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Abstract

In the last two decades, environmental experts have focused on the development of several

biological, chemical, physical and thermal methods/technologies for remediation of PAH polluted

water. Some of the findings have been applied to field-scale treatment, while others have remained

as prototypes and semi-pilot studies. Existing treatment options include extraction, chemical

oxidation, bioremediation, photocatalytic degradation, and adsorption (employing adsorbents such

as biomass derivatives, geosorbents, zeolites, mesoporous silica, polymers, nanocomposites and

graphene-based materials). Electrokinetic remediation, advanced phytoremediation, green

nanoremediation, enhanced remediation using biocatalysts, and integrated approaches are still at

the developmental stage and hold great potential. Water is an essential component of the ecosystem

and highly susceptible to PAH contamination due to crude oil exploration and spillage, and

improper municipal and industrial waste management, yet comprehensive reviews on PAH

remediation are only available for contaminated soils, despite the several treatment methods

developed for the remediation of PAH polluted water. This review seeks to provide a

comprehensive overview of existing and emerging methods/technologies, in order to bridge

information gaps towards ensuring a green and sustainable remedial approach for PAH

contaminated aqueous systems.\
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treatment.
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1. Introduction

PAHs are hydrocarbons containing two or more benzene rings fused together with C-C bonds,

which have unique physicochemical characteristics (Mohan et al., 2006; Okere, 2011). They are

hazardous organic micropollutants, which are ubiquitous and recalcitrant to degradation (Duan et

al., 2015; Ghosal et al., 2016). They are commonly found in water bodies with proximity to crude

oil exploration, gas production, and wood/coal processing industries, for example. (Abdel-Shafy

and Mansour, 2016; Sun et al., 2009; Zhao et al., 2011a). Some PAHs possess carcinogenic

toxicities even at very low concentrations and humans are hazardously exposed through several

routes – air (atmospheric deposition, inhalation etc.), water (domestic, recreational use etc.), food,

and occupational exposures. However, one of the core routes of human exposure is through

polluted water (Wang et al., 2009; Wu et al., 2011a). For simplicity, PAHs can be classified into

two groups which are the lower molecular weight (LMW), structurally 2-3 ringed PAHs which are

less toxic than the second class, the higher molecular weight (HMW), 4-7 ring PAHs which are

more resistant to degradation and have higher carcinogenicity (Kuppusamy et al., 2016).

In water bodies, the concentrations of PAHs range widely from 0.03 ng/L {Southeastern Sea,

Japan} (Hayakawa et al., 2016) to 753 ng/L {Yellow River Delta, China} (Yuan et al., 2014) to as

high as 16.59 mg/L {Limpopo Province, South Africa} (Edokpayi et al., 2016). Furthermore, the

bioconcentration of 16 PAHs in aquatic animals (fish) ranges from 11.2 ng/g (Cynoscion

guatucupa, South America) to as high as 4,207.5 ng/g (Saurida undosquamis, Egypt) (Mojiri et

al., 2019). Hundreds of different PAHs and derivatives exist, however, the United States

Environmental Protection Agency (US EPA) named 16 PAHs as priority pollutants (USEPA,

2000).
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Water is pivotal to the sustenance of life and creation of energy, however, potable water suitable

for domestic use including drinking, was estimated to be around 0.01 % of the total (Ritchie and

Roser, 2020). Moreover, water is unevenly distributed around the world, as a result, there are

regions faced with water shortage, particularly in low latitudes and millions of people globally are

suffering due to a shortfall of clean and safe portable water (WHO/UNICEF, 2012). Rapid growth

in industrialization, population, and urbanization have significantly spurred severe water pollution.

Remediation of PAH contaminated water systems is important due to the ability of PAHs to

bioaccumulate and the risk they pose to human health (Figure 1) (García-Suástegui et al., 2010;

Lawal, 2017; Olsson et al., 2010). The United Nations Sustainable Development Goals (SDGs)

prioritized the need to address the mitigation of numerous challenges associated with water, which

include flooding, drought and water pollution. Although some successes have been recorded, there

is still a need for the development of efficient, ecofriendly, affordable and sustainable means to

achieve the SGDs by 2030 (United Nations Information Center, 2017).

Polycyclic aromatic hydrocarbons are hydrophobic organic compounds, therefore they are often

deposited on sediments and adhere to solid particles in aquatic environments (Rockne et al., 2002;

Figure 1: Flow chart showing the effect of acute (short-term) and chronic (long-term)
exposure to PAHs.
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Maletic et al., 2019). Contaminated soil and sediment could potentially contaminate ground and

surface water via leaching, runoff and re-suspension. Therefore, many reviews have been

published on the treatment methods and strategies which can be employed for PAH contaminated

soils as well as sediments (de Boer and Wagelmans, 2016; Gan et al., 2009; Kuppusamy et al.,

2017; Maletic et al., 2019; Mohan et al., 2006; Samanta et al., 2002; Wise, 2000). However, there

is no comprehensive literature review which focuses solely on the treatment technologies for PAH

polluted water. This review therefore focuses on target-specific existing and emerging

technologies in this regard, and highlights successes, limitations, areas of improvement, and the

potential field application of the methods. Prospects for the development of innovative approaches

to enhance the efficiency of PAH remediation are also explored. This review thus provides holistic

insights and a fundamental basis to inform decision making with respect to the development of

suitable, ecofriendly and cost-effective technique(s) that can be adopted for the treatment of PAH

contaminated water.

2.0. Extraction and membrane technologies

Solid-phase extraction (SE/SPE) is a clean-up technique used for LMW and HMW PAHs based

on the preferential solubility of PAHs in organic solvents. The use of basic apparatus such as a

separatory funnel and rotary evaporator, along with a suitable nonpolar solvent such as hexane,

dichloromethane or mixture of both, have been used to isolate PAHs from water (Gong et al.,

2006). This technique often involves SPE or gel permeation chromatography (GPC) with different

adsorbent phases, while others include membrane-based extractions such as liquid-phase micro-

extractions and membrane-assisted extraction (Egli et al., 2015; Hussain et al., 2018; Martinez et

al., 2004). The selective removal of PAHs from water has been optimized and over 90 % extraction

efficiency has been recorded, as well as the capacity of SPE to isolate target PAHs in trace amounts
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(Egli et al., 2015). Graphitic carbon nitride derivatives have been reported as sorbents for solid-

phase microextraction of PAHs, with recoveries in the range of 83.3 to 103.0 % (Nian et al., 2019;

Feng et al., 2020). However, SPE and other forms of extraction have only been applied for

analytical determination and monitoring of PAHs in water. This is due to its lack of robustness and

capacity to deal with a large volume of water; also, the cost of solvents and their environmental

impact makes it uneconomical to adopt solid-phase extraction principles for wastewater treatment

plants.

