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ABSTRACT

Modelling of concrete through 3D constitutive material models is a challenging subject due to
the numerous nonlinearities that occur during the monotonic and cyclic analysis of reinforced
concrete structures. Additionally, the ultimate limit state modelling of plain concrete can lead
to numerical instabilities given the lack of steel rebars that usually provide with the required
tensile strength inducing numerical stability that is required during the nonlinear solution
procedure. One of the commonly used 3D concrete material models is that of the Kotsovos and
Pavlovic, which until recently it was believed that when integrated with the smeared crack
approach, it can only be used in combination with relatively larger in size finite elements. The
objective of this study is to investigate into this misconception by developing different
numerical models that foresee the use of fine meshes to simulate plain concrete and reinforced
concrete specimens. For the needs of this research work, additional experiments were
performed on cylindrical high strength concrete specimens that were used for additional
validation purposes, whereas results on a reinforced concrete beam found in the international
literature were used as well. A discussion on the numerical findings will be presented herein
by comparing the different experimental data with the numerically predicted mechanical
response of the under study concrete material model.

Keywords: Finite Element Method, Fine Meshes, Reinforced Concrete, High-Strength
Concrete, Smeared Crack Approach, Damage Mechanics.

1.  Introduction

Modelling concrete has been the subject of numerous research studies the last 70 years. The
main approach foresaw the use of simplistic 1 or 2 dimensional material models that did not
consider the full stress-strain relationship, leading towards non-objective numerical models
that were able to capture specific behaviours of simple structural members such as beams and
columns that are bending dominated. It was not until the last two decades that scientists began
to investigate the option of modelling the concrete domain through a more detailed approach
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that foresaw the use of 3D constitutive material models that have the ability to capture material
nonlinearities due to micro-cracking and macro-cracking.

One of the most promising numerical models that were presented in the international literature
was that of the Kotsovos and Pavlovic [1] in 1995 that was thereafter algorithmically improved
by Markou and Papadrakakis [2]. The main objective of the work presented in [2], was to use
this constitutive material to model full-scale structures through coarse meshes that would allow
the seismic assessment of reinforced concrete (RC) structural systems under ultimate limit state
conditions. An attempt of modeling full-scale structures was also presented by Engen et al. [3]
in 2017, where large-scale models were analysed under monotonic loading conditions. The
assumption in the prementioned research works was to use a 15-25 cm in size hexahedral
elements for the discretization of the concrete domain.

Further development and use of the 3D detailed modeling approach was presented in [4-24],
where the adoption of relatively large hexahedral elements was assumed. This assumption was
solely based on computational restrictions and was not related to the fact that the proposed
method was not suitable when finer meshes were used. One of the largest  models that  were
nonlinearly analysed through the proposed modeling approach in [2] to date, is the RC bridge
of 100m span presented in [25], which foresaw the use of more than 100,000 concrete
hexahedral elements and more than half a million embedded rebars. The largest model to date
is the Nuclear Building presented in [18] that foresaw the use of more than 2.7 million
embedded rebar elements found within the 181,076 hexahedral concrete elements.

In order to investigate the mesh sensitivity of the method, a parametric investigation was
performed in [2], where three different mesh sizes were used to discretize RC beams with and
without stirrups. Nonetheless, the hexahedral elements did not foresee the use of fine meshes
due to the corresponding modelling objective that foresaw the use of the 3D detailed modelling
approach in full-scale RC structures analyses. A more recent attempt to investigate the mesh
sensitivity of the method was performed by Markou and AlHamaydeh [26] in 2018, where the
discretization of a deep beam reinforced with FRP-(fibre reinforced polymer) rebars was
performed through the use of different in size hexahedral 20-noded elements. The smallest in
size element that was used in that research work [26] was 5 cm, while the largest was 20 cm.
According to the numerical investigation and the mesh sensitivity analysis it was demonstrated
that the numerical results and the proposed method [26] were not significantly affected from
the element size.

When using 3D concrete material models that are based on plasticity and a more homogenous
approach in simulating cracking through continuum mechanics, the need of finer meshes is
needed to achieve stable solutions. This observation was also confirmed by other researchers
[27] where a comparison of the software packages ABAQUS [28], ANSYS [29] and LS-
DYNA [30] was presented. Cotsovos et al. [30] had to use very small in size elements (1-3cm
hexahedral edge size) to be able to proceed with the nonlinear analysis of a RC beam. When
larger in size elements were used, the analysis was not able to provide with a complete P-
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curve according to the results that were obtained when finer meshes were used [27]. Abed et
al. [31] reported similar findings, where half of a RC deep beam was modelled due to the
computational demand that derived from the adopted fine mesh that was developed in
ABAQUS. Other research work that uses the concept of large sized elements and the Kotsovos
and Pavlovic material can be found in [40, 41]. It is important to note at this point that, different
material models were presented that aim to provide with mesh depended concrete material
formulations [42-44], but will not be investigated in this research work given that this is outside
of the research objectives of this manuscript.

