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1. Introduction to water lilies 

1.1  Nymphaeales 

The water lily order Nymphaeales is divided into three families Nymphaeaceae, Cabombaceae, 
and Hydatellaceae1,2. Currently, Nymphaeales consists of more than 70 species in eight 
genera (Trithuria, Cabomba, Brasenia, Barclaya, Euryale, Nuphar, Victoria, and Nymphaea), 
grouped into three families: ~56 species in Nymphaeaceae, six species in Cabombaceae, and 
12 species in Hydatellaceae are listed on The Plant List (www.theplantlist.org, accessed 30 
June 2018). All Nymphaeales species are aquatic herbs and most of the species, except 
Hydatellaceae and Cabomba spp., have rhizomes and broad leaves, and many have showy 
flowers.  

Although the exact number of species in the Nymphaeaceae family is unclear, Christenhusz 
and Bying (2016) estimated approximately 70 species3. Among the three Nymphaealean 
families, the Nymphaeaceae family contains the greatest number of species as well as most of 
the economically important species. Nymphaeaceae water lilies are distributed in tropical, 
temperate, and cold regions. Besides the debated relationship with Amborellales, most recent 
studies have focused on the phylogeny of the genera within the order of Nymphaeales. 
Despite this attention, the phylogenetic relationships among the five subgenera within 
Nymphaea (Lotos, Hydrocallis, Nymphaea, Anecphya, and Brachyceras), as well as the two 
genera Victoria and Euryale, remain largely unclear4,5.  

The characteristics that distinguish angiosperms from gymnosperms include (i) the 
presence of flowers, (ii) an endosperm produced by double fertilization, and (iii) ovules 
enclosed in the carpel. Investigating the flower-related genes in water lilies should therefore 
shed light on the origin and early evolution of angiosperms. A morphological comparison of 
floral organs within different angiosperm clades is included in Supplementary Fig. 1. In 
gymnosperms, strobils have neither special scent nor colour, and the gymnosperm cone is 
unisexual. The Amborella flower is simple and can be either male or female, with sepals or 
sepal-like perianth organs that lack floral scent; it also lacks modifications or additional floral 
features as seen in crown angiosperms. Water lily and Illicium flowers have diverse floral 
scents and colours and contain both male and female organs. Mesangiosperms evolved more 
features of the flowers: they can be either fragrant or unscented, colourful or white, and 
unisexual or bisexual. Mesangiosperms also possess various floral modifications such as 
spots, trichomes, and nectaries. 
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Supplementary Fig. 1 | Morphological comparison of floral organs from different angiosperm 
clades. a, Comparison of floral organs in Ginkgo biloba, Amborella trichopoda, Nymphaea colorata, 
Illicium henryi, and mesangiosperms. b, Comparison of floral diagrams for gymnosperms, Amborella, 
Nymphaeales, Austrobaileyales, magnoliids, eudicots, and monocots. c, Flowers of Amborella, N. 
colorata, I. henryi, Magnolia denudata, Nelumbo nucifera, and Lilium brouwnii. The last common 
ancestor of all angiosperms may have possessed bisexual flowers6. 
 

The Amborellales, Nymphaeales and Austrobaileyales have different ecological niches 
and species numbers (Supplementary Fig. 2). The order Amborellales has only one extant 
species, Amborella trichopoda, which occupies a small ecological niche only found on the 
tropical island of New Caledonia. All species belonging to the order Austrobaileyales (~100 
species divided into five genera and three families) are found in tropical or subtropical regions. 
Among the ~90 species in Nymphaeales, Hydatellaceae species are found only in Australia, 
New Zealand, and India, while the species in the other two families, particularly 
Nymphaeaceae, have a global distribution that extends from tropical regions to the cool 
northern parts of Canada7, with some species (Nuphar luteum, Nymphaea mexicana, 
Nymphaea odorata, and Nymphaea spp.) being invasive and difficult to control 
(http://iwgs.org/invasive-species/, accessed 30 June 2018). 



Supplementary Fig. 2 | Comparison of Amborellales, Nymphaeales, and Austrobaileyales with
different environmental adaptations (including global distributions and climate adaptations) and
the corresponding numbers of genera and species. The global distribution data of each order were
adapted from https://www.mobot.org/MOBOT/research/APweb/ by merging the distribution data of
each family. The Austrobaileyales species number was retrieved from MOBOT
(https://www.mobot.org/MOBOT/research/APweb, accessed 30 June 2018).

1.1 Nymphaea colorata Peters
The common names of the water lily Nymphaea colorata are ‘blue pigmy’ and ‘colorata’. It is
native to tropical East Africa and was introduced into Asia, Europe, and America for breeding
purposes due to its high ornamental value. A single N. colorata flower consists of four sepals,
~13 petals, ~72 stamens, ~24 carpels, and thousands of seeds (Supplementary Fig. 3). N.
colorata is nonviviparous, suitable for small- or medium-sized water gardens, and continuously
flowering when the temperature drops to 18 °C. The plant is relatively small, with a ~10 cm leaf
diameter that adapts to small spaces, and green on top with a bluish violet color on the
underside of the leaf. The flowers are medium in size (8-12 cm), cup-like, violet-blue, paler at
the base of the petals and stamens, and mildly fragrant. These features have contributed to
the growing popularity of N. colorata as an ornamental flower, and it is widely cultivated in
aquatic gardens. N. colorata has also been incorporated into breeding programs around the
world.

Order Environmental adaptations
Number of genera and

species

Geological distributions Climate Families Genera Species

Austrobaileyales

Austrobaileyaceae: Australia

Illiciaceae: South East Asia to W. Malesia, S.E.

U.S.A., E. Mexico, Greater Antilles, Sri Lanka,

East Asia to W. Malesia, S.E. U.S.A., Mexico

Trimeniaceae: New Guinea and S.E. Australia to

Fiji

Tropical,

subtropical,

cool 3 5 ~100

Nymphaeales

Hydatellaceae: India, New Zealand and Australia

Cabombaceae: World-wide, rather scattered,

from tropical to cold regions

Nymphaeaceae: World-wide, from tropical to cold

regions

Tropical,

subtropical,

cool, cold 3 8 ~90

Amborellales New Caledonia island Tropical 1 1 1
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Supplementary Fig. 3 | Floral organs of the water lily Nymphaea colorata. A single flower produces 
hundreds of seeds. The flower is blue but appears slightly purple in the image. 
 
 This species has considerable potential as a model plant for studying the Amborellales, 
Nymphaeales, and Austrobaileyales (ANA)-grade of angiosperms, in part because of its rapid 
growth rate (three months from seed to seed), and thousands of seeds per fruit7. It is also 
popular in breeding programs for producing water lilies with blue petals. In particular, its 
beautiful blue petals represent an economically important trait such that its gene(s) have been 
introduced into other cultivars. For example, N. colorata is one of the parents for the following 
cultivars: N. ‘Kew’s Kabuki’, N. ‘Suwannata’, N. ‘Woods Blue Goddess’, N. ‘Patricia’, N. 
‘Midnight’, N. ‘American Beauty’, N. ‘Aquarius’, N. ‘Director George T. Moore’, N. ‘King of Siam’ 
(www.internationalwaterlilycollection.com), and N. ‘William Phillips8. 
 

1.3  The karyotype of N. colorata 
The young roots of N. colorata were sampled for DNA karyotyping. Chromosome spreads at 
meiotic stages from root tissue were prepared as previously described9. The chromosome 
number of N. colorata was photographed under an Olympus BX63 fluorescence microscope at 
Fujian Agriculture and Forestry University in China. Across more than 30 different cells, 28 
chromosomes were consistently identified, and four representative cells are shown in 

1 cm
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Supplementary Fig. 4. This result was consistent with a previous report on chromosome 
counting of Nymphaea9 (Supplementary Table 1).  

 
Supplementary Fig. 4 | Four different cells from Nymphaea colorata root tips each had 28 
chromosomes. a, Schematic drawing showing the tube and root. The red circle indicates the sampled 
root tissue for chromosome counting. Note that the root system of N. colorata includes the roots, 
dormancy bulblet, and the tube. b, Four representative root cells, out of 30 observed samples, at the 
meiosis stage. Each shows 28 chromosomes.  
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2. Genome sequencing and assembly 

2.1  Genome size estimation 

The N. colorata genome size was estimated through two methods: (i) flow cytometry to 
estimate the draft genome size and (ii) k-mer based estimation. In the flow cytometry 
estimation, we compared the genome size of N. colorata with that of Pyrus bretschneideri (2n 
= 34, 527 Mb10) and Indian red water lily N. rubra (2n = 112)9. The genome size of N. colorata 
was estimated as ~400 Mb (Supplementary Fig. 5), a suitable size for genome sequencing. 
The second analysis indicated a genome size of 461 Mb based on the k-mer spectrum derived 
from sequencing data (Supplementary Table 2). In this analysis, genome size = knum/kdepth, 
where knum is the total number of k-mers, and kdepth is the expected depth of k-mers. 

 

 
Supplementary Fig. 5 | Genome size estimation of Nymphaea colorata based on three flow 
cytometry studies. a, Pear (Pyrus bretschneideri) has a diploid genome with 34 chromosomes and a 
total size of 527 Mb10. b, Comparison between N. colorata and N. rubra, which has a diploid genome 
with 112 chromosomes9. c, Based on the flow cytometry estimation and comparison with N. rubra and 
P. bretschneideri, the genome size of N. colorata was estimated to be ~400 Mb. Three repeats were 
performed and similar results were obtained. 
 

2.2  Genome and transcriptome sequencing 

Materials and Methods 

Total DNA for genome sequencing was extracted from young leaves. Total RNA was extracted 
from leaves for the following 18 Nymphaeales species: N. colorata, N. mexicana, N. prolifera, 
N. tetragona, N. potamophila, N. rubra, N. caerulea, N. ‘midnight’, N. ‘Choolarp’, N. ‘Paramee’, 
N. ‘Woods blue goddess’, N. gigantea ‘Albert de Lestang’, N. gigantea ‘Hybrid l’, N. 'Thong 
Garnjana', Victoria cruziana, Euryale ferox, Nuphar lutea, and Brasenia schreberi. In addition, 
various N. colorata organs were sampled for transcriptome sequencing, including mature leaf, 
mature leafstalk, juvenile flower, juvenile leaf, juvenile leafstalk, carpel, stamen, sepal, petal, 
and root (Supplementary Table 1). For PacBio RS II genome sequencing, 20 kb 
single-molecule real-time SMRTbellTM libraries were prepared.  

Hi-C refers to high-throughput chromosome conformation capture, which investigates the 
relationship between interacting chromatin DNA regions resulting from their spatial structure 
inside the nucleus. For Hi-C sequencing and scaffolding, a Hi-C library was generated from the 

Nymphaea colorata, 2n=28, 
~400Mb

1: Nymphaea colorata
2: Nymphaea rubra, 2n=112

1 2

Pyrus bretschneideri, 2n=34 
Genome size = ~527Mb

a b c
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tender leaves of water lily. Briefly, the leaves were fixed with formaldehyde and lysed, then the 
cross-linked DNA was digested with MboI overnight. Sticky ends were biotinylated and 
proximity-ligated to form chimaeric junctions, which were enriched then physically sheared to a 
size of 500-700 bp. Chimaeric fragments representing the original cross-linked long-distance 
physical interactions were processed into paired-end sequencing libraries for sequencing 
using the illumina HiSeq X Ten platform. We used the HiC-Pro pipeline to map reads, detect 
ligation products, perform quality controls, and generate intra- and inter-chromosomal contact 
maps11. 

