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Abstract: In this article we use analytical and numerical modeling to describe parallel
viscous two-phase flows in microchannels. The focus is on idealized two-dimensional
geometries, with a view to validating the various methodologies for future work in three
dimensions. In the first instance, we use analytical Orr-Sommerfeld theory to describe
the linear instability which governs the formation of small-amplitude waves in such
systems. We then compare the results of this analysis with an in-house Computational Fluid
Dynamics (CFD) solver called TPLS. Excellent agreement between the theoretical analysis
and TPLS is obtained in the regime of small-amplitude waves. We continue the numerical
simulations beyond the point of validity of the Orr-Sommerfeld theory. In this way, we
illustrate the generation of nonlinear interfacial waves and reverse entrainment of one fluid
phase into the other. We justify our simulations further by comparing the numerical results
with corresponding results from a commercial CFD code. This comparison is again
extremely favourable—this rigorous validation paves the way for future work using TPLS
or commercial codes to perform extremely detailed three-dimensional simulations of flow
in microchannels.
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1 Introduction

In this work we are concerned with theoretical modelling of interfacial instability of
two-phase fluids in microchannels of depth H‐100 lm. Specifically, we are concerned
with the instability of the interface separating the streams of two immiscible liquids.
Such flows are important in microfluidic devices and the related applications in reactions,
mixing, emulsions, and material synthesis [Zhao and Middelberg (2011)]. The intrinsic
instability of such flow configurations can be harnessed to promote microfluidic mixing
without any active forcing [Hu and Cubaud (2018)]. Previous theoretical works on the
subject involve solving the Orr-Sommerfeld equation for the interfacial instability in
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various parameter regimes. Such a theoretical approach provides the necessary framework
for characterizing the interfacial instability—at least during the development of the
instability, starting from small-amplitude perturbations to the flat interface separating the
liquid streams. However, because the parameter space of the system is large, it is difficult
if not impossible to produce a universal characterization of the instability, and previous
studies focus on subspaces of the entire parameter space [Ó Náraigh and Spelt (2018); Ó
Naraigh, Valluri, Scott et al. (2014)].

Even with the kind of specialization just described, the studies by Ó Náraigh et al.
[Ó Náraigh and Spelt (2018); Ó Naraigh, Valluri, Scott et al. (2014)] are very general. As
such, the aim of this work is to take the methodology of these theoretical works and to
apply it to a very particular, detailed, and industrially-relevant test case involving liquid-
liquid flow. This test case is taken from microfluidics, and has been documented in
experiments [Hu and Cubaud (2018)]. Therefore, the aim of this paper is to bring
theoretical understanding to existing experiments on interfacial flows in microfluidics.

A second aim of this paper is to establish a set of strict benchmarks for the validity of two-
phase flow simulations in microchannels. As such, in this article we are concerned with an
idealised two-dimensional system with periodic boundary conditions in the streamwise
direction—apart from a pressure drop driving the flow in the spanwise direction. No-slip
conditions are applied at the channel walls in the other dimension. In this scenario there
is an analytic theory (Linear Stability Analysis, in particular Orr-Sommerfeld Analysis)
which predicts exactly what should be the growth rate of a small-amplitude wave on the
interface. We use this theory to establish the correctness of the Computational Fluid
Dynamics (CFD) simulations based on an in-house finite-volume two-phase levelset
solver; this in turn is used as a base case against which to compare CFD simulations
performed with a commercial code. These simulations then establish the validity of the
method which can be used in future work to simulate other microcfluidic flows with
more realistic three-dimensioanl geometries.

We emphasize that this article is concerned with the fundamentals of multiphase flow—
notably, the correct prescription of the interface in seaprated flows. This forms the basis
for a study of waves on the interface. This work therefore is a contribution to the
theoretical foundations on which so much application-oriented literature is based, for
instance, the modelling of droplet evaporation [Wang, Dong and Zhan (2017)], and oil/
gas transport [Liao, Liao, Liu et al. (2019)].

The layout of the paper is as follows. In Section 2 we describe the theoretical model of the
base state wherein the two fluid streams are separated by a flat interface. The system in this
case is characterized by the different flow rates in each phase. We construct an analytical
model to predict the width of the two streams (as well as the pressure drop) as a function
of the flow rates. In Section 3 we present the methodology of the paper, which
encompasses both linear stability analysis based on the Orr-Sommerfeld equations, and
Direct Numerical Simulations of the fully non-linear two-phase flow equations using a
Level-Set Method. Theoretical results based on this methodology are presented in Sections
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4 and 5; Section 5 also contains some qualitative comparisons with prior experimental work.
Finally, concluding remarks are presented in Section 6.

2 Base-state configuration

We study the flow of two fluids confined between two parallel plates, shown schematically
in Fig. 1. The fluids are assumed to be isothermal and incompressible, with constant
densities and viscosities. The upper layer has density q1 and viscosity l1.
Correspondingly, the lower layer has density q2 and viscosity l2. The labels j¼1; 2 are
used more broadly throughout this work to identify the upper (j¼1) and lower (j¼2)
fluids. The system is assumed to be stably stratified, such that q2 > q1. Bounding walls
with the implied no-slip boundary conditions are introduced at z¼0 and z¼H . Periodic
boundary conditions are imposed in the spanwise (y-) direction (this amounts to a quasi-
two-dimensional ‘parallel plates’ configuration). The boundary conditions in the
x-direction are left unspecified as yet, save for the imposition of a constant pressure drop
dp0=dx in that direction.

The system admits an undisturbed or base-state configuration characterized by a Poiseuille
flow where the depth of the undisturbed liquid layer is denoted by h0. In this scenario, the
force balance in each phase reads

li
d2U0i

dz2
¼ �dp0=dx: (1)

The equations are integrated twice and the no-slip conditions are applied at z¼0 and z¼H .
This yields

U01 ¼ � 1

2l2
dp0=dxj jðz� HÞ2 þ Bðz� HÞ; (2)

Figure 1: Definition sketch showing the problem geometry. The domain is periodic in the
y-direction, whereas a pressure drop drives the flow along the x-direction. No-slip conditions
are applied at z¼0 and z¼H
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U02 ¼ � 1

2l2
dp0=dxj jz2 þ Az; (3)

where A and B are constants of integration. These are determined by applying continuity of
velocity and tangential stress across the interface located at z¼h0, hence

A ¼
1

2

l1
l2

h20 �
1

2
ðH � h0Þ2 þ HðH � h0Þ

� �
dp0=dxj j

h0l1 þ ðH � h0Þl2
; (4)

