (2012) allows us to test for predictability emanating
from oil shocks over the entire conditional distribution of the
level, slope and curvature of the yield curve by controlling
for misspecification due to uncaptured nonlinearity and
regime changes (both of which we show to exist in a formal
statistical fashion in the results section of the article). Given
that the period of study involves the zero lower bound (ZLB)
situation of the interest rates in the United States in the wake
of the ‘Great Recession’, the simultaneous use of a quantiles-
based framework makes perfect sense, since different qua-
ntiles (without having to specify an explicit number of
regimes like in a Markov-switching model) can capture the
various phases of the three latent factors accurately, with the
lower, median and upper quantiles corresponding to low,
normal and high interest rates, respectively. Understandably,
high-frequency prediction of the term structure of interest
rates would allow for the timely design of optimal portfolios
involving U.S. government bonds by investors, and also allow
policymakers to gauge where the low-frequency real and
nominal variables in the economy are headed by feeding the
information into mixed-frequency models (Caldeira, Gupta,
Suleman, & Torrent, 2019).

It is notable that, in theory, high oil prices raise inflation
expectations and hence, increase nominal bond interest rates.
Moreover, higher oil prices, especially originating from supply
disruptions, are historically known to have a recessionary
impact on the U.S. economy (Hamilton, 2013), which is likely
to increase demand for government bonds due to their safe-
haven characteristics, and hence push up bond prices, and
reduce yields. But, if the increase in oil price is due to aggre-
gate demand resulting from global expansion, the yields will
increase. Moreover, following the ‘US Shale Revolution’, and
the United States becoming the leading exporter of refined oil
products, higher oil prices produce greater domestic income
and induce larger demand for investment in financial mar-
kets, including the bond market, and hence can push up
bond prices, and to cause a reduction in interest rates on the
bonds. In addition, Degiannakis, Filis, and Panagiotakopoulou
(2018) highlighted how oil supply shocks increase macroeco-
nomic uncertainty, while demand shocks reduce the same.
Given this, oil price increases, depending on the source of sup-
ply or demand shocks, can increase or decrease, respectively,
demand for U.S. government bonds as safe assets, producing a
corresponding reduction or hike in yield. Finally, an increase
in oil price due to risk in the equity market, resulting from the
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underlying financialization of the overall commodity market
(Bonato, 2019), is likely to be associated with higher bond
prices and declining yields.

To the best of our knowledge, this is the first article to
study the predictability of disentangled oil demand, oil
supply and financial market risk shocks at a daily fre-
quency on the entire conditional distribution of the level,
slope and curvature factors characterizing the complete
term structure of interest rates of the United States. The
remainder of this article is organized as follows: Section 2
discusses the existing literature, with Section 3 presenting
the data and explaining the three methodologies associ-
ated with the NS model, the SVAR to get the oil shocks,
and the causality-in-quantiles approach. Section 4 pro-
vides results and discussions, while Section 5 concludes.

2 | LITERATURE REVIEW

We now turn to the studies relating to the government
bond and oil markets of the United States in greater details.
One of the early works by Kang et al. (2014) utilized a
structural vector autoregressive (SVAR) model to examine
how the demand- and supply-side oil shocks influence real
bond returns of the United States at monthly frequency.
The authors reported that a positive oil market-specific
demand shock is related to significant declines in real
returns of an aggregate bond index. More recently, Demirer
et al. (2020) using daily data, among other results, found
that not only demand, but also supply shocks in the oil
market, tend to negatively impact the 10-year bond returns
of the United States, but the financial market risk shock
increases the long-term bond returns. Nguyen et al. (2020)
used a heteroscedasticity-based event study approach and
instrument for changes in oil prices with exogenous shocks
that mainly affect oil supply, to show, as in Demirer et al.
(2020), that oil price increases reduce returns on a 20 plus-
year (long-term) Treasury bond index (as well as that of
investment-grade bonds, but increases returns on high-
yield bonds). Ioannidis and Ka (2018) used the SVAR
model of Kang et al. (2014), but studied the effect of oil
price shocks in the global crude oil market on the dynamics
of yield curves of the United States (Canada, Norway, and
South Korea), as captured by the three factors of level, slope
and curvature, derived from maturities of 1–10 years. They
find that oil market-specific demand shocks result in
increases of the level factor, oil supply disruptions have
short-lived negative responses on the slope factor, while
demand-side shocks lead to a slope increase, and decline in
curvature. Unlike the aforementioned three papers, Balcilar
et al. (2020) and Nazlioglu et al. (2020) concentrated on
causal linkages between the bond and oil market-related
variables rather than analysing the impact of (structural)

oil shocks on bond returns. Specifically, Balcilar et al.
(2020) analysed causality between oil market uncertainty
and the premia of U.S. Treasury bonds, using a nonpara-
metric causality-in-quantiles framework that accounts for
misspecifications caused by uncaptured structural breaks
and nonlinearity. They found that oil uncertainty can pre-
dict an increase in premia of bonds with various maturities
(2–5 years relative to 1 year), with a stronger impact
observed at longer-term maturities. Nazlioglu et al. (2020),
using daily data and considering structural shifts as a
smooth process found, inter alia, that the causality between
bond and oil prices in the United States runs only in one
direction, from the bond market to the oil price, and not
the other way.2,3

