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Abstract 
Background: At the time of publication, the most devastating desert 
locust crisis in decades is affecting East Africa, the Arabian Peninsula 
and South-West Asia. The situation is extremely alarming in East 
Africa, where Kenya, Ethiopia and Somalia face an unprecedented 
threat to food security and livelihoods. Most of the time, however, 
locusts do not occur in swarms, but live as relatively harmless solitary 
insects. The phenotypically distinct solitarious and gregarious locust 
phases differ markedly in many aspects of behaviour, physiology and 
morphology, making them an excellent model to study how 
environmental factors shape behaviour and development. A better 
understanding of the extreme phenotypic plasticity in desert locusts 
will offer new, more environmentally sustainable ways of fighting 
devastating swarms. 
Methods: High molecular weight DNA derived from two adult males 
was used for Mate Pair and Paired End Illumina sequencing and 
PacBio sequencing. A reliable reference genome of Schistocerca 
gregaria was assembled using the ABySS pipeline, scaffolding was 
improved using LINKS. 
Results: In total, 1,316 Gb Illumina reads and 112 Gb PacBio reads 
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were produced and assembled. The resulting draft genome consists 
of 8,817,834,205 bp organised in 955,015 scaffolds with an N50 of 
157,705 bp, making the desert locust genome the largest insect 
genome sequenced and assembled to date. In total, 18,815 protein-
encoding genes are predicted in the desert locust genome, of which 
13,646 (72.53%) obtained at least one functional assignment based on 
similarity to known proteins. 
Conclusions: The desert locust genome data will contribute greatly to 
studies of phenotypic plasticity, physiology, neurobiology, molecular 
ecology, evolutionary genetics and comparative genomics, and will 
promote the desert locust’s use as a model system. The data will also 
facilitate the development of novel, more sustainable strategies for 
preventing or combating swarms of these infamous insects.

Keywords 
Eco-devo, large genome size, locust plague, Orthoptera, pest insect, 
phenotypic plasticity, polyphenism, swarm
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Introduction
Locust plagues have been recorded since Pharaonic times in 
ancient Egypt. In the Bible (Exodus 10), locust swarms are 
described as one of the major destructive plagues and still today they 
form a serious threat to crops and food security of over 60 coun-
tries across more than 20% of the world’s total land surface 
(Figure 1a). Swarms can cover areas up to several hundred 
square kilometres and migrate up to 200 km per day. Per square 
kilometre, a swarm that contains about 40 million locusts can 

eat the same amount of food in one day as about 35,000 people. 
The damage done by a locust plague is on the same level as a 
major drought (FAO Locust Watch; De Vreyer et al., 2012). 
The long-term socio-economic impact of these swarms is  
significant. The loss of harvest is disastrous for local farmers 
and leads to towering local food prices, also affecting non- 
farming families. The poorest households are often hit the  
hardest. Malnourishment of children and expecting mothers  
endangers their long-term health and growth. School enrolment 

Figure 1. Geographical distribution of the desert locust and a picture of two adult male desert locusts, one in the solitarious phase 
and the other in the gregarious phase. (a) Geographic distribution of the desert locust. During ‘recession’ periods, desert locusts are 
restricted to the semi-arid and arid regions of Africa, the Arabian Peninsula and South-West Asia that receive less than 200 mm of annual 
rain. The recession area covers about 16 million km2 in 30 countries. Within this recession area, locusts move seasonally between winter/
spring and summer breeding areas. During outbreaks, desert locusts may spill into more fertile adjacent regions, threatening an area of 
some 29 million km2 comprising 60 countries as outbreaks escalate into upsurges and further into plagues. The recession breeding areas 
and migration patterns may have predictive value to understand how the swarms will migrate. Figure based on information from FAO Locust 
Watch, map derived from Google Map Data ©2020 Google. (b) Phase polyphenism in desert locusts, using the example of sexually mature 
males. The gregarious male (right) has bright warning colours to avoid predation, while the solitarious male relies on camouflage colours. 
In this staged scene, the solitarious male was forced into close proximity of the gregarious male and is seen retreating from its conspecific. 
Photo by H. Verlinden and R. Verdonck.
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rate fell by a quarter during plagues in 1987–89 in Mali, with 
girls being particularly affected (Courcoux, 2012). Human  
activities in turn affect the propensity of locusts to swarm  
through factors such as land use (e.g. agriculture, wood extrac-
tion, urbanization), political relations between affected countries  
and the effects of climate change (FAO Locust Watch, http:// 
www.fao.org/ag/locusts/en/info/info/index.html; Cullen et al., 
2017; Meynard et al., 2020).