Several membrane technologies have been reported in the literature for the treatment of PAH

polluted water, including microfiltration (Klejnowski et al., 2010), ultrafiltration (Dudziak et al.,

2003; Smol and Wlodarczyk-Makula, 2012), nanofiltration and reverse osmosis (Smol et al.,

2014a). PAHs have a molecular size smaller than the pore radius of microfiltration and

ultrafiltration membranes, but studies have shown that they retain PAHs to a large extent, via

hydrophobic effects and adsorption onto the membrane surface (Smol and Wlodarczyk-Makula,

2012). Unlike micro- and ultra-filtration processes, the mechanism of nanofiltration is mainly size

exclusion, which indicates that its efficiency is independent of process variables such as discharge

or influent pressure, concentration, pH etc. (Smol et al., 2014b).  Reverse osmosis has been

employed for the treatment of water and landfill leachates, and improved efficiencies are found

with higher molecular weight PAHs, because the process is controlled by sieving and diffusion

mechanisms. Overall, reports show that PAH removal efficiency increases in the order:

microfiltration  ultrafiltration  reverse osmosis  nanofiltration (Dudziak et al., 2003; Smol et

al., 2014a), although integrated systems such as coagulation-membrane separation provide the best

results (> 98 %) (Smol et al., 2014b). Membrane fouling and operational costs are drawbacks of
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these processes, although back-washing assists with fouling, membrane performance often

diminishes over time.

3.0. Chemical oxidation processes

The treatment of PAH contamination in soil and municipal/industrial landfill leachates has been

reported using basic and advanced chemical oxidation techniques, and they proved successful with

over 90 % degradation (Li et al., 2016; Wu et al., 2011c; Yap et al., 2012).

Chemical oxidation techniques involve the use of oxidants such as hydrogen peroxide (Flotron

et al., 2005), activated persulfate (Huling and Pivetz, 2006), ozone (Lian et al., 2017; Rivas et al.,

2009) and Fenton’s reagent (Zhang et al., 2019). These techniques involve the generation of very

reactive radicals (e.g. •OH, SO4
• –, O3

• radicals) and other reactive species (e.g., persulfate anion,

peroxides), which are responsible for the breakdown of the aromatic rings of PAHs (Figure 2).

Merits of chemical oxidation over conventional remediation methods include relatively shorter

treatment time, effectiveness for remediation of a broad range of PAHs due to high radical

reactivity, and in situ degradation of contaminants. However, the application of very reactive

oxidizing agents is complicated due to oxidation of non-target constituents such as

dissolved/particulate organic matter, the volume of water to be decontaminated, and corrosiveness

makes it unsuitable for treatment of portable water. Furthermore, H2O2 requires careful pH control

(i.e. 2.5-4.0), and is quite expensive (Flotron et al., 2005). Cl  inhibits the destruction of organic

contaminants by persulfate based advanced oxidation processes (AOPs) (Deng and Zhao, 2015).

These factors provide constraints to the use of H2O2 and persulfate for PAH degradation, thus

making these oxidants inappropriate or uneconomical for large-scale water remediation (Huang et

al., 2003). Advanced methods involving the combination of Fenton oxidative-coagulation and

ultraviolet photo-Fenton processes also recorded significant success in the removal of PAHs in
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solid waste and leachates (Li et al., 2016). However, there are limited reports on the use of

chemical oxidation techniques for the remediation of PAHs in water.

4.0. Bioremediation

Bioremediation is regarded as an efficient means of degrading organic compounds, including

PAHs, in environmental media. The technique involves the use of microorganisms, plants, and

enzymatic reactions in the detoxification and degradation of environmental contaminants in water

and other environmental compartments (Ghosal et al., 2016; Gouma et al., 2014). Fungi such as

Peniophora gigantea, Phanerochaete chrysosporium, Pycnosporus coccineus, Trametes

versicolor, and others have been reported to efficiently degrade many organic pollutants,

especially PAHs (Silva et  al., 2009). Bacterial species (Aspergillus sp., Trichocladium sp.,

Fusarium sp., and Pseudomonas sp.) are also capable of degrading PAHs (Quinn et al., 2009;

Soleimani, 2012; Sun et al., 2014; Wu et al., 2013).

A recent study revealed that degradation of PAHs by Aeromonas hydrophila, Bacillus

megaterium, Raoultella ornithinolytica and Serratia marcescens recorded over 90 % degradation

efficiency for fluorene and acenaphthene (Alegbeleye et al., 2017). However, certain

environmental variables such as temperature and pH, were reported to have a considerable

influence on the efficiency of the bioremediation processes. Specifically, temperatures above room

temperature between 30 ºC and 38 ºC were optimum for degradation of PAHs, due to enhanced

microbial growth (Abdou, 2003; Antizar-Ladislao et al., 2008; Moscoso et al., 2013). However,

bioremediation is not a rigid and robust technique, as was evident in a study carried out at slightly

higher temperature between 40 ºC and 45 ºC, which recorded a significant decline in PAH

degradation from 92 % (37 ºC) to 73 % (45 ºC). Increase in temperature reduces the solubility of
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oxygen, which leads to a decrease in dissolved oxygen available for microbial growth in the

bioreactor (Alegbeleye et al., 2017; Viñas et al., 2005).

5.0. Photocatalytic degradation

The synergistic role of photocatalysis and chemical catalysts on PAH degradation has been

investigated, with the aid of UV irradiation and titanium oxide (TiO2) catalyst (Zhang et al., 2008).

The photocatalytic degradation of phenanthrene, pyrene, and benzo(a)pyrene under UV irradiation

followed the pseudo-first-order kinetics pathway and was accelerated by the addition of TiO2, due

its established catalytic activity (Garg et al., 2019; Wu et al., 2004; Zertal et al., 2004). Different

PAHs degrade to various extents under varying UV radiation intensities whilst an increase in TiO2

dosage from 0.5 to 3 wt% had an insignificant effect on PAH photodegradation which was highest

under acidic pH conditions (Zhang et al., 2008).

