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Abstract 

The primary focus of this work is the investigation into the nature and origin of the electron 

density between the ortho-hydrogens in the higher energy, planar transition state of biphenyl. 

This interaction has been the subject of debate within the scientific community for almost three 

decades with no clear consensus being made. Since the distance between these hydrogens is 

smaller than their summed van der Waals radii (2.4 Å), classically one can assume that they 

partake in a steric clash, however the Quantum Theory of Atoms in Molecules (QTAIM) 

depicts a bond path for this H,H contact. This presence of a bond path caused the rift in the 

scientific community.  

To investigate the problem, we made use of cross-section decomposition analysis whereby 

the electron density at any given coordinate is decomposed into the components that contribute 

to its presence. In this dissertation, three methods using this analysis were made, namely (i) 

MO-ED, (ii) FALDI-ED, and (iii) NBO-ED. These represent the decomposition products that 

the density is decomposed into; the MO-ED method decomposed the density between the 

ortho-hydrogens into its molecular orbital (MO) contributions, the FALDI-ED method 

decomposed the density into fragment and diatomic contributions, and the NBO-ED method 

decomposed the density into its natural bond orbital (NBO) contributions. 

With all three methods, when decomposing the density along the 2-eigenvector from the 

bond critical point (BCP) between the ortho-hydrogens in the planar conformer, it was found 

that the total electron density is concentrating, shown by the directional second partial 

derivative. This means that the electron density is purposefully accumulated in the H,H contact 

rather than dissipated as one would expect from a classical steric clash. Furthermore, this 

density decomposition analysis revealed that this density is due to a large molecular-wide 

delocalisation, rather than a classical 2-centred approach, with the largest contributions (in both 

conformers) being from the two covalent ortho C-H bonds. This delocalisation forms a density 
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channel between two hydrogens, of an overwhelmingly concentrating/bonding nature, forming 

a weak covalent bond. Due to these findings, it is clear that the classical idea of a steric clash 

cannot be the case for this system, and that QTAIM correctly predicts the bond path between 

these ortho-hydrogens. 
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1.1. Chemical Bonding 

The term chemical bond and what it refers to, is immediately understood by chemists. 

However, when one tries to define a chemical bond and what defining features are needed to 

characterise it, conflict arises. 

A chemical bond could be described as a phenomenon (having a set of physical-chemical 

properties) leading to the lowering of energy between two atomic nuclei, and as a whole, it is 

an energy minimising contribution to a molecular system.[1] This concept of a chemical bond 

is thoroughly defined for diatomic molecules, in which one can measure the stabilisation of 

energy of two atoms that are brought together from an infinite distance. 

For polyatomic molecules however, we expand our knowledge from diatomic theory to 

understand polyatomic molecular bonding. If one takes CO2 as example, one could say that the 

carbon is attracted to the one oxygen (O1), but what about the second (O2)? Is O2 attracted to 

the carbon atom, or to the whole delocalised system of the already established C-O1 bond? 

Classically, one can explain this conundrum using Lewis Bond Theory (LBT), but on a 

quantum mechanics (QM) level, the electrons that were once localised to the carbon atom are 

now delocalised with the one oxygen atom. This makes bonding in polyatomic molecules more 

complex. 

There are traditionally two major models for the calculation of chemical bonds and 

molecular structures, namely valence bond (VB) theory[2-5] and molecular orbital (MO) 

theory.[2-3, 6] There is however a third approach that will be discussed in this project along with 

MO theory, which is natural bond orbital (NBO) theory.[7-9] 

VB theory was the first successful method for calculating molecular energy, achieved by 

Heitler and London’s H2 calculation, but was not adequate for describing larger molecules. 

Due to this shortcoming, it was overshadowed by Friedrich Hund and Robert Muliken’s theory 

of MOs. Today nearly all computational chemistry calculations make use of MO theory to 
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calculate electronic structures of atoms and molecules.[6] The main view of MO theory is to 

disregard the notion of electrons being fixed to one specific bond, but rather be free to 

delocalise them throughout the entire molecule, in stark contrast to LBT. Although it has been 

shown to be highly accurate for small molecules, the main concepts of MOs in polyatomic 

molecules are merely extensions of the theory based on homonuclear diatomic molecules/ions. 

The third approach to chemical bonding is NBO, which intrinsically views electronic wave 

functions as localised Lewis-like chemical bonds. These can be split further into Lewis 

members or non-Lewis members that describe the lone pairs or bond pairs as you would 

typically see in a Lewis-dot structure and resonance delocalisation. In order to fulfil the 

restriction of its electronic wave function to form Lewis-like chemical bonds however, the 

orbitals are forced to be doubly occupied, likewise to MOs calculated using the Hartree-Fock 

approximation or Density Functional Theory for example.  

Modern theories have been developed on the basis of QM to describe chemical bonding, in 

which a successful theory arose, developed by Richard Bader, called the Quantum Theory of 

Atoms in Molecules (QTAIM)[10] – this will be discussed in more detail in Chapter 2. In short, 

QTAIM describes atoms and bonds directly from the quantum observable electron density 

(ED), rather than from the electronic wavefunction. 

What happens, however, if a modern theory disagrees with classical interpretations or 

intuition? As an example, what if QTAIM would contradict (to a certain extent) LBT? This is 

the case about two conformations (equilibrium/twisted and planar) of biphenyl (Bph, Scheme 

1) which has led to a scientific debate for almost three decades.[11-28] The contention largely 

came about when Matta et al suggested with the aid of QTAIM that the ortho-hydrogen atoms 

are in-fact “bonded” in the bay-region of planar Bph, contradicting our intuition as a 

chemist.[12] Note that this phenomenon is not exclusive to Bph; there are many systems that 
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resemble this “bond”, such as in phenanthrene and cis-2-butene. This will be elaborated on 

further in the following sections.  

 

Scheme 1. Molecular graph of planar Bph, with corresponding bond paths between the ortho-

hydrogens. 

1.2. Previous Studies on Biphenyl 

Bph exists at equilibrium as twisted, with a dihedral angle () of ± 42º between the rings and 

has a rotation barrier of 2.1 kcal.mol–1 between the equilibrium conformation and its planar 

transition state.[29] Furthermore, in the planar conformation, the ortho-hydrogens are separated 

by ±1.94767 Å, whereas the van der Waals radii of the two hydrogens sums to 2.4 Å. Due to 

this, one of the first interpretations for the twisted conformation to be lower in energy was 

made in 1944 by Karle et al,[30] stating that it avoids the steric hindrance between the ortho-

hydrogen atoms in the planar conformation.  

The debate about the bonding nature of this interaction between the aforementioned 

hydrogens uses approaches routed in two major families of QM methods. The one grouping 

belongs to an orbital-based method including the use of MOs and NBOs, and the second 

grouping belongs to an ED-based method incorporating QTAIM and interacting quantum 

atoms (IQA).[31] In general, the arguments made for the bonding nature of the hydrogens are 

routed in density-based approaches, and arguments made against the bonding nature are routed 

in orbital-based approaches. This division leads to the speculation of why one family of QM 
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methods forms a different conclusion to that of the other, and whether or not these two families 

can be reconciled. 

Cioslowski and Mixon[11] studied planar and twisted Bph back in 1992 with QTAIM, but 

they took a more neutral approach in their conclusion – the presence of a bond path (BP) does 

not inherently imply bonding. As previously mentioned, the debate mainly surfaced when 

Matta et al[12] suggested that the BP between the ortho-hydrogens actually stabilises the 

molecule in the planar conformation, rather than destabilising it by steric hindrance. However, 

Poater et al[13] disputed Matta’s claims by concluding that the Pauli repulsion from Kohn-Sham 

MO theory is at a maximum in the planar conformation after adjusting the bond distance of the 

carbon-carbon linkers. They further ‘validated’ their claim by cutting the four ortho-hydrogens 

from Bph to form a tetra-radical system and observing that this system optimises to the planar 

conformation. Poater however, was quickly rebutted by Bader[14] on the basis that the former 

authors arbitrarily chose “non-physical reference states that violate all of the rules of physics.”  

If we look at more recent studies, Hancock et al[21] investigated the stabilities between the 

two structural isomers phenanthrene  and anthracene (phenanthrene contains an H∙∙∙H 

interaction similar to planar Bph). They attributed the increased stability of phenanthrene to 

the increased aromatic stabilisation of its -orbitals and that its corresponding H∙∙∙H interaction 

actually destabilises the molecule. Weinhold et al[23] studied another similar system, cis-2-

butene, whereby a BP is present between two hydrogens on the terminal carbons if the 

hydrogens point towards each other. Weinhold approached this system using another orbital-

based method, namely NBO. Although he claimed that “there is evidently a germ of truth” in 

the QTAIM view (BP existing between the hydrogens), he concluded that according to NBO 

analysis, the hydrogens are nevertheless repulsive/sterically hindered. On the opposing side of 

this dispute, Eskandari and Van Alsenoy[22] agreed with Matta and Bader’s hypothesis that the 

ortho-hydrogens in planar Bph have a bonding mechanism. After using IQA to study the energy 
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components, they discovered that the ortho-hydrogens have a net attractive interaction to each 

other. Popelier et al[28] also studied the energetics of planar Bph, and similarly concluded that 

the ortho-hydrogens form a weak covalent bond between the two, to a degree counteracting 

the net destabilisation of the planar conformation. 

There are many more studies that could be thoroughly discussed, but for the purpose of this 

discussion, the main focus is to show that the density-based approach leads to a ‘bonding’ 

conclusion, and that an orbital-based approach leads to a ‘non-bonding’ conclusion.  

1.3. Meaning of a Bond Path 

Throughout this long scientific debate, the question arises (either directly or indirectly) of what 

the chemical meaning a BP is (as QTAIM defines it). A BP first and foremost is a line of 

maximum ED, linking two nuclei with a corresponding bond critical point (BCP) between 

them. Richard Bader eloquently addressed this [32-33] clarifying that a BP is not a chemical bond; 

As briefly discussed in the beginning of this chapter, giving a precise definition for a chemical 

bond with a set of physical parameters is difficult, but arguably the most important aspect of a 

chemical bond is that it is an aid to chemical concepts – it is not a real or measurable property. 

On the other hand, a BP is precise in its definition, in line with physics, and since ED is 

measurable, a BP is a measurable property of a system which is becoming common practice 

today.[34-35] Because all BP’s share common quantum mechanical properties, a BP is an 

indicator of bonding between atoms, not a bond between atoms, the former being a mechanism 

of stabilising/lowering the energy the molecule/molecular environment and the latter being a 

physical object. 

In support of QTAIM, Pendás et al[19] sought to determine the further meaning and 

implications of a BP, and concluded that BPs indicate the presence of privileged exchange-

channels, or to put it otherwise, carriers of quantum-mechanical exchange. They give a 

criterion of two factors that lead to the formation of a BP, (i) that direct exchange must occur 
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between the respective atoms, with no other atoms in its close environment to compete and (ii) 

that out of all possibilities, the VXC term must be largest for the given BP.  

This was, however, shown not to be the case, as de Lange et al[36] investigated the FALDI-

based criterion for the origin of an ED bridge. They showed that the bicentric approach of 

setting parameters for the presence of a BP distorts the topology of the ED; rather its presence 

is due to the multicentred nature of the molecular environment. They state that the notion of 

privileged exchange-channels put forward by Pendás et al should be refined to incorporate the 

multicentred nature of the molecule, taking into account multiple exchange-channels. 

1.4. Aims and General Approach 

This dissertation aims to (i) explain the presence and absence of a BP in planar and twisted 

Bph, respectively, (ii) determine the origin of the density of the H,H contact, (iii) determine 

the nature of this H∙∙∙H interaction and (iv) reconcile the orbital- and density-based disparity in 

the their interpretations of the nature of the BP in planar Bph. The term ‘nature of this H∙∙∙H 

interaction’ refers to whether the density is concentrating, depleting, or removing, which is 

synonymous with bonding, nonbonding or antibonding, respectively. In order to achieve these 

aims, we utilise an in-house developed density decomposition cross-section analysis. Cross-

section analysis allows us to decompose the density at a specific point in space (densities that 

can be decomposed from a number of sources) into individual contributors, allowing us to 

investigate the origin and nature of the specific density by observing what factors are at play. 

1.5. Overview of this Dissertation 

Each of the results-containing chapters, Chapters 3 through 5 (as well as Appendices I through 

III), are presented as the manuscripts for publication whereby Chapter 3 has been published in 

the Journal of Physical Chemistry A,[37] and Chapter 4 has been submitted at the time of writing 

to Physical Chemistry Chemical Physics.[38] Chapter 5 is being prepared for submission to the 

Journal of Computational Chemistry. Each appendix is presented as the supplementary 
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information pertaining to its relative chapter, i.e. Appendix I relates to Chapter 3, and so on. 

Note that the manuscripts for Chapters 3 and 4 are included as they were submitted for 

publication. 

This dissertation tells a ‘story’ if you will, investigating the density at the BCP and minimum 

density point (MDP) of H∙∙∙H in the planar and twisted conformation, respectively, from 

different methods. A brief overview of each chapter is explained below. 

Chapter 2 provides the Theoretical Background relating to this present work. It is split into 

four sections. The first section covers some background in “Electronic Structure Methods” 

which include the following topics: (i) Levels of Theory and (ii) Basis Sets. In the second 

section, “Quantum Chemical Topology” is addressed, covering the crucial background and 

fundamentals of (i) QTAIM[10] and (ii) FALDI[36, 39-42]. The third section departs from electron 

density focused methods and moves on to wavefunction methods in “Orbital Analysis” 

covering (i) Molecular Orbitals and (ii) Natural Bond Orbitals. Finally, “New Theoretical 

Developments” is discussed in the fourth section covering (i) Cross-Section Decomposition of 

Electron Density, (ii) a function to describe the presence of a BP (CP(r) Function) and (iii) a 

method for decomposing QTAIM delocalisation indices (DI) in terms of MOs, also known as 

the MO-DI method. 

Chapter 3, titled “Molecular Orbitals Support Energy-Stabilising ‘Bonding’ Nature of 

Bader’s Bond Paths”[37] is the first chapter in the investigation of the BP between the ortho-

hydrogens in planar Bph, published in the Journal of Physical Chemistry A. This chapter 

utilises cross-section decomposition of electron density as well as the MO-DI method to break 

down the densities at the BCP between two non-controversial, traditional covalent bonds. 

These results are then compared to the BCP(H,H) and MDP(H,H) in the planar and twisted 

conformation of Bph, respectively. Further investigation was done on another H∙∙∙H 
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interaction, but rather than the two hydrogens having  net positive charges (+) as is the case 

in Bph, these hydrogens have net negative charges (-) in cubic Li4H4.  

The densities for this study are decomposed from MO distributions, and by utilising cross-

section analysis, the density at the aforementioned points in space can be decomposed into MO 

contributions. This allows one to determine which MOs contribute (and to what extent) to the 

density, and whether they are either concentrating or depleting. The MO-DI method, however, 

decomposes the QTAIM DI into MO contributions. This creates valuable insights to the extent 

of electron density ‘donation’ from all MOs, but also to determine the nature at which the MOs 

interrelate – if they increase the delocalised electron pairs through constructive interference or 

decrease the delocalised electron pairs through deconstructive interference. This chapter’s 

supplementary information is provided in Appendix I. 

Chapter 4, titled “The CHHC interaction in biphenyl is a delocalized, molecular-wide 

and entirely non-classical interaction: results from FALDI analysis”, takes a similar approach 

to Chapter 3, published in the Journal of Computational Chemistry. However, rather than the 

ED being decomposed into contributing MOs, the ED is decomposed into FALDI components. 

These cross-section decomposition results are then compared to the investigation of the MO 

description. The analysis done through FALDI density decomposition decomposes the electron 

density into concentrating, depleting, or removing density at BCP(H,H) and MDP(H,H) in the 

planar and twisted conformation of Bph, respectively. FALDI also allows one to decompose 

the densities into two different types of contributions: into (i) fragment contributions and (ii) 

diatomic contributions. Decomposition into FALDI-fragments allows for unique analysis, as 

FALDI allows one to maintain the integrity of the molecule whilst still forming fragments, i.e. 

the molecular wide electronic environment is not shattered by breaking the molecule into 

radical states. We can then determine which fragments contribute (and to what extent) to the 

density measured. Decomposition into FALDI-atom pairs decomposes the density into Bph’s 
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231 atom pair contributions. Not only does this provide a higher resolution into the effects at 

play (compared to Bph’s 41 MOs), it provides insight in chemically intuitive terms. This 

chapters supplementary information is provided in Appendix II. 

Chapter 5, titled “NBOs Support MO and FALDI based ‘Bonding’ Description of CH∙∙∙HC 

Bond Paths in Planar Biphenyl”, is the final results chapter of this study. In previous studies, 

the BP in planar Bph had been investigated on the basis of electron density, as well as orbital 

analysis by the likes of MOs and NBOs, and up until now only MO- and density-based studies 

in our work have been conducted. Just as MO-based studies concluded a non-bonding nature 

of the H∙∙∙H interaction, so too did NBO-based studies, and as such this dissertation is 

concluded by undergoing cross-section decomposition of the electron density from NBOs. In 

doing so, these results are compared to FALDI-based cross-sections. Due to the fact that NBO 

wavefunctions are constricted into resembling Lewis-like bonds and that there are 240 

individual NBOs, this decomposition provides somewhat chemically intuitive contributions 

and a higher resolution than MO decomposition does. This chapters supplementary information 

is provided in Appendix III. 

Chapter 6, Conclusions, concludes the major observations and outputs of this dissertation, 

as well as future work to be conducted. 

Appendix I, titled “Molecular Orbitals Support Energy-Stabilising ‘Bonding’ Nature of 

Bader’s Bond Paths”, is the supplementary information for Chapter 3 which has been published 

in the Journal of Physical Chemistry A.[37] This is split into six parts: (i) Theoretical 

background, (ii) Cartesian coordinates of molecules studies, (iii) Canonical molecular orbitals 

in biphenyl, (iv) Data pertaining to covalent bonds in biphenyl, (v) Data pertaining to 

BCP/MDP(H7,H18) in the planar/twisted biphenyl, and (vi) Data pertaining to H∙∙∙H density 

bridges in Li4H4. 
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Appendix II, titled “The CHHC interaction in biphenyl is a delocalized, molecular-wide 

and entirely non-classical interaction: results from FALDI analysis”, is the supplementary 

information for Chapter 4 which has been published in the Journal of Computational 

Chemistry. This is split into four parts: (i) Cartesian coordinates of all molecules studied, (ii) 

Cross-section comparison between MO- and FALDI-ED method for biphenyl, (iii) Alternate 

fragment partitioning scheme, and (iv) FALDI-ED data for H7∙∙∙H18 interaction in biphenyl. 

Appendix III, titled “NBOs Support MO and FALDI based ‘Bonding’ Description of 

CH∙∙∙HC Bond Paths in Planar Biphenyl”, is the supplementary information for Chapter 5 

which is being prepared for submission to the Journal of Computational Chemistry. This is 

split into three parts: (i) Cartesian coordinates of all molecules studies, (ii) Cross-section 

comparison between FALDI- and NBO-ED method for biphenyl, and (iii) Isosurfaces of the 

major NBO contributions. 
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2.1. Introduction 

This chapter gives a contextual background on electronic structure methods, in which the 

concept of a level of theory/theoretical model is discussed, as well as a more in-depth 

elaboration of the Hartree-Fock approximation and Density Functional Theory. This subsection 

is concluded with a discussion of basis sets and its anatomy. Following this section, we discuss 

electron density methods in Quantum Chemical Topology which gives an overview of the well-

established and highly successful QTAIM[1] method, as well as the relatively new in-house 

technique, FALDI.[2-6] The next section provides a brief overview of Orbital Analysis which 

briefly covers molecular orbitals and natural bond orbitals. The final section gives a 

background to New Theoretical Developments which discusses techniques developed in-house. 

These in-house developments include novel functions and indicators for the detection of bond 

paths and bond critical points which can be used in a variety of different systems to decompose 

the electron density. This allows one to more clearly investigate the origins of density, as well 

as its nature. These developments include the cross-section decomposition of the electron 

density, the CP(r) function, and the MO-DI method. 

The work covered in 2.2. Electronic Structure Methods of this chapter follows extracts from 

three comprehensive textbooks, namely Exploring Chemistry with Electronic Structure 

Methods by Foresman and Frisch,[7] A Chemist’s Guide to Density Functional Theory by Kock 

and Holthausen,[8] and Essentials of Computational Chemistry: Theories and Models by 

Cramer.[9] The section on electronic structure methods are reported in numerous works and are 

well known. The purpose of this is to give context to the rest of the work. 
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2.2. Electronic Structure Methods 

2.2.1. Levels of Theory 

Levels of theory are known as a hierarchy of procedures that correlate to different 

approximation methods to approximate the Schrödinger equation. Common levels of theory 

include Hartree-Fock (HF) theory, and Density Functional Theory (DFT), in which multiple 

functions are included, such as the well-known B3LYP function. We will delve deeper into HF 

and DFT in the forthcoming sections.  

Levels of theory represent different theoretical models which hold a number of implications: 

(i) should be uniquely defined for any system of any arrangement of nuclei and electrons, and 

(ii) should be unbiased, where no special assumptions or considerations are to be made for 

certain chemical systems/structures.  

2.2.1.1. Hartree-Fock Approximation 

To delve into the HF approximation, we must go through the development that precedes it. By 

looking at the Schrödinger equation (Eq 1) with regards to its one-electron Hamiltonian 

 𝐸Ψ = 𝐻̂Ψ = 
−ℏ2

2𝑚
∇2Ψ+ 𝑉(𝑥)Ψ (2-1) 

 

if it only constitutes the one-electron kinetic energy and nuclear attraction, we can obtain the 

operator 

 
𝐻̂ = ∑ℎ̂𝑖

𝑁

𝑖=1

 

 

(2–2) 

 

in which N represents the total number of electrons and ℎ̂𝑖 is the one-electron Hamiltonian. 

This equation is separable and is the sum of all one-electron Hamiltonians for the total number 

of electrons in the system. The term ℎ̂𝑖 is defined as 

 ℎ̂𝑖 = −
1

2
∇𝑖
2 −∑

𝑍𝑘
𝑟𝑖𝑘

𝑀

𝑘=1

 (2–3) 
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in which M represents the total number of nuclei. For the eigenfunctions in the above one-

electron Hamiltonian to be real, it must satisfy the one-electron Schrödinger equation 

 ℎ̂𝑖𝜓𝑖 = 𝜀𝑖𝜓𝑖 (2–4) 

 

As previously stated, the Hamiltonian operator is separable, and because of this, it allows one 

to construct many-electron eigenfunctions which are merely the products of one-electron 

eigenfunctions 

 Ψ𝐻𝑃 = 𝜓1𝜓2 ∙ ∙ ∙  𝜓𝑁 (2–5) 

 

The wavefunction term Ψ𝐻𝑃 is known as the Hartree-product wavefunction, which was the 

groundwork for further methods to be developed. We can determine the eigenvalue from the 

Hartree-product by incorporating the operator from Eq. 2 into Eq. 5 

 𝐻̂Ψ𝐻𝑃 = 𝐻̂𝜓1𝜓2 ∙ ∙ ∙  𝜓𝑁  

 Ψ𝐻𝑃 = (∑𝜀𝑖

𝑁

𝑖=1

)Ψ𝐻𝑃 (2–6) 

 

We must take note, although intuitive, that Eq. 2 and 3 does not take interelectronic repulsion 

into account as that depends on all pairwise interactions, where Eq. 2 and 3 only describes the 

one-electron Hamiltonian. In turn, a question arises to how accurately the Hartree-product 

wave function can compute the energies of the true Hamiltonian; in other words, we need to 

find which orbitals (𝜓) minimise 〈Ψ𝐻𝑃|𝐻̂|Ψ𝐻𝑃〉. We show that each 𝜓 is an eigenfunction of 

the operator ℎ̂𝑖 

 ℎ̂𝑖 = −
1

2
∇𝑖
2 −∑

𝑍𝑘
𝑟𝑖𝑘

𝑀

𝑘=1

+ 𝑉𝑖{𝑗} (2–7) 

where  

 𝑉𝑖{𝑗} =  ∑∫
𝜌𝑗

𝑟𝑖𝑗
𝑑𝒓

𝑗≠𝑖

 (2–8) 
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The third term in Eq. 7 represents the interaction potential of an electron with all other electrons 

in orbitals {𝑗}, and 𝜌𝑗 represents the charge density linked with electron j.  

However, another problem arises from the first problem stated; we want to find the 𝜓’s that 

minimises the energy, 〈Ψ𝐻𝑃|𝐻̂|Ψ𝐻𝑃〉, but then again the 𝜓 needs to be used in the one-electron 

Hamiltonian. So how can they be used before they are inherently calculated? This problem was 

resolved when Hartree suggested the self-consistent field (SCF) method. This allowed the 

calculation of 𝜓 that minimises the energy from an initial guess of the 𝜓, and reiterating the 

method until the difference between the new energy and the previous energy is below an 

arbitrary threshold, which is termed to be ‘converged’. 

If we now place two electrons in an orbital, there are two possible orientations that they can 

present – if their spins are paired (i.e. one-electron spin up, and one-electron spin down), or if 

they have parallel spins (either both spin up or spin down). Thus, these electrons can be 

characterised by their spin quantum number, denoted as α and β, and due to the Pauli exclusion 

principle, no two electrons may be characterised by the same quantum numbers. As a result, in 

a doubly occupied orbital, the electrons must be paired. 

Let’s say that a Hartree-product wave function is constructed whereby the electrons hold 

the same spin, α, we can define it as 

 Ψ𝐻𝑃
3 = 𝜓𝑎(1)𝛼(1)𝜓𝑏(2)𝛼(2) (2–9) 

 

where the superscript 3 denotes that the Hartree-product exists in a triplet electronic state, and 

𝜓𝑎 and 𝜓𝑏 represent two different orbitals (as a result of the Pauli-exclusion principle) and are 

orthonormal. However, for an electronic wavefunction to be valid, the Pauli-exclusion 

principle says that it must change sign if the coordinates of two electrons are switched, or in 

other words to be antisymmetric. This does not hold true for our triplet state Hartree-product 

in Eq. 9. To illustrate this, we can define a permutation operator 𝑃̂𝑖𝑗 as an operator that switches 

the coordinates of electron i and j 
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 𝑃̂12[𝜓𝑎(1)𝛼(1)𝜓𝑏(2)𝛼(2)] = 𝜓𝑏(1)𝛼(1)𝜓𝑎(2)𝛼(2)  

 ≠ −𝜓𝑎(1)𝛼(1)𝜓𝑏(2)𝛼(2) (2–10) 

 

With a small modification to the Hartree-product wave function however, the Ψ𝐻𝑃 can be made 

to be antisymmetric, which we term the Slater determinant 

 Ψ𝑆𝐷
3 =

1

√2
[𝜓𝑎(1)𝛼(1)𝜓𝑏(2)𝛼(2) − 𝜓𝑎(2)𝛼(2)𝜓𝑏(1)𝛼(1)] (2–11) 

 

which can be denoted differently as 

 Ψ𝑆𝐷
3 =

1

√2
|
𝜓𝑎(1)𝛼(1) 𝜓𝑏(1)𝛼(1)
𝜓𝑎(2)𝛼(2) 𝜓𝑏(2)𝛼(2)

| (2–12) 

 

and can be further denoted more compactly as 

 Ψ𝑆𝐷 =
1

√𝑁!
|

𝜒1(1) 𝜒2(1)
𝜒1(2) 𝜒2(2)

⋯ 𝜒𝑁(1)
⋯ 𝜒𝑁(2)

⋮ ⋮
χ1(𝑁) 𝜒2(𝑁)

⋱ ⋮
⋯ 𝜒𝑁(𝑁)

| (2–13) 

 

where 𝜒 is the spin orbital, as the product of the spatial orbital (𝜓) and electron spin 

eigenfunction ( or ). 

Similarly to how the Hartree-product orbitals can be determined as eigenfunctions as the 

product of one-electron Hamiltonian operators, so too can the HF orbitals, with the difference 

being, that each electron interacting with a potential field of all other electrons now includes 

exchange effects on the Coulomb repulsion – previously the modification of the Hartree-

product wave function into the Slater determinant did not include exchange effects for paired 

electron spins. 

Up until now, we have only worked with spin orbitals 𝜒 and their individual components, 

though the spin orbitals are constructed from a combination of basis function (weighted by 

their coefficients)  

 𝜒𝑗 =∑𝑎𝑖𝑗𝜑𝑖

𝑁

𝑖=1

 (2–14) 
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whereby if introduced into the equations discussed so far, it gives rise to Roothan equations, 

which describes HF calculations in the form of matrix algebraic equations.  

We can define the one-electron Fock operator for electron i as 

 𝑓𝑖 = −
1

2
∇𝑖
2 −∑

𝑍𝑘
𝑟𝑖𝑘
+

𝑀

𝑘

𝑉𝑖
𝐻𝐹{𝑗} (2–15) 

 

which allows us to calculate the HF molecular orbitals (MO) by solving the secular equation 

as part of the Roothan approach 

 |

𝐹11 − 𝐸𝑆11 𝐹12 − 𝐸𝑆12
𝐹21 − 𝐸𝑆21 𝐹22 − 𝐸𝑆22

⋯ 𝐹1𝑁 − 𝐸𝑆1𝑁
⋯ 𝐹1𝑁 − 𝐸𝑆1𝑁

⋮ ⋮
𝐹𝑁1 − 𝐸𝑆𝑁1 𝐹𝑁2 − 𝐸𝑆𝑁2

⋱ ⋮
⋯ 𝐹𝑁𝑁 − 𝐸𝑆𝑁𝑁

| = 0 (2–16) 

 

Matrix element S represents overlap matrix elements, and F represents Fock matrix elements 

which is defined as 

 𝐹𝜇𝜈 = 〈𝜇 |−
1

2
∇2| 𝜈〉  −∑𝑍𝑘

𝑀

𝑘

〈𝜇 |
1

𝑟𝑘
| 𝜈〉 +∑𝑷𝜆𝜎 [(𝜇𝜈|𝜆𝜎) −

1

2
(𝜇𝜆|𝜈𝜎)]

𝜆𝜎

 (2–17) 

 

where P is the density matrix 

 𝑷𝜆𝜎 = 2 ∑ 𝑎𝜆𝑖𝑎𝜎𝑖

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑

𝑖

 (2–18) 

 

The coefficients in the density matrix (𝑎𝜁𝑖) weigh the contribution that each basis function 

makes to the MO i.  

The final term on the right-hand side of Eq. 17 gives the electron-electron repulsion 

integrals, where (𝜇𝜈|𝜆𝜎) gives the Coulomb repulsion, and (𝜇𝜆|𝜈𝜎) gives the Exchange energy 

(halved because it only affects half of the electrons). 

The same characteristic paradox is present when solving the secular determinant/equation 

as with the one-electron Hamiltonian method, that we need to know the orbital coefficients 
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(𝑎𝜁𝑖) to calculate the density matrix P. This in turn is used in the Fock matrix element F, 

however the main purpose of the secular equation is to determine the values of these orbital 

coefficients. This is overcome by referring to the SCF procedure mentioned earlier, in which 

an initial guess is made of these orbital coefficients, and then iterated through the SCF 

procedure until the energies converge. 

Although the HF theory is extremely useful in giving initial base-level predictions for a 

number of systems, it is however limited to the extent that it ignores all electron correlation 

(apart from for exchange correlation) due to the one-electron nature of the Fock operator (Eq 

16). This is in part due to the severe approximation made in HF theory, that each electron exists 

within the domain of a nuclei, and that their movements and interactions are influenced in an 

averaged way from all other electrons of the same spin, ignoring how the electrons of the 

opposite spin may affect it. Nonetheless, it primed the expansion and development of other 

computational models that exist today. 

2.2.1.2. Density Functional Theory 

Our goal in HF theory is to find the wave function of its Schrödinger approximation and from 

that, obtain the densities, however in DFT, the inverse is true; we first find the density, and 

then obtain the wave functions.  