Desert locusts (Schistocerca gregaria Forskål) are grasshoppers 
(Orthoptera: Acrididae) that exhibit ‘phase polyphenism’, 
an extreme form of phenotypic plasticity that evolved as an  
adaptation to the drastic changes that can occur in their  
environment. Locusts can develop into two extremely  
divergent, population density-dependent phenotypes, which are  
tailored to very different ecological requirements. Under low  
population densities, locusts appear in the solitarious phase 
and live a solitary life in which they avoid each other. In  
periods with abundant rainfall, rapid vegetation growth creates 
a favourable habitat that permits large increases in local  
population sizes. However, when food becomes scarce again, 
solitarious locusts are forced to aggregate on the remaining 
plants. This crowding causes the transformation into the 
swarming gregarious phase, beginning with rapid changes in  
behaviour that include a switch to increased locomotion and  
mutual attraction. The prolonged crowding drives slower but 
equally profound changes in colouration, morphology (Figure 1b) 
and physiology. Compounded across multiple generations, 
locust populations can aggregate further into huge, ruinous  
swarms capable of crossing continents and oceans in search 
of food. Populations may crash in the absence of sufficient  
resources or following human intervention, leading once more 
to scattered low density solitarious phase populations. The  
transition between locust phases is thus reversible and occurs  
gradually through the expression of intermediate phenotypic  
states (Cullen et al., 2017; Pener & Simpson, 2009; Symmons & 
Cressman, 2001; Verlinden et al., 2009).

Orthoptera (grasshoppers, crickets and allies) belong to the 
Polyneoptera, a clade that represents one of the major lineages of 
winged insects (Pterygota) and comprises around 40,000 known 
species and ten orders of hemimetabolous insects (Misof et al., 
2014; Wipfler et al., 2019). Other major neopteran (Pterygota 
that can flex their wings over their abdomen) lineages are 
Acercaria (mostly sucking insects such as lice or true bugs) 
and Holometabola (insects with complete metamorphosis). At 
present, only 25 sequenced polyneopteran genomes are reported 
on NCBI and i5k (http://i5k.github.io/arthropod_genomes_at_ 
ncbi), unequally distributed over five different orders (Extended 
data, Supplementary Table S1 (Verlinden et al., 2020)). 
When including S. gregaria, the genomes of five orthopteran  
species, representing five different subfamilies, are now  
available. In addition to representing a paradigmatic example  
of phenotypic plasticity, the desert locust is an important  
research model for generating advances in a wide variety of  
fundamental and applied scientific areas, including biome-
chanics, ecology, pest control, neurobiology and physiology. 
For instance, the relatively large body size of locusts has been  

instrumental in discovery of a multitude of insect neuropep-
tides (Schoofs et al., 1997). Moreover, the globally increasing  
interest in the use of insects as food or feed also applies to the  
desert locust, which is a highly nutrient-rich, edible insect that 
is gaining much attention as a potential, climate-friendly food  
source (van Huis et al., 2013).