As indicated earlier, this is the first attempt to study
the predictability of oil demand, oil supply and financial
market risk shocks at a daily frequency on the entire con-
ditional distribution of the level, slope and curvature fac-
tors. Given this, our article is a reconsideration of the
work of Ioannidis and Ka (2018) at a high frequency
based on daily oil shocks which better depicts oil price
movements as in Demirer et al. (2020) and Nguyen et al.
(2020), but, unlike the latter two papers, we study the
entire term structure of U.S. interest rates. Moreover, our
article can be considered an extension of these three
papers, as we go beyond conditional mean-based ana-
lyses, and study the entire conditional distribution of the
three factors summarizing the U.S. yield curve.

3 | DATA AND ECONOMETRIC
METHODOLOGIES

In this section, we describe the data and the basics of the
three methodologies utilized in our empirical analyses.

3.1 | Data

We collect daily zero-coupon yields of Treasury securities with
maturities from 1 to 30 years to estimate the yield curve fac-
tors for the United States. The zero-coupon bond yields are
based on the work of Gürkaynak, Sack, and Wright (2007),
and are retrieved from the Federal Reserve Board (FRB) at
https://www.federalreserve.gov/data/nominal-yield-curve.
htm. This article makes available to researchers and practi-
tioners a long history of high-frequency yield curve estimates
of the FRB at a daily frequency. The authors use a simple and
well-known smoothing technique that fits the data well, with
the resulting estimates employed to calculate bond yields for
any horizons.

In order to compute oil demand- and supply-side
shocks as well as risk shocks, following Ready (2018) this
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study uses daily price of the World Integrated Oil and
Gas Producer Index (WIOGPI),4 the volatility index (VIX)
from the Chicago Board Options Exchange (CBOE), and
the New York Mercantile Exchange (NYMEX) light sweet
crude oil futures contract prices at the nearest maturity.
These data are obtained from the Datastream database.
We use the NYMEX light sweet crude oil futures prices
as a proxy for crude oil prices and calculate the residuals
from an ARMA (1,1) model using the VIX index to cap-
ture innovations linked to the changes in the market dis-
count rate, which tend to covary with the risk attitudes of
investors in financial markets. The daily data sample is
from 5 January 2000 to 31 October 2018, with the choice
of sample period purely driven by data availability of the

shocks, given that we obtain the data on the oil and
financial market innovations from the work of Demirer
et al. (2020).

3.2 | Methodologies

3.2.1 | Extraction of the yield curve
factors

The dynamic Nelson–Siegel three-factor model of
Diebold and Li (2006) (DNS, hereafter) is applied in this
study to fit the yield curve of zero-coupon U.S. Treasury
securities. The yield curve is decomposed into three
latent factors using the Nelson and Siegel (1987) repre-
sentation in a dynamic form. The DNS with time-varying
parameters is represented as follows:

rt τð Þ=Lt + St
1−exp−λτ

λτ

� �
+Ct

1−exp−λτ

λτ
−exp−λτ

� �
,

ð1Þ

where rt represents the yield rate at time t and τ is the
time to maturity. The factor loading of Lt is 1 and loads equally
for all maturities. A change in Lt changes all yields equally,
hence Lt is the level factor, which represents the movements of
long-term yields. The loading of St starts at 1 and monotoni-
cally decays to zero. St changes the slope of the yield curve,
and hence is the slope factor, which mimics the movements of
short-term yields. The loading for Ct starts at 0 and decays to
zero, with a hump in the middle. An increase in Ct increases
the yield curve curvature, hence it is the curvature factor,
which mimics medium-term yield movements. The DNS
model follows a VAR process and is modelled in state-space
form using the Kalman filter. The measurement equation relat-
ing the yields and latent factors is:

The transition equation relating the dynamics of the
latent factors is:

~f t =Γ~f t−1 + ηt ηt �N 0,Gð Þ, ð3Þ

where rt(τ) and ut are m × 1 dimensional vectors for
interest yields with associated maturities (in our case
1–30 years) and the error terms, respectively. ft = [Lt, St,
Ct] is a 3 × 1 dimensional vector. Continuing with the
transition equation: ~f t = f t−�f is the demeaned time-
varying shape parameter matrix, G is a m×m diagonal
matrix. ηt is a 3× 1 error vector and ηt is assumed to be inde-
pendent of ut. Γ presents the dynamic relationship across
shape parameters. R is a 3×3 variance and covariance matrix.5

3.2.2 | SVAR model for disentangling oil
Price shocks

According to Ready (2018), the demand-side shocks are
defined as the proportion of returns of the WIOGPI that

rt τ1ð Þ
rt τ2ð Þ

..

.

..

.

rt τnð Þ

0
BBBBBBBB@

1
CCCCCCCCA

=

1
1−exp−τ1λ

τ1λ

� �
1−exp−τ1λ

τ1λ
−exp−τ1λ

� �

1
1−exp−τ2λ

τ2λ

� �
1−exp−τ2λ

τ2λ
−exp−τ2λ

� �

..

. ..
. ..

.

1
1−exp−τnλ
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1−exp−τnλ

τnλ
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f t +

ut τ1ð Þ
ut τ2ð Þ
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ut τ1ð Þ

0
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is orthogonal to the VIX innovations. The innovations to
the VIX are used as a proxy for risk shocks, while supply
shocks are captured by the residuals of oil-price changes
that are orthogonal to demand and risk shocks. To be
more specific, the decomposition model by Ready (2018)
takes the following matrix form:

Wt =AZt, ð4Þ

where Wt = Δoilt,RProd
t ,ξVIX,t

� �0
is a 3× 1 vector, Δoilt rep-

resents oil price changes at time t, RProd
t denotes price

changes of the WIOGPI at time t, and ξVIX,t is for the VIX
innovation. Zt = [sst, dst, rst]

0
is a 3× 1 vector of oil

supply-, demand-side shocks and risk shocks denoted by
sst, dst and rst, respectively. A is a 3× 3 coefficients
matrix.

A=

1 1 1

0 a22 a23
0 0 a33

2
64

3
75: ð5Þ

In order to achieve orthogonality among the three
types of shocks, the following condition is imposed:

A−1ΣW A−1
� �T

=

σ2ss 0 0

0 σ2ds 0

0 0 σ2rs

2
64

3
75, ð6Þ

where ΣW is the covariance matrix of the variables in Wt,
while σ2ss , σ2ds and σ2rs represent the variance of the
supply-, demand-side shocks and risk shocks, respec-
tively. The specification in Equation (6) denotes a
renormalization of a standard orthogonalization
applied to construct structural shocks in a SVAR
model. Note that the oil shocks volatility is not nor-
malized to one, but the sum of the three shocks, by
constructions, equals to the total variations of oil
prices. This approach of decomposing oil price
changes defines an oil supply shock as the component
of oil price movement that cannot be explained by
changes in global aggregate demand and changes in
financial-market uncertainty.6

3.2.3 | Causality-in-quantiles model

Finally, we describe the nonparametric causality-in-
quantiles approach of Jeong et al. (2012). Let yt denote Lt,
St or Ct and xt correspond to sst, dst or rst, considered in
turn in a bivariate set-up. Further, let Yt − 1 ≡ (yt − 1,
…, yt − p), Xt − 1 ≡ (xt − 1, …, xt − p), Zt = (Xt, Yt), and

Fyt j� ytj�ð Þ denote the conditional distribution of yt given �.
Defining Qθ(Zt−1)≡Qθ(yt|Zt−1) and Qθ(Yt−1)≡Qθ(yt|Yt−1),
we have Fyt jZt−1

Qθ Zt−1ð ÞjZt−1f g= θ with probability one.
The (non)causality in the θ-th quantile hypotheses to be
tested are:

H0 : P Fyt jZt−1
Qθ Yt−1ð ÞjZt−1f g= θ

� 	
=1, ð7Þ

H1 : P Fyt jZt−1
Qθ Yt−1ð ÞjZt−1f g= θ

� 	
<1: ð8Þ

Jeong et al. (2012) show that feasible kernel-based test
statistics have the following format:

ĴT =
1

T T−1ð Þh2p
XT

t= p+1

XT
s= p+1,s≠t

K
Zt−1−Zs−1

h

� �
ε̂t ε̂s,

ð9Þ

where K(�) is the kernel function with bandwidth h, T is
the sample size, p is the lag order, and
ε̂t = 1 yt ≤ Q̂θ Yt−1ð Þ� 	