DFT as we know it today arose in 1964 from Hohenberg and Kohn, where they presented 

two theorems which form the pillars of all density functional theories that have been developed 

and exist today. 

The first theorem inherently states that the electron density (ED) of a system can be used 

directly to determine the Hamiltonian operator, and from this we can obtain all properties of 

said system. We can break down the Hamiltonian operator into the following: 

 𝐻̂ = 𝑇̂ + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑥𝑡 (2–19) 
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where 𝑇̂ is the kinetic energy operator, 𝑉̂𝑒𝑒 is the electron-electron repulsion operator, and 𝑉̂𝑒𝑥𝑡 

is the external potential operator. 

This theorem proves that the ground state ED can only be described by one 𝑉𝑒𝑥𝑡, or 

otherwise stated, that the ground state ED uniquely defines 𝑉𝑒𝑥𝑡. And so, from the ground state 

ED (𝜌0), we can obtain the Hamiltonian operator, which one can then use to obtain the wave 

function, and in conclusion we can obtain the energy, shown as a depiction below 

𝜌0 ⇒ 𝐻̂ ⇒ Ψ0 ⇒ 𝐸0 

 

and since the ground state energy is a function of the ground state ED, the components that 

make up this energy will too be a function of the ground state ED. 

 𝐸0[𝜌0] = 𝑇[𝜌0] + 𝐸𝑒𝑒[𝜌0] + 𝐸𝑛𝑒[𝜌0] (2–20) 

 

This energy expression can further be separated into components that depend on the system in 

question, and components that are independent of the system. 

 𝐸0[𝜌0] =  ∫𝜌0 (𝒓)𝑉𝑛𝑒𝑑𝒓 +  𝑇[𝜌0] + 𝐸𝑒𝑒[𝜌0] (2–21) 

 

where the first term is system dependent and the second and third term is system independent. 

Terms two and three can be grouped, to form a functional known as the Hohenberg-Kohn 

functional 𝐹𝐻𝐾[𝜌0] 

 𝐸0[𝜌0] =  ∫𝜌0 (𝒓)𝑉𝑛𝑒𝑑𝒓 + 𝐹𝐻𝐾[𝜌0]  (2–22) 

 

This Hohenberg-Kohn functional allows us to obtain the ground state wave function when 

given an arbitrary density, and so one can define this functional further as 

 𝐹𝐻𝐾[𝜌] =  𝑇[𝜌] + 𝐸𝑒𝑒[𝜌] = 〈Ψ|𝑇̂ + 𝑉̂𝑒𝑒|Ψ〉 (2–23) 

 

This functional forms the basis of density functional theory, and if known exactly, we would 

have an exact solution to the Schrödinger equation, rather than a mere approximation. 
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The second theorem adds on to this with the use of the variational principle, stating that the 

Hohenberg-Kohn functional will only give the lowest energy of the system if the density given 

is truly the ground state density. We can express the variational principle as follows 

 𝐸0 ≤ 𝐸[𝜌̃] =  𝑇[𝜌̃] + 𝐸𝑛𝑒[𝜌̃] + 𝐸𝑒𝑒[𝜌̃] (2–24) 

 

This states that if the boundary conditions 𝜌̃(𝒓) ≥ 0 and ∫ 𝜌̃(𝒓)𝑑𝒓 = 𝑁 are met, then for any 

trial density 𝜌̃(𝒓), the energy that we receive from Eq 20 will be the upper limit to the true 

ground state energy. We will only get the true ground state energy if the trial density is in fact 

the true ground state density. 

Up until this point, we have a powerful tool with the use of the Hohenberg-Kohn functional 

to obtain the nuclear-electron attraction, and the classical electron-electron repulsion, but there 

is an important electron interaction missing, specifically the non-classical portion called the 

electron exchange correlation, EXC. For this, further functions have been developed to add onto 

the DFT method to best approximate this correlation, and we can say that the quality of the 

density function lies to a large part in the quality and accuracy of such an approximation. There 

have been many functions developed, but up to now, the most popular function is a hybrid 

functional known as B3LYP (Becke, 3-parameter, Lee-Yang-Parr) as it has shown major 

success in a wide variety of different chemical states and systems.  

2.2.2. Basis Sets 

Following from levels of theory one must amalgamate basis sets, and each unique combination 

approximates the Schrödinger equation in a slightly different way. Some combinations may be 

more accurate than others, as smaller basis sets have reduced degrees of freedom than larger 

ones. 

The degrees of freedom links to the idea of cost versus accuracy, and by cost we refer to 

computational time. The smaller the basis set, the less degrees of freedom are available, and 

thus the approximation of the Schrödinger equation is less accurate, however, faster to 
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calculate. On the other hand, if we make use of a larger basis set, the computational time 

increases, however our approximation of the Schrödinger equation becomes closer to the true 

state of the system. In computational comparisons between systems, for the sake of 

consistency, one must calculate the system using identical model chemistries, i.e. the same 

level of theory and basis set. 

To focus down to basis sets, they are defined as the mathematical description of each orbital, 

typically MO. These orbitals are then combined to approximate a part of the Schrödinger 

equation, the total electronic wavefunction Ψ. Within basis sets exist individual specific pre-

defined functions, termed basis functions, which are applied to each atom in the molecular 

system to approximate the orbitals in one way or another. 

Two general types of basis functions are used to construct basis sets, namely (i) Slater-type 

functions, and (ii) Gaussian-type functions. Slater-type functions are a specialised 

mathematical function that describes the ‘tail’ of the real ED more accurately. In other words, 

as will be described in following sections, the ED is maximum at the nuclei and as the ED trails 

off to infinity, the Slater-type functions describe this more accurately than Gaussian functions 

would. A Gaussian-type function is simply a gaussian/bell-curve in three dimensions. These 

bell-curves are much easier to integrate, and therefore much quicker to calculate, however at 

the cost of reduced accuracy, and therefore uses many basis functions to cover this downfall. 

Slater-type functions use fewer basis functions, because they are more accurate, but their 

integration can become troublesome, increasing the time to compute. From here on, we will 

cover Gaussian-type functions exclusively. 

There are two classes that we will cover, (i) Pople type basis sets which include basis sets 

such as 6-311G, and (ii) Dunning correlation consistent basis sets which include basis sets such 

as cc-pVDZ.  
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There are minimal basis sets, which within them are restricted to the minimum number of 

basis functions for each atom in the system. They make no change to the shape or size of the 

orbitals. The first step to making these basis sets larger however is to add split valence basis 

sets. If we take 3-21G and 6-31G as examples, the dash separating the two basis functions 

represent the split valence basis sets. The functions before the dash represent the core orbitals 

and the functions after the dash represent the valence orbitals, hence split valence. These add 

the number of primitives to calculate, which comes down to cost versus accuracy; they add 

more degrees of freedom and so increases the accuracy of the calculation, but at the cost of the 

computing time. In using the Pople type basis set 6-31G as example, one refers to it as a double-

zeta basis set and 6-311G as a triple-zeta basis set. If one refers to Dunning correlation 

consistent basis set, a double-zeta basis set is represented as pVDZ, and triple-zeta basis set as 

pVTZ. 

The next step to making the basis sets larger is to add polarised basis sets. As opposed to 

split valence basis sets, these change the shapes of the orbitals by adding further angular 

momentum to the orbitals. To understand this more clearly, consider the basis set 6-31(d,p) 

where the underlined refers to the polarised basis set. This adds d orbital functions to heavy 

atoms (all atoms other than hydrogen) and adds p orbital functions to hydrogen atoms. 

Therefore, one can obtain a p orbital which partly has d orbital character, or an s orbital which 

partly has p orbital character. One can further add more polarised basis sets, such as 6-

311G(3df,3pd), where one adds three ‘d’ functions and one ‘f’ function to each heavy atom, 

and three ‘p’ functions and one ‘d’ function to hydrogen atoms. This can be referred to as high 

angular momentum basis sets.  

The last basis function to cover that can be added, is the addition of diffuse functions. With 

regards to Pople type basis sets, the diffuse functions are represented as a “+”, for example 6-

311G+(d), and in Dunning correlation consistent as “aug”, for example aug-cc-pVDZ. These 
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diffuse functions allow orbitals to occupy a larger region of space, to allow electrons to be 

dispersed further from the nuclei. This is important for systems that include lone pairs, excited 

states, and in the case of this dissertation, to describe intramolecular hydrogen bonding, as well 

as other systems. For Pople type basis sets, we can describe the diffuse function in two ways; 

(i) a single “+”, e.g. 6-311G+(d), and (ii) a double “+”, e.g. 6-311G++(d). The first “+” adds 

the diffuse function only to heavy atoms, however the second “+” adds diffuse functions to the 

hydrogens as well.  

All the discussed basis functions are dependent of the system that one is calculating. One 

must always take into consideration the different chemical properties of the system, as well as 

cost versus accuracy. 

2.3. Quantum Chemical Topology 

2.3.1. QTAIM 

2.3.1.1. Background 

The Quantum Theory of Atoms in Molecules (QTAIM)[1] recovers from the topology of the 

ED distribution, our elementary chemical concepts of atoms and bonds. In other words, 

QTAIM fully defines atomic basins and bonds (which are referred to as bond paths (BP) in 

QTAIM) from the quantum observable ED, (r). The ED recovers, to a large extent, the 

chemical bonds that we would draw from our classical chemical concepts. The topology of the 

ED is controlled by nuclei attraction, in line with Feynman’s theorems,[10] where one will find 

a maximum in ED at the nuclei positions. ED is then dispersed throughout the system in a 

fashion to lower the energy of the molecule. Due to this inherent accumulation of ED on the 

nucleus, we can obtain an atomic definition with a well-defined atomic volume and boundaries 

in which, from an ED perspective, we can define as the specific atomic basin. Before this is 

further explained, a few crucial concepts must first be clarified.  
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2.3.1.2. Critical Points, Curvatures, and Bond Paths 

The first concept is how we define a critical point (CP). A CP within the ED is defined as a 

point in real space r that is characterised by a zero-gradient, meaning that the first derivatives 

of the density vanish.[1] 

 ∇𝜌 = 𝑖
𝑑𝜌

𝑑𝑥
+ 𝑗

𝑑𝜌

𝑑𝑦
+ 𝑘

𝑑𝜌

𝑑𝑧
 →  {

=  0⃗ 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦 ≠  0⃗ 
    
(𝐴𝑡 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠)

(𝐴𝑡 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠)
 (2–25) 

 

Eq. 25 above shows that each component in the gradient operator, ∇ρ, must be zero and not 

just the sum of all components.  

CP’s can be classified in a (,) manner, in which  and  are referred to as the rank and 

signature, respectively. To understand this classification, we need to bring in the concept of 

curvature. The curvature is represented by the diagonalised Hessian Matrix in Eq. 26. The 

curvature is due to the three eigenvalues, 1, 2, and 3, of the density with respect to the three 

principle axes x, y and z (the coordinate system resulting from the diagonalisation of the 

Hessian Matrix). This represents the curvature of the ED in 3-dimensions. 

 Λ = 

(

 
 
 
 

𝜕2𝜌

𝜕𝑥 2
0 0

0
𝜕2𝜌

𝜕𝑦 2
0

0 0
𝜕2𝜌

𝜕𝑧 2)

 
 
 
 

𝑟 =𝑟𝑐

= (
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) (2–26) 

 

The curvature at a local maximum has a negative value, and at a local minimum has a positive 

value. Therefore, we can explain the (,) nomenclature with more context. The rank () is 

defined as the amount of non-zero curvatures, in which  = 3 in most occurrences, where if the 

rank is less than 3, the system is generally unstable. The signature () is the sum of the signs 

of the curvature in three dimensions. The curvature therefore contributes 1 to the signature. 

There are four CP’s that exist:[11] 
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1) (3,–3) CP - This denotes the nuclear critical point (NCP). At the NCP, there exists 

a global maximum ED in three dimensions, therefore there are three negative 

curvatures. 

2) (3,–1) CP - This denotes the bond critical point (BCP). At the BCP, there are two 

negative curvatures and one positive curvature, which implies a maximum ED in 

two directions, and a minimum ED in the third. The BCP exists along the BP 

between two nuclei, whereby we go from a maximum ED (nucleus A) to a minimum 

(where the BCP is present) to another maximum ED (nucleus B). 

3) (3,+1) CP - This denotes the ring critical point (RCP). At the RCP, there are two 

positive curvatures and one negative curvature, which implies a minimum ED in 

two directions and a maximum ED in the third. The RCP exists consistently as the 

name suggests, within ring systems. 

4) (3,+3) CP - This denotes the cage critical point (CCP). At the CCP, all curvatures 

are positive, implying a minimum ED in all directions. When multiple ring systems 

are chemically bonded in such a way that it encompasses an interstitial space, we 

observe a CCP where there is a minimum ED in all directions. 

In Scheme 1 below we depict a molecular graph of planar biphenyl. A molecular graph is a 

combination of BPs linking nuclei together with respective critical points.[11] 

 

Scheme 1. Molecular graph of planar biphenyl. The lines represent bond paths, as well as critical points 

which are colour coded: nuclear CP (C = grey, H = white), bond CP (green), and ring CP (red). 
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A BP is a line depicting the maximum density between two nuclei, that passes through a 

minimum density, a point referred to as the BCP.[12] From Scheme 1 above we observe BPs 

linking nuclei together, which correspond directly to what a chemist would traditionally draw.  

The BPs observed represent a line of density between two nuclei that are related to a 

minimisation of energy for the interaction between two atoms, and typically represent 

chemically covalent bonds. However the term BP is swarmed with critical debate, in which 

Bader clarified that a BP “is not to be understood as representing a bond”, but to represent that 

the atoms linked by a BP are chemically bonded to one another.[13] Due to this debate 

surrounding the terminology and physical meaning of BPs, we choose to rather refer to this 

energy lowering line of density as a density bridge (DB), as this term is fully applicable and 

unambiguous, and makes no assumption on the readers behalf regarding the nature of the 

interaction between the linked atoms. However, regarding the term ‘bond critical point’, it has 

been suggested to call it a line critical point, or a path critical point, however from here on out 

it shall be referred to as (3,–1) CP until we can find a better term.  

2.3.1.3. Zero Flux Surface, Gradient Vector Field, and Atomic 

Boundaries 

Due to the topology of ED encompassing the entire system and maximums of ED at the nuclei, 

we can divide the densities into separate mononuclear regions, which we identify as an 

atom/atomic basin (). We call the boundaries from the partitioning of atoms in a molecule as 

one of zero flux in a gradient vector field of ED.[11] This means that it isn’t crossed by any 

gradient vector field lines from its own atomic basin or neighbouring atomic basins. These zero 

flux surfaces terminate at the (3,–1) CP between nuclei and thus to reiterate, the regions of zero 

flux act as boundaries. In this way, one can define an atom from the basis of ED with its 

boundaries originating from the (3,–1) CPs around the nucleus. The gradient vector [(r)] 

field lines are lines representing the paths of first derivative ED, that converge to its respective 

nucleus, which do not cross the regions of zero flux. This mononuclear partitioning of the ED 
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into the topological definition of an atom is entrenched in quantum mechanics, and as such to 

be connected to that of a quantum subsystem.  

2.3.1.4. Electron (de)localisation 

Since we now have an ED based definition of an atom, this allows QTAIM to calculate the 

extent of electron sharing between two atoms, termed the delocalisation index (DI), as well as 

the electrons localised to only one atom, termed the localisation index (LI). 

One can express the DI and LI in QTAIM as a function of the overlap integrals of two spin 

orbitals and the Fermi correlation,[11] or one can make use of MO overlaps. For the remainder 

of this section, an MO based approach will be expressed to dictate the electron (de)localisation 

from QTAIM. 

To start with, QTAIM calculates the atomic electron population, N(A), of an atom by 

calculating the ED over the atom. This can be done by integrating the overlap of all MO pairs 

over a specific atomic basin, (A) 

 𝑁(𝐴) =  ∑ ∫ 𝑣𝑖
𝐴

|𝜒𝑖(𝒓)|
2𝑑𝒓

𝑁𝑀𝑂

𝑖

 (2–27) 

 

This integration over (A) can otherwise make use of atomic overlap matrices (AOM) to 

simplify the real space calculation on atom A, SA. 

 𝑆𝑖𝑗
𝐴 = ∫ 𝜒𝑖

∗(𝒓)𝜒𝑗(𝒓)𝑑𝒓
𝐴

 (2–28) 

 

This AOM provides valuable information since the diagonal components (normalised MO) and 

off-diagonal components (pair of MOs) provide information on how they contribute to the 

density distribution within the confounds of atom A. Therefore, one can express the atomic 

electron population as a function of the trace of the AOM, weighted by the MOs corresponding 

occupation: 
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 𝑁(𝐴) =  ∑ 𝑣𝑖𝑆𝑖𝑖
𝐴

𝑁𝑀𝑂

𝑖

 (2–29) 

 

Although the atomic electron population exclusively uses the diagonal elements, one can gather 

information from its off-diagonal elements, where one can see how the MOs interfere, either 

constructively or deconstructively within the confines of an atomic basin.  

By integrating all MO-pairs over two atomic basins, A & B, one obtains the total 

delocalisation, or electron sharing, between both atoms. Again, AOM can be used for this: 

 𝛿(𝐴, 𝐵) = 2∑√𝑣𝑖𝑣𝑗𝑆𝑖𝑗
𝐴𝑆𝑗𝑖

𝐵

𝑖𝑗

 (2–30) 

 

where  is the occupation of the respective MOs i and j – in the case of my current work with 

HF and DFT, we assume double occupation because it is both restricted and a closed-shell 

system, and because it is a single determinant method. This 𝛿(𝐴, 𝐵) function is known as the 

DI, and represents the electron pair sharing between the two basins, and is a measure of bond 

strength.[11] 

Just as one calculates the delocalisation by integrating all MO-pairs over two atomic basins, 

one can obtain the number of electron pairs localised to one atomic basin, LI [𝜆(𝐴)], by 

integrating the off-diagonal elements of the AOM over one atomic basin, A: 

 𝜆(𝐴) =∑√𝑣𝑖𝑣𝑗𝑆𝑖𝑗
𝐴𝑆𝑗𝑖

𝐴

𝑖𝑗

 (2–31) 

 

where 𝜆(𝐴) is the LI of (A).  

Therefore, from the atomic electron population, QTAIM can decompose the ED into the LI 

of atom A, and DI between A & B. 
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2.3.2. FALDI Background 

2.3.2.1. Original Reason for FALDI Development 

Many intermolecular and intramolecular interactions are known to chemists, however 

theoretical research suggests that their nature and properties are not as well defined in terms of 

classical chemistry as suspected. There have been many debates on such interactions, notably 

on the nature of the weak H∙∙∙H intramolecular interaction in systems such as biphenyl and 

phenanthrene sparked by Matta et al[14] that spans almost three decades. Although previously 

we thought that we had a clear enough understanding of a chemical bond, these debates have 

made it clear to how lacking our fundamental understanding of a chemical bond and chemical 

interactions are.  

In this light, many methods have been developed over the course of a few decades to 

increase our understanding of certain facets of weak interactions, though whilst we gain insight 

into intermolecular interactions, our intramolecular interactions remain a cause of debate. To 

this end, QTAIM[1] showed to be near perfect; by making use of measuring the topology of the 

ED distribution, it could recover our ideas of atoms and bonds, although this methodology is 

still thoroughly debated. Surrounding this fundamental underdevelopment in the understanding 

of intramolecular interactions, but knowing that the ED is a good measure of charge distribution 

in a molecule, the use of deformation densities (DD) became common to measure the 

accumulation or depletion in electron densities as a description of how the ED changes between 

two states of a molecule.  

The deformation density measures the change in ED () at a given coordinate r between 

the final (fin) and reference (ref) state, whereby the reference state represents the initial state. 

 ∆𝜌(𝒓) =  𝜌(𝒓) − 𝜌0(𝒓) (2–32) 

 

The reasons why deformation densities are beneficial are because, not only do they clearly 

show the difference in ED inside the bonding region, but also the difference in ED outside the 
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bonding region, whereby we can detect polarisations and charge transfers in the molecular 

system. Foregoing these benefits, a few drawbacks exist. The first is that the coordinate system 

in the fin state needs to be identical to the ref state. This means that each atomic/nuclear position 

in the fin system must be identical to that of the ref system. Although the ED changes between 

the two systems, which one can then detect with the deformation densities, it limits the true 

distribution of ED between two configurations/conformations that differ in nuclear positions. 

The second drawback is that molecular ref systems are typically not available in the study of 

intramolecular interactions, and it is typically necessary to fragment the system into unchemical 

systems, commonly being radicals. 

Our in-house FALDI[2-6] (Fragment, Atomic, Localised, Delocalised, and Intra- & 

Interatomic) density decomposition scheme allows for the study of intramolecular interactions 

without being confined to the use of unchemical ref systems. The current need to break bonds 

into radical states to understand the formation, nature, and properties of an intramolecular 

interaction is clearly disadvantageous and a technique such as FALDI is a distinct benefit. With 

this technique, we are able to gain the atom-DD (how the ED distribution changes from one 

atomic basin), frag-DD (how the ED distribution changes from a fragment group in the 

molecule), and tot-DD (how the ED distribution changes throughout the whole molecule) from 

a conformational ref→fin transformation. 

The next subsections of “FALDI Background” cover the derivation of individual FALDI 

components. 

2.3.2.2. Electron Density and Pair Density 

The ED () is an important feature in the field of quantum chemistry as its spin-independent 

description is related to a wide range of chemical phenomena. There are multiple ways to 

calculate the ED, however it is primarily calculated by the multiplication of the occupancy of 

its respective MO over the total number of occupied MOs: 
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 𝜌(𝒓) =  ∑ 𝑣𝑖|𝜒𝑖(𝒓)|
2

𝑁𝑀𝑂

𝑖

 (2–33) 

 

where 𝜒𝑖(r) is the ith MO, 𝑣𝑖 is its occupancy and NMO is the total number of MOs.  

The ED in Eq. 33 is dependent on the correlated movement of electrons within a system, 

whereby we can study the electron correlation of the pair-density (PD) directly between two 

electrons in two different regions of space 

 𝜌2(𝒓1, 𝒓2) =  𝜌(𝒓1)𝜌(𝒓2)[1 + 𝑓(𝒓1; 𝒓2)] (2–34) 

 

where 2(r1,r2) is the PD and f (r1;r2) is the correlation factor between two electrons at two 

spatial coordinates. Since all electrons in a molecular system are correlated, f (r1;r2)  0, and 

due to the repulsion between electrons, the correlation factor generally leads to a decrease in 

PD, approaching zero as the distance between r1 and r2 decreases. 

We now need to define another important ED component, namely conditional probability. 

This is defined as the probability of finding an electron at r1 given that there is an electron at 

r2. 

 𝜌𝑐𝑜𝑛𝑑(𝒓1; 𝒓2) =  
𝜌2(𝒓1, 𝒓2)

𝜌(𝒓2)
 (2–35) 

 

If electrons were not correlated, then cond(r1;r2) = (r1) because the ED at r1 would not be 

influenced by an electron at r2. The difference between the uncorrelated and correlated ED for 

an electron at r1 describes the electron hole function, or more commonly known as the 

exchange-correlation (XC) hole. 

 𝜌𝐻𝑜𝑙𝑒(𝒓1; 𝒓2) =  𝜌(𝒓1) − 
𝜌2(𝒓1, 𝒓2)

𝜌(𝒓2)
 (2–36) 
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This Hole(r1;r2) function defines how the ED accumulates or depletes at the spatial coordinate 

r1 as a result of the presence of an electron at r2, and in general, to what extent an electron is 

excluded in spatial coordinate r1 as a result of an electron at r2. 

2.3.2.3. Domain Averaged Fermi Holes 

The Domain Averaged Fermi Hole (DAFH)[15-16] is a powerful technique which aims to 

discover how a specific electron-pair is localised or delocalised if one electron is defined by its 

average distribution within an explicit domain. In other words, we can take the electron hole 

function from Eq. 36 wherein one of the electrons in a spatial coordinate is averaged over a 

specified domain. While DAFH allows for any domain to be chosen, this work will consider 

QTAIM’s[1] atomic-basins as the domain of choice.  

DAFH has a key function, the gA(r) function. 

 𝑔𝐴(𝒓1) =  ∫ 𝜌(𝒓2)
𝐴

𝜌𝐻𝑜𝑙𝑒(𝒓1; 𝒓2)𝑑𝒓2 (2–37) 

 

This function integrates the spatial coordinates of the XC-hole over a specific atomic basin (A), 

weighted by the charge density of the integrated coordinate of (r2). This allows for an 

evaluation of the total charge at r2. Since we take the XC-hole into the equation, gA(r) function 

essentially gives the total number of electrons that are excluded within the averaged region due 

to the electron found within that domain (A). In other words, our DAFH function retrieved 

the ED contribution at spatial coordinate r from atom A due to delocalisations in the system. 

Because of this, we are able to retrieve a comprehensive ED decomposition at r: 

 𝜌(𝒓) =  ∑𝑔𝐴(𝒓)

𝑀

𝐴

 (2–38) 

 

Between DAFH’s gA(r) function and QTAIM’s population analysis, there are some key 

associations that must be stated.  
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(a) If we integrate the gA(r) function over the entire molecule/system (expression to the 

right of Eq. 39 below), then we can obtain the atomic population of A, NA, in 

comparison to the left hand expression which is the QTAIM based calculation for 

the atomic population. 

 𝑁(𝐴) =  ∫ 𝜌(𝒓)𝑑𝒓 = 
𝐴

∫ 𝑔𝐴(𝒓)
∞

−∞

𝑑𝒓 (2–39) 

 

As N(A) measures the atomic populations in the atomic basin of atom A (A), gA(r) 

measures how these electrons are delocalised from A into the remaining system 

due to XC effects. 

(b) We can recover QTAIM’s LI of A if we integrate gA(r) over A: 

 𝜆(𝐴) =  ∫ 𝑔𝐴(𝒓)𝑑𝒓
𝐴

 (2–40) 

 

which gives the number of electrons that are exclusively localised to atom A. 

 

(c) We can recover QTAIM’s half- DI if we integrate gA(r) over any other atomic basin: 

 
1

2
𝛿(𝐴, 𝐵) =  ∫ 𝑔𝐴(𝒓)𝑑𝒓

𝐵

= ∫ 𝑔𝐵(𝒓)𝑑𝒓
𝐴

 (2–41) 

 

which simply shows us how electrons belonging to A are delocalised and 

contribute to B, whereby the reverse it also true. In other words, Eq. 41 explains 

how A’s electrons contribute to B’s expected N(B). 

(d) We can further decompose N(A) in terms of gA(r): 

 𝑁(𝐴) =  ∫ 𝑔𝐴
𝐴

(𝒓)𝑑𝒓 + ∑ ∫ 𝑔𝐴(𝒓)𝑑𝒓
𝐵

𝑀−1

𝐵 ≠𝐴

 (2–42) 

 

 

= ∫ 𝑔𝐴(𝒓)𝑑𝒓 + ∑ ∫ 𝑔𝐵(𝒓)𝑑𝒓
𝐴

𝑀−1

𝐵≠𝐴𝐴
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whereby Eq. 42 essentially shows that the atomic electron population of A can be 

decomposed into the localised electrons of A (first term in the expression) plus the 

delocalised electrons that A makes to all other atoms in the system.  

Properties (a)-(d) show us how useful DAFH is to understand the atomic electron populations 

N(A), as well as its delocalisation, due to gA(r) being effectively used to describe N(A). 

Since gA(r) calculation can typically be an exhaustive calculation, we can simplify the 

matter by using AOM elements: 

 𝑔𝐴(𝒓) =  ∑√𝑣𝑖√𝑣𝑗
𝑖𝑗

𝜒𝑖
∗(𝒓)𝜒𝑗(𝒓)𝑆𝑗𝑖

𝐴 (2–43) 

where 

 𝑆𝑗𝑖
𝐴 = ⟨𝜒𝑗|𝜒𝑖⟩ =  ∫ 𝜒𝑗(𝒓)𝜒𝑖(𝒓)𝑑𝒓

𝐴

 (2–44) 

 

which considers the real space distribution of i and j and their individual occupancies (), 

weighted by their atomic overlap 𝑆𝑗𝑖
𝐴 (being our AOM element), summed over all MO 

combinations. Note that in restricted HF and DFT, the occupations () will be equal to two.[7]  

2.3.2.4. FALDI Decomposition Development 

For the purpose of the FALDI decomposition scheme, we make use of real-space distribution 

within QTAIM atomic basins, and FALDI is derived from the general DAFH function, gA(r). 

FALDI decomposes the total ED at any specified spatial coordinate into specific FALDI 

components. 

 𝜌(𝒓) =  ∑𝐹𝐴𝐿𝐷𝐼(𝒓)

𝑖

 (2–45) 

 

Components of FALDI include: (i) frag-ED which describes the ED of a chemical fragment, 

(ii) atom-ED which describes the ED contribution of an atom, (iii) loc-ED which describes the 

ED localised to a specific atom, and (iv) deloc-ED which describes the ED that is delocalised 
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along an atom-pair. We can further break these components down in the remainder of this 

section. 

As discussed previously, atom-ED describes the ED distributions in three dimensional space 

that is situated solely in one specific atomic basin, which correlates directly to our DAFH 

function, and thus can be described by 𝜌(𝒓) =  ∑ 𝑔𝐴(𝒓)
𝑀
𝐴 . Frag-ED is rather simple in 

retrospect, as it is simply the sum of atomic contributions that make up a specific fragment. 

Although we can get valuable information from FALDI’s atom- and frag-ED, FALDI 

allows us to dig deeper into the distribution of electrons throughout a system. This can be done 

with localisation and delocalisation indices. At this point it is important to distinguish between 

QTAIMs LIs and DIs, and of FALDIs.  

(a) QTAIM-defined LI gives a point count of the electrons localised to the specific 

atomic basin (A), in which can be calculated by integrating gA(r) over its own 

atomic basin and can be expressed as the trace of the matrix product of its AOM 

with itself. 

 𝜆(𝐴) = 2𝑇𝑟(𝑺𝑨𝑺𝑨) (2–46) 

 

(b) QTAIM-defined DI (A,B) gives a count of the electrons that are delocalised 

between two specified atomic basins, and can be expressed in terms the trace of the 

matrix product of two different AOM. 

 𝛿(𝐴, 𝐵) = 2𝑇𝑟(𝑺𝑨𝑺𝑩 + 𝑺𝑩𝑺𝑨) (2–47) 

 

(c) FALDI-defined LI (ℒ𝐴(𝒓)) can be calculated in a similar way as the DAFH function 

in Eq. 43, however distributed in three-dimensional space. We can express FALDI-

defined LI by the overlap of all 2-body combinations of MOs in real space weighted 

by the matrix product of its AOM with itself. 
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 ℒ𝐴(𝒓) = 2∑𝜒𝑖
∗(𝒓)𝜒𝑗(𝒓)(𝑺

𝑨𝑺𝑨)𝑗𝑖

𝑁 2⁄

𝑖𝑗

 (2–48) 

 

(d) FALDI-defined DI (𝒟𝐴,𝐵(𝒓)) is also distributed in three-dimensional space. We can 

express FALDI-defined DI by the overlap of all 2-body combinations of MOs 

weighted by the matrix product of two AOMs. 

 𝒟𝐴,𝐵(𝒓) = 2∑𝜒𝑖
∗(𝒓)𝜒𝑗(𝒓)(𝑺

𝑨𝑺𝑩 + 𝑺𝑩𝑺𝑨)𝑗𝑖

𝑁 2⁄

𝑖𝑗

 (2–49) 

 

Note that the benefit of FALDI-defined localisation- and delocalisation-indices are that they 

are distributed, as previously mentioned, in real three-dimensional space. This allows 

invaluable visualisation of the electron distribution within an atomic basin, ℒ𝐴(𝒓), and between 

two atomic basins, 𝒟𝐴,𝐵(𝒓). 

2.4. Orbital Analysis 

2.4.1. Molecular Orbitals 

We can give the expression of an MO, and already have in Eq. 14, as a set of gaussian functions 

 𝜒𝑗 =∑𝑎𝑖𝑗𝜑𝑖

𝑁

𝑖=1

 (2–14) 

 

whereby MO j is the sum of all basis functions i weighted by a coefficient a.  