The devastating socio-economic impact of locust swarms, 
together with the opportunity this species offers to investigate the 
phenotypic interface of molecular processes and environmental 
cues highlight the importance of sequencing the desert 
locust genome. However, the extremely large estimated genome 
size of 8.55 Gb (Camacho et al., 2015; Fox, 1970; John & 
Hewitt, 1966; Wilmore & Brown, 1975) predicted a formidable 
challenge. Moreover, previous transcriptomics and chromosome 
size data from the desert locust (Badisco et al., 2011; 
Camacho et al., 2015), as well as comparisons with the genome 
of the distantly related migratory locust, Locusta migratoria 
(6.5 Gb; Wang et al., 2014), suggested that the non-coding 
part of the desert locust genome might be greatly expanded as  
compared to other insect genomes, presenting additional  
challenges to sequencing and assembly. Our team has overcome 
these hurdles and presents here the ~8.8 Gb genome of the  
desert locust assembled from short Illumina Mate Pair (MP) 
and Paired End (PE) reads and long PacBio reads. This new  
genomic resource, the largest insect genome yet sequenced 
and assembled, will complement decades of research on this  
species, enhancing the desert locust’s role as an important  
comparative model system. The genome will permit exciting  
new opportunities to examine mechanisms of phenotypic  
plasticity, social behaviour, physiological and morphological 
specialization. Moreover, it will open up new avenues to find  
better ways of fighting the notorious swarms they can cause. The 
desert locust genome will also enable better understanding of 
genome size evolution and the early phylogeny of winged insects.

Methods
Sequencing strategy
A hybrid sequencing approach was adopted consisting of both 
Illumina short read sequencing to get sufficient coverage for 
accurate contig assembly, and complementary PacBio long 
read sequencing to allow efficient scaffolding of the contig  
assembly. The Illumina and first PacBio sequencing were  
performed on high-molecular-weight DNA derived from the  
central nervous system (central brain, optic lobes, ventral nerve 
cord), fat body and testes of one adult male inbred for seven 
generations. A second round of PacBio sequencing used DNA  
from another male from the same lineage, with two additional 
generations of inbreeding (for details on the animal material and 
genomic DNA extraction, see Extended data, Supplementary  
Methods (Verlinden et al., 2020)).

Illumina sequencing
The concentration of the S. gregaria high molecular weight 
DNA sample was measured with PicoGreen (Invitrogen) 
fluorimetry, after which DNA integrity was confirmed by gel 
electrophoresis (1% E-Gel; Invitrogen). The sample was divided 
for Illumina MP and PE sequencing library preparation.
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The MP sequencing library was prepared from 1 µg of the  
sample with a “Nextera Mate Pair Library prep kit” (Illumina). 
The PE library was prepared with a “NEBNext Ultra II library 
prep kit” (NEB) from 2 µg of the sample, sheared to 500 bp 
fragments using an S2 focused-ultrasonicator (Covaris). Size 
selection (600–700 bp) was performed for both libraries in a 2% 
E-Gel (Invitrogen). The quality of the libraries was confirmed 
with a Bioanalyzer High Sensitivity DNA Kit (Agilent). The 
MP and PE libraries were quantified by qPCR, according to 
Illumina’s “Sequencing Library qPCR Quantification protocol 
guide” (version February 2011) and pooled at a molar ratio of  
25% MP – 75% PE for sequencing on Hiseq3000 (2 × 150 cycles, 
16 lanes; Illumina).

PacBio sequencing
The library preparation for PacBio sequencing was performed 
with a “SMRTbell Template Prep Kit 1.0” according to the PacBio 
protocol (version 100-286-000). For each of the two libraries, 
10 µg of the S. gregaria high-molecular-weight DNA was used 
as input in two parallel 50-µl reactions.

For library size selection, a “0.75% Dye-Free Agarose Gel 
Cassette” (ref: BLF7510) was used on a Blue Pippin (Sage 
Science) with the “0.75% DF Marker S1 high-pass 15–20kb” 
protocol for a lower cut-off of 12 kb. Fragment size distribu-
tion was determined with a “DNA 12000 kit” (ref: 5067-1508) 
for the first library and a “Fragment Analyzer (Agilent) - High 
Sensitivity Large Fragment 50 kb kit” (ref: DNF-464-0500) for 
the second library. The resulting libraries had an average length of 
16.5 and 22 kb, respectively.

No extension time was used for the sequencing as recommended 
for size selected libraries in the “Quick Reference Card 
101-461-600 version 07”. The first run was performed on a 
PacBio RSII System (V4.0 chemistry, polymerase P6). Fifteen 
additional runs were performed on a PacBio Sequel system with 
2.0 Chemistry, polymerase and SMRTCells. The same condi-
tions were used to sequence 20 more SMRTCells with the second 
library on the PacBio Sequel system.

