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A B S T R A C T   

Study region: Kaleya River Catchment in southern Zambia. 
Study focus: The ability of a landscape hydrology approach to detect controls on water availability 
in a fragmented landscape to inform interventions under a changing environment was investi-
gated. Simple and measurable climatic and landscape pattern attributes were analysed using 
change detection, trend analysis and backward variable elimination with Partial Least Squares 
Regression (PLSR) to identify controls on seasonal river flows and how landscape components 
could be enhanced to augment natural river flows. 
New hydrological insights for the region: Landscape pattern showed increasing fragmentation, 
expansion of irrigated cropland and reservoirs and loss of forestland. Significant increasing trends 
(p < 0.05) were observed for reference evapotranspiration (ETo), one-day maximum rainfall, 
coefficient of variation (CV) of rainfall, maximum dry spell length, and start of rains but not 
annual rainfall. Increased CV of rainfall, rainfall intensity and ETo were the main climatic 
stressors on river flows. Increased Percentage of Landscape (PLAND) of irrigated cropland, 
PLAND of reservoirs, Patch Density (PD) and Largest Patch Index (LPI) of reservoirs were the 
main landscape pattern stressors. Only the LPI of forestland positively explained seasonal river 
flows. Water resource interventions in the region must adapt more to changing seasonal rainfall 
characteristics than to annual rainfall totals. Additionally, regeneration of larger forest patches 
could improve river flows. The approach can be applied in other regions.   

1. Introduction 

The landscape is a mosaic of many land use types (land cover composition) with different geometric and spatial arrangements (land 
cover configuration). Hence the observed hydrological signatures are a result of the linear and non-linear interaction of landscape 
patterns (landcover composition and configuration) with climatic variables (Ekness and Randhir, 2015; Hughes et al., 2014). Although 
it can be argued that the inter-relationships between landscape elements such as forest and hydrology are well known, such in-
teractions can be more complex in the rapidly fragmenting landscapes of tropical and subtropical Africa (Guzha et al., 2018; Malmer 
et al., 2010). Despite a plethora of studies investigating land use impacts on hydrological dynamics, most studies focus on landscape 
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composition (proportion of a landcover class in the landscape). Using landscape ecology, it has been shown that processes such as 
runoff generation, infiltration, evapotranspiration (ET), hydrological connectivity, sediment transport and water quality are also 
related to landscape configuration at a watershed scale (Shi et al., 2013; Boongaling et al., 2018; Ding et al., 2016). In this regard, 
landscape metrics (indices of landscape pattern) developed in the field of landscape ecology are increasingly drawing scholarly 
attention to understand hydrological fluxes in a changing environment (Ekness, 2013; Epting, 2016; Albalawneh et al., 2015; Wang 
et al., 2020; Yu et al., 2020; Ding et al., 2016). 

Combining hydrological modelling with multivariate statistical methods is becoming widely used in attributing land use controls 
on hydrological change. For example, recently, Partial Least Square Regression (PLSR) was applied to attribute hydrological change to 
specific changes in land use/landcover composition using river flows and sediment data simulated by hydrological models according to 
various land use scenarios (Shi et al., 2013; Woldesenbet et al., 2017; Gebremicael et al., 2019). But the underlying drivers of hy-
drological variability from among climate, landscape composition and configuration controls are rarely investigated simultaneously. 
Additionally, the studies have mainly used simulated river flows. However, in fragmented, heterogenous and intensively managed 
meso-scale catchments such as the Kaleya in southern Zambia where dam management operations data does not exist, the actual 
hydrological signatures and processes are difficult to reproduce due to modelling and calibration uncertainties (Abbaspour et al., 2018; 

Fig. 1. The Kaleya River Catchment in southern Zambia.  
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Hughes et al., 2014; Hughes, 2006). Moreover, seasonal climatic characteristics in semi-arid areas like Zambia could be more 
important in explaining seasonal water availability than annual totals and /or land use composition. Thus, managing water resources 
under a changing environment requires information on specific climatic changes the water resources must adapt to. 

This study addresses these gaps through the lenses of landscape hydrology. The field of landscape hydrology provides an oppor-
tunity to integrate landscape ecology and catchment hydrology (Schröder, 2006; Ferguson, 1991). Landscape hydrology deals with 
landscape components such as climate, land use composition and configuration, including soils, geology and topography and how their 
interactions affect water movement and storage in the catchment landscape (Ferguson, 1991). One of the most distinguishing features 
of the landscape hydrology approach is that, it considers the interactions among the landscape components and how they can be 
modified by human impact to better manage the water resources and the environment in general (Ferguson, 1991). Thus, it can 
provide a framework for informing water resource management decisions in heterogeneous and increasingly fragmented catchment 
landscapes under a changing climate. 

The Kaleya River Catchment in southern Zambia has undergone extensive landscape transformations since the early 1980s. The 
catchment hosts Zambia’s oldest private-public sugar irrigation scheme (Akayombokwa et al., 2017). Seasonal river flows have 
reduced drastically in the catchment, leading to conflicts among water users. Studies have attributed deterioration of water resources 
in Zambia to changes in landcover composition (Sakeyo, 2008; Chisola and Kuraz, 2016; Chomba, 2017; Tena et al., 2019; Muchanga 
et al., 2019). Climate change and variability are thought to be causing further stress on water resources (GRZ, 2008; Nkhuwa et al., 
2013; Ngoma et al., 2017), although this has mostly not been backed up by scientific evidence, as few hydrological studies have been 
completed (Nkhuwa et al., 2013). 

In this regard, we developed and tested a landscape hydrology approach to tease out how the interactions among seasonal climatic, 
landcover composition and configuration patterns explain the observed hydrological shifts in the Kaleya River Catchment. In 
particular, the study addressed the following research questions: (1) How have seasonal climatic characteristics and landscape patterns 
changed in the catchment since 1972? (2) What climatic, land use composition and configuration characteristics are important in 
explaining changes in seasonal river flows in the catchment? (3) How should landscape components be enhanced in order to augment 
seasonal river flows? (4) Can a landscape hydrology approach (implemented without hydrological simulation) detect the main in-
teractions among landscape components to inform landscape level water resource management interventions in a heterogeneous and 
fragmented catchment landscape? Such information can inform improved decision-making and sustainable water resource develop-
ment under a changing environment. 

2. Description of the study area 

The Kaleya River Catchment has an area of about 744 km2 and lies between latitude 15◦40′S to 16◦20′S and longitude 27◦30′ E to 
28◦10′ E (Fig. 1). The river water originates from the slow flowing springs upstream near the Siamakambo Hills in Chikankata District 
of the Southern Province and flows in the northwest direction into the Mazabuka District where it drains into the Kafue River. The 
major tributaries of the Kaleya River include the Chinyanja, Nanswa, Mbolela and Dimba Rivers. The flow in the middle section of the 
catchment is highly regulated by weirs and small dams (dam height less than 15 m). Of these small dams, the largest has a capacity of 
about 6.5 Mm3. The catchment is dominated by savannah woodland with a mixture of Acacia trees, mainly Faidherbia albida (formerly 
Acacia albida) belonging to the Munga woodlands and the Brachystegia genus of the miombo woodland (Sichingabula et al., 2000). 