−θ is the regression error, where
Q̂θ Yt−1ð Þ is an estimate of the θ-th conditional quantile
and 1{�} is the indicator function. The Nadarya–Watson
kernel estimator of Q̂θ Yt−1ð Þ is given by:

Q̂θ Yt−1ð Þ=
PT

s= p+1,s≠tL
Y −Ys−1

h

� �
1 ys ≤ ytf g

PT
s= p+1,s≠tL

Y t−1−Ys−1

h

� � , ð10Þ

with L(�) denoting the kernel function.
The implementation of causality testing via quantiles

involves setting up three key parameters: the lag order (p),
the bandwidth (h), and the kernel types for K(�) and L(�).
We use Gaussian kernels for K(�) and L(�). p is optimally
selected to be 1 according to the Schwarz Information Cri-
terion (SIC). The SIC is known to select a parsimonious
number of lags and, thereby, prevents over-
parameterization problems associated with nonparametric
approaches. Hurvich and Tsai (1989) examine the Akaike
Information Criterion (AIC) and show that it is biased
towards selecting an overparameterized model, while the
SIC is asymptotically consistent. h is determined by the
leave-one-out least-squares cross-validation.

4 | EMPIRICAL RESULTS

4.1 | Preliminary analyses

The data for the three yield curve factors of level, slope
and curvature and three shocks, that is, oil supply, oil
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demand and financial market risks are summarized in
Table A1 and plotted in Figure A1 in the Appendix of the
article. Among the dependent variables, the average
value of the slope factor is negative, indicating that, on
average, yields increase along with maturities. The curva-
ture associated with medium-term maturities has a
higher average value than the level factor, which corre-
sponds to long-term yields. This result is in line with Kim
and Park (2013) who also used daily bond yields of the
United States and is indicative of liquidity issues for
bonds with very long maturities. The curvature factor is
also the most volatile among the three factors, followed
by the slope and level factors.7 The supply shock has the
highest positive mean value, with negative average values
for the risk and demand shocks. Unsurprisingly, the risk
shock is most volatile, with the variance of the supply
shock being greater than that of the demand shock. Due
to the overwhelming rejections of the null hypothesis of
normality under the Jarque-Bera (J-B) test, all variables
are non-normal, and this result, particularly for Lt, St and
Ct, provides preliminary motivation to look into a
quantiles-based approach, to analyse the influence of
shocks on these variables.

Before discussing our findings of the causality-in-
quantiles testing results, for the purpose of completeness
and comparability, we performed the standard linear test
of Granger causality, with a lag of 1. The χ2(1) statistics
involving the causality running from cross-validation, dst
or rst to Lt, St, and Ct are reported in Table A2 in the
Appendix of the article. The null hypothesis, that the
three oil shocks do not Granger cause the three latent
factors of the yield curve considered in turn in a bivariate
set-up, cannot be rejected at the conventional 5% level of
significance, with only the demand shocks shown to
weakly (at the 10% level) predict the slope component.
Therefore, based on the standard linear test, we conclude
no significant oil and risk shock-related effects on the
level, slope or curvature of the U.S. yield curve.

Due to the insignificant results from the linear causal-
ity testing, we examined statistically the existence of
structural breaks and nonlinearity in the relationship
between the three latent factors of the term structure
with the three shocks. The presence of regime changes
and nonlinearity would motivate the use of the
nonparametric quantiles-in-causality testing, as this
quantiles-based test would address structural breaks and
nonlinearity in the relationships between the investigated
variables in a bivariate set-up. For this reason, we use the
Brock, Dechert, Scheinkman, and LeBaron (1996) (BDS)
test on the residuals from the Lt, St, and Ct equations
involving one lag of the three factors and sst, dst or rst.
Table A3 in the Appendix shows the BDS testing results
of nonlinearity. As indicated in the table, the results

show strong evidence for the rejections of the null
hypothesis of i.i.d. residuals at various dimensions (m),
which suggests nonlinearity in the relationships between
the factors and the shocks. In order to further justify the
use of the causality-in-quantiles method, in Table A4, we
also used the UDmax and WDmax tests of Bai and Perron
(2003), to detect 1 − M structural breaks in the relation-
ships between Lt, St and Ct with sst, dst or rst, allowing for
the heterogeneous error distributions across breaks.
While applying these tests to the Lt, St and Ct equations
involving one lag of the three factors and the three
shocks in a bivariate structure, we were able to detect as
many as five breaks under all nine cases, as reported in
Table A3. The regime changes were found to correspond
to sharp increases in global demand and speculative bub-
bles in the early 2000s, the global financial and European
sovereign debt crises, and the oil price shock of mid-2014
which lasted until the first quarter of 2015.