Therefore, this research work has as a main objective to investigate the numerical response of
the 3D model of Kotsovos and Pavlovic [1] as it was modified by Markou and Papadrakakis
[2] and its ability to reproduce experimental data of normal and high strength concrete (HSC)
specimens through the use of fine meshes. Furthermore, the ability of the proposed modelling
approach [2] to reproduce experimental data of RC specimens when fine meshes are used, is
also investigated in an attempt to conclude on whether the idea that the Kotsovos and Pavlovic
constitutive concrete material model is only suitable for coarser meshes as stated in [1]. It is
important to note at this point that the authors of [1] claim that due to the fact that the model
was developed through the use of experimental data performed on concrete specimens that had
dimension between 10-20 cm the numerical application of the constructed model is limited to
hexahedral  finite  elements  of  this  size.  The  research  work  presented  in  this  manuscript  will
demonstrate that this is not true.

2. Experimental Campaign of High Strength Concrete

The numerical investigation aims to present the ability of the proposed modelling approach to
capture both the standard and HSC specimens’ mechanical response through fine meshes.
Given that the modeling of standard plain concrete with fine meshes has been presented in [32]
through the use of experimental data found in the international literature, experimental tests
were performed on HSC cylindrical specimens to generate a sufficient number of experimental
data to be used for the needs of the parametric investigation that will be presented in Section 4
on HSC as well.

HSC is  a  concrete  that  usually  exceeds  strength  of  50  MPa 28  days  [33]  after  casting.  The
strength of the concrete after 28 days of curing depends on the mix design and the admixtures
and/or accelerators that have been added to the mix. Portland cements are commonly used for
all concrete mixes not only in South Africa, but all over the world. It is important to know what
these cements consist of to determine the properties the concrete mix will possess after a
specific time. Table 1 is a table that explains the different types of Portland cements and the
percentage of additions to the cement ingredients according to SANS 50197-1 [34], the design
code used herein to develop the HSC mix.

In this study, a 52.5R cement [34] was used due to its rapid settling and its early strength after
a few days. In terms of aggregates, dolomite rock was available to use at the laboratory, which



4

is a material that has the highest specific gravity for rocks available for concrete casting in
South Africa. The quantities that were used to develop the HSC material are given in Table 2.

It was decided that 150 mm in diameter and 300 mm in height cylinders (see Fig. 1) would be
used for the experiments. According to the experimental campaign, the cylinders were tested
for four different curing durations (3, 7, 10 & 28 days). Young modulus values and
compression strength tests were performed for all days of testing.

Table 1. SANS Classification of cement (SANS 50197-01)

Table 2. Quantities for the concrete mix

Materials Mass (in kg)

Water 24.45 (24.45l)
Cement 64.34
Dolomite 192.97
Crushed Dolomite sand 168.53
Super-plasticizer 2.45 (2.45l)

Natural Natural
calcined

Siliceous Calcareous

K S D(b) P Q V W T

CEM I Portland cement CEM I 95-100 - - - - - - - - - 0-5

80-94  6-20 - - - - - - - - 0-5

65-72 21-35 - - - - - - - - 0-5

CEM II A-D 90-94 -  6-10 - - - - - - - 0-5

80-94 - -  6-20 - - - - - - 0-5

65-79 - - 21-35 - - - - - - 0-5

80-94 - - -  6-20 - - - - - 0-5

65-79 - - - 21-35 - - - - - 0-5

80-94 - - - -  6-20 - - - - 0-5

65-79 - - - - 21-35 - - - - 0-5

80-94 - - - - -  6-20 - - - 0-5

65-79 - - - - - 21-35 - - - 0-5

80-94 - - - - - -  6-20 - - 0-5

65-79 - - - - - - 21-35 - - 0-5

80-94 - - - - - - -  6-20 - 0-5

65-79 - - - - - - - 21-35 - 0-5

80-94 - - - - - - - -  6-20 0-5

65-79 - - - - - - - - 21-35 0-5

80-94 0-5

65-79 0-5

35-64 36-65 - - - - - - - - 0-5

20-34 66-80 - - - - - - - - 0-5

 5-19 81-95 - - - - - - - - 0-5

65-89 - - - 0-5

45-64 - - - 0-5

40-64 18-30 - - - - - 0-5

20-39 31-50 - - - - - 0-5

<------ 11-35 ------>

<------ 36-55 ------>

<------ 18-30 ------>

<------ 31-50 ------>

<---------------- 6-20 ---------------->

<---------------- 21-35 ---------------->

CEM
IV

CEM V

Pozzolanic
cement

Composite
cement

CEM IV A
CEM IV B

CEM V A
CEM V B

Composition, percentage by mass

PozzolanaMain
Types

Notation of products (types of
common cements)