Agriculture is the major economic activity in the catchment. Riparian-dependent subsistence farmers are present in the upper 
catchment, many of who were resettled into the area by government before the 1970s. These farmers mainly grow maize (Zea mays L.) 
in the rainy season, and potatoes (Solanum tuberosum L.) among other vegetables in the dry season. Commercial farmers occupy about 
75 % of the catchment area and are mostly located in the middle part. They mainly grow wheat (Triticum aestivum L.), soybeans (Glycine 
max L.), sugarcane (Saccharum officinarum L.), lucerne (Medicago sativa L.), pasture and seed maize using centre pivots and drip 
irrigation. Additionally, they keep livestock, mainly for the beef industry. The lower part of the catchment is home to the sugar estates 
of the Kaleya Small Holders’ Company as well as Nakambala Sugar Estates belonging to Zambia Sugar Company. Irrigation water for 
the two sugar estates is transferred from the Kafue River by the Zambia Sugar Company who also supply water to the Kaleya Small 
Holders’ Company. 

3. Materials and methods 

3.1. The landscape hydrology approach 

We used climatic indices and landscape pattern metrics derived from long-term weather data and satellite images respectively to 
infer controls on seasonal river flows without need for hydrological modelling. The approach was applied using post classification 
landscape change detection, trend analysis of hydro-meteorological time series and variable elimination in Partial Least Square 
Regression (PLSR). The details of how the approach was implemented are discussed in the subsequent sections. 

3.2. Data acquisition and pre-processing 

Cloud-free Landsat images of the Kaleya River Catchment were downloaded from the website of the United States Geological 
Survey (USGS) (https://earthexplorer.usgs.gov) for years 1972, 1984, 1989, 1996, 2001 and 2011. The images were pre-processed by 
applying geometric and radiometric corrections that included noise and haze reduction. Pre-processing also involved resampling the 
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60 m resolution Landsat MSS image for 1972 to a 30 m resolution using the nearest neighbour resampling method. All the image pre- 
processing steps were conducted in Erdas Imagine 2014. Historical daily river discharge data from the start of records at the most 
downstream gauge to 2019 (1975–2019) were provided by the Water Resources Management Authority (WARMA) in Zambia. 
However, the dataset has gaps between 2011 and 2018, so we restricted our analysis to the 1975–2011 period. Weather data were 
obtained from the Zambia Meteorological Department (ZMD). 

3.3. Data analysis 

3.3.1. Hydrological and climate-based metrics 
The discharge data was analysed using the Indicators of Hydrological Alteration (IHA) software (The Nature Conservancy, 2009) to 

derive hydrological metrics that define seasonal water availability (average monthly flows) and the timing of one-day maximum and 
minimum flows in the catchment for the period 1975–2011. The climate-based metrics involved seasonal characteristics derived from 
daily rainfall data analysed in R-instant (Parsons et al., 2017). The derived metrics included one-day maximum rainfall, simple rainfall 
intensity (the ratio of total seasonal rainfall to the number of wet days in the season), onset and cessation dates of rainfall, and the 
maximum dry spell length (maximum dry period length) in a year and annual rainfall totals. 

When deriving the climatic metrics, a rainy day was defined as having more than 0.85 mm of rainfall (Stern et al., 2006). The start 
(onset) of rainfall was a day after 1 October in each year that gives a total rainfall amount of 20 mm or more over a consecutive period 
of two days, in addition to the absence of a dry spell of 10 days or more in the next 30 days based on Stern et al. (2006). A dry spell was 
taken as a period with less than 5 mm of rainfall in five days, adopted from Hachigonta et al. (2008). The date of cessation of rainfall 
(End of rains) was taken as the last day after 25 February that accumulates a rainfall amount of 10 mm or more, adapted from 
Hachigonta et al. (2008) and Mupangwa et al. (2011). We also derived Reference Evapotranspiration (ETo) based on the Hargreaves 
method (Hargreaves, 1994) in R environment, through the SPEI package (Beguería et al., 2014). The coefficient of variation (CV) was 
computed as the standard deviation of rainfall divided by the average rainfall. 

3.3.2. Digital image processing to derive landscape composition and configuration metrics 
The Landsat images were classified using a hybrid of supervised image classification and onscreen digitising in Erdas imagine 

software to produce landcover maps for the years 1972, 1984, 1989, 1996, 2001 and 2011. The hybrid method involved first clas-
sifying the images with maximum likelihood classifier using supervised image classification. This was followed by onscreen digitising 
to correct any misclassified pixels. The hybrid method has been recommended by other scholars as it reduces misclassifications in 
heterogeneous landscapes such as Kaleya (Herold et al., 2008; Betru et al., 2019). The generated landcover maps were then subjected 
to accuracy assessment. Topographic maps, along with Google Earth imagery and field visits in August 2019 were used as sources of 
ground truth data for accuracy assessment. The landcover maps are based on six classes, namely: Forest, Scrubland, Cropland (rainfed), 
Cropland (irrigated), Reservoirs, and Built-up area. A description of these landcover classes is given in Table 1. 

3.3.3. Generating landscape composition and configuration metrics from landcover maps 
Landcover maps for the respective years were analysed using FRAGSTAT 4 software (McGarigal and Marks, 1995) to derive 

landscape composition and configuration metrics. We evaluated three class level landscape pattern metrics (Table 2) based on their use 
in literature, and simplicity in interpretation and application (Zhou et al., 2017). 

The Largest Patch Index (LPI) indicates patch dominance (McGarigal et al., 2012). The Patch Density (PD) indicates landscape 
fragmentation. Fragmentation and dominance-based metrics are important indicators of hydrological connectivity and ecosystem 
functioning (Albalawneh et al., 2015; Schröder, 2006). Hence their changes can lead to significant changes in water and nutrient 
cycling (Hobbs, 1993). A detailed description of the landscape metrics is given by McGarigal and Marks (1995) and (McGarigal et al., 
2012). A summary of all the derived hydrological, climatic and landscape indicators is given in Table 3. 

3.3.4. Analysis of trends in hydrometeorological timeseries 

3.3.4.1. Mann-Kendall trend test. We conducted the Mann–Kendall trend test (Mann, 1945; Kendall, 1975) on seasonal climatic and 
hydrological variables in Table 3 to examine the significance of the trends in the study period. To account for serial correlation, we 

Table 1 
Description of land cover classes.  

Landcover Description 

Forest Land under thick vegetation cover 
Scrubland Grass with scattered trees and bushes, abandoned agricultural lands 
Cropland (rainfed) Land under rainfed agriculture 
Cropland 

(irrigated) 
Land under irrigated agriculture 

Reservoirs Land inundated by water arising from impoundments (dams and 
weirs) 

Built-up area Dense settlement area that can be described as urban  
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used the Modified Mann Kendall test through the Yue and Wang (2004) variance correction technique in the modifiedmk R package 
(Patakamuri et al., 2017). 