The electron density can thus be expressed as the orbital densities, which we have already 

defined in Eq. 33 

 𝜌(𝒓) =  ∑ 𝑣𝑖|𝜒𝑖(𝒓)|
2

𝑁𝑀𝑂

𝑖

 (2–33) 

 

which describes the sum of the square of MO’s at a specific point, weighted by its orbital 

occupation 𝑣𝑖, and because we always use DFT, this can be replaced to 2, as we assume double 

occupation. 
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2.4.2. Natural Bond Orbitals 

Natural bond orbitals (NBO), developed by Weinhold are a form of mathematically derived 

orbitals, similarly to MO’s, but limited by a criterion that the orbitals must be localised in a 1-

centre or 2-centre region in the molecule.[17] This results in NBO’s that closely resemble Lewis-

like bonds (and give the most accurate Lewis structure depiction of the wave function), 

whereby they force an electron pair to exist between a single bond for example. In its algorithm, 

it calculates the ED around the molecule and starts to fit the density in a Lewis-like fashion, 

and the remaining density being placed into Rydberg orbitals that remain orthonormal to the 

first orbitals. The highest percentage of the electron density that it can fit in this Lewis limit 

gives information to how accurate the Lewis structure is in depicting the system.  

2.5. New Theoretical Developments 

2.5.1. Cross-Section Decomposition of Electron Density 

In chemistry, and more specifically synthetic chemistry, the physical properties of chemical 

bonding and interactions are to a large extent described by two atoms, but the problem arises 

in that the concept of multi-centred interactions have been known for at least 75 years. In 

QTAIM we observe a DB between all atoms that are involved in typical bonds, such as a C-C 

single bond, but also between atoms that we would not expect to be bonded. Cross-section 

decompositions[4, 18-19] were introduced to decompose, quantify, and visualise the multi-centred 

nature of interactions; that is the individual components that contribute to the formation of a 

DB. This technique is imperative in explaining the natures of unusual bonds, as well as 

explaining the absence of DBs where we would otherwise expect them. 

The cross-sections can decompose the tot-ED at a real space coordinate r, be it a (3,–1) CP 

on a DB, into loc-ED and deloc-ED, and in which the deloc-ED can be further decomposed 

into individual components that contribute to the formation of DB. These individual 

components can be MOs, atom-pairs from FALDI, or NBOs, in which we name the MO-ED, 

FALDI-ED, and NBO-ED method, respectively. 
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Along with breaking down the deloc-ED into the components that contribute to its ED, we 

can also determine the nature of these interactions. By this, we mean whether they promote or 

impede the formation of a DB. By analysing the partial second derivative of the ED along the 

2nd eigenvector (2-eigenvector), we can determine if the component concentrates density 

(negative partial second derivative), depletes (positive partial second derivative), or removing 

(negative ED), which are synonymous with bonding, nonbonding, and antibonding, 

respectively. In other words, concentrating components facilitate the formation of a DB, and 

depleting and removing components hinder the formation of a DB. It is important to note that 

these components’ natures are not confined molecular wide; it may concentrate in one point in 

the system but deplete in another. We only measure its nature at r in real space. We can then 

group each of the individual components according to their nature and visualise the tot-ED in 

two dimensional cross-sections, decomposed into the overall concentrating, depleting, and 

removing densities. 

One thing to note is that in the case of MO-ED and NBO-ED, cross-section decomposition 

analysis decomposes the deloc-ED into concentrating and depleting density, whereas in the 

FALDI-ED method, the deloc-ED is further decomposed to include the removing density. The 

reason to why exclusively FALDI-ED recovers the removing/anti-bonding densities is because 

NBO and MO decompositions are based off of the first order ED, (r), whereas FALDI 

decomposition is based off of the pseudo-second order ED, pseudo-2(r1,r2). So, more 

information is recovered for FALDI than from MO and NBO, and in turn we obtain a more 

fundamental and cleaner interpretation of the ED. 

Thus, cross-section decompositions allow for the study of multi-centred interactions to 

identify the components that directly contribute to r in real space of a system, and in turn to a 

DB, and thus understand the nature of these interactions more clearly. This method shows how 
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many interactions are not actually bicentric, but have a multitude of components that actually 

affect the presence/absence of a DB. 

2.5.2. CP(r) Function 

We have previously discussed that, with regards to cross-section decompositions, we can 

decompose the tot-ED into concentrating, depleting, and for FALDI-ED, also removing 

densities at a point in space, r, depending on the sign of the partial second derivative along the 

2nd eigenvector (2-eigenvector). If the component is of a concentrating nature, then it indicates 

that the specific component facilitates the presence of a DB, and in turn the presence of a (3,–

1) CP. If the component is of a depleting or removing nature, then it indicates that the specific 

component hinders the presence of a DB.  

By grouping each individual component according to its nature, the tot-ED is a summation 

of all groupings 

 𝜌𝑡𝑜𝑡(𝒓) =  𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓) + 𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓) + 𝜌𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔(𝒓) (2–50) 

 

Although we can classify the nature of a contributing component based on the partial second 

derivative as discussed above, and determine what facilitates or hinders the formation of a 

possible DB and (3,–1) CP, the presence/absence of a DB and (3,–1) CP is due solely on the 

gradient of the tot-ED, i.e. the first derivative of tot-ED, and its components. A CP in the ED 

is where the first derivative of the density at r [𝜕𝜌𝑡𝑜𝑡(𝒓)] along 2-eigenvector is zero.[11] We 

can rewrite out Eq. 50 in terms of gradients. 

 𝜕𝜌𝑡𝑜𝑡(𝒓) =  𝜕𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓) +  𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓) +  𝜕𝜌𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔(𝒓) (2–51) 

 

A clear back-and-forth between the conditions for a (3,–1) CP to be present becomes clear but 

becomes more complex to interpret; the gradient components must all add up to/be equal to 

zero at the (3,–1) CP, but the absolute gradient of the concentrating slopes must be larger than 

depleting about the (3,–1) CP. To make this interpretation easier, the CP(r) function was 
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introduced by de Lange et al[6] to detect the presence/absence of a DB between two atoms when 

measuring along 2-eigenvector.  

 
𝐶𝑃(𝒓) =  −𝑠𝑖𝑔𝑛 (𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓)) [𝜕𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓)

+  𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓) +  𝜕𝜌𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔(𝒓)] 
(2–52) 

 

which is simplified to 

 𝐶𝑃(𝒓) =  −𝑠𝑖𝑔𝑛 (𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓)) (𝜕𝜌𝑡𝑜𝑡(𝒓)) (2–53) 

 

This CP(r) function in principle expresses the gradient of the total density at r but weighted by 

the sign of the gradient of depleting densities. This ensures that the CP(r) function is negative 

in all regions of the scan except for regions that the sum of the 𝜕𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓) and 

𝜕𝜌𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔(𝒓) is larger in absolute value than that of 𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓), and opposite in sign.  

The CP(r) function agrees with the definition of a CP, whereby at a CP, the first derivative 

density is zero. If the scan along 2-eigenvector crosses two CPs, for example both the (3,–1) 

CP and ring CP, then the region on the CP(r) between them are positive. 

This function is an invaluable asset as it predicts DBs between any atom-pair participating 

in a real space formation of a DB, as seen with QTAIM. It has been shown to precisely predict 

the presence of any form of classical covalent bond, as well as intra-molecular hydrogen 

interactions in the form of X-H∙∙∙Y and so on. Therefore, this function would be of a great 

benefit in the study of unusual QTAIM bond paths, and also to study the absence of DB’s 

where classical chemistry would expect one. 

2.5.3. MO-DI 

MO theory has been used extensively in the past decades in the study of chemical bonding, and 

because of this, it has been incorporated into many computational programs. MOs are well 

defined for small diatomic molecules, to which most of our understanding arises, however as 
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the number of atoms increase to form polyatomic molecules, our interpretation of MO theory 

becomes cloudy, leading to misinterpretations. 

 From MO theory, we understand that a constructive overlap between atomic orbitals (AO) 

leads to an accumulation of ED within the inter-nuclear space, and in turn we understand that 

this constructive overlap allows for larger delocalisation which we know to be a bonding 

mechanism. 

QTAIM has also been used successfully in the efforts to explain chemical bonding, by 

making use of the topology of the ED distribution, and therefore avoiding MOs polyatomic 

interpretations.  

With the MO-DI method, we look at how each MO contributes to QTAIM-defined DI, and 

how each MO combines with all other MOs, either constructively or deconstructively. From 

MO theory, we understand that a constructive overlap between AO leads to an accumulation 

of ED within the inter-nuclear space. This constructive overlap allows for larger delocalisation 

within/across the system which we know to be a bonding mechanism. 

We can obtain the DI between atoms A & B by integrating each MO pair over both atomic 

basins, Eq. 54, whereby 𝑆𝑖𝑗
𝐴 signifies a component of the AOM. 

 𝛿(𝐴, 𝐵) = 2 |−∑𝑆𝑖𝑗
𝐴𝑆𝑗𝑖

𝐵

𝑖𝑗

| (2–54) 

 

From Eq. 54, we can proceed to quantitatively determine the specific MO contribution to a 

specific DI. We can take Eq. 54 and modify it to represent a delocalised density matrix. 

 𝐷𝑖𝑗
(𝐴,𝐵)

= 2|−𝑆𝑖𝑗
𝐴𝑆𝑗𝑖

𝐵| (2–55) 

 

The sum of all AOM components then provides 𝛿(𝐴, 𝐵). If we were to examine the 

diagonal/trace of 𝐷𝑖𝑗
(𝐴,𝐵)

 matrix, whereby 𝐷𝑖=𝑗
(𝐴,𝐵)

, we would then recover the contribution that 

each MO makes independently to the DI(A,B). However if we examine the off-diagonal 
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components whereby 𝐷𝑖≠𝑗
(𝐴,𝐵)

, then we recover the contribution that the orbital-pair makes to the 

DI(A,B). If this value is positive, then it means that the orbital-pair contribute constructively, 

and therefore place density in the inter-nuclear space. If this value is negative, then it means 

that the orbital-pair depletes density from the inter-nuclear space. Finally, if we take the sum 

of the row/column, we obtain the net effect that the specific orbital has on the DI, taking into 

account all orbital-pair contributions. From this we can determine whether a specific MO is 

constructive or deconstructive in totality. 
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3.1. ABSTRACT 

Our MO-based findings proved a bonding nature of each density bridge (DB, or a bond path 

with an associated critical point, CP) on a Bader’s molecular graph. A DB pin-points universal 

physical and net energy-lowering processes that might, but do not have to, lead to a chemical 

bond formation. Physical processes leading to electron density (ED) concentration in inter-

nuclear regions of three distinctively different homo-polar H,H atom-pairs as well as classical 

C–C and C–H covalent bonds were found to be exactly the same. Notably, properties of 

individual MOs are inter-nuclear-region specific as they (i) either concentrate, deplete or do 

not contribute to ED at a CP and (ii) delocalise electron-pairs through either in- (positive) or 

out-of-phase (negative) interference. Importantly, dominance of a net ED concentration and 

positive e–-pairs delocalisation made by a number of -bonding MOs is a common feature at a 

CP. This feature was found for the covalently-bonded atoms as well as homo-polar H,H atom-

pairs investigated. The latter refer to a DB-free H,H atom-pair of the bay in the twisted biphenyl 

(Bph) and DB-linked H,H atom-pairs (i) in cubic Li4H4, where each H-atom is involved in 

three highly repulsive interactions (over +80 kcal/mol) and (ii) involved in a weak attractive 

interaction when sterically clashing in the planar Bph.  
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3.2. INTRODUCTION 

Chemistry is synonymous with the concept of chemical bonding that is being debated for 

decades with most approaches being solidly routed in two major ‘families’ of quantum 

mechanics (QM) methods. The first, wavefunction-based family encompasses applications of 

(i) molecular orbitals (MO),1–4 valence bond (VB) theory,1,2,5,6 natural bond orbital (NBO)7–9 

and natural orbitals for chemical valence (NOCV) within the ETS-NOCV10–13 energy 

decomposition scheme (ETS = extended transition state). The second, electron density (ED) 

based family (the quantum chemical topology (QCT) methods) incorporates the quantum 

theory of atoms in molecules (QTAIM),14–16 interacting quantum atoms (IQA),17–19 fractional 

occupation iterative Hirshfeld (FOHI),20,21 and fragment attributed molecular system energy 

change (FAMSEC).13,22–24 Most methods within orbital and electron density based approaches 

have been successfully applied in describing chemical bonding for many decades. Even though 

the two families have QM as a common denominator, their interpretations of chemical bonding 

might be drastically different. A typical, but not exclusive, example is a ubiquitous25,26 homo-

polar H,H atom-pair involved in a steric intra- and inter-molecular CHHC contact in crowded 

molecular environments. To this effect, biphenyl (Bph) became an iconic subject of a nearly 3-

decade long scientific debate.25–40 This is because (i) Bader’s bond path (BP)14 links ortho-H 

atoms that, according to the generally accepted view, are involved in a steric repulsive 

interaction27,30 in planar Bph and (ii) one could computationally investigate (dis)appearance of 

a BP on rotating two phenyl rings. Moreover, Bph is a prototype molecule in numerous studies 

and it features, as a molecular core, in 2.6% of all Cambridge Structural Database (CSD) 

structures.41  

Notably, it is not the appearance of a BP between ortho-H-atoms involved in a steric contact 

but its (non)bonding interpretation that became a subject of a battle between the two camps. 

To avoid unnecessary repetitions, readers interested in historic development of this research 

debate are referred to most recent paper by Popelier.39 Briefly, Bader’s notion of a bond path 
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representing an interaction of a bonding nature is generally supported/rejected by researches 

entrenched in the QCT/wavefunction-based interpretations. As a matter of fact, the dispute on 

chemical interpretation of a BP extended to other and classically ‘unexpected’ appearances of 

BPs, such as between He and C-atoms of adamantine,42–44 between noble gas atoms and noble 

gas and C atoms in endohedral fullerenes Ng2@C60 (Ng=He–Xe),45 He, F, F– dimers46 or water 

dimers,47 bay-type HH interaction in cis-2-butene,9,13,48 or phenanthrene.25,40,49  

Our main aim is to put forth a chemical interpretation of BPs by investigating physical 

processes leading to the absence or presence of a BP. Our focus is on individual canonical 

MOs’ nature and contribution made to the electron density in specific inter-nuclear regions. 

Two classical covalent, C–C and C–H, bonds in Bph, the bay-type steric CHHC contact in 

the planar Bph, the CHHC inter-nuclear region without a BP in the twisted Bph, and finally 

the HH interactions in a cubic form of LiH (Li4H4) will be investigated - Figure 1.  

(a)             (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Molecular graphs of (a) planar biphenyl and (b) equilibrium structures of cubic Li4H4 

calculated at the B3LYP–GD3/6-311++G(2pd,2df) level. The green and red dots represent (3,–1) and 

(3,+1) critical points, respectively.  
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Notably, we selected two distinctively different BP-linked homo-polar H,H atom-pairs. In the 

first instance, the H-atoms in the planar Bph are involved in a weak attractive interaction, have 

a small positive net atomic charge, Q(H), and overlap due to d(H,H) << the sum of their van 

der Waals (vdW) radii. In the second case, the H-atoms in Li4H4 are involved in a very strong 

repulsive interaction, carry a large negative Q(H) and are well separated with d(H,H) >> the 

sum of H-atoms vdW radii. In the latter case and totally unexpectedly, six BPs originating from 

each H-atom, involving three Li,H and three H,H atom-pairs, are present – Figure 1b. 

3.3. METHODS 

3.3.1. Theoretical Background. We utilize the recently introduced MO-ED and MO-

DI methods;50 a brief description of our approach is detailed below while a full description of 

both methods is given in PART 1 of the Supporting Information, SI. Notably, the MO-ED 

method decomposes the total electron density at a specifically selected coordinate r* into 

contributions made by each orbital:  

where 𝜒𝑖 is an MO with occupation 𝜈𝑖. r* is chosen to be a (3,–1) critical point (CP, or bond 

critical point) if present, or otherwise the coordinate of a minimum density point (MDP) along 

an inter-nuclear vector. 

The decomposition is then followed along the eigenvector associated with the second 

eigenvalue of the Hessian matrix which we will refer to as the 2–eigenvector. In most cases, 

the 2–eigenvector is synonymous with a cross-section perpendicular to a given inter-nuclear 

vector. We then consider, for each MO, the partial directional second derivatives computed 

along the 2–eigenvector. From that, each MO can be labelled as concentrating ED (negative 

second derivative), depleting ED (positive second derivative) or non-contributing to the ED (in 

the case of an MO node) at the selected r*. Typically, the nature of a selected MO varies at 

𝜌(𝐫∗) = ∑ 𝜈𝑖|𝜒𝑖(𝐫
∗)|2

𝑁𝑀𝑂

𝑖

 (1) 
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different CPs/MDPs. MOs’ contributions of the same fashion can then be grouped to provide 

a ‘characterized’ total density contribution of specific natures at r*: 

We also make use of recently-developed51 CP(r) function to explain the presence of a bond 

path. This function accounts for the first derivatives computed on the total concentrating, 

depleting and non-contributing density terms in Eq. 2: 

Specifically, the CP(r) is positive in the vicinity of r if the slope computed along the 2–

eigenvector on density provided by the MOs concentrating ED is greater and opposite in sign 

than the slope obtained for the MOs depleting ED. We have previously found51 that the CP(r) 

will always be positive in the vicinity of a DB. For more details, please refer to Part 1 of the 

SI. 

The MO-DI method, on the other hand, provides a MO-based decomposition of the QTAIM-

defined delocalization index (DI). Such a matrix is obtained by first defining an atomic overlap 

matrix for an atom A with elements 

which satisfies 𝑁(A) = 𝑡𝑟(𝐒A), where N(A) is the total electronic population. A delocalized 

density matrix for atom-pair A,B can then be defined, with elements 

where all elements sum up to the QTAIM-defined DI(A,B). The D(A,B) matrix provides 

information regarding the overlap and interference of MOs across two atomic basins. Diagonal 

elements, 𝐷𝑖𝑖
(A B)

, provide each MO’s contribution to the total number of electron pairs shared 

between A and B. This term results from mutual overlap of an MO across two atomic basins. 

𝜌(𝐫∗) = 𝜌co ce  ra   g(𝐫
∗) + 𝜌deple   g(𝐫

∗) + 𝜌 o −co  r bu   g(𝐫
∗) (2) 

𝐶𝑃(𝐫) = −𝑠𝑖𝑔𝑛(𝜕𝜌deple   g(𝐫))

∙ [𝜕𝜌co ce  ra   g(𝐫) + 𝜕𝜌deple   g(𝐫) + 𝜕𝜌 o −co  r bu   g(𝐫)] 
(3) 

𝑆𝑖𝑗
A = ∫ √𝜈𝑖√𝜈𝑗𝜒𝑖

∗(𝐫)𝜒𝑗(𝐫)𝑑𝐫
A

 (4) 

𝐷𝑖𝑗
(A B)

= 2|−𝑆𝑖𝑗
A𝑆𝑗𝑖

B| (5) 
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However, the off-diagonal elements, 𝐷𝑖≠𝑗
(A B)

  provide the extent to which an MO-pair either 

increases delocalized electron pairs (through constructive interference) or decreases 

delocalized electron pairs (through deconstructive interference). Therefore, the sum of any row 

or column of Dij gives the net contribution of an MO to the number of electron pairs shared 

between atoms A and B, after any MO-pair interference effects have been taken into account. 

An example of such a matrix as well as its interpretation are shown in Part 2 of the SI. 

Finally, note that we prefer to use the density bridge (DB) term instead of BP as it perfectly 

describes the presence of a common topological property of electron density between any pair 

of atoms in a molecular environment.  

3.3.2. Computational Details. All structures were computed in Gaussian 09, Rev. D52 

using B3LYP with Grimme’s D3 empirical dispersion53 with 6-311++G(2df,2pd) in the gas 

phase; a full set of X,Y,Z coordinates of all molecules discussed in this work is provided in 

PART 2 in the SI. QTAIM molecular graphs were calculated using AIMAll v. 19.02.13.54 

Molecular orbital density data was obtained using in-house software.  

3.4. RESULTS AND DISCUSSION 

Both MO-ED and MO-DI methods50 employ canonical, molecule-wide orbitals without any 

transformation. Moreover, no partitioning of molecules is required; hence, molecules’ 

structural integrity is fully preserved, an approach not commonly adopted in previous MO-

based studies. MOs relevant to this study are shown in Table 1 (a full set of MOs computed for 

the planar and twisted conformers of Bph are in PART 3 of the SI). Looking at the MO 

isosurfaces, they are remarkably alike in both Bph conformers. Unfortunately, the shape-

similarity does not provide any clue as to why a DB is present (or absent) and hence does not 

provide any information on whether a MO concentrates or depletes density anywhere in 3D 

space occupied by a molecule.  
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Table 1. Selected top-views of MOs in planar Bph. Percentage contributions to ED at relevant BCPs 

and DI for interactions of interest are also shown. 

 

Orbital Isosurface Interaction % ED % DI 

24 

 

H7,H18 
0%  

non-contributing 
–6.16 % 

C1,C12 0% 

non-contributing 
–0.41% 

C19,H22 19.9% 

concentrating 
20.17% 

29 

 

H7,H18 
19.1% 

concentrating 
33.13% 

C1,C12 
0% 

non-contributing 
0.13% 

C19,H22 
8.3% 

concentrating 
–0.01% 

36 

 

H7,H18 
19.1% 

concentrating 
9.25% 

C1,C12 
24.3% 

concentrating 
15.45% 

C19,H22 
8.3% 

concentrating 
6.62% 

37 

 

H7,H18 
0% 

non-contributing 
–10.10% 

C1,C12 
0% 

non-contributing 
–0.61% 

C19,H22 
0% 

non-contributing 
0.14% 

38 

 

H7,H18 
0% 

non-contributing 0.02% 

C1,C12 
0% 

depleting 
9.41% 

C19,H22 
0% 

depleting 1.10% 

41 

 

H7,H18 
0% 

non-contributing 
–0.02% 

C1,C12 
0% 

non-contributing –4.86% 

C19,H22 
0% 

depleting 
1.13% 

One must realise that just a single set of canonical MOs is always computed for any poly-

atomic molecule and the molecule-specific electron density distribution is the result of 

combined individual MO’s contributions. However, the ED distribution is not uniform 

throughout and each molecule has a specific set of covalent bonds and intramolecular, either 

attractive or repulsive, interactions. From this it follows that a molecule-wide MO cannot have 

an overall (non)bonding character. Clearly, each MO’s nature, in terms of concentrating, 
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depleting or non-contributing to ED at a specific point r in 3D space (such as a critical point 

on Bader’s molecular graphs) can only be established by exploring an inter-nuclear region of 

an atom-pair of interest.  

The second derivative of the ED is associated with electron concentration or depletion in 

the inter-nuclear region or, for that matter, any point in 3D space occupied by a molecule.14 

We have established that the lowest energy MOs involving C1s core electrons in Bph are (i) 

entirely C-atom-centred and (ii) non-contributing to ED at and in the vicinity of CPs of interest 

in this work, namely CP/MDP(H7,H18) in planar/twisted Bph and CP(C1,C12) and 

CP(C19,H22) in planar Bph.  

3.4.1. MO-based picture of the C1–C12 and C19–H22 covalent bonds in the 

planar conformer. We investigate here the carbon-carbon linker (C1–C12) and one of the 

C–H bonds (C19–H22) as these atoms are not involved in any discernible non-covalent 

interaction – see Figure 2. A full set of results pertaining to CP(C1,C12) and CP(C19,H22) in 

the planar conformer is presented in Part 4 of the SI.  

Importantly, regardless of the impact made by a local environment, the same and 

characteristic overall trends are observed for both covalent bonds, namely: 

1) The directional second partial derivative (from now on called 2nd derivative) computed on 

the total ED is negative at both CPs(A,B) seen in Figures 2a,b. Naturally, the 2nd derivative is 

also negative in the vicinity of these CPs showing that ED became highly concentrated in the 

wider inter-nuclear regions. The trends observed in Figures 2a,b can be seen as a MO-ED 

signature of an overlap of atomic -orbitals that lead to the ED concentration, exactly as one 

would expect from covalent bonds’ classical interpretation.  

2) Traces of the 2nd derivative < 0 shown in Figures 2c,d are signatures of individual MOs that 

concentrate ED. Typically, only few MOs concentrate ED at a specific CP/MDP and examples 

for MOs with %-contributions to the total ED at a CP larger than 10% are shown in Figures 

2c,d.  
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Figure 2. Cross-sections along the 2–eigenvector in the C1,C12 and C19,H22 inter-nuclear regions. 

(a) to (d) – MO contributions to directional partial second derivative for C1,C12 or C19,H22, as 

indicated, and total ED (e) and directional partial first derivative (f) along the 2–eigenvector, as 

selected individual MOs (a and b), grouped according to the contributions from the core (1–12, purple 

line) and valence (13–41, green line) MOs (c and d) or as the sum of all concentrating (blue) or 

depleting (red) MOs (e and f). 
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3) The overall combined contribution made by MOs 13-41 is of concentrating nature and the 

total ED peaks exactly at the relevant CP(A,B) – Figure 2e. There are also MOs that deplete 

ED in the vicinity of CPs, hence they are classified as such, but they are entirely non-

contributing exactly at the CP’s coordinates because |i(CP)|2 = 0.0. All these MOs are of  

nature in the inter-nuclear region with a node at exactly the relevant CP as shown in Figure 2e. 

4) The first derivative on the total ED is crossing at the coordinates of CPs(A,B), i.e., at the 0.0 

value in Figure 2f. 

5) The CP(r) function (developed recently51 to explain the presence, or otherwise, of a DB) 

shows that the net slope of all concentrating MOs is greater in magnitude and opposite in sign 

than the net slope of all depleting MOs at a CP(A,B). 

As seen from Figure 2 and Table S6, Figures S3 and S4, Part 4 in the SI, all occupied MOs 

that contribute to ED at CPs throughout a molecule do so differently in each inter-nuclear 

region, e.g., 36, in planar Bph, makes the largest contribution at CP(C1,C12) yet a very small 

contribution at CP(C19,H22), whereas 24 contributes most at CP(C19,H22) but null at 

CP(C1,C12). Furthermore, the 2nd-derivatve-defined nature of each MO’s contribution 

(concentrating, depleting and non-contributing) is inter-nuclear region specific – see Table S6, 

Part 4 of the SI.  

To fully understand the role played by each individual MO and quantify its participation in 

electron delocalization across two atomic basins, one can make a use of the MO-DI protocol 

(Tables S7-S9, Part 4 of the SI). It quantitatively accounts for positive or constructive (in-

phase) and negative or destructive (out-of-phase) interference computed for each unique MO-

pair. The net (or total) number of electron pairs delocalized (delocalization index, DI) between 

C1,C12 and C19,H22 atom-pairs is 1.06 and 0.97, respectively corresponding to a single 

covalent bond order. The MO-DI method also explains how the covalent bond order comes 

about, by calculating the overlap of each MO across two atomic basins as well as the 

interference with all other MOs. Investigation of specific MO-pairs using the MO-DI method 



Chapter 3 

58 
 

reveals useful insights and strong links to classical MO interpretations. For instance, the core 

1s 1 and 2 orbitals contribute 1.0 e–-pairs to DI(C1,C12) as they completely overlap C1 and 

C12. However, due to their complete deconstructive interference with each other resulting in –

1.0 e–-pairs, they do not make a net contribution to DI(C1,C12) at all. This is an example of a 

typical bonding-antibonding MO-pair, in full agreement with a classical interpretation of these 

orbitals. This is a common pattern even among the valence orbitals, such as the 38 and 41 

MO-pair with  character. 38 and 41 contribute a total of 0.14 e–-pairs to DI(C1,C12) through 

joint overlap over the C1/C12 atomic basins, but –0.12 e–-pairs are removed due to 

deconstructive interference with each other. Analysis of individual MO-pairs might be very 

tedious. However, analysing the combined contributions of all MOs proved to be the most 

insightful: the net DI(C1,C12) of 1.06 is a result of 25 overlapping MOs, contributing 

∑ 𝐷𝑖𝑖
(C  C 2)

𝑖  = 2.82 e–-pairs but with a net deconstructive interference of ∑ 𝐷𝑖≠𝑗
(C  C 2)

𝑖𝑗  = –1.76 

e–-pairs. This result can be re-stated using chemical jargon: the C–C bond has a maximum 

bond-order of ~3, which is reduced to ~1 due to the presence of bonding-antibonding MO-

pairs.  

We also note here a strong relationship between our MO-ED and MO-DI results: all of the 

MOs that concentrate density to an inter-nuclear region also i) strongly overlap both atomic 

basins, and ii) interfere constructively with each other. This important observation shows that 

all MOs that concentrate density in an inter-nuclear region are of the same general nature (i.e. 

-symmetries) and contribute to the covalency of an interaction. 

3.4.2. MO-based interpretation of absence and presence of a DB between H-

atoms of a bay in Bph conformers. All the data and observations detailed above for 

classical covalent bonds paint a very strong picture of both the nature of MOs involved in the 

topological definition of a DB, as well as the nature and mechanism of electron delocalization 

across an interaction. This picture is in a full agreement with a general notion of covalent bonds 
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formation and their energy-minimising contribution to molecular energy. Hence, we decided 

to follow exactly the same protocol in investigating inter-nuclear regions between covalently 

non-bonded H7,H18 atom-pair in both Bph conformers – a full set of data is placed in Part 5 

of the SI.  

Looking at the MO isosurfaces, all contributing MOs are of a -fashion relative to the HH 

interaction in both conformers. Examples of cross-sections of MOs that concentrate ED, as 

identified by the 2nd derivative, are shown in Figures 3a,b. The shapes of traces are rather 

complex (due to congested molecular environment) and the number of concentrating and 

depleting MOs differs for both conformers. The trends obtained for the total ED revealed 

(Figures 3c,d) that there is no qualitative difference, as there is a region along the 2–

eigenvector (including coordinates of CP(H,H) and MDP(H,H)) where the 2nd-derivative < 0. 

This shows that the overall and dominant effect is ED concentration in the inter-nuclear region 

that resulted in CP = 0.01427 a.u. (planar) and MDP = 0.00529 a.u (twisted). Moreover, largely 

the same orbitals (23, 25, 29, 35 and 36) concentrate ED between H-atoms to a total of 

72.9% and 61.6% in planar and twisted conformers, respectively. 

The only significant difference is in the degree and the slope of MOs’ contribution to each 

inter-nuclear region. We found that the overall degree of ED concentration, relative to 

depletion, is greater in planar (94.5%) than in twisted (71.3%) at respective points (CP and 

MDP). Individual MOs’ contributions produced specific traces in the total ED (Figures 3c,d) 

that explain the difference in 1st derivatives (Figures 3e,f) and hence the presence of a 

DB(H7,H18) only in the planar Bph. Only in the planar Bph we see the trend (thick solid black 

line in Figure 3e) computed for the 1st derivative on the total ED crossing zero at the exact 

coordinates of CP(H,H) and the ring critical point (RCP). These critical points are classical 

topological features when atoms linked by a DB(A,B) form a ring on a molecular graph. The 

appearance/absence of these two critical points in Figures 3ef is synonymous with the 

presence/absence of a density bridge, here DB(H7,H18) in the planar Bph.   
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Figure 3  Decomposition of the directional partial second (a to d) and first (e and f) derivatives along 

the 2–eigenvector in the H7,H18 inter-nuclear region in planar (left) and twisted (right) biphenyl, on 

selected individual MOs (a and b), grouped according to the contributions from the core (1–12, purple 

line) and valence (13–41, green line) MOs (c and d) or, for the first derivative, on the sum of all 

concentrating (blue) or depleting (red) MOs (e and f).  
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Decomposition of the trace of the total ED (Figures 3e,f) into the sums of concentrating and 

depleting MOs shows that the rate of change of concentrating MOs is greater than the rate of 

change of depleting MOs in planar Bph, while the opposite is true for twisted Bph. This single 

observation – as confirmed by the CP(r) function51 and trends in 1st derivatives shown in 

Figures S5 and S6, Part 5 in the SI – is the only reason for the presence/absence of DB(H7,H18) 

in planar/twisted Bph.  

