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Abstract 
Mango anthracnose disease forms typical irregular-shaped black necrotic 
spots on the fruit peel of mature fruit and is caused by Colletotrichum gloeos-
porioides. In order to improve the disease control with a limited use of fungi-
cides, new microbial agents able to limit the growth of the pathogen were 
searched in the indigenous natural flora of mango surface. In order to find a 
suitable biocontrol agent, a screening was applied to 305 epiphytic bacteria 
isolated from the carposphere of 17 mango cultivars sampled from eight loca-
tions on Reunion Island. The screening approach involved a first step based 
on the ability of the isolates to form a biofilm, to grow under fruit storage 
conditions, and to interfere with the development of C. gloeosporioides. In a 
second step, the capability of selected isolates to limit C. gloeosporioides in 
vitro mycelial growth and conidia germination was assessed and species iden-
tified. The most effective bacteria belonged to the Enterobacter, Pantoea, Ko-
sakonia and Leuconostoc genera, but for some of them, their safe use has to 
be demonstrated. Efficacy in vivo, performed on wounded mature mango 
fruit, was limited, probably because of the wounding inoculation strategy fa-
voring the pathogen. Future biocontrol treatments should focus on preharv-
est applications to enhance the protective benefit. 
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1. Introduction 

Mango occupies a very important place in culinary traditions and is of economic 
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importance in some tropical and subtropical countries. Mango production cur-
rently ranks seventh in global fruit production with 50.65 million tons in 2017 
[1]. For commercial purpose, the high-end fruit should be free of external dam-
age, decay, bruises, and latex or sap injury. 

Postharvest diseases such as anthracnose reduce fruit commercial quality and 
lead to significant losses. Black spots mostly develop during post-harvest stages 
and lead to fruit decay. Mango anthracnose is caused by Colletotrichum gloeo-
sporioides fungal species and remains the major mango postharvest disease in 
Reunion Island [2]. Mature fruit affected by anthracnose develop sunken, 
prominent, dark brown to black decay spots before or after picking. The devel-
opment of fungal mycelia under the mango skin leads to the necrosis of the epi-
dermal cells, which makes the fruit unmarketable. The disease symptoms only 
appear after fruit ripening, although mango contamination occurs by splashing 
conidia during the rainy period and is followed by an appressorial (quiescent 
form) phase which lasts until favourable germination conditions [3]. 

C. gloeosporioides sensu lato is responsible for fruit diseases, referred to as 
“anthracnose”, on many other tropical fruits including banana (Musa spp.) [4] 
[5] [6], avocado (Persea americana) [7] [8], papaya (Carica papaya) [9] [10] 
guava (Psidium guajava) [11] [12], passion fruit (Passiflora spp.) [13] [14], 
dragon fruit (Hylocereus undatus) [15] and others [5] [6] [16] [17]. 

Despite the high efficacy of commercial fungicides against C. gloeosporioides, 
the increasing emergence of fungicide-resistant isolates has been reported [18] 
[19] [20] [21]. Therefore, several fungicides have been withdrawn from the 
market due to pathogen resistance. Moreover, fungicides are responsible for en-
vironmental and public health hazards [22]. On the other hand, there is a grow-
ing public demand for organically produced crops and recent European regula-
tions impose the decrease the Maximal Residue Levels (MRL) [23]. Therefore, 
there is a need for the development of new technologies and methods that are 
alternative to synthetic fungicides for better fruit postharvest disease control.  

Among alternative approaches to fungicides, biological control of postharvest 
diseases of mango by microbial antagonists has been under investigation for 
decades. Both bacteria and fungi have been isolated and characterized as poten-
tial biocontrol agents for fruit post-harvest diseases. They can inhibit the prolif-
eration of pathogens both in vitro and in vivo. Efficiency and mode of action of 
these antagonists against Colletotrichum species complex have been particularly 
investigated [22] [23].  

Despite extensive research on anthracnose biocontrol, only few commercial 
products are available and used. This is due to a lack of efficacy of biocontrol 
agents when it comes to large scale in vivo trials [22] [23] [24]. The inability of 
biocontrol agents to colonize fruit surface has been hypothesized. In most cases, 
postharvest disease biocontrol agents are applied after harvest. They have then to 
compete with the natural epiphytic microflora to colonize fruit surface. One so-
lution to limit this effect, beside adapting the biocontrol agent to fruit surface 
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conditions, would be to select microflora from the same environment, thereby 
limiting adaptation requirement to a different niche. Efficient biocontrol agents 
have to persist in a wide range of environmental conditions [25] [26] [27]. 

Most fungal biocontrol agents screened against mango anthracnose were iso-
lated from mango environment, either orchard soil [28] [29] [30] or fruit. The 
yeasts Debaryomyces nepalensis [30] and Metschnikowia pulcherrima [31] [32] 
reduced the severity of mango anthracnose symptoms. The yeast Cryptococcus 
laurentii was isolated from mango surface and its antagonistic activity relies on 
several mechanisms such as competition for nutrients and space [33]. Mey-
erozyma caribbica also isolated from mango fruit showed competition for space, 
competition for nutrients, parasitism and lytic enzyme production [33]. The 
mechanism of action of Trichoderma asperellum against the phytopathogen was 
parasitism, through the production of glucanase, cellulase and chitinase [34]. 

Contrarily to fungal biocontrol agents, bacteria selected to biocontrol mango 
anthracnose come from a wide range of environments: plant isolate collections 
[35], soil [36], green banana surface [37] or mango leaf [38] [39]. The spore-forming 
bacteria Bacillus thuringiensis, Bacillus pumilus [36], Bacillus licheniformis [40] 
[41] and Bacillus amyloliquefaciens [37] produce antifungal metabolites which 
mediate a direct in vitro inhibition of phytopathogen growth, whereas Pseudo-
monas fluorescens induces plant defences, especially by production of fungal cell 
wall lytic enzymes [35].  

Bacterial biocontrol agents present several advantages comparatively to fungi 
[42]. They are easier to grow and many of them, especially lactic acid bacteria 
(LAB), cope with food safety regulation criteria [43]. In addition, LAB do not 
form spores and can easily be inactivated during fruit processing. Therefore, the 
first objective of this study was to isolate potential biocontrol agents, particularly 
targeting LAB, from the surface of mature mango locally harvested, to investi-
gate the in vitro interactions of mango epiphytic bacteria with C. gloeo-
sporioides, and to assay the in vivo activity in order to evaluate the impact on 
disease development on fruit. 

2. Materials and Methods 
2.1. Isolation of Bacteria and Culture Conditions 

Mangoes were harvested from eight locations of Reunion Island, over a period of 
10 weeks (Table 1). Reunion Island is characterized by a tropical climate, with 
average annual temperature of 25˚C and ferrallitic soils [44]. Annual rainfall 
largely varies depending on the location: from 500 - 1000 mm for West locations 
like Saint Paul, Grand Fond and Savana, to 1250 - 2000 mm for Bassin Plat and 
2000 - 3000 mm for East locations like Cambuston, Quartier Français and Sainte 
Suzanne [45]. Mature mangoes, from 17 cultivars, were selected and manipu-
lated without direct hand contact. Bacteria were collected from the fruit surface 
with a sterile cotton swab soaked in 10 mL of buffered peptone water [46]. By 
using a sterile pipette, the peptone water was collected and poured into a sterile  
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Table 1. Mango sampling and bacteria isolation. Both number and name of isolates are indicated depending on the medium of 
isolation, either MRS at 30˚C or NM at 12˚C. 

Location Cultivar 
Sampling 

date 
Number of  

MRS isolates 
MRS isolate names 

Number of  
NM isolates 

NM isolate names 

Saint  
Paul - organic 

Cogshall 12/11/15 1 H001 5 H002 to H006 

Saint  
Paul - organic 

Cogshall 02/12/15 7 H008, H009, H014 to H018 5 H020 to H024 

Saint  
Paul - organic 

Cogshall derived 02/12/15 1 H010 0  

Saint  
Paul - organic 

David Haden 02/12/15 2 H012, H013 1 H025 

Saint  
Paul - organic 

José derived 02/12/15 2 H011, H019 1 H026 

Bassin Plat Cogshall 11/01/16 0  2 H027, H028 

Bassin Plat Irwin 11/01/16 4 H306, H309 to H311 2 H029, H296 

Bassin Plat Kensington Pride 11/01/16 0  3 H030, H031, H032 

Bassin Plat Tommy Atkins 11/01/16 1 H037 4 H033 to H036 

Grand Fond Kent 15/01/16 2 H050, H302 14 
H086 to H098,  

H292, H293 

Grand Fond Nam DokMaï 15/01/16 8 H053 to H056, H059 to H062 9 H109 to H117 

Grand Fond Tommy Atkins 15/01/16 4 H057, H303 to H305 12 
H099 to H108,  

H294, H295 

Bassin Plat Cogshall 18/01/16 5 H080 to H084 8 H174 to H181 

Bassin Plat Irwin 18/01/16 4 H067 to H070 12 H132 to H143 

Bassin Plat Kensington Pride 18/01/16 8 
H058, H063 to H066,  

H071, H307, H308 
17 

H118 to H131,  
H297 to H299 

Bassin Plat Nam DokMaï 18/01/16 10 H051, H052, H072 to H079 17 H144 to H160 

Bassin Plat Tommy Atkins 18/01/16 12 H040 to H049, H038, H039 13 H161 to H173 

Grand Fond Heidi 23/01/16 0  23 H182 to H204 

Saint Paul Auguste 29/01/16 0  7 H205 to H211 

Saint Paul Heidi 29/01/16 0  3 H212 to H214 

Saint Paul José 29/01/16 1 H085 13 H219 to H231 

Cambuston José 08/02/16 7 H247 to H253 11 H271 to H281 

Quartier Français José 08/02/16 11 H236 to H246 7 H264 to H270 

Sainte Suzanne José 08/02/16 3 H254 to H256 2 H282, H283 

Savana José 08/02/16 4 H232 to H235 7 H257 to H263 

Saint  
Paul - organic 

Caro 17/02/16 1 H300 3 H284 to H286 
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Continued 