The Mann-Kendall test is given by the equation: 

S =
∑n-1

i=1

∑n

j=i+1
Sgn

(
xj − xi

)
(1)  

where n is the number of observations, xj and xi are the jth and ith observations, respectively, and j > i. Sgn is the sign function between 
consecutive x values and is defined as: 

Sgn
(
xj − xi

)
=

⎧
⎨

⎩

+1 ; xj > xi
0 ; xj = xi
− 1 ; xj < xi

(2) 

The variance is defined by: 

Var(S) =
n (n − 1) (2n + 5) −

∑n
j =1 ti i (i − 1)(2i + 5)

18
(3) 

The modified variance Var *(S) is: 

Var*(S) = Var(S ) ·
n
n*

(4)  

Where n/n* is the correction factor. 
The test statistic, Z(c) is computed by: 

Z(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var*(S)

√ , S > 0

0 , S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var*(S)

√ , S < 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5) 

Given a significant level of α = 0.05, the null hypothesis of a non-existent trend can be accepted if -1.96 < Z(c)<1.96, for a two- 
sided test. 

Table 2 
Landscape pattern metrics.  

Metric Acronym Description Range 

Percentage of Landscape PLAND Percentage of each landcover class in the landscape 0− 100 
Patch Density PD Number of patches of a landcover class per unit area > 0 
Largest Patch Index LPI Percentage of landscape covered by the largest patch of each landcover class 0− 100  

Table 3 
Hydro-climatic and landscape pattern metrics.  

Dependent variables Independent variables 

Hydrological indices Climate indices Landscape composition Landscape configuration 

Wet season flows Start of rains PLAND of Forest land Fragmentation metrics 
Dry season flows End of rains PLAND of Rainfed cropland PD Forest 
Date of 1-day minimum flow Maximum dry spell length PLAND of Irrigated cropland PD Rainfed cropland 
Date of 1-day maximum flow Rainfall amount PLAND of Reservoirs PD Irrigated cropland  

One-day maximum rainfall PLAND of Scrubland PD Reservoirs  
Rainfall intensity PLAND of Built-up area PD Scrubland  
CV of intra seasonal rainfall  PD Built-up area  
ETo      

Dominance metrics    
LPI Forest    
LPI Rainfed cropland    
LPI Irrigated cropland    
LPI Reservoirs    
LPI Scrubland    
LPI Built-up area  
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3.3.4.2. Theil–Sen’s slope estimator. The trend magnitude was evaluated using the Sen’s slope estimator (Theil, 1950; Sen, 1968) 
which is given as: 

β = Median
(

Xi − Xj

i − j

)

∀ j < i (6)  

Where, (β ) is the slope of the trend in the time series and, Xj is the j th observation. 

3.4. Partial least squares regression 

Studies incorporating landscape composition and configuration metrics to attribute influence on hydrological components have 
mainly combined hydrological modelling with multiple linear regression (Ekness, 2013; Epting, 2016), Pearson correlation (Chiang 
et al., 2019), stepwise regression (Amiri et al., 2019; Yu et al., 2020; Wang et al., 2020; Peng et al., 2019) or PLSR (Boongaling et al., 
2018; Shi et al., 2013; Gebremicael et al., 2019; Woldesenbet et al., 2017) among other methods. However, previous studies did not 
incorporate seasonal climatic and landscape composition and configuration metrics simultaneously which could be important in 
informing water resources management in heterogenous landscapes under a changing environment. The independent and dependent 
variables for our PLSR models are given in Table 3. 

3.4.1. Justification for partial least squares regression (PLSR) 
The PLSR was selected for several reasons. Firstly, we had many independent variables (landscape and climate metrics) (Table 3) 

and most of them are highly correlated. The PLSR is useful when the independent variables are highly correlated and where there are 
more independent variables than observations (Boongaling et al., 2018; Woldesenbet et al., 2017; Carrascal et al., 2009). Secondly, 
given the high number of independent variables in our case, variable selection was important to identify only those that are signifi-
cantly important in explaining seasonal river flows. PLSR is thus also a powerful tool for variable selection. Several methods for 
variable selection in PLSR are available and are discussed in detail by Mehmood et al. (2012). 

Generally, variable selection in PLSR is based on the Variable Importance in Projection (VIP), the loading weights and regression 
coefficients, but the VIPs are the most used (Mehmood et al., 2012). Variables with VIP > 0.8 are deemed to be significant. Variables 
with a VIP < 0.8 have no significant influence in the model. The higher the VIP, the more significant the variable is in explaining the 
dependent variable. The PLSR also gives regression coefficients whose sign indicates a positive or negative influence on the dependent 
variable. Thus, despite a variable having a small regression coefficient, it can be retained in the model if it has a large VIP (VIP > 0.8). 
Loading weights greater than a magnitude of 0.3 (irrespective of the sign) are taken to be significant and a variable can be deemed 
important on this basis. The sign of the loading weight indicates the direction of influence. The higher the loading weight, the larger 
the influence that a variable has on the respective component. 

To obtain the optimum number of components and a balance between the explanatory and the predictive power of the model, cross 
validation is often used. In this regard, the Root Mean Square Error of Validation (RMSEV) is used. The number of components giving 
the smallest value of RMSEV are selected as optimal for the model. The quality of the PLSR model is assessed using the goodness of fit 
(R2), which indicates the explanatory ability of the model and the cross validated (R2), which shows the extent to which the model can 
predict. A good PLSR model is one with R2 > 0.5 and a cross validated (R2) > 0.097 (Trap et al., 2013). 

3.4.2. Implementation of the partial least squares regression (PLSR) 
We implemented the PLSR in the ‘pls’ package (Mevik and Wehrens, 2007) in R software. We developed four separate PLSR models 

for each of the hydrological variables: wet season flows, dry season flows, date of one-day maximum flow and date of one-day 
minimum flow. The independent variables (predictors) were all the climate and landcover composition and configuration metrics 
as outlined in Table 3. The climatic and hydrological variables were averaged within small hydro-meteorological periods, avoiding 
inclusion of periods and years with data gaps in order to get the most out of the observed data. 

The hydro-meteorological periods used were 1975–1979, 1980–1985, 1989–1994, 1995–2000, 2001–2005 and 2006–2011. Due to 
lack of continuous time series landcover data, the landcover map closest to each of the selected periods was used. The magnitude of 
landcover change within each hydro-meteorological period was assumed to be negligible. This approach has also been used by other 
scholars such as Yu et al. (2019). Thus, hydro-meteorological conditions for the periods 1976–1979, 1980–1985, 1989–1994, 
1995–2000, 2001–2005, 2006–2011 were assigned to the landcover data for 1972, 1984, 1989, 1996, 2001 and 2011, respectively. We 
argue that the years and periods left out due to data gaps in hydrological and weather data did not significantly impact the results 
because what was compared were the hydrological patterns with the corresponding climatic patterns in periods with high quality 
observed data. 