4.2 | Causality-in-quantiles results

Because of the strong evidence of structural breaks and
nonlinearity in the relationships between the latent fac-
tors and shocks, we next turn our investigations into the
causality-in-quantiles testing. It must be realized that by
analysing the entire conditional distribution of the three
latent factors, with low and high quantiles capturing
low and high values of the same, we are capturing asym-
metric causality.8 As shown in Figure 1, which presents
the results of this test for the quantile range 0.05–0.95,
the null hypothesis that sst, dst or rst do not Granger
cause Lt, St and Ct is overwhelmingly rejected at the 5%
significance level over the entire conditional distribu-
tion. In fact, the null hypothesis is rejected at the 1% sig-
nificance level over the quantile range 0.10–0.90 in all
cases, and also at the lowest quantile of 0.05 for all the
shocks affecting the level, and risk and supply shocks
for slope and curvature. The results suggest that, when
accounting for structural breaks and nonlinearity in a
nonparametric approach, there is strong evidence of pre-
dictability from all the shocks to the three factors char-
acterizing the U.S. term structure of interest rates, with
the highest impact at the median for Lt and Ct, and at
the quantile of 0.55 for St, unlike the complete lack of
causality reported in the results using the linear method.
To put it another way, the oil and risk shocks can pre-
dict the yield curve factors, irrespective of the magni-
tude of these factors as captured by the various
quantiles of the conditional distribution of Lt, St and Ct.
The importance of all these shocks is in line with the
findings of Demirer et al. (2020) and Nguyen et al.
(2020) in terms of the supply shock, but now we show
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that these shocks actually affect the entire yield curve
over all their phases rather than just the bonds with
maturities of 10 years and 20-plus years, respectively, at
their conditional means. Moreover, while Ioannidis and

Ka (2018) pointed out that oil supply and demand
shocks only impact the slope, we are able to show that
oil shocks can actually predict all three yield curve fac-
tors based on a data-driven model. The strongest evi-
dence of predictability at and around the median, which
corresponds to the normal state of the yield factors, is in
line with the findings of Ioannidis and Ka (2018), who,
based on a pre-global financial crisis sub-sample found
that oil market disturbances cause relatively stronger
impacts on interest rates, compared to when the rates
are extremely low under the ZLB situation, which in our
case is characterized by the lower quantiles of the condi-
tional distributions of Lt, St and Ct.

We now dig deeper into our results, in terms of the
strength of each of these shocks in predicting the three
factors, which we are able to do, given that we standard-
ized the shocks to have unit variance, by dividing the oil
supply and demand, and risk shocks by their respective
standard deviations. While, in general, the predictive abil-
ity of these shocks is quite similar for the factors, we find
that the risk shocks are associated with a relatively stron-
ger impact on the slope (see Figure 1b), and the oil supply
shock on the curvature (see Figure 1c). As far as the level
factor is concerned, the results are quantile-specific with
demand shocks having a stronger influence at the lower
quantiles, risk shocks around the median, and supply
shocks at the moderately high upper quantiles (see
Figure 1a). In general, monetary policy, that is, the
slope factor, is shown to respond strongly to financial
market risks, that is, uncertainty (a result in line with
Çekin, Hkiri, Tiwari, & Gupta, 2020), while higher
inflation expectations arising from the negative supply
shocks tend to drive the medium-term interest rates,
especially around the conditional median of the curva-
ture – something also observed to some degree by
Ioannidis and Ka (2018) for the pre-crisis sub-sample.

Although robust predictive inference is derived based
on the causality-in-quantiles test, it is also interesting to
estimate the sign of the effects of the oil shocks on the
level, slope and curvature at various quantiles. However,
in a nonparametric framework, this is not straightfor-
ward, as we need to use the first-order partial derivatives.
The estimations of partial derivatives for nonparametric
models may have complications, since nonparametric
methods can exhibit slow convergence rates, due to the
dimensionality and smoothness of the underlying condi-
tional expectation function. However, one can look at a
statistic that summarizes the overall effect or the global
curvature (i.e., the global sign and magnitude), but not
the entire derivative curve. In this regard, a natural mea-
sure of the global curvature is the average derivative
(AD) using the conditional pivotal quantile, based on
approximation or the coupling approach of Belloni,
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FIGURE 1 Causality-in-quantiles test results for the U.S. term

structure factors due to oil supply, oil demand and financial market

risk shocks. (a) Level factor; (b) slope factor; (c) curvature factor.

