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Abstract 

The rare microbial biosphere, an essential part of biodiversity, plays a key role and acts 

as a functional reserve in many ecosystems. However, little is known regarding its 

assembly process. Here, we explore the composition, phylogenetic assembly (inferred 

by nearest taxon index, NTI) and community turnover (NTI) of the rare bacterial 

microbiome in grassland soils on the Tibetan Plateau, China. Our results show that the 

rare bacterial community assembly is principally driven by stochastic processes at both 

compositional and phylogenetic levels, and is only weakly influenced by regional 

factors (mean annual precipitation and spatial distance). In contrast, deterministic 

processes drive the composition and the phylogenetic assembly processes of the 

dominant members of the soil community, and these factors are strongly driven by both 

local (plant diversity, above-ground biomass and soil nutrients) and regional factors. 

These results indicate that assembly processes affecting the rare bacterial community 

are distinctively different from the impacting the dominant microbiome fraction in soils, 

and suggest that the rare biosphere is more sensitive to climate effects such as 

precipitation changes. 

  



Introduction 

Microbes are major components of natural ecosystems and play essential roles in global 

biogeochemical cycling1. Currently, most studies consider microbes in an ecosystem as 

a whole2-4,. However, with improved sampling strategies and next-generation 

sequencing technologies, the existence of a rare microbial biosphere is now well-

accepted5. The rare microbial biosphere typically consists of bacterial taxa that are 

present at low relative abundance6, but is now known as a crucial part of an ecosystem 

and to contribute a large proportion of the biodiversity7. It has also been reported that 

the rare and abundant bacteria display distinct phylogeographical patterns, and are 

driven by different local and regional environmental factors8. The rare biosphere was 

once considered to be redundant and to merely serve as a “seed bank” in an ecosystem, 

and largely involved in the restoration of ecological function after environmental 

disturbance9,10. However, increasing evidence has shown that rare microbes are actively 

involved in metabolic turnover, particularly in contributing to nitrogen fixation and 

sulphur oxidation11.  Rare bacterial taxa may also contribute indirectly to global 

warming by providing the energy required for methanogenesis13. 

 

Our knowledge on functions and diversity of the rare biosphere continues expanding, 

but their assembly process and driving factors remain unexplored. Two ecological 

processes (deterministic versus stochastic) have been proposed to drive microbial 

assembly14. The deterministic process is a niche-based process that includes selection 

imposed by abiotic environmental factors (environmental filtering) and species 

interaction15. In contrast, the stochastic theory conceptualizes from the neutral theory, 

where the community assembly is a result of unpredictable disturbance, speciation, 

probabilistic dispersal and random birth-death events16. The two assembly processes 

drive microbial assembly simultaneously, but their relative importance in an ecosystem 

varies from deterministic15,17 to stochastic-dominated2,18 Currently, the assembly 

process of the rare biosphere in soils remains unexplored, while a few existing studies 

investigated the ecosystem as a whole3,4 or focused on less complex ecosystems, such 

as lakes19. It has been further observed that a single set of assembly rules may not fully 

describe the process of different microbial groups in an ecosystem4. Therefore, there is 

a major gap in the understanding of rare biosphere assembly process. 



 

Several methods have been used to identify the process driving microbial community 

turnover, and most of which relied on comparing observed community -diversity to 

those generated under a null model4,20. Webb et al. used phylogenetic distance-based 

index to infer the effect of deterministic and stochastic processes, under the assumption 

that phylogenetic close-related taxa occupy similar ecological niche and therefore 

subject to similar environmental selection15,21,22. Therefore, by examining the 

deviations of observed alpha- or beta- phylogenetic diversities from null model 

expectations, the importance of deterministic and stochastic processes on the 

community assembly can be interrogated quantitatively. 

 

Here, we used the framework established by Webb et al.21, and applied it on grassland 

soils on the Tibetan Plateau, China (Supplementary Fig. 1). We aimed to identify the 

rare biosphere assembly process, and disentangle the contribution of individual biotic 

and abiotic factor to rare biosphere biogeographical distribution. Here, we hypothesized 

that the rare sub-community assembly was primarily driven by stochasticity, while the 

abundant sub-community was assembled predominately by deterministic process. 