To gain additional insight on the nature of the HH interactions in terms of MOs, we used 

the MO-DI method – see Tables S11 and S12, Part 5 in the SI. They show a decomposition of 

the QTAIM-defined DI(H7,H18) of 0.031 and 0.011 e–-pairs in the planar and twisted Bph, 

respectively, into contributions made by each MO. The MO-DI method takes into account the 

spatial overlap of an MO across both atomic basins (diagonal values, ∑ 𝐷𝑖𝑖
(      )

𝑖 ) as well as 

the constructive or destructive interference of an MO with all remaining MOs (off-diagonal 

values, ∑ 𝐷𝑖≠𝑗
(      )

𝑖𝑗 ).  

As an example, let us consider 29 in planar Bph – the MO that shows in-phase -symmetry 

for most H atoms and out-of-phase *–symmetry for C–H bonds, Table 1. In case of the planar 

conformer, 29 contributes net 0.010 e–-pairs, i.e., 33% of the DI(H7,H18). This is a result of 

spatial overlap (0.012 e–-pairs) and overall interference with other MOs (it amounts to –0.002 

e–-pairs). Most significant constructive interference involves 25 (in-phase -symmetry for 

H7,H18) which contributes an additional 0.009 e–-pairs whereas most significant 

deconstructive interference involves 37 (out-of-phase *-symmetry for H7,H18) which 

reduces the total DI by –0.009 e– pairs.   

However, the most accurate picture of electron delocalization for the H7H18 interactions 

can only be obtained by taking into account the overlap and interferences with all MOs. We 

note that the same general trend as what was observed for the C1–C12 bond, although to a 

much lesser degree, holds for the H7H18 interaction in planar biphenyl. In total, MOs 
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overlapping both H7 and H18 contribute 0.064 delocalized e–-pairs, but this gets reduced by –

0.033 e–-pairs as a result of destructive interferences. Very much the same holds true for the 

H7H18 interaction in twisted biphenyl. Whereas spatially overlapping MOs contribute to 

DI(H7,H18) more or less the same, 0.060 e–-pairs, the reduction of DI due to net destructive 

interferences (–0.049 e–-pairs) is considerably greater than in the planar biphenyl. This clearly 

demonstrates that the in-phase MOs’ overlap over the HH interaction is relatively stronger 

than out-of-phase overlap in planar than twisted biphenyl. In chemical jargon terms, bonding-

antibonding MO-pairs reduce the bond order less in planar than twisted biphenyl. Possibly the 

most important observation, however, is the same nature of MO-overlap as what was observed 

for the C1–C12 linker in planar Bph: all MOs that concentrate ED at the BCP/MDP(H7,H18) 

also i) interfere constructively with each other and ii) contribute to the DI in a net-positive 

fashion.  

Taking all of the above results from the MO-ED and MO-DI decompositions into the 

account, it is abundantly clear that the interaction between H7 and H18 in planar or twisted 

biphenyl share two critical features. These features, which are also observed for covalent 

bonds, are: 1) a net concentration of ED in the interatomic region arising from multiple MOs 

of strictly -character and 2) a net delocalization of electron-pairs arising from MO-overlap. 

Furthermore, our results clearly demonstrate that (i) selecting just few MOs, even with 

dominant contributions, cannot sufficiently describe the HH interactions of interest and (ii) 

it is only through the consideration of all occupied MOs that the topology of the total ED can 

be recovered and interpreted meaningfully. The only discernible difference between the HH 

interactions in planar or twisted biphenyl is the presence of a density bridge. It arises purely 

from different rates of change of net concentrating relative to depleting MOs’ contributions to 

the total ED, a fact that does not change the underlying nature of the interaction.  
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3.4.3. MO-based nature of the hydride H,H DBs in cubic Li4H4. Cubic Li4H4 is an 

interesting molecule as its molecular graph reveals six density bridges originating from each 

H-atom. Even more surprising is the presence of three DBs(HH) linking each H-atom with the 

remaining ones despite (i) d(HH) >> the sum of the vdW radii by 0.30 Å and (ii) each H-atom 

being involved in three large repulsive interactions with neighbouring H-atoms. The computed 

H,H

intE  = +84.4 kcal mol–1 is dominated by the classical electrostatic Coulomb energy term of 

H,H

clV  = +92.6 kcal mol–1. 

There are 2 groups of 4 doubly-occupied MOs: 1–4 are formed from 1sLi whereas 5–8 

from 1sH orbitals – Figure 4. Each group of MOs consists of a single, symmetrical and in-phase 

MO as well as three degenerate orbitals of different symmetry combinations. Together, this set 

of 8 MOs describes 24 interactions, 12 Li–H, 6 LiLi and 6 HH, and interestingly, density 

bridges are present for all Li–H and HH but LiLi interactions.  

 

Figure 4.  Shapes of the eight MOs in cubic Li4H4 (isovalue = 0.02 a.u.). The nature of each MOs 

contribution to a single HH interaction, as defined by the sign of the 2nd-derivative, is shown. 
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We are particularly interested in explaining the presence of the DBs between hydride atoms 

and due to perfect symmetry of cubic Li4H4, we will discuss the H2,H5 atom-pair as an example 

– a full set of relevant data is included in Part 6 in the SI. The 2nd derivative trends seen in 

Figure 5a reveal that concentrating in nature contributions to ED of 0.01530 a.u. at the 

CP(H2,H5) are made only by 5–8 MOs. This is because the 2nd derivative < 0 is observed at 

and in the vicinity of the CP(H2,H5). These orbitals contribute 98.3% to ED at this CP with 

54.2% coming from 5 (Figure 5b). The remaining 1.7% of ED at the CP(H2,H5) comes from 

four MOs (1–4) in a depleting fashion (Figure 5c) with 1 adding 0.8%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The partial directional 2nd-derivative (a), ED contributions made by higher-energy MOs 

(5–8, b) and lower-energy MOs (1–4, c) and the CP(r) function (d) as cross-sections along the 2–

eigenvector for atom-pair H2,H5 in Li4H4.  
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The three degenerate orbitals of different symmetry, (2–4) and (6–8), make combined 

identical contributions to ED at all three CP(H,H), namely 0.0013 and 0.0674 au, respectively. 

However, individual MO’s contributions vary dramatically, e.g., for 6 we obtained 0.0, 10.4 

and 33.8 %-contributions to CP(H2,H4), CP(H2,H5) and CP(H4.H5), respectively – see Table 

S14 in Part 6 of the SI.  As for the HH interaction in planar Bph, the DBs between H-atoms 

in Li4H4 are present as a result of the greater slope of the total concentrating than depleting ED 

contributions made by MOs (Figure 5d).  

The MO-DI results obtained for the representative H2H5 interaction (Table S15, Part 6 of 

the SI) show that 1 localised on all four Li nuclei contributes negligibly to DI(H,H), through 

both overlap and constructive interference with other MOs. The DI(H2,H5) arises 

predominantly from the overlap of 5 (contributing 0.21 e–-pairs) and the combined overlap of 

6–8 (contributing a sum of 0.15 e–-pairs) to a total of 0.36 e–-pairs. However, 5 also 

interferes destructively with 6–8 and this reduces the total DI(H,H) by –0.26 e–-pairs. Hence, 

a small but not insignificant net total DI(H2,H5) = +0.09 e–-pairs was obtained. This 

observation confirms the classical closed-shell nature of the HH interactions as the 5 and 

6–8 MOs form a seemingly bonding-antibonding pair, although in slight favour of net 

covalent character.  

3.5. Conclusions 

This work unambiguously shows that physical processes leading to appearance of density 

bridges (DBs) are exactly the same regardless of the strength and nature of interaction atoms 

are involved in. We report the MO-based interpretation of: 

1. Classical C–C and C–H covalent bonds in the Bph. They represent very strong and overall 

attractive interactions due to dominant contribution coming from the exchange 
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correlation term (XC-term). In both cases, an electron-pair sharing (hence electron 

density concentration) in the inter-nuclear region takes place.  

2. A steric CHHC contact in the non-equilibrium planar conformer of Bph. It is 

characterised by a weak and slightly attractive, due to dominance of the XC-term, 

interaction between homo-polar H-atoms. 

3. A very large repulsive, due to dominance of electrostatic term, HH interaction in the 

equilibrium structure of cubic Li4H4. Remarkably, each H-atom is involved in three such 

repulsive, over +80 kcal mol–1, interactions.   

We have fully explained the appearance of DBs using the MO-ED and MO-DI protocols 

reported by us recently.  

We used the directional second partial derivative (2nd-derivative) computed on the total 

electron density (ED) along the 2-eigenvector crossing a critical, or minimum density, point 

(CP or MDP) on a Bader’s molecular graph. The negative value of the 2nd-derivative was found 

for all interactions studied and it indicates a net concentration of electron density at and in the 

vicinity of CPs and MDP studied. In each case investigated, there are sets of MOs that (i) 

contribute either in concentrating or depleting fashion to the total ED or (ii) make no 

contribution at exactly the CP’s coordinates. All MOs that concentrate ED in an inter-nuclear 

region also overlap both atomic basins and interfere constructively (in-phase) with other ED-

concentrating MOs. Hence, they contribute in a positive fashion to the number of delocalized 

electron-pairs. Therefore, all MOs that contribute to the presence of a DB (through a 

concentration of ED) also contribute to the degree of covalency that is conveniently measured 

by a delocalisation index, DI(A,B).  

Notably, the 2nd-derivative < 0 is a necessary (although not sufficient) condition for a DB to 

be present. For a DB to be present the rate of change of concentrating ED must be greater and 

opposite in sign than the rate of change of depleting ED along the 2–eigenvector. Therefore, 
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the absence of a DB does not indicate the absence of concentrating MOs as it has been 

demonstrated for the H7,H18 atom-pair in the equilibrium (twisted) Bph.  

All the above observations and conclusions are equally applicable to all and so diverse atom-

pairs studied in this work. This leads us to the final conclusion regarding the MO’s nature of 

DBs: a DB indicates the presence of MOs that concentrate ED in an interatomic region and 

increase the degree of covalency of the relevant interaction, but the absence of a DB does not 

indicate the absence of such MOs. 

What is then the significance of a DB? Is there a universal attribute that could be used to 

describe the role played by a DB in a molecular system? It is well-known fact that the formation 

of covalent bonds (synonymous with ED sharing) decreases the energy of a molecular system, 

generally through orbital-expansion and regardless of a kinetic or potential energy driving 

force.55 We have shown that this key property applies to MOs that contribute constructively to 

the formation of a DB. From the fact that processes leading to the appearance of any DB are 

the same, regardless of which atom-pair becomes linked by a DB, it follows that the energy-

lowering effect must be applicable to all of them. In other words, formation of a specific set of 

DBs (in most cases they represent classical covalent bonds) exemplifies the manner in which 

a molecular system is distributing its density such that at a particular 3D placement of nuclei 

the electronic energy of the system is at its minimum.  

One can also consider another scenario. The optimum geometry of a molecule is obtained 

from energy-optimisation protocols implemented in all major dedicated software packages. 

The resultant density distribution, incorporating density bridges as observed on Bader’s 

molecular graphs, can be fully recovered from combined individual MO’s contributions. 

Hence, the final set of MOs in an equilibrium structure represents lowest energy density 

distribution.  

A DB has also been interpreted33 as a ‘privileged exchange channel’, which – according to 

some56 – shows that a DB is present between two atoms as a result of the greatest exchange-
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correlation stabilization out of multiple, competing ‘exchange channels’. Whilst this concept 

has been challenged recently,57 some of us have previously shown58 that the significant multi-

centric character of many DBs makes the concept of ‘privilege’ quite hard to interpret and even 

more so to quantify. Upon the request of a reviewer, we can restate the concept of exchange 

channels in terms of MOs: an exchange channel can be seen as a product of the set of MOs that 

both concentrate ED and contribute to interatomic electron delocalization in a specific inter-

nuclear region. We have shown that such a set of MOs will always be present if a DB is present. 

It is then tempting to also link the concept of ‘privilege’ with the relative slopes as per the 

CP(r) function (see Eq. 3), but to do so will require careful consideration of a significant 

number of different and often highly controversial systems. We will be exploring these links 

in a future publication. 

From all these final remarks it follows that a common attribute of a DB is its energy-

minimising contribution to a molecular system. Also, by analogy to chemists’ understanding 

of covalent bonds, it is also clear that the presence of a DB is synonymous with a physical 

process of chemical bonding between two atoms that always stabilises a molecule. Bonding is 

a physical process that might, but does not have to, lead to the formation of a chemical bond 

as commonly understood by a chemist at large. Finally, bonding as a universal physical process 

can take place without being pin-pointed by the appearance of a DB. The H7,H18 atom-pair in 

a twisted conformer of Bph is an excellent example of such phenomenon. This work revealed 

that the only discernible difference between the HH interactions in planar or twisted biphenyl 

arises purely from different rates of change of net concentrating relative to depleting MOs’ 

contributions to the total ED. The presence of a density bridge in the case of the planar 

conformer of Bph, does not change the fact that MOs delocalizing e–-pairs and concentrating 

ED do dominate in both conformers. 

It is our conviction that this work levels the ground for harmonious, cooperative and 

complementary research conducted by orbital- and electron density-based camps when, at least, 
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describing and characterising any possible interaction and chemical bond in all molecular 

structures is of interest. 
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1. Abstract 

In this study we aim to determine the origin of the electron density describing a CHHC 

interaction in planar and twisted conformers of biphenyl. In order to achieve this, the fragment, 

atomic, localized, delocalized, intra- and inter-atomic (FALDI) decomposition scheme was 

utilized to decompose the density in the inter-nuclear region between the ortho-hydrogens in both 

conformers. Importantly, the structural integrity, hence also topological properties, were fully 

preserved as no ‘artificial’ partitioning of molecules was implemented. FALDI-based qualitative 

and quantitative analysis revealed that the majority of electron density arises from two, non-

classical and non-local effects: strong overlap of ortho C–H -bonds, and long-range electron 

delocalization between the phenyl rings and ortho carbons and hydrogens. These effects resulted 

in a delocalized electron channel, i.e., a density bridge or a bond path in a QTAIM terminology, 

linking the H-atoms in the planar conformer. The same effects and phenomena are present in both 

conformers of biphenyl. We show that the CHHC interaction is a molecular-wide event due to 

large and long-range electron delocalization, and caution against approaches that investigate 

CHHC interactions without fully taking into account the remainder of the molecule. 
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2. Introduction 

The wave-particle duality is one of the greatest sources of complexity in modern chemical 

structure theory. It imposes a holistic, non-local approach to the understanding of molecular 

structure in sharp contrast to the reductionist, atomistic dogma used by chemists. That said, wave-

particle duality is somewhat accounted for in conceptual chemistry through the combination of a 

number of heuristics, including Lewis[1] and resonance structures,[2] ligand-field theory[3] and 

construction of molecular orbitals (MOs) through symmetry-adapted atomic orbitals.[4] On the 

other hand, modern computational approaches allow for the calculation of highly accurate ab initio 

electronic structures (incorporating the full effect of the wave-like nature of electrons), from 

simple Hartree-Fock MOs to multi-configurational, valence-bond resonance states.[5]  

The increased accuracy offered by quantum chemical computations comes at a cost however – 

that of more complex and difficult interpretation, especially in terms of general chemical concepts. 

A particularly controversial example is that of close H,H contacts in the planar conformer of 

biphenyl (Bph), which has been the subject of a raging debate for the last few decades.[6–22] The 

H,H contacts serve as a good case study of the difficulty in reconciling atomistic chemistry with 

holistic quantum approaches. In a recent study[23] on a purely MO-based description of the H,H 

contact in Bph, we have shown that i) MO isosurfaces provide very little information on the 

contact or any other bond in the molecule, ii) each MO contributes in a vastly different nature to 

every diatomic interaction, and iii) only through the combination of all MOs in a molecule can an 

interaction be characterized in any meaningful manner. Figure 1 shows how multiple MOs 

contribute to the electron density in the H,H inter-nuclear region and illustrates that two MOs, 

despite overlapping atoms in the same region, can contribute in opposite fashions. Importantly, 

we were able to show that, regardless of the presumed presence/absence of a chemical bond(ing), 

a physical process of bonding (arising from MO-overlaps and interferences) can describe the H,H 

contact in both conformers of Bph. Unfortunately, in using canonical MOs, we were not able to 

extract any meaningful chemical information in terms of which atoms, fragments or molecular 
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regions contribute to any of the interactions in the molecule. Therefore, an approach that can 

qualify and quantify the contributions made by different atoms and molecular fragments to a 

particular interaction of interest is highly desirable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Decomposition of the electron density at the CP(H7,H18) in planar biphenyl into (a) 

concentrating density and (b) depleting density, as well as the decomposition of these densities into 

individual MOs contributions. Examples of MOs that make most significant contribution (either 

concentrate or deplete density at the CP(H7,H18) in planar biphenyl, 28 and 13, respectively) are also 

shown. 

 

A large number of post-wavefunction methods exist that can extract chemical information from 

the otherwise physical wavefunction. A concise list of these include the Natural Bond Orbitals 

(NBO) approach,[24] the Extended Transition State coupled with Natural Orbitals for Chemical 

Valence (ETS-NOCV) decomposition scheme[25] and the entire class of Quantum Chemical 

Topology methods[26] (QCT, including the popular Quantum Theory of Atoms in Molecules,[27] 

QTAIM). All of these approaches localize or decompose information within the wavefunction to 

provide some form of chemical interpretation. Unfortunately, the interpretations offered by these 

approaches are often widely different from each other as well as classical interpretations. In the 

case of the H,H contacts in biphenyl, as well as in a number of other systems,[28–37] QTAIM and 

NBO in particular have offered polar opposite views[6,10,11] despite using the same baseline 
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wavefunctions. Clearly, the quest for meaningful, chemical information from quantum mechanical 

data is far from solved. 

In this work we take a slightly different approach to the problem of H,H contacts in Bph. We 

start with an axiom – that the HH interaction exists in planar Bph, regardless of its nature 

(attractive or repulsive) or its energetic consequences (stabilizing or otherwise a molecule). We 

can further state, based on our MO-based evidence,[23] that the HH interaction also exists in the 

twisted (lowest-energy) conformer of Bph and that the interaction is built from the same 

constituents as present in the planar conformer. Then, instead of trying to evaluate whether the 

HH interaction is a bond or a steric repulsion, or attempting to find the origin of the rotation 

barrier in Bph, we will only investigate the chemical characteristics of the interaction. Specifically, 

we aim to provide a qualitative and quantitative description of the electron density (ED) 

distribution in the H,H inter-nuclear region in terms of the influence of all atoms and/or molecular 

fragments. In doing so, we aim to sufficiently characterize the HH interaction in chemical terms 

by embracing the molecular-wide nature of the quantum chemical electronic structure. 

In order to meet our aims, we need to i) provide a complete mapping of the ED distribution 

in the H,H inter-nuclear region in terms of atoms and/or molecular fragments, and ii) characterise, 

quantify and organise each major contribution found in the region. To do so, we will utilise the 

Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI)[38–42] electron density 

decomposition scheme. FALDI is ideally suited for this task as it provides molecular-wide ED 

distributions in atomistic, chemically-intuitive terms. Moreover, qualitative and quantitative 

information from any atom, atom-pair or fragment can be gained at any coordinate in space and 

obtained information can be further grouped and organised to provide additional insight. We 

selected Bph as a case study as the approach proposed here is equally applicable to any intra- or 

intermolecular interaction and provides a qualitative and quantitative insight on how a molecular 
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system is spontaneously minimising its energy by redistributing ED and nuclei in the 3D space 

on, e.g., a structural change from a twisted to a planar (non-equilibrium) structure. 

3. Theoretical Background 

Overview of the FALDI density decomposition scheme 

Building upon concepts of the Domain Averaged Fermi Hole (DAFH) approach,[43–45] FALDI 

calculates pseudo-2nd order contributions arising from (de)localized electrons within QTAIM-

defined atomic basins. FALDI also commonly utilizes the Müller approximation[46] as a reasonable 

alternative to the computationally-expensive full electron pair density matrix. A short description 

of FALDI’s atom, atom-localized and interatomic-delocalized distributions for a restricted 

Hartree-Fock or Kohn-Sham wavefunction are given below, followed by an in-depth, for the first 

time, description of fragment-based density distributions. 

The elements of an atomic overlap matrix (AOM), 

where 𝜒𝑖 and 𝜒𝑗 are canonical MOs and the integral is over the volume of a QTAIM atomic basin, 

A, can be used to effectively calculate all FALDI density distributions. The density contribution 

at any coordinate r in 3D space arising from the electrons found, on average, within A is known 

as an atom–ED distribution: 

The symbol gA(𝐫) arose from DAFH analysis, where it is usually further transformed through an 

isopycnic transformation and diagonalized. Integrating gA(𝐫) over the whole of molecular space 

provides the total number of electrons found, on average, within A, ∫ gA(𝐫)𝑑𝐫 = 𝑁(A). Note 

that gA(𝐫) is generally non-zero outside A, and atom–ED distributions therefore provide a 

molecular-wide distribution of the atomic electron population, N(A).  

𝑆𝑖𝑗
A = ∫ 𝜒𝑖

∗(𝐫)𝜒𝑗(𝐫)𝑑𝐫
ΩA

 (1) 

gA(𝐫) = 2∑𝜒𝑖
∗(𝐫)𝜒𝑗(𝐫)𝑆𝑗𝑖

A

𝑖𝑗

 (2) 
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FALDI can also provide real-space distributions of QTAIM-defined localization and 

delocalization indices (LI and DI, respectively). The density contribution to r arising from 

electrons localized to A is known as a loc–ED distribution: 

where 𝐒A𝐒A is the matrix product of 𝐒A with itself so that LI(A) = 2𝑇𝑟(𝐒A𝐒A) = ∫ℒA(𝐫)𝑑𝐫. 

ℒA(𝐫) is therefore a real-space distribution of LI(A). Similarly, the density contribution at r arising 

from electrons delocalized within two QTAIM basins, A and B, is known as a deloc–ED 

distribution: 

where 𝐒A𝐒B + 𝐒B𝐒A is used to ensure a symmetric matrix. Integration of 𝒟A,B(𝐫) over all 

molecular space yields the corresponding delocalization index, DI(A, B) = 2𝑇𝑟(𝐒A𝐒B + 𝐒B𝐒A) =

∫𝒟A,B(𝐫)𝑑𝐫 – again showing that 𝒟A,B(𝐫) is the real-space distribution of DI(A,B).  

Some of us have noted[42] before that, while QTAIM-defined LIs and DIs are physically exact, 

they can be chemically somewhat counterintuitive. Specifically, using Eqs. 3 and 4, we noted that 

ℒA(𝐫) is generally non-zero outside of A, suggesting that LI(A) describes a portion of both core 

and valence electrons. We introduced[42] the localized-delocalized overlap (LDO) algorithm, 

which alters each loc–ED in such a way as to remove any overlap, in an MO basis, with other loc–

ED and deloc–ED distributions. The resulting distribution,  

where 𝜙
𝑖
AA is a natural density function composed of eigenvectors of 𝐒A𝐒A with modified 

occupation 𝑛′′𝑖
AA

, provides a distribution of electrons that can be exclusively found only in A. 

Integrating ℒ′′A(𝐫) over all molecular space provides a localization index, LILDO(A) that describes 

ℒA(𝐫) = 2 ∑ 𝜒𝑖
∗(𝐫)𝜒𝑗(𝐫)(𝐒

A𝐒A)𝑗𝑖

𝑁MO

𝑖𝑗

 (3) 

𝒟A,B(𝐫) = 2 ∑ 𝜒𝑖
∗(𝐫)𝜒𝑗(𝐫)(𝐒

A𝐒B + 𝐒B𝐒A)𝑗𝑖

𝑁MO

𝑖𝑗

 (4) 

ℒ′′A(𝐫) = ∑𝑛′′𝑖
AA[𝜙𝑖

AA(𝐫)]2
𝑁

𝑖

 (5) 
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only core and non-bonded electrons, and is necessarily smaller than the corresponding QTAIM-

defined localization index, LIQTAIM. Correspondingly, each deloc–ED can be modified to produce 

a distribution 𝒟′′A,B(𝐫) that counts all sources of delocalized electrons between A and B. More 

details can be found in ref. 40; however, for the remainder of this work, we will utilize the LDO 

algorithm. LI(A), DI(A,B) and corresponding loc– and deloc–ED distributions will henceforth 

refer to the exclusive (de)localized distributions modified by the LDO algorithm. 

Putting all of the above together, FALDI therefore can decompose ED at any given coordinate 

r into contributions from all atoms (atom–ED distributions), 

where M is the total number of atomic basins. Each atom–ED distribution, when calculated along 

a grid of points (such as a 1D cross-section or a 3D isosurface) provides a real-space distribution 

of the electrons that can be found within each atomic basin. Alternatively, FALDI can also 

decompose the density at r in terms of intra-atomic localized (loc–ED) and inter-atomic 

delocalized (deloc–ED) distributions: 

Each loc–ED distribution maps the electrons exclusively localized to an atomic basin, and is 

generally limited to atomic core electrons and non-bonded electrons (such as strongly localized 

lone-pairs). Each inter-atomic deloc–ED distribution maps the electrons delocalized between two 

atomic basins, and includes covalently shared electrons as well as dispersion- and weakly-

correlated electrons. Note that a deloc–ED distribution can be calculated for any atom-pair, 

regardless of their proximity in space or whether they are considered ‘bonded’. 

The primary and novel use of FALDI in this work, however, is in terms of chemical fragments. 

Combining loc–ED and deloc–ED distributions defined for different atoms/atom-pairs allows for 

a number of fragment-based distributions defined below. 

𝜌(𝐫) = ∑𝑔A(𝐫)

𝑀

A

 (6) 

𝜌(𝐫) = ∑ℒA(𝐫)

𝑀

A

+ ∑ ∑ 𝒟A,B(𝐫)

𝑀

𝐵=𝐴+1

𝑀−1

A

 (7) 
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Fragment-related terms in FALDI analysis 

All of the atom and atom-pair FALDI terms can be grouped together in order to provide a 

fragment-centric FALDI analysis. The resultant distributions and integrated terms can be 

identically interpreted as their atomic counterparts. A short definition of the fragment terms used 

in this paper follows. 

Given two fragments, F1 and F2, the total density contribution of a fragment to any coordinate 

r can be given by summation of FALDI atom-ED distributions:  

𝑔F1
𝑡𝑜𝑡𝑎𝑙(𝐫) = ∑ 𝑔A(𝐫)

𝑀F1

A

 

(8) 

where 𝑀F1 is the number of atoms within F1. Integration of Eq. 8 over all space occupied by a 

molecular system yields the total fragment electronic population, Ntotal(F1), and a 3D-isosurface 

of 𝑔F1
𝑡𝑜𝑡𝑎𝑙(𝐫) yields a visualization of the total electronic contribution of F1 to the molecule. 

𝑔F1
𝑡𝑜𝑡𝑎𝑙(𝐫) includes electrons localized to each fragment, as well as a contribution of electrons 

delocalized between F1 and all other fragments/atoms.  

Similarly, the atom-localized electronic contributions of each fragment, 

LF1(𝐫) = ∑LA(𝐫)

𝑀F1

A

 

(9) 

is the contribution at r of electrons exclusively localized to each atom of the fragment. On its own, 

this term is not particularly informative, and includes the core and non-bonded electrons of each 

atom within the fragment. However, the intra-fragment delocalized electronic contribution, 

DF1
𝑖𝑛𝑡𝑟𝑎(𝐫) = ∑ ∑ DA,B(𝐫)

𝑀F1

B=A+1

𝑀F1−1

A

 

(10) 

provides the contribution at r of electrons delocalized between atoms of the same fragment, 

including covalently-shared and weakly-delocalized electrons. Eqs. 9 and 10 can be summed 

together to give the total intra-fragment electron distribution:  
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𝑔F1
𝑖𝑛𝑡𝑟𝑎(𝐫) = LF1(𝐫) +DF1

𝑖𝑛𝑡𝑟𝑎(𝐫) (11) 

𝑔F1
𝑖𝑛𝑡𝑟𝑎(𝐫) provides the contribution to r from electrons localized to F1, and includes both the 

atom-localized electrons and inter-atomic delocalized electrons among atom-pairs of the fragment. 

Integration of 𝑔F1
𝑖𝑛𝑡𝑟𝑎(𝐫) over all molecular space therefore yields the sum of LIs and DIs of the 

atoms of the fragment, which we will refer to as the total intra-fragment electron population, 

𝑁𝑖𝑛𝑡𝑟𝑎(F1) = ∫𝑔F1
𝑖𝑛𝑡𝑟𝑎(𝐫)𝑑𝐫 = ∑ LI(A) + ∑ DI(A, B)A,BA , where A,B  F1.  

Inter-fragment delocalization can be calculated by considering deloc-ED distributions 

involving atom-pairs from two different fragments: 

DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫) = ∑ ∑DA,B(𝐫)

𝑀F2

B

𝑀F1

A

 

(12) 

DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫) is a distribution of the electrons delocalized between two fragments, and integration 

over all space yields the inter-fragment delocalization index, DI(F1,F2) = ∫DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫) 𝑑𝐫 =

∑ DI(A, B)A,B , where AF1 and BF2. 

Finally, Eqs. 11 and 12 sum up to 𝑔F1
𝑡𝑜𝑡𝑎𝑙(𝐫) (Eq 8), 

𝑔F1
𝑡𝑜𝑡𝑎𝑙(𝐫) = 𝑔F1

𝑖𝑛𝑡𝑟𝑎(𝐫) + ∑
1

2
DF1,FX

𝑖𝑛𝑡𝑒𝑟 (𝐫)

M

X

 

(13) 

where M is the total number of fragments and if the orthodox (QTAIM) approach to atomic-basin 

overlap is used. In the case of the LDO approximation, as used in this work, DF1,F2
𝑖𝑛𝑡𝑒𝑟 ≠ DF2,F1

𝑖𝑛𝑡𝑒𝑟
, 

and the terms need to be accounted for separately. 

In this manuscript, we are primarily interested in the terms on the right-hand side of Eq. 13. 

𝑔F1
𝑖𝑛𝑡𝑟𝑎(𝐫) is the fragment-equivalent of a loc–ED distribution, and is a useful measure of the 

contribution of a single fragment to a region of space. DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫), on the other hand, is the 

fragment-equivalent of a deloc–ED distribution, and will be used to measure how the interaction 

between two fragments contributes to the ED in a region of space. 
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Cross-sections of FALDI terms 

A number of cross-sections of inter-nuclear space is performed throughout this work, and we 

follow a similar approach as what we have used a number of times before.[38–40] It involves the 

decomposition of the electron density at a specific coordinate r* and along a vector defined in 

terms of r*. Previously,[47] the ED was decomposed at r* in terms of MO densities, which we 

referred to as the MO-ED method: 

where 𝜒𝑖 is an MO with occupation 𝜈𝑖. In this work, we decompose the ED at r* in terms of the 

diatomic FALDI terms given in Eq. 7, which by analogy, we refer to as the FALDI-ED method. 

Alternatively, the density at r* can also be decomposed in terms of fragment contributions. The 

density is then given by the sum of intra- and inter-fragment delocalization contributions:  

The coordinate r* is usually a (3,–1) critical point (CP) in the total ED, or, in the absence of a 

CP, a minimum density point (MDP) defined as the coordinate with the lowest ED on an inter-

nuclear vector. The eigenvector associated with the second eigenvalue of the Hessian matrix, 

originating at r* is determined and then followed for a pre-selected increment, after which the 

Hessian matrix is recalculated and a new eigenvector is found. This process is repeated for a set 

distance, typically 0.3-0.5 Å in one direction. The resulting path is generally referred to as the 2–

eigenvector, and (in most cases) resembles a cross-section of the inter-nuclear region of interest. 