Simulating hydrological data using a hydrological model could overcome some of the challenges in the data gaps. However, hy-
drological modelling has its own calibration uncertainties in this highly managed heterogenous catchment landscape. Hence the 
preference was to use observed data to answer all our research questions regarding the individual role of observed seasonal climatic 
conditions and landscape pattern changes in explaining intra-annual water availability. In the PLSR, all the variables were stand-
ardised (scaled and mean-centred). Separate PLSR models were developed for each of the hydrological variables, that is, wet season 
flows, dry season flows, date of one-day maximum flow and date of one-day minimum flow. 
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3.4.3. Variable selection 
Variable selection was done through backward elimination (Frank, 1987; Pierna et al., 2009) in the ‘plsVarSel’ R package (Liland 

et al., 2016; Mehmood et al., 2012). The initial step involved running the PLSR with all the predictors in the model. Predictors with a 
VIP < 0.8 were iteratively removed from the model. The procedure was repeated until a model with an optimal R2 and cross validated 
R2 was obtained outlined by Mehmood et al. (2012); Shi et al.(2013) and Liland et al. (2016), (Shi et al., 2013). In both the initial and 
final PLSR models, only the components giving the lowest RMSEV were retained. 

Fig. 2. Hydro-meteorological patterns for Kaleya River Catchment in the study period.  
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4. Results and discussion 

4.1. Hydro-meteorological patterns in the catchment from 1975–2011 

Fig. 2 shows patterns in climatic and hydrological time series data. Annual average rainfall exhibited a non-significant increasing 
trend (p = 0.218) over the study period in the catchment. Previous studies in Zambia have found trends in rainfall amounts to be 
inconclusive with some stations showing non-significant decreasing trends (Mubanga and Umar, 2014; Chisola and Kuraz, 2016). 
Additionally, our findings reveal significant increasing trends (P < 0.05) in one-day maximum rainfall, coefficient of variation of daily 
rainfall, maximum dry spell length (dry period length), temperature, and reference evapotranspiration (Table 4). 

The start of the rains exhibited a significant decreasing trend (P < 0.00) implying earlier onset of rains. Although the early onset of 
rains observed in this study is contrary to the late onset that is generally reported in Zambia (Gannon et al., 2014), it is consistent with 
Mulenga et al. (2017), who found no evidence of later onset of rains for selected stations in Zambia contrary to the perceptions of 
farmers. Despite an earlier onset of rainfall, dry spells tend to be more than wet spells once the season has started. 

A trend implying earlier ending of the rainy season (end of rains) was observed, but it was not significant (p = 0.17). Mulenga et al. 
(2017) also found that the trends in end of rains were not significant. In our case, this decreasing trend was not significant due to 
greater year to year variability in cessation dates compared to the onset date. The cessation date of rainfall in southern Zambia is linked 
with the retreating of the Inter Tropical Convergence Zone (ITCZ) to the north (Hachigonta et al., 2008). Other studies have also 
observed a tendency towards earlier cessation of the rains even though the significance of the trends was not tested (Hachigonta et al., 
2008; Gannon et al., 2014). 

Regarding hydrological metrics, the results indicated significant decreasing trends in dry season flows (p = 0.05) and in the date in 
which the one-day maximum flow occurs (p < 0.10) (Table 4). The decreasing trend in the timing of one-day maximum flow suggests 
early occurrence of the maximum flow in the river. On the other hand, non-significant decreasing trends in wet season flows and the 
date of one-day minimum flow were observed (earlier drying of the river), (Table 4). In general, the results point towards reduction in 
both wet and dry season river flows. In Chongwe Catchment in Zambia, wet season flows were reported to have increased while dry 
season flows had declined (Chisola and Kuraz, 2016; Tena et al., 2019). In the following sections, we examine the factors explaining the 
observed hydrological signatures using PLSR. 

4.2. Landscape pattern changes in the catchment 

4.2.1. Landcover composition dynamics (Percentage of Landscape (PLAND)) 
Accuracy assessment conducted on the classified landcover maps showed very good classification assessment statistics. The 

landcover map for 1972 obtained an overall accuracy of 83 % and a Kappa coefficient of 0.77. The 1984 landcover map obtained an 
overall accuracy of 94 % and a kappa coefficient of 0.92. The overall accuracy for the 1989 landcover map was 95 % and a kappa 
coefficient of 0.93. For the 1996 landcover map, the overall accuracy was 96 % and the kappa coefficient was 0.95. The 2001 landcover 
map obtained an overall accuracy of 94 % and a kappa coefficient of 0.92. Finally, the landcover map for 2011 had a 96 % overall 
accuracy and a 0.95 kappa coefficient. 

Fig. 3 shows landcover composition from 1972 to 2011 in the Kaleya River Catchment. There is a notable reduction in forest cover 
and an increase in both irrigated and rainfed agricultural land (Fig. 3). It is noted that rainfed agriculture was already a major eco-
nomic activity by 1972, accounting for 21 % of the landscape (Table 5) and was the third most dominant landcover after forest (44 %) 
and scrubland (35 %). In 2011, rainfed agriculture increased up to 33 % and irrigated agriculture was at 11 % (Table 5). Thus 
agriculture (both rainfed and irrigated) accounted for a total of 44 % of the landscape in 2011, while scrubland dominated the 
landscape at about 48 %. 

4.2.1.1. Trends in landcover conversions in the catchment. It is noted from Fig. 3b that irrigated agriculture had a significant presence in 

Table 4 
Trends in hydro-climatic time series from 1975 - 2011 in the Kaleya River Catchment.  

Type Variable Years Zc Sen’s slope P-value 

Climatic Temperature 36 1.90 0.010 0.057*  
Reference Evapotranspiration 36 2.04 1.412 0.042**  
Rainfall 36 1.23 2.078 0.218  
Start of Rains 36 − 3.59 − 0.250 0.000*  
End of Rains 36 − 1.36 − 0.176 0.173  
One-day Maximum rainfall 36 3.74 0.462 0.000**  
Rainfall intensity 36 0.25 0.006 0.801  
CV Daily rainfall 36 2.41 0.002 0.016**  
Maximum Dry Spell Length 36 4.02 0.729 0.000** 

Hydrological Wet season flows 29 − 0.57 − 0.001 0.572  
Dry season flows 29 − 1.94 − 0.001 0.05**  
Date of 1-day maximum flow 29 − 1.88 − 1.500 0.060*  
Date of 1-day minimum flow 29 − 0.62 − 0.806 0.533  

** Significant at p < 0.05, * Significant at p < 0.10. 
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the lower catchment by 1984. Results further indicate that most of the rainfed agriculture land was lost to irrigated agriculture 
especially in the period between 1972 and 1984 (Tables 6 and 7 and Fig. 3). This drastic increase in irrigated land during this period is 
attributed to the expansion of the Nakambala Sugar Estates in to the Kaleya River Catchment, and the subsequent engagement of 
communities and commercial farmers through a small-holder out-grower scheme called Kaleya small holders which became opera-
tional in the early 1980s (Akayombokwa et al., 2017). This was a form of private-public partnership discussed in the preceding sections 
aimed at increasing Zambian sugar production for export to the European markets and increasing local agricultural productivity 
(Akayombokwa et al., 2017). 