Genome assembly
PE short read data were pre-processed with bbduk v38.20 from 
the BBTools package to remove adapters and low-quality reads. 
Illumina MP read data were cleaned and separated into true MP 
data and likely MP data in nxTrim (O’Connell et al., 2015). 
The long-read PacBio data were pre-processed using CANU 
v1.7 (Koren et al., 2017) to obtain trimmed and corrected 
reads. Cleaned short-read PE and MP data were then assembled 
using the ABySS v2.1.1 pipeline (Simpson et al., 2009) up 
to scaffold stage, using a k-mer value of 120. Parameters for  
ABySS were optimized away from default values to achieve  
better performance (for all parameter settings see Extended  
data, Supplementary Table S2 (Verlinden et al., 2020)). The  
assembly was further improved by using the PacBio data as  
input for LINKS (Warren et al., 2015).

Annotation of repetitive elements and noncoding RNAs
Two strategies were used to identify and annotate repetitive 
elements. First, de novo annotation was carried out by 

RepeatModeler v2.0 and LTR_FINDER v1.0.7 (Xu & Wang, 
2007) to build a custom repeat library. Second, a homology- 
based approach was used to search for repetitive elements in 
the assembled genome using the repetitive element library of 
RepeatMasker v4.1.0 and RepeatProteinMask v4.1.0. The results 
of both strategies were combined into a non-redundant set of 
repetitive elements. Subsequently, the library was used to 
mask repetitive elements by employing RepeatMasker v4.1.0 
(Tarailo-Graovac & Chen, 2009).

Transfer RNAs (tRNAs) were predicted by tRNAscan-SE 
v1.31 (Lowe & Eddy, 1997) with default parameters. To predict 
non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), 
small nuclear RNAs (snRNAs), and ribosomal RNAs (rRNAs), 
the desert locust genome was screened against the RNA 
families (Rfam) v14.1 database (Griffiths-Jones et al., 2003) 
by the cmscan program of Infernal v1.1.2 (Nawrocki & Eddy, 
2013). To supplement our predictions of miRNAs, miRNA 
sequences from the L. migratoria genome (Wang et al., 2015) were 
extracted and searched in the S. gregaria genome by BLASTN with 
options “-task blastn-short -ungapped -penalty -1 -reward 1” 
(Camacho et al., 2008). The alignment result was filtered using 
a mismatch cutoff of 3 bp. Specifically, the stem-loop struc-
ture of each potential miRNA was predicted by miRNAFold 
(Tav et al., 2016) using each alignment with 110 bp upstream 
and downstream sequences. Then the RNAfold program of 
ViennaRNA v2.4.14 (Lorenz et al., 2011) was used to calculate 
the minimum free energy (MFE) of each stem-loop structure. 
If a potential miRNA had several predicted stem-loop structures, 
the one with the minimum MFE was selected as representative. 
Putative miRNAs located within protein coding sequences or 
repetitive elements were discarded. Finally, the results based 
on Rfam and the migratory locust genome were combined into 
a non-redundant prediction of miRNAs.