A FALDI decomposition is done at each coordinate of the 2–eigenvector. 

We then consider, for each FALDI decomposition product at r*, the partial directional second 

derivative (henceforth referred to as simply 2nd derivative) computed along the 2–eigenvector. 

From that, each FALDI product can be labelled as concentrating ED (negative 2nd derivative), 

𝜌(𝐫∗) = ∑ 𝜈𝑖|𝜒𝑖(𝐫
∗)|2

𝑁𝑀𝑂

𝑖

 (14) 

𝜌(𝐫∗) = ∑𝑔F𝑖

𝑡𝑜𝑡𝑎𝑙(𝐫∗)

M

i

= ∑𝑔F𝑖

𝑖𝑛𝑡𝑟𝑎(𝐫∗)

M

i

+ ∑∑
1

2
DF𝑖,FX

𝑖𝑛𝑡𝑒𝑟 (𝐫∗)

M

X

M

𝑖

 (15) 
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depleting ED (positive second derivative) or removing ED (when a FALDI product is negative) at 

the selected r*. The contributions of all FALDI products of the same nature can then be grouped 

to provide a ‘characterized’ total density contribution of specific natures at r*: 

We also make use of recently-developed39 CP(r) function to explain the presence of a bond path. 

This function accounts for the first derivatives computed on the total concentrating, depleting and 

removing density terms in Eq. 16: 

Specifically, the CP(r) is positive in the vicinity of r* if the slope of the FALDI products that 

concentrate ED is greater and opposite in sign than the slope of products that deplete ED. We have 

previously found[39] that the CP(r) will always be positive in the vicinity of a density bridge, DB 

(commonly known as a bond path).  

4. Computational Methods 

Both the planar and twisted conformers were optimised in Gaussian 09, Rev D.01[48] using B3LYP 

with cc-pVDZ in the gas phase; a full set of coordinates for both conformations is provided in Part 

1 in the SI. AIMAll v. 19.02.13.[49] was used to gather QTAIM data, which was used in the 

calculation of FALDI electron density data using in-house software. Isosurfaces of FALDI 

products were visualized using VMD.[50]  

5. Results and Discussion 

We are primarily interested in the origin of ED contributions in the inter-nuclear region of the 

CHHC interaction in planar/twisted BPh. To achieve our goals, we will utilize the FALDI–ED 

method to investigate the ED along the 2–eigenvector, originating from the CP(H7,H18) in planar 

Bph or the MDP(H7,H18) in twisted Bph, as shown in Scheme 1. We have used the exact same 

𝜌(𝐫∗) = 𝜌concentrating(𝐫
∗) + 𝜌depleting(𝐫

∗) + 𝜌removing(𝐫
∗) (16) 

𝐶𝑃(𝐫) = −𝑠𝑖𝑔𝑛(𝜕𝜌depleting(𝐫))

∙ [𝜕𝜌concentrating(𝐫) + 𝜕𝜌depleting(𝐫) + 𝜕𝜌removing(𝐫)] 
(17) 
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approach before,[23] but using an MO-based ED decomposition (the MO-ED method); below, 

results from the MO- and FALDI-ED methods will be briefly compared.  

The decomposition products of the FALDI- and MO-ED methods are quite different. However, 

these products can be combined, based on the sign of their 2nd derivatives, into groups that 

concentrate or deplete ED at the CP/MDP of interest. The pseudo 2nd-order nature of FALDI 

decomposition also allows for a third group that removes ED. Despite the fundamental differences 

between MO theory and FALDI, decomposition of the ED yields strikingly similar results (see 

Figure 2) when the decomposition products are grouped as concentrating, depleting and removing. 

  
Scheme 1. Definition of fragments for FALDI analysis. F1: H7∙∙∙H18, F2: C2∙∙∙C13, F3: C1–C12 linker 

and F4: combined fragment containing remainder of the molecule. The position and direction (+ and –) of 

the 2–eigenvector used for cross-section analysis (crossing a CP and MDP in the planar and twisted Bph, 

respectively) is also shown. 

 

This is very reassuring but should not be seen as entirely surprising because i) the same total ED 

was partitioned, ii) there can be only one physical process leading to a specific ED distribution 

among atoms of the same molecule and, hence iii) there must be a specific fraction of 

concentrating, depleting etc., density at any r, regardless on how the quantified value was 

obtained. Data in Figure 2 serves as a brief comparison between the two methods; a full set of 

FALDI-ED cross-sections is compared with relevant MO-ED data in Part 2 of the SI.  

Figure 2a shows the grouped 2nd-derivative ED contributions resulting from both MO- and 

FALDI-ED methods in planar Bph. The products from both MO and FALDI decompositions 

F3

F4 = remaining atoms

F1

F2

2−eigenvector +

–
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contribute to a strong concentration of ED at CP(H7,H18), tempered by a few products that deplete 

ED. The components that remove ED exactly at the CP (in the case of FALDI-ED) make a 

negligible contribution to the 2nd-derivative. Therefore, the exact same topology of the total ED is 

recovered in both MO- and FALDI-ED decompositions, even though the constituent products are 

quantitatively somewhat different. The same is seen for the total ED itself, shown now for the 

twisted conformer in Figure 2b: both MO- and FALDI-ED methods reveal a larger contribution 

of concentrated ED than depleted ED, resulting in a slight concentration (shouldering) at 

MDP(H7,H18). Of course, the largest difference between the planar and twisted conformers is the 

lack of a DB connecting the H-atoms in the latter. 
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MO FALDI 
(a) Planar 

  
(b) Twisted 

  
(c) Planar and Twisted CP(r) 

 
Figure 2. Decomposition of the  2nd derivative (tot) in planar conformation (a), and of the Total-ED in 

twisted conformation (b) of both MO-ED and FALDI-ED along the 2nd eigenvector and crossing the 

CP(H7,H18) in the planar and MDP(H7,H18) in twisted, as well as showing the CP(r) function in planar 

and twisted conformation for the MO-ED and FALDI-ED method (c). 
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As in our previous work,[23] the presence/absence of a DB can be fully explained with the help of 

the CP(r) function – Figure 2c. The CP(r) function is positive in the vicinity of CP(H,H) in planar 

Bph, which shows that the slope of the concentrating ED products is greater and opposite in sign 

from the slope of the depleting and removing ED products – hence the presence of a DB. 

The opposite is true in the case of the twisted conformer. Notably, the CP(r) function is 

invariant to the decomposition – it is identical in both MO- and FALDI-ED methods.  

Having established that FALDI can ‘reproduce’ trends generated by MOs, the next goal is to find 

the origin of the density, and as such we turn our attention to unique properties of the FALDI 

method.  

 

FALDI Fragment analysis of planar and twisted biphenyl 

There are 231 unique atom-pairs in Bph and all of them are analysed in order to gain necessary 

information. FALDI, however, allows for grouping of individual FALDI decomposition 

components into fragment-based indices and distributions. We will consider a fragment-based 

analysis first, in order to ease interpretation, before delving into specific atom-pair contributions 

in the next section.  

There is a very large number of ways of defining fragments in a molecule. However, we have 

chosen a specific fragmentation scheme to maximize the insight gained towards answering our 

research question, whilst minimizing the number of terms to evaluate. Moreover, we found that 

alternative schemes yield similar interpretations – see Part 3 of the SI for details. The set of 

molecular fragments Fn used in this work is shown in Scheme 1. To justify partitioning seen in 

Scheme 1 we note that fragments F1, F2 and F3 were used previously to argue the nature of the 

H∙∙∙H interaction[13,20] based on QTAIM/IQA energetic terms. Fragment F4 represents the 

remaining 16 atoms of Bph not included in fragments F1, F2 and F3. Finally, it is important to 
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stress that the fragmentation scheme employed here does not result in cutting Bph into non-

physical parts – FALDI-based partitioning fully preserves the molecule’s chemical integrity.  

Due to the use of our LDO algorithm, loc–ED terms (which describe densities that are fully 

localized to a single atomic basin) do not contribute to either the CP(H,H) in planar or the 

MDP(H,H) in twisted Bph. Hence, this allows us to focus our interest only on contributions 

coming from deloc–ED terms (density delocalized between atomic basins). In terms of fragments, 

we will make use of: (i) intra-fragment delocalization, DFn
𝑖𝑛𝑡𝑟𝑎(𝐫), that quantifies the ED 

contribution at r due to delocalization between each atom-pair within a selected fragment Fn, and 

(ii) inter-fragment delocalization, DFn,Fm
𝑖𝑛𝑡𝑒𝑟 (𝐫), that describes the ED contribution at r due to 

delocalization between each atom-pair (A,B) made of atoms belonging to different fragments, A 

 Fn and B  Fm. 

Cross-sections along the 2–eigenvector for the H7,H18 region in planar Bph, as well as 

isosurfaces of the largest fragment contributions to the ED at CP(H7,H18), are shown in Figure 3. 

The largest contributor to the ED, by a large majority (58.6%), is the inter-fragment delocalization 

of fragments F1 and F2. This describes the electrons delocalized between the ortho-carbons and 

ortho-hydrogens (i.e. C–H bonds) which results in a strong concentration of electrons at 

CP(H7,H18). The corresponding isosurface computed for DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫) (see Figure 3d) reveals that 

the C–H electron delocalization forms a channel of delocalized density between the H-atoms. This 

observation confirms our previous speculation[23] based on MOs – that the HH interaction is 

predominantly formed from the electron delocalization between two overlapping C–H bonds and 

fully justifies the use of the ‘CHHC’ notation to describe the contact. Moreover, two other 

fragment contributions also largely concentrate density in the H7,H18 region which, interestingly, 

highlights the significance of the effect that the rest of the molecule has on the bay region:  
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Figure 3. Decompositions showing (a) the leading and (b) remaining major FALDI fragment contributions 

to the ED of the CP(H7,H18) along the 2–eigenvector in planar Bph. (c) provides the relative contributions 

to the ED at CP(H7,H18), and (d) isosurfaces of selected components. 

the inter-fragment delocalization between fragments F2 and F4, and between F1 and F4 (15% 

and 11%, respectively). This observation signifies the importance and impact that the remainder 
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of the molecule (F4) has, as inherently both rings contribute a total of 26% to the density at 

CP(H7,H18) by interacting with H∙∙∙H, through DF1,F4
𝑖𝑛𝑡𝑒𝑟 (𝐫), and with C∙∙∙C, through DF2,F4

𝑖𝑛𝑡𝑒𝑟 (𝐫). 

The relevant isosurfaces (Figure 3d) again reveal that these FALDI terms, and hence essentially 

the entire molecule, contributes to the channel of delocalized density between the H-atoms of the 

bay. Clearly, the two aromatic rings delocalize ED to H- and C-atoms of the C–H fragments in the 

bay and in such a way promote the formation of the DB(H,H).  

The only component that results in a significant depletion of density is the inter-fragment 

delocalization between F2 and F3 (6.6%) – the interaction between the ortho-carbons and the 

linker carbons. The isosurface of DF2,F3
𝑖𝑛𝑡𝑒𝑟 (𝐫) is the only significant FALDI term that does not 

contribute to the delocalized electron channel between H-atoms. Interestingly, however, we found 

that the interaction between ortho-hydrogens and the linker carbons (DF1,F3
𝑖𝑛𝑡𝑒𝑟 (𝐫)), also 

concentrates ED at CP(H7,H18) – Figure 4a – although in an almost insignificant fashion (3.4 %).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Isosurfaces of less significant, but noteworthy contributions in (a) planar and (b) twisted Bph.  

 

In addition, the density directly shared by the H-atoms themselves (DF1
𝑖𝑛𝑡𝑟𝑎(𝐫)) is concentrating 

and contributes to the delocalized electron channel, but also in minute manner (3.4 %, Figure 4a). 
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Finally, we note that all of the above observations pertains to - rather than -delocalization, as 

no nodal surfaces are observed in the H,H inter-nuclear region for any of the FALDI isosurfaces. 

From an electronic point of view, and taking into account the full range of molecular-wide 

electron delocalization as elucidated by FALDI, we note that a channel of delocalized electrons 

between H-atoms in planar Bph primarily originates from two quantum mechanical effects: i) 

coupling of two C–H -bonds and ii) -delocalization induced by the phenyl rings. On the other 

hand, delocalization between ortho- and linker-carbons inhibits the HH electronic channel 

through a depletion at CP(H7,H18). The interplay of these effects results in a greater and opposite 

slope of the concentrating, relative to the depleting, FALDI products and ultimately results in an 

H,H DB (as confirmed by the CP(r) function in Figure 2c). 

Performing the same analysis for the HH region in twisted Bph reveals that the same four 

components make up the majority of the density at MDP(H7,H18) – Figures 4b and 5. The same 

contributions that concentrate/deplete ED in planar Bph also concentrate/deplete ED in twisted 

Bph. This observation confirms[23] that the CHHC interaction is chemically identical and present 

in both conformers. In fact, the only discernible differences between the two compounds are the 

relative magnitudes of each component, as well as their relative slopes. In the twisted conformer, 

the interplay between the FALDI products results in a smaller slope of the concentrating products 

relative to the depleting products, resulting in the absence of a DB. Finally, looking at the traces 

computed for the major contributions (Figure 5a,b) we note that the most significant impact on the 

shape of the CP(r) function (Figure 2c) and the absence of a DB in the twisted Bph is the 

delocalization between F2 and F4?. This is the only trace that does not have a bell shape as 

observed for F1,F2 (in planar and twisted Bph), F1,F4 (in both Bph conformers) and F2,F4 

(only planar conformer). 
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Figure 5. Decompositions showing (a) the leading and (b) remaining major FALDI fragment contributions 

to the ED of the MDP(H7,H18) along the 2–eigenvector in twisted Bph. (c) provides the relative 

contributions to the ED at MDP(H7,H18), and (d) isosurfaces of selected components. 

 

Note that the choice of isovalue for rendering the above-mentioned isosurfaces does not have an 

impact on our interpretation – the same molecular-wide trends are seen for larger isovalues as 

0.000

0.005

0.010

0.015

0.020

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

E
D

 /
 a

.u
.

Distance from MDP(H7,H18) / Å

MDP(H7,H18)

⊥ H7,H18

TotalRemaining

DF1 F2
 n   

0.000

0.001

0.002

0.003

0.004

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

E
D

 /
 a

.u
.

Distance from MDP(H7,H18) / Å

MDP(H7,H18)

⊥ H7,H18

DF2 F 
 n   

DF1 F 
 n   

DF2 F 
 n   

Remaining

52.18%

18.00%

10.28%

9.71%

9.82%
Inter-F1--F2

Inter-F2--F4

Inter-F2--F3

Inter-F1--F4

Remaining

DF1 F2
 n   

DF2 F 
 n   

DF1 F 
 n   

DF2 F 
 n   

(a) 

(b) 

(c) 

(d) 

DF2 F 
 n   

DF1 F 
 n   

DF2 F 
 n   

DF1 F2
 n   

52% at MDP(H7,H18)
Concentrating

Isovalue=0.001 au

18% at MDP(H7,H18)
Concentrating

Isovalue=0.002 au

10% at MDP(H7,H18)
Concentrating

Isovalue=0.001 au

10% at MDP(H7,H18)
Depleting

Isovalue=0.001 au



97 

 

well. In addition, the quantitative measures obtained from cross-section analysis is independent of 

the choice of isovalue for the isosurfaces. This fully confirms that the concentration of density 

associated with the CHHC interaction can be regarded as a molecular-wide event. 

 

FALDI diatomic analysis of planar and twisted biphenyl 

Whereas FALDI’s fragment analysis reveals the largest trends in the electronic structure of a 

molecule, FALDI’s atomic and atom-pair analysis allows one to further pin-point the origin of ED 

in a specific region.  

Cross-section analyses along the 2–eigenvector for the H7H18 region in planar and twisted 

Bph reveal that there are nine significant contributors to the density at CP(H,H) and MDP(H,H) 

making up 77.5% and 73.9%, respectively. Isosurfaces of the most significant FALDI atom-pair 

contributions are shown in Table 1 and an extended set of significant contributions is placed in 

Table 2; a full set of FALDI atom-pair data is included in Part 4 of the SI. 

Fragment analysis for planar Bph showed that there are four significant contributions. The 

largest contribution was the inter-fragment delocalization between F1 and F2 and based on the 

diatomic analysis, we see that this interaction is mostly made up from the bay-region atom-pairs 

C2,H7 and C13,H18. These two atom-pairs conjointly contribute 57.4% to the density at CP(H,H). 

We also see similarly to the fragment analysis, DF1
𝑖𝑛𝑡𝑟𝑎(𝐫), that the H7∙∙∙H18 atom pair makes a 

significant contribution, but relatively small compared to the bay-region C-H atom-pairs. 

The fragment analysis also showed the importance of the rings and their interactions with the 

ortho C–H groups. Diatomic analysis shows that it is predominantly the meta carbons, C3 and 

C14, that delocalize density into the H,H inter-nuclear region. Specifically, C2–C3 and C13–C14 

delocalizes and concentrates ED at CP(H7,H18) (8.2%), as do the long-range interactions C3H7  
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Table 1. Isosurfaces of the most significant FALDI atom-pair contributions (Isovalue 0.001 a.u.) of 

concentrating, depleting, and removing nature to the electron density at the (3,-1) CP(H7,H18) and 

MDP(H7,H18) in planar and twisted biphenyl, respectively. We denoted ‘sym’ to represent that the atom-

pair has a symmetrical interaction of the same contribution and nature. 

Planar Twisted 

Atom-pair; deloc-ED contribution a.u. / %-fraction, nature 

C2,H7; 0.004134 / 28.7 C2,H7; 0.001781 / 25.6 

sym sym 

C2,C3; 0.000594 / 4.1, conc C2,C3; 0.000337 / 4.8, conc 

sym sym 

H7,H18; 0.000510 / 3.5, conc H7,H18; 0.000103 / 1.5, conc 

  

C3,H7; 0.000253 / 1.8, conc C3,H7; 0.000110 / 1.6, conc 

sym sym 

C1,C2; 0.000349 / 2.4, deplet C1,C2; 0.000291 / 4.2, deplet 

 sym  sym 

 

  

H7

C2

H7

C2

C2C3 C2C3

H7 H18 H7 H18

H7

C3

H7

C3

C2

C1

C2

C1
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Table 2. Most notable FALDI-ED contributions and %-fractions to the (3,-1) CP(H7,H18) and 

MDP(H7,H18) in planar and twisted biphenyl, respectively, for concentrating, depleting, and removing 

density.  

Atom-Pair 

Planar Twisted 

ED contribution  ED contribution  

a.u. / %-fraction a.u. / %-fraction 
 Concentrating 

Total 0.01372 / 95.1% 0.00617 / 88.6% 

C2,H7 and C13,H18 0.00826 / 57.4% 0.00356 / 51.2% 

C2,C3 and C13,C14 0.00118 / 8.2% 0.00068 / 9.6% 

H7,H18 0.00051 / 3.5% 0.00010 / 1.5% 

C14,H18 and C3,H7 0.00050 / 3.6% 0.00022 / 3.2% 

Remaining 0.00325 / 22.5% 0.00161 / 23.1% 

 Depleting 

Total 0.00075 / 5.2% 0.00080 / 11.4% 

C12,C13 and C1,C2 0.00070 / 4.8% 0.00058 / 8.4% 

C2,C6 and C13,C17 - 0.00006 / 1.0% 

Remaining 0.00005 / 0.4% 0.00015 / 2.1% 

 Removing 

Total -0.000048 / -0.33% -0.000003 / -0.1% 

C2,C13 -0.000037 / -0.26% - 

Remaining -0.000011 / -0.07% - 

 

and C14H18 (3.6%). The remaining interactions of the ring (coming from the F4 fragment) with 

the ortho C–H groups are all small individually, although they add up to a significant 14% of the 

ED at CP(H7,H18). 

Analysis of atom-pairs in twisted Bph shows similar results and corroborates our previous 

statement regarding the similarity of the CHHC interaction in both conformers. The only 

difference between planar and twisted conformers is the relative magnitude of each decomposition 

product. The contributions that is responsible for the majority of depleted ED at the H,H CP/MDP 

is that of atom-pairs C12,C13 and C1,C2 – the interaction between linker- and ortho-carbon atoms. 

Most notably, these atom-pairs contribute relatively more to the ED at MDP(H7,H18) in twisted 

Bph (8.4%) than at the CP(H7,H18) in planar Bph (4.8%). 
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Conclusion 

Previously, an MO-based density decomposition was used[23] successfully to unambiguously 

analyse the nature of the CH∙∙∙HC density bridge in Bph, and recovered that the MO constituents 

of the interaction are very similar to every other covalent bond in the molecule. However, the 

delocalized, molecular-wide nature of MOs makes any MO-based interpretation of the CH∙∙∙HC 

interaction quite difficult. We have shown in this work that FALDI analysis, both in terms of 3D 

isosurfaces and 1D cross-sections, can provide valuable insights regarding the origin and chemical 

character of the electron density forming the CHHC interaction.  

It was found that the density in the H,H inter-nuclear region arose from two dominant effects: 

i) overlap of the electrons delocalized within the two ortho C–H -bonds, and ii) long-range 

delocalization of the phenyl rings with ortho carbon and hydrogen atoms. Both effects increase 

the -character[23] of the CHHC interaction, and we suggest these effects as examples of non-

classical, long-range -delocalization. The meta carbons, in particular, contribute more to the 

density of the CHHC interaction than the para carbons and hydrogens of the rings. In addition, 

both aforementioned effects resulted in the formation of a delocalized electron channel between 

the hydrogens (reminiscent of Pendás et al’s concept of privileged exchange channels[14]), which 

was easily visualised by FALDI. Interestingly, the density delocalized between the ortho hydrogen 

atoms themselves were found to be an almost insignificant contribution. Finally, the density 

delocalized between the linker and ortho carbons inhibits the formation of the delocalized electron 

channel through a depletion of density in the H,H inter-nuclear region. We expect that the 

information that FALDI provides can be used to study the properties and tuneability of CHHC 

interactions in biphenyl as well as other systems. 

The exact same effects described above were observed for the CHHC interaction in the 

twisted conformer of Bph as well, although to a lesser extent. We have found no evidence that the 

nature of the CHHC interaction is different in the two conformers – a delocalized electron 
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channel was observed in both conformers, and the same FALDI products gave rise to each. The 

absence of a density bridge in the twisted conformer was also elegantly explained through the 

CP(r) function: in the twisted conformer, the rate of change of the FALDI products concentrating 

density in the H,H inter-nuclear region is lower than the rate of change of products depleting 

density.  

In summary, our results clearly show that the CHHC interaction results from extreme, 

molecular-wide delocalization of electrons, and should be considered as entirely non-classical in 

origin. In particular, given how little the H-atoms themselves contribute to the H,H inter-nuclear 

region, we suggest that extreme care should be taken by any approach that seeks to study CHHC 

interactions locally and without considering the whole molecule. That said, the resultant density 

within the H,H inter-nuclear region appears the same as it does for any other covalent bond, 

regardless of its molecular-wide origin. This observation is fully in-line with other, energetic 

studies[13,20] on the same molecule. 

Finally, the highly delocalized nature of the CHHC interaction perhaps also hints at why 

consensus has not yet been reached by the scientific community regarding the cause of the rotation 

barrier in biphenyl. Regardless of the energetic nature of the CHHC interaction – whether 

attractive or repulsive, stabilizing or destabilizing – the density associated with the interaction is 

highly correlated with the rest of the molecule. Therefore, the CHHC interaction cannot be 

considered as the singular cause for the rotation barrier in biphenyl since the molecule as a whole 

forms part of the interaction. Afterall, a needle cannot be found if it forms a part of the haystack 

itself.  
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The FALDI scheme is used to show that the majority of atoms in biphenyl contribute electron 

density to the H,H inter-nuclear region to form a channel of delocalized density, i.e., the Bader’s 

bond path. This illustrates how a molecular system, here a planar biphenyl, is minimising its 

energy when being disturbed from its equilibrium twisted structure. 

 

 

 

CHHC interaction welcomes
electrons from all atoms!
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5.1. Abstract 

Just as molecular orbitals (MOs) and Fragment, Atomic, Localised, Delocalised, and 

Interatomic (FALDI) support the ‘bonding’ description of the density bridges (DB), otherwise 

know as bond paths, between the ortho-hydrogens in the planar conformation of biphenyl, so 

too do natural bond orbitals (NBOs). By decomposing the density along 2–eigenvector from 

the bond critical point between the ortho–hydrogens, NBOs show that the density is 

overwhelmingly concentrating (i.e. energy-minimising) in both conformers. NBO results are 

generally in line with the FALDI interpretation – that the major mechanism of this bonding 

interaction is due to a C-H∙∙∙H-C, 4-centred effect. What can be concluded from this NBO-

based decomposition, as well as from MO and FALDI analysis, is that the interpretation of a 

DB is the same whether the density is decomposed into MOs, FALDI-components, or NBOs. 

However, this study also shows that NBOs are not suited to study weak, non-covalent 

interactions since they do not show the true extent of delocalisation within a molecule. 
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5.2. Introduction 

Amongst the many scientific debates, one that is in essence due to the lack of a concise 

definition of a chemical bond is one that has spanned almost three decades, about the nature of 

a specific intra-molecular hydrogen-hydrogen interaction. In systems such as the planar 

conformation of biphenyl (Bph, Scheme 1), QTAIM[1] designates a density bridge (DB, 

otherwise referred to as a bond path) between the two ortho-hydrogen pairs. This DB causes 

problems in the classical notion of bonding.  

A DB in QTAIM depicts a line of maximum density between two atoms, resembling 

conventional Lewis-structures, which is why QTAIM became a very powerful and prominent 

tool as a computational technique – QTAIM recovers, from the electron density topology, our 

classical chemical concepts. The fact that QTAIM depicts a DB between these hydrogens 

though, first observed by Cioslowski and Mixon,[2] has triggered a back and forth of analysis 

leading to the division on the nature of this interaction. A wide spectrum of tools and methods 

have been used to investigate this problem, either concluding that the DB signals a bonding 

interaction, or concluding that the conventional classical view still stands and that these ortho-

hydrogens are part of a steric clash. 

 

Scheme 1. Molecular graph of planar biphenyl 

From this back and forth, rebuttal and counter-rebuttal, we see a common trend arise. Most 

arguments can be grouped into two families of methods: (i) orbital-based methods, and (ii) 

density-based methods. From these groups, two different conclusions are drawn about the 

nature of this CH∙∙∙HC interaction – orbital-based methods generally conclude a steric clash, 
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whilst density-based methods conclude a bonding/attractive interaction. This causes a problem 

because the underlying wavefunction and physics is the same; however, the method of analysis 

seems to be the isolating issue, or perhaps rather the interpretation of the analysis. Poater et 

al[3] for example used energy decomposition analysis (EDA) to show that the ortho–hydrogens 

in planar Bph have a maximum in Pauli repulsion, resulting in the increased energy of the 

system compared to equilibrium (twisted) Bph. Another example of an orbital–based method 

that concluded a non–bonding nature for CH∙∙∙HC is that from the natural bond orbital (NBO) 

analysis of cis–2–butene by Weinhold et al.[4] This showed an “overwhelmingly repulsive net 

character” of these CH∙∙∙HC interactions, in line with the classical interpretation of such 

interactions. They concluded this because, although there are some donor–acceptor (bond–

antibond) interactions which are stabilising, the steric donor–donor interactions overshadowed 

the former.  

Contrarywise, Pendás et al[5] showed using interacting quantum atoms (IQA)[6] how DBs in 

QTAIM indicate “privileged exchange channels”; in other words, they indicate important 

channels of exchange–correlation that subsequently decrease the energy of the molecular 

system. Furthermore, Eskandari et al[7] also used IQA to indicate that the energy components 

in planar Bph show a net attractive interaction between Bph’s ortho–hydrogens. In a more 

recent study, Popelier et al[8] used their newly proposed relative energy gradient (REG) method 

using IQA contributions to conclude that there is indeed a destabilisation due to the ortho–

hydrogens, however it is reduced by the formation of a weak covalent bond. 

There is a clear division in the overall consensus of the nature of this interaction, albeit the 

wavefunction and physics is identical. As such, we aim to reconcile these methods to point to 

one distinct and clear interpretation. To do this, we used cross–section analysis[9-11] in which 

the electron density (ED) at a chosen point r is decomposed into individual contributors. When 

this is scanned along 2-eigenvector, upon examining the directional second partial derivative 
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(2nd-derivative), one can determine which components concentrate the density at r (negative 

2nd-derivative), and which deplete the density (positive 2nd-derivative). This allows for 

unambiguous analysis of the density and the use of different decomposition methods for 

interpretation. 

The first study that we embarked on involved decomposing the electron density along 2-

eigenvector, crossing the bond critical, and minimum density, point (BCP and MDP) between 

the ortho-hydrogens, in planar and twisted Bph, respectively, into its molecular orbital (MO) 

contributions.[12] What this study revealed was that a large number of MOs contributed in 

tandem to this DB, rather than one or two dominant contributions. Upon conducting cross-

sections of classical covalent bonds in the molecule, it was found that the MO contributions of 

the CH∙∙∙HC interaction are very similar to the classical covalent bonds, showing us that the 

interaction has a degree of covalency, rather than steric repulsion. Nevertheless, the 

delocalised, molecular wide nature of MOs makes it difficult to interpret a deeper chemical 

meaning about this H,H contact. The second study made use of FALDI,[10, 13-16] whereby the 

same electron density as above was decomposed into FALDI components.[17] Much like the 

MO study, a large number of FALDI components contribute to the DB of the H,H contact, 

however two major interactions stand out, namely the two ortho C-H bonds. Moreover, FALDI 

decomposition analysis showed the importance of the long-range delocalisation of the 

remainder of phenyl rings in conjunction with the ortho C-H -bonds. These results show that 

the CH∙∙∙HC interaction results from a large, molecular-wide delocalisation of electrons. 

Conjointly, both the MO and FALDI study revealed that the same effects that make up the 

density within the H,H contact in planar, are also present in the twisted conformation. The 

presence of a DB exclusively in the planar conformation, however, is explained by the CP(r) 

function. Both MOs and FALDI show that a DB exists because slopes of the concentrating 

MOs/FALDI components are larger and opposite in sign than the slopes of the depleting 
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components, ensuring that the CP(r) function is only positive in these regions, specifically 

around the BCP. This is not the case for the twisted conformation. 

In this chapter, we will use cross-section analysis to decompose the total electron density of 

the CH∙∙∙HC interaction into NBO contributions. Due to the rising popularity of NBOs, and 

that it has previously been used in the debate about the nature of intra-molecular hydrogen-

hydrogen interactions, it is imperative to analyse the electron density from an NBO perspective. 

Since NBOs force a Lewis-bond picture, one can directly compare the findings with the 

FALDI-based decomposition conducted in the previous chapter. 

5.3. Theoretical Background 

We utilise cross–section analysis,[9-11] in which we decompose the total electron density at 

position r into contributions made by natural bond orbitals (NBOs): 

 𝜌(𝒓) =  ∑ 𝑣𝑖|𝜒𝑖(𝒓)|2

𝑁𝑁𝐵𝑂

𝑖

 (5–1) 

 

where 𝜒𝑖 is an NBO with occupation 𝑣𝑖. Note that the wavefunctions in NBOs are forced to 

represent Lewis–like connections, and as such, the majority of NBOs will have an occupation 

of 2. Since we decompose the total electron density from NBOs, we can subsequently name 

this method NBO–ED. The position r in this study on Bph is the bond critical point (BCP) of 

H∙∙∙H if present, otherwise the minimum density point (MDP) was used. In this case, the 

BCP(H,H) is used in planar Bph, and MDP(H,H) is used in twisted Bph. 

When the total electron density is decomposed along 2–eigenvector from the position r, 

the nature of the total electron density can be determined from the directional second partial 

derivative (2nd-derivative); the density can be concentrating (i.e. a negative region around 

BCP/MDP) or depleting (i.e. no negative region). As mentioned above, this total density can 

be decomposed into its NBO contributions, i.e. into the contributions from all 230 NBOs. The 

same process is used to determine the nature of each contribution, and as such when the 
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contributions are grouped and summed according to their nature, one gets the total 

concentrating and total depleting contribution to the total electron density as 

 𝜌𝑡𝑜𝑡(𝒓) =  𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓) +  𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓) (5–2) 

 

Although the nature of the contribution is determined by the 2nd-derivative, the 

absence/presence of a DB is determined by the gradients (1st-derivative) of the contributions. 