The results further indicate that since 1984, expansion in irrigated land has mainly occurred from the middle portion of the 
catchment (Fig. 3c-f). Table 7 shows that between 1972 and 2011, irrigated agriculture gained more land from rainfed agriculture by a 

Fig. 3. Landcover maps for Kaleya River Catchment.  

Table 5 
Landcover composition (Percentage of Landscape (PLAND)) in the Kaleya River Catchment from 1972 – 2011.    

Land use/Landcover type Total 

Year Value Forest Scrubland Cropland (rainfed) Cropland (Irrigated) Reservoirs Built-up  

1972 Area (ha) 25488.00 20047.29 12246.37 40.08 46.76 0.00 57868.50  
Percentage (%) 44.04 34.64 21.16 0.07 0.08 0.00 100.00 

1984 Area (ha) 17827.89 21103.29 14378.01 4432.81 126.49 0.00 57868.50  
Percentage (%) 30.81 36.47 24.85 7.66 0.22  100.00 

1989 Area (ha) 12667.56 24010.76 15899.47 4887.11 403.60 0.00 57868.50  
Percentage (%) 21.89 41.49 27.48 8.45 0.70 0.00 100.00 

1996 Area (ha) 10131.68 23805.05 17639.25 5803.95 488.58 0.00 57868.50  
Percentage (%) 17.51 41.14 30.48 10.03 0.84 0.00 100.00 

2001 Area (ha) 8201.93 25034.17 17797.03 6377.06 419.01 39.30 57868.50  
Percentage (%) 14.17 43.26 30.75 11.02 0.72 0.07 100.00 

2011 Area (ha) 4404.30 27729.97 18905.32 6313.09 385.40 130.41 57868.50  
Percentage (%) 7.61 47.92 32.67 10.91 0.67 0.23 100.00  
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magnitude of about 8% than from any other landcover class. The tendency to switch from rainfed to irrigated agriculture indicates 
agricultural intensification in the landscape. 

During the 1972–1984 period, the percentage of reservoir area increased from 0.08 % (47 ha) to 0.22 % (126 ha) in the landscape. 
This relative increase in reservoirs is much smaller compared to the dramatic increase in irrigated land from 40 ha to 4 433 ha in the 
same period (Table 5). This is because from inception in 1981, the Kaleya small holder irrigation scheme in the lower catchment relies 
on water transferred from the larger Kafue River using a 14 km canal connecting to a 10 km pipeline (Akayombokwa et al., 2017). The 
period 1984–1989 recorded the highest gain in the percentage of reservoirs in the landscape (Table 6). This was to support irrigated 
agriculture that was now expanding from the middle catchment, relying on water abstractions from within the Kaleya River Catch-
ment. The observed lag between reservoirs and irrigated cropland from 1972 to 1984 and a similar pattern in their evolution after-
wards is also observable from water permit data from WARMA (Fig. 4). 

The net decrease in the percentage of reservoir area in the catchment in the 1996–2011 period (Table 6) is attributed to sedi-
mentation, a problem that has attracted the attention of scholars since the late 1990s (Sichingabula, 1997; Walling et al., 2001; 
Sichingabula et al., 2018). 

The increase in irrigated land and reservoirs could have been a response to the changing climatic patterns. In Table 7 it is further 
indicated that from 1972 to 2011 forestland has mainly been lost to scrubland and rainfed cropland [Cropland(rainfed)]. 

4.2.2. Landcover configuration dynamics 

4.2.2.1. Patch Density (PD) of landcover classes. Although about 8% of the landscape was still covered by forest in the catchment in 
2011, the PD of forest showed that the remaining forest was more fragmented than before (Fig. 5). The PD is an indicator of con-
nectivity of each landcover in the catchment, with higher values indicative of a more fragmented or heterogeneous landcover class or 
landscape (Yu et al., 2020). Thus, it is possible to have two different periods with the same percentage cover for a landcover class, but 
the impacts on the flow regime could differ if one is more fragmented. The results show that forest had become more fragmentated, 
hence less hydrological connectivity in the forested land. The higher PD of reservoirs, rainfed and irrigated agriculture in recent years 
reflect the increase in the number of reservoirs and crop fields in the landscape. The PD of scrubland does not show major changes 
during the study period. The general increase in the number of patches for all landcover types relative to the base year (1972) is 
consistent with the findings of Muleta and Biru (2019) in the Guder watershed in Ethiopia since 1973. 

4.2.2.2. Largest Patch Index (LPI) of landcover classes. The Largest Patch Index (LPI) is an indicator of dominance of a landcover class 
in the landscape. Thus, a landcover class can have a smaller percentage in terms of composition in the landscape but have a large 
enough patch size to influence eco-hydrological processes. The results indicate that LPI for forest has been reducing, while that of the 
non-forest landcover classes has been increasing (Fig. 6). 

The findings in Fig. 6 provide further evidence of a more fragmented and scattered forest landscape and the increasing dominance 
and connectivity of scrubland, rainfed and irrigated cropland. Before 1984, there were smaller reservoirs and weirs in the landscape. 
Since then, bigger reservoirs such as the Kaleya Dam have been constructed, thus explaining the increasing LPI for reservoirs. The LPI 
value for the built-up area is increasing showing that the built-up area is becoming more compact. Similar trends with respect to 
decreasing LPI of forests, and increasing LPI of reservoirs and built-up areas were observed by Wang et al. (2020) in the Danjiangkou 
Reservoir Catchment in China. Hydrologically, the changes in PD and LPI affect the travel times and the timing of extreme river flows 
such as the date of maximum and minimum flows in the catchment. 

Table 6 
Landcover change trends from 1972 – 2011 in the Kaleya River Catchment.  

Period Statistic Forest Scrubland Cropland (rainfed) Built-up Cropland (irrigated) Reservoirs 

1972− 1984 TG (%) 6.61 12.39 13.77 0.00 7.59 0.14  
TL (%) − 19.85 − 10.57 − 10.09 0.00 0.00 0.00  
NC (%) − 13.24 1.82 3.68 0.00 7.59 0.14 

1984− 1989 TG (%) 3.49 10.89 7.66 0.00 1.01 0.50  
TL (%) − 12.41 − 5.86 − 5.03 0.00 − 0.22 − 0.02  
NC (%) − 8.92 5.02 2.63 0.00 0.79 0.48 

1989− 1996 TG (%) 4.15 9.38 7.41 0.00 1.75 0.16  
TL (%) − 8.53 − 9.74 − 4.40 0.00 − 0.16 − 0.02  
NC (%) − 4.38 − 0.36 3.01 0.00 1.58 0.15 

1996− 2001 TG (%) 3.88 9.40 4.21 0.07 1.14 0.05  
TL (%) − 7.22 − 7.28 − 3.93 0.00 − 0.15 − 0.17  
NC (%) − 3.33 2.12 0.27 0.07 0.99 − 0.12 

2001− 2011 TG (%) 2.30 11.47 6.25 0.16 1.04 0.11  
TL (%) − 8.86 − 6.81 − 4.33 0.00 − 1.15 − 0.16  
NC (%) − 6.56 4.66 1.92 0.16 − 0.11 − 0.06 

1972− 2011 TG (%) 1.51 24.64 21.72 0.23 10.83 0.60  
TL (%) − 37.95 − 11.36 − 10.21 0.00 0.01 − 0.02  
NC (%) − 36.43 13.28 11.51 0.23 10.84 0.59  
TG (Total Gain), TL (Total Loss), NC (Net Change)   
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Table 7 
Landcover change matrix comparing 1972 and 2011 landcover.    