Composites with photocatalytic properties have been synthesized and applied to PAH

degradation (e.g. Pt/TiO2-SiO2) (Luo et al., 2015). The correlation between molecular structure

and photocatalytic degradability of PAHs was also investigated. Naphthalene, fluorene,

phenanthrene, pyrene, benzo[a]pyrene, and dibenzo[a,h]anthracene degraded using a Pt/TiO2-SiO2

suspension under UV irradiation. Results revealed improved efficiency of the process for

biorefractory HMW PAHs with the inclusion of Pt/TiO2-SiO2,  while  that  of  LMW PAHs were

reduced under the same conditions. A pseudo-first-order equation fit both the photolysis and

photocatalysis of fluorene which displayed a different trend, by fitting best to first-order kinetics.
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A model involving the use of molecular descriptors was established using the difference

between highest occupied molecular orbital (Ehomo) and lowest unoccupied molecular orbital

(Elumo), which equates to GAP (GAP = Elumo - Ehomo). This was compared with the maximum GAP

(7.4529 eV) of PAHs (for dibenzo[a,h]anthracene) and the minimum GAP (8.2086 eV) of PAHs

(for pyrene) which was degraded. This was further used to predict the photocatalytic degradation

of 67 PAHs (Luo et al., 2015). A TiO2-graphene composite has also been used for photocatalytic

treatment of PAHs in water and 80 % efficiency was achieved in 2 hours (Bai et al., 2017).

Figure 2: Ultraviolet light-assisted chemical oxidation process for PAH degradation. (Adapted
with slight modification from Abd Manan, T. S. B., Beddu, S., Khan, T., Wan Mohtar, W. H. M.,
Sarwono, A., Jusoh, H., Mohd Kamal, N. L., Sivapalan, S. & Ghanim, A. A. J. (2019). MethodX.
6, 1701-1705. Copyright 2019 Elsevier.)
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6.0. Adsorption processes

Contaminated water can be treated in several ways based on the target pollutant (Cohen-Tanugi

and Grossman, 2012; Kemp et al., 2013; Shannon et al., 2008), however, adsorption processes

have been widely used and possess several advantages over other techniques (Kemp et al., 2013).

The adsorption process is a surface phenomenon that involves the adherence of pollutants onto the

surface of an adsorbent via physical, chemical and/or electrostatic attraction. Adsorption of organic

compounds can be influenced by many process variables such as temperature, pH, concentration

of sorbate, contact time, particle and pore size, temperature, and other physicochemical properties

of the adsorbate and adsorbent (Adeola and Forbes, 2019). Several materials have been developed

over the last two decades for the sorption of PAHs from aqueous system, many of which are

discussed in this section.

6.1. Agricultural waste and biomass

Various absorbents for the remediation of PAHs have been derived from agricultural waste such

as coconut shells, rice husks, sugar cane bagasse, peat, sawdust etc. (Amstaetter et al., 2012;

Crisafully et al., 2008; Olivella et al., 2011). The decision to explore these materials was driven

by the concept of green and sustainable chemistry, which promotes the conversion of ‘waste to

wealth ‘as an economical path to waste management and ecofriendly material science (Xu et al.,

2019). Low-cost adsorbents with high porosity and efficiency have been generated from these

materials via simple thermal and/or chemical reaction processes, which has led to improved

morphology of the biomass-derived sorbents for water treatment applications (Bhatnagar and

Sillanpää, 2010; Pérez-Gregorio et al., 2010).
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The remediation performance of activated carbon derived from wheat straw on PAH

contaminated water was reported (Xu et al., 2019). Results revealed that the PAH adsorption

capacity of the adsorbent increased with increase in the number of aromatic rings and the surface

area of adsorbent had the greatest influence on removal of both HMW and LMW PAHs with the

pseudo-second order model giving the best fit to kinetic experiments.  Adsorption of naphthalene

(NAP), phenanthrene (PHEN), and pyrene (PYR) from water were evaluated using activated rice

husk (RH) (Yakout and Daifullah, 2013). The Freundlich, generalized and BET isotherms best fit

adsorption data for naphthalene, phenanthrene and pyrene. The results suggest that a significant

amount of heat was dissipated, as the thermodynamic system was exothermic and spontaneous

(Yakout and Daifullah, 2013).

The cross-linkages of starch molecules with epichlorohydrin, 1,6-hexamethylene diisocyanate,

4,4-methylene diphenyl diisocyanate, for the synthesis of a functionalized starch polymer

adsorbent for PAHs were reported (Delval et  al., 2005; Okoli et al., 2015). The cross-linking

process enhanced the morphology, hydrophobicity and incorporated specific functional groups

into the starch polymer. Adsorption occurred in multilayers, and diffusion controlled the

adsorption kinetics. Thermodynamic variables suggest that the sorption mechanism was

endothermic and spontaneous and physisorption occurred via hydrophobic, van der Waals and –

 interactions between sorbent and adsorbate (Okoli et al., 2015).

Plant materials have been used as adsorbent and an indirect form of phytoremediation of PAH

contaminated water (Figure 3). Plant residues, brown seaweed (Sargassum hemiphyllum), wood

fibers, wood char, fruit cuticles, potato periderm, modified pine bark, tea leaf powders, corn cob

etc., have all been reported for the removal of PAHs from aquatic media via adsorption routes

(Boving and Zhang, 2004; Chen et al., 2011; Chung et al., 2007; Crini, 2005; Huang et al., 2006;
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Ye et al., 2019a). A biochar-based nanocomposite has been synthesized from rice straw and the

material exhibited both adsorptive and photodegradation activity, making it suitable for the

remediation of water contaminated with organic compounds (Ye et al., 2019b).

However, the use of biomass in powdered form as column packing material has several

limitations, such as difficulty in biomass recovery after sorption, complicated regeneration, low

mechanical strength and density, and small particle size. An attempt to address these shortcomings

through immobilization of biomass within a polymeric matrix was carried out and an improvement

in biomass efficiency, sorption capacity, robustness, ruggedness and recovery of biomass from the

pollutant containing solution was reported (Aksu, 2005). This class of adsorbents proved efficient

in treatment of simulated and field water samples, and thus was regarded as a promising cost-

effective alternative for remediation of aqueous PAH pollution (Cabal et al., 2009, Zhang et al.,

2017). Possible negative environmental impacts of using biomass, such as deforestation and food

scarcity, must be considered. Improved biomass recovery through advanced waste management

systems is therefore important.