Gene prediction and functional annotation
Protein-coding genes in the desert locust genome were  
predicted using three approaches. (1) RNA-Seq reads (see  
Extended data, Supplementary Methods (Verlinden et al.,  
2020)) were mapped to the desert locust genome using HISAT2 
v2.1.0 (Kim et al., 2015) with parameter “--max-intronlen” set 
to 1,000,000 to increase the maximum allowed intron length  
during read mapping. Then, StringTie v2.1.1 (Pertea et al., 2015) 
was used to assemble potential transcripts based on RNA-Seq 
alignments to the desert locust genome. Subsequently, TransDe-
coder v5.0.2 was used to identify open reading frames (ORFs) 
within the assembled transcripts which resulted in 20,201 
ORFs with start and/or stop codons. We also built de novo 
assembled transcripts based on the pooled RNA-Seq reads of all 
samples with Trinity v2.8.4 (Grabherr et al., 2011; Haas et al., 
2013) and obtained 285,499 transcripts (including isoforms), 
of which 57,870 putative protein-coding transcripts and 305 
rRNA candidates were identified by Trinotate v3.1.1 (Bryant 
et al., 2017). This was complemented with 34,974 ESTs of the 
desert locust from NCBI (Badisco et al., 2011). The assembled 
transcripts and ESTs were then aligned to the desert locust 
genome with Program to Assemble Spliced Alignments (PASA 
v2.4.1) (Haas et al., 2003). (2) For ab initio gene prediction, 
we used a hard-masked genome in which genomic repetitive 
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elements were substituted by ‘N’. To build a training set for the 
ab initio gene predictors, we extracted 498 complete genes with 
both start and stop codons from the 500 longest ORFs predicted 
by TransDecoder, based on the above RNA-Seq analysis with 
HISAT2 and StringTie. Augustus v3.3.3 (Stanke et al., 2006) 
SNAP v2006-07-28 (Korf, 2004) and GlimmerHMM v3.0.4 
(Majoros et al., 2004) were trained on this training set and then 
used to predict potential gene models. Furthermore, combined  
with the RNA-Seq alignments, BRAKER2 v2.1.5 (Hoff et al., 
2019) was used to predict protein-coding genes based on the 
above-mentioned training model of Augustus. (3) The proteomes 
of the migratory locust, Locusta migratoria (Wang et al., 
2014); the African malaria mosquito, Anopheles gambiae; the 
domestic silk moth, Bombyx mori; the fruit fly, Drosophila 
melanogaster; the kissing bug, Rhodnius prolixus; the red 
imported fire ant, Solenopsis invicta; the red flour beetle, Tribolium 
castaneum; and the Nevada dampwood termite, Zootermopsis 
nevadensis from Ensembl Metazoa (release-47), as well as the 
proteins in UniRef100 (release-2020_01) for the clade Polyneop-
tera (Taxonomy ID: 33341) were used to assist gene predictions 
with homologous proteins. Exonerate v2.4.0 (Slater & Birney, 
2005) was used to perform spliced alignments of the proteins 
with the maximum intron length set to 1 Mb. To integrate 
the predictions from all three gene-prediction approaches,  
EvidenceModeler v1.1.1 (Haas et al., 2008) was used to produce 
a non-redundant gene set. Functional annotation of the predicted 

protein-coding genes was done by running BlastP (Altschul 
et al., 1990) using an e-value cut-off of 1×10-5 against the  
public protein databases Uniprot/SwissProt (Magrane, 2011; The  
UniProt Consortium, 2019) and NCBI NR (RefSeq non- 
redundant protein record). Protein family (Pfam) domain  
information and Gene Ontology (GO) terms were added using 
InterProscan (Mitchell et al., 2019).

Results and discussion
Genome size and assembly
Initial input data for the assembly comprised (i) 1,316 Gb 
of Illumina short read data, of which 1,009 Gb remained after 
cleaning and trimming, and (ii) 112 Gb of long reads from 
PacBio sequencing. The resulting assembly, using the ABySS 
pipeline, consisted of 8.5 Gb in ~1.6 M contigs with an N50 of 
12,027 bp. Scaffolding with the MP data using ABySS 
resulted in 8.6 Gb in 1.2 M scaffolds with an N50 of 66,194 
bp. The PacBio data as input for LINKS further improved the  
scaffolded assembly derived from ABySS, doubling the N50 and  
maximum length and reducing the number of sequences by  
half. The final assembly consists of 8,817,834,205 bp organised  
in 955,015 scaffolds with an N50 of 157,705 bp (Table 1).

Repetitive elements and noncoding RNAs
In total, repetitive elements account for 62.55% of the desert 
locust genome (Table 2), which is more than the 58.86% repetitive 

Table 1. Results of the assembly for the desert locust genome.