Results 

Compositional assembly of rare sub-community and 

influencing factors 

The detailed sequencing results are shown in Supplementary material 1. In brief, a total 

of 4, 762 operational taxonomic units (OTUs) were grouped in our dataset and 45% 

were identified as rare OTUs, while abundant OTUs only accounted for 3.4% 

(Supplementary Fig. 2 and 3). The rare OTUs were classified into 23 bacterial phyla, 

which was closely approximate to that of the entire community (Supplementary Fig. 4 

and 5). In contrast, the abundant OTUs were classified into only 12 phyla with the 

dominance of Actinobacteria, which was consistent with the entire community 

(Supplementary Fig. 4 and 5). 

 

The between-sample community compositional variations were estimated using Bray-



Curtis dissimilarity matrix, and its relationship to environmental factors was visualised 

using distance-based redundancy analysis (Fig. 1). The rare and abundant sub-

communities and the entire community all showed a compositional transition along the 

grassland ecosystems (Fig. 1), and they all exhibited significantly different 

compositions between desert grassland and steppe soils (one way-ANOVA, P<0.001). 

In addition, the rare and abundant sub-communities both showed statistically similar 

compositional variations compared to the entire community (all P<0.001), as inferred 

by Spearman mantel test. However, the rare sub-community showed a much lower 

similarity with the entire community than the abundant sub-community (Rho=0.442 

versus 0.979, all P<0.001, Supplementary Fig. 6). 

 

To disentangle the individual contribution of environmental factors to the compositional 

variations of rare and abundant sub-communities, distance-based Linear Modelling 

(DistLM) was employed in the study. The total variation of the rare sub-community 

compositions that explained by the environmental factors was much lower than that in 

the abundant sub-community (17.7% versus 48%, Table 1). Compositional variations 

of both rare and abundant sub-communities could be explained by climate, plant and 

soil factors, but their dominant environmental factors and explaining proportions 

differed substantially. The rare bacterial compositional variation was explained by 

regional factors by 8.3% (mean annual precipitation, MAP, mean annual temperature, 

MAT and spatial distance), as well as local factors, which explained a further 4.8% by 

plant (above-ground biomass and Shannon diversity) and 4.6% by soil (total organic 

carbon, TOC and pH). In contrast, the compositional variation of the abundant sub-

community was predominantly explained by local factors by 37.6% (plant and soil) and 

regional factors by 10.4% (MAP and spatial distance). The dominant individual factors 

were MAP for the rare bacterial compositional variation (3.6%), and plant above-

ground biomass for the abundant (15.6%), respectively. 

Phylogenetic assembly of rare sub-community and 

influencing factors 

Phylogenetic community assembly process of the rare bacterial sub-community was 

assessed by nearest taxon index (NTI), which integrates bacterial compositions and 



their phylogenetic relatedness21. For a single community, NTI greater than +2 indicates 

co-existing taxa being more closely related than expected by chance (phylogenetic 

cluster), while a NTI less than -2 indicates co-existing taxa being more distantly related 

(phylogenetic over dispersion)15. 

 

The mean NTI of rare sub-community was -0.37, and was not significantly different 

from the randomly generated null communities (mean P=0.58, Supplementary Fig. 7). 

The abundant sub-community NTI was significantly higher than that of the rare sub-

communities (unpaired one tail t-test, P<0.001), with a mean of 3.1 (Fig. 2). This was 

true in individual grassland ecosystems (desert grassland and steppe), where the 

abundant sub-community NTIs were also significant higher than those of the rare sub-

community (unpaired one tail t-test, P<0.001, Supplementary Fig. 8). 