Figure 3: Treatment of PAH contaminated water using plant derivatives (biomass)
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6.2. Geosorbents

Geosorbent is generic term for soils, sediments and natural solid minerals, with different

compositions depending on the parent rocks, anthropogenic activities, depth of sample aggregate,

particle size, extent of maturation and ageing process (Luthy et al., 1997). Combustion residue in

particulate form (e.g., char, soot, and ash), clay minerals, silica (sand) and several forms of

amorphous and condensed carbon such as kerogen, black carbon, aged carbon etc., are chemically

and structurally different in different soils and sediments (Figure 4) (Cornelissen, 2005; Heijden,

2009; Rockne, 2002).

Porous carbon derived from petroleum coke (specific surface area (SSA): 562 - 1904 m2/g)

was reported for the adsorption of five LMW PAHs (fluoranthene, fluorene, phenanthrene, pyrene

and naphthalene) from aqueous solution (Yuan et al., 2014). It was found that the PAH uptake by

the sorbent can be described by three successive and complimentary steps: (1) diffusion of

molecules of PAHs from contaminated water to the outer walls of porous carbon particles through

solid-liquid interphase, also known as film diffusion; (2) intraparticle diffusion of the PAHs within

the pores of the carbon, and (3) PAH adsorption onto active sites on the interior surface. Adsorption

kinetics is controlled by (1) and (2), while adsorption capacity and binding strength is controlled

by step (3) to a very large extent. Furthermore, the petroleum coke derivative provided a removal

efficiency of 99 % at 1 g/L dosage of the adsorbent and adsorption capacities for the PAHs were

> 5 mg/g (Yuan et al., 2014).

Leonardite, also known as immature coal, composed of 55 % carbon and mainly humic

substances, has been studied for the removal of selected PAHs from water (Zeledón-Toruño et al.,

2007). Leonardite adsorbed over 90 % of fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene,

and benzo(g,h,i)perylene present in solution, after 24 hours of contact at a dosage of 1 g/L, which
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is quite unique for a material with a relatively low surface area (19.1 m2/g). The high removal

efficiency and adsorption capacity can be attributed to the vast number of hydrophobic

functionalities (carboxyl, carbonyl and hydroxyl groups) associated with humic acids and humic-

containing geosorbents, which are readily available for chemical bonding (Lao et al., 2005; Solé

et al., 2003).

Sepiolite is a fibrous clay mineral with a highly porous structure and silanol-surface-active

sorption sites.  Its molecular sieving and adsorptive abilities have been reported (Sabah and Ouki,

2017). Sepiolite has a relatively high surface area (358 m2/g,), mean pore diameter (47.3 Å) and

total pore volume (0.559 cm3/g), which makes it a unique material/mineral for PAH remediation

of contaminated water (Cobas et al., 2014). It has a three-dimensional micro-crystalline structure,

which makes it rigid, rugged and robust, with no significant change in morphology after adsorption

of PAHs (Álvarez et  al., 2011). The adsorption of pyrene and naphthalene onto sepiolite and

organo-sepiolite occurred via H-type sorption and chemisorption and reached a maximum capacity

of 8 mg/g. The process was entirely endothermic with an activation energy between 26.3 – 31.2

kJ/mol and Gibbs free energy ( G) of -29.35 kJ/mol, indicating that the process was diffusion

controlled and involved weak chemical bonds (Gök et al., 2008).

One major shortcoming of natural geosorbents is the problem attributed to designing a

physicochemical sequestration model for the extremely heterogeneous systems found in various

geological materials. The practicality of fractionating geosorbents into sorption domains and the

establishment of dominant mechanisms of adsorption, is questionable given that there is typically

insufficient microscopic data. However, it was suggested that predictions can be approached

mechanistically by gaining knowledge of simpler systems via study of the components (Ololade
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et al., 2018; Ran et al., 2002; Ran et al., 2003; Wu and Zhu, 2012), thereby establishing an in-

depth knowledge base for prediction of complex, heterogeneous geosorbents in their bulk state.

6.3. Zeolites

Zeolites are aluminosilicates with different ratios of  Si/Al. They exist naturally and can be

synthesized and are important due to their essential physicochemical properties such as specific

surface area, mechanical and thermal stability, high ion exchange capacity, adsorption, and sieving

Figure 4: Geosorbent domains which include a mineral and organic matter component (SOM),
as well as combustion residues and nonaqueous liquids (NAPL). (A) Absorption to soft natural
organic matter or NAPL (B) Adsorption onto hard organic condensed matter (C) Adsorption
onto wet-water organic surfaces i.e. soot. (D) Adsorption onto mineral phases e.g. quartz.
(Reprinted with permission from Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D.,
Gschwend, P. M., Pignatello, J. J., Reinhard, M., Traina, S. J., Weber, W. J. & Westall, J. C.
(1997). Environmental Science & Technology, 31 (12), 3341-3347. Copyright 1997 American
Chemical Society.)
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properties (Chao and Chen, 2012; Fletcher et al., 2017). Zeolites have been used as adsorbents,

membranes, ion exchangers, molecular sieves, and for water and soil remediation. This essential

modified clay mineral has been identified as viable, low-cost, and readily available sorbent (Lee

and Tiwari, 2012; Lee et al., 2004; Li and Bowman, 2001).

Zeolite and its modified forms were applied to remove phenanthrene, pyrene and

benzo(a)pyrene from water via a sorption process (Müller et al., 2007; Torabian et al., 2010; Zhang

et al., 2011). Using organo-zeolite as adsorbent recorded an average of 98% removal of fluorene,

fluoranthene, pyrene, phenanthrene, benzo(a)anthracene from water (Lemi  et al., 2007). The

particle size of zeolites is round 1 mm or greater, and they are not susceptible to contraction and

expansion (“shrink-swell”) behaviour, thus making them suitable for filtration systems as well as

adsorption (Vidal et al., 2011; Xi and Chen, 2014).