Clinker Blastfurnac
e slag

Silica
fume

Burnt
shale

Minor
additional

constituents

Fly ash Limestone

L LL

CEM III A
CEM III B
CEM III C

CEM II

Portland-slag
cement

CEM III

CEM II A-S
CEM II B-S

CEM II A-P
CEM II B-P
CEM II A-Q
CEM II B-Q

CEM II A-V
CEM II B-V
CEM II A-W
CEM II B-W

CEM II A-T
CEM II B-T

CEM II A-L
CEM II B-L
CEM II A-LL
CEM II B-LL

CEM II A-M
CEM II B-M

Portland-silica
fume cement
Portland-
pozzolanic
cement
Portland-fly ash
cement
Portland-burnt
shale cement
Portland-
limestone cement

Portland-
composite
cement
Blastfurnace
cement
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Fig. 2 shows the experimentally obtained average uniaxial compressive strength of the HSC cylindrical
specimens  (a  total  of  24  HSC  cylindrical  specimens  were  constructed;  six  specimens  per  age).
According to the graph, the concrete mix developed a uniaxial compressive strength of 50 MPa after 3
days of curing, while the maximum uniaxial compressive strength was observed after 28 days of curing,
where a 75.62 MPa strength was recorded. Furthermore, Fig. 3 shows the experimentally obtained
average Young moduli (E-values) for each set of cylinders that were tested during the different testing
days. The values found in Figs. 2 and 3 were the exact values used in the numerical models developed
for  the  needs  of  the  3D simulations  presented  in  Section  4.  It  must  be  stated  herein  that  half  of  the
cylinders were used to perform tensile tests

Figure 1. Demoulded HSC cylinders.

Figure 2. Graph of the average uniaxial compressive strength of the concrete cylinders over time

Figure 3. Average E-values of the HSC cylinders over time
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3. Constitutive Material Modelling of Concrete and Steel Rebars

The concrete material model, as it was presented in [2], was developed by performing
numerical regression on experimental data on concrete specimens that were tested under
uniaxial  and  triaxial  stress  conditions  [1].  The  model  foresees  the  use  of  generalized  stress-
strain relationships that are expressed by decomposing each state of stress into a hydrostatic
( 0)  and  a  deviatoric  component  ( 0). According to the material model formulation, the
hydrostatic and deviatoric stresses that are computed from the corresponding hydrostatic and
deviatoric strains ( 0, 0) are expressed as follows:

0 0
0 0 0 0,

3 2
id

h d
S SK G (1)

In Eq. 1, id 0 0,fc) is the equivalent internal hydrostatic stress that accounts for the coupling
between 0 and 0d. Furthermore, the secant bulk and shear moduli KS 0 0) and GS 0 0) are
obtained by assuming that the coupling stress id is ignored.

Given that the stress id is a pure hydrostatic correction, the relationships in Eq. 1 are equivalent
to:

0
3

2
ij id ij S

ij id ij
S S

v
G E

(2)

where, ij is the Kronecker delta, ij and ij are the total stresses and strains, respectively. Eq. 2
is a relationship expressed in the Global coordinate system. ES 0 0,fc) and S 0 0,fc) are the
secant Young modulus and Poisson ratio, respectively, derived from KS and GS, using the
standard expressions in Eq. 3.

9 3 2,
3 6 2

S S S S
S S

S S S S

K G K GE
K G K G (3)

For determining whether concrete has failed, the Willam and Warnke [35] formula is used:

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0

0 2 2 2 2
0 0 0 0

2 ( )cos (2 ) 4( )cos 5 4
4( )cos (2 )

c c e c e c c e e c e
u

c e e c

(4)

This expression describes a smooth convex curve that is graphically presented in Fig. 4. Within
Eq. 4,  represents the rotational angle that the deviatoric stress vector forms with one of the
projected stress principal axes on the deviatoric plane. As it can be seen in Fig. 4, 0e and 0c are
the deviatoric stresses that form at  = 0  and  = 60 , respectively. Additionally, when the failure
criterion is satisfied, the smeared crack approach is activated, where the macro-cracking is
simulated accordingly [2].

It is also important to note here that the concrete material model was algorithmically improved
as it was discussed in [2]. Following an extensive parametric investigation, it was found that in
the case where the ultimate deviatoric stress 0u at a specific Gauss point was smaller than 50%
of the ultimate strength expressed by Eq. 4, then the elastic constitutive matrix of that Gauss
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point could be used during the stiffness matrix computation. For the case when the deviatoric
stress 0u exceeded the 50% of the concrete ultimate strength, then the material law was used
to update the constitutive matrix by updating the KT and GT tangential moduli. For more
information,  one  may  refer  to  [2]  and  [32],  whereas  the  latest  advances  in  nonlinear  cyclic
analysis of bare and retrofitted RC structures can be found in [19] and [22].