Total Total size (bp) N50 (bp) N90 (bp) Largest (bp) Mean length (bp)

Contigs 1,648,200 8,561,922,307 12,027 5,375 202,979 5,194.71

Scaffolds (MP) 1,233,802 8,632,364,377 66,194 15,575 1,561,787 8,350.11

Scaffolds (PacBio) 955,015 8,817,834,205 157,705 29,453 3,339,430 9,233.20

Scaffolds (MP), Scaffolds reached with the Mate Pair data using the ABySS pipeline; Scaffolds (PacBio), improved scaffolds 
with the PacBio data as input for LINKS; N50, the sequence length of the shortest contig/scaffold at 50% of the total genome 
length; N90, the sequence length of the shortest contig/scaffold at 90% of the total genome length

Table 2. Repetitive elements in the genomes of the desert 
locust, Schistocerca gregaria, and the migratory locust, Locusta 
migratoria (Wang et al., 2014).

Schistocerca gregaria Locusta migratoria

Repeat Types Length (bp) P% Length (bp) P%

DNA 2,390,333,660 27.1 1,480,538,225 22.69

LINE 2,438,094,307 27.6 1,332,720,207 20.42

SINE 28,032,199 0.32 141,176,698 2.16

LTR 637,406,118 7.23 508,675,263 7.80

Other 165 0.00 32,017 0.00

Unknown 871,233,596 9.88 406,097,360 6.22

Total 5,515,243,572 62.55 3,840,808,141 58.86

DNA, DNA transposons; LINE, long interspersed nuclear element 
retrotransposon; SINE, short interspersed nuclear element retrotransposon; 
LTR, long terminal repeat retrotransposon; Other, repeats classified to other 
than the above mentioned types; Unknown, repeats that cannot be classified; 
P%, percentage of the genome.
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elements in the published migratory locust genome (Wang 
et al., 2014). Screening the desert locust genome against the 
Rfam v14.1 database identified 121,581 tRNAs, 1,302 rRNAs, 
121 miRNAs, and 361 snRNAs (Extended data, Supplementary 
Table S3 (Verlinden et al., 2020)).

In addition to the 121 evolutionary conserved miRNAs identi-
fied from Rfam, blasting with miRNAs previously identified 
in the migratory locust (from small RNA sequencing-based and 
homology-based approaches; Wang et al., 2015) identified a 
further 686 miRNAs in the desert locust genome, resulting in a 
total of 807 identified miRNAs (Extended data, Supplementary 
Table S3 (Verlinden et al., 2020)). Of these 807 miRNAs, 
676 are located on short scaffolds without any protein-coding 
gene. Among the 121 miRNAs identified based on Rfam, 81 
have no homologs in the migratory locust genome.

Protein-coding genes
In total, 18,815 protein-encoding genes are predicted in the 
desert locust genome (Extended data, Supplementary Table S4 
(Verlinden et al., 2020)). The average pre-mRNA length is 54,426 
bp, with an average coding sequence (CDS) length of 1,137 bp 

and an average intron length of 12,522 bp, values which are 
comparable to those of the published migratory locust genome 
(Wang et al., 2014). Although both locust genomes have longer 
pre-mRNAs with bigger introns and more exons than the 
Drosophila melanogaster genome (Adams et al., 2000), their 
average CDS and exon length are in fact shorter (Figure 2 and 
Table 3). The BUSCO assessment of the current gene set  
(protein mode) shows that it includes 79.4% complete genes in 
the insecta_odb10 dataset (Simão et al., 2015), which closely 
matches the result from the BUSCO genome completeness  
assessment (genome mode) of 80.9% (Extended data,  
Supplementary Table S5 (Verlinden et al., 2020)). The BUSCO  
assessment of the predicted genes in the desert locust genome 
shows fewer complete genes than for the published Locusta  
migratoria and Drosophila melanogaster genomes (Figure 2). 
Among the 18,815 predicted genes in the desert locust genome, 
13,646 (72.53%) obtained at least one functional assignment 
based on similarity to known proteins in the databases. Pfam  
domain information could be added to 10,395 (55.25%) predicted 
genes, and 6,470 (34.39%) predicted genes could be assigned  
a GO term (Extended data, Supplementary Table S6 (Verlinden  
et al., 2020)).