B ¼
1

2
h20 �

1

2

l2
l1

ðH � h0Þ2 � Hh0

� �
dp0=dxj j

h0l1 þ ðH � h0Þl2
: (5)

The corresponding flow rates are

Q1 ¼ H

Z H

h0

U01 zð Þdz; (6)

) Q1 ¼ H � 1

6l1
dp0=dxj jðH � h0Þ3 � 1

2
BðH � h0Þ2

� �
; (7)

Q2 ¼ H

Z h0

0
U02 zð Þdz; (8)

) Q2 ¼ H � 1

2l2
dp0=dxj jh3 þ 1

2
Ah2

� �
: (9)

In what follows, it will be helpful to work with quantities where the dependence on the
pressure drop is scaled out. As such, we introduceÂ¼A= dp0=dxj j and B̂¼B= dp0=dxj j. In
this way, the flow rates can be decomposed into a product of a geometric factor, and the
pressure drop:

Q1 ¼ H � 1

6l1
ðH � h0Þ3 � 1

2
B̂ðH � h0Þ2

� �
dp0=dxj j; (10)

Q2 ¼ H � 1

6l2
h3 þ 1

2
Âh2

� �
dp0=dxj j: (11)

The ratio of flow rates is therefore independent of the pressure drop, and given by the
formula
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’ ¼ Q1

Q2
¼

� 1

6l1
H � h0ð Þ3 � 1

2
B̂ H � h0ð Þ2

� 1

6l2
h3 þ 1

2
Âh2

: (12)

A plot illustrating this functional dependence is shown Fig. 1. In this work we view the flow
rates Q1 and Q2 as the key independent variables (along with the channel height H). Thus,
the other quantities such as pressure drop and undisturbed interface height h0 emerge as
dependent variables, which can be determined via Eqs. (1)-(12). As such, we plot the
non-dimensional upper layer depth E1¼ðH � h0Þ=H as a function of ’ for a selected pair
of working fluids in Fig. 11. The selected working fluids are silicon oil (l2¼485 cP,
q2¼0:97gmL�1) and ethanol (l1¼1:08 cP, q1¼0:78gmL�1). The surface tension
between the two fluids is taken to be c¼1:09mNm�1 as the surface tension. The channel
height is taken to be H¼250 lm. Throughout the paper, we work with these values
which are characteristic of two-stream liquid-liquid microfluidic flows, as documented in
the experimental work by Hu et al. [Hu and Cubaud (2018)].

It should be emphasized that the experiments of Hu et al. [Hu and Cubaud (2018)] are done
in a microchannel geometry, with no-slip boundary conditions in each of the directions
normal to the main flow. This amounts to a fully three-dimensional ‘square duct’
geometry. In contrast, the base state and detailed linear stability analysis as developed in
the present work relies on the existence of periodic boundary conditions in the
streamwise direction. This can be thought of as a quasi-two-dimensional geometry, where
the flow is confined between two parallel plates extending to infinity in the x- and
y-directions. Furthermore, gravity points in the y-direction (coordinate system as per
Fig. 1) in the work of Hu et al. [Hu and Cubaud (2018)]—according to the standard
setup for microfluidic systems [Squires and Quake (2005)]. Therefore, these two flow

Figure 2: Plot of non-dimensional upper-layer depth E1¼ðH � h0Þ=H as a function of the
ratio of flow rates ’¼Q1=Q2. The working fluids are the ones given in the main text
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setups are distinct, and it is not feasible to compare them quantitatively. However, an attempt
at a qualitative comparison between the two systems is presented in Section 5, below.

3 Methodology

We begin by introducing the governing equations of motion for each phase. These are the
Navier-Stokes equations for viscous incompressible flow:

qi
@ui
@t

þ ui � rui

� �
¼ �rpi þ lir2ui þ dp0=dxj jê1 � qigê3; (13)

r � ui ¼ 0: (14)

where i¼1; 2 labels the phase. The variable pi denotes the fluid pressure in the ith phase.
These equations are solved in a domain similar to that in Fig. 1: in particular, with no-
slip boundary conditions on the channel wall, uiðx; y; z¼0; tÞ¼uiðx; y; z¼Lz; tÞ and
periodic boundary conditions in the y-direction, uiðx; y; z; tÞ¼uiðx; yþLy; z; tÞ. The
boundary conditions in the x-direction are assumed to be periodic also, with the constant
applied pressure drop dp0=dxj j driving the flow along the x-direction. The x-direction is
indicated in Eq. (3) by the unit vector ê1. Finally, the gravitational force is given
by �qgê3, where g is the acceleration due to gravity and ê3 is the unit vector in the
z-direction.

The phases i¼1 and i¼2 are separated by an interface. The interface is possibly
disconnected and is therefore best described in terms of the zero levelset of a general
levelset function, fðx; y; z; tÞ. Hence, the interface is the surface described by the
equation fðx; y; z; tÞ¼0. The kinematic condition which requires that the interface moves
with the flow therefore amounts to the condition that the zero levelset is advected:

@f
@t

þ u � rf ¼ 0; f ¼ 0: (15)

The suppression of the subscript i on the adjective derivative in Eq. (15) is deliberate, as it is
assumed that the velocity field is continuous across the interface, meaning the distinction
between the phases is not necessary there. The other interfacial conditions involve
continuity of tangential stress across the interface, and a jump condition in the normal
stress. Mathematically, these conditions are given as follows:

lin̂ � rui þruTi
� � � t̂ rð Þ ¼ 0; n̂ � ½½�piIþ li rui þruTi

� ��� � n̂ ¼ cj; (16)

where n̂ is a normal vector to the interface (pointing from i¼2 to i¼1), and t̂ 1ð Þ and t̂ 2ð Þ are
the tangent vectors. The brackets ½½ �� denote the jump condition across the interface
(ði¼1Þ � ði¼2Þ), and j denotes the interfacial curvature (more precisely, j is the
interfacial mean curvature, which is computed via the standard relation j¼ ‐r� n̂ [Aris
(2012)]). Finally, I denotes the identity matrix. It can be emphasized that the base state in
Section 2 represents a flat-interface equilibrium solution of Eqs. (13)-(16). In the rest of
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this section we outline the different methodologies that can be used to describe departures
from this equilibrium state.