Saint  
Paul - organic 

Cécile 17/02/16 0  1 H287 

Saint  
Paul - organic 

Pierrefontaine 17/02/16 0  2 H288, H289 

Saint  
Paul - organic 

Ticroix 17/02/16 0  1 H290 

Saint  
Paul - organic 

Valencia 17/02/16 1 H301 1 H291 

 
tube. The microbial solution obtained was streaked over MRS (de Man, Rogosa 
and Sharpe) agar and Nutritive Medium (NM) plates and placed at 30˚C for 72 h 
and at 12˚C for 10 days, respectively. Colonies with different aspects were iso-
lated on the same growth medium after microscopy examination. Isolated 
strains were stored at −80˚C in 20% glycerol.  

Bacillus subtilis AvoGreen was used as a reference biocontrol strain [38]. 
Before use, bacteria were cultivated in broth, either MRS or NM depending on 

the isolation medium, at 25˚C during 72 h in an incubator with agitation at 100 
rpm. 

2.2. Colletotrichum spp. Cultivation 

The MUCL 43868 strain of C. gloeosporioides (Penzig) from the pathogen col-
lection of the Catholic University of Leuven (Leuven, Belgium) was used and 
cultivated on potato dextrose agar (PDA) medium at 27.5˚C. This strain was 
isolated from Mexican mangoes by GL Hennebert [47]. Strains CG Aust Mango 
3-3 and CG Avocado 23-703 were obtained from the collection of Pr. Korsten.  

An inoculum of C. gloeosporioides was grown on PDA plates over 10 days at 
27˚C. Conidia were collected by pouring 10 mL of sterilized buffered peptone 
water on the plates and recovered by pipetting and adjusted to a final concentra-
tion of 105 conidia per mL using a Malassez cell. 

2.3. Growth at Different Temperatures and Biofilm Formation 

In a 96-well microplate, 180 µL of isolation medium broth and 20 µL of a 72 h 
bacterial culture were deposited. Each bacterial culture was loaded into 3 wells. 
Controls corresponded to 200 µL of isolation medium broth, distributed in 3 
wells. Six batches of microplates were prepared and placed in incubator, with a 
lid on, at 12˚C, 25˚C, 30˚C, 37˚C and 42˚C, over 72 h without agitation. The ab-
sorbance was read for each microplate three times a day until 72 h of incubation 
with the microplate reader. For each time point, the plate was shaken for 15s, 
then the reading was performed at a wavelength of 600 nm and the collected OD 
was the mean of 10 reads of the same well. For each well, the growth curve was 
plotted over time and maximal growth rate (µmax) was determined from OD 
slope over the growth phase. The optimal growth temperature was defined as the 
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temperature leading to the highest µmax. 
After 72 h, each microplate incubated at 25˚C was emptied and rinsed in clear 

water, then 125 µL of a 0.1% of crystal violet solution was added in each well. 
After 10 min, the content of the wells was dropped off, rinsed again with clear 
water and then dried at open air. A volume of 200 µL of 30% acetic acid solution 
was added and 125 µL were taken off and poured in a new microplate. The mi-
croplate was read on a 550 - 680 nm wavelength range on the microplate reader 
and the wavelength rendering the maximal absorbance (590 nm) was chosen for 
the exploitation of the results. Biofilm strength is given by the ratio of absorb-
ance between the bacteria and the control wells.  

2.4. Identification of Isolates 

DNA extraction from bacterial strains was performed using the InstaGene Ma-
trix commercial kit (Bio-Rad Laboratories, Hercules, CA, USA) [48]. For the 
amplification of the 16S rDNA region, the DNA primer pair was used: FD1-mod 
5’-3’: AGAGTTTGATCHTGGCTCAG and RD1-mod 5'-3':  
GGMTACCTTGTTACGAYTTC [49]. The reaction volume was composed of 5 
μl of purified DNA and 45 μl of a mixed solution composed of: 10 μl 5 × PCR 
buffer (Green Go Taq), 1 μl dNTP mixture (10 mM), 4 μl MgCl2 (25 mM), 1.0 μl 
of each primers (FD1-mod and RD1-mod at 1 μM), 0.25 μl enzyme Go Taq 
DNA polymerase (5 U/µL) and qs of water. PCR amplification was carried out 
using Applied BiosystemsVeriti ™ Thermal Cycler. The thermal cycling program 
was: 3 min at 94˚C, followed by 35 cycles of [40 sec at 94˚C, 40 sec at 55˚C, 60 
sec at 72˚C], and further for a time extension of 10 min at 72˚C. The quality of 
the amplification products was analysed on 2% TAE agarose gels after electro-
phoresis for 90 min at 110 V and staining with ethidium bromide. 

2.5. In Vitro Colletotrichum Inhibition Assay 
2.5.1. Plate Assay for Mycelial Growth Inhibition 
To assay mycelial growth inhibition, C. gloeosporioides MUCL 43868, CG Aust 
Mango 3-3 and CG Avocado 23-703 strains were used. Mycelium (0.5 mm × 0.5 
mm) was spotted in the middle of a plate containing PDA medium and incu-
bated for 21 days at 30˚C. Bacterial isolates were grown on nutrient agar (NA) 
incubated at 30˚C for 48 h. A suspension was created by gently scraping the 
bacterial lawn from NA. The OD at 600 nm of the suspension was adjusted to 1 
unit (per mL) as assessed with PowerWave™ microplate spectrophotometer 
(BioTek). A volume of 100 µL was used for inoculation. 

Two mycelium pieces were deposited on opposite sides of the PDA plates. The 
bacterial strains were inoculated as a central streak 48 h after inoculation of the 
fungus. Plates were incubated for 10 - 15 days at 30˚C, until the complete colo-
nization of the plate surface by the fungus in the control plate (without bacteria). 
Thereafter, diameters of mycelium were measured to calculate a percentage of 
radial inhibition. Percentage of inhibition was calculated from the diameter of 
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Colletotrichum colony in the presence of an isolate compared to the diameter 
without any inhibitor (0% of inhibition). 

2.5.2. Inhibition of the Germination of Conidia  
A spore suspension of MUCL 43868 strain of C. gloeosporioides was prepared 
by placing 10 mL of peptone water (or sterile distilled water) in the Petri dish 
containing a 15-day fungus culture. After filtration, the concentration of spores 
was adjusted to 5 log spores/mL using a Malassez cell. 

Conidia germination inhibitory bacterial activity was evaluated by microscopy 
on special sterile slides. The first step was the deposit of 100 µL of melted PDA 
medium on the slides, followed by drying under a laminar flow hood for 1 hour. 
To carry out the test, 10 μL of spore suspension were deposited on the slide and 
10 μL of each bacterial strain were added. The slide was then incubated at 27˚C 
inside a Petri dish lined with a double layer of moistened filter paper. Each 
treatment was repeated twice. The control corresponded to the suspension of 
spores in the absence of bacteria.  

A conidiospore was considered to have germinated when a germinating tube 
of at least half the length of the conidiospore was observed under optical micro-
scope. The qualitative data for the inhibition of germination of C. gloeo-
sporioides MUCL 43868 were described as; (+): the germination of less than 25% 
of conidia was inhibited; (++): the germination of 25% - 50% of conidia was in-
hibited; (+++): the germination of 50% - 75% of conidia was inhibited; (++++): 
more than 75% of conidia germination was inhibited. Negative control showed 
no inhibition of conidia germination which corresponded to a germination rate 
close to 100%. 

2.6. In Vivo Examination of the Severity of Anthracnose 

The ˚C. gloeosporioides strain MUCL 43868 was cultivated in Petri dishes for 21 
days on PDA solid medium at 27.5˚C in the dark.  