Figure 2. Gene characteristics and BUSCO assessment in the genomes of the desert locust, Schistocerca gregaria, the migratory 
locust, Locusta migratoria (Wang et al., 2014) and the fruit fly, Drosophila melanogaster (Adams et al., 2000). (a-e) Boxplots of  
(a) pre-mRNA lengths; (b) intron lengths; (c) exon numbers; (d) coding sequence (CDS) lengths; and (e) exon lengths in the three genomes. 
(f) BUSCO assessments of the gene sets in the three genomes. The stacked bars indicate the percentages of genes that are complete  
(light blue), duplicated (dark blue), fragmental (yellow) and missed (red).
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Table 3. Summary statistics on gene information for the desert locust, 
Schistocerca gregaria, and the migratory locust, Locusta migratoria  
(Wang et al., 2014).

Schistocerca gregaria Locusta migratoria

Genome

Size (bp) 8,817,834,205 6,524,990,357

Scaffold N50 (bp) 157,705 322,700

GC content 0.406 0.407

Gene

Total gene number 18,815 17,307

Average pre-mRNA Length (bp) 54,426 54,341

Average CDS length (bp) 1,137 1,160

Average intron length (bp) 12,522 11,159

Average exon length (bp) 216 201

Average exon number per gene 5.26 5.77

Scaffold N50, the sequence length of the shortest scaffold at 50% of the total genome length; 

Conclusions
Here, we present the first draft genome sequence of the desert 
locust, Schistocerca gregaria, a swarming pest species with 
significant socio-economic and ecological impact. With the 
current locust crisis in mind, it should be clear that despite  
ongoing monitoring and control operations, we are still in urgent 
need of more locust research to foster development of effective  
management strategies. Sequencing and assembling the 
desert locust genome has been both challenging and ground- 
breaking due to the enormous size of the genome and its 
extremely large proportion of repetitive elements. The desert 
locust genome is the largest insect genome sequenced and 
assembled to date. As is the case for the second and third  
largest assembled insect genomes, the expanded genome size 
is caused by accumulation of repetitive regions and intron  
elongation (Locusta migratoria, 6.5 Gb; Wang et al., 2014; 
Clitarchus hookeri, 4.2 Gb; Wu et al., 2017). Sequencing the  
desert locust genome is an important step to advance our  
knowledge of these animals. It will enable future studies to  
examine the very complex relationship between environmental  
cues and phenotypic plasticity, and in particular the question  
of how this is regulated at the molecular level. A better under-
standing of the desert locust’s molecular biology will facilitate  
the development of novel, more sustainable strategies for  
controlling these pests.

Data availability
Underlying data
European Nucleotide Archive: First draft genome of 
Schistocerca gregaria, a swarm forming grasshopper species. 

Accession number PRJEB38779; https://identifiers.org/ena.embl:
PRJEB38779.

This accession contains all genome and transcriptome data. 
The annotations are also available via the ORCAE platform  
(https://bioinformatics.psb.ugent.be/orcae/overview/Schgr).

Extended data
Figshare: First draft genome assembly of the desert locust, 
Schistocerca gregaria - extended data. https://doi.org/10.6084/
m9.figshare.12654026.v1 (Verlinden et al., 2020).

This project contains the following extended data: 
•    Supplementary Methods (DOCX). Containing details 

of Animal material, Genomic DNA extraction, Library 
construction, sequencing for RNA-Seq and de novo 
transcriptome assembly.

•    Supplementary Table S1 (DOCX). Available Polyneopteran 
genomes (incl. Schistocerca gregaria for comparison).

•    Supplementary Table S2 (DOCX). Software parameter 
settings.

•    Supplementary Table S3 (DOCX). Transfer RNA (tRNA), 
microRNA (miRNA), small nuclear RNA (snRNA) and 
ribosomal RNA (rRNA) content of the desert locust 
genome.

•    Supplementary Table S4 (DOCX). Desert locust genome 
annotation details.
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•    Supplementary Table S5 (DOCX). BUSCO assessments 
for the genomes of the desert locust, Schistocerca gregaria, 
and the migratory locust, Locusta migratoria (Wang et al., 
2014).

•    Supplementary Table S6 (DOCX). Functional annotation 
of the proteome of the desert locust.

Extended data are available under the terms of the Creative 
Commons Attribution 4.0 International license (CC-BY 4.0).
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Joshua B. Benoit   
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This is an extremely important agricultural pest and having a genome for this species will allow for 
more future comparisons among locust species. This study represents a great deal of work and 
the techniques used are appropriate and well described. There is some room for improvement, 
but a valuable contribution. 