It is well known that a CP in the electron density is defined as a point in space where the 

gradient of the density is equal to zero,[1] and so equation 5–2 becomes 

 𝜕𝜌𝑡𝑜𝑡(𝒓) =  𝜕𝜌𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔(𝒓) +  𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓) (5–3) 

 

At the same time however, the absolute concentrating gradient needs to be larger and opposite 

in sign than the depleting gradient. To make analysis easier, the CP(r) function is used 

 𝐶𝑃(𝒓) =  −𝑠𝑖𝑔𝑛 (𝜕𝜌𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔(𝒓)) (𝜕𝜌𝑡𝑜𝑡(𝒓)) (5–4) 

 

This function expresses the gradient of the total electron density but weighted by the sign of 

the depleting density gradient. This guarantees that the CP(r) function is negative in all regions, 

excluding the region where the absolute concentrating density gradient is larger and opposite 

in sign to the absolute depleting density gradient. 

5.4. Computational Methods 

Both the planar and twisted conformations of Bph were optimised in Gaussian 09, Rev. D.01[18] 

using restricted B3LYP with cc–pVDZ basis set in gas phase. The cartesian coordinates are 

given in Part 1 of Appendix III. The NBO populations[19] were then calculated from these 

optimised structures under the same conditions stated above. QTAIM data was obtained using 

AIMAll v. 19.02.13.[20] to be used in the aid of the calculation of NBO density data along 2–

eigenvector of the BCP(H7,H18) and MDP(H7,H18) for planar and twisted Bph, respectively, 

obtained using in–house software. All NBO isosurfaces were obtained using Gaussian 09, Rev. 

D.01.  
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5.5. Results and Discussion 

As previously discussed in the introduction, we want to investigate how an NBO 

decomposition compares to MO- and FALDI-based decompositions. Previously we showed 

that the decomposition of the total electron density into FALDI components gives the same 

overall picture as the decomposition into MO components.[17] FALDI however allows for a far 

better analysis as it has a higher resolution (231 atom-pairs compared to 41 MOs). This allows 

one to pinpoint the origin of the density at r, as well as identify the contributions in chemically 

intuitive terms, i.e. atom-pairs. In this study, the decomposition of the electron density between 

the H,H contact into its NBO components will be compared to the FALDI-based 

decomposition. It is important to note here, that the FALDI cross-sections were compared to 

MO cross-sections, and found to be qualitatively identical in shape and nature and reveal much 

of the same information.[17] Hence, the comparison of NBO-based decomposition to that of 

FALDI is a comparison with MO-based decomposition as well. 

To start with, one can look at the comparison of the total electron density decompositions, 

shown in Figure 1. These cross-sections compare the NBO-based decomposition to the FALDI-

based decomposition, whereby the total density (black line) was decomposed into the total 

concentrating density (blue line) and total depleting density (red line). Although quantitatively 

different, one can see that the overall trend is identical for NBO-based decomposition as for 

the FALDI-based decomposition. Figure 1a shows the grouped 2nd-derivative ED 

contributions, comparing the NBO-based decomposition to that of FALDI-based 

decomposition. These show that both the FALDI and NBO components contribute to a large 

concentration of the electron density between the ortho-hydrogens in the planar conformer. 

This indicates an accumulation of density into its inter-nuclear region which is not what one 

would expect for a steric clash. However, although the same trend is shown for both methods 

(i.e. concentration of density), NBO analysis does not provide the same topology of the total 
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electron density as FALDI analysis, and in turn MO analysis. One can see this from where the 

total density starts at -0.75 Å, and from the topology of the density around the ring critical point 

(RCP). This causes a problem because the density from NBO analysis becomes incomparable 

to other methods. The same problem is recovered for the total electron density itself, shown for 

the twisted conformer in Figure 1b: the total density starts a lot higher at -0.75 Å in the NBO 

analysis. Nonetheless, both methods show a larger contribution of concentrated density than 

depleting density, as well as a slight concentration of total density (shouldering) around the 

MDP. The same accumulation of density that was observed for the 2nd-derivative total density 

in planar was found for the twisted conformation as well (full cross-section comparisons are 

given in Part 2 of Appendix III).  

This calls to question why only the planar conformation exhibits a DB and the twisted 

doesn’t – this is explained by Figure 1c. This shows the CP(r) function for both conformations, 

comparing the CP(r) functions from the NBO contributions and the FALDI contributions. In 

the planar conformation the CP(r) function is positive in the vicinity of the BCP between the 

ortho-hydrogens, and negative in the vicinity of the MDP in the twisted conformation. This 

means that the slope of the concentrating density is greater and opposite in sign than the slope 

of the depleting density (and removing density in the case of FALDI) in the planar 

conformation, forming the DB. The opposite is true in the case of the twisted conformer; the 

slope of the concentrating density is not greater and opposite in sign than the slope of the 

depleting density, even though the absolute value is much larger. 
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FALDI NBO 
(a) Planar 

  
(b) Twisted 

  
(c) Planar and Twisted CP(r) 

  
Figure 1. Cross–section comparison between FALDI–ED (left) and NBO–ED (right) analysis along 

2–eigenvector, crossing the BCP(H7,H18) and MDP(H7,H18) where applicable in planar and twisted 

biphenyl, respectively. (a) shows the decomposition of the partial second derivative of the total density 

in planar conformation, (b) shows the decomposition of total density in twisted conformation, and (c) 

shows the CP(r) function for both planar and twisted conformations. 
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Now that it is shown that NBOs do in fact reproduce the same qualitative results as with 

FALDI-based decompositions in that they too predict an overall concentrating, i.e. energy-

lowering nature of the H,H contact in planar Bph, the question now arises to which NBOs 

significantly contribute to the density. This information is provided in Table 1, providing the 

major NBOs that contribute to the concentrating and depleting density at the BCP and MDP in 

planar and twisted Bph, respectively. Furthermore, the atom(-pair) corresponding to each NBO 

is provided with its associated electron density contribution (a.u.) and its %-fraction. Because 

NBOs result in Lewis–like connections and FALDI decomposes density into atom–pair 

contributions, we should be able to directly compare the current results from NBO analysis 

with our previous study.[17] Atom-numbering is provided in Scheme 2 below. 

 

Scheme 2. Atom numbering of biphenyl 
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Table 1. Electron density contribution (a.u.) with its corresponding %-fraction for the major NBOs 

contributing to concentrating and depleting density at the BCP(H7,H18) in planar and MDP(H7,H18) 

in twisted biphenyl. For each NBO is also the given atom, or atom–pair that it describes and the 

corresponding type of NBO (e.g. bonding or Rydberg). 

Planar 

Concentrating 

NBO 
Orbital–Type / 

Atom(–Pair) 

ED contribution a.u. 

/ %–fraction 

28 –Bonding / C13,H18 0.00620 / 42.4 

29 –Bonding / C2,H7 0.00620 / 42.4 

185 Rydberg / C13 0.00087 / 6.0 

Remaining – 0.00023 / 1.6 

Total – 0.01351 / 92.4 

Depleting 

NBO 
Orbital–Type / 

Atom(–Pair) 

ED contribution a.u. 

/ %–fraction 

15 –Bonding / C2,C3 0.00034 / 2.3 

16 –Bonding / C13,C14 0.00033 / 2.3 

22 –Bonding / C1,C6 0.00011 / 0.8 

21 –Bonding / C12,C17 0.00011 / 0.8 

Remaining – 0.00022 / 1.5 

Total – 0.00112 / 7.6 

Twisted 

Concentrating 

NBO 
Orbital–Type / 

Atom(–Pair) 

ED contribution a.u. 

/ %–fraction 

35 –Bonding / C2,H7 0.00265 / 29.5 

32 –Bonding / C13,H18 0.00265 / 29.5 

109 Rydberg / C2 0.00227 / 25.2 

37 –Bonding / C2,C3 0.00016 / 1.8 

Remaining – 0.00007 / 0.8 

Total – 0.00780 / 86.7 

Depleting 

NBO 
Orbital–Type / 

Atom(–Pair) 

ED contribution a.u. 

/ %–fraction 

41 –Bonding / C12,C13 0.00035 / 3.9 

14 –Bonding / C2,C3 0.00016 / 1.8 

16 –Bonding / C13,C14 0.00016 / 1.8 

21 –Bonding / C12,C17 0.00010 / 1.2 

Remaining – 0.00041 / 4.6 

Total – 0.00119 / 13.3 
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When looking at the individual NBOs that contribute to the density, two NBOs stand out jointly 

contributing 84.8% in the planar conformation, and 59.0% in twisted, namely the two covalent 

ortho C-H bonds of the bay-region (C2,H7 & C13,H18). The isosurfaces of these two NBOs, 

as well as the third largest contributor for both conformations, are shown in Table 2. The 

remainder of the NBO isosurfaces for all major contributions are given in Part 3 of Appendix 

III. This is qualitatively comparable to the decomposition into FALDI components, which also 

revealed that the largest contributions were from the covalent ortho C-H bonds. Notably, and 

again in line with our FALDI decomposition results, these NBOs are of -character.  

Quantitatively however, the NBO-based decomposition causes some problems. Both 

decompositions into MO components and FALDI components revealed that this H,H contact 

is due to extreme delocalisation throughout the molecule. Many MOs and atom-pairs contribute 

in conjunction to place the density in the inter-nuclear region of the ortho-hydrogens, however 

decomposition into NBO components suggests a localised view of the density. This cannot be 

the case.  

The reason to why NBOs give this extreme localised view is due to NBO formalism, 

whereby the NBOs will be described as one atom-pair, though as one can see from their 

isosurfaces, they are far more delocalised than one would expect, covering more than just those 

two atoms. This is why they account for so much of the density. This is a fault with the NBO 

method. Furthermore, the Rydberg orbitals that contribute a significant amount, 6.0% in planar 

and 25.2% in twisted, represent atoms C13 and C2, respectively. By taking a look at these 

isosurfaces, one can see why they contribute such a large amount – they have a large 

delocalisation which is near impossible to interpret, however the NBO method still represents 

these NBOs as single atom contributions.  
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Table 2. Isosurfaces of the most significant (above 5% contribution) NBO contributions (Isovalue 0.02 

a.u.) at the (3,–1) CP(H7,H18) and MDP(H7,H18) in planar and twisted biphenyl, respectively.  

Planar Twisted 

NBO; ED contribution a.u. / %-fraction, nature 

NBO 28; 0.00620 / 42.4, conc NBO 35; 0.00265 / 29.5, conc 

  

NBO 29; 0.00620 / 42.4, conc NBO 32; 0.00265 / 29.5, conc 

  

NBO 185; 0.00087 / 6.0, conc NBO 109; 0.00227 / 25.2, conc 

  

 

Apart from the NBO- and FALDI-based decompositions being in agreement with regards to 

the two largest interactions, past that they deviate. For example, in planar Bph NBOs 15 and 

16 representing C2,C3 and C13,C14, respectively, are depleting in NBO analysis, but in 

FALDI analysis they are concentrating. This specific problem can be seen for both 

conformations. This is not the only issue however with NBO analysis. In FALDI analysis we 

see direct symmetry in the major interactions in both planar and twisted conformers, i.e. if 

C1,C2 was concentrating, then C12,C13 would also be concentrating with identical (or near 

identical) electron density contribution. This is not the case with NBO-based decomposition, 

as can be seen in the depleting density for the twisted conformation; C12,C13 is depleting but 

the symmetrical C1,C2 is not picked up.  



Chapter 5 

120 

 

5.6. Conclusions 

The main principle of the work presented in this chapter is to validate the work previously 

conducted from the decomposition of electron density into MO and FALDI contributions. 

Although historically in this scientific debate, an orbital based method has generally concluded 

that the interaction between the ortho–hydrogens in planar Bph (and other similar systems) is 

of a steric clash – this is clearly not the case. This chapter followed the same analysis as the 

previous two studies,[12, 17] by decomposing the density at the BCP and MDP of the H,H contact 

in planar and twisted Bph, respectively. The previous studies involved decomposing the 

densities into MO contributions and FALDI contributions, and this study decomposes the 

density into NBO contributions.  

When compared to FALDI-based decomposition, one can see that the total electron density 

decompositions into NBO contributions reveals that the overall trends are the same; there is an 

accumulation (i.e. concentration) of density around the BCP and the MDP of both conformers. 

Along with this, the cross-section analysis revealed that both FALDI- and NBO-based 

decompositions show that the absence of a DB in the twisted conformation is due to the slopes 

of the concentrating density not being greater and opposite in sign than the slope of the 

depleting density. On top of this, NBO analysis found that the two largest contributions to the 

density at both the BCP and MDP are due to the covalent ortho C-H bonds of the bay-region, 

in line with the results from FALDI, further confirming that this is a CH∙∙∙HC interaction rather 

than purely an H∙∙∙H interaction. 

Although NBO analysis revealed much of the same information as FALDI analysis, it still 

falls short in comparison. Both MO and FALDI analysis are directly comparable in that they 

have an identical topology of the total electron density, whereby from Figure 1 we see that this 

NBO analysis deviates largely (although follows the same trend). Furthermore, both of the 

previous studies unveiled that this interaction is due to large molecular wide delocalisation – 
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there is a large interplay from all components to form this density between the ortho-hydrogens. 

NBO on the other hand gives a very localised view of this interaction, making the assumption 

that ±85% of the density is due to just two covalent bonds. The remaining contributing NBOs 

deviate from the findings from FALDI analysis, in which the nature (concentrating or 

depleting) of the NBOs do not match up with the corresponding atom–pair contributions from 

FALDI. On top of that, symmetrical NBOs are not always unveiled; in FALDI-based 

decomposition, even for the smallest contributions, you can find the symmetrical atom–pair of 

near–identical contribution and nature. This inconsistency in NBOs can be chalked up to the 

fact that the wavefunctions in NBO calculations are manipulated and forced to represent 

conventional Lewis–structures, and with highly delocalised systems such as with Bph, the 

accuracy seems to drop as we have smaller, non–covalent interactions. 

This brings us to the conclusion that although NBO analysis shows similar trends as FALDI 

analysis, NBOs are not suited to study weak, non-covalent interactions, since they do not 

accurately detect the extent of delocalisations in the molecule. 
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6.1. Summary 

This dissertation takes on an unambiguous analysis of the density between ortho-hydrogens in 

planar biphenyl (Bph) that has been a topic of debate for almost three decades. This debate has 

not been about whether the density exists between the CH∙∙∙HC interaction, but rather 

questioning the nature of this interaction. It is known that the equilibrium structure of Bph is 

‘twisted’ with a dihedral angle () of ±42° between the two rings and has a rotational barrier 

of 2.1 kcal.mol–1 between the twisted conformation and its planar transition state (=0°). If we 

looked at this molecule through the lens of classical chemistry, it would be reasoned that the 

ortho-hydrogens take part in a steric clash in planar Bph (H7,H18 in Scheme 1), which causes 

the molecule to become twisted. This is in essence the argument made by one side of the debate. 

The other side argues that these hydrogens are actually stabilising in planar Bph, and agrees 

with the QTAIM[1] position, that a density bridge (DB, referred to as a bond path, BP, in the 

scopes of QTAIM) exists between ortho-hydrogens, and that it represents a bonding process 

that stabilises the planar conformation. 

 

Scheme 1. Atom numbering of biphenyl 

A pivotal aspect of this research is that there has been a divide about the nature of the DB in 

planar Bph. As mentioned prior to this chapter, the studies done thus far can be grouped into 

orbital- and density-based studies, the former suggesting a non-bonding, steric clash, and the 

latter suggesting a bonding or at the very least, a stabilising interaction. This research joined 

the debate by primarily making use of the in-house developed cross-section decomposition 

analysis to decompose the densities at the CH∙∙∙HC bond critical, or minimal density, point 

(BCP or MDP) in the planar and twisted conformation of Bph, respectively. Of the four aims 
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presented in Chapter 1, cross-section analysis was able to achieve each goal, perhaps most 

significantly that the orbital- and density-based analyses can be reconciled. 

The results were divided into three parts: cross-section analysis of the decomposition of 

electron density (ED) into (i) molecular orbital (MO) contributions, (ii) FALDI contributions, 

and (iii) natural bond orbital (NBO) contributions. Each chapter follows on from the previous, 

creating somewhat of a story, further elaborating on the nature and origins of the density within 

the H,H contact.  

To briefly recap, the cross-section analysis decomposes the total ED along the 2-

eigenvector, crossing the BCP(H,H) or MDP(H,H). The decomposition reveals the individual 

contributors to the density, and from the directional second partial derivative (2nd-derivative), 

one can determine their nature. The classification is as follows:  

1. If the 2nd-derivative ED < 0 around the BCP(H,H)/MDP(H,H), then the contributor is 

concentrating.  

2. If the 2nd-derivative ED > 0 around the BCP(H,H)/MDP(H,H), then the contributor is 

depleting. 

3. In the case of FALDI-ED only, a third nature is defined, whereby if the ED at the 

BCP(H,H)/MDP(H,H) is negative, then the contributor is removing. 

4. If the contribution at the BCP(H,H)/MDP(H,H) is negligible, then the contributor is 

non-contributing. 

In the first results-chapter, Chapter 3, the MO-ED (cross-section decomposition of the ED into 

MO contributions) and MO-DI methods were applied.[2] Within this study, three cases were 

analysed: (i) classical C-C and C-H covalent interactions, (ii) ‘steric’ CH∙∙∙HC interaction in 

the planar and twisted conformations of Bph and (ii) ‘steric’ H∙∙∙H interactions in the cubic 

Li4H4 structure. In all three cases, it was seen in the cross-section analysis that the ED at the 

BCP(H,H) and MDP(H,H) were made up of a multitude of MOs spanning the whole molecule, 
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rather than a single major contributing MO. On top of this, the total density in all three cases 

(planar and twisted Bph alike) has a negative 2nd-derivative around the BCP(H,H) and 

MDP(H,H). However, this causes a problem in that the twisted conformer of Bph does not 

exhibit a BP, only planar does. Therefore, a closer look was taken into the rates of change (1st-

derivative) of the ED by making use of the CP(r) function. In the case of the classical C-C and 

C-H covalent bonds, the CP(r) function has a positive region around the BCPs, predicting that 

a DB is present between the two atoms (which we know are covalently bonded). This means 

that the slopes of the concentrating components are larger and opposite in sign than the slopes 

of the depleting and removing components. In the case of planar and twisted Bph however, 

only planar has this positive region. This leads to a major conclusion of this work and the 

achievement of our first aim:  

Although the 2nd-derivative must be negative around the BCP(H,H) or 

MDP(H,H) for a DB to be present, another deciding factor is apparent; 

the rates of change of the concentrating components must be greater 

and opposite in sign than the depleting component. 

This MO-based analysis was furthered by utilising the MO-DI method. Similarly to how the 

density at the BCP(H,H) or MDP(H,H) was decomposed into individual MO contributions, the 

MO-DI method decomposes the QTAIM delocalisation index (DI) into MO contributions. 

From this, one can determine the extent each MO contributes electron pairs to the DI, and also 

how the MOs interact together. Some MOs interfere constructively, increasing the delocalised 

electron pairs within the overlapped atomic basins, whereas others interfere deconstructively, 

decreasing the delocalised electron pairs – this resembles concept of bonding and antibonding 

in MO theory. From the joint analysis of MO-ED and MO-DI, it was seen that all the MOs that 

contribute concentrating density to the DB also interfere constructively with the other 
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concentrating MOs, increasing the degree of covalency of the interaction. This was seen 

likewise with both the classical covalent bonds, and the CH∙∙∙HC interaction in planar Bph.  

In the second results-chapter, Chapter 4, cross-section decomposition of the ED was 

conducted, whereby in this case, the density was decomposed into FALDI components.[3] There 

are two aspects of this study, that work hand-in-hand: (i) FALDI fragment analysis and (ii) 

FALDI diatomic analysis. Before addressing the fragment analysis, the diatomic analysis will 

be expanded upon first.  

There are 41 MOs in Bph, and so the MO-ED method decomposes the density into 41 

individual MO contributions. However, the FALDI-ED method can decompose the ED into 

atom-pair contributions, of which there are 231 atom-pairs in Bph. Not only does this provide 

a higher resolution into the effects at play at the BCP(H,H)/MDP(H,H), but we also obtain 

contributions in more chemically intuitive terms, i.e. atom-pairs compared to molecular wide 

delocalised MOs. The fragment analysis on the other hand allows one to form fragments of 

ones choosing within the molecule and determine the degree of contribution and nature of its 

contribution to the density measured. This analysis looks at both intra-fragment contributions 

(contributions made to the density due to each atom-pair delocalisation within the fragment) 

and inter-fragment contributions (contributions made to the density due to each atom-pair 

between two fragments). This highlights an advantage of FALDI, as previously one would need 

to fragment the molecule into arbitrary, unchemical radical states (physically remove parts of 

the molecule), however FALDI maintains the molecular and electronic integrity of the 

molecule.  
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Scheme 2. Definition of fragments for FALDI analysis. F1: H7∙∙∙H18, F2: C2∙∙∙C13, F3: C1–C12 

linker and F4: combined fragment containing remainder of the molecule. The position and direction of 

the 2–eigenvector used for cross-section analysis is also shown. 

In Scheme 2 above, one can see how Bph was fragmented in both conformers. This analysis 

provided similar results for both planar and twisted conformations, whereby the inter-fragment 

delocalisation between F1 and F2, consisting of the two ortho-hydrogens and ortho-carbons 

in the bay-region, contributed the largest amount of density, of a concentrating nature, to the 

BCP(H,H) and MDP(H,H). We found that the largest depleting fragment contribution to the 

aforementioned density was the inter-fragment delocalisation of F2 and F3. 

 

Scheme 3. Illustration of the major atom-pair contributions. Atom-pairs in blue demarcate the 

concentrating atom-pairs contributing the most to both the intra-fragment delocalisation F1 and to the 

density at CP(H,H) and MDP(H,H). Atom-pairs in red demarcate the depleting atom-pairs contributing 

the most to the inter-fragment delocalisation between F1,F2 and to the density at CP(H,H) and 

MDP(H,H). 

Upon analysing the diatomic interactions, we obtain a deeper explanation into the fragment 

analysis and determined the atom-pair origin of the density at the BCP(H,H) and MDP(H,H). 

As mentioned above, the inter-fragment delocalisation between F1 and F2 contributed the vast 

F3

F4 = Remaining

F1

F2

2−eigenvector

2−eigenvector



Chapter 6. Conclusions 

130 

 

majority of density, and by inspecting the atom-pair contributions we found that the two 

covalent ortho C-H bonds (illustrated in blue in Scheme 3) donates more than half of the density 

to BCP(H,H) and MDP(H,H) in both planar and twisted Bph, in-line with the fragment 

analysis. One might have assumed that H7,H18 would have been the main contributor, but this 

atom-pair contributed only 3.5% in planar and 1.5% and twisted. The largest depleting density 

was from the inter-fragment delocalisation of F2 and F3, and the largest contributing atom-

pairs responsible for this are due to the relatively small contributions (in comparison to the two 

ortho C-H atom-pairs) of C1,C2 and C12,C13 atom-pairs in both conformers (illustrated in red 

in Scheme 3). This insight is first of its kind and leads to the achievement of our second aim: 

Although one would have assumed that the origin of the density at 

BCP(H,H) and MDP(H,H) would have been from H7,H18, it is rather 

due to a channel of density formed from the large delocalisation of 

density throughout the molecule, with the largest contributions being 

from the delocalisation of the two covalent C-H bonds in the bay-region.  

Outside of looking at the individual contributors, the overall cross-sections were compared to 

that of MO-ED. This comparison without a doubt shows that qualitatively, FALDI-ED and 

MO-ED describe the density at BCP(H,H) and MDP(H,H) in the same way: (i) they both show 

an overall concentrating nature of the total density along the 2-eigenvector, (ii) the 

concentrating density overshadows the depleting density, and (iii) the rates of change of the 

concentrating density is indeed larger and opposite in sign than the depleting density, causing 

only the planar conformer to have a DB linking the ortho-hydrogens. Furthermore, the two 

analyses show that the density is due to a vast delocalisation throughout the molecule, as shown 

from the numerous MOs and atom-pairs that contribute to the density within the H,H contact. 

The third, and final results-chapter, Chapter 5, follows on and concludes the cross-section 

decomposition investigations by using this technique to decompose the ED within the H,H 
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contact into NBO contributions. The cross-sections of the total ED decomposition were 

compared with those obtained from FALDI, and overall, they produce similar results, just as 

FALDI-ED had done with MO-ED, in that both conformations have an 

accumulation/concentration of density around the BCP(H,H) and MDP(H,H). On top of that, 

NBO decomposition also produced somewhat similar results to FALDI, whereby in both 

conformers the ortho C-H bonds in the bay-region contribute the largest amount of 

concentrating density to the BCP(H,H) and MDP(H,H). However, NBOs had its setbacks due 

to the wavefunctions being transformed to resemble, as much as possible, Lewis-like bonds. 

This caused a reduction in resolution in which symmetrical NBOs (NBOs depicting 

symmetrical atom-pairs) were not always detected with an equal donation of density. On top 

of this, NBO-ED did not always produce the same results as FALDI-ED did in terms of the 

nature of identical contributions. Finally, although NBOs showed that the two ortho C-H bonds 

contributed the majority of density to the CP(H,H) and MDP(H,H), NBOs give a highly 

localised view of this density, whereas FALDI and MO analysis shows that the density is due 

to molecular wide delocalisation. 

Overall, taking into account all three analyses on the density at the BCP(H,H) and 

MDP(H,H) in the planar and twisted conformation, respectively, from different viewpoints 

(MOs, FALDI density, and NBOs), we achieved the last two aims set out in Chapter 1: 

From the three analyses on the measured densities in planar and twisted 

Bph, we see that the density in both conformations is concentrating. This 

suggests that even though the density delocalised between the two ortho-

hydrogens is small, a weak covalent bond is formed. 

which leads to the following 

Although prior to this work, orbital- and density-based methods were at 

odds about the overall nature of the ortho-hydrogens, this work 
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reconciles the two families, as both our orbital-based analyses (MOs 

and NBOs) show the same overall picture as our density-based analysis 

(FALDI) – no matter where the density comes from, it remains the same 

and all point to a concentrating DB in planar Bph. 

From the analyses of all three density methods, my judgement would be that FALDI-ED is best 

suited for density decomposition analysis. Not only does it provide a higher resolution in regard 

to the contributions to a measured density, it provides the contributions in chemically intuitive 

terms. One can determine the origin as well as the nature of the density in terms of molecular 

fragments and atomic pairwise contributions. Previously, a common method of fragmenting 

the molecule would have been done by cutting the molecule into arbitrary, unchemical radical 

states. Poater et al[4] had done this by ‘cutting’ off the ortho-hydrogens, converting Bph into a 

tetra-radical molecule, but the question arises as to whether this would still represent Bph, or 

would the electronic environment change too much? This wasn’t directly addressed in these 

studies; however, it highlights another advantage of FALDI that was utilised in Chapter 4 – 

FALDI allows for the fragmentation of a molecule, whilst keeping the molecular and electronic 

integrity intact. 

Throughout these studies, a common trend occurs – DBs are not signals of privileged 

exchange channels as defined by Pendás et al.[5] MO-, FALDI- and NBO-ED all show that a 

collaboration of multiple interactions leads to the formation of DBs rather than just one 

exchange channel. This was similarly concluded by de Lange et al.[6] 

The presence of a DB is generally thought to coincide with the idea of stabilisation of the 

molecule. Popelier et al[7] noted that DBs are an energy lowering phenomenon, in which the 

electrons configure themselves in such a way to bring the molecule to its lowest energy state. 

However, we should try to disregard the notion of a chemical bond. This noun presumes that a 

chemical bond is a real, physical object within a molecule. Rather, we should replace this term 
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with the concept of bonding between two or more atoms, as this represents a process of 

stabilisation and energy lowering in a system.[8] This work leads us to the conclusion that the 

CH∙∙∙HC interaction in the planar conformer of Bph is bonding, with MOs, FALDI and NBOs 

to back this up. These ortho-hydrogens do in fact have a DB linking them, leading to a weak 

covalent interaction, and this is largely due to the densities from both C-H atom-pairs in the 

bay-region forming an ED channel between the hydrogens. 

6.2. Future Work 

Whilst this dissertation primarily covers a density argument supporting the notion of a bonding 

process between the ortho-hydrogens in planar Bph, there is a lot of work that could still be 

done surrounding this topic. 

One focus point would be to study the energetics of planar and twisted Bph. With the use of 

FAMSEC[9] one can fragment the molecule (whilst keeping the integrity of the molecule intact) 

and determine which fragments are stabilised/destabilised, as well as look at atom-pair 

stabilities. This would shed light into why the equilibrium conformation is twisted and identify 

the cause of destabilisation within the planar conformer. It has been argued by Matta et al.[10] 

as well as others[7, 11-12] that the CH∙∙∙HC interaction is actually stabilising, but if the CH∙∙∙HC 

interaction is not the cause of the destabilisation, then FAMSEC could shed light on the real 

source. 

Another promising study would be the analysis of the substituent effects on Bph. By adding 

substituents in varying positions of Bph, one can look at how meta-directing and ortho/para-

directing groups effect (i) the density between the ortho-hydrogens, (ii) the overall stability of 

the molecule, (iii) the dihedral angle between the two rings and (iv) the rotation barrier between 

planar and the twisted substituted-Bph. One could also incorporate artificial 

intelligence/machine learning to aid in this analysis. 
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Part 1 

A theoretical background 

The MO-ED Method 

The MO-ED method seeks to describe the total electron density, as well as its topology, in terms 

of molecular orbital density contributions. Specifically, we aim here to describe the presence of 

a density bridge, with its associated critical point, in terms of MO densities. To do so we will 

first review some preceding topics related to the topology of the electron density. 

The topology of the electron density 

Within the field of Quantum Chemical Topology (QCT), a critical point (CP) in the electron 

density (ED) at a coordinate rc is a local maximum, minimum or a saddle point where the first 

derivative (and each of its three components) vanishes: 

Each CP is a local maximum or minimum along each of the three principle axes corresponding 

to maximum curvature. The type of CP can be determined by evaluating components of the 

Hessian matrix, which describe the partial second derivatives of the ED at rc: 

The Hessian matrix can be diagonalized to give three curvatures along the principle axes at rc, 

yielding three eigenvalues, 1, 2 and 3, and associated eigenvectors. The sign of each 

eigenvalue reveals whether rc is a local minimum or maximum along the associated eigenvector, 

where positive and negative eigenvalues relate to local minima and maxima, respectively. 

Each CP can be classified according to its partial first and second derivatives, and is given a 

rank, , and signature, . The rank determines the number of non-zero curvatures (eigenvalues 

of the Hessian matrix). In other words, a rank of (+3) indicates that a CP is a local maximum or 

minimum in all three principle axes. The signature is the algebraic sum of the signs of the 

eigenvalues, and a signature of (–1) indicates that rc is a local minimum in one axis but a local 

maximum in the remaining two axes (+1 –1 –1 = –1). While many CPs of rank 1 and 2 exist in 

∇𝜌(𝐫c) = 𝐢
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any ED distribution, only a number of CPs of rank 3 will exist, subject to the Poincaré-Hopf 

relationship,1 and rank 3 CPs are therefore of particular use in QCT. 

The topology of the ED is generally dominated by the electrostatic attractive force between 

nuclei and electrons, and as such, every nuclear coordinate is marked by a (+3,–3) CP – a local 

maximum in all three principle axes. (+3,–1) CPs are often found between pairs of nuclei and 

are known as bond critical points (BCPs). CPs found within a ring of nuclei are (+3,+1) CPs, 

known as ring critical points (RCPs), and a CP enclosed by a number of ring critical points is 

always a (+3,+3) CP, known as a cage critical point (CCP). 