 
Results and Discussion 

Thirty-four SMRT cells with 49.8 Gb data composed of 5.5 million reads were sequenced using 
the PacBio RS II system with P6-C4 chemistry. The sequencing reads had an average length 
of 9,088 bp, with the longest read length of 78,559 bp. Considering the ~400 Mb size of the N. 
colorata genome, these raw sequencing data yielded 124⋅ coverage of the total genome. We 
obtained 346 million 150 bp paired-end illumina reads from Hi-C sequencing.  
 

2.3  Genome assembly 

To assemble the 49.8 Gb data corresponding to 5.5 million reads, we filtered and removed: 
organellar DNAs, reads of poor quality or short length, and chimaeras. The contig-level 
assembly was performed on full set of PacBio long reads using the CANU package12, which is 
a successor of the Celera Assembler with increased assembly continuity and decreased 
running time. CANU version 1.3 was used for self-correction and assembly with parameters 
corOutCoverage=100, ovbMemory=8g, maxMemory=500g, maxThreads=48, 
ovsMemory=8-500g, ovsThreads=4, and oveMemory=32g on a SGE grid. The draft assembly 
was polished using Arrow (https://github.com/PacificBiosciences/GenomicConsensus). To 
increase the consensus accuracy of assembly, illumina short reads were recruited for further 
polishing with the Pilon program (https://github.com/nanoporetech/ont-assembly-polish). The 
genome heterozygosity was estimated by mapping the genome sequencing reads to the 409 
Mb genome by bwa (https://github.com/lh3/bwa), followed by SNP calling using samtools 
(https://github.com/samtools). The heterozygosity rate estimated by bcftools 
(https://github.com/samtools/bcftools) was 0.39%. The heterozygosity estimate using the GCE 
tool (ftp://ftp.genomics.org.cn/pub/gce/) was 0.23%.  

The paired-end Hi-C reads were mapped onto the draft assembly contigs, retaining only 
uniquely mapped reads. The contigs were grouped into chromosomes based on the Hi-C links, 
and scaffolded using Lachesis (https://github.com/shendurelab/LACHESIS) with tuned 
parameters. The interaction matrix file was exported to plot the heatmap. To display each 
chromosome with detailed contig interactions, we plotted the matrix heatmap using 
HiCPlotter13. 

 

Results and Discussion 
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We obtained a total of 49.8 Gb genomic sequences, yielding a reference genome 
sequence of 409 Mb. After error correction using illumina reads, the consensus error rate was 
estimated at 0.08%, with the genomic heterozygosity estimated at 0.39% (Supplementary 
Table 3). We were able to map 98.85% of 22 Gb illumina sequencing data and 98.52% of 
transcripts assembled from a leaf transcriptome onto the assembled genome of N. colorata 
(Supplementary Table 4). The genome assembly quality was measured using BUSCO 
(Benchmarking Universal Single-Copy Orthologs)14 version 3.0 
(https://busco.ezlab.org/frame_plants.html). The latest all-plant gene set, Embryophyta odb10, 
was used as the reference, and the model species Arabidopsis was used in the –sp option. 
The final genome completeness determined by BUSCO was 94.4% (Supplementary Table 4).  

 
Supplementary Fig. 6 | Contact maps of the 14 chromosomes using 500 kb fragments. a-n, 
Normalized Hi-C contact matrix and the assembled chromosomes from no. 1 to no. 14. o, chromosome 
level synteny among 14 chromosomes. The same colour refers to within-genome collinearity or 
synteny.  
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The contig N50 of N. colorata was 2.1 Mb, which is a significant improvement over 
Amborella15, with a contig N50 of 29 kb (Supplementary Table 6). Based on the 1,429 contigs 
assembled on PacBio reads, our Hi-C scaffolding procedure anchored a total of 804 contigs 
onto the 14 pseudo-chromosomes (herein referred to as chromosomes) (Supplementary Fig. 6) 
The length and number of contigs for each chromosome are shown in Supplementary Table 5. 
These 14 chromosomes had a total length of 378,814,058 bp, accounting for 85.3% of the 409 
Mb genome (Supplementary Table 5). The longest chromosome was 44,612,865 bp. The final 
scaffold N50 reached 27,058,147 bp.  

Assembly statistics for the genomes of N. colorata and other representative flowering 
plants are shown in Supplementary Table 6. The high-quality assembly of the N. colorata 
genome is suitable for annotating genes for in-depth study as well as gene synteny analysis. 

 

3. Genome annotation 

3.1  Repetitive elements 
Materials and Methods 

We constructed de novo repeat libraries using RepeatModeler 
(http://www.repeatmasker.org/RepeatModeler/), which is implemented by two de novo 
repeat-finding programs, RECON16 and RepeatScout17, to identify repeat elements and their 
family relationships. To predict species-specific transposable element (TE) sequences in N. 
colorata, the custom repeat libraries were initially imported into RepeatMasker18 
(http://www.repeatmasker.org) for the identification of TE families. The unknown TE 
sequences were classified using TEclass18. In addition, tandem repeats were identified by 
TRF19, and LTRs were detected using LTR_finder20. A custom PERL script was used to build a 
comprehensive TE library in N. colorata. Telomeres are critical for chromosome maintenance 
and for controlling the life span of a cell. Telomeric repeats are tandem and short GC-rich 
sequences with hundreds of repetitive units. Subtelomeric sequences are immediately 
proximal to telomeric repeats and are a complex patchwork of low-copy repeat sequences, 
segmental duplications, and degenerate telomeric repeats21. The telomere repeats were 
identified using an approach outlined in the analysis of the grass species Oropetium 
thomaeum22. The centromeric sequences were predicted as described previously23.  

Results and Discussion 

Repetitive elements were predicted from representative angiosperms (N. colorata, Amborella 
trichopoda, Vitis vinifera, Carica papaya, Arabidopsis thaliana, Oryza sativa japonica, 
Nelumbo nucifera, Solanum lycopersicum, Sorghum bicolor, Zostera marina, and Spirodela 
polyrhiza) and classified as class I retroelements, class II DNA transposons, and tandem 
repeats (Supplementary Table 7).  

The cumulative size of predicted repetitive elements in N. colorata amounts to 160.4 Mb, 
accounting for 39.2% of the sequenced genome. Comparison of the repetitive elements of N. 
colorata with those from Arabidopsis thaliana, Vitis vinifera, sacred lotus (Nelumbo nucifera), 
beet (Beta vulgaris), tomato (Solanum lycopersicum), papaya (Carica papaya), Zostera marina, 
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Spirodela polyrhiza, Sorghum bicolor, Oryza sativa, and Amborella shows that N. colorata 
contains more copies of the retrotransposon Copia (20.27%) than Gypsy (12.52%), while the 
other angiosperm species we investigated have fewer Copia than Gypsy elements 
(Supplementary Table 7). This could be partly explained by smaller numbers of the Gypsy 
transposase in N. colorata (Supplementary Fig. 7). Nymphaea colorata, as well as Nelumbo 
nucifera and Spirodela polyrhiza, show an absence of the Tc1/Mariner [DTT] type DNA 
transposons, which could be found in Amborella and in other monocots and eudicots.  

For the class I retroelement (Supplementary Table 7), N. colorata encoded a larger 
number and longer total length of Copia versus Gypsy elements, which contrasts with the 
pattern in other flowering plants such as Amborella trichopoda, Vitis vinifera, Arabidopsis 
thaliana, and Oryza sativa japonica, suggesting either dramatic expansion of Copia or 
dramatic reduction of Gypsy. Besides LTR and non-LTR retrotransposons, N. colorata and 
other flowering plants (V. vinifera, A. thaliana, and O. sativa japonica) contained unclassified 
retroelements that were not found in the Amborella trichopoda genome. 

We showed that there were fewer Gypsy TEs than Copia TEs in N. colorata. To 
investigate this unusual scenario, we constructed phylogenetic trees for the Copia and Gypsy 
transposase families in flowering plants, to reveal their distinct evolutionary patterns. Based on 
the split events between the groups at least occurred in the last common ancestor of 
angiosperms, the Gypsy transposases were divided into eight groups, whereas Copia 
transposases were divided into 14 groups (Supplementary Fig. 7). In N. colorata, the number 
of Gypsy transposases was much lower than the number of Copia transposases. Considering 
that transposase can bind to a Gypsy sequence and catalyse its movement to another location 
in the genome through a cut-and-paste mechanism, we propose that the lower number of 
Gypsy transposases in N. colorata may account for the lower number of Gypsy TEs in the 
genome.   

 

Supplementary Fig. 7 | Evolution of long terminal repeat (LTR) transposase genes in Nymphaea 
colorata. a, Chromosomal distribution of Gypsy and Copia showing denser distributions of Copia TEs 
than Gypsy TEs. b, Phylogenetic relationships of Gypsy transposase genes in representative flowering 

Species Gypsy transposase (GT) Copia transposase (CT) GT/CT Gypsy Copia Gypsy/Copia

Arabidopsis thaliana 67 88 0.761363636 5,852 2,141 2.733302195

Vitis vinifera 573 1,762 0.325198638 74,092 66,217 1.118927164

Beta vulgaris 829 1,603 0.517155334 61,706 44,258 1.394233811

Oryza sativa 573 316 1.813291139 50,003 14,032 3.563497719

Spirodela ppolyrhiza 207 207 1 8,323 7,514 1.107665691

Zostera marina 546 1,014 0.538461538 29,267 22,620 1.293854996

Nymphaea colorata 277 1,481 0.187035787 20,874 41,205 0.506589006

Amborella 
trichopoda
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plants. c, Phylogenetic relationships of Copia transposase genes in representative flowering plants. d, 
Statistics for Gypsy and Copia TEs and their transposase genes in representative flowering plants. 
 

For class II DNA transposons (Supplementary Table 7), Tc1/Mariner [DTT] transposons 
were not found in the N. colorata genome. Since they are present in the genome of moss 
Physcomitrella patens23, it is possible that Tc1/Mariner transposons were completely lost in the 
N. colorata genome. The rice genome contains 66,350 Tc1/Mariner transposons with a total 
length of 10.8 Mb, suggesting their unique roles in rice evolution. In contrast, they do not seem 
to be involved in the genomes of N. colorata and Amborella. 

In addition, a total of 19 telomeres and subtelomeres were identified in the N. colorata 
genome (Supplementary Table 8). Among flowering plants, “TTTAGGG” telomere repeats 
have been reported in monocots (wheat, barley, and rice) and eudicots (tomato and 
Arabidopsis); they also occur in gymnosperms (Ginkgo biloba and Pinus taeda)24. Here, 19 
telomeres were identified in N. colorata from nine chromosomes and unanchored scaffolds 
(Supplementary Table 8). Chr1, Chr2, Chr5, and Chr11 had two or three telomeres, suggesting 
that some are sub-telomeres located within but not at the end of the chromosome. The copy 
numbers of telomere repeats ranged from 89 to 1,779, with an average length of 889 bp and 
median length of 8,060 bp. These putative telomeres were much longer than those (median 
length of 1,860 bp) found in the genome of Oropetium thomaeum22 (Poaceae), the first 
published plant genome sequenced by PacBio RS II SMRT. 

Fifteen centromere repeats with length >25 kb were also detected on the assembled 
chromosomes of N. colorata, distributed on 12 chromosomes (Chr1, Chr2, Chr3, Ch4, Chr5, 
Ch6, Ch7, Chr8, Chr11, Chr12, Chr13, and Chr14) and unanchored scaffolds. The length of a 
single centromere varied from several kb to several hundred kb (Supplementary Table 9). 
These centromeres generally consisted of repeats with a 115 bp repeat unit (Supplementary 
Fig. 8), shorter than the average lengths of centromere repeats in most of the other 
mesangiosperms (150-180 bp)25. 
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Supplementary Fig. 8 | Distribution of centromere unit length in the genome of Nymphaea 
colorata. The x-axis indicates centromere unit length. The y-axis shows the total length (bp) for each 
unit. The graph shows that the average length of the centromere unit in N. colorata is 115 bp. 
 

