SUPPLEMENTARY INFORMATION (SI)

Influence of natural organic matter fractions on PAH sorption by stream sediments and a synthetic graphene wool adsorbent

Adedapo O. Adeola ^a and Patricia B.C. Forbes ^{a*}

^a Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa.

ADSORPTION MODELS

Kinetic experimental data was fitted to pseudo-first-order (eq. 1) and pseudo-second-order (eq. 2) kinetic models following the equations below:

$$q_t = q_e (1 - e^{-k_1 t})$$
 (1)

$$q_t = \frac{q_e^2 k_2 t}{1 + k_2 q_e t}$$
(2)

Where: q_t and q_e are the amount of solute sorbed per mass of sorbent ($\mu g g^{-1}$) at any time (*t*) and equilibrium, respectively; $k_1 (\min^{-1})$ and $k_2 (g \mu g^{-1} \min^{-1})$ are rate constants for first-order and second-order adsorption (Lagergren, 1898; Kowanga et al., 2016). The initial sorption rate (*h*) is defined by equation 3 (Kalavathy et al., 2005).

$$h = k_2 q_e^2 \tag{3}$$

Furthermore, this study employed three different isotherm models viz: Freundlich (eq. 4), Langmuir (eq.5) and linear (eq.6), to fit the adsorption experimental data and Sum of Square Error (SSE) (eq.7) for validation;

$$q_e = K_f C_e^N \tag{4}$$

$$q_e = \frac{q_{max}K_L C_e}{1 + K_L C_e} \tag{5}$$

$$q_e = K_d C_e \tag{6}$$

$$\sum_{i=1}^{n} (\mathbf{q}_{e,cal} - \mathbf{q}_{e,exp})_{i}^{2} \qquad (7)$$

where K_f (µg/g) (L/µg)^N) and N (dimensionless) is Freundlich constant and intensity parameter, an indicator of site energy heterogeneity (He et al., 2006); q_{max} (µg/g) and K_L (L/µg) is the Langmuir maximum adsorption capacity and Langmuir constant associated with solute–surface interaction energy, respectively; q_e is the solid-phase concentration (µg/g), C_e is the liquid phase equilibrium concentration (µg/L), K_d (L/g) is the sorption distribution coefficient, respectively.

The K_d is a valuable parameter in the evaluation of organic pollutants partitioning in the water environment. The K_d was used to estimate the single point organic carbon-normalized distribution coefficients, K_{oc} according to the following:

$$K_{oc} = K_d / f_{oc} \approx q_e / (C_e. f_{oc})$$
(8)

where f_{oc} is the fraction of organic carbon (Ololade et al., 2018).

FIGURES

Figure S1: Point of zero net charge of sediment and its components

Figure S2: Results of EDS analysis of natural sediment and its components

Figure S3: Linear equation isotherm plots for Linear (LIN), Langmuir (LGM), and Freundlich (FRD) sorption models, (a) Naphthalene (b) Phenanthrene (c) Pyrene (d) Perylene, onto natural sediment (NAS), mineral-deficient fraction (MDF), black carbon fraction (BCF) and mineral-rich fraction (MRF).

Figure S4: Representative nonlinear equation isotherm model plots for adsorption of selected PAHs onto natural sediments and validated by Error Sum of Squares (SSE).

Figure S5: (a) Time-concentration profile of adsorption of NAPH, PHEN, PYR, and PERY onto natural sediment (b) Fitting pseudo-first (PFO) and second (PSO) order kinetic models to adsorption of NAPH on natural sediment {Error Sum of Squared (SSE) are 0.13 (PFO) and 0.08 (PSO)}.

TABLES

Table S1: Physicochemical properties of selected polycyclic aromatic hydrocarbons

Molecular formula	^a Log <i>Kow</i>	^c Sw (mg L ⁻¹)	^a Mw (g mol ⁻¹)	^b Bp (°C)
$C_{10}H_{8}$	3.30	31.0	128.2	217.9
$C_{14}H_{10}$	4.46	1.18	178.2	340.0
$C_{16}H_{10}$	5.13	0.135	202.3	404.0
$C_{22}H_{12}$	6.30	4e-4	252.3	467.0
	Molecular formula $C_{10}H_8$ $C_{14}H_{10}$ $C_{16}H_{10}$ $C_{22}H_{12}$	Molecular formula *LogKow C10H8 3.30 C14H10 4.46 C16H10 5.13 C22H12 6.30	Molecular formula ^a LogKow ^c Sw (mg L ⁻¹) C10H8 3.30 31.0 C14H10 4.46 1.18 C16H10 5.13 0.135 C22H12 6.30 4e-4	Molecular formula ^a LogKow ^c Sw (mg L ⁻¹) ^a Mw (g mol ⁻¹) C10H8 3.30 31.0 128.2 C14H10 4.46 1.18 178.2 C16H10 5.13 0.135 202.3 C22H12 6.30 4e-4 252.3

Log K_{ow} :octanol-water partition coefficient, S_w : water solubility (mg L^{-1}), M_w : molecular weight (g cmol⁻¹), B_p : boiling points (°C). Cited from ^a(Sun et al., 2013), ^b(Yakout and Daifullah, 2013), ^c(Potin et al., 2004).