Mangoes cv. José were harvested and treated on the same day. A batch of 36 
mangoes cv. José collected from the same orchard and with same maturity level 
(yellow point) was used. Fruit with no disease symptoms were selected, and the 
surface to be inoculated was washed with 70% ethanol and air-dried at room 
temperature. Subsequently, fruit inoculation for curative treatment was per-
formed according to [50] by uniformly wounding (a cross: 2 mm deep and 10 
mm wide) a relatively flat area in the middle of the fruit with a sterilized 
cork-borer and inoculating it with 20 µL of a spore suspension of C. gloeo-
sporioides (105 spores/mL). To ensure that anthracnose development was due to 
MUCL 43868, the peels from non-inoculated and inoculated fruits were placed 
on PDA amended with chloramphenicol and left for 8 days at 25˚C. The identi-
fication of the re-isolated fungi was based on morphological criteria. After fun-
gal inoculation, fruits were maintained at room temperature for 24 h (21˚C, 85% 
relative humidity). 

Bacteria Enterobacter sp. H222 and Leuconostoc mesenteroides H255 were 
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separately grown in nutrient broth for 3 days at 27.5˚C in a nutrient broth. Two 
suspensions corresponding to OD at 600 nm of 0.5 and 1.0 were prepared for 
each isolate. 

From all 36 mangoes inoculated with C. gloeosporioides, six fruits were sub-
merged in distilled water, to be used as non-treated positive controls. Three 
treatments were used to assess the impact of bacteria on anthracnose devel-
opment. The thirty remaining mangoes were separated into three batches of 10 
fruits corresponding to [H222], [H255], and [H222 + H255] treatments. 
Pre-inoculated mangoes were immersed in each bacterial suspension for two 
minutes. Fruit were stored at 20˚C with high relative humidity. After 10 days of 
storage, black spots on the surface of mangoes were measured using a digital 
caliper.  

The experiment was repeated twice with independent batches of mango. 

2.7. Statistical Analysis 

XLSTATsoftware (Addinsoft, Paris, France) was used for statistical analysis. 
K-means clustering and hierarchical clustering analysis (HCA) were performed 
with maximal growth rate, optimal growth temperature, ability to form biofilm 
and inhibition of mycelial growth as variables and isolates as observations. 
Variables were centred and normalized, and Euclidian distances were used. For 
k-means clustering, trace (W), i.e. pooled SSCP matrix, was used as classification 
criterion. For HCA, Ward aggregation method was used. Dendrogram was built 
through the Ward’s minimal distance algorithm. To compare inhibition of fun-
gal growth, ANOVA was used with the REGWQ test and the bilateral Dunnet’s 
test was used for in vivo assay. 

3. Results and Discussion 
3.1. Isolation and Phenotypic Characterization of Bacteria 

Bacteria were collected from 17 mango cultivars grown in eight locations on 
Reunion Island in order to cover the widest diversity of epiphytic mango bacte-
ria available locally. 

As mangoes are generally stored under refrigerated conditions, isolation of 
bacteria was performed from NM incubated at 12˚C to select psychrotrophic 
bacteria. Colonies of LAB were also recovered as these bacteria have a long his-
tory of use in food and some of them are already used to preserve foods. From 
mango surface, 305 bacteria were isolated: 99 were isolated from MRS, and 206 
from NM (Table 1). 

The most appropriate candidates for biocontrol of mango anthracnose were 
then selected without prejudice of the bacterial species and through a fun-
nel-shaped approach.  

The maximal growth rate, the optimal temperature for growth, the ability to 
form biofilms and the level of inhibition of C. gloeosporioides MUCL 43868 
mycelial growth were determined for the 305 isolates. Two classification methods, 
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k-means and HCA, were applied, resulting in similar results. Isolates were clus-
tered into six classes, leading to an inter-classes’ variance of 79% of the total 
variance (Table 2 and Figure 1). This high inter-classes’ variance value implies 
that classes were clearly defined and well differentiated. 

The most homogeneous class (class 6), i.e. with the lowest intra-class variance, 
gathered 24 isolates, characterized by low optimal growth temperature and low 
inhibition level. Class 5 included the highest number of isolates (133) and was 
also characterized by a low inhibition level of mycelial growth. Class 4, which 
gathered 18 isolates, harboured the same characteristics, but with the highest 
ability to form biofilm. Classes 1, 2 and 3 were the most interesting regarding the 
inhibition of mycelial growth, with an inhibition level of the gravity centre of 
18.3%, 25.4% and 17.0% respectively. Those three classes differed by the number 
of isolates, class 1 being the largest. Class 1 was characterized by the highest 
µmax and optimal growth temperature. Class 2 was characterized by the highest 
mycelial growth inhibition level, an intermediate optimal growth temperature of 
28.0˚C and the lowest ability to form biofilm. Class 3 gathered psychrophilic 
bacteria, with the highest ability to form biofilms. Among the three interesting 
classes, inhibition level was the lowest in class 3. 

 

 
Figure 1. Dendrogram of 305 isolates classified into six classes by hierarchical clustering analysis (HCA) based on the variables 
“maximal growth rate”, “optimal growth temperature”, “ability to form biofilm” and “inhibition of mycelial growth”.  
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Table 2. Characteristics of classes of isolates, according to maximal growth rate (µmax), 
optimal growth temperature (˚C), biofilm strength and inhibition activity (%) against 
Colletotrichum gloeosporioides MUCL 43868 hyphal growth. 

Class 1 2 3 4 5 6 

Number of isolates 73 28 29 18 133 24 

Intra-class variance 14.1 19.7 15.5 28.2 23.9 0.7 

Mean distance to gravity centre 3.6 3.7 3.1 4.8 4.1 0.7 

Gravity centre µmax (h-1) 0.36 0.10 0.22 0.31 0.13 0.10 

Gravity centre optimal growth temperature (˚C) 34.3 28.0 12.0 35.4 30.1 12.0 

Gravity centre biofilm strength 2.3 1.8 9.1 13.7 3.1 2.2 

Gravity centre inhibition level (%) 18.3 25.4 17.0 11.5 12.1 11.6 

3.2. Selection and Identification of Inhibitors of Colletotrichum  
Development 

From the three classes showing the highest inhibition ability, 26 isolates were se-
lected and identified by sequencing of the chromosomal region encoding 16S 
rRNA (Table 3). From the first class, 11 isolates were selected, representing 15% 
of the class size, whereas 12 isolates (43%) were selected from class 2 and 3 
(10%) from class 3. No isolates from class 4 were selected in spite of the highest 
ability to form biofilm which is considered as an advantage to help the antagon-
ist to colonize fruit surface [26], because of lower ability to inhibit the fungal 
pathogen. 

Among those, 19 isolates were identified as Enterobacterales: eight belonged 
to the genus Enterobacter and seven were identified as Kosakonia cowanii. The 
other genera were Pantoea and Serratia. Besides, one isolate was identified as a 
Microbacteriaceae, Curtobacterium luteum, and two Staphylococcus species 
were represented. More interestingly because of their safety for food use, three 
isolates were identified as L. mesenteroides and one as Gluconobacter sp. 

Most of the species hereby identified were previously described as part of 
plant microbiomes. Enterobacter, Pantoea and Curtobacterium were identified 
from salad leaves [51]. Enterobacter, Pantoea, Leuconostoc and Curtobacterium 
were identified on tomato fruit or leaves surface [52] [53] [54]. The same genera, 
plus Staphylococcus and Gluconobacter were identified on mango tree leaves 
[55]. Gluconobacter was identified on grape surface, but Sphingomonas was the 
most abundant genus in this niche [56]. Interestingly, Kosakonia cowanii was 
here for the first time reported as isolated from carposphere. K. cowanii is the 
type species of Kosakonia, and was isolated from clinical and environmental 
samples, especially soil and trees [57]. 

Serratia marcescens is essentially studied for its role in nosocomial infections 
and for chitinase production [58] [59]. For these reasons, isolates from the 
present work were not further studied. Four of the Enterobacter isolates belong 
to the Enterobacter cloacae complex, which gathers 12 species which cannot be 
easily differentiated from 16S rRNA coding region sequence [60] [61]. Many  
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Table 3. Isolate identification and inhibition of C. gloeosporioides MUCL 43868 hyphal 
growth (%) and conidia germination. 