3.2  microRNAs 
Materials and Methods 

A set of experimentally validated miRNA sequences were downloaded from mirBase v21 
(www.mirbase.org) and mapped to the N. colorata genome using Bowtie226 allowing two 
mismatches. The mapping SAM files were converted into BLAST format using a Perl script 
available in miRDeep-P v3.127. We filtered sequences with more than 15 mapping hits 
according to the miRDeep-P manual. Next, miRNA precursor sequences were extracted, with 
their folding potential predicted using RNAfold v2 
(http://hackage.haskell.org/package/RNAFold). Finally, miRDeep-P v3.1 was applied to extract 
the sequences and structures, calculate the minimum free energy of the potential precursors, 
and identify mature miRNAs with high confidence. 

 

Results and Discussion 

The analysis predicted 125 miRNAs from the N. colorata genome (Supplementary Table 10), 
which were clustered into 77 miRNA families. For comparison, the Amborella genome encodes 
124 miRNAs representing 90 miRNA families15.  

 

3.3  Protein-coding genes 
Materials and Methods 
Genscan28 (http://genes.mit.edu/GENSCAN.html) and Augustus29 were used for de novo 
predictions with gene model parameters trained from Arabidopsis thaliana. Furthermore, gene 
models were de novo predicted using MAKER13. We then evaluated the genes by comparing 
the MAKER results with the corresponding transcript evidence to select gene models that were 
the most consistent according to the AED metric13. 
 
Results and Discussion 
We identified 31,580 protein-coding genes in the 409 Mb N. colorata genome, which is higher 
than the 26,846 genes in the much larger Amborella genome (706 Mb)15, suggesting a 
relatively compact gene space in the N. colorata genome. The N. colorata had an average 
gene length of 4,948 bp, which is close to that of Amborella (5,665bp) and is considerably 
longer than the average gene lengths of eudicots (2,196 bp for Arabidopsis thaliana and 3,071 
bp for Populus trichocarpa) and monocots (2,821 bp for Oryza sativa and 3,341 bp for Zostera 
marina). The longer gene length is largely due to the longer average total intron length per 
gene (average number of introns times average intron length per gene) in N. colorata (3,797 
bp) and Amborella (4,720 bp) than in Arabidopsis thaliana (907 bp), P. trichocarpa (1,894 bp), 
O. sativa (1,861 bp), or Z. marina (1,939 bp) (Supplementary Table 11).  
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3.4  Comparison of gene families from water lily, Amborella, eudicots, 
and monocots  

Materials and Methods 

The latest version of Pfam-A (version 31) seed alignment sequences were downloaded from 
the Pfam database (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/). HMMscan from the 
HMMER software suite14 was used for gene family identification, with search 
parameters‘--cut_ga –tblout’. Orthogroups were identified using OrthoFinder-0.7.1 with default 
parameters.  

To compare genes from N. colorata, Amborella, and mesangiosperms, we sampled the 
following species: eudicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Solanum 
lycopersicum, Coffea arabica, and Nelumbo nucifera), monocots (Spirodela polyrhiza, Zostera 
marina, Musa acuminata, Ananas comosus, and Oryza sativa), gymnosperms (Gnetum 
montanum and Ginkgo biloba), and land plants (Selaginella moellendorffii and Physcomitrella 
patens). The proteome data for eudicots, monocots, gymnosperms, and land plants were 
combined and formatted as the BLASTp database. The proteomes of N. colorata and 
Amborella were used as queries to search against the database.  

To annotate the N. colorata genes, we performed gene ontology (GO) analysis, which 
characterizes gene functions according to biological process, cellular component, and 
molecular function terms (http://geneontology.org). We first performed BLAST to compare 
water lily genes with A. thaliana genes, and the best BLAST hits were selected to assign 
function. The Arabidopsis IDs of the hits were uploaded to the agriGO30 online server for GO 
annotation. 
 

Results and Discussion 

The predicted genes in the N. colorata genome belong to 4,329 Pfam gene families. To 
investigate whether water lily had specific gene expansions, we compared the orthogroups 
from selected gymnosperms (Ginkgo biloba and Gnetum montanum), ANA-grade 
angiosperms (Amborella trichopoda, N. colorata), monocots (Zostera marina, Spirodela 
polyrhiza, Musa acuminata, Ananas comosus, Oryza sativa, and Sorghum bicolor), and 
eudicots (Nelumbo nucifera, Vitis vinifera, Solanum lycopersicum, Beta vulgaris, Populus 
trichocarpa, and Arabidopsis thaliana). A total of 25,120 genes of N. colorata had homologues 
in other plants that we selected and were classified into 9,861 orthogroups (Supplementary 
Table 12). Mesangiosperms (including six monocots and six eudicots that we sampled) 
specifically shared 463 orthogroups (Supplementary Fig. 9), but they are not found in 
Amborella and Nymphaeales (genome of N. colorata and transcriptomes of 10 representative 
species). Gene ontology shows high enrichment in oxidation and reduction (redox) reactions 
and metal-ion binding.  

Nymphaeales and mesangiosperms shared 1,331 orthogroups that are absent in Amborella. 
The genes of these 1,331 orthogroups might have been present in the last common ancestor 
of extant angiosperms and subsequently lost in the lineage leading to Amborella, although it is 
also possible that these genes were present in the last common ancestor of Nymphaeales, 
eudicots, and monocots after they diverged from the lineage leading to Amborella. GO 
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enrichment analysis of these genes shows a number of genes to be involved in the recognition 
of pollen and pistil interactions, suggesting that a delicate pollen-pistil interaction mechanism 
might not be available in Amborella. 

The 100 largest gene orthogroups are shown in Supplementary Fig. 10. These orthogroups 
were divided into two clusters, the mesangiosperm-enriched cluster and the water lily-enriched 
cluster. GO annotation of the mesangiosperm-enriched cluster contained genes for DNA 
binding, kinase activity, and phosphotransferase activity, which may play overall roles in plant 
stress-signalling pathways. GO annotation of the water lily-enriched cluster highlighted ADP 
binding, defence response, terpene synthesis, and hydrolase activity, suggesting that water lily 
has a unique genetic toolbox.  

	
	
Supplementary Fig. 9 | Analyses of orthogroups shared by Nymphaeales, Amborella, eudicots, 
and monocots. a, Venn diagram showing the genes shared among Nymphaeales, Amborellales, 
eudicots, and monocots. The ten Nymphaeales species with transcriptome sequences were Cabomba 
caroliniana, Nuphar advena, Nymphaea tetragona, Nymphaea caerulea, Nymphaea rubra, Nymphaea 
lutea, Nymphaea mexicana, Victoria cruziana, Brasenia schreberi, and Euryale ferox. The six eudicots 
are Arabidopsis thaliana, Populus trichocarpa, Beta vulgaris, Solanum lycopersicum, Vitis vinifera, 
and Nelumbo nucifera. The six monocot species are Oryza sativa, Sorghum bicolor, Ananas comosus, 
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Musa acuminata, Spirodela polyrhiza, and Zostera marina. b, GO enrichment of 463 genes shared by 
the eudicots and monocots shows they are involved in oxidation and reduction reactions. c, GO 
enrichment shows that compared with Amborella, Nymphaeales shared more genes with monocots and 
eudicots, with 1331 genes (corresponding to 877 Arabidopsis genes) mainly involved in pollen-pistil 
interaction and energy metabolism, d, Phylogenetic tree of the S-locus gene family from representative 
seed plant species. This tree could be divided into two subfamilies I and II. e, Expression profile of the 
7 subfamily I S-locus genes in different organs of N. colorata. GO annotation used t-test and two-sided 
test. Multiple test adjustment was performed.  
 

The orthogroup OG000077 for self-incompatibility (S)-locus genes is present in water lily. 
Together with the expression in specific floral organs of the two S-locus genes (NC1G0136510 
and NC1G0136480), this suggests that S-RNase mediated pollen recognition was probably 
already present in the common ancestor of water lily and core angiosperms, but not in 
Amborella or in gymnosperms (Supplementary Fig. 9). Also, the orthogroup OG000042 is 
found in N. colorata and in members of the mesangiosperms, but not found in Amborella, and 
encodes hAT-like transposase (Supplementary Fig. 11), which is essential for Arabidopsis 
development31. The orthogroup OG000234 contains auxin response genes, some of which 
have been shown to regulate the flower opening and closure32. We identified 7 genes in N. 
colorata from orthogroup OG000234, but none was found in Amborella. The presence of these 
genes in Nymphaeales, eudicots, and monocots suggests that these are derived features 
shared by Nymphaeales and mesangiosperms. 

We then used BLASTp to compare N. colorata and Amborella proteins to those in the 
representative seed plants. When N. colorata proteins were used as the query, Amborella had 
the most similar orthologues, followed by lotus, grape, poplar, pineapple, ginkgo, and banana 
(Supplementary Fig. 12). These results revealed a greater degree of similarity between water 
lily and eudicots. When Amborella proteins were used as the query, lotus had the most similar 
orthologues, followed by grape, water lily, poplar, ginkgo, banana, and pineapple. These 
results showed that lotus and grape shared more conserved features with N. colorata and 
Amborella. In particular, the analysis revealed that ginkgo had more similarities with Amborella 
than with N. colorata, suggesting that Amborella proteins aremore conserved and had a slower 
rate of evolution. 
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Supplementary Fig. 10 | Orthogroup-based comparison shows that water lily has intermediate 
angiosperm features. Comparison of the number of orthologous genes in each orthogroup (as shown 
in the heatmap) in representative clades of seed plants reveals a subset of genes specific to eudicots and 
monocots (yellow box) and another subset of genes enriched in water lily but not found in Amborella 
(blue box). The word cloud diagrams on the right show the enriched terms associated with the 
orthogroups in each subset. 
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Supplementary Fig. 11 | The expansion of hAT genes in the Nymphaea colorata genome. a, The 
phylogenetic tree divided the hAT gene family into three subfamilies in angiosperms. b, Comparison of 
hAT gene number in N. colorata, monocots, and eudicots showed that N. colorata had the most hAT 
genes. c, The number of N. colorata hAT genes in the three subfamilies shows that most of the 
expansion was due to the expansion of subfamily II.  
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Supplementary Fig. 12 | The number of first BLASTp hits in representative plant taxa using 
Nymphaea colorata (blue) or Amborella trichopoda (red) sequences as the query.  
 

 

3.5  Organellar genomes 
Materials and Methods 

The organellar sequences were identified using BLASTn against the N. colorata genome 
contigs with plant organellar sequences as references  

(https://www.ncbi.nlm.nih.gov/genome/browse/?report=5#!/overview/). Two mitochondrial 
contigs, which were 527,532 bp (tig00000378) and 136,812 bp (tig00000456) in length, 
overlapped with each other at both ends by 34,745 bp and 16,132 bp. The analysis indicated a 
circular 617,195 bp sequence (ChrM), with an average read depth of 601×. One chloroplast 
contig 178,451 bp in length (tig00000521/ChrC) overlapped at its two ends by 18,738 bp, 
indicating a circular sequence with a length of 159,713 bp. The organellar genome sequences 
were annotated as previously described33. Protein-coding genes and rRNA genes were 
annotated by BLASTn searches against the NCBI non-redundant database. The exact gene 
and exon/intron boundaries were further confirmed using Geneious software (v.10.0.2, 
Biomatters, www.geneious.com) by aligning each gene to orthologues from the available 
annotated plant organellar genomes. 
 