3.1 Linear stability analysis
Beyond the equilibrium state described in Section 2, we consider the case where a small-
amplitude two-dimensional perturbation is introduced around the flat interface, such that
the perturbed location of the interface at t¼0 reads:

f x; y; z; gð Þ ¼ 0; g ¼ h0 þ A sin axð Þ; t ¼ 0; (17)

where a is the wavenumber of the perturbation and A is the amplitude, with A� h0. The
perturbation in Eq. (17) gives rise to perturbations in the velocity and pressure fields at
t>0, which in turn feed back into the perturbed interface location such that g becomes a
function of time, g¼gðx; tÞ. (We use the notation dui and dpi for the perturbed velocities
and pressures, respectively.) Under the assumption that the initial amplitude A is small,
the equations of motion (3) can be linearized and the result is a set of evolution
equations for the velocity and pressure fluctuations in each phase, as well as the interface
location gðx; tÞ. The linearized equations of motion are subject to linearized matching
conditions based on Eq. (16). The solutions of the linearized equations of motion
are proportional to an exponential factor of the form e�tþiax. Substituting this trial
solution into the equations of motion gives an eigenvalue problem for the eigenvalues �.
The eigenvalues depend on a; the functional form of this dependence is called the
dispersion relation.

For a given a, we compute the eigenvalue with the largest real part, denoted here by �0ðaÞ.
The real part of �0ðaÞ is plotted as a function of a—this is denoted by �0rðaÞ. If �r0ðaÞ is
positive for some a, then the base state is linearly unstable—for a particular wavenumber
the initial small-amplitude disturbance is thereby guaranteed to grow exponentially. On
the other hand, if �r0ðaÞ<0 the base state is linearly stable and the disturbance is
guaranteed to die out as t ! 1. The crossover between these two scenarios occurs when
�r0ðaÞ�0, and �r0ðaÞ¼0 for a discrete number of values of a—this is called criticality.

In practice, it is straightforward (if tedious) to derive the linearized equations of motion and
from there, to pass over to the eigenvalue analysis and hence, to compute the dispersion
relation numerically. The technique for doing this is described in Appendix A. The
resulting equations constitute an eigenvalue problem for the streamfunction components
ð�2;�1Þ defined in Appendix A, with eigenvalue �. These equations can be formulated
in an operator/matrix form given and hence, solved numerically using standard
Chebyshev collocation techniques. This numerical method is now well established
[Boomkamp, Boersma, Miesen et al. (1997); Sahu, Valluri, Spelt et al. (2007); Ó
Naraigh, Valluri, Scott et al. (2014); Ó Náraigh and Spelt (2018)] and is used without
further commentary in this work.

We emphasize finally that temporally-varying disturbances are often looked at (in contrast to
Eq. (17), where the disturbance is only spatially-varying). This is done in the context of
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Absolute and Convective Instability [Huerre and Monkewitz (1990)]. There, temporally-
varying disturbances are most relevant in the context of inlet forcing. In this context, the
different growth rates that emerge from the system’s response to the forcing can be
computed indirectly from the standard linear stability analysis based on Eq. (17).
Therefore, it suffices to consider such standard analysis for the present purposes.

3.2 Computational fluid dynamics—TPLS
Beyond linear theory, numerical simulation is required to describe the interfacial dynamics
of the two-phase flow. We introduce TPLS—an in-house Computational Fluid Dyanmics
solver based on the levelset method with a continuous surface tension model [Sussman
and Fatemi (1999)]. Such a levelset method can be viewed as a very realistic
approximation to the two-phase Navier-Stokes equations with the sharp interfacial
conditions Eqs. (13)-(16). However, the levelset method represents a great simplification,
as it is essentially a one-fluid model: the two phases are treated as one continuous fluid,
and the material properties (density, viscosity) transition smoothly from one set of values
to another across a narrow width E. A levelset function f is used to track the interface
location: the interface is specified by the value f¼0; otherwise, f is given by the signed
distance to the interface; the sign of f is therefore used to label unambiguously the two
fluid phases. In the same manner, the force due to the surface tension is redistributed
across a volume the same thickness E, centred around the interface. Hence, one obtains a
single momentum equation, valid throughout the entire flow domain:

q fð Þ @u
@t

þ u � ru

� �
¼�rpþr � l ruþruT

� �� 	þ cdE fð Þjn̂

þ dp0
dx










ê1 � q fð Þgê3;

(18)

r � u ¼ 0: (19)

The quantities j and n̂ in Eq. (18) are geometric objects and correspond to the mean
interfacial curvature and interfacial unit normal vector respectively. These can be
obtained from derivatives of the levelset function f as follows:

n̂ ¼ rf
jrfj ; j ¼ �r � n̂; @f

@t
þ u � rf ¼ 0; (20)

Equally, the levelset function determines how the surface-tension force is distributed over a
small volume of width E centred at the interface, via the relation

dE fð Þ ¼ dHE

df
: (21)

Here, HEðfÞ is a smoothened step function, such that HEðfÞ¼0 as f ! �1, HEðfÞ¼1 as
f ! 1, and such that HE transitions smoothly from HE¼0 to HE¼1 across a narrow gap of
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thickness E. In this way, the one-fluid density and viscosity can also be introduced, and
transition smoothly from one set of constant values to another, corresponding to the
different fluid phases:

qðfÞ ¼ q2 1� HEðfÞð Þ þ q1HEðfÞ; (22)

lðfÞ ¼ l2 1� HEðfÞð Þ þ l1HEðfÞ: (23)

Thus, we are adopting a convention where f < 0 in the bottom layer (phase 2) and f > 0 in
the top layer (phase 1).

Eqs. (18)-(19) are solved in a density-contrast implementation of the computational framework
TPLS [Ó Naraigh, Valluri, Scott et al. (2013, 2014)]. Specifically, the equations are discretized
in space using an isotropic MAC grid wherein vector quantities are defined at cell faces and
scalar quantities at the respective cell centres. In terms of the temporal discretization, a
third-order Adams-Bashforth scheme is used to treat the convective derivative, while the
momentum fluxes are treated using the Crank-Nicolson method. Pressure and the associated
incompressibility of the flow are treated using a standard projection method [Chorin
(1968)]. This computational methodology concerning the basic hydrodynamics is explained
in an expository fashion in Fannon et al. [Fannon, Loiseau, Valluri et al. (2016)]. The
levelset function is advected using a third-order (fifth-order accurate) WENO scheme [Jiang
and Shu (1996)], which is subsequently reinitialized using a Hamilton-Jacobi equation.
Validation tests of the method can be found in prior works [Ó Naraigh, Valluri, Scott et al.
(2014); Solomenko, Spelt, Ó Náraigh et al. (2017)]—in particular, the code reproduces all
the results of linear theory. A sample grid-refinement study pertinent to the present work is
presented in Appendix B, herein. Finally, it can be noted that the numerical simulations of
Eqs. (18)-(19) are implemented in a Fortran 90 code (TPLS), using a domain decomposition
with a maximum of 40 MPI processes, on a machine with a 2�20 core 2.4 GHz Intel Xeon
Gold CPU.

