Appendix A.

Supplementary data.

Synthesis and structure of annulated dithieno[2,3-b;3',2'-d]thienyl- and ring-opened 3,3'bithienyl Fischer carbene complexes
Zandria Lamprecht, ${ }^{\text {a }}$ Frederick P. Malan, ${ }^{\text {a }}$ David C. Liles, ${ }^{\text {a }}$ Simon Lotz ${ }^{\text {a }}$ and Daniela I. Bezuidenhout*b
${ }^{a}$ Chemistry Department, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
${ }^{b}$ Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland
*Email: daniela.bezuidenhout@oulu.fi

Table of contents
S1. Precursor NMR data S2
S2. Synthesis of complexes S2
S3. 2D-NMR Spectroscopy S3
S4. Single crystal X-ray diffraction S5
S5. References S8
(a)

(b)

Figure S1. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) for $\mathbf{P 1}(\mathrm{a})$ and $\mathbf{P 2}(\mathrm{b})$ measured in CDCl_{3}

S2. Synthesis of complexes

Table S1. Yields and colours of complex products obtained from method 1

Compound	Name	Mass (g)	Yield (\%)	Colour
Butyl carbene ${ }^{1}$	$\left[\mathrm{Cr}(\mathrm{CO})_{5}\left\{\mathrm{C}(\mathrm{OEt}) \mathrm{C}_{4} \mathrm{H}_{9}\right\}\right]$	0.034	4	Yellow
1	[$\left.\left\{2-\mathrm{SBu}, 5-\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{HS}-3,3{ }^{\prime}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right]$	0.29	32	Red
2	[2'-SBu-C4 $\mathrm{H}_{2} \mathrm{~S}-3,3{ }^{\prime}-\left\{2-\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}$]	0.070	8	Yelloworange
3	$\left[\left\{2-\mathrm{SBu}, 5-\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{HS}-3,3^{\prime}-\left\{2^{\prime}-\right.\right.$	0.32	24	Red-purple
4	$\begin{gathered} {\left[\left\{2-\mathrm{SBu}, 5-\mathrm{C}(\mathrm{OEt})\left(\mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{HS}-3,3^{\prime}-\left\{5^{\prime}-\right.\right.\right.} \\ \left.\left.\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}\right] \end{gathered}$		<3	Red-purple

Table S2. Yields and colours of complex products obtained from method 2

Compound	Name	Mass (g)	Yield (\%)	Colour
P1	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{3}$	0.17	47	White
$\mathbf{6}^{2}$	$\left[\mathrm{Cr}(\mathrm{CO})_{5}\{\mathrm{CNEt}\}\right]$	0.032	4	White
$\mathbf{7}$	$\left[\mathrm{Cr}(\mathrm{CO})_{4}\left\{\mathrm{C}(\mathrm{OEt})-5-\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~S}_{3}\right\} \mathrm{CNEt}\right]$	0.10	12	Purple-pink

Table S3. Yields and colours of complex products obtained from method 3

| Compound | Name | Mass (g) | Yield (\%) | Colour |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{8}^{3}$ | $\left.\left[\left\{5-\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}\right\}-3,3^{\prime}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right]$ | 0.14 | 21 | Red |
| $\mathbf{9}^{3}$ | $\left[5,5^{\prime}-\left\{\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt})\right\}_{2}-3,3^{\prime}-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{2}\right]$ | 0.37 | 35 | Purple-red |

Table S4. Yields and colours of complex products obtained from method 4

Compound	Name	Mass (g)	Yield (\%)	Colour
$\mathbf{1 0}$	$\left[\mathrm{Cr}(\mathrm{CO})_{5}\left\{\mathrm{C}(\mathrm{OEt})-5-\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~S}_{3}\right\}\right]$	0.084	44	Red-orange
$\mathbf{1}$	$\left[\left\{2-\mathrm{SBu}, 5-\mathrm{C}(\mathrm{OEt}) \mathrm{Cr}(\mathrm{CO})_{5}\right\} \mathrm{C}_{4} \mathrm{HS}-3,3^{\prime}-\right.$	0.010	5	Red
	$\left.\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right]$			
$\mathbf{5}$	$\left[\left\{\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt})\right\}_{2}-5,5^{\prime}-\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~S}_{3}\right]$		<3	Purple-red