 

We disentangled the environmental factors that drove the NTI of rare and abundant sub-

communities using partial correlation analysis and hierarchical partitioning. The results 

showed that the rare sub-community NTI did not correlate to any environmental factors 

(Table 2). In contrast, the abundant sub-community NTI negatively correlated to plant 

Shannon diversity (P<0.01, r=-0.43). Given the strong co-variations among 

environmental factors (Supplementary Table 2), we used hierarchical partitioning to 

identify the individual and joint contributions of the environmental factors to the NTI 

variations. The results demonstrated that the variation of rare sub-community NTI 

explained by environmental factors was much lower (3.3%) than that of abundant sub-

community (32.3%) (Fig. 3). The rare sub-community NTI variation was not 

significantly explained by any individual factors. In contrast, the abundant bacterial 

NTI variation was significantly explained by most of the tested individual factors, 

among which MAP, plant Shannon diversity and TOC played key roles. 

Phylogenetic turnover of rare sub-community and 

influencing factors 

Consistent with the NTI results, 81% of the NTI for the rare sub-community were 

between -2 and 2, with an average of -1.41 (Fig. 4). In contrast, over 98% of the NTI 

for the abundant sub-community were >2 with a mean of 3.0, and was significantly 



higher than that of the rare sub-community. NTI of the rare sub-community only 

significantly correlated to regional factors of MAP and spatial distance, but not to any 

local environmental factors such as plant and soil properties (Table 2). The abundant 

sub-community NTI exhibited strong correlations with both regional and local factors, 

such as climate (MAP and aridity), spatial distance (P=0.03, r=0.09), plant (above-

ground biomass) and soil nutrients (TOC and ammonium) (all P≤0.05). Taken together, 

although the phylogenetic turnover of the rare sub-community was dominated by 

stochastic process, it was also influenced by regional factors to a certain extent. In 

contrast, the abundant bacterial turnover was dominated by deterministic process, and 

driven by both regional and local factors. 

Discussion 

Previous studies have predominantly focused soil microbial community assembly as a 

whole3,4, which is heavily driven by deterministic process15. Here, we demonstrated 

that the assembly process of soil rare biosphere was driven by stochastic process at the 

levels of compositions, phylogenetic assembly and turnover, which is distinctly 

different from the abundant sub-community. 

 

The stochastic assembly processes of rare biosphere were strongly evidenced by the 

NTI and NTI, which both fell in the range of -2 to +2 (Fig. 2 and 4). Because 

NTI/NTI greater than +2 indicates co-existing taxa being more closely related than 

expected by chance (phylogenetic clustering), while less than -2 indicates co-existing 

taxa being more distantly related (phylogenetic overdispersion)15. In contrast, except 

for one sampling site, the NTI and NTI of the abundant sub-community were all above 

+2 (Fig. 2 and 4), and were significantly greater than the NTI of the rare sub-community. 

These results suggest that the abundant OTUs bear phylogenetic conserved traits that 

are well-adapted to the local environmental factors, and therefore present in greater 

abundances. This is consistent with previous findings that the abundant sub-community 

were determined by local environments and driven by deterministic process15,23.  

 

The correlations between NTI/NTI and environmental factors further confirmed that 

environmental filtering has little impact on the rare biosphere phylogenetic assembly 



and turnover. The rare sub-community NTI did not correlate to any environmental 

factors, and their NTI only correlated to regional factors (MAP and spatial distance) 

rather than local factors (plant and soil) (Table 2 and Fig. 3). In contrast, the NTI and 

NTI of the abundant sub-community significantly correlated to both regional and local 

factors (Table 2, Fig. 3), therefore indicating that its phylogenetic assembly process was 

driven by environmental filtering. 

 

The contrasting assembly processes of the rare and abundant sub-communities 

identified here were in agreement with a previous report in oil-polluted soils, where the 

abundant bacterial assembly was driven by environmental filtering24. The rare taxa were 

influenced, to a much less extend, by the local environmental filtering24. Our findings 

were distinctively different from the reports in aquatic ecosystems, where both 

abundant and rare sub-communities were strongly influenced by environmental 

filtering8,19,25. We speculate that the discrepancy observed in soil and aquatic 

ecosystems was attributed to the environmental homogeneity. The aquatic ecosystem is 

much more homogenous than soils26, therefore the environmental filtering driving 

abundant and rare bacterial species was more even. In contrast, soil is highly 

heterogeneous and bacterial interactions are much stronger14, therefore various 

environmental micro-niches exist that allows the rare bacteria species to be less affected 

by the overall environments. 