Class Isolates Identification 
Hyphal growth 
inhibition, %1 

Conidia germination 
inhibition2 

3 H028 Enterobacter sp. 31.7 ± 9.9 ++++ 

2 H061 Enterobacter sp. 32.4 ± 23.9 + 

2 H068 Enterobacter sp. 27.7 ± 6.1 ++++ 

1 H221 Enterobacter sp. 25.9 ± 4.0 + 

1 H222 Enterobacter cloacae complex 37.4 ± 7.8 ++++ 

1 H223 E. cloacae complex 26.7 ± 6.6 ++++ 

2 H232 E. cloacae complex 23.0 ± 4.8 ++++ 

1 H267 E. cloacae complex 22.0 ± 12.8 + 

1 H219 Kosakonia cowanii 52.0 ± 21.2 + 

2 H185 K. cowanii 43.3 ± 18.1 + 

2 H182 K. cowanii 33.9 ± 9.0 ++ 

2 H184 K. cowanii 32.4 ± 7.1 ++ 

2 H192 K. cowanii 30.5 ± 3.1 ++ 

2 H191 K. cowanii 29.4 ± 5.0 +++ 

2 H188 K. cowanii 27.3 ± 6.3 ++ 

2 H186 Pantoea dispersa 30.2 ± 2.8 ++ 

1 H272 Pantoea sp. 24.9 ± 0.8 + 

3 H129 Serratia sp. 24.2 ± 5.1 + 

2 H177 Serratia marcescens 22.7 ± 6.9 ++ 

3 H117 Curtobacterium sp. 23.3 ± 11.6 + 

1 H311 Gluconobacter sp. 20.4 ± 6.1 + 

1 H270 Leuconostoc mesenteroides 21.1 ± 4.7 + 

1 H255 L. mesenteroides 20.6 ± 8.8 ++++ 

1 H305 L. mesenteroides 16.8 ± 6.1 + 

2 H268 Staphylococcus fleurettii 14.5 ± 14.3 + 

1 H300 Staphylococcus hominis 27.5 ± 11.5 + 

1mean ± standard deviation; 2(+): the germination of less than 25% of conidia was inhibited; (++): the ger-
mination of 25% - 50% of conidia was inhibited; (+++): the germination of 50% - 75% of conidia was inhi-
bited; (+++): more than 75% of conidia germination was inhibited. 

 
isolates from this complex originate from clinical samples [61] [62] [63], and 
their multidrug-resistance capacity raises concerns about their pathogenicity and 
virulence. However, many other isolates come from plant, possibly plant patho-
gens and isolates from this complex might play a role in biocontrol [64]. The 
Pantoea genus is widely distributed in nature and many species are described as 
epiphytes, endophytes or plant pathogens [65]. Many isolates, some being from 
the species Pantoea dispersa, have been used as biocontrol agents against 
post-harvest rots of fruit, onion or sweet potato [66]-[71]. Pantoea agglomerans 
strain CPA-2 is an effective biocontrol agent (BCA) against the major postharv-
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est pathogens present on pome and citrus fruits [72] [73] [74] [75]. K. cowanii 
was classified in this new genus in 2013 from Enterobacter and based on ge-
nomic polymorphism analysis [55] [76]. This species can act as a plant growth 
promoter, especially for sugar cane [77]. 

Curtobacterium was found as an endophytic bacterium of many plants in-
cluding rambutan fruit [78] [79] [80]. It has been studied as a biocontrol agent 
for fungal brown rot of plum [27]. 

Among other LAB, L. mesenteroides is described for its antifungal activities 
and potential use for biocontrol [81] [82]. This bacterium is commonly found in 
fermented foods, especially from vegetables and fruit [83] [84]. 

Mycelial growth inhibition was in the range 20% - 40% for most isolates, the 
highest inhibition being observed for two Enterobacter isolates, two Kosakonia 
isolates and P. dispersa. Complementary to hyphal growth inhibition, isolates 
were tested for their ability to inhibit MUCL 43868 conidia germination (Table 
3 and Figure 2). The results were listed in four classes according to isolate capa-
bility to inhibit germination, from low to strong inhibition [<25%, 25% - 50%, 50% 
- 75% and >75% of conidia inhibited]. Contrarily, conidia germination  
 

 
Figure 2. In vitro slide test of inhibition of conidial germination of C. gloeosporioides 
MUCL 43868. The device used, germination of conidia under control condition, and 
germination of conidia in presence of bacteria isolates H182, H185, H186, H222, H232, 
H255 and H270 are shown. A magnification time of 400 was used. 
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inhibition was clearly more marked for Enterobacter and Leuconostoc (Table 3). 
Six isolates inhibited the germination of more than 75% of conidia: five Entero-
bacter isolates (H028, H068, H232, H222, H223), and L. mesenteroides H255. 
The K. cowanii H191 isolate inhibited the germination of 50% - 75% of conidia. 
Six isolates, four from K. cowanii (H182, H184, H192, H188), P. dispersa H186 
and Serratia marcescens H177 inhibited 25% - 50% of conidia. The other isolates 
inhibited the germination of <25% of conidia. 

From these results, isolates from species exhibiting good inhibition ability 
were selected to further assay inhibition capacity: Kosakonia H182 and H191, 
Pantoea H186, Enterobacter H222 and H232, and Leuconostoc H255. L. mesen-
teroides H270 was added to this pool of isolates as it has a safe use status as a 
LAB. B. subtilis AvoGreen was used as a reference. The eight isolates were tested 
against the hyphal growth of two other strains of C. gloeosporioides, one from 
South Africa collected from avocado and the other one from Australian mango 
(Table 4). Most of the isolates showed a hyphal growth inhibition activity in the 
range 19.3% to 24.9%. The isolate Kosakonia H182 exhibited a lower inhibition 
activity (10.0%) on the strain CG Avocado 23-703. AvoGreen and Enterobacter 
H222 showed inhibition activities above 30.4% against the two fungal strains, 
and Kosakonia H191 a 34.9% inhibition of hyphal growth of strain CG Aust 
Mango 3-3.  

Whatever the fungal strain assayed, Enterobacter H222 was clearly the most 
efficient. 

3.3. In Vivo Activity 

An in vivo assay was performed on a local variety of mango (cv. José), purposely 
injured and inoculated with fugal conidia. Selected bacteria, Enterobacter H222 
and Leuconostoc H255, were added 24 h later and mangoes were stored at 20˚C.  
 
Table 4. Inhibition activity (%) of C. gloeosporioides CG Aust Mango 3-3 and CG Avo-
cado 23-703 hyphal growth. Different letter in a column indicates a significant difference 
(p-value < 0.001). 

Isolate 
CG Aust Mango 3-3 CG Avocado 23-703 

Hyphal growth, %1 

Enterobacter H222 43.6 ± 12.3 c 30.5 ± 0.8 c 

Enterobacter H232 23.8 ± 4.3 ab 23.2 ± 1.4 bc 

Kosakonia H182 24.9 ± 6.1 ab 10.0 ± 8.1 a 

Kosakonia H191 34.9 ± 3.9 bc 23.7 ± 3.8 bc 

Pantoea H186 20.2 ± 3.2 a 20.2 ± 2.1 b 

Leuconostoc H255 20.3 ± 2.5 a 20.3 ± 2.8 b 

Leuconostoc H270 21.7 ± 1.2 ab 19.3 ± 3.0 b 

AvoGreen 33.2 ± 3.0 abc 30.4 ± 3.3 c 

1mean ± standard deviation. 

https://doi.org/10.4236/aim.2020.1012050


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 704 Advances in Microbiology 
 

Symptom diameter observed after 10 days was slightly lower for bacteria treated 
spots, especially with isolate H222 (21.1 mm ± 0.9 mm for H222 versus 23.4 mm ± 
1.3 mm for the control condition), but the significance was low (p-value = 0.141) 
(Figure 3). Combination of the two isolates did not enhance the observed effect. 

Conditions applied before addition of bacteria, i.e. wounding of mature fruit 
and incubation with C. gloeosporioides for 24 h, are drastic as they strongly fa-
vour fungal development and activate fruit defence mechanisms. 

Moreover, the influence of temperature is a crucial parameter for microbiome, 
as well as the maturity level of mango [85]. Enterobacter H222 was isolated at 
12˚C but its optimal growth temperature is 27˚C. L. mesenteroides can also grow 
at low temperatures [86] [87] and optimal growth temperature of isolate H255 is 
30˚C. It is thus likely that a different effect would have been observed with less 
mature fruit stored at 12˚C.  

Eventually, a pre-harvest application of fruit or application on unripe fruit 
and optimization of the bacterial population to spray on fruit surface should be 
considered. A more accurate identification and a careful examination of H222 
isolate should be performed prior to consider any further development of bio-
control product in order to assess the safety of the use. 
 

 
Figure 3. Severity of anthracnose caused by C. gloeosporioides MUCL 
43868 in wounded cv. José mangoes treated with H222 [E. cloacae com-
plex], H255 [L. mesenteroides], and H222 + H255 [E. cloacae complex 
and L. mesenteroides] and stored 10 days at 20˚C. Severity is expressed as 
diameter of symptom (mm) on mango. 