(a)                                                                             (b)
Figure 4. Graphical representation of the concrete’s ultimate-strength surface. (a) 3D view in the stress space and (b) typical

cross-section of the strength envelope that coincides with a deviatoric plane. [2]

In regards to modeling the embedded steel rebars, the material incorporated in Reconan FEA
[36] which was the software used to perform all numerical analysis presented in this work, was
that of Menegotto-Pinto [37] that also accounts for the Bauschinger effect. The steel material
relationships of stress-strain take the following form:

*
* *

* 1/
(1 )

(1 )R R
bb (5)

where,
*

r 0 r( ) / ( ), (6)
*

r 0 r( ) / ( ) (7)

0 1 2R R a / ( ) (8)

It must be noted at this point that b is the strain hardening ratio and  the normalized plastic
strain variable. Furthermore, the parameters R0, a1 and a2 were determined through numerical
investigations and assumed herein to be equal to 20, 18.5 and 0.15, respectively.

4. Numerical Investigation

4.1 Normal Strength Concrete Specimens

As it was presented in [32], the experimental data found in [38] were used to test the abilities
of the developed algorithm proposed in [2] in capturing the mechanical response of cylindrical
specimens constructed out of normal strength concrete. Fig. 6a shows the experimental setup
and the corresponding stress-strain curves that were used to validate the developed algorithm.
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Specimen N2 was chosen for the validation procedure, a specimen that derived a maximum
uniaxial strength of 40 MPa. The dimensions of the specimens [38] foresaw for a 10 cm
diameter and a 20 cm height.

The specimen was discretized through the use of 8-noded isoparametric hexahedral elements
with sizes of 1, 2, 3 and 10 cm along their height (see Fig. 6). Additionally, the steel crushing
plates were also discretized through the use of hexahedral elements that assumed a linear
material behaviour (see red elements in Fig. 6). One of the main advantages of the material
model proposed in [1] is that it requires the minimum number of material concrete properties
to be defined prior to any analysis. These are the uniaxial compressive strength fc, the Young
modulus of elasticity Ec, the Poisson ratio , the tensile strength ft (which is usually a percentage
ratio of the uniaxial compressive strength) and the shear remaining strength factor  along the
crack plane. According to the experimental data found in [38], the uniaxial compressive
strength of concrete was equal to 40 MPa (Specimen N2), where a 30 GPa Young modulus of
elasticity was used in the numerical models.

a.                                                                              b.
Figure 5. (a) Uniaxial compressive test setup and (b) experimentally obtained stress-strain curves [38].
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a.                                          b.                                      c.                                    d.
Figure 6. Finite element hexahedral meshes. (a) 1, (b) 2, (c) 3 and (d) 10 cm height of each element layer.

Figure 7. Normal strength concrete. Numerical vs experimental stress-strain results.

Fig. 7 shows the comparison between the experimental data and the numerically obtained
stress-strain curves. It is indisputable that the modeling approach manages to capture the
mechanical response of the specimen exhibiting an overall deviation of 5% from the
experimental data in terms of ultimate failure stress. In addition, the element size is found to
affect the flexibility of the models, a well know numerical phenomenon of the finite element
method, but does not significantly affect the prediction abilities of the four numerical models.
Before moving to the investigation of the HSC cylindrical specimens, the deformed shape of
the 2 cm hexahedral element model is shown in Fig. 8, where it is easy to observe the ability
of the solid elements to capture the lateral expansion of the cylindrical concrete specimen due
to the compressive load. Additionally, the local confinement at the areas where the concrete
specimen is connected to the steel plates is visible.
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Figure 8. Normal strength concrete. Deformed shape prior to failure and von Mises strain contour. 2 cm hexahedral element
size model.

To further investigate the numerical response of Reconan’s nonlinear solvers (displacement-
and force-control) when combined with the developed material model and fine meshes, the
specimen in Fig. 5, was re-meshed by using a 2 and 3 cm element sizes. Given that the FE
meshes shown in Fig. 6 were developed by auto meshing a cylinder of 10 cm diameter, the
final polygon section’s area of the mesh was around 6% smaller than the circular area of the
physical specimen for the case of the 3 cm model and around 2.5% smaller for the 2 cm model.
This was also the reason why the stress diagrams in Fig. 7 were not able to reach the ultimate
compressive strength. Therefore, the newly developed meshes for the needs of this numerical
investigation, foresaw a relevant increase of the cylindrical geometry that would thereafter auto
meshed assuring that the total area of the elements along the xy plane would be equal to the
area of a circular section of a 10 cm diameter.

Furthermore, the two new meshes were analysed by using both the force- and displacement-
control solvers integrated within Reconan FEA, where two different displacement and load
increments were assumed. As it can be seen in Fig. 9, the imposed displacement was set to 1
mm, while the displacement-control analysis was performed for two different total
displacement increment steps, 50 and 100. The same number of load increments (50 and 100)
were implemented for the force-control nonlinear analysis. This was performed to further
investigate the robustness of the nonlinear solvers and the material model when combined with
fine meshes.