Table S5. Yields and colours of complex products obtained from method 4

Compound	Name	Mass (g)	Yield (\%)	Colour
P1	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{3}$	0.12	20	White
$\mathbf{1 1}$	$\left[\mathrm{W}(\mathrm{CO})_{5}\left\{\mathrm{C}(\mathrm{OEt})-5-\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~S}_{3}\right\}\right]$	0.62	36	Red-orange

Table S6. Yields and colours of complex products obtained from method 5

Compound	Name	Mass (g)	Yield (\%)	Colour
P1	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{3}$	0.035	8	White
$\mathbf{1 2}$	$\left[\mathrm{W}(\mathrm{CO})_{5}\left\{\mathrm{C}\left(\mathrm{NMe}_{2}\right)-5-\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~S}_{3}\right\}\right]$	0.44	69	Yellow
$\mathbf{1 3}$	$\left[\left\{\mathrm{W}(\mathrm{CO})_{5} \mathrm{C}\left(\mathrm{NMe}_{2}\right)\right\}_{2}-5,5^{-}-\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~S}_{3}\right]$	0.22	21	Yellow orange

S3. 2D NMR spectroscopy

Assignments of proton resonances are made by taking into account the coupling constants of the proton chemical shifts. Challenging proton and carbon assignments are resolved using 2D NMR spectra. THe homonuclear chemical shift correlation ($\left[{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right]$ COSY) NMR spectrum is essential in the case of 2 to confirm which aromatic proton doublets (four with similar coupling constants) are coupled. The sequence of proton resonances for the SBu fragment could also be determined with a $\left[{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right]$ COSY NMR spectrum and is labelled as $\mathrm{SC}(1) \mathrm{H}_{2} \mathrm{C}(2) \mathrm{H}_{2} \mathrm{C}(3) \mathrm{H}_{2} \mathrm{C}(4) \mathrm{H}_{3}$ (green, Fig. S2).

Figure S2. 2D $\left[{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right]$ COSY spectrum of 2

The $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ HSQC NMR spectrum (Fig. S3) is used to assign the protonated carbons of 2. Quaternary carbons are determined by making use of the heteronuclear multiple bond correlation $\left(\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]\right.$ HMBC) NMR spectrum (Fig. S4).

Figure S3. 2D $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ HSQC spectrum of 2

Figure S4. 2D $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ HMBC spectrum of 2

Most thienylene carbene compounds show the H 5 ' resonance more downfield compared to H 4 ' in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1 and Fig. S5(a)). Compounds 10 (Fig. S5(b)) and 11 are exceptions to this, with their H 4 ' resonances more downfield.

Figure S5. 2D $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ HSQC spectra of $\mathbf{1 2}$ (a) and $\mathbf{1 0}(\mathrm{b})$, showing only the aromatic regions

S4 Single crystal X-ray diffraction

S4.1 Crystal data collection and structure refinement parameters

Compound 1: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{3} \mathrm{Cr}(M=502.56 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$ (no. 15), $a=$ 52.4504(19) $\AA, b=7.4685(3) \AA, c=25.3205(9) \AA, B=114.7700(10)^{\circ}, V=9006.1(6) \AA^{3}, Z=16, T=$ $150.01 \mathrm{~K}, \mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.819 \mathrm{~mm}^{-1}$, Dcalc $=1.4825 \mathrm{~g} / \mathrm{cm}^{3}, 156088$ reflections measured $\left(4.54^{\circ} \leq 2 \Theta \leq\right.$ 49.42°), 7672 unique ($R_{\text {int }}=0.0424, R_{\text {sigma }}=0.0230$) which were used in all calculations. The final R_{1} was $0.0325(\mathrm{I}>=2 \mathrm{u}(\mathrm{I}))$ and $w R_{2}$ was 0.1008 (all data). CCDC 2009044

