
Communication — SACJ, No. 40., 2008 95

Letter to the Editor: 40 Years after Garmisch

Stefan Gruner

Department of Computer Science, University of Pretoria, Republic of South Africa

40 Years ago: 1968! While Woodstock-inspired
hippies, with long hair, made love, not war, and while
leftwing students, successfully rebelled for a more lib-
eral society in general and against the academic es-
tablishment in particular,1 an event took place almost
unnoticed, in a small Bavarian town at the foot of the
Alps, which —in retrospective— turned out to be as
important for our profession as the students’ rebellion
and the “Spirit of 68” was for the general liberalisation
and opening up of the Western societies. That event
was the now famous 1968 NATO Science Conference
in Garmisch, Bavaria, at which the term Software

Engineering was coined,2 and the birth of a new pro-
fession was declared. Throughout the world of com-
puter science and software engineering that event is
being commemorated this year.3

In this letter, I do not want to repeat the history
of software engineering which other, more competent
people have so aptly described and discussed.4 In spite
of having fallen victim to the recent —now already
notorious— “Heathrow Hiccup” at the new T5 termi-
nal to London’s Heathrow airport, in which software
defects might have played their role (though human
incompetence was probably to be blamed even more
than technical defects), I also want to refrain from re-
peating the usual litany of failures that constitute the
notorious “Software Crisis” — a term that was also
coined a generation ago, when the financial cost of
software started to exceed the financial cost of hard-
ware —what a shock— and this cost relation between
software and hardware has never been reversed since
then.

Instead, I want to muse a little about the second
word of the term, “engineering”, because, whilst some
people tend to believe that we in software engineer-
ing are still, basically, “craftsmen” who have not yet
even approached “engineering” status, organisations
like the EASST already speak about software “sci-

Email: Stefan Gruner stefan@cs.up.ac.za

1Their battle cry in Germany was: “Unter den Talaren, der
Muff von tausend Jahren!” — under the gowns, the reek of
thousand years!

2P. Naur and B. Randell (Eds.): Software Engineering —
Report on a Conference sponsored by the NATO Science Com-
mittee. Garmisch, Germany, 1968, published in January 1969.

3For example at ICSE, see
http://icse08.upb.de/program/40years.html

4A. Brennecke and R. Keil-Slawik (Eds.): Position Papers
for Dagstuhl-Seminar 9635 on the History of Software Engi-
neering. Schloss Dagstuhl, Germany, 1996.

ence” and software “technology”5 — two little words
about which volumes and volumes of philosophical
writings have already been published.

The reason why I want to muse a little bit about
software “craft” versus software “engineering” versus
software “science” is to highlight the relation of these
three concepts to what we teach at university and how
we teach it, how much emphasis we place on each part
of this triplet, etc. I recently discussed such questions
with a colleague in Britain — which was, by the way,
also one of the reasons why I got stuck in that already
mentioned “Heathrow Hiccup” at London’s T5 at all.
Trying to be a good software engineer (whatever that
means in detail), I try to explain the issue at hand
in a “layered architecture” approach — though I will
refrain from declaring which one of these three lay-
ers would be the “top” layer and which one would be
the “bottom” layer; these are sensitive academic is-
sues, and one does not wish to step on anybody’s toes
(as far as this is possible in a densely crowded room).
Anyway, we now have the “scientific layer”, the “en-
gineering layer” and the “crafts layer” to think about
— not to mention the “arts” (of programming, etc.),
which are often quoted in this context, too.

Let’s take an algorithm A. At the purely scientific
layer we might not even know (and certainly would
not care) whether A is useful for any purpose, but
we would know that A’s complexity is O(X ) in the
best case, O(Y) in the average case, and O(Z) in the
worst case. Moreover we would not only “know” that
this is all the case; we would also be able to prove it
mathematically, from first principles, and thus achieve
“knowledge” in the old Aristotelian sense of the word.6