The horizontal axis represents the quantiles, while the vertical axis

presents the causality-in-quantiles test statistic indicating the

rejection or non-rejection of the null hypothesis that a particular

shock does not Granger cause a specific term structure factor at a

specific quantile, if the statistic is above or below the critical values

[Colour figure can be viewed at wileyonlinelibrary.com]
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Chernozhukov, Chetverikov, and Fernandez-Val (2019),
which allows us to estimate the partial ADs. The pivotal
coupling approach can also approximate the distribution
of AD using Monte Carlo simulation. These results are
reported in Figure 2, and the signs of the impacts of the
shocks are quantile-specific.

As shown in Figure 2a, demand shocks tend to posi-
tively impact the level factors associated with long-term
yields, which could be due to higher inflation expecta-
tions but could also signal lower demand for safe assets
in the wake of a growing economy, and hence lower mac-
roeconomic uncertainty. The impact of supply shocks is
generally positive at the upper quantiles associated with
higher inflation expectations, as observed by Nguyen
et al. (2020) for long-term Treasury bonds. But, the effect
is negative at lower quantiles, to around the median,
which could suggest that, in the wake of supply disrup-
tion causing economic slowdown and heightened uncer-
tainty, agents would want to invest in a safe haven, that
is, government bonds, due to its high returns
corresponding to the lower quantiles of long-term yields.
Higher financial market risk shocks also show a similar
impact on the level factor. While the negative sign at the
lower quantiles can be explained by the flight-to-safety
channel, at upper quantiles of the long-term yields the
positive sign could suggest that higher risks cause agents
to look beyond bonds with low returns, and possibly
invest in other types of safe haven such as commodities
(e.g., gold) and currencies (e.g., Swiss francs). As far as
the impact of these shocks on the slope is concerned,
Figure 2a shows that, generally, oil and risk shocks are
associated with a negative impact on the slope,
suggesting a loose monetary policy to revive the economy
due to the negative impact of the supply (as in Ioannidis
and Ka (2018)) and risk shocks, and keeping the econ-
omy growing following a positive oil demand shock,
especially given the current role of the United States as a
major exporter of refined oil products. Indeed, a positive
impact on the upper end of the conditional distribution
of the slope due to higher inflation expectations is
observed. The slope also increases to risk shocks, at some
moderately low quantiles to possibly prevent the bond
market from getting overheated, and at extreme upper
quantiles of short-term yields, which, in turn, might be
due to investment in alternative safe assets with higher
returns. In terms of the impact on curvature, as shown in
Figure 2c, supply shocks have a positive impact on
medium-term yields due to higher inflation expectations,
which is in line with the observations of Demirer et al.
(2020) for U.S. Treasury securities with a maturity of
10 years. Demand shock reduces medium-term yields as
in Ioannidis and Ka (2018), and could be associated with
a growing economy, which increases the demand for
medium-term bonds. The risk shock also negatively
impacts medium-term yields at lower quantiles, possibly
due to higher demand for bonds of these maturities as
they have higher returns – a finding similar to Demirer
et al. (2020). However, at quantiles beyond 0.25 of the
curvature, risk shocks have a positive impact, suggesting
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(c). Curvature Factor
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FIGURE 2 The sign of the impact on the U.S. term structure

factors due to oil supply, oil demand and financial market risk

shocks. (a) Level factor; (b) slope factor; (c) curvature factor. The

figures plot the average derivative at each quantile of the three

factors of the term structure due to the oil supply, oil demand and

financial market risk shocks [Colour figure can be viewed at

wileyonlinelibrary.com]
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declining returns, with possible diversification by inves-
tors into other less risky assets, which might pay higher
returns at that moment. Although we cannot provide a
one-to-one correspondence of our results with the litera-
ture as we used a quantiles-based approach rather than
conditional mean-based models, overall our results high-
light the importance of using the former framework
which is more informative than the latter, as it allows us
to identify the various channels of the oil and risk shocks
that are at work affecting the three latent factors condi-
tional on their initial states. Moreover, we use daily data
on all available maturities of U.S. Treasury securities,
that is, 1–30 years, rather than the 1–10 years used in
existing studies.