Polycyclic aromatic hydrocarbons were adsorbed by both zeolites and surfactant-modified

zeolites, and the removal efficiency for both sorbents were in the order dibenz[a,h]anthracene >

benzo[a]pyrene > anthracene > naphthalene (Wo owiec et al., 2017). The adsorption capacity was

highest with higher molecular weight PAHs (HMW), for example dibenz[a,h]anthracene had an

adsorption capacity of 0.65 mg/g and was lowest for naphthalene (LMW) (0.058 mg/g). At a

concentration of 20 g/L, the adsorption efficiency for benz[a]anthracene by modified zeolite was

100% (Lemi et al., 2007). The removal efficiency depends on the chemical properties of the

PAHs (molar weight, molecule structure and dipole interactions) and the properties and

morphology of the zeolites (i.e. Si/Al ratio, surface area, particle size, and cation exchange

capacity). It was suggested that the sorption mechanism was dominated by penetration/diffusion

of PAH molecules into the mesopores of the adsorbent (Wo owiec et al., 2017).
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6.4. Functionalized mesoporous silica

Topuz et al. (2017) reported the synthesis of -cyclodextrin-functionalized periodic

mesoporous organo-silica (PMO), which was used to adsorb five PAHs from water (Figure 5). The

adsorption capacities were in the range of 0.3 to 1.65 mg/g (Topuz and Uyar, 2017). Pentynyl -

cyclodextrin as an organic moiety for mesoporous silica was used for remediation of phenanthrene

was reported to have an efficiency above 95 % (Choi et al., 2017). Several organic reagents prior

to -cyclodextrin have previously been reported, such as macrocyclic

tetraazacalix[2]arene[2]triazine which recorded 94-102% removal efficiencies for five PAHs in

water samples (Zhao et al., 2016).

Functionalized silica with phenyl groups for removal of five PAHs in aqueous solutions were

also investigated and adsorption efficiencies and capacities were within the range of 40–70 % and

0.72–1.69 mg/g, respectively (Vidal et al., 2011). Haemoglobin-coated mesoporous silica yielded

a PAH removal efficiency of 82 % for 11 different PAH compounds in water. Macrocyclic

polyamine functionalized with 1,3-dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide (ionic

liquid) achieved an estimated efficiency ranging from 81–120 % for the removal of five PAHs

from aqueous solution (Liu et al., 2014).
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6.5. Synthetic polymers

Polymeric adsorbents and supports have presented a useful alternative to the widely used

granular/powdered activated carbon (GAC) for polycyclic aromatic hydrocarbon removal from

water using permeable/porous reactive barriers (PRB) (Anbia and Moradi, 2009; Schad, 2005;

Valderrama et al., 2007). The quest to discover appropriate and efficient polymeric adsorbents for

PAH removal from aqueous solution have spurred the synthesis of innovative resins, with new

functionalities and/or modified polymeric frameworks (cross-links), in order to solve existing

problems and shortcomings. A functionalized adsorbent called Macronet Hypersol, made up of a

macroporous hyper-reticulated network of styrene–divinylbenzene has been evaluated and

reported (Valderrama et al., 2007). Due to its adsorptive properties, it has been considered as an

economical reactive sorbent for water remediation (Streat and Sweetland, 1997). Batch

Figure 5: -cyclodextrin based PMO for PAH decontamination. (Adapted with slight
modification from Choi, J. M., Jeong, D., Cho, E., Yu, J.-H., Tahir, M. N. & Jung, S.
(2017). Polymers, 9(1), 1-11.)
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experiments were carried out to determine the kinetics of adsorption of naphthalene, fluorene,

anthracene, acenaphthene, pyrene, and fluoranthene from water. The study showed that sorption

systems followed a pseudo-first-order reaction pathway (chemisorption). It was recommended that

sorption media thickness of 0.1 – 1 m will be sufficient to treat PAH-polluted water and the

medium would withstand a high-water flux of 0.1–2 m3/m2/day (Valderrama et al., 2007).

 The molecular imprinting technique has been used to synthesize nanoporous polymers for PAH

remediation of polluted water (Augusto et al., 2010; Hassan et al., 2016). Specific molecular

materials were synthesized via copolymerization of a monomeric cross linker with the complex

derived from template (PAH) and functional monomers. The resultant molecular material

possesses specific affinity for the PAH used as precursor, because its binding sites were of similar

shape and size to the target PAH (Figure 6) (Dickert et al., 1999; Montaseri and Forbes, 2018;

Zimmerman et al., 2002). A study reported the synthesis of a molecular imprinted polymer (MIP)

in acetonitrile using a four PAH mix as template, and methacrylic acid and ethylene glycol

dimethacrylate as functional monomer and cross-linking monomer (Krupadam, 2012).  The

microspheric size of the molecularly imprinted polymers (MIPs) generated ranged from 10 to 20

m and the sorption affinity of the nanoporous polymeric material (NPM) for benzo[a]anthracene,

benzo[a]pyrene, benzo[k]fluoranthene, and chrysene were studied via batch sorption experiments.

A partition mechanism controlled the sorption interaction between the MIPs and the PAHs

(benzo[a]anthracene, benzo[a]pyrene, benzo[k]fluoranthene, and chrysene), with an adsorption

capacity of 3.12 g/g, which was over five times higher than conventional activated carbon

(Krupadam, 2012). Regeneration of MIPs was possible with methanol/acetic acid rinsing, with no

significant loss in PAH removal efficiency (Baggiani et  al., 2007; Krupadam et  al., 2007;

Krupadam, 2012).
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Currently, various adsorbent materials have been studied as remediation materials for PAH

decontamination of water. However, it has been difficult to clean-up ultra-trace levels of PAHs,

which is achievable via molecular imprinting technology, with high selectivity and specificity.

Although costs of chemicals such as monomers and solvents are also factors to consider.

6.6. Nanoparticles and composites

Nanotechnology has gained immense scientific relevance as a branch of science in the 21st

century. It has the capability of generating nano-sized materials with unique properties, which have

found application in drug delivery, biosensors as well as in the remediation of different

environmental compartments; such as air, water and soil; via clean-up of environmental pollutants

(Adeola et al., 2019, Nsibande et al., 2019). The adsorption of three PAHs, naphthalene (NAP),

acenaphthylene (ACN), and phenanthrene (PHEN), from wastewater using a silica-based organic–

inorganic nanohybrid material (NH2-SBA-15) was reported (Balati et al., 2015). Adsorption

kinetics of PAHs by the hybrid followed the pseudo-second-order pathway, providing evidence of

chemisorption and pore mass transfer. The adsorption capacity of NH2-SBA-15 for PAHs studied

Figure 6: Molecular imprinting of benzo[a]pyrene using methacrylic acid as monomer to
generate binding sites. Step (1) involves the polymerization and step (2) involves the removal
of the PAHs and creation of binding cites complementary to the specific PAHs. (Reprinted from
Polycyclic aromatic hydrocarbons, Volume 32, Krupadam, R. J. Nanoporous polymeric
material for remediation of PAHs polluted water. 313-333, 2012, with permission from
Elsevier.)
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were 1.67, 1.06, and 0.24 mg/g for NAPH, ACN and PHEN, respectively; and the material was

highly reusable for five sequential applications (Balati et al., 2015).