 

Although the rare bacterial assembly processes were stochastic, their compositions and 

phylogenetic turnover were at a certain degree influenced by regional factors and 

distinct from those of the abundant in grassland soils. This agrees with the findings in 

aquatic ecosystem, where rare and abundant sub-communities are influenced by 

different environmental factors8,19,27. In rare sub-community, the regional factors (MAP 

and spatial distance) were consistently identified as key factors influencing their 

community compositions and phylogenetic turnover. Contrarily, plant Shannon 

diversity/biomass and soil nutrients were the key factors driving the abundant sub-

community assembly processes. MAP has been known to be involved in bacterial 

dispersion28, and causes shifts in bacterial community compositions29, although a large 

time scale maybe required (in decades) for microbial community variations to be 

detected30. Spatial distance has been observed to limit bacterial dispersal (dispersal 



limitation)31. Our results showed that the rare sub-community compositional variation 

and phylogenetic turnover both significantly correlated to the spatial distance (Fig. 1and 

Table 2), indicating that rare OTUs were dispersal-limited.  

 

The abundant sub-community compositions, phylogenetic assembly and turnover were 

mainly driven by local rather than regional factors (climate and spatial distance Fig. 1). 

This was supported by the dominant drive of abundant bacterial composition variation 

by plant factors (Table 1) and the negative correlations of their phylogenetic assembly 

and turnover with local factors (plant Shannon diversity/above-ground biomass and soil 

nutrients, Table 2). Plants promote bacterial diversity in several ways, such as via root 

exudates32 and litter deposition33,34, which all lead to an increased nutrient (carbon) 

input. Elevated nutrients and diverse resources have been proposed to increase 

stochasticity by enhancing ecological drift, weakening niche selection and reducing 

competition20. This hypothesis was partly supported by the dominance of 

Actinobacteria in abundant bacterial sub-community (Supplementary Fig. 4). 

Actinobacteria are widely regarded as heterotrophs, for their important roles in 

degrading plant biomaterials such as cellulose and plant litter35,36. Therefore the 

Actinobacteria dominance confirmed the role of plants in selecting abundant bacterial 

species. 

 

Our results indicated that the soil rare biosphere exhibits contrasting compositional and 

phylogenetic assembly processes, which were predominately driven by stochasticity, 

while the abundant taxa were primarily driven by deterministicity or environmental 

filtering. The rare biosphere was influenced by regional factors (climate and geospatial 

distance), while the abundant bacteria were more strongly driven by local factors (plant 

and soil). These findings imply that the rare biosphere is more likely to be affected by 

large scale global change (such as precipitation change and global warming) than the 

abundant sub-community. Therefore, the rare biosphere shall be investigated separately 

from the abundant to capture a more comprehensive understanding to the soil microbial 

community. 



Materials and Methods 

Study area and sampling 

The study area is located in central Tibetan Plateau (TP), and mainly located between 

31 and 33°N latitude and 79 and 93°E longitude (east-west sampling area), where the 

average altitude is above 4400 m above sea level. Soil samples were collected at 11 

sampling sites along a 2000 km transect across the TP (Supplementary Fig. 1) in July, 

2015. The sampling sites belong to desert grassland (4 sites) and steppe (7 sites) 

ecosystems from west to east. The plant community was dominated by Stipa breviflora 

and S. purpurea in desert grassland and steppe ecosystems, respectivey37. At each 

sampling site, four to five 1 m × 1m quadrats were randomly selected. In each quadrat, 

five surface soils (0-1 cm) were taken randomly and combined. Soil samples were 

sieved through 2.0 mm to remove plant material and stones, and were transported to 

laboratory in coolers with ice bags. Subsamples taken for DNA extraction and 

physicochemical analyses were stored at -80°C. Root samples were collected using five 

soil cores (2.5 cm diameter × 10 cm depth) per quadrat from 0-10 cm soil layer, soil 

cores were collected from the same areas where surface soil was collected. The soil 

cores were washed by running water using a 0.25 mm sieve to remove soils and stones. 