Landcover 2011  

LULC Forest 
(%) 

Scrubland 
(%) 

Cropland (rainfed) 
(%) 

Built-up 
(%) 

Cropland (irrigated) 
(%) 

Reservoirs 
(%) 

Total 
(%) 

Landcover 
1972 

Cropland (irrigated) 
(%)     

0.07  0.07 

Cropland (rainfed) 
(%) 

0.28 1.90 11.02 0.07 7.80 0.09 21.16 

Forest (%) 6.17 22.73 13.23 0.06 1.68 0.18 44.05 
Reservoirs (%)  0.01    0.07 0.08 
Scrubland (%) 1.23 23.14 8.49 0.10 1.34 0.34 34.64  
Total (%) 7.68 47.78 32.74 0.23 10.89 0.68 100.00  

Fig. 4. Water allocations (storage volumes) and the percentage of irrigated cropland in the Kaleya River Catchment.  

Fig. 5. Patch density for each landcover class from 1972 to 2011 (The straight red line indicates the direction of the trend).  
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4.3. Attributing river flows to seasonal climatic conditions and landscape dynamics 

4.3.1. Wet season flows 
The PLSR model for wet season flows had one component explaining 77 % of the variance in the predictors. The R2 for the model 

was 0.84 and the cross validated R2 was 0.64. The major factors explaining the decreasing wet season flows were landscape based, 
mainly dominated by reservoir metrics (Table 8). These include the percentage of reservoirs (PLAND Reservoirs), along with the 
largest patch areas of reservoirs (LPI Reservoirs) and patch density of reservoirs (PD Reservoirs) in the landscape. These interacted with 
climate metrics involving reference evapotranspiration (ETo) and variability of rainfall events (CV rainfall) to explain decreasing wet 
season flows. 

Higher density of reservoirs (PD reservoirs) increases catchment fragmentation (Chin et al., 2008), and thus reduces landscape 
connectivity. By impounding the river water, downstream wet season flows are reduced while evaporation losses increase especially in 
the face of rising temperatures. Increased variability of rainfall events amplifies the effects of reservoirs in reducing downstream wet 
season flows. Thus, although reservoirs are touted as an adaptation intervention to rainfall variability and or climate change, there 
effectiveness remains uncertain. Research questions on this subject have revolved around what reservoir capacity, numbers, and 
density are optimal to build resilience (Chin et al., 2008; Ehsani et al., 2017). This could also be a question for further research in 
Kaleya Catchment. 

Among the important variables explaining wet season flows, only the size of forest patches (LPI Forest) and the onset date of rains 
(Start of rains) had positive regression coefficients, thus indicating their positive contribution in explaining wet season flows. 

Fig. 6. Largest patch index (LPI) per landcover class from 1972 to 2011 (The straight red line indicates the direction of the trend).  

Table 8 
PLSR for dry and wet season flows.   

Wet season flow Dry season flow  

VIP Coefficients Component 1 VIP Coefficients Component 1 Component 2 

CV seasonal Rainfall 0.94 − 0.004 − 0.27     
ETo 0.93 − 0.004 ¡0.33     
Start of Rains 0.96 0.004 0.40     
PLAND Reservoirs 1.09 − 0.005 ¡0.42     
PD Reservoirs 1.02 − 0.004 ¡0.40     
LPI Forest 1.00 0.004 0.40     
LPI Reservoirs 1.04 − 0.004 ¡0.42     
Rainfall Intensity    0.95 0.017 0.16 0.91 
PLAND Crop (irrigated)    0.95 − 0.006 ¡0.58 0.30 
LPI Scrubland    0.98 − 0.008 ¡0.58 0.27 
LPI Crop (irrigated)    1.11 − 0.011 ¡0.61 0.10 

CV (Coefficient of variation), ETo (Reference Evapotranspiration), PLAND (Percentage of Landscape), (PD (Patch Density), LPI (Largest Patch Index). 
Loading weights in bold are significant (>0.3) on the components. 
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Generally, larger forest patches reduce direct runoff and soil erosion, but increase groundwater recharge and baseflow (Boongaling 
et al., 2018; Zong et al., 2020). Promoting larger forest patches in the Kaleya catchment landscape could therefore improve infiltration 
and baseflow opportunities and reduce direct runoff and sedimentation. This could in turn improve water availability as the upstream 
catchment is groundwater/baseflow dominated (over 50 % of water is from the spring and subsurface flow in the rainy season. 
Groundwater/baseflow contribution increases to 100 % in the dry season, based on our ongoing analysis using stable water isotopes in 
the upper part of the catchment). 

4.3.2. Dry season flows 
The PLSR model for dry season flows improved with two components, which explained a cumulative total of 98.7 % of the variance 

in the predictors. The model had an R2 of 0.89 and a cross validation R2 of 0.58. Again, the landscape-based metrics dominated the 
model (Table 8). For dry season flows, the most important (significant) variables were irrigated cropland metrics involving the per-
centage of irrigated cropland (PLAND Crop (irrigated)) and the large patch areas of the irrigated crop fields (LPI Crop (irrigated)). 
These along with the extent of the largest scrubland patches (LPI Scrubland) had negative regression coefficients explaining a decrease 
in dry season flows. 

The dominance of scrubland reduces baseflow/ground water contribution to dry season flows due to reduced infiltrated water. On 
the other hand, larger patches of irrigated cropland (larger LPI Crop (irrigated)) and the increase in the percentage of irrigated 
cropland in general (PLAND Crop (irrigated)) explained the decline in dry season flows due to water abstraction. These findings are 
supported by water permit (abstraction) allocation data for the area which shows a very similar pattern (Fig. 4). Thus, allocated water 
permit data show a strong correlation with PLAND Crop (irrigated) (r = 0.93, p < 0.00) and LPI Crop (irrigated) (r = 0.89, p < 0.00), 
which have been identified by the PLSR as major stressors on dry season flows in the catchment. 