3.3 Computational fluid dynamics—ANSYS fluent
One of the main aims of this paper is to establish a set of strict benchmarks for the validity of
two-phase flow simulations in microchannels. As such, we compare simulations of the same
underling system using different methodologies. For this reason, we further perform
simulations of the channel flow using ANSYS Fluent 19—in addition to the TPLS
simulations just described. The simulation setup in ANSYS Fluent involves the laminar
model. The pressure-velocity coupling is done using the SIMPLE algorithm, together with
the PREssure STaggering Option (PRESTO!) for the pressure solver. A Second-Order
Upwind scheme is used for the interpolation of momentum, with a First-Order Upwind
scme for the other parameters. The time-stepping is implicit. For the interface capturing,
we use the Volume of Fluid (VOF) method with coupled level set to capture the interfacial
matching conditions and properly resolve the interface. The simulations are carried out on
a machine with a single Intel i5-6200U processor (2 cores, 4 threads, 2.3 GHz).
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3.4 Justification of focus on two-dimensional systems
Throughout this work, we focus on strictly two-dimensional disturbances to the base flow,
both in the linear regime where linear stability analysis and Orr-Sommerfeld theory are
valid, and also, in the nonlinear regime where the methods of Computational Fluid
Mechanics (CFD) are most pertinent. Certainly, there are pragmatic reasons for this, as
the resulting two-dimensional studies (both in linear theory and in the CFD) are easier to
perform than would be the case in three dimensions. At the same time, there are solid
theoretical reasons for this. Certainly, no Squire’s theorem does not exist for three
dimensions [Yiantsios and Higgins (1988)], meaning it is not true a priori that the most-
amplified wave in linear theory is two-dimensional. However, in practice, the most-
amplified wave in linear theory is usually two-dimensional [Sahu and Matar (2011)].
Furthermore, many of the results from two-dimensional studies carry over to three
dimensions. For instance, the formation of large-amplitude waves in a two-dimensional
problem tends to imply the formation of similar waves in the corresponding three-
dimensional problem [Ó Náraigh and Spelt (2018)]. Hence, we are justified in this work
in focusing only on two-dimensional systems.

A further justification is that in this article we are concerned with establishing simplified test
cases against which CFD codes can be validated for the purpose of performing two-phase
microfluidic simulations. Since we focus in the first instance on test cases in which an
analytical comparator is available (Orr-Sommerfeld theory), this provides a strict
benchmark for the accuracy of the CFD simulations, and a knowledge base to pursue
more complicated CFD calculations in future work (in particular, using realistic three-
dimensional geometries).

4 Results—linear stability analysis

In this section we perform a linear stability analysis for a range of flow rates, for the fixed
working fluids given in Section 2 (silicone oil and ethanol), with the channel geometry fixed
also (specifically, H¼250 lm). The aim of this section is to characterize the linear stability
of the quasi-two-dimensional parallel-plates geometry for a range of flowrates typical of
flow in microchannels.

Accordingly, a linear stability analysis is performed for different pairs of flow rates ðQ1;Q2Þ
characteristic of microchannels, as specified by Hu et al. [Hu and Cubaud (2018)]. For each
flowrate pair, the growth rate �ðaÞ¼�rðaÞþi�iðaÞ is computed for a range of different
wavenumbers a. The most-dangerous mode is selected—this is the wavenumber a that
that maximizes �rðaÞ (denoted hereafter by amax). The growth rate of the most-dangerous
mode is then plotted in Fig. 3. The growth rate is positive for each flowrate pair,
confirming the system is linearly unstable in the considered operational range.

We attempt to classify the observed instabilities, starting in the first instance with a
simplified approach. As such, we first of all look at the most-dangerous mode for each
considered flowrate. Specifically, we look at amax, the corresponding wave speed
cmax¼�½�iðamaxÞ�=amax, and the corresponding frequency fmax¼acmax=ð2pÞ. We
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determine to what extent the wave frequency can be predicted using the formulae for
gravity-capillary waves in stratified inviscid two-phase flows [Acheson (1991)],

cg�cap ¼Vi þ q2 � q1
q2 þ q1

� �
g

a
þ ac
q1 þ q2

� �
tanh a h0=Hð Þ½ �

� �1=2

; f g�cap

¼ acg�cap= 2pð Þ:
(24)

Here, Vi denotes the velocity of the interface in the laboratory frame.

As such, in Fig. 4 we re-plot the data from Fig. 3 in a new form: for the most-dangerous
mode of each flow-rate pair, we plot 2pfmax on the horizontal axis and amax on the
vertical axis, to build up a comprehensive scatter plot. We compare the results with
notional values from the inviscid formula in Eq. (24). From the figure, it can be seen that
the dispersion relation (a vs. 2pf ) for the linear stability analysis shows a considerable
spread in values compared to the inviscid theory in Eq. (24). Therefore, it can be
concluded that the inviscid formula is not adequate as a means of classifying the
instability in the different parts of the flow-pattern map in Fig. 3. A different method of
classifying the instability is therefore required.

As such, in Fig. 5 we present:

(a) A plot of cmax=cg‐cap, i.e., the wavespeed of the most-dangerous mode as a function of
flow rates, normalized by the notional inviscid wave;

(b) A plot of the amaxH as a function of flow rates;

(c) A plot of the film depth as a function of flow rates.

Figure 3: Plot of the growth rate of the most-dangerous mode as a function of flow-rates.
The growth rates are measured in Hz. The points marked by the square, the star, and the
circle are singled out for in-depth study in what follows
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Plots 5(a) and (b) depend on the Orr-Sommerfeld analysis, whereas plot (c) depends on the
base state only. From (a) the spread in wave speeds with respect to the inviscid theory can
again be observed.

The plots in Fig. 5 give further information, as they enable one to distinguish between slow
and vast waves: the fast waves are confined to a narrow horizontal band in the south of the
flow-pattern map and are characterized by:

• Fast waves: high speed cmax=cg�cap>1;

• Long wavelengths, aH <
� 1 hence ��2pH ;

• Low top-layer flow rates.