Results and Discussion 

We reconstructed a complete circular mitochondrial genome of 617,195 bp and a circular 
chloroplast genome of 159,824 bp. The N. colorata mitochondrial genome contains 41 
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protein-coding genes (Supplementary Fig. 13) along with three rRNA and 20 tRNA genes. 
Since repeat sequences occupy 48.89% of the mitochondrial genome, N. colorata has one of 
the most repeat-rich mitogenomes among angiosperms. Although many foreign insertions, 
including the entire moss mitogenome, were identified in the Amborella mitogenome34, none 
was observed in the N. colorata mitogenome.  

The complete N. colorata chloroplast genome comprised four parts: long single copy 
section (LSC), inverted repeats (IRB), small single copy section (SSC), and inverted repeat A 
(IRA). The N. colorata chloroplast genome encodes 136 genes (Supplementary Fig. 14), 
which is slightly more than the 132 genes in the Amborella chloroplast genome35. The 
complete N. colorata chloroplast genome will be a valuable resource for studying the evolution 
of angiosperms. Taken together, the water lily genome from all three cellular compartments 
(chloroplast, mitochondria, and nucleus) is of high contiguity and low error rate, making it an 
excellent reference for comparative and evolutionary studies.  

 

 
Supplementary Fig. 13 | The circular mitochondrial genome of Nymphaea colorata. The figure was 
generated using Organellar Genome DRAW (http://chlorobox.mpimp-golm.mpg.de/OGDraw.html). 
Colour-coded boxes indicate the genes in the genome. 
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Supplementary Fig. 14 | The circular chloroplast genome of Nymphaea colorata. The figure was 
generated using Organellar Genome DRAW (chlorobox.mpimp-golm.mpg.de/OGDraw.html). 
Colour-coded boxes indicate the genes in the genome.  
 

3.6  Transcriptome assembly and expression quantification 

Materials and Methods 

Transcriptomes from various water lilies were sequenced using the illumina platform; 18 
Nymphaeales species (N. colorata, N. mexicana, N. prolifera, N. tetragona, N. potamophila, N. 
rubra, N. caerulea, N. ‘midnight’, N. ‘Choolarp’, N. ‘Paramee’, N. ‘Woods blue goddess’, N. 
gigantea ‘Albert de Lestang’, N. gigantea ‘Hybrid l’, N. 'Thong Garnjana', Victoria cruziana, 
Euryale ferox, Nuphar lutea, and Brasenia schreberi) and various organs and tissues from N. 
colorata (mature leaf, mature stem, juvenile flower, juvenile leaf, juvenile stem, carpel, stamen, 
sepal, and petal) were sampled (Supplementary Table 1). High-quality reads were obtained by 
removing adaptor sequences and filtering low-quality reads using TRIMMOMATIC36 with 
default parameters. The resulting high-quality reads were de novo assembled using Trinity37. 
Protein sequences and coding sequences of transcripts were predicted using TransDecoder 
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(http://transdecoder.github.io). Redundant transcripts were removed by CD-HIT 
(http://weizhong-lab.ucsd.edu/cd-hit/) with a 98% identity cutoff for protein-coding transcripts. 
Within the Nymphaeales order, only two transcriptomes, Nuphar advena and Cabomba 
caroliniana, were downloaded from NCBI-SRA (SRX018920 and SRX3469536, respectively). 
The data were then assembled and annotated in this study. Other transcriptome datasets used 
in the tree of 115 plant species were previously published data38 provided by Dr. Hong Ma from 
Fudan University (presently at Penn State University). Transcript abundance levels were 
normalized using the fragments per kilobase per million mapped reads (FPKM) method by 
Tophat39 and Cufflink40.  
 

Results and Discussion 

The details of the transcriptome assembly and annotation are listed in Supplementary 
Table 1. Transcriptome sequences and annotations are available on our online water lily 
genome database (http://waterlily.eplant.org). Overall, these transcriptomes are well 
assembled and annotated, with contig N50 ranging from 587 bp to 1,870 bp. Unlike the 
sequenced genome of N. colorata with a GC content of 0.386, all of the transcriptomes have 
higher GC contents ranging from 0.415 to 0.432. This difference is consistent with the fact that 
transcriptomes mainly correspond to gene transcripts that are typically GC-rich rather than 
repetitive sequences.  
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4. Resolving deep phylogenetic relationships among 

Amborellales, Nymphaeales, and core angiosperms 

4.1  Phylogenomic discordance among low-copy nuclear gene trees 

Whether the order Nymphaeales or the order Amborellales, or a clade containing both 
Nymphaeales-Amborellales, is sister to all other angiosperms (Fig. a, illustrated as Type I, II, 
III trees, respectively). The N. colorata genome provides a new opportunity to use nuclear 
genes to address this important question. We performed a series of phylogenomic analyses 
with the newly annotated N. colorata genes and sequences from other available seed plant 
genomes and transcriptomes (see Methods). Using six representative eudicots, six 
representative monocots, and three different gymnosperm species (G. biloba, P. abies and 
P. taeda, Supplementary Table 6) as a different outgroup species, 2,169, 1,535, and 1,515 
orthologous low-copy nuclear (LCN) genes were identified, respectively (see Methods) (Fig. 
1b). Gene trees were generated using nucleotide sequences of these LCN genes with each 
one of the three gymnosperms as an outgroup. Among the LCN gene trees using G. biloba as 
an outgroup and with > 80% BS values, 62% (294 out of 475 trees) support Amborella as the 
earliest diverging lineage among extant angiosperms (Type II, Fig. 1c). Similarly, using P. 
abies or P. taeda as the outgroup species, 57% and 54% of the LCN gene trees, respectively, 
support Amborella as the earliest diverging angiosperm. In contrast, only 10%, 14%, 11% of 
the LCN gene trees that support Nymphaeales as the earliest diverging angiosperm (Type I, 
Fig. 1c) using the three above-mentioned outgroups, respectively; 28%, 29% and 35% of the 
LCN gene trees, respectively, support a clade of both Nymphaeales and Amborella as sister to 
all other angiosperms (Type III, Fig. 1c). LCN gene trees using amino acid sequences also 
show similar patterns that support Amborella as the sister group to all other extant 
angiosperms (see Methods and Supplementary Fig. 15). 

The observation of the three different topology of gene trees can potentially be explained 
by incomplete lineage sorting (Supplementary Table 13), which could appear more frequently 
when evolutionary divergences have occurred in rapid succession. However, it is not clear 
whether the divergence events in the ANA-grade of angiosperms were particularly rapid, given 
the lack of fossils before the Early Cretaceous41. The phylogenetic discordance could also be 
due to an erosion of the historical signal, in view of the deep phylogenetic scale of the 
ANA-grade. For example, we observed that in N. colorata, genes supporting Type I trees tend 
to have higher substitution rates than those supporting Type II and Type III trees 
(Supplementary Fig. 16). This suggests that differences in substitution rates might contribute 
to the uncertainty in the placement of Nymphaeales. To account for incomplete lineage sorting 
and uneven substitution rates, we applied the multispecies coalescent model and a 
supermatrix method, respectively, to the LCN genes and found further support for the sister 
relationship between Amborella and all other extant flowering plants (Supplementary Fig. 17).  
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Supplementary Fig. 15 | Inference of the species tree for Amborella and water lilies using protein 
data. a, Three extant evolutionary scenarios for the major angiosperm clades. b, Statistics of 
single-copy nuclear genes for the phylogenetic tree based on proteins using one of three different 
gymnosperms as the outgroup. c, Tree numbers supporting the different species trees using one of three 
gymnosperm species. These results based on protein data support Amborella as the sister lineage to all 
other angiosperms and are consistent with the coding sequence data shown in Fig. 1.  
 

 
Supplementary Fig. 16 | Comparison of substitution rates among three types of low-copy nuclear 
genes used in Fig. 1. a, Distribution of the nonsynonymous substitution rate (dN) among the type I, 
type II, and type III low-copy nuclear (LCN) genes. b, Distribution of the synonymous substitution rate 
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(dS) among the three types of LCN genes. c, Distribution of omega values (dN/dS) among the three 
types of LCN genes. Red, Type I; green, Type II; blue, Type III. 
 

 
Supplementary Fig. 17 | Summary of phylogenetic trees inferred from different outgroups, 
methods, and types of gene markers. The statistics for all the orthologous groups (OGs) and species 
used here are shown in Fig. 1b-1c and Supplementary Figure. 15. Blue and red values indicate 
support values inferred from nucleotide and amino acid sequences, respectively. Support values above 
and below the branches were inferred using the multispecies coalescent and supermatrix methods, 
respectively. A, Summary of trees inferred from 2,169 OGs with single gene tree BS >0 and Ginkgo 
biloba as outgroup. B, Summary of trees inferred from 1,535 OGs with single gene tree BS >0 and 
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Picea abies as outgroup. C, Summary of trees inferred from 1,515 OGs with single gene tree BS >0 
and Pinus taeda as outgroup. Summarized trees of a, b, and c1 were inferred from filtered OGs by main 
nodes BS >80. The 753 OGs used in c2 were filtered according to monophyly; if members of a given 
OG were not grouped together in eudicots and monocots, they were considered potentially paralogous 
and discarded. 
 

4.2  Using low-copy nuclear genes to infer the tree and molecular dating 
of angiosperms  

Materials and Methods 

All of the angiosperm genomes used in this study were downloaded from the angiosperm 
genome database (http://www.angiosperms.org)42 and the eplant database (www.eplant.org). 
To infer the angiosperm phylogeny we selected the following plant genomes as 
representatives for each clade: gymnosperms (Picea abies, Ginkgo biloba, and Pinus taeda; 
see assembly and annotation details in Supplementary Table 6), ANA-grade angiosperms 
(Amborella), eudicots (Arabidopsis thaliana, Beta vulgaris, Populus trichocarpa, Solanum 
lycopersicum, Vitis vinifera, and Nelumbo nucifera), and monocots (Oryza sativa, Sorghum 
bicolor, Ananas comosus, Musa. acuminata, Spirodela polyrhiza, and Zostera marina). 

Because angiosperms have undergone several rounds of whole-genome duplication 
(WGD) events and subsequent gene losses, LCN orthologous groups (OGs) were selected as 
phylogenetic markers. To avoid possible biases of specific gene sets and the loss of potentially 
informative nuclear gene markers, candidate marker genes were retrieved from three groups 
(see pipeline in Supplementary Fig. 18).  

The first group with an intersecting gene set of 931 OGs from two orthologous gene 
datasets was previously identified for an analysis of deep angiosperm phylogeny38. One 
dataset contained 4,180 OGs shared by nine angiosperm species with sequenced genomes 
(Arabidopsis thaliana, Populus trichocarpa, Glycine max, Medicago truncatula, Vitis vinifera, 
Solanum lycopersicum, Oryza sativa, Sorghum bicolor, and Zea mays) identified by HaMStR36 
(Deep Metazoan Phylogeny, http://www.deep-phylogeny.org/hamstr/). The other dataset 
contained 1,989 low-copy OGs identified using seven angiosperm species with sequenced 
genomes (A. thaliana, P. trichocarpa, Prunus persica, V. vinifera, Mimulus guttatus, O. sativa, 
and S. bicolor) identified using OrthoMCL v1.443 with default parameters. We selected the 931 
OGs shared by the two datasets as phylogenetic markers representing conserved low-copy 
OGs across angiosperms. 

To minimize the effect of hidden paralogues and identify the most probable orthologues, we 
carefully retrieved OGs from low taxon levels. The second group comprised 407 OGs carefully 
selected by gene length and species coverage ratio among 125 Rosaceae species; these 
were previously identified for a phylogenetic study of Rosaceae44 and provide greater 
phylogenetic signal. The third group comprised 852 OGs for a phylogenetic study of 
Brassicaceae45, and they were similarly selected by species coverage ratio and gene length.  