Roots were collected carefully into paper bags and oven-dried (65°C for 24 hours) for 

biomass measurement. The aboveground plants were clipped and stored in paper bags 

according to species and were also oven-dried for biomass measurement and plant 

Shannon diversity calculation. 

Physicochemical analysis 

Soil pH was measured in a 1:5 soil-to-water suspension using a pH meter (Sartorius 

PB-10, Germany). Soil nitrate (NO3
-) and ammonium (NH4

+) were extracted with 2 M 

KCl (1:5) and determined using Smartchem200 Discrete Auto Analyser (Alliance, 

France). Total organic carbon (TOC) was measured in the solid state using a TOC 

analyser (TOC-VCPH, Shimadzu, Japan). The aridity index (potential 

evaporation/precipitation) of each site was obtained by using Global Aridity Index 

dataset38, which was available at www.cgiar-csi.org. The mean annual precipitation 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database


(MAP) and the mean annual temperature (MAT) were predicted from the 

meteorological data from 33 climatic stations (China meteorological Data Sharing 

Service System; http://cdc.cma.gov.cn/) during period of 2003-2012 using the Kriging 

interpolation. 

DNA extraction, PCR and high-throughput sequencing 

Total genomic DNA was extracted using the MO BIO PowerSoil DNA extraction kit 

(Mo Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. Universal primer 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r 

(5'-GGACTACHVGGGTWTCTAAT-3') with 12 nt unique barcode, was used to 

amplify the V4 hyper-variable region of 16S rRNA gene39. The PCR mixture (25 l) 

contained 1x PCR buffer, 1.5 mM of MgCl2, 0.4 M each of deoxynucleoside 

triphosphate, 1.0 M of each primer, 0.5 U of Ex Taq (TaKaRa, Dalian, China) and 1 

l of DNA template (20 ng). The PCR amplification program included initial 

denaturation at 94 °C for 3 min, followed by 30 cycles of 94 °C for 20 s, 56 °C for 30 

s, and 72 °C for 45 s, and a final extension at 72 °C for 10 min. Triplicate PCR reactions 

were conducted for each sample, and PCR products were pooled for purification using 

OMEGA Gel Extraction Kit (Omega Bio-Tek, USA) following electrophoresis. PCR 

products from different samples were pooled with equal molar amount, and then applied 

to pair-end sequencing (2x250 bp) using the Illumina MiSeq sequencer at Chengdu 

Institute of Biology, Chinese Academy of Sciences. 

Sequence analysis 

Raw sequence data were processed using MOTHUR pipeline (v. 1.34.3)40. Paired-end 

reads were merged and sequences were quality screened with following settings: any 

sequences with length <300 or >400, more than 1 mismatches at the primer region, 

average quality <35, ambiguous bases >0 and homopolymer length >9 were removed 

for further analysis. The remaining sequences were aligned to Silva reference alignment 

(release 128), which was trimmed to the same region amplified, and those sequences 

that did not align were removed. Chimera sequences were screened using UCHIME41. 

The sequences were classified using Bayesian classifier against Silva database (release 

128), with a minimum confidence score of 80%42, then all Archaea, Eukaryota, 

http://cdc.cma.gov.cn/


chloroplasts, mitochondria and unknown sequences were culled. Finally, sequences 

were classified into operational taxonomic units (OTUs) at 97% identity. The OTUs 

with only one sequence across the entire dataset were considered as singleton and 

removed, and then the datasets were sub-sampled to equal depth of 10983, which was 

smallest sample size across the entire dataset. Community alpha diversity indices (Ace, 

Chao1, Good’s coverage, Shannon, Simpson and species observed) were calculated 

using Mothur40.  

 

Currently, there weren’t a consistent method of defining abundance and rare OTUs, and 

current methods are mostly arbitrary43. In this study they were defined based on their 

relative abundance, which was one of the most popular methods been used8,44,45. 