In contrast, the slow waves are found throughout the rest of the flow-pattern map and are
characterized by:

• Slow waves: low speed cmax=cgp<1;

• Shorter wavelengths aH�5, hence ��H ;

• High top-layer flow rates.

In order to understand this classification in more depth, we carry out a more in-depth linear
stability analysis for three representative test cases St (Marked with the star in Fig. 3), Sq
(Marked with the square in Fig. 3), and Circ (Marked with the circle in Fig. 3). The
properties of these cases are given in detail in Tab. 1. The full dispersion relation �ðaÞ is
shown for each test case in Fig. 6.

Figure 4: Dispersion relationship between the most-dangerous mode amax and the
corresponding wave frequency 2pfmax, for the entire range of considered flow rates.
Circles: Linear Stability Theory and Orr-Sommerfeld Analysis. Crosses: Inviscid theory
and Eq. (24)
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Table 1: Special cases chosen for in-depth study. The cases correspond to the highlighted
datapoints (square, star, and circ) in Fig. 3

Case Symbol Q1

(µL/min)
Q2

(µL/min)
cr(αmax)/
cgp(αmax)

cr(αmax)/
Vi

(αmax)
(mm−1)

λr(αmax)
(Hz)

Sq Square 40 71 2.65 3.56 2.84 0.726

St Star 1200 1 0.0385 1.42 17.72 20.99

Circ Circle 2000 110 0.708 1.52 16.8 1089

Figure 5: A more in-depth view of the stability analysis, with key variables plotted as a
function of flow rates Q2 and Q1. (a) cmax=cgp; (b) amaxH ; (c) h0=H . In all cases the
indicated scale on the colorbar is dimensionless. The inset in (a) is the same plot as the
main figure, only with a log-log scale to show up otherwise obscured features

Linear and Nonlinear Stability Analysis in Microfluidic Systems 395



As these special cases are motivated by the scans through the parameter case in Fig. 5, they
exemplify fast waves (Sq) and slow waves (St, Circ). Cases (Sq) and (St) are diametric
opposites: the most-dangerous mode occurs at a relatively long wavenumber in case Sq:
specifically, amax¼2:84mm�1, hence �=H�2p=0:71, hence, a wavelength much greater
than the channel height. In case (St), amax�20mm�1, hence lambda=H�2p=5, i.e., a
wavelength comparable to the channel height. Case (Circ) also corresponds to a slow
wave, but can be viewed more as an interemediate case between the extremes (Sq) and
(St). Specifically, amax¼16:8mm�1, hence �=H�2p=4:2, hence ��1:5H . The real

Figure 6: Growth rate and wave speed for the various special cases. The growth rate is shown
at the top in each panel and the wave speed is shown at the bottom. For wave speeds, a
comparison is made with the theory of inviscid gravity-capillary waves (broken line).
(a) Sq (b) St and (c) Circ
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reason for including the intermediate case (Circ) can be seen from the last column of the
table—quite clearly, it is the case with the largest growth rate �rðamaxÞ.
In each case in Fig. 6 the wave speed cr is analysed—this is computed from the eigenvalue
analysis via cr¼ ‐½�iðaÞ�=a. For comparison, the wavespeed of a gravity-capillary wave is
again also shown. It can be noted that for large density ratios, good agreement between
Eq. (24) and the full eigenvalue analysis has been established [Ó Náraigh and Spelt
(2018)]. However, as we are working with a small density ratio (specifically,
r¼0:97=0:78), the lack of agreement between the two theories is not surprising.

The special cases are looked at in from another point of view in Fig. 7 where the
streamfunction of the disturbance at the most-dangerous mode is plotted. Each special
case involves a streamfunction that is sharply peaked at the interface, suggesting that the
instability is interfacial in nature. Case (Sq) involves a streamfunction whose largest non-
zero component is in the lower layer; Case (St) is the opposite. Case (Circ) is
intermediate between (Sq) and (St), with a significant non-zero component in both layers.

Figure 7: Streamfunction evaluated at the most-dangerous mode for the various special
cases. (a) Sq (b) St and (c) Circ
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Using the functional form of these streamfunctions, we have performed an energy-budget
analysis [Boomkamp and Mien (1996)], whereby the energy-balance equation

P ¼ d

dt

Z
1

2
q1 du1j j2d2xþ d

dt

Z
1

2
q2 du2j j2d2x

is analysed using the linearized equations of motion. Here du1 and du2 denote the
disturbance velocities, i.e., the velocity over and above the base-state value; these can be
obtained from the streamfunctions in Fig. 7. The power P is decomposed into different
parts, and it is found that the main positive contribution to P is due to the so-called
interfacial term, which derives from the viscosity mismatch across the interface. As such,
the instability is a classical [Yih (1967)] instability [19]. These terms are made precise in
Appendix A.

5 Results—computational fluid dynamics

To further illustrate the behaviour of the interfacial waves in linear theory—and to illustrate
the behaviour of the waves beyond the linear theory, in this section we carry out numerical
simulations for the test case Circ, using the TPLS in-house solver. The numerical
parameters for the simulations are: Nx¼440 gridpoints in the x-direction, Nz¼330
gridpoints in the z-direction, t¼10�5; here, Dt is the timestep. In this way, the longest
wave that fits inside the computational domain corresponds to the wavelength of the
most-dangerous mode of the linear theory. These parameters are sufficient for the
numerical simulations to demonstrate grid-independence—see Appendix B for full
justification. The numerical simulations are performed in non-dimensional variables, such
that the rescaled channel height in is unity, and the scaled time is s¼ tUp=H , where Up is
the friction velocity given by Up¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðH=q1Þjdp0=dxj
p

:

The numerical simulations are seeded with a zero initial velocity field and a zero initial
pressure field. The perturbation with respect to the equilibrium solution is provided by
way of an initial wavy interface profile:

g x; z; t ¼ 0ð Þ ¼ h0 þ E
XN

j¼1
cos j 2p=Lxð Þxþ ’j

� �
(25)

where ’j is a random phase and E is an amplitude. The values E=H¼5�10�3 and N¼5 are
chosen. For the considered test case (i.e., Circ), the maximum dimensionless growth rate
obtained from the linear theory is computed to be g¼�rðamaxÞH=Up¼0:3422. In this
way, the initial amplitude E is amplified as time goes by, E ! E� ðegsÞ, where s¼ tH=Up

is dimensionless time. As such, in order for significant wave growth to be observed
(defined as gðx; z; tÞ=H	0:1), the simulation must run for a dimensionless time of at
least s¼ð1=gÞ lnð0:1=0:005Þ¼8:75. Instead, have run the simulations out to s¼10,
which requires 48 hours on the machine described in Section 3. We notice in passing that
the dimensionless growth rates for the other test cases (Sq and St) have g�0:02. For
significant wave growth to occur in these test cases, the simulation time would have to
be extended by a factor of at least 0:342=0:02�17:1, which is computationally infeasible
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with the hardware described in Section 3. In any case, the numerical simulations of the test
caseCirc are detailed enough to suffice for the purpose of understanding the evolution of the
waves beyond the linear theory.