Redundant sequences from the same genes were removed, resulting in 1,167 high-quality 
putative orthologous genes that were used to search for homologues in the other 115 flowering 
plant genomes and transcriptomes using HaMStR36.  
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Sequences for each orthologous group were aligned using MAFFT v7.22146 with the 
option “- auto”, followed by manual adjustment to remove gaps using MEGA647. Next, trimAL 
1.448 was used to trim low-quality aligned regions with the option “-automated1”. To reconstruct 
the deep phylogenetic relationships among angiosperms, we used the alignment of coding 
sequences (nucleotides) to generate a maximum likelihood (ML) tree. The coding sequences 
were converted from the protein alignment matrix and aligned by PAL2NAL49. ModelFinder44 
was used to select the best-fit model under the Bayesian information criterion (BIC). 
Phylogenetic reconstruction was performed stepwise with several carefully selected gene sets 
(1167, 834, 683, 602, and 445; see explanations in the next sentences) using the coalescence 
method implemented in ASTRAL v5.5.1250. From the 1,167 OGs, 834 OGs had length of at 
least 840 bp and a species coverage of 80% or more; 683 OGs were at least 1000 bp in length 
and had a species coverage 90% or more. To resolve the angiosperm deep phylogeny, it was 
necessary to exclude possible noise from paralogous genes and avoid systematic error arising 
from the large supermatrix. Therefore, 602 OGs were selected from the set of 834 OGs based 
on the topology of the low-copy gene trees exhibiting monophyly of each of Angiosperms, 
Eudicots, Monocots, and Gymnosperms. From the 602 OGs, 445 were selected that showed 
monophyly of each of Nymphaeales, Asterids, and Rosids. Finally, we selected 101 genes for 
further ML analysis based on the topology of the low-copy gene tree with each order among 
our taxon sampling as a monophyletic group. A maximum likelihood (ML) analysis was also 
performed with the 101 sequence supermatrix using RAxML v7.0.451 under the 
GTR+GAMMA+I model defined as the best-fit evolutionary model. Low-copy gene trees were 
reconstructed using RAxML v7.0.4 under the GTR+CAT model instead of the GTR+GAMMA 
model for computational efficiency. For each low-copy gene tree, 100 bootstrap replicates 
were generated for the coalescent analysis. 
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Supplementary Fig. 18 | Workflow for identifying the orthogroups used for species tree 
reconstruction in Fig. 1d. The complete pipeline was described in the Methods section of this 
supplementary file. 

Molecular dating was carried out using a stringent set of 101 LCN genes (205,185 sites), 
together with 21 fossil-based age constraints on internal nodes of the tree (Supplementary 
Table 14). The tree topology was fixed to that inferred in our coalescent-based analysis of 
1167 genes from 115 taxa. We performed a Bayesian phylogenomic dating analysis of the 101 
selected genes in MCMCtree, part of the PAML package52, and used approximate likelihood 
calculation for the branch lengths to improve computational tractability53. Molecular dating was 
performed using an auto-correlated model of among-lineage rate variation, the GTR 
substitution model, and a uniform prior on the relative node times. Posterior distributions of 
node ages were estimated using Markov chain Monte Carlo sampling, with samples drawn 
every 250 steps over 10 million steps following a burn-in of 500,000 steps. We checked for 
convergence by running the analysis in duplicate and checked for sufficient sampling using 
Tracer53,54. The results of this dating analysis are shown in Fig. 1d. 

For comparison, we also inferred the divergence times of angiosperms using penalized 
likelihood in TreePL55 and in r8s56. This approach was used because we rejected the 
hypothesis of a strict molecular clock (p-value < 0.01) using a likelihood-ratio test in PAUP 4.0 
beta1057. To optimize the smoothing parameter for the data, we performed cross-validation 
and tested a range of smoothing parameters from 0.01 to 100,000 (algorithm=TN; crossv=yes; 
cvstart=-2; cvinc=0.5; cvnum=15). We identified an optimal value of 0.32 for the smoothing 
parameter, indicating the presence of substantial rate heterogeneity among branches. We 
used 100 bootstrap replicates in RAxML51 to produce a set of input trees for calculating the 95% 
confidence intervals on our date estimates.   
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In treePL, the “prime” option was applied to optimize the parameters, and a “thorough” 
analysis was then carried out with the optimal parameters determined above (opt = 2, optad = 
2 and optcvad = 2). To identify the best smoothing parameter, a ‘random subsample and 
replicate cross-validation was conducted with treePL. The best smoothing value was found to 
be 0.1 under the lowest chisq value. 95% confidence intervals for the node-age estimates 
were calculated following previously published methods. To allow for variation in branch-length 
estimates, we calculated 100 bootstrap replicates with the tree topology fixed to that of the 
above maximum-likelihood phylogram but with varying branch lengths. We then conducted 
treePL on these 100 replicates. Age statistics for all nodes were summarized with 
TreeAnnotator v.1.758. 

Results and Discussion 

Using four gymnosperms, Ginkgo biloba, Picea abies, Pinus taeda, and Gnetum montanum, 
together as the outgroup, the flowering plants could be divided into six lineages: Amborella, 
Nymphaeales, Illicium, monocots, magnoliids, and eudicots. Magnoliids clustered with 
eudicots, supporting the mesodicots superclade30. In the species tree in Supplementary Fig. 
19, each node shows the supporting values from five methods, with the outgroup consisting of 
four gymnosperm species. Supplementary Fig. 20 shows a tree inferred using the 
concatenation method from the supermatrix with 101 low-copy nuclear genes. Taken together, 
the phylogenetic trees inferred from different outgroups, methods, and types of gene markers 
all supported that Amborella represents the sister lineage to all other extant angiosperms, with 
100 high support values using three methods. 

Our penalized-likelihood analyses placed the crown age of angiosperms placed at 
231.45-251.58 and 248.83-250.45 million years ago (Ma) for TreePL and r8s, respectively 
(Supplementary Table 15). We dated the crown group of Nymphaeales at 133.00-175.42 and 
146.88-148.64 Ma using the two methods, respectively. Both TreePL (Supplementary Fig. 21) 
and r8s (Supplementary Fig. 22) produced date estimates that were similar to those obtained 
using Bayesian relaxed-clock analysis, although the r8s method yielded much narrower 95% 
confidence intervals for each node.  
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Supplementary Fig. 19 | The species tree of 115 seed plants inferred from five gene sets, with 
bootstrap values corresponding to Fig. 1d. Support values corresponding to 1167, 834, 683, 602, and 
445 low-copy nuclear genes under the multispecies coalescent model implemented in ASTRAL 
(version 5.5.12).  
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Supplementary Fig. 20 | The 101 low-copy nuclear gene supermatrix-based species tree showing 
that Amborella, and not Nymphaeales, is the sister group to all other angiosperms. Support values 
are shown on each node, with different colours indicating different levels of bootstrap support. 
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Supplementary Fig. 21 | Estimation of divergence times of 115 seed plants based on penalized 
likelihood in TreePL. The 95% confidence intervals are shown on each node. The tree topology 
corresponds to that of Fig. 1d. 
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Supplementary Fig. 22 | Estimation of divergence times of seed plants based on penalized likelihood 
in r8s method. The 95% confidence intervals are shown on each node. The tree topology corresponds to 
that of Fig. 1d. 
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4.3  Chloroplast gene-based tree of angiosperms  

In the tree constructed using 78 chloroplast genes across 361 species, the relationships 
among Amborella, N. colorata, and other flowering plants was well resolved. Amborella was 
the earliest divergent extant angiosperm branch, forming a sister group to all other extant 
flowering plants (Supplementary Figure. 23). 
 

 
Supplementary Fig. 23| Tree of 361 representative green algae and plants based on 78 chloroplast 
genes.  
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The mitochondrial genomes of land plants typically contain 50 to 60 genes59. We used 67 plant 
species and 41 conserved mitochondrial (Mt) gene sets to infer the evolutionary history of 
flowering plants. In the tree (Supplementary Fig. 24), N. colorata formed a sister lineage to all 
other flowering plants with a relatively low bootstrap value of 67, and Amborella was the next 
sister lineage to the remaining angiosperms, suggesting that the reconstructed evolutionary 
history of angiosperm mitochondrial genes differs from those of the nuclear genes and the 
chloroplast genes. 

 

Supplementary Fig. 24 | Species tree inferred using 41 mitochondrial genes from 64 green plants. 
In this tree, water lily, rather than Amborella, is the sister group to all other angiosperm species. 
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5. Whole-genome duplication in the N. colorata genome 

5.1  Intra- and inter-genomic collinearity analyses 

Genome-wide comparison of gene order finds substantial genomic synteny in N. colorata 
(Extended Data Fig. 1f), with 2,858 gene pairs located in paralogous blocks (Supplementary 
Table 16). Intergenomic comparisons between N. colorata and Amborella trichopoda, Nelumbo 
nucifera, and Vitis vinifera are consistent with a lineage-specific WGD in N. colorata (Extended 
Data Fig. 2a). For example, N. colorata and Amborella show a 2:1 syntenic pattern, with two 
paralogous regions in the genome of N. colorata matching one region in the genome of A. 
trichopoda, while N. colorata and the eudicot Nelumbo nucifera show a 2:2 syntenic pattern 
and N. colorata and the eudicot V. vinifera show a 2:3 syntenic pattern, consistent with 
independent WGDs in the respective lineages of N. colorata, Nelumbo nucifera, and V. vitis60.  

 

5.2  Analyses of KS distributions 

Distributions of synonymous substitutions per synonymous site (KS) for paralogues found in 
collinear regions (anchor pairs) and for the whole paranome of N. colorata further support an 
ancient lineage-specific WGD, both showing a signature peak at KS ≈ 0.9 (Extended Data Fig. 
2b). Peaks at similar KS values were identified from the transcriptomes of several other 
species in the family Nymphaeaceae, but the KS distribution of Cabomba caroliniana in the 
family Cabombaceae showed no clear peak (Supplementary Fig. 26). Such a pattern of WGD 
signatures of similar ages across several lineages suggests a single WGD event, possibly 
shared among (at least) most or all genera in the family Nymphaeaceae.  
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Supplementary Fig. 26 | Distributions of synonymous substitutions per synonymous site (KS) of 
the whole paranome for nine Nymphaealean transcriptomes. KS distributions of paralogues are 
shown in grey. The light grey rectangle in the background of each plot highlights the KS range from 
0.7–1.2 showing the KS boundaries used to extract duplicate pairs in N. colorata for absolute 
phylogenomic dating of the WGD event (Extended Data Fig. 2d). Since C. caroliniana is a recent 
polyploid (2n = 104)8, it is possible that the remnants of an ancient WGD are obscured in the KS 

distribution by the presence of many more recently duplicated genes in combination with slightly 
stronger saturation effects due to the higher substitution rate in C. caroliniana. 