QCT has revealed a peculiar property regarding the ED distribution between nuclei. A BCP 

is always observed at the interface between two zero-flux surfaces outside of the limit at infinity, 

i.e. interatomic zero-flux surfaces. Two gradient vectors originate at each of the enclosed nuclei 

and terminate at the BCP. The path defined by these two vectors is known as a density bridge 

(DB, also known as a bond path or a line path2). The ED is at a local maximum perpendicular to 

the DB at each and every coordinate of the DB. A DB is a remarkable yet still misunderstood 

property of the ED. The collection of DBs gives rise to a molecular graph, which defines 

QTAIM-based atomic connectivity. 

Two of the eigenvalues of the Hessian matrix (1 and 2) will be negative at each and every 

coordinate of a DB, indicating a negative partial second derivative along the principle vectors 

perpendicular to the DB itself. A negative partial second derivative at r, 
2

2

( )



r

r
, can be seen as 

a measure of local concentration of the ED, in that the ED at r is greater than the average of its 

neighbouring coordinates along a specific vector.7 Along the DB, the third eigenvalue of the 

Hessian matrix (3) will always be positive, indicating a local depletion of ED. Generally, at a 

given coordinate r along an internuclear vector and as long the two nuclei are not part of a cage, 

1 < 0 and 3 > 0. The sign of the remaining eigenvalue, 2, then generally determines whether 

ED is concentrated at r relative to its neighbouring environment, thereby forming an DB if a CP 

is present, or whether the ED is depleted. Such concentrations and depletions have been used 

extensively by both QTAIM and other QCT techniques, such as the Noncovalent Interactions 

(NCI) technique,3,4 to indicate ‘attractive’ or ‘repulsive’ interactions. However, some of us 

previously showed5 that measures of ED concentration utilising 2 is only relative to the local 

environment where it is measured.  

Cross-sections along 2–eigenvector  
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As stated above, the presence of a DB can be fully determined in most circumstances from 

investigation of i) the partial directional first derivative and ii) the sign of the partial directional 

second derivative of the ED along the eigenvector associated with the 2 eigenvalue of the 

Hessian matrix. We will henceforth refer to this eigenvector simply as the 2–eigenvector. We 

have previously noted5,6 that the ED distribution, as well as decompositions of the ED, of cross-

sections along this vector can provide tremendous information regarding why a DB for a 

particular chemical interaction is present or not. Specifically, the overall concentration or 

depletion of ED along the 2–eigenvector provides valuable information regarding the character 

of the interaction, and the individual concentration or depletion of ED decomposition products 

can provide insight into the underlying mechanics. Cross-sections along one of the other 

principle axes, i.e. 1– or 3–eigenvectors, can provide useful information regarding the ED 

concentration/depletion relative to different interatomic interactions. 

Decomposition of ED and its topology in terms of MO densities 

The ED can easily be decomposed in terms of canonical or natural molecular orbitals (MOs), 

where i is an MO with occupation i. The coordinate r can be varied (specifically, in this case, 

along the 2–eigenvector) in order to measure the orbital contributions to the ED in a region of 

real-space, as well as then calculate partial directional first and second derivatives.  

It is useful to define a consistent and universal coordinate, r*, which can be used to quantify 

an orbital’s ED contribution to any internuclear region in a transferable fashion. While there are 

potentially multiple different approaches to define such an r*, we have decided to use the 

topology of the ED as a general guide. If a (3,–1) CP is present, then we define r* = rc, the 

coordinate of the CP. If a (3,–1) CP is not present, then we set r* to be the position of the 

minimum density point (MDP)15, which is defined as the coordinate on an internuclear vector 

where the ED is at a minimum. The MDP is well-defined for any given atom-pair, and the MDP 

and BCP often coincides to the same coordinate unless the corresponding DB is particularly bent. 

Next, we consider the partial directional second derivatives along the 2–eigenvector of each 

MO density as measured at r*, 
𝜕2𝜈𝑖|𝜒𝑖(𝐫

∗)|2

𝜕𝝀2
. We can label each MO as concentrating ED (negative 

second derivative), depleting ED (positive second derivative), non-contributing to the ED (in the 

case of an MO node) or removing ED (in the case of negative occupations in multi-reference 

𝜌(𝐫) = ∑ 𝜈𝑖|𝜒𝑖(𝐫)|
2

𝑁𝑀𝑂

𝑖

 (3) 
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wavefunctions). The ED at r* can then be defined in terms of MO components with different 

characters: 

Each individual MO’s character is therefore defined relative to a specific internuclear region, as 

opposed to a “net” character given based on inspection of molecular-wide isosurface or 

interference patterns of atomic orbitals.  

The CP(r) function as a criteria for the presence of a DB 

Using the above information regarding the decomposition of the ED distribution (Eq. 4), a similar 

decomposition can be performed for the partial directional first and second derivatives along the 

2–eigenvector, as shown for the first derivative: 

For a DB to be present, Eq. 5 should be zero at some coordinate (specifically at a CP(3,–1)) 

somewhere on the 2–eigenvector. Naturally, this means that (r) will approach zero in the 

vicinity of a CP or MDP; the net sign of (r) is, however, numerically dependent and irrelevant 

for the following discussion. That means that individual terms in Eq. 5 will sum up to zero, or 

their sum will approach zero in the vicinity of a CP or MDP. 𝜕𝜌non−contributing(𝐫
∗) will always 

be zero (or numerically so), and, in the interest of simplicity, we can ignore 𝜕𝜌removing(𝐫
∗) as 

we are not dealing with any multi-determinant wavefunctions in this work. That leaves the 

interplay between the slopes of MOs that concentrate or deplete ED (𝜕𝜌concentrating(𝐫
∗) +

𝜕𝜌depleting(𝐫
∗)) that will determine whether (r) crosses zero. The two possibilities which will 

lead to the formation of a DB is if i) both the slopes of concentrating and depleting contributions 

at r* are zero, or ii) the slopes of concentrating and depleting contributions at r* are equal, but 

opposite in sign. We already know that the signs of the partial second derivatives along the 2–

eigenvector for the concentrating and depleting contributions are negative and positive, 

respectively, and for a DB to be present, the partial second derivative of the total ED is also 

negative (2 < 0). Therefore, in the vicinity of a (3,–1) CP, the absolute gradient of the 

concentrating contributions will be greater than the absolute gradient of the depleting 

contributions, leading to the following conditions: 

𝜌(𝐫∗) = 𝜌concentrating(𝐫
∗) + 𝜌depleting(𝐫

∗) + 𝜌non−contributing(𝐫
∗) 

 + 𝜌removing(𝐫
∗) 

(4) 

𝜕𝜌(𝐫∗) = 𝜕𝜌concentrating(𝐫
∗) + 𝜕𝜌depleting(𝐫

∗) + 𝜕𝜌non−contributing(𝐫
∗) 

+𝜕𝜌removing(𝐫
∗) 

(5) 
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|𝜕𝜌concentrating(𝐫
∗)| > |𝜕𝜌depleting(𝐫

∗)|, in the vicinity of a (3,–1) CP 

|𝜕𝜌concentrating(𝐫
∗)| < |𝜕𝜌depleting(𝐫

∗)|, outside the vicinity of a (3,–1), and 

|𝜕𝜌concentrating(𝐫
∗)| − |𝜕𝜌depleting(𝐫

∗)| = 0, at a (3,–1) CP 

The second condition will hold for most interactions of interest, regardless of whether a DB is 

present or not. If a DB is not present, then the first and third condition will not be met. If a (3,+1) 

CP is present, then the first condition will not be met. In order to evaluate the interplay of these 

effects, we have proposed a function for detecting DBs when measured along the 2–eigenvector: 

The CP(r) function simply returns the slope of the total ED (Eq. 5), but modified by the sign of 

the net slope of the nonbonding contributions. The CP(r) function will therefore also be equal to 

0 at r*, if a DB is present. However, in the vicinity of a DB, a region along the 2–eigenvector 

will always exist where CP(r) is positive, in one or both directions, whereas CP(r) will always 

be negative if a BCP is absent.  

The physical interpretation of the CP(r) function is simple: a DB will exist only if the 

combined slope of all MOs that concentrate ED in an inter-nuclear region is greater and opposite 

in sign than the combined slope of all MOs that deplete ED.  

  

𝐶𝑃(𝐫) = −𝑠𝑖𝑔𝑛(𝜕𝜌depleting(𝐫))

∙ [𝜕𝜌concentrating(𝐫) + 𝜕𝜌depleting(𝐫) + 𝜕𝜌removing(𝐫)] 
(6) 
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The MO-DI Method 

The MO-DI method describes the QTAIM-defined delocalization index in terms of MO 

contributions to the pair-density.  We will first review the basic concepts of how delocalization 

indices are calculated within QTAIM. 

The integration of the overlap between all MO pairs over a QTAIM-defined atomic domain, 

(A), can be written as a matrix associated with atom A, SA
, and is known as an atomic overlap 

matrix (AOM).1 The elements of an NMO by NMO atomic overlap matrix, 

provide information on how each MO (diagonal elements) or a MO-pair (off-diagonal elements) 

contribute to the ED distribution of atom A. The atomic population (the average number of 

electrons found in the atomic basin) is therefore simply the sum of diagonal elements of the 

AOM: 

The off-diagonal elements of each AOM, however, provide valuable information regarding 

the 2nd-order density distribution across the atom, i.e. how MOs interfere (de)constructively 

within (A).8,9 Such information can be used to indicate the degree of localization or 

delocalization of electrons within the atomic basin. Specifically, by integrating the pair density 

across two domains simultaneously, the total electron delocalization between electrons in each 

basin can be calculated: 

 

where we have used the definition for the elements of the AOM from Eq. 7. (A,B) is known as 

the delocalization index (DI)10,11 for atom pair A,B. In single-determinant wavefunctions, it is 

often calculated by only considering spin-orbitals between parallel spin electrons, in order to 

calculate only the delocalization arising from Fermi correlation. Finally, note that the integrations 

can be swapped (dr1 over (B), dr2 over (A)) which will give the equivalent number of 

𝑆𝑖𝑗
A =∑∫ √𝜈𝑖√𝜈𝑗𝜒𝑖

∗(𝐫)𝜒𝑗(𝐫)𝑑𝐫
A𝑖𝑗

 (7) 

𝑁(A) = 𝑡𝑟(𝐒A) (8) 

δ(A, B) = 2 |−∑∫ 𝑑𝐫1
A

∫ 𝑑𝐫2
B

𝜈𝑖𝜈𝑗{𝜒𝑖
∗(𝐫1)𝜒𝑗 (𝐫1)𝜒𝑗

∗(𝐫2)𝜒𝑖 (𝐫2)}

𝑖𝑗

| 

= 2 |−∑𝑆𝑖𝑗
A𝑆𝑗𝑖

B

𝑖𝑗

| 

(9) 
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electrons, indicating that the number of electrons found on average in (A) but delocalized into 

(B) is the same as the number of electrons found on average in (B) but delocalized into (A); 

hence, the factor of 2 in Eq. 9.  

Since Eq. 9 is written in terms of MOs, it is easy to recover the contribution of each MO and 

MO-pair to the total DI. A delocalized density matrix can be easily defined in terms of AOM 

elements: 

Diagonal elements of this matrix, 𝐷𝑖𝑖
(A,B)

, provides the contributions of each MO’s contribution 

to the total number of electron pairs shared between A and B. However, the off-diagonal 

elements, 𝐷𝑖≠𝑗
(A,B)

, provides the extent to which an MO-pair increases delocalized electron pairs 

(through constructive interference) or decreases delocalized electron pairs (through 

deconstructive interference). Therefore, the sum of any row or column of Dij gives the net 

contribution of an MO to the number of electron pairs shared between atoms A and B, after any 

MO-pair interference effects have been taken into account. 

MO  MO 1 MO 2 MO 3 MO 4 MO 5 MO 6 MO 7 

         

MO 1  1.00 -1.00 0.00 0.00 0.00 0.00 0.00 

MO 2  -1.00 1.00 0.00 0.00 0.00 0.00 0.00 

MO 3  0.00 0.00 1.00 -0.27 0.00 0.00 0.00 

MO 4  0.00 0.00 -0.27 1.00 -0.71 0.00 0.00 

MO 5  0.00 0.00 0.00 -0.71 1.00 0.00 0.00 

MO 6  0.00 0.00 0.00 0.00 0.00 1.00 0.00 

MO 7  0.00 0.00 0.00 0.00 0.00 0.00 1.00 

  
       

Sum  0.00 0.00 0.73 0.02 0.29 1.00 1.00 

Percentage  0% 0% 24% 1% 10% 33% 33% 
Figure S1. Delocalized matrix for N2, as calculated at HF/6-311++G(2df,2pd) level. 

 

 

 

 

 

 

 

 

𝐷𝑖𝑗
(A,B)

= 2|−𝑆𝑖𝑗
A𝑆𝑗𝑖

B| (10) 
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Figure S2. 3D-isosurfaces of MOs of N2 at the HF/6-311++g(2df,2pd) level. Percentage contributions to 

the DI(N,N) as well as to the electron density at the (3,–1) CP(N,N) are also shown. 

 

For instance, consider the MOs in N2, as calculated by HF/6-311++G(2df,2pd), shown in Figure 

S2. The delocalized matrix D is shown above, in Figure S1. The core 1sN orbitals form a bonding 

and antibonding pair, 1 and 2. Both MOs contribute 1 electron pair to the total DI (𝐷11
(A,B)

=

𝐷22
(A,B)

 = 1.0). However, the two orbitals are out-of-phase with each other, and interferes 

destructively so that 𝐷12
(A,B)

= 𝐷21
(A,B)

= –1.0. Therefore, the net contribution of MOs 1 and 2 is 0 

electron pairs each, showing a classical bonding-antibonding pair. However, 3 – a -bonding 

MO – also contributes 1.0 electron pairs to the total DI, but interferes only weakly with 4 – a -

antibonding MO. The net contribution of 3 is then 0.72 electron pairs. Finally, 4 interferes 

deconstructively with both 3 and 5 (the second -bonding MO), thereby bringing its net 

contribution down to only 0.02 electron pairs. 
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Part 2.  Cartesian coordinates of molecules studied 

Table S1. Cartesian coordinates of planar biphenyl at the B3LYP/6-311++g(2df,2pd)/GD3 level. 

 

Atom X Y Z 

C1 0.000000 0.745401 0.000000 

C2 1.194303 1.480695 0.000000 

C3 1.196327 2.868658 0.000000 

C4 0.000000 3.575187 0.000000 

C5 -1.196327 2.868658 0.000000 

C6 -1.194303 1.480695 0.000000 

H7 2.147022 0.973835 0.000000 

H8 2.139620 3.398460 0.000000 

H9 0.000000 4.656587 0.000000 

H10 -2.139620 3.398460 0.000000 

H11 -2.147022 0.973835 0.000000 

C12 0.000000 -0.745401 0.000000 

C13 -1.194303 -1.480695 0.000000 

C14 1.194303 -1.480695 0.000000 

C15 -1.196327 -2.868658 0.000000 

H16 -2.147022 -0.973835 0.000000 

C17 1.196327 -2.868658 0.000000 

H18 2.147022 -0.973835 0.000000 

C19 0.000000 -3.575187 0.000000 

H20 -2.139620 -3.398460 0.000000 

H21 2.139620 -3.398460 0.000000 

H22 0.000000 -4.656587 0.000000 
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Table S2. Cartesian coordinates of twisted biphenyl at the B3LYP/6-311++g(2df,2pd)/GD3 level. 

 

Atom X Y Z 

C1 0.000000 0.740639 0.000000 

C2 1.125949 1.459671 0.416302 

C3 1.126421 2.848508 0.416623 

C4 0.000000 3.549616 0.000000 

C5 -1.126421 2.848508 -0.416623 

C6 -1.125949 1.459671 -0.416302 

H7 1.999325 0.924884 0.764579 

H8 2.005079 3.383880 0.751032 

H9 0.000000 4.631157 0.000000 

H10 -2.005079 3.383880 -0.751032 

H11 -1.999325 0.924884 -0.764579 

C12 0.000000 -0.740639 0.000000 

C13 -1.125949 -1.459671 0.416302 

C14 1.125949 -1.459671 -0.416302 

C15 -1.126421 -2.848508 0.416623 

H16 -1.999325 -0.924884 0.764579 

C17 1.126421 -2.848508 -0.416623 

H18 1.999325 -0.924884 -0.764579 

C19 0.000000 -3.549616 0.000000 

H20 -2.005079 -3.383880 0.751032 

H21 2.005079 -3.383880 -0.751032 

H22 0.000000 -4.631157 0.000000 
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Table S3. Cartesian coordinates of cubic Li4H4 at the B3LYP/6-311++g(2df,2pd)/GD3 level. 

Atom X Y Z 

Li1 -1.118656 -0.942737 -0.365387 

H2 -1.449309 0.667838 0.437822 

Li3 -0.189314 1.309120 -0.723882 

H4 0.013932 -0.265758 -1.633203 

H5 0.207746 -1.436650 0.794396 

Li6 -0.012695 0.242165 1.488227 

H7 1.227625 1.034573 0.400985 

Li8 1.320666 -0.608549 -0.398958 

 

 

End of Part 2 
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Part 3 – Canonical molecular orbitals in biphenyl 

Table S4. Full list of MOs in the planar Bph; isovalue = 0.01 a.u.  

  

MO Top View Side View 

1 

  

  

  

 3 

  

  

  

 5 

  

  
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Table S4 continues – planar Bph. 

 

 

  

 7 

  

  

  

 9 

  

  

  

 11 

  

  
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Table S4 continues – planar Bph. 

 

 
  

 13 

 

 

  

 

 

 15 

 

 

  

 

 

 17 

 

 

  
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Table S4 continues – planar Bph. 

 

 

 

  

 19 

 

 

  

 

 

 21 

 

 

  

 

 

 23 

 

 

  
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Table S4 continues – planar Bph. 

 

 25 

 

 

  

 

 

 27 

 

 

  

 

 

 29 

 

 

  
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Table S4 continues – planar Bph. 

 

 31 

 

 

  

 

 

 33 

 

 

  

 

 

 35 

 

 

  

 

 

 
  



Appendix I 

156 

 

Table S4 continues – planar Bph. 

 

 37 

 

 

  

 

 

 39 

 

 

  

 

 

 41 
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Table S5. Full list of MOs in the twisted Bph; isovalue = 0.01 a.u. 

 

MO Top View Side View 

1 

 
 

  

  

 3 

 
 

  

  

 5 

  

  
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Table S5 continues – twisted Bph. 

 

 7 

  

  

  

 9 

  

  

  

 11 

  

  

  
 

  



Appendix I 

159 

 

Table S5 continues – twisted Bph. 

 

 13 

  

  

 
  

 15 

 
 

  

 
  

 17 

 
 

  
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Table S5 continues – twisted Bph. 

 

 19 

 
 

  

 
 

 21 

 
 

  

 
 

 23 

 
 

  
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Table S5 continues – twisted Bph. 

 

 25 

 
 

  

 
 

 27 

 
 

  

 
 

 29 

 
 

  
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Table S5 continues – twisted Bph. 

 

 31 

 
 

  

 
 

 33 

 
 

  

 
 

 35 

 
 

  
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Table S5 continues – twisted Bph. 

 

 37 

 
 

  

 
 

 39 

 
  

  

 
 

 41 

 
 

 
 

End of Part 3 
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Part 4 – Data pertaining to covalent bonds in biphenyl 

Table S6. MO-ED data at (3,–1) CP(C1,C12) & CP(C19,H22) in the planar Bph. 

   C1,C12 C19,H22 

MO 
Energy 

(a.u.) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

1 -10.19173 0.00010 / 0.0% concentrating 0.00000 / 0.0% non-contributing 

2 -10.19145 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

3 -10.17726 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

4 -10.17724 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

5 -10.17720 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

6 -10.17718 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

7 -10.17658 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

8 -10.17657 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

9 -10.17653 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

10 -10.17652 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

11 -10.17586 0.00000 / 0.0% non-contributing 0.00005 / 0.0% concentrating 

12 -10.17586 0.00000 / 0.0% non-contributing 0.00005 / 0.0% concentrating 

13 -0.87581 0.01896 / 7.2% concentrating 0.00150 / 0.5% concentrating 

14 -0.85459 0.00000 / 0.0% non-contributing 0.00357 1.2% concentrating 

15 -0.78384 0.03774 / 14.3% concentrating 0.00980 / 3.3% concentrating 

16 -0.75827 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

17 -0.74841 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

18 -0.72791 0.00000 / 0.0% non-contributing 0.01662 / 5.7% concentrating 

19 -0.63238 0.04513 / 17.1% concentrating 0.02476 / 8.5% concentrating 

20 -0.62793 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

21 -0.59212 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

22 -0.58592 0.00000 / 0.0% non-contributing 0.01386 / 4.7% concentrating 

23 -0.54310 0.01894 / 7.2% concentrating 0.01360 4.6% concentrating 

24 -0.50360 0.00000 / 0.0% non-contributing 0.05810 / 19.9% concentrating 

25 -0.48074 0.03774 / 14.3% concentrating 0.02312 / 7.9% concentrating 

26 -0.47350 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

27 -0.44376 0.00000 / 0.0% non-contributing 0.00263 / 0.9% concentrating 

28 -0.43615 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

29 -0.43567 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

30 -0.43051 0.04133 / 15.6% concentrating 0.04914 / 16.8% concentrating 
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Table S6 continues. 

   C1,C12 C19,H22 

MO 
Energy 

(a.u.) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

31 -0.41671 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

32 -0.39513 0.00000 / 0.0% depleting 0.00000 / 0.0% depleting 

33 -0.36916 0.00000 / 0.0% non-contributing 0.05161 / 17.6% concentrating 

34 -0.36616 0.00000 / 0.0% non-contributing 0.00000 / 0.0% depleting 

35 -0.36285 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

36 -0.34790 0.06432 / 24.3% concentrating 0.02425 / 8.3% concentrating 

37 -0.33466 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

38 -0.29363 0.00000 / 0.0% depleting 0.00000 / 0.0% depleting 

39 -0.26531 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

40 -0.25903 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

41 -0.23027 0.00000 / 0.0% non-contributing 0.00000 / 0.0% depleting 
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Table S7. MO-DI data (in e–-pairs) for covalent bond C1–C12 in the planar Bph.  

MO 1–21a 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

1–21 0.38a -0.02 0.00 -0.01 0.05 0.02 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.01 0.02 -0.01 0.00 0.00 0.00 0.00 

22 -0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

23 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 

24 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.05 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

26 0.02 0.00 0.00 0.00 0.00 0.03 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 -0.02 0.00 0.00 0.00 0.00 

27 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 -0.01 0.00 0.00 0.00 0.00 -0.02 0.00 0.03 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.02 0.00 0.00 0.00 0.00 

29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 

30 0.00 -0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 

31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 -0.02 0.00 0.00 0.00 0.09 0.00 0.00 -0.07 

33 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.01 0.00 0.00 0.00 -0.02 0.00 0.00 0.02 

35 0.01 0.00 0.00 0.00 0.00 0.02 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 

36 0.02 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 

37 -0.01 0.00 0.00 0.00 0.00 -0.02 0.00 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.02 0.00 0.00 0.00 0.00 

38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 -0.02 0.00 0.00 0.00 0.08 0.00 0.00 -0.06 

39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.00 0.02 0.00 0.00 0.00 -0.06 0.00 0.00 0.06 

 
                     

Diagonal 2.30a 0.02 0.02 0.00 0.01 0.03 0.01 0.03 0.00 0.05 0.00 0.11 0.00 0.01 0.01 0.05 0.02 0.08 0.00 0.00 0.06 

Off-Diagonal -1.87a -0.03 0.06 0.00 0.09 -0.01 0.00 -0.03 0.00 0.08 0.00 0.00 -0.01 -0.02 0.00 0.11 -0.03 0.01 0.00 0.00 -0.11 

Total 0.43 0.00 0.08 0.00 0.11 0.02 0.00 -0.01 0.00 0.13 0.00 0.10 -0.01 -0.01 0.01 0.16 -0.01 0.10 0.00 0.00 -0.05 
a MOs 1–21 were combined for the sake of brevity. The contributions made by diagonal elements of these MOs equal 2.30, whereas off-diagonal terms of only these MOs equal 

–1.92 to give a net contribution of 0.38. Interference with the remaining MOs (MOs 22–41) gives a positive, off-diagonal contribution of +0.05, so that the total contribution 

of MOs 1–21 equals 0.43.   
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Table S8. MO-DI data (in e–-pairs) for covalent bond C19–H22 in planar Bph.  

MO 1–21a 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

1–21 0.13a 0.02 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

23 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24 0.02 0.01 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

25 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

27 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

33 0.00 0.00 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

36 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
                      

Diagonal 0.03a 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Off-Diagonal 0.17a 0.04 0.05 0.15 0.06 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.11 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 

Total 0.20a 0.04 0.05 0.19 0.07 0.00 0.01 0.00 0.00 0.16 0.00 0.00 0.15 0.01 0.00 0.06 0.00 0.01 0.00 0.00 0.01 
a MOs 1–21 were combined for the sake of brevity. The contributions made by diagonal elements of these MOs equal 0.03, whereas off-diagonal terms of only these MOs equal 

+0.1 to give a net contribution of 0.13. Interference with the remaining MOs (MOs 22–41) gives a positive, off-diagonal contribution of +0.04, so that the total contribution of 

MOs 1–21 equals 0.20. 
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Table S9. Summary of MO-ED & MO-DI data, for covalent bonds C1,C12 & C19,H22 in planar BPh  

 C1,C12  C19,H22 

Classification 

based on 2 

Number 

of MOs 

Contribution 

to (CP)a   
Number 

of MOs 

Contribution 

to (CP)a 

Concentrating 8 0.264  15 0.293 

Depleting 2 0.000  4 0.000 

Non-contributing 31 0.000  22 0.000 

      

Delocalization  
Contribution 

to DIb 
  

Contribution 

to DIb 

Overlapping  2.82   0.19 

Interference  -1.76   0.77 

Net DI  1.06   0.97 
a in a.u.;  b in e–-pairs. 
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Figure S3. Decomposition of the total-ED (a), first derivative (c) and directional second partial 

derivatives (e) along the 2–eigenvector in the C1,C12 inter-nuclear region in planar biphenyl, as well 

as the subsequent decomposition of the concentrating density into the largest MO contributions (b,d,f) 
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Figure S4. Decomposition of the total-ED (a), first derivative (c) and directional second partial 

derivatives (e) along the 2–eigenvector in the C19,H22 inter-nuclear region in planar biphenyl, as well 

as the subsequent decomposition of the concentrating density into the largest MO contributions (b,d,f) 

 

End of Part 4 
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Part 5 – Data pertaining to CP/MDP(H7,H18) in the planar/twisted 

biphenyl 

Table S10. MO-ED data at (3,–1) CP(H7,H18) in planar and at MDP(H7,H18) in twisted Bph. 

   Planar Twisted 

MO 
Energy 

(a.u.) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

1 -10.19173 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

2 -10.19145 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

3 -10.17726 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

4 -10.17724 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

5 -10.17720 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

6 -10.17718 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

7 -10.17658 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

8 -10.17657 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

9 -10.17653 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

10 -10.17652 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

11 -10.17586 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

12 -10.17586 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

13 -0.87581 0.00031 / 2.2% depleting 0.00017 / 2.3% depleting 

14 -0.85459 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

15 -0.78384 0.00028 / 1.9% depleting 0.00014 / 1.9% depleting 

16 -0.75827 0.00072 / 5.1% concentrating 0.00034 / 4.5% depleting 

17 -0.74841 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

18 -0.72791 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

19 -0.63238 0.00015 / 1.1% concentrating 0.00004 / 0.5% concentrating 

20 -0.62793 0.00188 / 13.2% concentrating 0.00095 / 12.8% depleting 

21 -0.59212 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

22 -0.58592 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

23 -0.54310 0.00198 / 13.9% concentrating 0.00077 / 10.3% concentrating 

24 -0.50360 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

25 -0.48074 0.00237 / 16.6% concentrating 0.00113 / 15.3% concentrating 

26 -0.47350 0.00019 / 1.3% depleting 0.00019 / 2.6% depleting 

27 -0.44376 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

28 -0.43615 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

29 -0.43567 0.00273 / 19.1% concentrating 0.00111 / 15.0% concentrating 

30 -0.43051 0.00090 / 6.3% concentrating 0.00050 / 6.8% concentrating 
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Table S10 continues. 

   Planar Twisted 

MO 
Energy 

(a.u.) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

31 -0.41671 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

32 -0.39513 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

33 -0.36916 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

34 -0.36616 0.00000 / 0.0% non-contributing 0.00000 / 0.0% depleting 

35 -0.36285 0.00157 / 11.0% concentrating 0.00083 / 11.2% concentrating 

36 -0.34790 0.00118 / 8.3% concentrating 0.00066 / 8.6% concentrating 

37 -0.33466 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

38 -0.29363 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

39 -0.26531 0.00000 / 0.0% non-contributing 0.00000 / 0.0% non-contributing 

40 -0.25903 0.00000 / 0.0% non-contributing 0.00024 / 3.3% concentrating 

41 -0.23027 0.00000 / 0.0% non-contributing 0.00034 / 4.6% depleting 
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Table S11. MO-DI data (in e–-pairs) for noncovalent interaction H7H18 in the planar Bph.  

MO 1–24a 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

1–24 0.005a 0.004 0.000 -0.002 0.000 0.005 0.001 -0.002 0.000 -0.002 0.000 0.004 0.001 -0.003 0.000 0.000 0.000 0.000 

25 0.004 0.008 0.000 -0.006 0.000 0.009 0.002 -0.006 0.000 -0.004 0.000 0.006 0.002 -0.007 0.000 0.000 0.000 0.000 

26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

27 -0.002 -0.006 0.000 0.006 0.000 -0.008 -0.002 0.006 0.000 0.003 0.000 -0.005 -0.001 0.007 0.000 0.000 0.000 0.000 

28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

29 0.005 0.009 0.000 -0.008 0.000 0.012 0.003 -0.008 0.000 -0.005 0.000 0.008 0.002 -0.009 0.000 0.000 0.000 0.000 

30 0.001 0.002 0.000 -0.002 0.000 0.003 0.001 -0.002 0.000 -0.001 0.000 0.002 0.001 -0.002 0.000 0.000 0.000 0.000 

31 -0.002 -0.006 0.000 0.006 0.000 -0.008 -0.002 0.006 0.000 0.003 0.000 -0.005 -0.001 0.007 0.000 0.000 0.000 0.000 

32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

33 -0.002 -0.004 0.000 0.003 0.000 -0.005 -0.001 0.003 0.000 0.002 0.000 -0.003 -0.001 0.004 0.000 0.000 0.000 0.000 

34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

35 0.004 0.006 0.000 -0.005 0.000 0.008 0.002 -0.005 0.000 -0.003 0.000 0.006 0.001 -0.006 0.000 0.000 0.000 0.000 

36 0.001 0.002 0.000 -0.001 0.000 0.002 0.001 -0.001 0.000 -0.001 0.000 0.001 0.001 -0.001 0.000 0.000 0.000 0.000 

37 -0.003 -0.007 0.000 0.007 0.000 -0.009 -0.002 0.007 0.000 0.004 0.000 -0.006 -0.001 0.008 0.000 0.000 0.000 0.000 

38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

                  

Diagonal 0.015a 0.008 0.000 0.006 0.000 0.012 0.001 0.006 0.000 0.002 0.000 0.006 0.001 0.008 0.000 0.000 0.000 0.000 

Off-diagonal -0.004a 0.001 0.000 -0.009 0.000 -0.002 0.002 -0.009 0.000 -0.004 0.000 0.001 0.002 -0.011 0.000 0.000 0.000 0.000 

Total 0.011 0.008 0.000 -0.003 0.000 0.010 0.003 -0.003 0.000 -0.002 0.000 0.007 0.003 -0.003 0.000 0.000 0.000 0.000 

a MOs 1–24 were combined for the sake of brevity. The contributions made by diagonal elements of these MOs equal 0.015, whereas off-diagonal terms of only these MOs 

equal –0.01 to give a net contribution of 0.05. Interference with the remaining MOs (MOs 25–41) gives a positive, off-diagonal contribution of +0.006, so that the total 

contribution of MOs 1–24 equals 0.011. 
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Table S12. MO-DI data (in e–-pairs) for noncovalent interaction H7H18 in the twisted Bph.  