4. Conclusion 

Isolation of 305 epiphytic bacteria from mango surface and identification of 26 
isolates showed the presence of species previously observed on other fruit or 
leaves. Moreover, isolation of Kosakonia from carposphere was not previously 
described.  
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Fruit post-harvest biocontrol efficacy relies on the ability of biocontrol strains 
to survive, develop, colonize and exhibit an anti-fungal activity on fruit surface. 
The relationship between the efficacy and storage temperature should be more 
deeply investigated, as well as are combination of treatments, in order to in-
crease in vivo efficacy. The safe use of isolates has to be particularly watched out. 

Acknowledgements 

Part of this work was funded by a bilateral France-South Africa program (Cam-
pus France), PROTEA 33895VF. Part of this work was funded by the Cirad DP 
COSAQ (https://cosaq.cirad.fr/) agronomical research program funded by a 
grant from European Community (FEDER-working-program), the Regional 
Council of Réunion Island and CIRAD. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Statista (2017) Mango Production Worldwide.  

https://www.statista.com/statistics/577951/world-mango-production/  

[2] Chillet, M., Minier, J., Hoarau, M. and Meile, J.-C. (2019) Potential Use of Thymol 
to Control Anthracnose Development in Mango. European Journal of Plant Patholo-
gy, 155, 943-952. https://doi.org/10.1007/s10658-019-01825-9  

[3] Simmonds, J.H. (1969) Studies in the Latent Phase of Colletotrichum Species Caus-
ing Rots in Tropical Fruits. Queensland Journal of Agricultural Sciences, 20, 
373-424.  

[4] Intan Sakinah, M.A., Suzianti, I.V. and Latiffah, Z. (2014) Phenotypic and Molecu-
lar Characterization of Colletotrichum Species Associated with Anthracnose of Ba-
nana (Musa spp) in Malaysia. Genetics and Molecular Research, 13, 3627-3637.  
https://doi.org/10.4238/2014.May.9.5  

[5] Jeffries, P., Dodd, J.C., Jeger, M.J. and Plumbley, R.A. (1990) The Biology and Control 
of Colletotrichum Species on Tropical Fruit Crops. Plant Pathology, 39, 343-366.  
https://doi.org/10.1111/j.1365-3059.1990.tb02512.x 

[6] Weir, B.S.S., Johnston, P.R.R. and Damm, U. (2012) The Colletotrichum gloeospo-
rioides Species Complex. Studies in Mycology, 73, 115-180.  
https://doi.org/10.3114/sim0011 

[7] Freeman, S., Katan, T. and Shabi, E. (1996) Characterization of Colletotrichum 
gloeosporioides Isolates from Avocado and Almond Fruits with Molecular and Pa-
thogenicity Tests. Applied and Environmental Microbiology, 62, 1014-1020.  
https://doi.org/10.1128/AEM.62.3.1014-1020.1996 

[8] Sanders, G.M. and Korsten, L. (2003) Comparison of Cross Inoculation Potential of 
South African Avocado and Mango Isolates of Colletotrichum gloeosporioides. Mi-
crobiological Research, 158, 143-150. https://doi.org/10.1078/0944-5013-00186 

[9] Bautista-Baños, S., Sivakumar, D., Bello-Pérez, A., Villanueva-Arce, R. and 
Hernández-López, M. (2013) A Review of the Management Alternatives for Con-
trolling Fungi on Papaya Fruit during the Postharvest Supply Chain. Crop Protec-

https://doi.org/10.4236/aim.2020.1012050
https://cosaq.cirad.fr/
https://www.statista.com/statistics/577951/world-mango-production/
https://doi.org/10.1007/s10658-019-01825-9
https://doi.org/10.4238/2014.May.9.5
https://doi.org/10.1111/j.1365-3059.1990.tb02512.x
https://doi.org/10.3114/sim0011
https://doi.org/10.1128/AEM.62.3.1014-1020.1996
https://doi.org/10.1078/0944-5013-00186


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 706 Advances in Microbiology 
 

tion, 49, 8-20. https://doi.org/10.1016/j.cropro.2013.02.011  

[10] Dickman, M.B., Patil, S.S. and Kolattukudy, P.E. (1982) Purification, Characterization 
and Role in Infection of an Extracellular Cutinolytic Enzyme from Colletotrichum 
gloeosporioides Penz. on Carica papaya L. Physiological Plant Pathology, 20, 
333-344, IN11-IN12, 345-347. https://doi.org/10.1016/0048-4059(82)90058-3 

[11] Moraes, S.R.G., Tanaka, F.A.O. and Massola Jr., N.S. (2013) Histopathology of Col-
letotrichum gloeosporioides on Guava Fruits (Psidium guajava L.). Revista Brasileira 
de Fruticultura, 35, 657-664. https://doi.org/10.1590/S0100-29452013000200039  

[12] Moraes, S.R.G., Escanferla, M.E. and Massola, N.S. (2015) Prepenetration and Pe-
netration of Colletotrichum gloeosporioides into Guava Fruit (Psidium guajava L.): 
Effects of Temperature, Wetness Period and Fruit Age. Journal of Phytopathology, 
163, 149-159. https://doi.org/10.1111/jph.12294  

[13] Anaruma, N.D., Schmidt, F.L., Duarte, M.C.T., Figueira, G.M., Delarmelina, C., 
Benato, E.A., et al. (2010) Control of Colletotrichum gloeosporioides (Penz.) Sacc. 
in Yellow Passion Fruit Using Cymbopogon citratus Essential Oil. Brazilian Journal 
of Microbiology, 41, 66-73. https://doi.org/10.1590/S1517-83822010000100012  

[14] da Silva, A.C., Sales, N.L.P., de Araújo, A.V. and Caldeira Júnior, C.F. (2009) In Vi-
tro Effect of Plant Compounds on the Fungus Colletotrichum gloeosporioides Penz. 
Isolated from Passion Fruit. Ciencia e Agrotecnologia, 33, 1853-1860.  
https://doi.org/10.1590/S1413-70542009000700026  

[15] Nguyen, T.H.P., Säll, T., Bryngelsson, T. and Liljeroth, E. (2009) Variation among 
Colletotrichum gloeosporioides Isolates from Infected Coffee Berries at Different 
Locations in Vietnam. Plant Pathology, 58, 898-909.  
https://doi.org/10.1111/j.1365-3059.2009.02085.x  

[16] Phoulivong, S., Cai, L., Chen, H., McKenzie, E.H.C., Abdelsalam, K., Chukeatirote, 
E., et al. (2010) Colletotrichum gloeosporioides Is Not a Common Pathogen on 
Tropical Fruits. Fungal Diversity, 44, 33-43. 
https://doi.org/10.1007/s13225-010-0046-0  

[17] Sangchote, S. (1997) Postharvest Diseases of Tropical Fruits. Proceedings of an In-
ternational Workshop, No. 80, 4-9.  

[18] Chung, W.-H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K. and Kajitani, Y. 
(2006) Fungicide Sensitivity and Phylogenetic Relationship of Anthracnose Fungi 
Isolated from Various Fruit Crops in Japan. Plant Disease, 90, 506-512.  
https://doi.org/10.1094/PD-90-0506  

[19] Kuo, K.-C. (2001) Sensitivity of Mango Anthracnose Pathogen, Colletotrichum 
gloeosporioides, to the Fungicide Prochloraz in Taiwan. Proceedings of the National 
Science Council, Part B, 25, 174-179. 

[20] Van Boxstael, S., Habib, I., Jacxsens, L., De Vocht, M., Baert, L., Van De Perre, E., et 
al. (2013) Food Safety Issues in Fresh Produce: Bacterial Pathogens, Viruses and 
Pesticide Residues Indicated as Major Concerns by Stakeholders in the Fresh Pro-
duce Chain. Food Control, 32, 190-197.  
https://doi.org/10.1016/j.foodcont.2012.11.038  

[21] Lin, T., Xu, X.F., Dai, D.J., Shi, H.J., Wang, H.D. and Zhang, C.Q. (2016) Differentia-
tion in Development of Benzimidazole Resistance in Colletotrichum gloeospo-
rioides Complex Populations from Strawberry and Grape Hosts. Australasian Plant 
Pathology, 45, 241‑249. https://doi.org/10.1007/s13313-016-0413-8  

[22] Gupta, P.K. (2017) Chapter 37—Herbicides and Fungicides. In: Gupta, R.C., Ed., 
Reproductive and Developmental Toxicology, 2nd Edition, Academic Press, Cam-
bridge, 657-679. https://doi.org/10.1016/B978-0-12-804239-7.00037-8  

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1016/j.cropro.2013.02.011
https://doi.org/10.1016/0048-4059(82)90058-3
https://doi.org/10.1590/S0100-29452013000200039
https://doi.org/10.1111/jph.12294
https://doi.org/10.1590/S1517-83822010000100012
https://doi.org/10.1590/S1413-70542009000700026
https://doi.org/10.1111/j.1365-3059.2009.02085.x
https://doi.org/10.1007/s13225-010-0046-0
https://doi.org/10.1094/PD-90-0506
https://doi.org/10.1016/j.foodcont.2012.11.038
https://doi.org/10.1007/s13313-016-0413-8
https://doi.org/10.1016/B978-0-12-804239-7.00037-8


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 707 Advances in Microbiology 
 

[23] European Union (2005) Regulation (EC) No. 396/2005 of the European Parliament 
and of the Council on Maximum Residue Levels of Pesticides in or on Food and 
Feed of Plant and Animal Origin and Amending Council Directive 91/414/EECText 
with EEA Relevance. European Union, Brussels. 