To further support and better place the potentially shared WGD in the Nymphaeales 
phylogeny, we compared the anchor-pair KS distribution of N. colorata with KS distributions of 
orthologues between N. colorata and species from other lineages in Nymphaeales and from 
ANA-grade angiosperm lineages (Fig. 2a). The anchor-pair WGD KS peak of N. colorata is 
much younger than the KS peaks of the orthologues between N. colorata and Amborella and 
Illicium henryi (order Austrobaileyales), further confirming a Nymphaeales-specific event. In 
contrast, the WGD KS peak is much older than both the KS peak for N. colorata–Victoria 
cruziana orthologues and the KS peak for N. colorata–Nuphar advena orthologues. It is also 
slightly younger than but possibly overlapping with the KS peak for N. colorata–C. caroliniana 
orthologues. If substitution rates were similar among all of these lineages (and between 
paralogues and orthologues), our results would suggest that the WGD occurred just after the 
divergence of N. colorata and C. caroliniana but prior to the divergence of N. colorata and 
Nuphar advena, i.e., in the stem lineage of Nymphaeaceae. However, substitution rates do 
seem to vary considerably among Nymphaealean lineages (Fig. 2b and Extended Data Fig. 
2c). Species in the genus Nuphar seem to have substantially lower substitution rates than the 
other lineages in Nymphaeaceae, whereas C. caroliniana seems to have a higher substitution 
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rate than lineages in the sister family Nymphaeaceae. Therefore, the KS peak value of the 
N. colorata–Nuphar advena orthologues is likely to provide an underestimated age compared 
with that from the WGD KS peak of N. colorata, whereas the age from the KS peak value of the 
N. colorata–C. caroliniana orthologues is likely to be a slight overestimate (indicated by the 
arrows in Fig. 2a). Thus, it is possible that the WGD is shared between the families 
Nymphaeaceae and Cabombaceae and already occurred just prior to their divergence.  

 

5.3  Timing of the WGD in N. colorata 

Absolute dating of the paralogues of N. colorata using phylogenomic methods61 suggests that 
the WGD identified in the genome of N. colorata occurred approximately 117–98 Ma 
(Extended Data Fig. 2d; using a set of orthogroups that include orthologues from Amborella 
and Ginkgo biloba, see Methods). Estimates of the divergence time between Nymphaeaceae 
and Cabombaceae vary widely, placing it as early as in the Jurassic (185–147 Ma in Fig. 1d) 
or in the lower Cretaceous (127–120 Ma, 95% highest posterior density (HPD)62; 117–105 Ma, 
95% confidence intervals, CI63), or as late as the Eocene (75–38 Ma, 95% CI64; 72–16 Ma, 95% 
HPD65; 46–38 Ma, 95% CI66). Our absolute estimate for the timing of the WGD seems to 
overlap with the older estimates in the lower Cretaceous, further suggesting that the WGD 
could have occurred before or close to the divergence between Nymphaeaceae and 
Cabombaceae.  

In addition, we built a second set of orthogroups for each WGD paralogous pair by 
waiving the requirement of orthologues from Amborella and G. biloba from the taxonomic 
sampling listed in the Methods, leading to a separate set of 329 orthogroups based on anchor 
pairs and 208 orthogroups based on peak-based duplicates. We used all the fossil calibrations 
as described in the Methods, except the fossil calibration used for the root in the previous 
starting tree. The node uniting the paralogues of N. colorata WGD with the eudicots and 
monocots was calibrated as a new root. Following Markov chain Monte Carlo sampling, we 
accepted 436 orthogroups and further analysed these as described in the Methods, resulting 
in an alternative timing estimation of the N. colorata WGD at approximately 102–93 Ma 
(Supplementary Fig. 27, earlier than the estimation based on the orthogroups with orthologues 
from Amborella and G. biloba in Extended Data Fig. 2d). This date again suggests that the 
WGD occurred before or close to the divergence between Nymphaeaceae and Cabombaceae 
(Fig. 2b and c), or corresponds to the divergence time between Nymphaeaceae and 
Cabombaceae as indicated in the allopolyploidy scenario (Fig. 2d).  

It is important to note that a WGD had already been inferred and dated in Nuphar advena 
in a previous study61. Based on transcriptome data, a KS peak was found at KS ≈ 0.2–0.6 and 
its absolute date was estimated at approximately 77–68 Ma. This lower date could suggest this 
to be a separate or additional independent WGD in Nuphar. However, due to the much lower 
substitution rates in Nuphar and considering that only one WGD has been identified in Nuphar 
advena based on the KS age distribution of paralogues, we suggest that this WGD signature 
and the signatures in N. colorata and other species of Nymphaeaceae all represent the same, 
single WGD event. In that case, the large difference between the absolute WGD ages 
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estimated from Nymphaea colorata and Nuphar advena mirrors the large differences in 
estimates of deep divergence events within angiosperms. 

 

 

Supplementary Fig. 27 | Absolute age distribution obtained from phylogenomic dating of 
Nymphaea colorata WGD paralogues based on orthogroups without orthologues from Amborella 
trichopoda and Ginkgo biloba. The solid black line represents the kernel density estimate of paralogue 
date estimates, and the vertical dashed black line represents its peak at 98 million years ago (Ma). The 
grey lines represent density estimates from 2,500 bootstrap replicates, and the vertical black dotted 
lines represent the corresponding 90% confidence interval for the WGD age estimate, 102–93 Ma (see 
Methods). The blue histogram shows the raw distribution of time estimates for paralogue divergences. 
 

5.4  Phylogenomic analyses of the WGD  

To further test whether the WGD occurred before or after the divergence of the two 
families within Nymphaeales, we analysed gene trees that contained at least one anchor pair 
from N. colorata (see Methods). The N. colorata anchor pairs in 211 out of 246 gene trees (BS 
value ≥ 80%) coalesced on the branch leading to Nymphaeales (Fig. 2b). Similarly, the 
anchor pairs in 216 out of 364 gene trees (BS values ≥50%) coalesced on the branch leading 
to Nymphaeales (Supplementary Fig. 28). This would indeed suggest that the WGD occurred 
already before the divergence of Nymphaeaceae and Cabombaceae. Interestingly, only 28 of 
the 211 gene trees, gene trees retained both putative WGD duplicates in C. caroliniana, far 
fewer than the duplicates retained in the species in Nymphaeaceae (Supplementary Table 17). 
This could be true if most duplicates were lost in the lineage to C. caroliniana (Fig. 2c), which 
might explain the absence of a clear peak in the KS distribution of paralogues from this species 
(Supplementary Fig. 26).  
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Supplementary Fig. 28 | Phylogenomic analysis of the WGD in Nymphaeales. The numbers on the 
branches of the species tree indicate the number of gene families with at least one anchor pair from N. 
colorata that coalesced on the respective branch (top) and the actual number of coalesced anchor pairs 
(bottom). The branch on which most of the anchor pairs in N. colorata coalesced is denoted by the red 
dot. All the duplication events have bootstrap values greater than or equal to 50%. 

 

Alternatively, the absence of a clear KS peak, the finding of few retained duplicates, and 
the substantial overlap of the date estimates for both the WGD and the divergence between 
Nymphaeaceae and Cabombaceae suggest that the above signatures for a shared WGD 
event could instead be interpreted as an allopolyploidy event that occurred shortly after the 
divergence between Nymphaeaceae and Cabombaceae ancestors (Fig. 2d). The two parental 
ancestors of such a putative allopolyploid, of which one was more closely related to the 
ancestor of Cabombaceae than the other, formed a tetraploid hybrid that gave birth to the 
lineage leading to Nymphaeaceae. In such an allopolyploidization scenario, the anchor pairs of 
N. colorata would coalesce not to the time when the hybridization occurred but to the time 
when the two parents diverged, i.e., the evolutionary split between Nymphaeaceae and 
Cabombaceae. The KS peaks observed in the species of Nymphaeaceae would then reflect 
the divergence of the two parental ancestors, thus similar to the N. colorata–C. caroliniana 
ortholog KS peak. Because the allopolyploidy event gave rise to the ancestor of the lineage 
leading to Nymphaeaceae, but not Cabombaceae, species like C. caroliniana do not have 
such a peak in their KS distributions. The limited number of duplicates in C. caroliniana that 
coalesced prior to the divergence of Nymphaeaceae and Cabombaceae might have resulted 
from small-scale duplication events. Our absolute phylogenomic dating of the paralogues in 
N. colorata would hence provide support for the divergence of Nymphaeaceae and 
Cabombaceae in the Early Cretaceous (Extended Data Fig. 2d). Nymphaealean fossils from 
the Early Cretaceous are consistent with such an early divergence of Nymphaeaceae and 
Cabombaceae67. For example, the fossil Monetianthus mirus from the crown group of 
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Nymphaeaceae is ~113 million years old68, and the fossil Scutifolium jordanicum from the stem 
group of Cabombaceae is at least 105 million years old69.  

 

5.5  Pre-angiosperm WGD event 

To detect evidence for any pre-angiosperm WGD event, we compared the genomes of 
the gymnosperm G. biloba, A. trichopoda, and N. colorata. Specifically, we extracted gene 
pairs inferred to be remnants of such an event and performed detailed analyses using default 
parameters on a set of matching regions with local synteny and four representative gene trees 
of syntenic genes. The chromosome synteny was plotted using the JCVI utility libraries 
(https://github.com/tanghaibao/jcvi) with default parameters.  

Similar to the findings from the Amborella genome, our comparative analyses identified 
several duplicated blocks that appeared to predate the divergence of Amborellales and 
Nymphaeales. Local synteny analyses across G. biloba, Amborella, and N. colorata identified 
several cases where one G. biloba region aligned with up to two Amborella regions, supporting 
a pre-angiosperm WGD (since no lineage-specific WGD was found in Amborella); in turn, each 
Amborella region aligned with up to two N. colorata regions, supporting the additional WGD in 
the Nymphaealean lineage. Additionally, consecutive gene trees sampled from the selected 
regions were consistent with the timing of the WGD events as expected from the local synteny 
(Supplementary Fig. 29). We identified a total of 244 gene pairs that supported a 
pre-angiosperm WGD, and these were located in 52 pairs of Amborella scaffolds. Similarly, we 
identified a total of 153 gene pairs in N. colorata that might also be derived from this WGD 
event. The weaker signal in Nymphaea for duplicated regions from such older WGD events 
was most likely due to the presence of the more recent WGD in the Nymphaealean lineage 
and subsequent fractionations that may have further altered the ancestral gene orders9. 
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Supplementary Fig. 29 | Exemplar local syntenic regions in support of a pre-angiosperm whole 
genome duplication (WGD) event. A single Ginkgo biloba region is aligned to two Amborella regions 
and four N. colorata regions, consistent with a pre-angiosperm WGD event followed by WGD specific 
to the Nymphaealean lineage. Note that the two regions on Nymphaea Chr2 were split as they were 
aligned consecutively to Amborella scaffold16, but they should be treated here as one single syntenic 
region. Four sets of syntenic gene groups across multiple regions that are inferred to be derived from a 
pre-angiosperm WGD are shown in different colours; the four reconstructed gene trees shown at the 
bottom are in the corresponding colours. 
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was most likely due to the presence of the more recent WGD in the nymphaealean lineage and 
subsequent fractionations that may have further altered the ancestral gene orders9.

Supplementary Fig. 29 | Exemplar local syntenic regions in support of a pre-angiosperm whole
genome duplication (WGD) event. a, Asingle Ginkgo biloba region is aligned to two Amborella regions
and four N. colorata regions, consistent with a pre-angiosperm WGD event followed by WGD specific
to the nymphaealean lineage. Note that the two regions on Nymphaea Chr2 were split as they were
aligned consecutively to Amborella scaffold16, but they should be treated here as one single syntenic
region. Four sets of syntenic gene groups across multiple regions that are inferred to be derived from a 
pre-angiosperm WGD are shown in different colours; the four reconstructed gene trees shown at the 
bottom are in the corresponding colours.
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6. Genes related to floral development in N. colorata 

Angiosperm flowers typically have specialized scents, colourful perianths such as petals, and 
both male and female reproductive organs, unlike gymnosperms, which have unisexually 
reproductive cones (strobili) with no specialized scent or colour. The flower of Amborella (the 
sole species in Amborellales), however, is simple and either male or female, with sepal or 
sepal-like perianth organs that lack floral scent, hence lacking many of the characteristics seen 
in typical angiosperms. In contrast, the flowers of water lilies have diverse scents and colours, 
and with both male and female organs, similar to the flowers of Illicium (a genus from 
Austrobaileyales). The flowers of mesangiosperms have evolved further diversity in these 
features, being either fragrant or non-scented, colourful or white, unisexual or bisexual, and 
possess various additional modifications such as spots, trichomes, and nectaries 
(Supplementary Fig. 1).  