Hydrophobic C18-functionalized iron (III) oxide magnetic nanoparticles (Fe3O4@C18) were

trapped in a hydrophilic barium alginate (Ba2+-ALG) polymer to generate an adsorbent suitable

for solid-phase extraction and treatment of PAH contamination. The sorbents proved very efficient

and the magnetic property thereof aided easy recovery and re-use. It was reported that a water-

friendly Ba2+-ALG polymer caged Fe3O4@C18 nanomaterial can be used for extraction or possible

remediation of organic pollutants in water on an industrial scale (Zhang et al., 2010).

Additionally, tetraethyl orthosilicate magnetized with maghemite (Fe2O3) nanoparticles with

an adsorption capacity of 0.39 mg/g has been applied for the removal of acenaphthene (ACN) from

water with a removal efficiency of 85 % (Huang et al., 2016). Hassan et al. (2018) reported an

ecofriendly method for the synthesis of iron nanoparticles (IONPs) for the removal of

benzo(a)pyrene and pyrene from contaminated water (Wang et al., 2014b). Factors such as IONPs

dosage, pH, temperature, and initial concentration of PAHs were evaluated. The maximum

sorption capacities of IONPs towards pyrene and benzo(a)pyrene were 2.8 and 0.029 mg/g, and

removal efficiencies were 98.5 and 99 %, respectively. The sorption process was exothermic, well

defined by a monolayer adsorption mechanism (Langmuir model) and followed the pseudo-second

order kinetic reaction pathway. The study revealed that IONPs are regenerable up to 5 cycles and

possess anti-microbial properties (Hassan et al., 2018).

However, there are major drawbacks in the field-based application of nanoparticles for PAH

remediation. The fine powdered form of nanomaterials has a very high sorption affinity for PAHs,

however, to achieve a reasonable treatment time, a large amount of the nanomaterial is required to

treat a large volume of polluted water.  In addition, the resulting nanomaterial residue dispersed or
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suspended in the treated water may cause toxicity if it is not properly recovered, due to the

composition of the nanomaterial (metal poisoning) and/or the small particle size thereof, which

aids mobility into tissues when ingested. Membrane separation protocols have been developed to

separate fine suspended or dispersed solids from water, however, this increases operational costs.

Nanomaterials may also have limited re-use potential, as they tend to lose activity with time as a

result of aggregation, fouling, or side reactions.

6.7. Graphene and its composites

Graphene as a term was first proposed in 1986 and introduced to the International Union of

Pure and Applied Chemistry (IUPAC) in 1995 (Boehm et al., 1994; Fitzer et al., 1995; Katsnelson,

2007; Peng et al., 2017). Graphene is two-dimensional (2D), with sp2 hybridized carbon atoms

arranged hexagonally with a closed packed crystal lattice structure containing sigma- and -bonds

(Ali et al., 2019). Graphene is presented in different forms such as pristine graphene, graphene

oxide (GO), reduced graphene oxide (RGO), graphene nanoshell (GNS), graphene quantum dots,

graphene wool, graphene-based composites and functionalized graphene (Adegoke et al., 2017;

Apul et al., 2013; Nsibande and Forbes, 2020; Oyedotun et al., 2019; Schoonraad et al; 2020; Sun

et al., 2013; Wang et al., 2017). The large specific surface area, thermal stability, thermal

conductivity, high tensile strength, chemical robustness, charge mobility, flexibility, thin-film

thickness; provide the basis for the vast applications of graphene and its composites in many fields

of science (Dreyer et al., 2010; Geim, 2009; Novoselov et al., 2012). Graphene has been utilized

as an efficient sorbent for water remediation purposes, such as removal of contamination involving

toxic organic and inorganic species (Ali et al., 2019; Ersan et al., 2017; Wang et al., 2014a; Zhao

et al., 2011b).
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The mechanism of interaction between PAHs and different forms of graphene in water is

described mainly by partitioning and adsorption, and generally follows second order reaction

kinetics. From the studies presented in Table 1, it is evident that the efficiency of different forms

of graphene is largely dependent on the dosage and concentration of PAHs and also influenced by

temperature of the reaction and ionic strength of the solution (Lamichhane et al., 2016). The effect

of pH is typically negligible due to the lack of specific functional groups in PAHs (Su et al., 2006;

Adeola and Forbes, 2019), if they are not derivatized as in the case of 1-napthalenesulfonic acid

(Wu et al., 2011b).

Several factors influence the choice of adsorbent for water treatment applications, such as

efficiency of the material, non-toxicity, availability of the material, flexibility, robustness,

reusability, to mention a few. Graphene wool holds a competitive advantage over other forms of

graphene tested for water treatment applications, due to its high PAH removal efficiency > 98%,

wool-associated flexibility and reusability. GW has a very high volume to mass ratio and porosity

which makes it a suitable packing material for membrane separations/filters, as well as a good

polishing tool for water remediation (Adeola and Forbes, 2019).
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Table 1: Comparison of different forms of graphene used for remediation of PAH-contaminated

water

Adsorbent Dosage

(g L-1)

Contact

time (hours)

Removal

efficiency (%)

Adsorption

capacity

Reference

Graphene 1 96 - 1.46 g/g (1-

napthalenesulfonic acid)

(Wu et al.,

2011b)

Graphene nanosheets 168 - 150.2 mg/g (PHEN) (Apul et al.,

2013)

Reduced graphene

oxide (RGO)

0.4 168 - 5.912 g/g (NAPH), 0.183

g/g (ANT) and 0.979 g/g

(PYR)

(Sun et al.,

2013)

RGO/FeO.Fe3O4

composite

1 48 - 2.63 mg/g (NAPH) (Yang et al.,

2013)

Graphene oxide/

brilliant blue (BBGO)