[24] Droby, S., Wisniewski, M., Macarisin, D. and Wilson, C. (2009) Twenty Years of 
Postharvest Biocontrol Research: Is It Time for a New Paradigm? Postharvest Biol-
ogy and Technology, 52, 137-145.  
https://doi.org/10.1016/j.postharvbio.2008.11.009  

[25] Leneveu-Jenvrin, C., Charles, F., Barba, F.J. and Remize, F. (2019) Role of Biological 
Control Agents and Physical Treatments in Maintaining the Quality of Fresh and 
Minimally-Processed Fruit and Vegetables. Critical Reviews in Food Science and 
Nutrition, 60, 2837-2855. 

[26] Spadaro, D. and Droby, S. (2016) Development of Biocontrol Products for Post-
harvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action 
of Yeast Antagonists. Trends in Food Science & Technology, 47, 39-49.  
https://doi.org/10.1016/j.tifs.2015.11.003  

[27] Janisiewicz, W.J. (2013) Biological Control of Postharvest Diseases: Hurdles, Suc-
cesses and Prospects. ISHS Acta Horticulturae, 1001, 273-284.  
https://doi.org/10.17660/ActaHortic.2013.1001.31  

[28] Janisiewicz, W.J. and Conway, W.S. (2010) Combining Biological Control with 
Physical and Chemical Treatments to Control Fruit Decay after Harvest. Stewart 
Postharvest Review, 6, 1-6. 

[29] Rungjindamai, N. (2016) Isolation and Evaluation of Biocontrol Agents in Control-
ling Anthracnose Disease of Mango in Thailand. Journal of Plant Protection Re-
search, 56, 306-311. https://doi.org/10.1515/jppr-2016-0034  

[30] Luo, S., Wan, B., Feng, S. and Shao, Y. (2015) Biocontrol of Postharvest Anthracnose 
of Mango Fruit with Debaryomyces nepalensis and Effects on Storage Quality and 
Postharvest Physiology. Journal of Food Science, 80, M2555-M2563.  
https://doi.org/10.1111/1750-3841.13087  

[31] Shao, Y.Z., Zeng, J.K., Tang, H., Zhou, Y. and Li, W. (2019) The Chemical Treat-
ments Combined with Antagonistic Yeast Control Anthracnose and Maintain the 
Quality of Postharvest Mango Fruit. Journal of Integrative Agriculture, 18, 
1159-1169. https://doi.org/10.1016/S2095-3119(18)62128-8  

[32] Tian, Y.Q., Li, W., Jiang, Z.T., Jing, M.M. and Shao, Y.Z. (2018) The Preservation 
Effect of Metschnikowia pulcherrima Yeast on Anthracnose of Postharvest Mango 
Fruits and the Possible Mechanism. Food Science and Biotechnology, 27, 95-105.  
https://doi.org/10.1007/s10068-017-0213-0  

[33] Bautista-Rosales, P.U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, 
N.A. and Ragazzo-Sánchez, J.A. (2013) Action Mechanisms of the Yeast Meyerozyma 
caribbica for the Control of the Phytopathogen Colletotrichum gloeosporioides in 
Mangoes. Biological Control, 65, 293-301.  
https://doi.org/10.1016/j.biocontrol.2013.03.010  

[34] de los Santos-Villalobos, S., Guzmán-Ortiz, D.A., Gómez-Lim, M.A., Délano-Frier, 
J.P., De-Folter, S., Sánchez-García, P., et al. (2013) Potential Use of Trichoderma 
asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a Biological Control Agent 
against Anthracnose in Mango (Mangifera indica L.). Biological Control, 64, 37-44.  
https://doi.org/10.1016/j.biocontrol.2013.03.010  

[35] Vivekananthan, R., Ravi, M., Saravanakumar, D., Kumar, N., Prakasam, V. and Sa-
miyappan, R. (2004) Microbially Induced Defense Related Proteins against Post-

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1016/j.postharvbio.2008.11.009
https://doi.org/10.1016/j.tifs.2015.11.003
https://doi.org/10.17660/ActaHortic.2013.1001.31
https://doi.org/10.1515/jppr-2016-0034
https://doi.org/10.1111/1750-3841.13087
https://doi.org/10.1016/S2095-3119(18)62128-8
https://doi.org/10.1007/s10068-017-0213-0
https://doi.org/10.1016/j.biocontrol.2013.03.010
https://doi.org/10.1016/j.biocontrol.2013.03.010


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 708 Advances in Microbiology 
 

harvest anthracnose Infection in Mango. Crop Protection, 23, 1061-1067.  
https://doi.org/10.1016/j.cropro.2004.03.014  

[36] Zheng, M., Shi, J.Y., Shi, J., Wang, Q.G. and Li, Y.H. (2013) Antimicrobial Effects of 
Volatiles Produced by Two Antagonistic Bacillus Strains on the Anthracnose Patho-
gen in Postharvest Mangos. Biological Control, 65, 200-206.  
https://doi.org/10.1016/j.biocontrol.2013.02.004 

[37] Alvindia, D.G. and Acda, M.A. (2015) The Antagonistic Effect and Mechanisms of 
Bacillus amyloliquefaciens DGA14 against Anthracnose in Mango cv. ‘Carabao’. 
Biocontrol Science and Technology, 25, 560-572.  
https://doi.org/10.1080/09583157.2014.996738 

[38] Korsten, L. and Bornman, C.H. (2004) Biological Control in Africa: Can It Provide 
a Sustainable Solution for Control of Fruit Diseases? South African Journal of Bo-
tany, 70, 128-139. https://doi.org/10.1016/S0254-6299(15)30273-8 

[39] Kefialew, Y. and Ayalew, A. (2008) Postharvest Biological Control of Anthracnose 
(Colletotrichum gloeosporioides) on Mango (Mangifera indica). Postharvest Biology 
and Technology, 50, 8-11. https://doi.org/10.1016/j.postharvbio.2008.03.007 

[40] Govender, V., Korsten, L. and Sivakumar, D. (2005) Semi-Commercial Evaluation 
of Bacillus licheniformis to Control Mango Postharvest Diseases in South Africa. 
Postharvest Biology and Technology, 38, 57-65.  
https://doi.org/10.1016/j.postharvbio.2005.04.005  

[41] Silimela, M. and Korsten, L. (2007) Evaluation of Pre-Harvest Bacillus licheniformis 
Sprays to Control Mango Fruit Diseases. Crop Protection, 26, 1474-1481.  
https://doi.org/10.1016/j.cropro.2006.12.011  

[42] Punja, Z.K. (1997) Comparative Efficacy of Bacteria, Fungi, and Yeasts as Biological 
Control Agents for Diseases of Vegetable Crops. Canadian Journal of Plant Pathology, 
19, 315-323. https://doi.org/10.1080/07060669709500531  

[43] Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J.C., Gerds, M.L., Hammes, 
W.P., et al. (2012) Food Fermentations: Microorganisms with Technological Benefi-
cial Use. International Journal of Food Microbiology, 154, 87-97.  
https://doi.org/10.1016/j.ijfoodmicro.2011.12.030  

[44] Feder, F. (2013) Soil Map Update: Procedure and Problems Encountered for the 
Island of Réunion. CATENA, 110, 215-224.  
https://doi.org/10.1016/j.catena.2013.06.019  

[45] Leneveu-Jenvrin, C., Quentin, B., Assemat, S., Hoarau, M., Meile, J.-C. and Remize, 
F. (2020) Changes of Quality of Minimally-Processed Pineapple (Ananas comosus, 
var. ‘Queen Victoria’) during Cold Storage: Fungi in the Leading Role. Microorgan-
isms, 8, 185. https://doi.org/10.3390/microorganisms8020185  

[46] Shen, Y.M., Nie, J.Y., Dong, Y.F., Kuang, L.X., Li, Y.P. and Zhang, J.Y. (2018) 
Compositional Shifts in the Surface Fungal Communities of Apple Fruits during 
Cold Storage. Postharvest Biology and Technology, 144, 55-62.  
https://doi.org/10.1016/j.postharvbio.2018.05.005  

[47] Prihastuti, H., Cai, L., Chen, H., McKenzie, E.H.C. and Hyde, K.D. (2009) Characte-
rization of Colletotrichum Species Associated with Coffee Berries in Northern Thail-
and. Fungal Diversity, 39, 89‑109.  