We first of all present results for the growth of the small-amplitude wave with initial
condition Eq. (25). In Fig. 8(a) we plot the L2 norm of the wall-normal velocity,

wk k2 sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZ

w2 x; z; sð Þdx dz
s

; s ¼ t Up=H
� �

(26)

as a function of the dimensionless time s. From the figure, it can be seen that kwk2ðtÞ grows
exponentially, with kwk2ðsÞ=kwk2ð0Þ�e0:3s, close to the theoretical maximum rate
g¼0:3422. The result whereby the observed numerical growth rate is less than the
maximum growth rate is due to the fact that kwk2ðsÞ in Eq. (26) contains a mixture of
different modes (i.e., the most dangerous mode and overtones, as indicated by the initial
condition Eq. (25)). To illustrate this further, we have computed the power-spectral density

f �ð Þ ¼ jF:T: w x ¼ Lx=2; h0; sð Þ½ �j2; � ¼ x H=Up

� �
;

where F:T: stands for Fourier transform, taken in the time-frequency domain, and where Ω
denotes the dimensionless value of the frequency (x denotes the corresponding dimensional
value of the frequency). The power spectral density is plotted in Fig. 8(b). There, there is a
large maximum at �¼0:628. This is very close to the most-dangerous mode of linear
theory, �¼0:635. The discrepancy between the two values can be explained by the
sampling frequency of the numerical simulations: the quantity wðx¼Lx=2; h0; sÞ is
sampled at a rate Ds¼0:1 (dimensionless time units), the maximum in the f ð�Þ
corresponds to the maximum frequency in the numerical solutions to within a tolerance
D�¼�2Ds=ð2pÞ, hence d�¼0:006. In this way, the observed maximum frequency in

Figure 8: Comparison between the results of the Direct Numerical Simulations and linear theory
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the simulation is consistent with the assumption that this frequency is obtained from the
most-dangerous mode of the linear theory.

Having confirmed the close agreement between the theory and the TPLS numerical solver
for the development of the small-amplitude waves, we continue the simulation into the
regime of non-linear waves to the point of wave overturning. As such, snapshots of the
wave evolution are shown in Fig. 9. The multiple harmonic modes present in the initial
condition (cf. Eq. (25)) degenerate into a single large-amplitude monochromatic wave as
the most-dangerous mode asserts itself Fig. 9(a). The single remaining wave then
steepens and breaks, to form the complicated structure in Fig. 9(d). A cusp forms at the
foot of the wave crest in Fig. 9(d). The cusp gives rise to a large capillary pressure at the
cusp point, which makes the simulation highly numerically unstable. We therefore stop
the simulation at the onset of the cusp.

In order to explore what happens beyond the onset of the cusp in Fig. 9(d) we resort to a
complementary numerical method (ANSYS Fluent; with the numerical setup as described in
Section 3). The simulations we consider use 93; 697 computational cells—this is comparable
to the number of grid-points used in the TPLS simulation. This is sufficient for numerical

Figure 9: Snapshots of the interface evolution at different times, obtained via the TPLS
numerical solver. The colorplot shows the u-velocity. (a) τ=15 (b) τ=16.5 (c) τ=20.0 and
(d) τ=25.2
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convergence (a grid-refinement study is presented in Appendix B). The time-stepping method is
implicit: we use a time-step Ds¼0:005 (non-dimensional time units), with typically
20 iterations per time-step required for convergence of the implicit time-stepping method.

We again use the initial condition Eq. (25) for the fluid interface (the initial velocities are again
zero and the initial pressure corresponds to a simple pressure drop in the x-direction). We take
E=H¼0:1=3 and N¼3—this ‘trips’ the simulation into a nonlinear state from the very
beginning, thereby speeding up the computation. Snapshots of the interface profile
generated with ANSYS Fluent are shown in Fig. 10. The use of the different numerical
and analytical methodologies is complementary and inspires confidence in our results:

• Starting with the analytical numerical method, this is valid rigorously for the small-
amplitude waves; the implementation of this theory is very well established in the
literature [Ó Naraigh, Valluri, Scott et al. (2013); Valluri, Ó Náraigh, Ding et al. (2010)].

• The TPLS numerical simulations agree with the analytical numerical methods for the
small-amplitude initial disturbances. This supports our use of TPLS at early
simulation times, up to the formation of the cusp point in Fig. 9(d).

• The ANSYS Fluent simulations agree qualitatively with the TPLS results up to and
including the formation of cusps, thereby inspiring confidence in this approach also.

The agreement between the TPLS simulations and the ANSYS simulations may be inferred by
comparing Fig. 9 (TPLS) and Figs. 10(a)-10(d) (ANSYS). In both sets of simulations, we have

Figure 10: Snapshots of the interface evolution at different times, obtained via ANSYS
Fluent. Dimensionless quantities are used in the simulation, meaning this figure may be
compared directly with Fig. 9. There is no colour bar: the different colours in the
snapshots are included just to guide the eye and demarcate the phases. (a) τ=0 (b) τ=17.5
(c) τ=24 (d) τ=30 and (e) τ=36.4
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used the same dimensionless variables, hence a comparison between the two simulations is
feasible. The behaviour of the interface in both sets of simulations is qualitatively the
same: this suggests that the two approaches are mutually consistent. Notice however that a
quantitative comparison is not possible: a snapshot of a TPLS simulation result at a
particular time time s may not agree with a snapshot of an ANSYS simulation at the same
time, since both sets of simulations use slightly different initial conditions. Crucially, the
simulations in ANSYS may be continued beyond the point of wave overturning (e.g., Figs.
10(e) and 10(f))—at these later times, the breaking wave is simply drawn back towards the
interface and a final state is a complicated wavy interface—but no ligament formation.