Fig. 10a shows the numerically obtained stress-strain curves for the case of the force-control
(FC) nonlinear analyses that foresaw 50 and 100 load increments. As it can be seen, the
numerically obtained curves managed to capture the uniaxial compressive strength with an
average accuracy of 3% (see Table 3), while the two models (2 and 3 cm meshes) managed to
reproduce the experimental data in an almost identical manner. It is also easy to observe that
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the same results derived from all the performed displacement-control (DC) analyses that also
foresaw the implementation of the imposed displacement through 50 and 100 steps.

Figure 9. Normal strength concrete. Re-meshed cylindrical specimens with imposed displacements.

a. b.
Figure 10. Normal strength concrete. Stress strain curves (a) Force- and (b) Displacement-control analyses with 50 and 100

increments.

Table 3. Experimental vs numerical ultimate uniaxial compressive strength.

Model
Max Strength

fcu (Mpa)
, ,

,

Experiment 40.8 -
2cm FC - 50 steps 39.43 3.37%
2cm FC - 100 steps 39.43 3.37%
3cm FC - 50 steps 39.29 3.71%
3cm FC - 100 steps 39.73 2.62%
2cm DC - 50 steps 39.48 3.24%
2cm DC - 100 steps 39.59 2.98%
3cm DC - 50 steps 39.57 3.01%
3cm DC - 100 steps 39.61 2.92%

Avg. 3.15%
Note: FC: Force-Control, DC: Displacement-Control
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Table 3, shows the comparison between the experimentally obtained uniaxial compressive
strength and the corresponding numerically derived concrete ultimate stress. It is evident that
all the under study numerical models managed to capture the experimental data without any
numerical instabilities, while the resulted stress-strain curves were not affected by the solver
type (FC or DC). In addition to that, it is important to mention at this point that the nonlinear
analysis was performed in a computationally efficient manner given that the largest model
required a mere 3 seconds to be solved (2 cm model with 100 load/displacement increments).
It is also important to state at this point that, the sudden loss of capacity observed within Figs.
7 and 10 is attributed to the brittle type of the concrete material model that assumes a total loss
of strength along the perpendicular direction of the crack plane, after a macrocrack has
occurred.

4.2 High Strength Concrete Specimens
All four HSC cylindrical specimen groups that were tested for the needs of this research work,
were modelled and analysed through the use of two different models that foresaw a 2.5 cm and
a 5 cm 8-noded hexahedral isoparametric finite element (FE) size, respectively. The two
different meshes that were constructed and used in the parametric investigation presented in
this section can be seen in Fig. 11. The approach used to develop the two meshes foresaw the
construction of a cylindrical geometry that was then used to apply an automatic discretization
attribute that assumed a 2.5 and 5 cm element size, respectively.

a. b.
Figure 11. HSC cylindrical specimens. (a) 2.5 cm and (b) 5 cm hexahedral meshes.
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Figure 12. HSC cylindrical specimens. Stress vs strain curves of the 2.5 cm models.

Figure 13. HSC cylindrical specimens. Stress vs strain curves of the 5 cm models.

Figs. 12 and 13 show the numerically obtained stress-strain curves as they resulted from the
two models for the cases of the 3, 7, 10 and 28 days HSC specimens. It is easy to observe that
the numerically predicted response of the HSC cylinders is characterised by a linear mechanical
response that is followed by an abrupt loss of capacity due to macro-cracking. This mechanical
behaviour is usual and attributed to the significant energy stored within the HSC specimens
during the uniaxial compressive test, whereas, when the first macro-cracks occur they fail in
an explosive manner. It is important to note that the vertical sudden drop at the end of each
curve was artificially added so as to indicate the complete loss of strength at the point where
the numerical models completely lost their carrying capacity.

Table 4 shows the comparison between the numerical predicted ultimate uniaxial strengths
predicted from the two models for all four curing cases and the corresponding experimentally
recorded data. It is evident that the numerical models managed to predict the uniaxial strength
of all specimens with an overall deviation from the experimental data of less than 10%. The
experimental results are compared with the numerically obtained ultimate strengths in Fig. 14
where the good agreement between them can be seen, while the numerical results were found
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to be always in favour of safety. According to this graph (Fig. 14), it can be also depicted that
the 5 cm models derived a smaller ultimate uniaxial strength compared to the 2.5 cm models.
This numerical finding is attributed to the method through which the cylinders were discretized.
As  stated  above,  the  method  foresaw  the  use  of  15  cm  in  diameter  cylinder  that  was  auto-
meshed using the desired element size. This caused the 5 cm models to have a smaller volume
compared to the 2.5 cm models that were better discretized given the smaller element size.

Table 4. HSC cylindrical specimens. Numerically and experimentally obtained ultimate uniaxial strength.