Elements	Natural Sediment (NAS)	Mineral Deficient Fraction (MDF)	Black Carbon Fraction (BCF)	Mineral Rich Fraction (MRF)
Aluminum (Al)	218.55 ± 0.61	9.29 ± 0.37	3.105 ± 0.05	65.50 ± 0.20
Iron (Fe)	692.20 ± 0.60	12.67 ± 0.02	1.63 ± 0.02	298.90 ± 0.69
Phosphorus (P)	16.17 ± 0.07	2.48 ± 0.07	1.03 ± 0.15	15.69 ± 0.24
Silicon (Si)	28.34 ± 0.58	3.49 ± 0.97	1.68 ± 0.17	18.43 ± 0.24
Manganese (Mn)	14.92 ± 0.21	0.06 ± 0.0	0.03 ± 0.001	1.84 ± 0.02
Lead (Pb)	0.71 ± 0.10	$< 0.09 \pm 0.01$	$< 0.14 \pm 0.014$	0.31 ± 0.04
Sodium (Na)	10.54 ± 0.17	2.01 ± 0.05	1.42 ± 0.07	7.01 ± 0.10
Potassium (K)	6.94 ± 0.08	4.81 ± 0.10	4.23 ± 0.06	5.58 ± 0.11
Calcium (Ca)	31.74 ± 0.09	2.64 ± 0.05	1.60 ± 0.02	8.26 ± 0.05
Magnesium (Mg)	16.54 ± 0.15	0.65 ± 0.01	0.30 ± 0.002	6.76 ± 0.01

Table S2: ICP-OES elemental analysis of concentration (ppm \pm std) major elements present in natural and fractions of stream sediment

Sorption models	Parameters	NAS	MDF	BCF	MRF	
	K_{f}	8.46	3.48	0.63	14.71	
Freundlich	Ν	0.89	1.19	1.32	0.59	
	SSE	0.14	0.14	0.44	0.40	
Langmuir	$q_{max}(\mu g \ g^{-1})$	1049	10678	13212	293	
		0.007	0.001	0.0002	0.02	
	$K_L(L \mu g^{-1})$					
	SSE	0.15	0.20	0.54	0.36	
	~~_	0110	0.20		0.00	
Linear	K_d	6.13	6.05	2.07	3.03	
	SSE	0.17	0.19	0.54	1.01	
	$LogK_{oc}$	1.95	1.81	1.32	1.93	

Table S3: Sorption model parameters for adsorption of NAPH onto natural sediments and its components

Sorption models	Parameters	NAS	MDF	BCF	MRF
	K_{f}	24.10	10.88	12.36	0.06
Freundlich	Ν	0.26	0.31	0.04	1.31
	SSE	0.03	0.87	2.24	1.15
Langmuir	$Q_{max}(\mu g \ g^{-1})$	94	55	240	235
	$K_L(L\mu g^{-1})$	0.08	0.07	15.30	0.001
	SSE	0.09	0.96	2.23	0.25
Linear	K_d	0.50	0.34	0.09	0.27
	SSE	1.23	1.12	2.53	0.23
	LogK _{oc}	0.87	0.56	0.04	0.60

Table S4: Sorption model parameters for adsorption of PHEN onto natural sediments and its components

Sorption models	Parameters	NAS MDF		BCF	MRF	
	K_{f}	5.13	70.60	0.05	1.0e-3	
Freundlich	N	0.79	0.23	1.46	0.38	
	SSE	0.002	0.023	0.510	0.014	
Langmuir	$q_{max}(\mu g \ g^{-1})$	624	180	3402	6216	
	$K_L(L\mu g^{-l})$	4e-3	3e-1	1e-4	2e-4	
	SSE	0.003	0.069	0.57	0.29	
. .	17	0.11	2.50	0.40	1.01	
Linear	\mathbf{K}_d	2.11	3.59	0.48	1.21	
	SSF	0.03	0.92	0.57	0.28	
	SSL	0.03	0.92	0.57	0.28	
	LogKa	0.85	1.58	0.58	1.26	
		0.00	1.00	0.00		

Table S5: Sorption model parameters for adsorption of PYR onto natural sediments and its components