 

6.1  MADS-box transcription factors 
MADS-box genes encode eukaryote-specific transcription factors controlling multiple 
developmental programs70. The MADS-box gene family is divided into two types: type I and 
type II. Type I includes three subfamilies, α, β, and γ, and type II includes MIKC* and MIKCc. 
The MIKCc genes are the best studied in terms of their expression patterns and associated 
mutant phenotypes, and their functions in floral organ specification are well characterized. The 
MIKCc subfamily comprises the following groups: TM3/SOC1, TM8, AP3, PI, AGL32/GMM13, 
AGL12, SEP, AP11/FUL, ANR1, AGL15, SVP, AG, FLC, OsMADS32, AGL6, and STK. 
Although this subfamily has been extensively studied, it is still unclear how many type II MIKCc 
groups evolved in the ancestor of flowering plants or in the ancestor of seed plants71.  

 

Materials and Methods 

To identify N. colorata MADS-box genes, we searched the predicted proteome of N. colorata 
using hmmsearch in HMMER72, based on the seed SRF-TF (PF00319) from the Pfam 
database73. MADS-box classification was based on sequence similarity searches of identified 
MADS-box genes from Arabidopsis and Amborella15. The obtained results were manually 
curated, including the concatenation of two ANR1 genes (NC3G0228930+NC3G0228920, 
NC9G0169500+NC9G0169520), one AG gene (NC9G0111830+NC9G0111840), the SOC1 
gene (NC9G0274620+NC9G0274600), and the STK gene (NC7G0291940+NC7G0291950). 
For evolutionary analysis, we aligned sequences using MAFFT 46 with the parameter E-INS-I 
(accurate). A phylogenetic tree of MADS-box genes was constructed using FastTree 2.1.10 
software74 and edited in MEGA 647.   

To characterize the tandem duplicated MADS-box genes, we firstly identified the 
genome-wide syntenic genes in the genomes of N. colorata, Amborella, Nelumbo nucifera, 
Vitis vinifera, and Spirodela polyrhiza using MCScanX75 with default parameter settings. The 
putative tandem duplicated MADS-box genes were manually checked based on their genomic 
location information.  
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Results and Discussion 

Nymphaeales not only occupies an important evolutionary position in the angiosperm lineage 
but also has several key floral characteristics, such as the presence of multiple floral organs, 
similar to magnoliids, and the presence of both stamens and carpels in the same flower. The 
latter feature is similar to most angiosperms but different from Amborella and gymnosperms. 
As a member of Nymphaeales, N. colorata represents an excellent genomic resource for 
investigating the early evolution of floral developmental programs, especially for comparison 
with eudicot and monocot species. Similar to Illicium and Magnolia, N. colorata has somewhat 
differentiated sepals and petals.  

N. colorata encodes 70 MADS-box genes, in contrast to the 33 MADS-box genes in 
Amborella trichopoda. Some Type I MADS-box genes are critical for endosperm development 
initiation76. Expansion of Type I Mα genes (31 paralogues) was observed in N. colorata, 
compared to six paralogues in Amborella. The known functions of Type I genes in female 
gametophyte development77 suggest that their expansion in N. colorata might have 
contributed to larger numbers of ovules, resulting in abundant seed production. N. colorata 
and Amborella both had two MIKC* group members.  

NcMIKCc consists of 15 groups, including AG, STK, AGL12, TM3/SOC1, AGL6, SEP1, 
FLC, AP1/FUL, AGL15, ANR1, AP3, PI, AGL32, SVP, and OsMADS32 (Supplementary Fig. 
30). Note that SEP3 and TM8 were not found in the N. colorata genome, nor were they present 
in any of the 20 transcriptomes of water lilies. Since genes of the AP1/FUL group are present 
in Amborella and FLC is a sister group to AP1/FUL, FLC was likely present in the last common 
ancestor of angiosperms and subsequently lost or not found in Amborella. In addition, two FLC 
homologues were found in the N. colorata genome on syntenic chromosome regions 
(Supplementary Fig. 30), likely resulting from the Nymphaealean WGD. 

Besides the evolutionary history as shown in Supplementary Figures 31-34, we further 
investigated the expression profiles of the Type II–MIKCc genes in the vegetative and floral 
organs of N. colorata (Fig. 3). Following the Nymphaealean WGD, both duplicates of the 
C-function genes AGa and AGb, were retained on collinear blocks (Extended Data Fig. 4c). 
AGb is expressed in all floral organs, while AGa is mainly expressed in the stamens and 
carpels, suggesting that AGa has gained specialized function in these organs. Moreover, the 
expansion of the AG genes due to the WGD and their differential expression patterns might 
have contributed to the increased number of stamens and carpels in Nymphaeaceae.  
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Supplementary Fig. 30 | Details of the phylogenetic tree of MADS-box genes shown in Fig. 4a. 
Note that the NC2G000030 was not shown due to its poor gene length. The sampled angiosperm 
species include Arabidopsis thaliana (gene symbols start with AT), Vitis vinifera (VIT), Cinnamomum 
kanehirae (RWR), Oryza sativa (LOC), Ananas comosus (Aco), Nymphaea colorata (Nc), Amborella 
trichopoda (scaffold). 
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Supplementary Fig. 31 | Details for the A- and E-function MADS-box genes and close relatives. (a) 
The phylogenetic tree of AP1 from Nymphaea colorata and other representative seed plants. (b) The 
phylogenetic tree of SEP from N. colorata and other representative seed plants. (c) The phylogenetic 
tree of AGL6 from N. colorata and other representative seed plants. 

 

Water lily has several copies of AGL32, also called B-sister genes for their close 
relationship to the B-function genes AP3 and PI (Supplementary Fig. 32). Intriguingly, one of 
the AGL32 homologues (NC6G0254900) is expressed in petals at a relatively high level, while 
another homologue (NC6N0254780) has a higher level of expression in stamens than in other 
floral organs (Fig. 3a), suggesting that they contribute to B-function and might have 
experienced subfunctionalization for petal and stamen development, respectively. 
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Supplementary Fig. 32 | Details for the B-function and B-sister MADS-box genes. The 
phylogenetic tree of AP3-PI from Nymphaea colorata and other representative seed plants.  
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Supplementary Fig. 33 | Details for the C-function MADS-box genes and close relatives. The 
phylogenetic tree of AG-STK sequences from Nymphaea colorata and other representative seed plants.  
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The MADS-box gene tree that includes homologues from several seed plants shows that 
AGL6, SEP1/SEP3 and AP1/FUL belong to the same large clade (Supplementary Fig. 30). In 
addition, the high-quality chromosome assembly of N. colorata allows the detection of the 
tandem gene array of AP1/FUL and SEP1 by comparison among N. colorata, Amborella, the 
monocot Spirodela polyrhiza, and the eudicot Vitis vinifera. Given that gymnosperm 
orthologues for AGL6 clustered with SEP1, our results indicate that AP1/FUL and SEP1 
originated from an ancient tandem duplication event prior to the divergence of seed plants 
(Extended Data Fig. 3b). The two duplicate genes were then retained in the extant 
angiosperms and eventually resulted in the A function gene (AP1/FUL) for the specification of 
sepals and petals, and E function genes (SEP) that encode proteins interacting with ABC 
function proteins to determine floral organ identity78. 

 

6.2  Expansion of genes regulating the morphogenesis of male organs 
and female organs in Nymphaeales 

In Arabidopsis, genes involved in meristem size and maintenance include the following79: 
ARGONAUTE1 (AGO1), TESMIN/TSO1-like (TSO1), CLAVATA2 (CLV2), CA2+-DEPENDENT 
NUCLEASE (CAN), FASCICLIN (FAS), HANABA/MONOPOLE (HAN/MNP), SHOOT 
MERISTEMLESS (STM), ULTRAPETALA1 (ULT1), ULTRAPETALA2 (ULT2), UNUSUAL 
FLORAL ORGANS (UFO), and WIGGUM/ENHANCED RESPONSE TO ABA 1 (WIG/ERA1). 
Genes involved in organ boundary establishment include CUP-SHAPED COTYLEDON1/2 
(CUC1/CUC2), CUC3, and SUPERMAN/FLORAL ORGAN NUMBER 1 (SUP/ FON1). A non 
ABC-gene involved in organ type specification and identity determination is 
LEUNIG/ROTUNDA 2 (LUG/RON2).  

Genes involved in floral meristem and primordia (and organ) polarity establishment 
include ABONORMAL FLORAL ORGANS (AFO), ASYMMETRIC LEAVES 1/2 (AS1/AS2), 
JAGGED (JAG), JAGGED LATERAL ORGANS (JLO), KANADI 1,2,3,4 (KAN1,2,3,4), 
NUBBIN/JAGGED-LIKE (NUB/JAG), PHABULOSA (PHB), PHAVOLUTA (PHV), YABBY3 
(YAB3), AINTEGUMENTA (ANT), ETTIN/AUXIN RESPONSE TRANSCRIPTION FACTOR 3 
(ETT/ARF3), P-GLYCOPROTEIN 19 (PGP19), PERIANTHIA (PAN), PETAL LOSS (PTL), 
PIN-FORMED 1,3,7 (PIN1,3,7), PINOID (PID), and TOUSLED (TSL).  

Genes involved in floral organ morphogenesis include EARLY BOLTING IN SHORT DAYS 
(EBS), FRILL1/STEROL METHYLTRANSFERASE 2 (FRL1/SMT2), NAC-LIKE, ACTIVATED 
BY AP3/PI (NAP), RABBIT EARS (RBE), CC-type glutaredoxin (also named ROXY1), 
SPOROCYTELESS/NOZZLE (SPL/NZZ), STERILE APETALA (SAP), and 
STRUBBELIG-RECEPTOR (SUB).  

Genes mainly involved in stamen development include ABORTED MICROSPORES 
(AMS), AUXIN RESPONSE TRANSCRIPTION FACTOR6,8 (ARF6,8), BETA-AMYLASE1,2,3 
(BAM1,2,3), CORONATINE INSENSITIVE 1 (COI1), DEFECTIVE ANTHER DEHISCENCE 1 
(DAD1), DELAYED DEHISCENCE 1/OXOPHYTODIENOATE-REDUCTASE 3 (DDE1/OPR3), 
DYSFUNCTIONAL TAPETUM 1 (DYT1), EXCESS MICROSPOROCYTES1/EXCESS 
MICROSPOROCYTES1 (EXS/EMS1), FATTY ACID DESATURASE3,7,8 (FAD3,7,8), GA 
INSENSITIVE DWARF1 (GID1), MALE STERILITY 1 (MS1), MYB DOMAIN PROTEIN 36 
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(MYB36), MEIOSIS DEFECTIVE 1/MULTIPLE CHLOROPLAST DIVISION SITE 1 
(MEI1/MCD1), MYB108, NAC SECONDARY WALL THICKENING PROMOTING 
FACTOR1,2,3 (NST1,2,3), MALE-STERILE 5 (MS5), RECEPTOR-LIKE PROTEIN KINASE 2 
(RPK2), REPRESSOR OF GA (RGA), and CC-type glutaredoxin (also named ROXY2).  