0.025 264 72.7 - 93.2 1.676 mmol/g (ANTM),

2.212 mmol/g (FLR)

(Zhang et al.,

2013)

Graphene nanosheets 0.5 90 - 116 mg/g (PHEN), 123

mg/g (PYR)

(Wang et al.,

2014a)

Graphene oxide (GO) 0.5 90 - 5.9 mg/g (PHEN), 6.12

mg/g (PYR)

(Wang et al.,

2014a)

Exfoliated graphene 1 48 - 24.1 mg/g (PHEN) (Zhao et al.,

2014)

Graphene coated

materials (GCMs)

0.5 36 80 1.74 mg/g (PHEN) (Yang et al.,

2015)

Graphene wool 0.67 24 98.5 - 99.9 5 mg/g (PHEN),

20 mg/g (PYR)

(Adeola and

Forbes, 2019)

ANT: anthracene; ANTM: anthracenemethanol; FLR: fluoranthene; NAPH: naphthalene; PHEN: Phenanthrene; PYR: pyrene
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7.0.  Emerging trends and prospects

It is evident that adsorption using various efficient and cost-effective materials as well as

bioremediation are the most widely used remedial approaches, however, bioremediation still has

limitations such as accumulation of metabolites or degradation products which could be more

harmful; as in the case of dichlorodiphenyltrichloroethane (DDT) and its metabolite

dichlorodiphenyldichloroethylene (DDE) (ATSDR, 1994); longer duration requirements for

treatment procedures and cost. Therefore, to address these challenges or limitations, hyphenated

methods or integrated systems have been suggested (Kuppusamy et al., 2017). These may involve

chemical-physical (such as chemical oxidation and solvent extraction), biological-physical (e.g.

bioremediation and solvent extraction), biological-chemical (such as bioremediation and chemical

oxidation) processes. The bioaugmentation technique is an integrated system which can potentially

be  used  for  PAH  remediation  of  polluted  water,  if  the  bacteria  employed  are  not  harmful  to

humans, or are easily recovered or removed by a simple chlorination step during the treatment of

potable water. Commercial materials developed in line with bioaugmentation include SediMite

and AquaGate+GAC. The bio-amendment of granular activated carbon (GAC) with anaerobic and

aerobic bacteria as degradants, has been reported for the in-situ treatment of organic

contamination, where the porewater concentration of polychlorinated biphenyls (PCBs) reduced

by 94 – 97 % (Payne et al., 2017).

Phytoremediation, which is plant aided bioremediation, is a remedial approach that can

potentially address PAH contamination on a large scale (Jeelani et al., 2017; Petruzzelli et al.,

2016). Plant degradation of PAHs in water is worthy of investigation, because plants possess the

ability to sequester, accumulate and chemically transform chemical pollutants. They can secrete

enzymes that can play the role of surfactants and enhance the bioavailability of the pollutant in
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solution. In addition, rhizospheric microbes have xenobiotic-degrading capabilities (Gan et al.,

2009). The application of specific plants (such as lichens) for bioaccumulation and

phytoremediation of metals, metalloids and PAHs from the surrounding environment have been

reported (Kroukamp et al., 2016; Van der Wat and Forbes, 2019). Phytoremediation of a PAH and

heavy metal contaminated brownfield site was also reported by Roy et al. (2005). These are case

studies with proven hypotheses towards successful plant-based remediation, and with the existence

of aquatic plants, phytoremediation of PAH polluted water is worth exploring. Plants with long

roots and large surface area are highly adaptable to unfriendly environmental conditions (i.e.

drought) and are preferred for in situ treatment of contaminated water (Alagi  et al., 2016).

Intercropping of different plants infuses desired physiological attributes and vast microbial groups

in the rhizosphere of plants with a commensurate impact on PAH remediation (Meng et al., 2011;

Sun et al., 2011; Sun and Zhou, 2016). Enhanced phytoremediation can be obtained with the aid

of plant growth promoting rhizobacteria (PGPR) such as Azospirillum brasilense, Enterobacter

cloacae and Pseudomona putida, for stimulating physiological development, accelerated plant

growth, and survival of remediating plant species (de Boer and Wagelmans, 2016; Huang et al.,

2004a, b; Jeelani et al., 2017). Although phytoremediation may offer an added advantage of

absorbing excess atmospheric CO2 and reducing air pollution, it may require several years to

achieve PAH treatment objectives.

Electrokinetic remediation is an electrochemical technique involving the application of direct

current (DC) through appropriate electrodes for the purpose of remediation. Basically, the concept

of electrolysis comes into play as ionic pollutants in solution migrate to their oppositely charged

electrodes and electroosmotic movement provides the force for transportation of soluble pollutants

(Pazos et al., 2010; Reddy et al., 2006). Electrokinetic remediation is an established tool for
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decontamination of soils, although its application in PAH remediation of water has not been

investigated on a pilot-, field-, or industrial-scale. Application of this method would potentially

have its own challenges due to the hydrophobicity/insolubility of PAHs and the fact that they do

not readily ionize in water. Therefore, it has been suggested that surfactants designed to minimize

the tension between the pollutant molecule and water molecules, co-solvents and cyclodextrins

should be considered as additives in order to improve the efficiency of PAH remediation in field-

water samples using the electrokinetic method (Pourfadakari et al., 2019; Saichek and Reddy,

2005). An integrated system comprising an electrochemical test cell enhanced by a persulfate

oxidizing agent has been used for treatment of PAH-contaminated clay with 35 % PAH removal

efficiency as compared to 12 to 20 % efficiency recorded for either of the methods alone. This

integrated system could potentially be used for remediation of PAH polluted water. It is noted that

the efficiency of the integrated approach depends on the applied voltage, ratio of AC-DC voltage,

nature of the electrode, process duration and reagent (oxidizing agent) dosage (Isosaari et al., 2007;

Pourfadakari et al., 2019; Wang et al., 2013).