4.3.3. Date of one-day maximum flows 
The model for date of one-day maximum flows had one component explaining 82.80 % of the variance in the predictors. The R2 was 

0.83 while the cross validation R2 was 0.44. The results indicate that the tendency towards early date of one-day maximum flow is 
explained mainly by climatic conditions involving higher rainfall intensities (Rainfall intensity) and the earlier onset of rains (Start of 
rains) (Table 9). The results further indicate that larger forest patches (larger LPI Forest) are associated with the delay in the timing of 
one-day maximum flow. 

The results are expected as higher rainfall intensities promote quicker concentration of surface runoff on the landscape, which 
could contribute to early occurrence of maximum river flows. In contrast, increasing the size of forest patches (larger LPI Forest) in the 
landscape promotes infiltration and slows the movement of surface runoff. Hence the positive effect of larger forest patches (LPI 
Forest), which explains delay in the date of one-day maximum flows (larger day of the year value for one-day maximum flows) is not 
surprising. However, the LPI of forest in the catchment has undergone a rapid decline over the years as observed in Fig. 6, and thus it 
effects in delaying peak flows is predominated by climatic factors. Hence, high rainfall intensities and decreasing dominance of forest 
patches (LPI Forest) are among the underlying factors explaining reduced infiltration opportunities in the catchment, and thus a 
tendency towards an earlier date (smaller day of the year value for one-day maximum flows) of maximum flow. 

4.3.4. Date of one-day minimum flows 
Although the trend in the date of one-day minimum flows was not statically significant, it was important to look at the factors that 

could explain its variability. The PLSR results for the timing of extreme low flows are given in Table 9. The model had one component 
explaining 77 % of the variance in the predictors. The R2 was 0.72 and the cross validated R2 was 0.40. Seasonal climatic factors 
involving higher variability of rainfall events (CV seasonal rainfall) and landscape metrics involving the percentage of reservoirs 
(PLAND Reservoirs) are associated with an early date of minimum flow. Again, the size of forest patches had a positive effect on the 
date of minimum flow. The results reaffirm that increasing the size of forest patches (larger LPI Forest) could promote baseflow, and 
thus delay the day of the year on which the minimum flow occurs. Delaying the date on which one-day minimum river flow occurs in 
the season has positive water availability implications. 

4.4. The landscape hydrology approach and Implications for sustainable water resource management 

Using the landscape hydrology approach, this study identified the climatic and landscape patterns important for informing water 
resource interventions in a heterogenous intensively managed semi-arid catchment landscape. The climatic stressors were mainly 
associated with seasonal rainfall characteristics involving the start of rains, intensity and variability in the season, and ETo. These 
together with landscape metrics, particularly reservoir and irrigated agriculture-based expansions, explained much of the observed 
hydrological variability and declining seasonal water availability in the catchment. Seasonal rainfall characteristics were more 
important in explaining hydrological patterns than rainfall totals as the former influence landscape hydrological processes of surface 
runoff generation, infiltration, soil moisture and ET dynamics. Given that most studies in southern African and African region general 
indicate non-significant increasing or decreasing trends in annual rainfall totals (Kusangaya et al., 2014; Mubanga and Umar, 2014; 
Taye et al., 2015), this study argues that it is in fact the changing seasonal rainfall distribution that must be of concern for water 
resources management in the region. An improved understanding of trends in seasonal rainfall characteristics such as its intensity, 
variability and dry spell lengths could be even more important than annual rainfall trends for building resilience in semi-arid areas. 

Our findings indicate that increasing the size of forest patches could offset the negative effect of increasing rainfall intensities and 
dry spell lengths by helping in flood mitigation through delaying the occurrence of peak river flows and supporting dry season river 
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flows by delaying the date of one-day minimum flow. Larger forest patches can promote infiltration and baseflow. We thus recommend 
increasing the percentage of forest area by promoting larger forest patches widely spread across the catchment to benefit both wet and 
dry season river flows. This could be achieved through farmer assisted natural regeneration of scrubland and abandoned rainfed 
agricultural land (Ndeso-Atanga, 2018; Akinnifesi, 2018) as the majority of the catchment landscape is controlled by farmers and the 
corporate sector. The miombo woodland which is dominant in the catchment has a good coppicing and natural regeneration potential 
(Luoga et al., 2004; Syampungani, 2009; Handavu et al., 2011). 

Zambia’s Forest Act No.4 of 2015 (Forest Act, 2015) provides an opportunity for farmers and the corporate sector to own forests 
and thus diversify their income sources through private forests. Farmers can earn additional revenues from non-timber forest products 
like mushrooms, honey (bee-keeping) and carbon trading while protecting and enhancing water availability for their agricultural 
produce. Mfune (2018) proposes the formation of forest cooperatives that can help to increase the volumes of forest produce from 
individual farmers (forest patches) and enhance the negotiation power so that farmers can get the most out of their forest practices. 
This diversification could also buffer the farmers against climatic shocks that may affect their agricultural production. 

Irrigated agriculture was an important variable explaining reduced water availability, especially during the dry season. This is due 
to increased abstractions and increasing ETo (mainly due to increasing temperature) as shown in the results. In this regard, irrigated 
agriculture in the catchment should move towards more efficient systems and management practices, as well as high value crops 
farmed on less land. 

5. Conclusions 

A landscape hydrology approach was successfully applied without hydrological modelling in a highly managed heterogeneous 
catchment landscape. The approach was able to detect stressors from among the landscape components and inform water resource 
management interventions at a landscape scale. Significant increasing trends in seasonal climatic characteristics of ETo, one-day 
maximum rainfall, CV of daily rainfall, and maximum dry spell length have occurred in the Kaleya River Catchment over 
1975–2011 but not in total annual rainfall. In contrast, both the onset and cessation of rains show a trend towards earlier onset and 
cessation even though the latter was not significant. Both dry and wet season flows show declining trends, but only the former is 
significant. Based on landscape composition metrics, the study concludes that there has been a dramatic decline in forested land, 
expansion of irrigated cropland mainly from land previously used for rainfed agriculture and increase in reservoirs and the catchment 
landscape is more fragmented in recent years. 

The major climatic stressors are all associated with increasing ETo and seasonal rainfall characteristics namely; increasing vari-
ability of rainfall, dry spell length and rainfall intensities. In this regard, water resource interventions in the region must adapt more to 
the changing seasonal climatic characteristics than annual totals. On the landscape side, the major stressors on water availability are 
the increasing percentage of reservoirs and irrigated cropland, increase in the sizes of reservoirs and irrigated crop fields and increased 
density of reservoirs. It is recommended that more efficient agricultural water use and farmer-assisted natural regeneration of forest 
patches towards larger forest patch sizes is needed to enhance landscape hydrological processes that improve seasonal water avail-
ability. The approach in this study can be applied to other catchments where no major gaps exist in the timeseries data on climate and 
hydrology, and where temporal landcover data is available. It could help to support informed decision making when managing water 
resources under a changing environment. 
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Table 9 
PLSR for the date of one-day minimum and maximum flows.   