[48] Kim, C.S., Lee, C.H., Shin, J.S., Chung, Y.S. and Hyung, N.I. (1997) A Simple and 
Rapid Method for Isolation of High Quality Genomic DNA from Fruit Trees and 
Conifers Using PVP. Nucleic Acids Research, 25, 1085-1086.  
https://doi.org/10.1093/nar/25.5.1085  

[49] Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S Ribosomal 

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1016/j.cropro.2004.03.014
https://doi.org/10.1016/j.biocontrol.2013.02.004
https://doi.org/10.1080/09583157.2014.996738
https://doi.org/10.1016/S0254-6299(15)30273-8
https://doi.org/10.1016/j.postharvbio.2008.03.007
https://doi.org/10.1016/j.postharvbio.2005.04.005
https://doi.org/10.1016/j.cropro.2006.12.011
https://doi.org/10.1080/07060669709500531
https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
https://doi.org/10.1016/j.catena.2013.06.019
https://doi.org/10.3390/microorganisms8020185
https://doi.org/10.1016/j.postharvbio.2018.05.005
https://doi.org/10.1093/nar/25.5.1085


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 709 Advances in Microbiology 
 

DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.  
https://doi.org/10.1128/JB.173.2.697-703.1991 

[50] Sellamuthu, P.S., Mafune, M., Sivakumar, D. and Soundy, P. (2013) Thyme Oil Va-
pour and Modified Atmosphere Packaging Reduce Anthracnose Incidence and 
Maintain Fruit Quality in Avocado. Journal of the Science of Food and Agriculture, 
93, 3024-3031. https://doi.org/10.1002/jsfa.6135  

[51] Jackson, C.R., Randolph, K.C., Osborn, S.L. and Tyler, H.L. (2013) Culture Dependent 
and Independent Analysis of Bacterial Communities Associated with Commercial 
Salad Leaf Vegetables. BMC Microbiology, 13, Article No. 274.  
https://doi.org/10.1186/1471-2180-13-274 

[52] Enya, J., Shinohara, H., Yoshida, S., Tsukiboshi, T., Negishi, H., Suyama, K., et al. 
(2007) Culturable Leaf-Associated Bacteria on Tomato Plants and Their Potential as 
Biological Control Agents. Microbial Ecology, 53, 524-536.  
https://doi.org/10.1007/s00248-006-9085-1  

[53] Sajur, S.A.A., Saguir, F.M.M., de Nadra, M.C.M. and Manca de Nadra, M.C. (2007) 
Effect of Dominant Specie of Lactic Acid Bacteria from Tomato on Natural Microflora 
Development in Tomato Purée. Food Control, 18, 594-600.  
https://doi.org/10.1016/j.foodcont.2006.02.006  

[54] Telias, A., White, J.R., Pahl, D.M., Ottesen, A.R. and Walsh, C.S. (2011) Bacterial 
Community Diversity and Variation in Spray Water Sources and the Tomato Fruit 
Surface. BMC Microbiology, 11, Article No. 81. 
https://doi.org/10.1186/1471-2180-11-81  

[55] Jager, E.S., Wehner, F.C. and Korsten, L. (2001) Microbial Ecology of the Mango 
Phylloplane. Microbial Ecology, 42, 201-207.  
https://doi.org/10.1007/s002480000106  

[56] Kecskeméti, E., Berkelmann-Löhnertz, B. and Reineke, A. (2016) Are Epiphytic Mi-
crobial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera 
L.) Different between Conventional, Organic, and Biodynamic Grapes? PLoS ONE, 
11, e0160852. https://doi.org/10.1371/journal.pone.0160852  

[57] Brady, C., Cleenwerck, I., Venter, S., Coutinho, T. and De Vos, P. (2013) Taxonomic 
Evaluation of the Genus Enterobacter Based on multilocus Sequence Analysis 
(MLSA): Proposal to Reclassify E. nimipressuralis and E. amnigenus into Lelliottia 
gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. 
nov., Respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Plura-
libacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. 
cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as 
Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia 
oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turi-
censis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis 
nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. 
nov., Respectively, and Emended Description of the Genera Enterobacter and Cro-
nobacter. Systematic and Applied Microbiology, 36, 309-319.  
https://doi.org/10.1016/j.syapm.2013.03.005  

[58] Hejazi, A. and Falkiner, F.R. (1997) Serratia marcescens. Journal of Medical Micro-
biology, 46, 903-912. https://doi.org/10.1099/00222615-46-11-903  

[59] Robinson, C.J., Bohannan, B.J.M. and Young, V.B. (2010) From Structure to Func-
tion: The Ecology of Host-Associated Microbial Communities. Microbiology and 
Molecular Biology Reviews, 74, 453-76. https://doi.org/10.1128/MMBR.00014-10 

[60] Paauw, A., Caspers, M.P.M., Schuren, F.H.J., Leverstein-van Hall, M.A., Delétoile, 
A., Montijn, R.C., et al. (2008) Genomic Diversity within the Enterobacter cloacae 

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1128/JB.173.2.697-703.1991
https://doi.org/10.1002/jsfa.6135
https://doi.org/10.1186/1471-2180-13-274
https://doi.org/10.1007/s00248-006-9085-1
https://doi.org/10.1016/j.foodcont.2006.02.006
https://doi.org/10.1186/1471-2180-11-81
https://doi.org/10.1007/s002480000106
https://doi.org/10.1371/journal.pone.0160852
https://doi.org/10.1016/j.syapm.2013.03.005
https://doi.org/10.1099/00222615-46-11-903
https://doi.org/10.1128/MMBR.00014-10


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 710 Advances in Microbiology 
 

Complex. PLoS ONE, 3, e3018. https://doi.org/10.1371/journal.pone.0003018  

[61] Davin-Regli, A., Lavigne, J.-P. and Pagès, J.-M. (2019) Enterobacter spp.: Update on 
Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clinical Mi-
crobiology Reviews, 32, e00002-19. https://doi.org/10.1128/CMR.00002-19  

[62] Brenner, D.J., McWhorter, A.C., Kai, A., Steigerwalt, A.G. and Farmer, J.J. (1986) 
Enterobacter asburiae sp. nov., a New Species Found in Clinical Specimens, and 
Reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the Genus en-
terobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis 
comb. nov. Journal of Clinical Microbiology, 23, 1114-1120.  
https://doi.org/10.1128/JCM.23.6.1114-1120.1986 

[63] Kosako, Y., Tamura, K., Sakazaki, R. and Miki, K. (1996) Enterobacter kobei sp. 
nov., a New Species of the Family Enterobacteriaceae Resembling Enterobacter 
cloacae. Current Microbiology, 33, 261-265. https://doi.org/10.1007/s002849900110  

[64] Kämpfer, P., McInroy, J.A. and Glaeser, S.P. (2015) Enterobacter muelleri sp. nov., 
Isolated from the Rhizosphere of Zea mays. International Journal of Systematic and 
Evolutionary Microbiology, 65, 4093-4099. https://doi.org/10.1099/ijsem.0.000547  

[65] Delétoile, A., Decré, D., Courant, S., Passet, V., Audo, J., Grimont, P., et al. (2009) 
Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglome-
rans Strains by Multilocus Gene Sequencing. Journal of Clinical Microbiology, 47, 
300-310. https://doi.org/10.1128/JCM.01916-08  

[66] Ait Bahadou, S., Ouijja, A., Karfach, A., Tahiri, A. and Lahlali, R. (2018) New Po-
tential Bacterial Antagonists for the Biocontrol of Fire Blight Disease (Erwinia 
amylovora) in Morocco. Microbial Pathogenesis, 117, 7-15.  
https://doi.org/10.1016/j.micpath.2018.02.011  

[67] Soto-Muñoz, L., Teixidó, N., Usall, J., Viñas, I. and Torres, R. (2014) Detection and 
Quantification by PCR Assay of the Biocontrol Agent Pantoea agglomerans CPA-2 
on Apples. International Journal of Food Microbiology, 175, 45-52.  
https://doi.org/10.1016/j.ijfoodmicro.2014.01.014  

[68] Trotel-Aziz, P., Couderchet, M., Biagianti, S. and Aziz, A. (2008) Characterization 
of New Bacterial Biocontrol Agents Acinetobacter, Bacillus, Pantoea and Pseudo-
monas spp. Mediating Grapevine Resistance against Botrytis cinerea. Environmen-
tal and Experimental Botany, 64, 21-32.  
https://doi.org/10.1016/j.envexpbot.2007.12.009  

[69] Sadik, S., Mazouz, H., Benbouazza, A. and Achbani, E.H. (2016) Ecology of Pantoea 
agglomerans 2066-7 Strain: A Biological Control of Bacteria Onion Diseases. Jour-
nal of Microbiology, Biotechnology and Food Sciences, 5, 612-616.  
https://doi.org/10.15414/jmbfs.2016.5.6.612-616  