I would suggest to add a little more biological interpretation. Was there anything of interest 
and unique identified? Specifically, anything related to the transition from solitary to 
swarming. 
 

1. 

The assembly is of sufficient quality for some comparisons to other insects, but there might 
be issues with the low BUSCO score. This was similar to the Locusta genome.  Please check 
the BUSCO score of the Trinity assembly to determine if the missing genes are present. If 
the missing genes are present in the de novo assembly,  I would make sure to make the de 
novo assembly available until a higher quality genome is available.  
 

2. 

Were any bacterial symbiont present or microbial contamination detected? How were these 
accounted for in the assembly? 
 

3. 

As a future goal, I would suggest adding techniques for chromosome scaffolding (e.g. Hi-
C). This genome is fine as a draft, a higher quality version will be needed for future 
comparisons. 

4. 
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Surya Saha   
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This work is timely given the locust outbreaks in East Africa and recently in parts of West Asia with 
the devasting impact on crops of small holder farmers in these regions besides secondary impacts 
on nutrition and human health. The large genome size and repetitive regions make this a 
challenging genome to assemble. The phase polyphenism of the gregarious and solitarious adults 
make this a fascinating system to study for social behavior and physiology in arthropods. A high-
quality chromosomal length genome assembly for S. gregaria will lay the foundation for genetics 
and phenotyping of this important insect pest. The methods for the genome assembly, protein 
coding and non-coding gene annotation are clearly described in the paper and in the extended 
data. Inclusion of the parameters used is helpful for the reproducibility of the genome assembly 
process. I commend the authors on a well written manuscript. 
  
Although this is a valuable contribution to Polyneoptera genomics, it is possible to do a better job 
of utilizing the new genome and annotation for comparison with other sequenced relatives in 
Polyneoptera, especially the migratory locust.  In my humble opinion, the manuscript can be 
improved a lot if these issues are addressed. 
  
1. This manuscript can become a tour de force for locust genomics if additional analysis and 
discussion were to be included. Gene families related to energy consumption and detoxification 
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already identified in the migratory locust are of particular interest. There are two other aspects 
that, if addressed, will be of value to the community. 
 
1a.The authors mention a greater presence of ncRNA elements in the S. gregaria genome. The 
association of these potential regulatory elements with protein coding genes based on RNA data 
from this paper and other public data will be useful. 
 
1b. The other point is about a more detailed characterization of the repeat elements that account 
for 62% of the genome. A GenomeScope or similar plot of the heterozygosity in the Illumina reads 
might be useful to understand the repetitive structure. 
I know this adds additional burden on the authors but I hope they see my rationale. 
 
2. Endosymbionts been reported for other locust genomes (https://www.mdpi.com/2075-
4450/11/10/6551). These are typical by products of insect genome assembly. Were any microbial 
contigs found in the assembly for known endosymbionts? 
  
I had a few minor points: 
 
1. The introduction states that the potentially expanded non-coding portion of the genome in S. 
gregaria makes the assembly more challenging. Can the authors please expand on this argument? 
 
2. Was any kind of filtering done to remove microbial contamination? The animal material protocol 
in the supplementary methods does not mention starving the insects before DNA extraction. Can 
this have introduced microbial contamination from the feed even though the leaves were washed? 
  
3. This manuscript represents a mammoth amount of work that has gone into the genome 
assembly. The standard of quality for a genome assembly has increased vastly since the L. 
migratiria genome was published in 2014. Since sourcing high quality DNA from the insects does 
not seem to be a major challenge as far as I know, were long range scaffolding methods like Hi-C 
or BioNano explored for chromosomal scale scaffolding? 
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This is a marvellous paper based on an enormous effort for genome assembly in this insect. The 
work is urgently needed in order to promote a large number of studies on the behavior and 
physiology of this insect. The data are highly likely to ultimately better understand migratory 
behavior in the desert locust as well as its phase polyethism. I have no comments or suggestions 
for further improvements of this already excellent achievement.
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