5 | CONCLUSION

Against the backdrop of sparse literature on the impact
of oil shocks on the government bond market of the
United States, we analyse the impact of oil supply, oil
demand and financial market risk shocks, derived from a
SVAR, on the entire term structure of interest rates, by
obtaining three latent factors, level, slope and curvature.
Using daily data from 5 January 2000 to 31 October 2018,
we show that standard linear tests of causality fail to
detect any evidence of predictability running from the
shocks to the three yield curve factors. However, we
show that the linear model is misspecified due to struc-
tural breaks and nonlinearity. As a result, we use a non-
parametric causality-in-quantiles framework to
reconsider the impact of the three shocks on the three
factors, with this econometric model allowing us to test
for predictability over the entire conditional distribution
of level, slope and curvature, while simultaneously being
a data-driven approach robust to misspecification due to
regime changes and nonlinearity associated with the lin-
ear model. Note that, with our sample period including
the zero lower bound, the lower quantiles of the level,
slope and curvature allow us to capture this situation
without carrying out a sub-sample analysis involving pre-
and post-global financial crisis data. Using the causality-
in-quantiles test, we find overwhelming evidence of pre-
dictability emanating from all three shocks over the
entire conditional distributions of the three factors of the
U.S. term structure, with the strongest impact observed
around the conditional median. In other words, our
results highlight the importance of controlling for model
misspecification to obtain correct inferences when ana-
lysing the impact of oil and risk shocks on the U.S. term
structure, with our findings providing evidence that such
shocks are important drivers of the entire yield curve,
irrespective of its alternative phases.

Understandably, our findings using high-frequency, that
is, daily data have multi-dimensional implications. The obser-
vation that oil and risk shocks contain predictive information
over the evolution of future interest rates in a nonparametric
set-up can help policymakers fine-tune their monetary policy
models, given that these shocks affect the slope factor of the
yield curve, which captures movements of short-term interest
rates. Moreover, investors and risk managers can improve
their interest-rate prediction models and investment and risk
management strategies by exploiting the important role of oil
and risk shocks in the high-frequency movements of the term
structure of interest rates. Last, academic researchers may also
use the findings of this article to explain deviations from
asset-pricing models by accounting for oil supply- and
demand-side shocks, and financial market risk shocks in their
pricing kernels, which, however, need to be nonlinear.

While we concentrate on U.S. Treasury securities given
their global dominance in the sovereign bond market, as
part of future research, it would be interesting to extend
our analysis to the term structure factors associated with
the government bond markets of other developed and
emerging countries. Further, it would be interesting to
extend the current data set from 2018 to recent dates, to
account for the massive fluctuations in the oil market
(with oil price even becoming negative for a day), due to
the Russia-Saudi Arabia price war, and also the impact of
the COVID-19 outbreak. In terms of the latter issue,
instead of the VIX, we can use the recently developed
financial market volatility index due to various infectious
diseases by Baker, Bloom, Davis, and Terry (2020).
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ENDNOTES
1 The data are according to the Securities Industry and Financial
Markets Association (SIFMA)'s Capital Markets Fact Book
in 2019.

2 Wan and Kao (2015) found that positive shocks in oil prices
decrease the spreads between the AAA and BAA rated bonds, and
hence, provided early evidence of the relationship between the oil
market and investment bonds. In this regard, Gormus, Nazlioglu,
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and Soytas (2018) too detected significant causality from the oil
market to the high-yield bond market in terms of both price and
volatility.

3 A working paper that must be mentioned is the work of Coro-
nado, Gupta, Nazlioglu, and Rojas (2020). These authors used his-
torical monthly data from the United States over the period
1859:10 to 2019:03 to detect time-varying evidence of bi-
directional spillovers between oil and 10-year government bond
returns, which is robust to the inclusion of stock returns as a con-
trol variable in the model. They detected time-varying causality-
in-volatility between sovereign bond and oil markets, as well as
spillovers in returns and volatility from the oil market to corpo-
rate bonds.

4 The index of world integrated oil and gas producer consists of the
world's largest oil-producing firms listed in international stock mar-
kets. It captures the stock price movements of global oil producer
firms, such as Exxon, BP, Repsol, Chevron, etc., but excludes those
nationalized oil producers, such as Saudi Aramco and ADNOC.

5 Please refer to Diebold and Li (2006) for detailed estimation
procedures.

6 In a sense, it can be argued that in this framework supply-side
shocks relate to event- or region-specific information that is not
accounted for by the impacts related to financial markets.

7 Based on the suggestion of an anonymous referee, following
Ludvigson and Ng (2009, 2010), we regressed the 1–30 year yields
considered in turn on the three latent factors of level, slope and
curvature in a bivariate set-up, and recorded the R2 of each of
these regressions. The highest R2 were consistently recorded for
the level factor, followed by slope and curvature factors for all the
30 yields considered. This result suggested that the movements in
the yield curve are primarily captured by bonds of longer
maturities.