Date of 1-day maximum flow Date of 1-day minimum flow 

Variable VIP Coefficients Component 1 VIP Coefficients Component 1 

Rainfall Intensity 0.91 − 16.84 ¡0.53    
Start of Rains 1.08 20.08 0.59    
LPI Forest 1.01 18.74 0.61    
CV seasonal Rainfall    1.23 − 17.38 ¡0.57 
PLAND Reservoirs    0.87 − 12.26 ¡0.58 
LPI Forest    0.86 12.26 0.61 

CV (Coefficient of variation), PLAND (Percentage of Landscape), LPI (Largest Patch Index). Loading weights in bold are significant (>0.3) on the 
components. 
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Guzha, A.C., Rufino, M.C., Okoth, S., Jacobs, S., Nóbrega, R.L.B., 2018. Impacts of land use and land cover change on surface runoff, discharge and low flows: 

evidence from East Africa. J. Hydrol. Reg. Stud. 15, 49–67. 
Hachigonta, S., Reason, C., Tadross, M., 2008. An analysis of onset date and rainy season duration over Zambia. Theor. Appl. Climatol. 91, 229–243. 
Handavu, F., Syampungani, S., Chisanga, E., 2011. The influence of stump diameter and height on coppicing ability of selected key Miombo woodland tree species of 

Zambia: a guide for harvesting for charcoal production. J. Ecol. Nat. Environ. 3, 461–468. 
Hargreaves, G.H., 1994. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 120, 1132–1139. 
Herold, M., Mayaux, P., Woodcock, C.E., Baccini, A., Schmullius, C., 2008. Some challenges in global land cover mapping: an assessment of agreement and accuracy in 

existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556. 
Hobbs, R.J., 1993. Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biol. Conserv. 64, 193–201. 
Hughes, D.A., 2006. Water resources estimation in less developed regions—issues of uncertainty associated with. Predictions in Ungauged Basins: Promise and 

Progress, vol. 72. 
Hughes, D.A., Tshimanga, R.M., Tirivarombo, S., Tanner, J., 2014. Simulating wetland impacts on stream flow in southern Africa using a monthly hydrological model. 

Hydrol. Process. 28, 1775–1786. 
Kusangaya, S., Warburton, M.L., Van Garderen, E.A., Jewitt, G.P., 2014. Impacts of climate change on water resources in southern Africa: a review. Phys. Chem. Earth 

Parts A/b/c 67, 47–54. 
Liland, K., Mehmood, T., Sæbø, S., 2016. plsVarSel: Variable Selection in Partial Least Squares. 
Luoga, E.J., Witkowski, E., Balkwill, K., 2004. Regeneration by coppicing (resprouting) of miombo (African savanna) trees in relation to land use. For. Ecol. Manage. 

189, 23–35. 
Malmer, A., Murdiyarso, D., Bruijnzeel, L., Ilstedt, U., 2010. Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used 

generalizations. Glob. Chang. Biol. 16, 599–604. 

M.N. Chisola et al.                                                                                                                                                                                                    

https://doi.org/10.1016/j.ejrh.2020.100762
https://doi.org/10.1016/j.ejrh.2020.100762
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0005
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0005
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0010
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0010
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0015
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0020
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0020
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0025
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0025
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0030
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0030
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0035
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0040
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0040
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0045
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0050
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0050
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0055
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0055
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0060
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0065
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0070
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0070
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0075
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0075
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0080
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0085
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0085
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0090
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0095
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0100
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0105
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0105
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0110
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0110
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0115
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0115
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0120
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0120
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0125
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0130
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0130
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0135
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0140
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0140
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0145
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0150
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0150
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0155
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0155
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0160
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0160
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0165
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0170
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0170
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0175
http://refhub.elsevier.com/S2214-5818(20)30236-6/sbref0175


Journal of Hydrology: Regional Studies 32 (2020) 100762

16

Mcgarigal, K., Marks, B.J., 1995. FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure. USDA Forest Service General Technical Report PNW- 
GTR-351. 

Mcgarigal, K., Cushman, S., Ene, E., 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, 
Amherst, MA, USA. goo. gl/aAEbMk.  

Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118, 
62–69. 

Mevik, B.-H., Wehrens, R., 2007. The Pls Package: Principal Component and Partial Least Squares Regression in R. 
Mfune, O., 2018. Towards ‘private forests’ in Zambia: opportunities, possibilities and risks, vol. 32. FAO Publication. Nature and Faune, pp. 11–15. 
Mubanga, K.H., Umar, B.B., 2014. Climate variability and change in Southern Zambia: 1910 to 2009. 2014 International Conference on Intelligent Agriculture (ICOIA) 

94–100. 
Muchanga, M., Sichingabula, H.M., Obando, J., Chomba, I., Sikazwe, H., Chisola, M., 2019. Bathymetry of the Makoye Reservoir and its Implications on Water 

Security for Livestock within the Catchment. Int. J. Geogr. Geol. 8, 93–109. 
Mulenga, B.P., Wineman, A., Sitko, N.J., 2017. Climate trends and farmers’ perceptions of climate change in Zambia. Environ. Manage. 59, 291–306. 
Muleta, T.T., Biru, M.K., 2019. Human modified landscape structure and its implication on ecosystem services at Guder watershed in Ethiopia. Environ. Monit. Assess. 

191, 295. 
Mupangwa, W., Walker, S., Twomlow, S., 2011. Start, end and dry spells of the growing season in semi-arid southern Zimbabwe. J. Arid Environ. 75, 1097–1104. 
Ndeso-Atanga, A., 2018. Creating a forest landscape restoration movement in Africa: a call to heal planet Earth. Nature and Faune (FAO/UNEP) eng v. 32 (1). 
Ngoma, H., Hamududu, B., Hangoma, P., Samboko, P., Hichaambwa, M., Kabaghe, C., 2017. Irrigation Development for Climate Resilience in Zambia: The Known 

Knowns and Known Unknowns. Report, Indaba Agricultural Policy Research Institute (IAPRI). 
Nkhuwa, D.C., Mweemba, C., Kabika, J., 2013. Country Water Resources Profile for Zambia. University of Zambia unpublished report http://nepadwatercoe. org/ 

resources/nepad-water-coescountry-water-resource-profiles/(accessed 30 January 2014).  
Parsons, D., Stern, D., Stern, R., 2017. Making multilevel data ideas more accessible. Proceedings of the IASE Satellite Conference" Teaching Statistics in a Data Rich 

World. 
Patakamuri, S.K., O’brien, N., Patakamuri, M.S.K., 2017. Package ‘modifiedmk’. 
Peng, Y., Wang, Q., Wang, H., Lin, Y., Song, J., Cui, T., Fan, M., 2019. Does landscape pattern influence the intensity of drought and flood? Ecol. Indic. 103, 173–181. 
Pierna, J.A.F., Abbas, O., Baeten, V., Dardenne, P., 2009. A backward variable selection method for PLS regression (BVSPLS). Anal. Chim. Acta 642, 89–93. 
Sakeyo, E., 2008. Modelling the Impact of Deforestation on the Stream flows-A Case of Chalimbana River Catchment in Chongwe, Zambia. Tema vatten I Natur Och 

Samhälle. 
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