2.5 cm FE Model

Day no.
Experimental

(MPa)
FE Model

(MPa)
Difference

(%)
3 49.22 46.27 6.0
7 62.18 58.45 6.0

10 67.84 63.77 6.0
28 75.6 72.58 4.0

Average 5.5

5 cm FE Model

Day no.
Experimental

(MPa)
FE Model

(MPa)
Difference

(%)
3 49.22 44.3 10.0
7 62.18 55.96 10.0

10 67.84 61.06 10.0
28 75.6 69.56 8.0

Average 9.5

Figs. 15 and 16 show the deformed shapes and von Mises contours prior to failure, as they
derived from the nonlinear numerical analysis. Furthermore, Fig. 17 compares the
experimentally observed cracks with the numerically predicted crack pattern. It is clearly
visible that the crack patterns form in the vertical direction due to the lateral tensile stresses
that develop during the uniaxial compressive loading test, which complies with the
experimentally observed crack patterns. The smeared crack approach smears the crack
openings to the volume of concrete thus the numerically predicted cracks are denser compared
to the actual crack patterns that resulted in the physical specimen. Nevertheless, the numerical
model manages to capture the mechanical response of the HSC cylindrical specimens through
fine mesh considerations without any numerical instabilities.
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Figure 14. HSC cylindrical specimens. Numerical vs experimental data. Ultimate obtained compressive strength.

Figure 15. HSC cylinder with 2.5 cm elements. Deformed
shape and von Mises strain contour prior to failure.

Figure 16. HSC cylinder with 5 cm elements. Deformed
shape and von Mises strain contour prior to failure.

4.3 Reinforced Concrete Beam

A final model was developed in order to investigate the ability of the proposed numerical
method [2] to reproduce experimental results or RC structural members through the use of fine
meshes. To investigate the numerical response of the developed algorithm in this instance, a
RC beam that was tested under a four-point bending test [39] is finely discretized and analysed
in this section. The RC beam was reinforced with 12 mm in diameter tensile steel rebars and
5.6 mm in diameter compressive longitudinal reinforcement. According to [39], the shear
reinforcement that was used to strengthen the 2 m long beam (1.8 m net span) also foresaw the
use of 5.6 mm in diameter steel rebars spaced at 10 cm. The RC beam had a section of 15x23
cm, where a general concrete cover of 2 cm was used.
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       a.                                          b.
Figure 17. HSC cylindrical specimens. (a) Experimentally observed crack pattern after failure and (c) crack pattern prior to

failure according to the numerical model.

The RC beam was simply supported and was tested under a four-point bending configuration
(two concentrated loads were applied at a 60 cm distance from each support). After concrete
casting, the beam was cured for 7 days, where the actual testing took place. The reported
material properties [39] for concrete that were also defined within the developed numerical
model discussed in this section, foresaw a 37.2 MPa uniaxial compressive strength, a 3.03 MPa
tensile strength and a 34.9 GPa Young modulus of elasticity. Tensile tests were also performed
to acquire the material properties of the two different in diameter rebars that were used to
reinforce the RC beam specimen. The steel modulus of elasticity was measured as 215.9 GPa
and 221.4 GPa for the 12 mm and 5.6 mm in diameter reinforcement, respectively. Finally, the
yielding  stress  was  a  theoretical  value  of  450  MPa  for  both  rebar  diameters,  but  was  not
experimentally measured in [39]. The ultimate strain for steel was set to be equal to 15%.

Figure 18. RC beam. Hexahedral and embedder rebar element mesh. 25 mm hexahedral edge size.

In order to develop the FE mesh for the nonlinear vertical push over analysis, a 2.5 cm size 20-
noded hexahedral element was used. The computational demand of the 20-noded hexahedral
element is significantly higher than that of the 8-noded element, thus it was adopted herein to
further investigate the ability of the developed algorithm in capturing the mechanical response
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of RC structural members through the use of computationally demanding problems. Fig. 18
shows the mesh that was developed through the use of the 2.5 cm hexahedral element, where
the reinforcement was discretized with the embedded rod element. The model foresees the use
of 4,800 concrete hexahedral elements, 24 steel hexahedral elements that were used to
discretize the steel plates found at the supports and 960 embedded rebar rod element for
simulating the reinforcement.

Fig. 19 shows the numerically obtained curves as they derived from the nonlinear analysis. The
curves were developed by using three different load increments during the force-control
analyses that foresaw the division of the total applied load into 10, 50 and 100 increments,
respectively. It is easy to observe that the differences between the three numerically derived
curves are negligible and attributed to the different load increment steps assumed during the
three nonlinear analyses. It is also easy to observe that the numerical curves are in a good
agreement with the experimental data, where the ultimate failure load was predicted with an
average 4.4% deviation from the experimental value. Table 5 shows the comparison between
the numerically predicted ultimate forces and the experimental failure load. It is also easy to
observe that the physical specimen did not derive an elastic branch that is attributed to the fact
that the RC beam had developed small cracks due to an initial loading applied to the specimen
prior to the test [39]. Furthermore, Fig. 19 shows that the first cracking occurred at a total
applied load of 11.5 kN according to the 50 and 100 load increment models. Given that the two
nonlinear analyses that foresaw 50 and 100 load increments derived almost identical results,
the 10 and 50 load increments will be further discussed herein.