At the engineering layer we would know that two
variants, A and A′, of our algorithm could be used
for solving a given external problem P .7 We would
also know the best case, average case, and worst case
complexities O(X ), O(X ′), O(Y), O(Y ′), O(Z) and
O(Z ′) of these two algorithms, according to which we
could make a well-informed decision about which al-
gorithm to choose, A or A′, as a “good” or “accept-
able” or “elegant” solution to our given problem P .
However, we would perhaps not know how to prove
all those O-properties mathematically from first prin-
ciples; instead we would look up the results from a
table in our standard engineering handbook. By the

5European Association for Software Science and Technology,
see http://www.easst.org/

6Generality and neccessity
7A so-called “real world” problem, in contrast to a purely

intra-scientific problem



96 Communication — SACJ, No. 40., 2008

way, the word “engineer” itself is interesting enough;
its French translation is “ingenieur”, and, strangely
enough, these two words, “engineer” and “ingenieur”,
sound quite similar, phonetically, from a listener’s
standpoint — yet their meanings and connotations
point into different, almost opposite directions: “en-
gineer” points to the engine, the machine, whereas
“ingenieur” points to the genius, the mind behind the
machine.

At the crafts layer,8 finally, we would probably
not even know anything about complexity and O-
properties at all, but we would know about the ex-
istence and the purpose of algorithm A, and we could
also beautifully “code” it in a variety of techniques,
iteratively or recursively, in a variety of programming
languages, Java or Lisp or whatever, for a variety of
platforms, Linux, Windows, and so on.

Now, where are we, as academic software “en-
gineers”, located in this 3-layered “architecture of
knowledge”, 40 years after the NATO Science Con-
ference at Garmisch? Where is the “link” between
software engineering, computer science, and related
disciplines? Is (or should be) software engineering still
a sub-area of computer science, or is (or should it be)
already a fully-fledged discipline in its own right?9

Moreover: Where in this 3-layered “architecture of
knowledge” are (or should be) the universities, where
are (or should be) the technical or vocational colleges
and job academies? The answers to these questions do
not only depend on political decisions being made in
those kind of committees whose members usually en-
joy the privilege of a permanently reserved sheltered
car parking space, but also on the individual students
coming to us — which brings me (eventually!) to my
final theme for this letter.

Recently, I have been re-reading Confucius’ Con-
versations, in translation of course, not in the two-
thousand-and-something year old Chinese original.
There we can find the following verdict about a stu-
dent Dsai Yu.10 What had he done? The verse reads
as follows: “Dsai Yu once slept during the day. The
master spoke: ‘You cannot carve anything from rot-
ten wood, and you do not paint onto a wall made of
mud. It is not worth the effort to criticize Dsai Yu’ !”
More recently, a student came to visit me in my of-
fice, declaring that he had not understood something
from my lecture, demanding further explanations and
help. I asked the student: “Which books from the
library have you already consulted, in order to find
an explanation to your problem?” It turned out that
this student had not even bothered to walk those hun-
dred steps across our magnificent campus to our ex-
cellent and well-equipped academic library. Now, re-

8A. Arageorgis and A. Baltas: Demarcating Technology
from Science — Problems and Problem Solving in Technol-
ogy. Zeitschrift fr allgemeine Wissenschaftstheorie Vol.20, No.2,
pp.212-229, 1989. For comparison see J.M. Bishop: Computer
Programming — Is is Computer Science? Suid-Afrikaanse Tyd-
skrif vir Wetenskap Vol.87, pp.22-33, 1991.

9Remember the similar debate concerning computer science
and artificial intelligence some years ago.

10Confucius: Conversations, Chapter V, Verse 9.

ferring back to our software engineering conversation
of above: on what “layer” of our 3-strated “architec-
ture of knowledge” would you try to approach this
guy? On the “scientific” layer? On the “engineering”
layer? On the “crafts” layer? And would Confucius
even call such a student a “student”? Let us hear
Confucius himself again:11 “The master spoke: ‘I do
not teach him, who is not committed and not busy in
his attempts. I do not open the mind of him who does
not open his mouth. And after I pointed to the one
corner: he, who is then not able to point to the three
other corners — I will not teach him any more’. ”

I wonder if such a policy would have spared the
world the experience of the “Heathrow Hiccup”?

11Confucius: Conversations, Chapter VII, Verse 8.