Abundant OTU was defined as an OTU with a relative abundance >1% within any 

sample, or having an average abundance >0.1% across all samples. Rare OTUs were 

defined as an OTU with a relative abundance <0.01% in any sample or having an 

average abundance <0.001% across all samples.  

Data analysis 

Phylogenetic signal 

To use phylogenetic information infer ecological processes, it requires phylogenetic 

signal in OTU’s optimal habitat conditions15 i.e., the phylogenetic related taxa have 

similar habitat preference. We tested whether phylogenetic signal exist in our dataset 

and determined the appropriate phylogenetic distance that phylogenetic signal exist. 

The abundance-weighted environmental niche value of each measured biotic and 

abiotic factor was calculated for each OTU, and a Euclidean distance matrix was built 

using ‘vegdist’ in package ‘vegan’. A Mantel correlogram was plotted using 

‘mantel.correlog’ from the same package, which shows the Spearman correlation 

relationship between the between-OTU niche difference and between-OTU 

phylogenetic distance (arbitrary value) at various phylogenetic distance bins. This 

allows identification of phylogenetic distance threshold beyond which niche differences 

no longer increased with phylogenetic distance22. 



Phylogenetic community assembly process 

A positive relationship (Spearman correlations) was only observed between-OTU niche 

differences and between-OTU phylogenetic distances across relatively short 

phylogenetic distances (Supplementary Fig. 8), which is consistent with previous 

researches15,22. Therefore we used mean nearest taxon distance (MNTD) and nearest 

taxon index (NTI) to infer the assembly process of rare and abundant sub-communities 

within each sample (unique point in space and time)15. MNTD was the averaged 

minimum phylogenetic distance between each OTU in a sample and the nearest OTUs 

within the same sample21. The MNTD and NTI were calculated using ‘mntd’ and 

‘ses.mntd’ in package ‘picante’ with the null model generated by randomized the OTUs 

and their relative abundances across the tips of phylogeny15,21. Only the weighted 

version of NTI was calculated as Freilich and Connolly46 suggested that using 

abundance weighting can substantially increase the power to detect assembly process. 

Community composition and phylogenetic turnover  

The community compositional turnover was estimated using Bray-Curtis dissimilarity 

matrix, which was calculated from square root-transformed sample relative abundance 

matrix using ‘vegdist’ in package ‘vegan’. The dbRDA plots were generated using 

‘capscale’ in package ‘vegan’ to visualise the relationship between all measured factors 

and the community compositional turnover. The turnover in phylogenetic composition 

through space was quantified using Beta Mean Nearest Taxon Distance (MNTD) and 

Beta Nearest Taxon Index (NTI), which are the between-sample analogue of MNTD 

and NTI, respectively15. Similar to MNTD and NTI, MNTD quantifies weighted 

phylogenetic distance among closest taxon in two different communities, NTI 

measure the deviations of the observed MNTD is from the mean of the null 

distribution. MNTD and NTI were calculated using ‘comdistnt’ in package ‘picante’. 

Identify the driving factors of community compositional and 

phylogenetic turnover 

The normalities of the physicochemical variables were checked using Shapiro-Wilk test, 

and measured biotic and abiotic factors were transformed to reduce skewness. TOC, 



Aridity, NH4
+, plant above-ground and below-ground biomass were logarithm 

transformed; MAP and moisture were square root transformed, and pH and plant 

Shannon diversity were left untransformed. The spatial distance between each sampling 

site were calculated based on their longitude and latitude coordinates, and principle 

coordination analysis were performed using Primer 6 with the PERMANOVA+ 

package47 to obtain the principle coordinates of the 1st axis, which were used as spatial 

factors of each sample. The environmental factors were group into four categories based 

on their properties, soil factors include pH, TOC, NH4
+, NO3

- and soil moisture; climate 

factors include MAT, MAP and aridity; plant factors include plant Shannon diversity, 

plant above-ground and below-ground biomass; and lastly the spatial factor. The plant 

and soil factors were further classified as regional factor, while the regional factors 

contained climate and spatial distance as described previously8. To estimate the inter-

correlation between measured biotic and abiotic factors, Pearson correlation between 

all biotic and abiotic factor pairs were calculated using ‘rcorr’ in package ‘Hmisc’. 