Green nanoremediation is a promising and notable approach to remediation of contaminated

aqueous systems, based on the concept of green/ecofriendly and sustainable chemistry. In the last

decade, nanoscience and technology has received immense attention with respect to research and

development, and it holds great potential for remediation of polluted water/wastewater and

environmental protection (Huang et al., 2016; Kuppusamy et al., 2015). The intrinsic properties

of nanoparticles such as their small size (1-100 nm size), good surface-coating ability and large

surface area, in comparison with macroscopic materials, make nanoparticles preferable for in situ

applications. Thus green nanoremediation should be investigated and functionally integrated with

established remedial methods such as the chemical oxidation or Fenton process via synthesis of
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nano-oxidizers (to allow for PAH oxidation), and most importantly adsorption processes by novel,

green, efficient and sustainable nano-adsorbents should be further explored (Basheer, 2018; Guerra

et al., 2018). Efficient integration of established remediation approaches with green

nanoremediation and membrane filtration will potentially improve efficiency and allow for rapid

PAH degradation or removal during field or industrial applications.

A few examples of treatment technologies readily available on a commercial scale and those

still in the prototype/developmental phase are presented in Table 2. The absence of methods such

as advanced oxidation, catalytic degradation and bioremediation, indicates that although these

methods have been shown to be promising and efficient on a laboratory-scale, they have not been

commercialized for field/industrial scale water treatment as yet, unlike membrane technologies,

due to high operational cost. This is likely due to the fact that these methods are not easily

incorporated into existing water treatment plants or due to possible difficulties in their scale up to

treat large volumes of water. Furthermore, some of the treatment methods are not robust enough

to deal with heavily polluted water. Future research should be directed towards the development

of materials/methods that are more economical, durable, efficient and adaptable with simple

designs for the removal of PAHs and other environmental contaminants from wastewater.

8.0. Field application

The treatment of a PAH-contaminated water system essentially involves three phases: (1) site

inspection and risk assessment, (2) choice of treatment method, and (3) treatment and post-

treatment assessment/monitoring. Phase 1 simply requires that the level/extent of pollution is

determined with respect to permissible levels or thresholds (WHO, 1984).

Phase 2 requires evaluation of existing remediation technologies and choosing the most

feasible method, considering the site of pollution and its environment, as well as cost
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considerations. Laboratory scale experiments may prove useful in determining the most effective

method for successful remediation of field contamination. Several factors that affect field-scale

remediation of PAH contaminated water include but are not limited to; (1) physicochemical

conditions of the water and sediment (organic matter content, temperature, turbidity, pH,

nutrients/mineral content, redox potential, ionic strength/salinity etc.); (2) microbial/biotic

community (diversity, population, resistance, activity, symbiosis etc.); (3)  target contaminants

and co-existing contaminants (concentration, toxicity, bioavailable fraction, solubility, volatility,

mass transfer etc.); (4) cost (pre-treatment and post-treatment); and other factors which are non-

technical such as government and standard regulations, research funding, human resources,

infrastructure etc.

 In Phase 3, the chosen remediation strategies are implemented, and treatment efficiency is

determined on site. If the pollution persists, the treatment protocol is repeated or another approach

may need to be adopted (Duan et al., 2015).
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Table 2: Examples of commercially available water treatment technologies which are applicable to PAH removal, including materials,1

scale of application and brand names.2

Treatment material Treatment
process

Scale of application Commercial/brand
name

Source

Granular activated carbon
(GAC) and aeration

Adsorption and
filtration

Drinking water and
industrial wastewater

Evoqua water
technologies

CECO Mefiag
filters

www.evoqua.com/en/brands/IPS/Pages/Organic-Chemicals-
Removal-from-Groundwater

https://www.environmental-expert.com/products/ceco-mefiag-
activated-carbon-filter-tubes-638430

Polyethersulfone (PES) Direct
nanofiltration

Potable water, surface
water and industrial
wastewater

Nxfiltration (dNf
membrane)

https://nxfiltration.com/technology

Zeolite, activated alumina Filtration,
adsorption

Domestic and industrial
wastewater

Zhulin https://www.zhulincarbon.com/products/filter-media/

Copper & zinc alloy/GAC Reverse osmosis Potable water, industrial
and surface water

KDF-GAC
Filtration

https://www.ampac1.com/emergency-portable-reverse-
osmosis-20000-gpd

Silver impregnated coconut
activated carbon (Ag/GAC)

Adsorption Portable water Zhulin carbon https://www.zhulincarbon.com/products/special-activated-
carbon/25.html

Powdered activated carbon
(PAC) from wood and coal

Adsorption Industrial wastewater Zhulin carbon https://www.zhulincarbon.com/products/powdered-activated-
carbon/

PAC + PAH degrading
microbes

Bioaugmentation Navigable water and
wetland treatments

Bio-amended
sediMite

http://www.sedimite.com/sedimite

PAC, bentonite (clay),
cellulose-based polymer

Adsorption and
capping

Aquatic environments AquaGate+PAC™ https://www.environmental-expert.com/products/aquagate-
pac-activated-carbon-for-active-capping-or-in-situ-treatment-
169605

Wetlands and gravel filter Geo-sorption,
sedimentation

Domestic wastewater Prototype Fountoulakis et al. (2009)

Graphene membrane Advanced
reverse osmosis

Portable water Prototype Homaeigohar and Elbahri, (2017).

H2O2:FeSO4/UV irradiation Advanced
oxidation
process

Potable water Prototype Abd Manan et al. (2019b)

3

http://www.evoqua.com/en/brands/IPS/Pages/Organic-Chemicals-
https://www.environmental-expert.com/products/ceco-mefiag-
https://nxfiltration.com/technology
https://www.zhulincarbon.com/products/filter-media/
https://www.ampac1.com/emergency-portable-reverse-
https://www.zhulincarbon.com/products/special-activated-
https://www.zhulincarbon.com/products/powdered-activated-
http://www.sedimite.com/sedimite
https://www.environmental-expert.com/products/aquagate-
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9.0. Conclusion

A number of the technologies discussed in this review are still at the prototype stage, awaiting

field trials, while others have been used on an industrial-scale and have been found to be effective,

although some have limitations including high operational cost, fouling, non-regenerable

materials, non-ecofriendly processes, long treatment time, generation of a large amount of sludge

or secondary pollutants, etc. Therefore, emerging technologies must seek to surmount these

challenges and consider all these factors, in order to arrive at a sustainable remediation approach

for hazardous pollutants such as PAHs. Adsorption, nanofiltration and integrated systems are very

promising technologies, with further development potential towards commercialization.  Frankly,

it is almost impossible or impracticable to restore heavily PAH polluted water to its pristine state

rapidly, with its full natural functions restored. Therefore, a purpose-directed, risk-based

sustainable remediation approach may prove to be most appropriate for the management of long-

term and/or severely PAH polluted water.
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