Figure 19. RC beam. Experimental vs numerical P-  curves.
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Figure 20. RC beam. Von Mises strain contour. Load step 1 prior to first crack opening. 10 load increments.

Figure 21. RC beam. Von Mises strain contour. Load step 5 prior to first crack opening. 50 load increments.

Table 5. Numerical vs experimental ultimate failure load.

a/a Model
Ultimate load

from analysis Fnum

(kN)

Difference
from

experimental
1 Experiment Fexp 82.00 -
2 10 load increments 76.80 6.3%
3 50 load increments 80.64 1.7%
4 100 load increments 77.76 5.2%

Figs. 20 and 21 show the von Mises strain contours prior to failure for the 10 and 50 load
increment models, respectively. According to analysis, the two models managed to compute
the exact same strain contour, thus reproduce the exact same deformed shape at the structural
level independently to the load increment size. Thereafter, the first damages occurred within
the concrete domain due to the opening of tensile cracks that appear at the midspan of the RC
beam. The corresponding von Mises strain contours at the first crack openings that derived
from the two analyses can be seen in Figs. 22 and 23 for the 10 and 50 load increment models,
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respectively. It is evident that the first model that assumes larger load increments (step 2; total
applied load of 19.2 kN) derives higher strain concentrations in comparison to the second
model that predicts a more accurate first crack opening load step (total applied load 11.5 kN;
step 6) due to the smaller load increment assumed. This numerical finding is well known when
nonlinear analysis is performed through the use of the FE method, while the nonlinear solver
that was used to perform the analysis is characterized by numerical stability and robustness.

Figure 22. RC beam. Von Mises strain contour. Load step 2 - First crack opening. 10 load increments.

Figure 23. RC beam. Von Mises strain contour. Load step 6 - First crack opening. 50 load increments.

Finally, the von Mises strain contour prior to failure according to the two analyses is given in
Figs. 24 and 25, where the maximum computed strains were 1.66%. In order to better visualize
the strain contours the legend’s maximum strain was capped in both figures to 0.5%, hence the
areas that are red in colour represent strains equal or larger than 0.5%. Half of the concrete
domain is visualized, where the embedded rebars and their deformed shape can be also seen.
The differences in terms of strain contours are attributed to the different load level for which
they are visualized. In this case, the 10-load increment model managed to converge during step
8 (total applied load of 76.8 kN) and failed after load increment 9 was implemented. On the
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other hand, the second model managed to compute a balance point for a total applied load of
78.72 kN (step 41), while it failed to converge due to a rebar tensile failure at load step 42.

Figure 24. RC beam. Von Mises strain contour and deformed shape prior to failure. 10 load increments.

Figure 25. RC beam. Von Mises strain contour and deformed shape prior to failure. 50 load increments.

It is evident that the model manages to capture the experimental data without any numerical
instabilities, where the only drawback was the required computational time for the solution due
to the large number of elements that were used to discretize the concrete domain. The solution
and output writing required around three and a half hours (3.7 GHz processing unit) for the
solution of the 50 load increment model. This was also the reason why the main research
objective of [32] was to develop a methodology that will use the 3D detailed modeling
approach in simulating full-scale RC structures. Nevertheless, the use of the developed
modeling approach [2] is not affected more than other existing numerical methods do when the
size of the FEs that are used to discretize the concrete domain is changed from larger elements
to smaller and vice-versa. On the contrary, the developed method [2] has the ability to provide
with objective and accurate results when larger in size finite elements are used, which
constitutes this method an ideal modeling approach when dealing with full-scale RC structures.
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As a final investigation stage on the ability of the under study modeling approach to capture
the mechanical behaviour of the RC beam, a model that assumes a hexahedral mesh size of 10
mm was developed, as it can be seen in Fig. 26.

Figure 26. RC beam. Hexahedral element mesh. Model with 10 mm hexahedral edge size.

Figure 27. RC beam. Deformed shape and von Mises strain contour prior to failure. Model with 10 mm hexahedral edge
size.

The  numerical  model  consists  of  34,500  concrete  hexahedral  elements,  where  it  is  easy  to
observe that only half of the beam was modelled to decrease the computational demand
required for the nonlinear analysis. Additionally, the applied load was imposed through 10 load
increments, whereas the energy convergence tolerance was set to 10-4. According to the
performed nonlinear analysis, the beam failed at load increment 9, where the numerically
obtained deformed shape and von Mises strain contour can be seen in Fig. 27. It is easy to
observe that the crack development at the midspan and closer to the support are distinctive,
highlighting the ability of the numerical method in capturing the crack spacing. Fig. 28 shows
the comparison between the experimental results and the two numerical models based on the
numerically obtained data, where the 10 mm element size model (ultra-fine) manages to
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capture the maximum capacity with the same accuracy but exhibits a more flexible behaviour
due to the very fine mesh.