 

The contribution of all measured environmental factors to the community 

compositional variations observed were calculated using distance-based linear 

modelling (DistLM) using Primer 6 with the PERMANOVA+ package47. Due to the 

strong inter-correlation among measured biotic and abiotic factors, hierarchical 

partitioning was used to estimate the individual and joint contribution of each factor to 

NTI, as it has been shown to alleviate multicollinearity48. It was calculated using 

‘hier.part’ in package ‘hier.part’ by calculating the goodness-of-fit with all possible 

combination of factors, and then the contribution of each factor was estimated based on 

the increased fit when that particular factor was included in the analysis49. The 

correlation between NTI/NTI and measured environmental factors were also 

calculated using partial correlation analysis (with ‘pcor.test’ in package ‘pcor.test’) and 

partial mantel test (with ‘mantel.partial’ in package ‘vegan’), respectively. 
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Tables 

Table 1 Percentage of variations explained by abiotic and biotic factors using distance-

based linear modelling (DistLM). 

 

Table 2 Correlations of all environmental factors and Nearest Taxon Index (NTI) and 

Beta Nearest Taxon Index ( NTI) for the rare and abundant sub-communities. 

  



Figure Legends 

 

Fig. 1 Distance based redundancy analysis (dbRDA) performed on Bray-Curtis 

dissimilarity matrices for (A) rare sub-community, (B) abundant sub-community 

and (C) the entire community and environmental factors. Samples from desert 

grassland (○) and steppe (●) were marked. Arrows indicate correlation between 

environmental factors and microbial structure. The shown environmental factors were 

chosen based on distance-based linear modelling results. MAP: mean annual 

precipitation; MAT: mean annual temperature; BGB: plant below-ground biomass; 

AGB: plant above-ground biomass; TOC: total organic carbon. 

 

Fig. 2 NTI of the rare and abundant sub-communities. Steppe samples were 

coloured red, while the desert grassland samples were coloured black. The dashed lines 

indicate the thresholds of deterministic (|NTI|>2) or stochastic (-2<NTI<2) dominated 

assembly processes. NTIs of the rare sub-community were mostly between -2 and +2, 

while that of the abundant sub-community were predominately >2. 

 

Fig. 3 Independent and joint contributions of biotic and abiotic factors in relation 

to the NTI variations observed according to a hierarchical partitioning analysis. 

A: Rare sub-community; B: abundant sub-communities. Significant (P<0.05) 

independent effects are indicated by asterisks (*). MAP: mean annual precipitation; 

MAT: mean annual temperature; BGB: plant below-ground biomass; AGB: plant 

above-ground biomass; TOC: total organic carbon. 

 

Fig. 4 NTI distributions of the rare and abundant sub-communities. The dashed 

lines indicate the thresholds of deterministic (|NTI|>2) or stochastic (-2<NTI<2) 

dominated assembly processes. NTIs of the rare sub-community were mostly between 

-2 and +2, while that of the abundant sub-community were predominately >2. 

  



Table 1 Percentage of variations explained by abiotic and biotic factors using distance-

based linear modelling (DistLM). 

 

  Rare 
sub-community 

Abundant sub-
community 

Total variations explained 17.7% 48.0% 
Climate   

 MAP 3.6% 4.3% 
 MAT 2.3% n.d. 
 Aridity n.d. n.d. 

Spatial distance 2.4% 6.1% 

Soil   

 pH 2.1% 3.7% 
 TOC 2.5% 9.4% 
 NH4

+ n.d. 3.1% 
 NO3

- n.d. n.d. 
Plants   

 AGB 2.4% 15.6% 
 PSD 2.4% 5.8% 

Summary of distance-based linear modelling testing the correlations between 

community Bray-Curtis dissimilarity matrix and biotic and abiotic factors: mean annual 

temperature (MAT), mean annual precipitation (MAP), aridity, pH, total organic carbon 

(TOC), NH4
+, NO3

-, above-ground biomass (AGB) and plant Shannon diversity (PSD). 

n.d., the proportion of variations explained was not significant. 