Compound 5: $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{Cr}_{2} \mathrm{O}_{12} \mathrm{~S}_{3}(M=692.52 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $\mathrm{P}-1$ (no. 2), $a=7.7699$ (7) \AA, $b=$ $10.8891(11) \AA, c=17.2416(17) \AA, \alpha=104.632(4)^{\circ}, b=94.044(4)^{\circ}, \gamma=96.766(4)^{\circ}, V=1394.0(2) \AA^{3}, Z=$ $2, T=150(2) K, \mu(\mathrm{MoK} \alpha)=1.066 \mathrm{~mm}^{-1}$, Dcalc $=1.650 \mathrm{~g} / \mathrm{cm}^{3}, 31826$ reflections measured $\left(4.91^{\circ} \leq 2 \Theta\right.$ $\leq 49.424^{\circ}$), 4749 unique ($R_{\text {int }}=0.1147, \mathrm{R}_{\text {sigma }}=0.0626$) which were used in all calculations. The final R_{1} was 0.0309 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0830 (all data). CCDC 2009043

Compound 7: $\mathrm{C}_{9} \mathrm{H}_{6.5} \mathrm{Cr}_{0.5} \mathrm{~N}_{0.5} \mathrm{O}_{2.5} \mathrm{~S}_{1.5}(M=235.74 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $\mathrm{P}-1$ (no. 2$), a=$ 7.4794(7) $\AA, b=11.9763(11) \AA, c=12.1963(12) \AA, \alpha=110.742(3)^{\circ}, b=91.017(3)^{\circ}, v=103.342(3)^{\circ}, V=$ $988.15(16) \AA^{3}, Z=4, T=150(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.926 \mathrm{~mm}^{-1}$, Dcalc $=1.585 \mathrm{~g} / \mathrm{cm}^{3}$, 28214 reflections measured $\left(5.632^{\circ} \leq 2 \Theta \leq 52.044^{\circ}\right), 3883$ unique ($R_{\text {int }}=0.0336, \mathrm{R}_{\text {sigma }}=0.0199$) which were used in all calculations. The final R_{1} was $0.0285\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.0722 (all data). CCDC 2009042

Compound 10: $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{CrO}_{6} \mathrm{~S}_{3}(M=444.40 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=6.8382(7) \AA \AA, b=$ $9.8055(10) \AA, c=14.0893(13) \AA, \alpha=104.167(3)^{\circ}, b=104.269(3)^{\circ}, \gamma=104(3)^{\circ}, V=$ $870.30(15) \AA^{3}, Z=2, T=150(2) K, \mu(\mathrm{MoK} \alpha)=1.048 \mathrm{~mm}^{-1}$, Dcalc $=1.696 \mathrm{~g} / \mathrm{cm}^{3}, 20020$ reflections measured $\left(4.472^{\circ} \leq 2 \Theta \leq 49.424^{\circ}\right), 2957$ unique ($R_{\text {int }}=0.0354, R_{\text {sigma }}=0.0224$) which were used in all calculations. The final R_{1} was $0.0280\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.0692 (all data). CCDC 2009045

Compound 11: $\mathrm{C}_{19} \mathrm{H}_{8} \mathrm{O}_{9} \mathrm{~S}_{3} \mathrm{~W}_{1.5}(M=752.23 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $\mathrm{P}-1$ (no. 2), $a=$ $7.64250(10) \AA$ A $, b=\quad 9.4015(2) \AA, c=16.0890(3) \AA$, $\alpha=94.7090(10)^{\circ}, b=99.6690(10)^{\circ}, \gamma=$ $90.3600(10)^{\circ}, V=1135.50(4) \AA^{3}, Z=2, T=N / A K, \mu(C u K \alpha)=16.960 \mathrm{~mm}^{-1}, D c a l c=2.2000 \mathrm{~g} / \mathrm{cm}^{3}$, 23355 reflections measured $\left(5.6^{\circ} \leq 2 \Theta \leq 144.24^{\circ}\right), 4461$ unique ($R_{\text {int }}=0.0897, R_{\text {sigma }}=0.0597$) which were used in all calculations. The final R_{1} was 0.0489 ($\left.1>=2 u(I)\right)$ and $w R_{2}$ was 0.1236 (all data). CCDC 2009041