[70] Smits, T.H.M., Duffy, B., Blom, J., Ishimaru, C.A. and Stockwell, V.O. (2019) Pan-
tocin A, a Peptide-Derived Antibiotic Involved in Biological Control by 
Plant-Associated Pantoea Species. Archives of Microbiology, 201, 713-722.  
https://doi.org/10.1007/s00203-019-01647-7  

[71] Jiang, L.M., Jeong, J.C., Lee, J.-S., Park, J.M., Yang, J.-W., Lee, M.H., et al. (2019) 
Potential of Pantoea dispersa as an Effective Biocontrol Agent for Black Rot in 
Sweet Potato. Scientific Reports, 9, Article No. 16354.  
https://doi.org/10.1038/s41598-019-52804-3  

[72] Nunes, C., Usall, J., Teixidó, N. and Vias, I. (2001) Biological Control of Postharvest 
Pear Diseases Using a Bacterium, Pantoea agglomerans CPA-2. International Jour-
nal of Food Microbiology, 70, 53-61.  
https://doi.org/10.1016/S0168-1605(01)00523-2  

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1371/journal.pone.0003018
https://doi.org/10.1128/CMR.00002-19
https://doi.org/10.1128/JCM.23.6.1114-1120.1986
https://doi.org/10.1007/s002849900110
https://doi.org/10.1099/ijsem.0.000547
https://doi.org/10.1128/JCM.01916-08
https://doi.org/10.1016/j.micpath.2018.02.011
https://doi.org/10.1016/j.ijfoodmicro.2014.01.014
https://doi.org/10.1016/j.envexpbot.2007.12.009
https://doi.org/10.15414/jmbfs.2016.5.6.612-616
https://doi.org/10.1007/s00203-019-01647-7
https://doi.org/10.1038/s41598-019-52804-3
https://doi.org/10.1016/S0168-1605(01)00523-2


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 711 Advances in Microbiology 
 

[73] Nunes, C., Usall, J., Teixido, N., Fons, E. and Vinas, I. (2002) Post-Harvest Biologi-
cal Control by Pantoea agglomerans (CPA-2) on Golden Delicious Apples. Journal 
of Applied Microbiology, 92, 247-255.  
https://doi.org/10.1046/j.1365-2672.2002.01524.x  

[74] Poppe, L., Vanhoutte, S. and Höfte, M. (2003) Modes of Action of Pantoea agglo-
merans CPA-2, an Antagonist of Postharvest Pathogens on Fruits. European Jour-
nal of Plant Pathology, 109, 963-973.  
https://doi.org/10.1023/B:EJPP.0000003747.41051.9f  

[75] Teixidó, N., Usall, J., Palou, L., Asensio, A., Nunes, C. and Viñas, I. (2001) Improv-
ing Control of Green and Blue Molds of Oranges by Combining Pantoea agglome-
rans (CPA-2) and Sodium Bicarbonate. European Journal of Plant Pathology, 107, 
685-694. https://doi.org/10.1023/A:1011962121067  

[76] Inoue, K., Sugiyama, K., Kosako, Y., Sakazaki, R. and Yamai, S. (2000) Enterobacter 
cowanii sp. nov., a New Species of the Family Enterobacteriaceae. Current Microbi-
ology, 41, 417-420. https://doi.org/10.1007/s002840010160  

[77] Khan, A.A.H. (2019) Plant-Bacterial Association and Their Role as Growth Promo-
ters and Biocontrol Agents. In: Sayyed, R.Z., Ed., Plant Growth Promoting Rhizo-
bacteria for Sustainable Stress Management: Rhizobacteria in Biotic Stress Man-
agement, Vol. 13, Springer, Singapore, 389-419.  
https://doi.org/10.1007/978-981-13-6986-5_16  

[78] Baldan, E., Nigris, S., Populin, F., Zottini, M., Squartini, A. and Baldan, B. (2014) 
Identification of Culturable Bacterial Endophyte Community Isolated from Tissues 
of Vitis vinifera “Glera”. Plant Biosystems, 148, 508-516.  
https://doi.org/10.1080/11263504.2014.916364  

[79] de Pereira, G.V.M., Magalhães, K.T., Lorenzetii, E.R., Souza, T.P. and Schwan, R.F. 
(2012) A Multiphasic Approach for the Identification of Endophytic Bacterial in 
Strawberry Fruit and Their Potential for Plant Growth Promotion. Microbial Ecol-
ogy, 63, 405-417. https://doi.org/10.1007/s00248-011-9919-3  

[80] Suhandono, S., Kusumawardhani, M.K. and Aditiawati, P. (2016) Isolation and 
Molecular Identification of Endophytic Bacteria from Rambutan Fruits (Nephelium 
lappaceum l.) Cultivar Binjai. HAYATI Journal of Biosciences, 23, 39-44.  
https://doi.org/10.1016/j.hjb.2016.01.005  

[81] Crowley, S., Mahony, J. and van Sinderen, D. (2013) Current Perspectives on Anti-
fungal Lactic Acid Bacteria as Natural Bio-Preservatives. Trends in Food Science & 
Technology, 33, 93-109. https://doi.org/10.1016/j.tifs.2013.07.004  

[82] Trias, R., Badosa, E., Montesinos, E. and Bañeras, L. (2008) Bioprotective Leuco-
nostoc Strains against Listeria monocytogenes in Fresh Fruits and Vegetables. In-
ternational Journal of Food Microbiology, 127, 91-98.  
https://doi.org/10.1016/j.ijfoodmicro.2008.06.011  

[83] Tabanelli, G., Pasini, F., Riciputi, Y., Vannini, L., Gozzi, G., Balestra, F., et al. (2018) 
Fermented Nut-Based Vegan Food: Characterization of a Home Made Product and 
Scale-Up to an Industrial Pilot-Scale Production. Journal of Food Science, 83, 
711-722. https://doi.org/10.1111/1750-3841.14036  

[84] Swain, M.R., Anandharaj, M., Ray, R.C. and Parveen Rani, R. (2014) Fermented 
Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnology Re-
search International, 2014, Article ID: 250424. https://doi.org/10.1155/2014/250424  

[85] Diskin, S., Feygenberg, O., Maurer, D., Droby, S., Prusky, D. and Alkan, N. (2017) 
Microbiome Alterations Are Correlated with Occurrence of Postharvest Stem-End 
Rot in Mango Fruit. Phytobiomes Journal, 1, 117-127.  

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1046/j.1365-2672.2002.01524.x
https://doi.org/10.1023/B:EJPP.0000003747.41051.9f
https://doi.org/10.1023/A:1011962121067
https://doi.org/10.1007/s002840010160
https://doi.org/10.1007/978-981-13-6986-5_16
https://doi.org/10.1080/11263504.2014.916364
https://doi.org/10.1007/s00248-011-9919-3
https://doi.org/10.1016/j.hjb.2016.01.005
https://doi.org/10.1016/j.tifs.2013.07.004
https://doi.org/10.1016/j.ijfoodmicro.2008.06.011
https://doi.org/10.1111/1750-3841.14036
https://doi.org/10.1155/2014/250424


A. Taïbi et al. 
 

 

DOI: 10.4236/aim.2020.1012050 712 Advances in Microbiology 
 

https://doi.org/10.1094/PBIOMES-05-17-0022-R  

[86] Fessard, A. and Remize, F. (2019) Genetic and Technological Characterization of 
Lactic Acid Bacteria Isolated from Tropically Grown Fruits and Vegetables. Inter-
national Journal of Food Microbiology, 301, 61-72.  
https://doi.org/10.1016/j.ijfoodmicro.2019.05.003  

[87] Vos, P., Garrity, G., Jones, D., Krieg, N. and Ludwig, W. (2011) Bergey’s Manual of 
Systematic Bacteriology: The Firmicutes. Vol. 3, Springer-Verlag, New York. 

 
 
 
 
 
 

https://doi.org/10.4236/aim.2020.1012050
https://doi.org/10.1094/PBIOMES-05-17-0022-R
https://doi.org/10.1016/j.ijfoodmicro.2019.05.003

	New Bacterial Agents to Limit Colletotrichum gloeosporioides Development on Mango
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Isolation of Bacteria and Culture Conditions
	2.2. Colletotrichum spp. Cultivation
	2.3. Growth at Different Temperatures and Biofilm Formation
	2.4. Identification of Isolates
	2.5. In Vitro Colletotrichum Inhibition Assay
	2.5.1. Plate Assay for Mycelial Growth Inhibition
	2.5.2. Inhibition of the Germination of Conidia 

	2.6. In Vivo Examination of the Severity of Anthracnose
	2.7. Statistical Analysis

	3. Results and Discussion
	3.1. Isolation and Phenotypic Characterization of Bacteria
	3.2. Selection and Identification of Inhibitors of Colletotrichum Development
	3.3. In Vivo Activity

	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