Figure 28. RC beam. Experimental vs 25 mm vs 10 mm element models. P-  curves.

Conclusively, it is easy to say that the use of fine (25 mm) or even ultra-fine (10 mm) meshes
affects  the  final  results  like  any  other  model,  where  the  smaller  the  finite  element  used
discretize the concrete domain the more flexible the mechanical behaviour of the numerical
model. In addition to that, it is noteworthy to state that the ultra-fine model developed cracks
at the first load increment given that the concrete domain was discretized with a very small
element size that was able to capture hairline cracks at the middle of the RC beam. This was
also the reason why the mechanical behaviour predicted by the ultra-fine model was more
flexible throughout the nonlinear analysis compared to the first model. Furthermore, it is
important to say here that the analysis required around 1 week for the case of the ultra-fine
model, illustrating the reason why using this discretization approach was not considered in [5]
and why the ability to model and analyze RC structures through larger in size hexahedral
elements is of significant importance.

Finally, it is also important to note at this point that when a crack opening occurs at a Gauss
Point, the failure surface is reached, where the smeared cracking takes place. In the case where
the hexahedral finite element has a smaller size then it can be affected by the fact that the larger
physical width of the fracture process zone. This can lead to an overestimated fracture work in
the simulation deriving a more flexible behaviour. Furthermore, the use of larger load
increments may have affected the overall computed numerical response of the beam. Fig. 28
clearly demonstrates an over-flexibility of the specimens that possibly can be attributed to any
of these numerical issues. Nevertheless, the model is found to be able to capture the ultimate
failure of the RC beam specimen with a 6.3% accuracy in favor of safety.
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5. Conclusions

Finite element modelling of plain concrete specimens and a RC beam was performed through
the use of the Kotsovos and Pavlovic [1] material model as it was extended by Markou and
Papadrakakis [2]. The analyses that were performed foresaw the use of fine meshes in an
attempt to investigate a long-time misconception which states that this material model cannot
be successfully used when the concrete domain is discretized with elements smaller than 10-
20 cm; the specimen sizes of the concrete cylinders tested during the experimental campaign
that provided with the data used for the development of the 3D concrete material model [1].

The parametric investigation with fine meshes presented herein that foresaw the construction
and analysis of numerous models using the algorithm presented in [2], foresaw the use of
experimental data on plain normal strength concrete specimens found in the international
literature and experimental data on HSC cylindrical specimens that were obtained by laboratory
tests performed by the authors for the needs of this research work. In addition to that, a RC
beam that was tested in [39] was used to validate the ability of the FE algorithm proposed in
[2] and its ability to reproduce experimental data when fine meshes are used.

According to the numerical findings that were presented in Section 4 of this manuscript, the
modeling approach was found to respond satisfactorily for both plain and reinforced concrete
specimens. The numerical results provide sufficient evidence in supporting the conclusion that
through fine meshes (1-3 cm hexahedral FEs) the modeling approach manages to predict the
ultimate strength of uniaxially stressed normal strength concrete specimens with a 5%
deviation from the experimental data. The mesh sensitivity analysis showed that the results
were not significantly affected. Furthermore, the findings indicated a corresponding 7.5%
average difference from the experimental results when the modeling approach was used to
analyse the 4 different HSC cylinder groups that were experimentally tested for the needs of
this research work.

Finally, the numerical results of a 4-point bending test performed on a 2 m long RC beam fully
reinforced with conventional steel rebars demonstrate the ability of the method to capture the
experimental results. Different load increment sizes during the nonlinear analyses were also
investigated demonstrating the stability and robustness of the nonlinear solution algorithm
incorporated in Reconan FEA. Based on the numerical findings, the modeling approach
analysed the RC beam by assuming a 25 and 10 mm in size 20-noded hexahedral elements,
where the ultimate failure load was captured with a 4.4% average deviation from the
experimental data reported in [39].

It is safe to conclude at this point that the numerical investigation performed and presented in
this manuscript offer a clear indication that the Kotsovos and Pavlovic material model can be
used with both coarse and fine meshes to model the mechanical behaviour of normal or high
strength concrete structural members (plain or reinforced). It is also important to note herein
that, this is not an attribute that characterises most of the currently available 3D constitutive
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material models for concrete that usually require finer meshes so as to provide with a
numerically stable solution. Conclusively, the mesh size misconception is not valid in this case,
thus the authors strongly believe that this research work is a proof that the under study material
model performs numerically well when combined with the finite element method and in a
similar manner with any other constitutive material model currently available in the
international literature. With the only difference, that it outperforms them when used with
coarser meshes [2-26].
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