Compound.12: $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{NO}_{5} \mathrm{~S}_{3} \mathrm{~W}(M=572.25 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $a=$ 19.5378(6) $\AA, b=6.4155(2) \AA, c=15.0044(4) \AA, B=99.372(3)^{\circ}, V=1855.62(10) \AA^{3}, Z=4, T=150(2) K$, $\mu(\mathrm{MoK} \alpha)=6.589 \mathrm{~mm}^{-1}$, Dcalc $=2.048 \mathrm{~g} / \mathrm{cm}^{3}, 20159$ reflections measured $\left(4.226^{\circ} \leq 2 \Theta \leq 52.74^{\circ}\right), 3788$ unique ($R_{\text {int }}=0.1421$, $\mathrm{R}_{\text {sigma }}=0.0541$) which were used in all calculations. The final R_{1} was 0.0528 ($\mathrm{I}>$ $2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1438 (all data). CCDC 2009047

Compound 13: $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}_{3} \mathrm{~W}_{2}(M=954.25 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (no. 14$), a=$ $6.5741(5) \AA, b=15.1714(10) \AA, c=32.440(2) \AA, B=95.543(3)^{\circ}, V=3220.4(4) \AA^{3}, Z=4, T=150.15 \mathrm{~K}$, $\mu(\mathrm{CuK} \alpha)=15.285 \mathrm{~mm}^{-1}$, Dcalc $=1.968 \mathrm{~g} / \mathrm{cm}^{3}, 130982$ reflections measured $\left(5.474^{\circ} \leq 2 \Theta \leq 144.236^{\circ}\right)$, 6328 unique ($R_{\text {int }}=0.1304, \mathrm{R}_{\text {sigma }}=0.0470$) which were used in all calculations. The final R_{1} was 0.0582 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.2062 (all data). CCDC 2009046

S4.2 X-ray crystallography: packing

The molecules do not fit exactly on top of each other in the $\pi-\pi$ stacking observed for 10 and 11, but their $\left[2,3-b ; 3^{\prime}, 2^{\prime}-d\right]$-DTT spacers overlap (Fig. S6). Classical $\pi-\pi$ stacking is also observed in 1, 5 and 7 with their $\pi-\pi$ interaction distances measured as $3.549,4.434$ and $3.772 \AA$ respectively. Only partial overlap of the thienylene spacers occur.

Figure S6. $\boldsymbol{\pi}$ - π Stacking of $\mathbf{1 0}$ (a) and $\mathbf{1 1 (b)}$ when viewed down the crystallographic b-axis

The packing of 13 shows stacking and columnar packing when viewed down two different axes. This basic structural motif (columns) can be divided into different levels of crystal organization, primary (columns) and secondary (layers of columns). The columns are assigned to columnar packing, consisting of molecules that pack with small $\pi-\pi$ interaction distances, for example 13 , when viewed down the crystallographic a-axis (Fig. S7(a)). The molecules fit on top of each other, down the column, in a parallel fashion. The columns are parallel-packed in a non-planar fashion, with each column surrounded by eight other columns. The $\pi-\pi$ interaction distance is measured at $6.574 \AA$, too far apart to be called true $\pi-\pi$ stacking (3.5-5 \AA). Rather, a packing pattern is seen where the units are merely densely packed. The formation of a grid network is evident from the view along the crystallographic a-axis, consisting of dimers that are packed antiparallel to each other.
(a)
(b)

Figure S7. Packing of 13 viewed down the crystallographic a-axis (a) and b-axis (b)

The layers of columns consist of packed molecules with longer $\pi-\pi$ separation distances, for example 13 has a separation distance of $15.171 \AA$, when viewed down the crystallographic b-axis (Fig. S7(b)). The molecules fit on top of each other, down the column, with the columns packed together in dimers. The dimer columns pack parallel, but steric hindrance prevents them from packing planar to each other, hence they are interlocking.

S5 References.

1. Terblans, Y. M.; Marita Roos, H.; Lotz, S. J. Organomet. Chem. 1998, 566, 133-142.
2. Connor, J. A.; Jones, E. M.; McEwen, G. K.; Lloyd, M. K.; McCleverty, J. A. J. Chem. Soc., Dalton Trans. 1972, No. 12, 1246.
3. Lamprecht, Z.; Moeng, M. M.; Liles, D. C.; Lotz, S.; Bezuidenhout, D. I. Polyhedron 2019, 158, 193-207.