  



Table 2 Correlations of all environmental factors and Nearest Taxon Index (NTI) and Beta Nearest Taxon Index (NTI) for the rare and abundant 

sub-communities. 

 

  NTI  NTI 

  Rare  Abundant  Rare  Abundant 

  P-value r  P-value r  P-value r  P-value r 

Climate n.a. n.a.  n.a. n.a.  0.08 -0.10  0.03 0.12 

 MAT 0.41 -0.17  0.68 0.07  0.36 0.03  0.31 -0.05 

 MAP 0.21 0.23  0.87 -0.03  <0.01 -0.14  <0.01 0.12 

 Aridity 0.50 -0.10  0.94 0.01  0.15 -0.08  <0.01 0.25 

Soil n.a. n.a.  n.a. n.a.  0.14 -0.10  <0.01 -0.29 

 pH 0.44 0.12  0.88 -0.03  0.47 0.01  0.26 -0.05 

 Moisture 0.82 0.04  0.99 -0.01  0.05 -0.10  0.10 -0.08 

 TOC 0.63 -0.08  0.12 -0.25  0.09 -0.08  0.01 -0.18 

 NH4+ 0.22 -0.20  0.58 -0.09  0.06 -0.13  0.04 -0.16 

 NO3- 0.35 -0.15  0.20 -0.21  0.14 0.09  0.10 -0.11 

Plants n.a. n.a.  n.a. n.a.  0.18 -0.06  0.04 -0.11 

 Above ground biomass 0.28 0.18  0.39 0.14  0.06 -0.11  0.01 -0.17 

 Plant Shannon diversity 0.50 0.07  <0.01 -0.43  0.13 -0.08  0.23 -0.05 

 Root biomass 0.34 -0.15  0.52 0.11  0.25 0.04  0.43 0.01 

Geospatial 0.14 0.24  0.86 -0.03  0.02 -0.10  0.03 0.09 

The Pearson correlations between the NTI and environmental factors were calculated using partial correlation analysis, while the correlations for 

the NTI were calculated using partial Mantel analysis. For each tested environmental factor and category, the controlling matrix was defined to 

contain all other factors excluding the ones been tested. Significant correlations are in bold 



Figure 1 Distance based Redundancy analysis (dbRDA) performed on Bray-Curtis 

dissimilarity matrices for (A) rare sub-community, (B) abundant sub-community and 

(C) the entire community and environmental factors. Samples from desert grassland (○) 

and steppe (●) were marked. Arrows indicate correlation between environmental 

factors and microbial structure. The shown environmental factors were chosen based 

on distance-based linear modelling results. MAP: mean annual precipitation; MAT: 

mean annual temperature; BGB: plant below-ground biomass; AGB: plant above-

ground biomass; TOC: total organic carbon. 



 



Figure 2 NTI of the rare and abundant sub-communities. Steppe samples were coloured 

red, while the desert grassland samples were coloured black. The dashed lines indicate 

the thresholds of deterministic (|NTI|>2) or stochastic (-2<NTI<2) dominated assembly 

processes. NTIs of the rare sub-community were mostly between -2 and +2, while that 

of the abundant sub-community were predominately >2. 
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Figure 3 Independent and joint contributions of biotic and abiotic factors in relation to 

the NTI variations observed according to a hierarchical partitioning analysis. A: Rare 

sub-community; B: abundant sub-communities. Significant (P<0.05) independent 

effects are indicated by asterisks (*).MAP: mean annual precipitation; MAT: mean 

annual temperature; BGB: plant below-ground biomass; AGB: plant above-ground 

biomass; TOC: total organic carbon. 
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Figure 4 NTI distributions of the rare and abundant sub-communities. The dashed 

lines indicate the thresholds of deterministic (|NTI|>2) or stochastic (-2<NTI<2) 

dominated assembly processes. NTIs of the rare sub-community were mostly between 

-2 and +2, while that of the abundant sub-community were predominately >2. 

  