5.1 Discussion
It is of interest to compare the results in Figs. 9 and 10 with the experimental results of Hu
et al. [Hu and Cubaud (2018)], who observed ligament formation (such as that shown
schematically in Fig. 1 herein) at exactly the same the flow-rates as the ones used in this
section. Therefore, the current numerical and theoretical model under-predicts the
experimentally-observed instability. The origin of the under-prediction can be traced back
to the geometry used in the experiments: this is markedly different from the geometry of
the present numerical and theoretical model: the experimental microchannel in the work
by Hu et al. [Hu and Cubaud (2018)] has bounding walls in both the z-direction, and the
y-direction (For the geometric conventions assumed herein, see Fig. 1). In contrast, our
numerical and theoretical model essentially has periodic boundary conditions in the
y-direction. The relationship between the layer depth the the flow-rate ratio ’¼Q1=Q2 is
dramatically different depending on the these factors; specifically, this can be seen in Fig. 11.

Figure 11: Plot of non-dimensional upper-layer depth E1¼ðH‐h0Þ=H as a function of the
ratio of flow rates ’¼Q1=Q2 (solid line). The value ’¼20 is highlighted, corresponding
to the special case Circ considered in this section. A comparison is given with the
corresponding functional form for the wall geometry (squares)
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Since the stability proprieties of the fluid depend not only on the flow rates, but also,
independently on the layer depths, it is not surprising that a discrepancy emerges
between the current two-dimensional model and the three-dimensional experimental
results. Indeed, previous work on Linear Stability Analysis [Valluri, Ó Náraigh, Ding et
al. (2010)] indicates that increasing E1 is destabilizing. Therefore, Fig. 11 suggests that
the “wall” geometry should be more intrinsically unstable than the “periodic” geometry.
This is consistent with the contrasting observations in the present work and the
experimental observations in of Hu and Cubaud.

We emphasize also that gravity points in the y-direction (coordinate system as per Fig. 1) in
the work of Hu et al. [Hu and Cubaud (2018)]—according to the standard setup for
microfluidic systems. This is in contrast to the present modelling efforts, where gravity
points in the negative z-direction. This is therefore a second factor that spoils the
comparison between the theory and the numerics.

To quantify the relative importance of gravity in the present modelling efforts, we look at the
dimensionless numbers S and G—these are parameters which quantify the importance of
surface tension and gravity respectively, where

S ¼ c= H2jdp0=dxj
� �

; G ¼ q1g=jdp0=dxj; (27)

For the test case Circ, we have S¼0:0088 and G¼0:0025, meaning that the surface tension
is almost four times stronger than gravity in the present theoretical and numerical
calculations. By changing the orientation of the apparatus in the theoretical and
numerical modelling to accord with the one in the experiment, the relative importance of
the surface tension compared to gravity will be greatly enhanced.

As a final word it can be emphasized that even in the current model geometry (which under-
predicts the observed instability) produces a strong recirculation flow in the upper layer
(e.g., Fig. 12)—this may be of use in microfluidic applications which require either heat
transfer, or mixing.

Figure 12: Streamlines of the total velocity field at =25.2, to be looked at in conjunction
with Fig. 9
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6 Conclusions

Summarizing, we have outlined how analytical and numerical modeling to describe parallel
viscous two-phase flows in microchannels. The focus has been on idealized two-
dimensional geometries, with a view to validating the various methodologies for future
work in three dimensions. In the first instance, we have used analytical Orr-Sommerfeld
theory to describe the linear instability which governs the formation of small-amplitude
waves in such systems. We have carefully constructed a series of flow-pattern maps to
characterize the unstable interfacial waves as a function of the flow rates of the two phases.

We have compared the results of the linear stability analysis with the numerical simulations
from TPLS; excellent agreement is obtained. However, the simulations from TPLS are valid
well beyond the limit of applicability of Orr-Sommerfeld theory. We have therefore
continued the numerical simulations into the regime of finite-amplitude interfacial waves,
in this way we have exhibited the phenomenon of reverse entrainment whereby droplets
of the upper phase are entrained into the lower phase. We justify our simulations further
by comparing the numerical results with corresponding results from a commercial CFD
code. This comparison is again extremely favourable.

In view of the idealized two-dimensional geometry in the present study, a direct comparison
with experiments is not possible. However, experiments in microchannels of a similar size
do reveal interfacial waves, as well as wave overturning, ligament formation, and droplet
entrainment. The rigorous validation of the various numerical-simulation techniques in
this work pave the way for extending the simulations in future to more realistic
geometries, thereby making a direct comparison with experiments more feasible.
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Appendix

Appendix A. Full formulation of the linear stability analysis

In this Appendix, we give a detailed formulation of the governing equations underlying the
linear stability analysis in Section 3 of the main part of the paper. The starting-point is
the base-state (Section 2), characterized by a flat interface z¼h0 and a laminar flow in
the streamwise direction in each phase, denoted by U0i. The flow in the base state is
perturbed by the presence of a small-amplitude sinusoidal wave at the otherwise flat
interface, such that the location of the perturbed interface reads:

z ¼ h0 þ g x; tð Þ; g x; tð Þ ¼ g0e
iaxþ�t (28)

where g0 is a small complex-valued amplitude with jg0j�h0, a is the streamwise
wavenumber, and � is the growth rate of the disturbance. The perturbation in Eq. (28)
gives rise to a perturbation in the velocity and pressure fields—the complex-valued
constant g0 in Eq. (28) allows for a non-trivial phase relationship between the
perturbation velocity and the perturbed interface height, which is determined by the
following analysis.

For reasons alluded to in Section 3, it suffices to look at two-dimnesional perturbations
characterized by a single wavenumber a in the streamwise direction. Hence, the
perturbed flow can be described by a streamfunction wiðx; z; tÞ, such that

wi x; z; tð Þ ¼ eiaxþ�t�i zð Þ; (29)

and such that the perturbation velocities dui and dwi in each phase read:

dui ¼ @wi

@z
; dwi ¼ � @wi

@x
: (30)
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Here, dui denotes the perturbed streamwise velocity and dwi denotes the perturbed wall-
normal velocity

The Eqs. (29)-(30) are substituted into the linearized Navier-Stokes equations (linearized
around the base state in Section 2). In this way, we obtain the following set of governing
equations:

iaq2 �
00
2 � a2�2

� �
U02 � cð Þ ��2U02

00
h i

¼ l2 �
0000
2 � 2a2�

00
2 þ a4�2

� �
; (31)

iaq1 �
00
1 � a2�1

� �
U01 � cð Þ ��1U01

00
h i

¼ l1 �
0000
1 � 2a2�

00
1 þ a4�1

� �
; (32)

Here, the growth rate � has been rewritten in terms of the complex wave speed c, via the
identity

�¼�iac: (33)

Eqs. (31)-(32) are supplemented with the following no-slip and no-penetration boundary
conditions:

�i¼�0
i¼0; (34)

at the walls z¼0 and z¼1.