Sorption models	Parameters	rameters NAS M		BCF	MRF	
	K_{f}	6.2e-3	9.4e-6	3.1e-2	2.4e-3	
Freundlich	N	2.45	3 /16	1 85	2 39	
Freuhunen	1 V	2.43	5.40	1.00	2.37	
	SSE	0.19	2.01	0.20	0.36	
Langmuir	$q_{max}(\mu g \ g^{-1})$	7853	1521	6960	5807	
	$K_L(L \mu g^{-1})$	1.9e-4	2.2e-4	1.5e-4	1.3e-4	
	SSE	0.90	2.60	0.59	1.28	
Linear	K_d	1.47	0.32	1.06	0.75	
	SSE	0.89	2.60	0.58	1.27	
	$Log K_{oc}$	1.34	0.53	1.03	1.04	

Table S6: Sorption model parameters for adsorption of PERY onto natural sediments and its components

РАН	Temp. (K)	NAS			MDF			BCF			MRF		
		$\begin{array}{l} \Delta G \\ (J \ mol^{-1}K^{-1}) \end{array}$	ΔΗ (J mol ⁻¹)	ΔS (J mol ⁻¹)	ΔG (Jmol ⁻¹ K ⁻¹)	ΔΗ (J mol ⁻¹)	ΔS (k Jmol ⁻¹)	$\begin{array}{l} \Delta G \\ (J \ mol^{-1}K^{-1}) \end{array}$	ΔΗ (J mol ⁻¹)	ΔS (J mol ⁻¹)	ΔG (J mol ⁻¹ K ⁻¹)	ΔΗ (J mol ⁻¹)	ΔS (J mol ⁻¹)
NAPH	298	-37.7			-80.2			-45.9			-19.9		
	308	-86.2	1207.4	4.2	-125.2	1260.8	4.5	-99.1	1502.5	5.2	-57.9	1112.5	3.8
	318	-128.2			-170.2			-151.1			-95.9		
PHEN	298	56.9			5.2			40.5			20.9		
	308	-5.1	1904.5	6.2	-11.2	2298.8	7.5	6.6	1269.4	4.1	-10.4	925.9	3.0
	318	-67.1			-86.2			-34.4			-28.1		
PYR	298	-13.2			-15.4			-28.8			-25.1		
	308	14.4	-1186.8	-3.9	32.5	-1661.5	-5.5	2.2	-952.6	-3.1	14.9	-1217.1	-4.0
	318	53.3			87.5			33.2			54.9		
PERY	298	-41.8			-113.4			-34.1			-71.4		
	308	-33.8	-280.2	-0.8	-59.4	-1722.6	-5.4	-1.1	-1017.5	-3.3	-10.8	-2453.2	-8.0
	318	-25.8			-5.4			31.9			90.8		

Table S7: Thermodynamic parameters for the adsorption of naphthalene (NAPH), phenanthrene (PHEN), pyrene (PYR) and perylene (PERY) onto sediment components

References

- He, Y., Xu, J.M., Wang, H.Z., Ma, Z.H., Chen, J.Q., 2006. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environ. Res. 101, 362– 372. https://doi.org/10.1016/j.envres.2006.01.002
- Kalavathy, M.H., Karthikeyan, T., Rajgopal, S., Miranda, L.R., 2005. Kinetic and isotherm studies of Cu(II) adsorption onto H₃PO₄-activated rubber wood sawdust. J. Colloid and Interface Sci. 292, 354-362. https://doi.org/10.1016/j.jcis.2005.05.087
- Kowanga, K.D., Gatebe, E., Mauti, G.O., Mauti, E.M., 2016. Kinetic, sorption isotherms, pseudofirst-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder. J. Phytopharmacol. 5, 71-78.
- Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Veteskapsakademiens Handlingar, Band 24, 1-29.
- Ololade, I.A., Adeola, A.O., Oladoja, N.A., Ololade, O.O., Nwaolisa, S.U., Alabi, A.B., Ogungbe, I.V., 2018. In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives. J. Environ. Chem. Eng. 6, 3485-3494. https://doi.org/10.1016/j.jece.2018.05.034.
- Potin, O., Veignie, E., Rafin, C., 2004. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol. 51, 71-78. https://doi.org/10.1016/j.femsec.2004.07.013.
- Sun, Y., Yang, S., Zhao, G., Wang, Q., Wang, X., 2013. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chem. Asian J. 8, 2755-2761. https://doi.org/10.1002/asia.201300496.
- Yakout, S.M., Daifullah, A.A.M., 2013. Removal of selected polycyclic aromatic hydrocarbons from aqueous solution onto various adsorbent materials. Desalin. Water Treat. 51, 6711-6718. https://doi.org/10.1080/19443994.2013.769916.