8 An anonymous referee suggested that we should apply the asym-
metric causality test of Hatemi-J (2012) to capture the impact of
positive and negative shocks on the positive and negative compo-
nents of the latent factors. While we are able to capture low and
high values of the dependent variable, that is, the factors, to analyse
the impact of low and high values of the shocks, we applied the
portmanteau test of Han, Linton, Oka, and Whang (2016) derived
from a cross-quantilogram. We rely on this methodology since the
asymmetric causality test of Hatemi-J (2012) is not applicable in
our context as it requires non-stationary data, while our underlying
variables must be stationary, besides the fact that the test is also
conditional mean-based and less informative. Using the cross-
quantilogram method, as with our causality-in-quantiles test, we
found that, in general, the shocks have the strongest effects
around the conditional median, but now with the added, non-
surprising, information that higher values of the shocks have a
stronger predictability on the level, slope and curvature factors.
The complete details of these results are available upon request
from the authors.
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APPENDIX A.

TABLE A1 Summary statistics

Variable

Statistic Level Slope Curvature Supply shock Demand shock Risk shock

Mean 2.5351 −1.1521 8.2426 0.0024 −0.0004 −0.0056

Median 2.6493 −1.5435 9.3066 0.0358 0.0232 −0.5744

Maximum 6.1090 6.1745 27.2988 17.4887 9.4707 78.6970

Minimum −6.1235 −4.8061 −4.2672 −17.7642 −8.9221 −31.9382

Std. Dev. 1.6891 1.7062 5.3420 2.0846 1.1575 6.7924

Skewness −1.5885 0.5813 −0.1545 −0.0644 −0.0609 1.1110

Kurtosis 7.5039 2.8111 3.3143 8.4963 9.2568 10.6887

Jarque-Bera 5,964.3060* 272.3718* 38.1354* 5,934.3570* 7,688.7710* 12,575.7600*

Observations 4,712

*Indicates rejection of the null hypothesis of normality at 1% level of significance.

TABLE A2 Linear Granger

causality test results
χ 2(1) Statistic

Independent variable

Dependent variable Demand shock Supply shock Risk shock

Level 2.3744 0.0114 0.0056

Slope 3.7633* 8.00E−05 0.8565

Curvature 1.0165 0.2773 0.0815

*Indicates rejection of the null hypothesis of causality at 10% level of significance.

TABLE A3 Brock et al. (1996) (BDS) test of nonlinearity

Dimension (m)

Dependent variable Independent variable 2 3 4 5 6

Level Demand shock 21.4110* 26.1543* 29.2440* 32.0890* 34.9449*

Supply shock 21.3531* 26.0730* 29.1570* 32.0114* 34.8799*

Risk shock 21.3315* 26.0138* 29.0911* 31.9104* 34.7450*

Slope Demand shock 20.8799* 24.9129* 27.7581* 31.2403* 34.6187*

Supply shock 20.8838* 24.9576* 27.8415* 31.2155* 34.4759*

Risk shock 20.8799* 24.8768* 27.7012* 31.1188* 34.3935*

Curvature Demand shock 20.2598* 24.5034* 27.5736* 30.3580* 33.1265*

Supply shock 20.0849* 24.3450* 27.4582* 30.2410* 33.0220*

Risk shock 20.0808* 24.3775* 27.4722* 30.2628* 33.0172*

Note: Entries correspond to the z-statistic of the BDS test with the null hypothesis of i.i.d. residuals, with the test applied to the residuals recovered from the
three yield curve factor equations with one lag each of level, slope and curvature, and demand, supply, and risk shocks.
*Indicates rejection of the null hypothesis at 1% level of significance.
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TABLE A4 Bai and Perron (2003) test of multiple structural breaks

Dependent variable Independent variable Break dates

Level Demand shock 11/07/2002 10/13/2005 12/16/2008 12/08/2011 10/06/2014

Supply shock 11/07/2002 10/13/2005 12/15/2008 10/27/2011 3/18/2015

Risk shock 11/07/2002 10/13/2005 12/16/2008 10/20/2011 3/16/2015

Slope Demand shock 12/17/2002 10/13/2005 10/15/2009 10/16/2012 8/25/2015

Supply shock 12/17/2002 10/13/2005 2/10/2009 1/05/2012 2/20/2015

Risk shock 12/17/2002 10/13/2005 10/15/2009 10/16/2012 8/17/2015

Curvature Demand shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 11/10/2014

Supply shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 3/18/2015

Risk shock 2/14/2003 3/20/2006 1/14/2009 1/09/2012 11/10/2014

Note: Entries correspond to the break dates obtained from the three-yield curve factor equations with one lag each of level, slope and curvature, and demand,

supply and risk shocks.
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FIGURE A1 Data plots [Colour figure can be viewed at wileyonlinelibrary.com]
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