In addition, matching conditions are prescribed at the interface z¼h0þg, with g ¼ g0e
iaxþ�t.

In the streamwise direction, continuity of velocity and tangential stress (cf. Eq. (16)) imply
the following relations:

�2 ¼ �1; (35)

�0
2 þ gU02

0 ¼ �0
1 þ gU01

0; (36)

l2 �
00
2 þ a2�2

� �
¼ l1 �

00
1 þ a2�1

� �
: (37)

The perturbed interface location can be determined from the kinematic condition, which
requires that the interface moves with the flow: @tgþU0@xg¼w (the subscripts are
suppressed because both the velocities in each phase are the same at the interface). In
terms of streamfunctions, the kinematic condition reads:

g0¼ �2= c� U02ð Þ¼ �1= c� U01ð Þ; (38)

this determines the phase relationship between g¼g0e
iaxþ�t and the perturbed velocity

fields.

The remaining interfacial matching condition arises from imposing a linearized jump
condition on the normal stress at the interface (cf. Eq. (16)):
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iaq2 �0
2 c� U02ð Þþ�2U02

0� 	þ l2 �000
2 � 3a2�2

� �
¼ iaq1 �0

2 c� U01ð Þþ�1U01
0� 	þ l1 �000

1 � 3a2�1

� �
þ a2 g þ ca2

� � �0
1 ��

0
2

ia U02
0 � U01

0ð Þ
� �

¼ 0:

(39)

Eqs. (31)-(39) constitute an eigenvalue problem for the streamfunction components
ð�2;�1Þ, with eigenvalue �¼�iac¼�ix. They can be formulated in an operator/matrix
form given and hence, solved numerically using standard Chebyshev collocation
techniques [Boomkamp, Boersma, Miesen et al. (1997)]. This method has been further
developed and validated in the context of viscous liquid-liquid flows in Reference
[Ó Naraigh, Valluri, Scott et al. (2013)] and is therefore used in the main part of the
paper without further commentary.

Energy-budget analysis

To understand the physical mechanism that causes the instability, we perform an energy-
budget analysis. We multiply the corresponding linearized equations of motion for the
perturbation velocity du¼ðdu; dwÞ by du itself and integrate over the x- and z-directions
(the corresponding perturbation pressure is denoted by dp). The x-variable is integrated
over a single wavelength ‘¼2p=a and the z-variable is integrated over the full vertical
extent of the channel. In a standard fashion, this gives the following energy-budget relation

P ¼
X2

i¼1
KINi ¼

X2

i¼1
REYi þ

X2

i¼1
DISSi þ INT ; (40)

KINi ¼ 1

2

d

dt

ZZ
qj duj


 

2dxdz;

REYi ¼ �qi

ZZ
duidwiU0i

0dxdz;

DISSi ¼ �li

ZZ
2

@

@x
dui

� �2

þ 2
@

@z
dwi

� �2

þ @

@z
diþ @

@x
dwi

� �2
" #

dxdz:

The term “INT” is related to interfacial conditions, and is given in terms of the following
stress tensor for the perturbed flow:

Txx;i ¼ �dpi þ 2li
@

@x
dui; Tzz;i ¼ �dpi þ 2li

@

@z
dwi; Txz;i ¼ li

@

@z
dui þ @

@x
dwi

� �
: (41)

Thus,

INT ¼
Z ‘

0
du2Txz;2 þ dw2Tzz;2

� 	
z¼0dx�

Z ‘

0
du1Txz;1 þ dw1Tzz;1

� 	
z¼0dx; (42)
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which is decomposed into normal and tangential contributions,

INT ¼ NORþ TAN ; (43)

where

NOR ¼
Z ‘

0
dw2Tzz;2 � dw1Tzz;1

� 	
z¼0dx; (44)

and

TAN ¼
Z ‘

0
du2Txz;2 � du1Txz;1

� 	
z¼0dx: (45)

The energy budget for the test cases alluded to in the main part of the paper are presented
below in Tab. A1.

Appendix B: Sample convergence study

In order to validate the convergence of our numerical results, we have carried out a grid-
refinement study on the case study involving the ANSYS simulations. As such, we have
re-run the simulations corresponding to Fig. 10 (93; 697 computational cells) at a much
higher resolution (178,867 computational cells). The results of the high-resolution
simulation are shown in Fig. A1. The snapshots in these two figures may be compared
panel-by-panel. Excellent agreement between the two figures can be seen, with the
exception of panels (b) in the figures, where the mismatch is due to the different ways in
which the two simulations have been initialized. The main point is that the two sets of
results are almost identical. This confirms the robustness of the presented simulation
results to grid refinement. In particular, it can be noted that the reverse-entrainment effect
is visible in both Figs. 10(f) and A1(f), confirming that this is a physical effect and not
an unphysical effect due to lack of grid resolution.

Furthermore, as the TPLS results presented in the main text are in agreement with both Orr-
Sommerfeld Theory and the low-resolution ANSYS simulations, it can be concluded that
the TPLS results are independent of the grid resolution.

Table A1: Energy-budget analysis for the different test cases considered in the main manuscript
(Section 4). The budgets have been normalized such that KIN1þKIN2¼1 and
DISS1þDISS2þREY1þREY2þNORþTAN¼1.

Case KIN1 KIN2 DISS1 DISS2 REY1 REY2 NOR TAN

Sq 0.88 0.12 -24.94 -14.87 0.00 0.00 -0.03 40.82

St 1.00 0.00 -0.86 -0.01 -0.27 0.00 -0.06 1.29

Circ 1.00 0.00 -3.56 -0.26 0.79 0.00 -0.20 4.23

Linear and Nonlinear Stability Analysis in Microfluidic Systems 409



Figure A1: Snapshots of the interface evolution at different times, obtained via ANSYS
Fluent-high-resolution simulation, 178,867 computational cells. The figure may be
compared directly with the corresponding low-resolution simulation in Fig. 10. (a) τ=0
(b) τ=6.25 (c) τ=11.25 (d) τ=16.25 and (e) τ=33.75
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