MO 1–24a 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

1–24 0.001a 0.004 0.000 -0.002 0.000 0.005 0.001 -0.002 0.000 -0.002 0.000 0.004 0.001 -0.003 0.000 0.000 0.000 0.000 

25 0.000 0.008 0.000 -0.007 0.000 0.008 0.003 -0.007 -0.001 -0.003 0.000 0.007 0.002 -0.007 0.000 0.000 0.000 0.000 

26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

27 0.001 -0.007 0.000 0.006 0.000 -0.007 -0.002 0.006 0.001 0.003 0.000 -0.006 -0.002 0.007 0.000 0.000 0.000 0.000 

28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

29 0.000 0.008 0.000 -0.007 0.000 0.009 0.003 -0.007 -0.001 -0.003 0.000 0.007 0.002 -0.008 0.000 0.000 0.000 0.000 

30 0.000 0.003 0.000 -0.002 0.000 0.003 0.001 -0.002 0.000 -0.001 0.000 0.002 0.001 -0.002 0.000 0.000 0.000 0.000 

31 0.001 -0.007 0.000 0.006 0.000 -0.007 -0.002 0.006 0.001 0.003 0.000 -0.006 -0.002 0.007 0.000 0.000 0.000 0.000 

32 0.000 -0.001 0.000 0.001 0.000 -0.001 0.000 0.001 0.000 0.000 0.000 -0.001 0.000 0.001 0.000 0.000 0.000 0.000 

33 0.000 -0.003 0.000 0.003 0.000 -0.003 -0.001 0.003 0.000 0.001 0.000 -0.003 -0.001 0.003 0.000 0.000 0.000 0.000 

34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 

35 0.000 0.007 0.000 -0.006 0.000 0.007 0.002 -0.006 -0.001 -0.003 0.000 0.006 0.002 -0.006 0.000 0.000 0.000 0.000 

36 0.000 0.002 0.000 -0.002 0.000 0.002 0.001 -0.002 0.000 -0.001 0.000 0.002 0.001 -0.002 0.000 0.000 0.000 0.000 

37 0.001 -0.007 0.000 0.007 0.000 -0.008 -0.002 0.007 0.001 0.003 -0.001 -0.006 -0.002 0.007 0.000 0.000 0.000 0.000 

38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

                   

Diagonal 0.014a 0.008 0.000 0.006 0.000 0.009 0.001 0.006 0.000 0.001 0.000 0.006 0.001 0.007 0.000 0.000 0.000 0.000 

Off-diagonal -0.011 -0.005 0.000 -0.007 0.000 -0.005 0.000 -0.007 0.000 -0.002 0.000 -0.003 0.001 -0.008 0.000 0.000 0.000 0.000 

Total 0.003 0.003 0.000 -0.001 0.000 0.003 0.001 -0.001 0.000 -0.001 0.000 0.003 0.001 -0.001 0.000 0.000 0.000 0.000 

a MOs 1–24 were combined for the sake of brevity. The contributions made by diagonal elements of these MOs equal 0.014, whereas off-diagonal terms of only these MOs 

equal –0.013 to give a net contribution of 0.001. Interference with the remaining MOs (MOs 25–41) gives a positive, off-diagonal contribution of +0.002, so that the total 

contribution of MOs 1–24 equals 0.003. 
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Table S13. Summary of MO-ED & MO-DI data for H7···H18 in planar and twisted Bph  

 Planar  Twisted 

Classification 

based on 2 

Number 

of MOs 

Contribution 

to (CP)a   
Number 

of MOs 

Contribution 

to (MDP)a 

Concentrating 9 0.013  8 0.005 

Depleting 3 0.001  7 0.002 

Non-contributing 29 0.000  26 0.000 

      

Delocalization  
Contribution 

to DIb 
  

Contribution 

to DIb 

Overlapping  0.064   0.060 

Interference  –0.033   –0.049 

Net DI  0.031   0.011 
a in a.u.;  b in e–-pairs. 
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Figure S5. Decomposition of the total-ED (a), first derivative (c) and directional partial derivatives (e) 

along the 2–eigenvector in the H7,H18 inter-nuclear region in planar biphenyl, as well as the 

subsequent decomposition of the concentrating density into the largest MO contributions (b,d,f) 
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Figure S6. Decomposition of the total-ED (a), first derivative (c) and directional partial derivatives (e) 

along the 2–eigenvector in the H7,H18 inter-nuclear region in twisted biphenyl, as well as the 

subsequent decomposition of the concentrating density into the largest MO contributions (b,d,f) 
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Part 6 – Data pertaining to H ··H density bridges in Li4H4 

Table S14. MO-ED data at (3,–1) CP(H2,H4), CP(H2,H5) and CP(H4,H5) in Li4H4. 

   H2,H4 H2,H5 H4,H5 

MO 
Energy 

(a.u.) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

1 -10.19173 0.00013 / 0.8% Depleting 0.00013 / 0.8% Depleting 0.00013 / 0.8% Depleting 

2 -10.19145 0.00005 / 0.3% Depleting 0.00005 / 0.3% Depleting 0.00003 / 0.2% Depleting 

3 -10.17726 0.00002 / 0.1% Depleting 0.00001 / 0.1% Depleting 0.00010 / 0.7% Depleting 

4 -10.17724 0.00006 / 0.4% Depleting 0.00007 / 0.5% Depleting 0.00000 / 0.0% Non-Contributing 

5 -10.17720 0.00829 / 54.2% Concentrating 0.00829 / 54.2% Concentrating 0.00829 / 54.2% Concentrating 

6 -10.17718 0.00000 / 0.0% Non-Contributing 0.00158 / 10.4% Concentrating 0.00516 / 33.8% Concentrating 

7 -10.17658 0.00369 / 24.2% Concentrating 0.00226 / 14.8% Concentrating 0.00079 / 5.2% Concentrating 

8 -10.17657 0.00305 / 20.0% Concentrating 0.00290 / 19.0% Concentrating 0.00079 / 5.2% Concentrating 
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Table S15. MO-DI data for the H2,H5 atom-pair in Li4H4. 

MO MO1 MO2 MO3 MO4 MO5 MO6 MO7 MO8 

MO1 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

MO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MO3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MO4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MO5 0.001 0.000 0.000 0.000 0.207 -0.029 -0.057 -0.103 

MO6 0.000 0.000 0.000 0.000 -0.029 0.009 0.009 0.016 

MO7 0.000 0.000 0.000 0.000 -0.057 0.009 0.051 0.032 

MO8 0.000 0.000 0.000 0.000 -0.103 0.016 0.032 0.092 

 
        

Diagonal 0.000 0.000 0.000 0.000 0.207 0.009 0.051 0.092 

Off-diagonal 0.000 0.000 0.000 0.000 -0.189 -0.004 -0.016 -0.055 

Total 0.000 0.000 0.000 0.000 0.018 0.005 0.035 0.037 
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Table S16. Summary of MO-ED and MO-DI data for three H∙∙∙H density bridges in Li4H4. 

 H2,H4  H2,H5  H4,H5 

Classification 

based on 2 

Number 

of MOs 

Contribution 

to (CP)a   
Number 

of MOs 

Contribution 

to (CP)a 

 Number 

of MOs 

Contribution 

to (CP)a 

Concentrating 3 0.015  4 0.015  4 0.015 

Depleting 4 0.000  4 0.000  3 0.000 

Non-contributing 1 0.000  0 0.000  1 0.000 

         

Delocalization  
Contribution 

to DIb 
  

Contribution 

to DIb 

 
 

Contribution 

to DIb 

Overlapping  0.36   0.36   0.36 

Interference  –0.26   –0.26   –0.26 

Net DI  0.09   0.09   0.09 
a in a.u.;  b in e–-pairs. 
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Figure S7. Decomposition of the total-ED (a), first derivative (c) and directional partial derivatives (e) 

along the 2–eigenvector in the H2,H5 inter-nuclear region in Li4H4, as well as the subsequent 

decomposition of the concentrating density into the largest MO contributions (b,d,f). 
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Part 1. Cartesian Coordinates of all molecules studied 

Table S1. Cartesian coordinates of planar biphenyl at the B3LYP/cc-pVDZ level. 

 

Atom X Y Z 

C1 0.000000 0.747659 0.000000 

C2 1.201002 1.486214 0.000000 

C3 1.202756 2.881607 0.000000 

C4 0.000000 3.592065 0.000000 

C5 -1.202756 2.881607 0.000000 

C6 -1.201002 1.486214 0.000000 

H7 2.162178 0.972810 0.000000 

H8 2.155610 3.416086 0.000000 

H9 0.000000 4.684170 0.000000 

H10 -2.155610 3.416086 0.000000 

H11 -2.162178 0.972810 0.000000 

C12 0.000000 -0.747659 0.000000 

C13 1.201002 -1.486214 0.000000 

C14 1.202756 -2.881607 0.000000 

C15 0.000000 -3.592065 0.000000 

C16 -1.202756 -2.881607 0.000000 

C17 -1.201002 -1.486214 0.000000 

H18 2.162178 -0.972810 0.000000 

H19 2.155610 -3.416086 0.000000 

H20 0.000000 -4.684170 0.000000 

H21 -2.155610 -3.416086 0.000000 

H22 -2.162178 -0.972810 0.000000 

 

Molecular Energy = -463.330812 a.u. 
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Table S2. Cartesian coordinates of twisted biphenyl at the B3LYP/cc-pVDZ level. 

 

Atom X Y Z 

C1 0.000000 0.743784 0.000000 

C2 1.137590 1.468260 -0.402647 

C3 1.137840 2.864563 -0.402880 

C4 0.000000 3.569885 0.000000 

C5 -1.137840 2.864563 0.402880 

C6 -1.137590 1.468260 0.402647 

H7 2.024118 0.929542 -0.744099 

H8 2.030290 3.404597 -0.728007 

H9 0.000000 4.662191 0.000000 

H10 -2.030290 3.404597 0.728007 

H11 -2.024118 0.929542 0.744099 

C12 0.000000 -0.743784 0.000000 

C13 1.137590 -1.468260 0.402647 

C14 1.137840 -2.864563 0.402880 

C15 0.000000 -3.569885 0.000000 

C16 -1.137840 -2.864563 -0.402880 

C17 -1.137590 -1.468260 -0.402647 

H18 2.024118 -0.929542 0.744099 

H19 2.030290 -3.404597 0.728007 

H20 0.000000 -4.662191 0.000000 

H21 -2.030290 -3.404597 -0.728007 

H22 -2.024118 -0.929542 -0.744099 

 

Molecular Energy = -463.333574 a.u. 

End of Part 1 

  



Appendix II 

186 

 

Part 2. Cross-section comparison between MO-ED and FALDI-

ED method for Biphenyl 

MO FALDI 
(a) Planar 

  
(b) Twisted 

  
Figure S1 – Decomposition of the  directional second partial derivative (tot) along the 2-eigenvector 

crossing (a) the CP(H7,H18) in planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph 

to major contributions (concentrating, depleting, and removing) using MO and FALDI densities. 
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MO FALDI 
(a) Planar 

  
(b) Twisted 

  
Figure S2 – Decomposition of the  (tot) along the 2-eigenvector crossing (a) the CP(H7,H18) in 

planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph to major contributions 

(concentrating, depleting, and removing) using MO and FALDI densities. 
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MO FALDI 
(a) Planar 

  
(b) Twisted 

  
Figure S3 – CP(r) function cross-sections along the 2-eigenvector crossing the (a) CP(H7,H18) in the 

planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph using MO and FALDI densities.  

End of Part 2 
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Part 3. Alternate Fragment Partitioning Scheme 

A different fragmentation scheme was performed, whereby the set of molecular fragments F 

used in this work is shown in Scheme S1. Differing from the fragmentation scheme in the main 

body, this scheme groups the 4-centred bay-region into one fragment (F1), and the other bay-

region forms another fragment (F1). The remaining F3 fragment encompasses 12 atoms of 

Bph that are not ‘directly’ involved in the steric contact. 

 

Scheme S1. Definition of fragments for FALDI analysis. F1: C2HHC13 bay, F1: C6HHC17 bay, 

F2: C1-C12 linker, and F3: combined fragment containing remainder of the molecule. The position 

and direction of the 2–eigenvector used for cross-section analysis is also shown. 

Cross-sections along the 2–eigenvector for the H7H18 region in planar Bph, as well as 

isosurfaces of the largest fragment contributions to the ED at CP(H7,H18), are shown in Figure 

2. The largest contributor to the ED (62%) is the intra-fragment delocalization of fragment F1. 

Electrons delocalized among the two CH groups creates a clean channel of delocalized density 

and results in a strong concentration of electrons at CP(H7,H18). However, two other 

components also contribute electrons in a concentrating fashion: the inter-fragment delocalized 

density between fragments F1 and F3, as well as between F1 and F1 (22% and 4%, 

respectively).  

Both of these components result in a very similar channel of delocalized density between 

the H-atoms. Finally, the only component that results in a significant depletion of density is the 

inter-fragment delocalization between F1 and F2 (contributing 10% to CP(H7,H18).   

F1

F1

F2

F3 F3

2−eigenvector
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Figure S4. Decomposition of the (a) major and (b) minor FALDI fragment contributions to the ED of 

the CP(H7,H18) along the 2–eigenvector in planar Bph. (c) provides the relative contributions to the 

ED at CP(H7,H18), and (d) isosurfaces of selected components. 

  

(a) 

(b) 

(c) 

(d) 
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Therefore, the fragment analysis reveals that the vast majority of the ED at CP(H7,H18) 

results from electron delocalization involving the two CH groups. Delocalization among 

themselves, as well as with the other CHHC bay and the other remaining hydrocarbons results 

in a concentrating channel of delocalized ED. It is also interesting to note that the depletion of 

ED observed at CP(H7,H18) does not arise directly from the linker C-C bond, but rather from 

electrons delocalized between the linker and the bay CHHC fragment. Finally, the fragment 

results clearly illustrates the molecular-wide nature of the density concentrated between the 

H,H atoms. 

Performing the same analysis for the HH region in twisted Bph reveals that the same four 

components make up the majority of the density at MDP(H7,H18) – Figure 3. The same 

contributions that concentrate/deplete ED in planar Bph also concentrate/deplete ED in twisted 

Bph. In fact, the only discernible differences between the two compounds are the relative 

magnitudes of each component, as well as their relative slopes. 
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Figure S5. Decomposition of the (a) major and (b) minor FALDI fragment contributions to the ED of 

the MDP(H7,H18) along the 2–eigenvector in twisted Bph. (c) provides the relative contributions to 

the ED at MDP(H7,H18), and (d) isosurfaces of selected components 

End of Part 3 
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Part 4. FALDI-ED Data for H7∙∙∙H18 Interaction in Biphenyl 

FALDI Fragment Analysis 

Table S3. FALDI fragment data at (3,–1) CP(H7,H18) or MDP(H7,H18) in planar and twisted 

biphenyl, respectively. 

 Planar Twisted 

Fragment(s) 

ED contribution 

(a.u.) / %-

fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-

fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

DF1
𝑖𝑛𝑡𝑟𝑎(𝐫) 0.00048 / 3.4 concentrating 0.00010 / 1.4 concentrating 

DF2
𝑖𝑛𝑡𝑟𝑎(𝐫) -0.00003 / -0.2 removing 0.00005 / 0.6 concentrating 

DF3
𝑖𝑛𝑡𝑟𝑎(𝐫) 0.00001 / 0.1 depleting 0.00001 / 0.2 depleting 

DF4
𝑖𝑛𝑡𝑟𝑎(𝐫) 0.00030 / 2.1 concentrating 0.00019 / 2.6 concentrating 

DF1,F2
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00836 / 58.6 concentrating 0.00387 / 52.2 concentrating 

DF1,F3
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00048 / 3.4 concentrating 0.00023 / 3.0 concentrating 

DF1,F4
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00158 / 11.1 concentrating 0.00072 / 9.7 concentrating 

DF2,F3
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00094 / 6.6 depleting 0.00076 / 10.3 depleting 

DF2,F4
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00209 / 14.7 concentrating 0.00134 / 18.0 concentrating 

DF3,F4
𝑖𝑛𝑡𝑒𝑟 (𝐫) 0.00005 / 0.4 depleting 0.00015 / 2.1 depleting 
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FALDI Diatomic Analysis 

Table S4. FALDI diatomic data at (3,–1) CP(H7,H18) or MDP(H7,H18) in planar and twisted biphenyl, 

respectively. 

 Planar Twisted 

Atom-

Pair 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

ED contribution 

(a.u.) / %-fraction 

Classification 

based on 2nd 

derivative sign 

(2) 

C1,C2 0.00035 / 2.4 depleting 0.00029 / 4.2 depleting 

C1,C3 0.00002 / 0.1 depleting 0.00002 / 0.3 depleting 

C1,C4 0.00000 / 0.0 depleting 0.00001 / 0.2 depleting 

C1,C5 0.00000 / 0.0 depleting 0.00000 / 0.1 depleting 

C1,C6 0.00000 / 0.0 removing 0.00002 / 0.3 depleting 

C1,H7 0.00018 / 1.2 concentrating 0.00007 / 1.0 concentrating 

C1,H8 0.00000 / 0.0 removing 0.00000 / 0.0 removing 

C1,H9 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C1,H10 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C1,H11 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C1,C12 0.00000 / 0.0 depleting 0.00001 / 0.2 depleting 

C1,C13 0.00007 / 0.5 concentrating 0.00005 / 0.7 concentrating 

C1,C14 0.00001 / 0.0 concentrating 0.00000 / 0.1 concentrating 

C1,C15 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C1,C16 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C1,C17 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C1,H18 0.00008 / 0.6 concentrating 0.00004 / 0.5 concentrating 

C1,H19 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C1,H20 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C1,H21 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C1,H22 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C2,C3 0.00059 / 4.1 concentrating 0.00034 / 4.8 concentrating 

C2,C4 0.00008 / 0.6 concentrating 0.00005 / 0.6 concentrating 

C2,C5 0.00005 / 0.3 concentrating 0.00005 / 0.7 concentrating 

C2,C6 0.00005 / 0.4 concentrating 0.00003 / 0.5 depleting 

C2,H7 0.00413 / 28.7 concentrating 0.00178 / 25.6 concentrating 

C2,H8 0.00006 / 0.4 concentrating 0.00003 / 0.4 concentrating 

C2,H9 0.00005 / 0.3 concentrating 0.00002 / 0.3 concentrating 

C2,H10 0.00002 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C2,H11 0.00002 / 0.2 concentrating 0.00001 / 0.2 concentrating 

C2,C12 0.00007 / 0.5 concentrating 0.00005 / 0.7 concentrating 

C2,C13 -0.00004 / -0.3 removing 0.00004 / 0.5 concentrating 
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Table S4 continues – FALDI diatomic data 

C2,C14 0.00000 / 0.0 concentrating 0.00001 / 0.1 concentrating 

C2,C15 0.00001 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C2,C16 0.00002 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C2,C17 0.00003 / 0.2 concentrating 0.00002 / 0.3 concentrating 

C2,H18 0.00015 / 1.1 concentrating 0.00007 / 1.1 concentrating 

C2,H19 0.00001 / 0.1 concentrating 0.00000 / 0.0 concentrating 

C2,H20 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

C2,H21 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C2,H22 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

C3,C4 0.00006 / 0.4 concentrating 0.00002 / 0.3 concentrating 

C3,C5 0.00000 / 0.0 concentrating 0.00000 / 0.1 concentrating 

C3,C6 0.00001 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H7 0.00025 / 1.8 concentrating 0.00011 / 1.6 concentrating 

C3,H8 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C3,H9 0.00001 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H10 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H11 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,C12 0.00001 / 0.0 concentrating 0.00000 / 0.1 concentrating 

C3,C13 0.00000 / 0.0 concentrating 0.00001 / 0.1 concentrating 

C3,C14 0.00000 / 0.0 removing 0.00000 / 0.0 removing 

C3,C15 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C3,C16 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,C17 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H18 0.00003 / 0.2 concentrating 0.00001 / 0.2 concentrating 

C3,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C3,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C3,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C4,C5 0.00001 / 0.1 concentrating 0.00002 / 0.2 concentrating 

C4,C6 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C4,H7 0.00013 / 0.9 concentrating 0.00005 / 0.8 concentrating 

C4,H8 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C4,H9 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C4,H10 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C4,H11 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C4,C12 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C4,C13 0.00001 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C4,C14 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C4,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 
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Table S4 continues – FALDI diatomic data 

C4,C16 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C4,C17 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C4,H18 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C4,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C4,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C4,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C4,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C5,C6 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

C5,H7 0.00003 / 0.2 concentrating 0.00002 / 0.2 concentrating 

C5,H8 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C5,H9 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C5,H10 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C5,H11 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C5,C12 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C5,C13 0.00002 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C5,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C5,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C5,C16 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C5,C17 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C5,H18 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C5,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C5,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C5,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C5,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C6,H7 0.00010 / 0.7 concentrating 0.00004 / 0.6 concentrating 

C6,H8 0.00000 / 0.0 concentrating 0.00000 / 0.0 removing 

C6,H9 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C6,H10 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

C6,H11 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C6,C12 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C6,C13 0.00003 / 0.2 concentrating 0.00002 / 0.3 concentrating 

C6,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C6,C15 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C6,C16 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C6,C17 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C6,H18 0.00003 / 0.2 concentrating 0.00001 / 0.1 concentrating 

C6,H19 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C6,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C6,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 
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Table S4 continues – FALDI diatomic data 

C6,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H7,H8 0.00007 / 0.5 concentrating 0.00003 / 0.4 concentrating 

H7,H9 0.00005 / 0.4 concentrating 0.00002 / 0.3 concentrating 

H7,H10 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

H7,H11 0.00005 / 0.3 concentrating 0.00002 / 0.3 concentrating 

H7,C12 0.00008 / 0.6 concentrating 0.00004 / 0.5 concentrating 

H7,C13 0.00015 / 1.1 concentrating 0.00007 / 1.1 concentrating 

H7,C14 0.00003 / 0.2 concentrating 0.00001 / 0.2 concentrating 

H7,C15 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

H7,C16 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

H7,C17 0.00003 / 0.2 concentrating 0.00001 / 0.1 concentrating 

H7,H18 0.00051 / 3.5 concentrating 0.00010 / 1.5 concentrating 

H7,H19 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H7,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H7,H21 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H7,H22 0.00001 / 0.0 concentrating 0.00000 / 0.1 concentrating 

H8,H9 0.00000 / 0.0 removing 0.00000 / 0.0 removing 

H8,H10 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,H11 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,C12 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

H8,C13 0.00001 / 0.1 concentrating 0.00000 / 0.0 concentrating 

H8,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

H8,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,C16 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,C17 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

H8,H18 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H8,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H8,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,H10 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,H11 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H9,C12 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H9,C13 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H9,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

H9,C16 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,C17 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

H9,H18 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 
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Table S4 continues – FALDI diatomic data 

H9,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H9,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,H11 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

H10,C12 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

H10,C13 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

H10,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,C16 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

H10,C17 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H10,H18 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H10,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H10,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H11,C12 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

H11,C13 0.00001 / 0.1 concentrating 0.00000 / 0.1 concentrating 

H11,C14 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H11,C15 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H11,C16 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

H11,C17 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H11,H18 0.00001 / 0.0 concentrating 0.00000 / 0.1 concentrating 

H11,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H11,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H11,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H11,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

C12,C13 0.00035 / 2.4 depleting 0.00029 / 4.2 depleting 

C12,C14 0.00002 / 0.1 depleting 0.00002 / 0.3 depleting 

C12,C15 0.00000 / 0.0 depleting 0.00001 / 0.2 depleting 

C12,C16 0.00000 / 0.0 depleting 0.00000 / 0.1 depleting 

C12,C17 0.00000 / 0.0 removing 0.00002 / 0.3 depleting 

C12,H18 0.00018 / 1.2 concentrating 0.00007 / 1.0 concentrating 

C12,H19 0.00000 / 0.0 removing 0.00000 / 0.0 removing 

C12,H20 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C12,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C12,H22 0.00000 / 0.0 removing 0.00000 / 0.0 depleting 

C13,C14 0.00059 / 4.1 concentrating 0.00034 / 4.8 concentrating 

C13,C15 0.00008 / 0.6 concentrating 0.00005 / 0.6 concentrating 
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Table S4 continues – FALDI diatomic data 

C13,C16 0.00005 / 0.3 concentrating 0.00005 / 0.7 concentrating 

C13,C17 0.00005 / 0.4 concentrating 0.00003 / 0.5 depleting 

C13,H18 0.00413 / 28.7 concentrating 0.00178 / 25.6 concentrating 

C13,H19 0.00006 / 0.4 concentrating 0.00003 / 0.4 concentrating 

C13,H20 0.00005 / 0.3 concentrating 0.00002 / 0.3 concentrating 

C13,H21 0.00002 / 0.1 concentrating 0.00001 / 0.2 concentrating 

C13,H22 0.00002 / 0.2 concentrating 0.00001 / 0.2 concentrating 

C14,C15 0.00006 / 0.4 concentrating 0.00002 / 0.3 concentrating 

C14,C16 0.00000 / 0.0 concentrating 0.00000 / 0.1 concentrating 

C14,C17 0.00001 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C14,H18 0.00025 / 1.8 concentrating 0.00011 / 1.6 concentrating 

C14,H19 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C14,H20 0.00001 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C14,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C14,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C15,C16 0.00001 / 0.1 concentrating 0.00002 / 0.2 concentrating 

C15,C17 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C15,H18 0.00013 / 0.9 concentrating 0.00005 / 0.8 concentrating 

C15,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C15,H20 0.00001 / 0.1 concentrating 0.00001 / 0.1 concentrating 

C15,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C15,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 depleting 

C16,C17 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

C16,H18 0.00003 / 0.2 concentrating 0.00002 / 0.2 concentrating 

C16,H19 0.00000 / 0.0 depleting 0.00000 / 0.0 concentrating 

C16,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C16,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C16,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

C17,H18 0.00010 / 0.7 concentrating 0.00004 / 0.6 concentrating 

C17,H19 0.00000 / 0.0 concentrating 0.00000 / 0.0 removing 

C17,H20 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

C17,H21 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

C17,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H18,H19 0.00007 / 0.5 concentrating 0.00003 / 0.4 concentrating 

H18,H20 0.00005 / 0.4 concentrating 0.00002 / 0.3 concentrating 

H18,H21 0.00002 / 0.1 concentrating 0.00001 / 0.1 concentrating 

H18,H22 0.00005 / 0.3 concentrating 0.00002 / 0.3 concentrating 

H19,H20 0.00000 / 0.0 removing 0.00000 / 0.0 removing 

H19,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 
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Table S4 continues – FALDI diatomic data 

H19,H22 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H20,H21 0.00000 / 0.0 concentrating 0.00000 / 0.0 concentrating 

H20,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 depleting 

H21,H22 0.00000 / 0.0 depleting 0.00000 / 0.0 removing 

 

End of Part 4 
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Part 1. Cartesian Coordinates of all molecules studied 

Table S1. Cartesian coordinates of planar biphenyl at the B3LYP/cc-pVDZ level. 

Atom X Y Z 

C1 0.000000 0.747659 0.000000 

C2 1.201002 1.486214 0.000000 

C3 1.202756 2.881607 0.000000 

C4 0.000000 3.592065 0.000000 

C5 -1.202756 2.881607 0.000000 

C6 -1.201002 1.486214 0.000000 

H7 2.162178 0.972810 0.000000 

H8 2.155610 3.416086 0.000000 

H9 0.000000 4.684170 0.000000 

H10 -2.155610 3.416086 0.000000 

H11 -2.162178 0.972810 0.000000 

C12 0.000000 -0.747659 0.000000 

C13 1.201002 -1.486214 0.000000 

C14 1.202756 -2.881607 0.000000 

C15 0.000000 -3.592065 0.000000 

C16 -1.202756 -2.881607 0.000000 

C17 -1.201002 -1.486214 0.000000 

H18 2.162178 -0.972810 0.000000 

H19 2.155610 -3.416086 0.000000 

H20 0.000000 -4.684170 0.000000 

H21 -2.155610 -3.416086 0.000000 

H22 -2.162178 -0.972810 0.000000 

 

Molecular Energy = -463.330812 a.u. 
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Table S2. Cartesian coordinates of twisted biphenyl at the B3LYP/cc-pVDZ level. 

Atom X Y Z 

C1 0.000000 0.743784 0.000000 

C2 1.137590 1.468260 -0.402647 

C3 1.137840 2.864563 -0.402880 

C4 0.000000 3.569885 0.000000 

C5 -1.137840 2.864563 0.402880 

C6 -1.137590 1.468260 0.402647 

H7 2.024118 0.929542 -0.744099 

H8 2.030290 3.404597 -0.728007 

H9 0.000000 4.662191 0.000000 

H10 -2.030290 3.404597 0.728007 

H11 -2.024118 0.929542 0.744099 

C12 0.000000 -0.743784 0.000000 

C13 1.137590 -1.468260 0.402647 

C14 1.137840 -2.864563 0.402880 

C15 0.000000 -3.569885 0.000000 

C16 -1.137840 -2.864563 -0.402880 

C17 -1.137590 -1.468260 -0.402647 

H18 2.024118 -0.929542 0.744099 

H19 2.030290 -3.404597 0.728007 

H20 0.000000 -4.662191 0.000000 

H21 -2.030290 -3.404597 -0.728007 

H22 -2.024118 -0.929542 -0.744099 

 

Molecular Energy = -463.333574 a.u. 

End of Part 1 
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Part 2. Cross-Section Comparison Between FALDI- and NBO-ED 

Method for Biphenyl 

FALDI NBO 

(a) Planar 

  
(b) Twisted 

  
Figure S1 – Decomposition of the  directional second partial derivative (tot) along the 2-eigenvector 

crossing (a) the CP(H7,H18) in planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph 

to major contributions (concentrating, depleting, and removing) using FALDI and NBO methods. 
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FALDI NBO 

(a) Planar 

  
(b) Twisted 

  
Figure S2 – Decomposition of the  (tot) along the 2-eigenvector crossing (a) the CP(H7,H18) in 

planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph to major contributions 

(concentrating, depleting, and removing) using FALDI and NBO methods. 
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FALDI NBO 

(a) Planar 

  
(b) Twisted 

  
Figure S3 – CP(r) function cross-sections along the 2-eigenvector crossing the (a) CP(H7,H18) in the 

planar conformer and (b) MDP(H7,H18) in twisted conformer of Bph using FALDI and NBO methods. 

End of Part 2 
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Part 3. Isosurfaces of the Major NBO Contributions 

Table 3. Isosurfaces of the most significant NBO contributions (Isovalue 0.02 a.u.) at the (3,–1) 

CP(H7,H18) and MDP(H7,H18) in planar and twisted biphenyl, respectively. 

Planar Twisted 

NBO; ED contribution a.u. / %-fraction, nature 

NBO 28; 0.00620 / 42.4, conc NBO 35; 0.00265 / 29.5, conc 

  

NBO 29; 0.00620 / 42.4, conc NBO 32; 0.00265 / 29.5, conc 

  

NBO 185; 0.00087 / 6.0, conc NBO 109; 0.00227 / 25.2, conc 

  
NBO 15; 0.00034 / 2.3, depl NBO 37; 0.00016 / 1.8, conc 

  
NBO 16; 0.00033 / 2.3, depl NBO 41; 0.00035 / 3.9, depl 
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Table S3 continues – NBO isosurfaces 

NBO 22; 0.00011 / 0.8, depl NBO 14; 0.00016 / 1.8, depl 

  
NBO 21; 0.00011 / 0.8, depl NBO 16; 0.00016 / 1.8, depl 

  
– NBO 21; 0.00010 / 1.2, depl 

– 

 

 

End of Part 3 

 