Genes mainly involved in carpel development include SWITCH1 (SWI1), ALCATRAZ 
(ALC), LEUNIG_HOMOLOG (LUH), SEUSS (SEU), BELL 1 (BEL1), 
BREVIPEDICELLUS/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA (BP/KNAT1), 
CRABS CLAW (CRC), DETERMINATE, INFERTILE 1 (DIF1), HECATE 1 (HEC1,2), 
HUELLENLOS (HLL), INDEHISCENT (IND), INNER NO OUTER/YABBY (INO/YAB4), 
KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 2 (KNAT2), NGATHA1,2,3,4 (NGA1,2,3,4), 
NO TRANSMITTING TRACT (NTT), REPLUMLESS (RPL), SHORT INTEGUMENTS 1 (SIN1), 
SPATULA/ALCATRAZ (SPT/ALC), and STYLISH 1,2 (STY1,2).  

Other genes involved in organ growth include BIG BROTHER (BB) and HAWAIIAN SKIRT 
(HWS). Seed alignment sequences of the protein families were downloaded from the Pfam 
database (http://pfam.xfam.org). We used hmmsearch or BLAST to identify the family 
members. All of the retrieved family members were curated using phylogenetic analysis to 
remove unrelated sequences and to identify close homologues to the Arabidopsis genes 
(Supplementary Figs 34-35, Supplementary Table 19). 

 

Results and Discussion 

A number of putative stamen genes were duplicated (Extended Data Figs 4-5), including: 
CCxC/S-type GRXs (named ROXYs), DYSFUNCTIONAL TAPETUM 1 (DYT1), NAC 
SECONDARY WALL THICKENING PROMOTING FACTOR (NST), RESTORATION ON 
GROWTH ON AMMONIA (RGA), BARELY ANY MERISTEM 1/2 (BAM1/2), BAM3, 
CORONATINE INSENSITIVE1 (COI1), RECEPTOR-LIKE PROTEIN KINASE (RKP2). 
Similarly, duplicated genes for carpel development include KNOTTED-LIKE FROM 
ARABIDOPSIS THALIANA (KNAT), SWITCH1 (SWI1), STYLISH (STY) 1, SEUSS (SEU), 
SEUSS-LIKE 2 (SLK2), LEUNIG (LUG), LEUNIG_HOMOLOG (LUH), REPLUMLESS (RPL), 
YABBY (YAB), NGATHA1 (NGA1), NO TRANSMITTING TRACT (NTT), and HALF FILLED 
(HAF). Approximately half of these duplicates are located in syntenic blocks (Supplementary 
Figs 34-35, Supplementary Table 19), indicating that these duplicates resulted from the 
Nymphaealean WGD event. Retention of these duplicates suggests that this event might have 
played an important role in the evolution and development of carpel and stamen in water lilies.  
 



 54 

 
Supplementary Fig. 34 | Genes involved in carpel development had two copies that evolved from 
the Nymphaealean WGD. The regulatory pathways of these genes have been described in Extended 
Data Fig. 4. KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) encodes a homeobox 
protein from the class I KNOX family of transcriptional regulators. KNAT1 ensures proper development 
of pedicels, inflorescence internodes, and carpels. KNAT2 plays a role in the activation of carpel 
development regulators, independent of AG. STY is a member of the SHI gene family and encodes a 
protein with a RING finger-like zinc finger motif. STY is important for proper development of both the 
style and the stigma as well as the vascular system of the gynoecium. REPLUMLESS (RPL) encodes a 
homeodomain transcription factor involved in organ identity specification through the repression of AG 
expression in the first two whorls of organs. NO TRANSMITTING TRACT (NTT) encodes a 
C2H2/C2HC zinc finger transcription factor specifically expressed in the transmitting tract and 
involved in transmitting tract development and pollen tube growth. NGATHA1 (NGA1) encodes an 
AP2/B3-like transcription factor family protein and mainly participates in style and stigma 
development (at least in part) by mediating auxin synthesis in the apical region of the gynoecium. 
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 Vcru.m.38832
 Efer.m.81083

 Efer.m.81085
 Efer.m.81082

 Bsch.m.84935
 Ngia.m.41429

 Ngih.m.53712
 Ngih.m.53711
 Ngih.m.53709

 Nmid.m.40902
 Nmid.m.40901
 Nchoo.m.60457

 Npro.m.6694
 Nwoo.m.15251

 Bsch.m.88658
 Nmex.m.43396
 Nmex.m.43393
 Nmex.m.43398
 Nmex.m.43391
 Ngih.m.29792

 Nwoo.m.28121
 Bsch.m.87991

 Nwoo.m.28123
 Nchoo.m.40665
 Npro.m.61174
 Npar.m.91501
 Npro.m.61177
 Npro.m.61179

 Ngia.m.57961
 Nwoo.m.28120

 Nmid.m.62901
 Nmid.m.62902
 Ngia.m.57962
 Ngih.m.29794

 NC1G0129030
 Npar.m.55445
 Bsch.m.87496
 Ngia.m.57964

 Ngia.m.102242
 Ngia.m.57965

 Ngia.m.57960
 Npro.m.61175

 Ngia.m.57963
 Ngia.m.57958
 Ngih.m.30017

 Npar.m.55438
 Ngih.m.29789

 Ngia.m.57966
 Ngih.m.29793
 Ngia.m.29126

 Ngih.m.29788
 Gb 02946
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 GSMUA AchrUn randomP02810 001
 GSMUA Achr11P06870 001
 GSMUA AchrUn randomP02820 001

 Aco006955.1
 Sobic.004G341700.1.p

 LOC Os02g56880.1
 LOC Os04g43130.1

 GSMUA Achr1P03540 001
 GSMUA Achr5P10160 001

 Aco014571.1
 LOC Os03g64300.1
 Sobic.001G001900.1.p

 Zosma206g00110
 Zosma215g00410

 Spipo16G0048800
 Potri.001G049400
 Potri.003G178600

 evm.model.supercontig 494.1
 AT2G32700.7/LUH

 evm.model.supercontig 59.128
 VIT 207s0005g06380

 VIT 215s0045g00460
 evm.model.supercontig 8.161

 Potri.002G241800
 Solyc06g083460.2.1

 Solyc09g061290.2.1
 Bv7 170560 hucm

 NNU 012003-RA
 NNU 025168-RA

 Ilhe.140990
 Ilhe.140924
 Ilhe.140958

 Nmex.m.46023
 Nmex.m.46024

 Nmex.m.19962
 Nmex.m.64201

 Nmex.m.64199
 Efer.m.97147
 Efer.m.97151

 Npro.m.69691
 Npro.m.69699

 Nchoo.m.77182
 Nchoo.m.77188
 Nchoo.m.77194

 Nuad.18397
 Nmex.m.64200

 Nmex.m.46022
 Nmex.m.46025
 Nmid.m.92672
 Nchoo.m.77180
 Nchoo.m.77190
 Npar.m.72495
 Npar.m.72512
 Npar.m.72514
 Nmid.m.92663
 Nmid.m.92666
 Nmid.m.92669

 Ngih.m.22144
 Ngih.m.98273

 Ngih.m.98274
 Efer.m.55816
 Efer.m.55817
 Efer.m.55815
 Efer.m.55818
 Efer.m.55819

 Ngia.m.36661
 Nchoo.m.77183

 Nwoo.m.18176
 Ngih.m.19221
 Nwoo.m.18177
 Nchoo.m.77191
 Npro.m.69686
 Npro.m.69687
 Npro.m.69693
 Ngia.m.31764
 Ngia.m.36662

 Nmid.m.92673
 Nmid.m.92675

 NC12G0186900
 Nwoo.m.81776

 Nmid.m.92670
 Ngih.m.22143
 Ngia.m.36660
 Ngia.m.72121
 Ngia.m.72122
 Ngih.m.67539
 Ngia.m.72123
 Ngih.m.67538
 Ngia.m.72125

 Nwoo.m.29615
 Nwoo.m.29616
 Nwoo.m.29617
 Nwoo.m.29618
 Nwoo.m.29620

 Efer.m.15435
 Efer.m.15432

 Vcru.m.76513
 Vcru.m.76517

 Vcru.m.76515
 Vcru.m.76516

 Npro.m.69695
 Npro.m.69692
 Npro.m.69698

 Ngia.m.102247
 Npro.m.69690

 Npro.m.69685
 Npro.m.69697

 Npar.m.72500
 Npar.m.72507
 Npar.m.72520
 Npar.m.72497
 Npar.m.72505
 Npar.m.72510
 Ngia.m.57957
 Ngih.m.98276
 Nwoo.m.81775
 Nwoo.m.81778
 Nchoo.m.77196
 Vcru.m.41931
 Vcru.m.41932
 Vcru.m.41936
 Vcru.m.41933

 Efer.m.97149
 Efer.m.97146
 Efer.m.97153

 Efer.m.97145
 Efer.m.97148
 Efer.m.97150
 Efer.m.97152

 Nmex.m.54798
 Nmex.m.54797

 Nmex.m.54799
 Nmex.m.54800
 Nmex.m.64212

 Ngih.m.98277
 Ngia.m.102249
 Ngia.m.102250

 Nmex.m.54801
 Nmex.m.64211

 Ngia.m.18346
 Ngia.m.7379

 Ngia.m.7380
 Nmid.m.92658
 Ngia.m.57956
 Nmid.m.92660
 Npar.m.72502
 Npar.m.72517
 Nchoo.m.77185
 Nchoo.m.77197

 Nchoo.m.77181
 Nchoo.m.77193
 Nchoo.m.77187
 Ngih.m.98280
 Nwoo.m.81781

 Ngih.m.98283
 Nmid.m.46563

 Ngih.m.15856
 NC4G0238560

 Ngih.m.17530
 Ngia.m.102251
 Ngih.m.98282

 Ngih.m.17532
 Nmid.m.46565

 Vcru.m.41934
 Vcru.m.41935

 Nmid.m.46567
 Ngia.m.102246

 Npro.m.47348
 Npro.m.47352

 Npro.m.47350
 Npro.m.47354
 Npro.m.47355
 Npro.m.47356

 Ngih.m.15855
 Bsch.m.75106

 Caca.429606
 Caca.429555
 Caca.429598

 Bsch.m.75110
 Bsch.m.75108
 Bsch.m.75114

 Bsch.m.75112
 Bsch.m.75107

 Bsch.m.75109
 Bsch.m.75115

 Bsch.m.75113
 Nuad.18387
 Nuad.18391
 Nuad.18395
 scaffold00067.172
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 GSMUA Achr10P16120 001
 GSMUA Achr2P20700 001
 GSMUA Achr3P02850 001

 Aco003313.1
 Sobic.008G063000.1.p

 Sobic.005G079800.1.p
 LOC Os11g10060.1

 LOC Os11g10070.1
 GSMUA Achr5P25900 001

 GSMUA Achr6P18610 001
 Spipo7G0040000

 Zosma34g00810
 VIT 218s0001g15320

 evm.model.supercontig 26.90
 Potri.002G072900
 Potri.005G186900

 Potri.013G089900
 Bv 45070 huds

 AT1G43850.1/SEU
 Solyc06g059750.2.1
 Solyc06g059760.2.1

 VIT 204s0044g01260
 Potri.007G109400

 evm.model.supercontig 42.150
 NNU 015956-RA

 NNU 009782-RA
 Ilhe.279564

 Ilhe.279549
 Ilhe.279523

 Ngia.m.42856
 Ngih.m.46171

 Bsch.m.24595
 Ngia.m.118005

 Ngia.m.42854
 Npar.m.19665

 Ngia.m.42853
 Bsch.m.70990

 Bsch.m.30229
 Bsch.m.23204
 Bsch.m.23205

 Bsch.m.70985
 Bsch.m.70993
 Bsch.m.70995
 Bsch.m.70991

 Bsch.m.70988
 Bsch.m.70997

 Bsch.m.70986
 Caca.419614

 Caca.108371
 Efer.m.95030
 Efer.m.95033
 Efer.m.95037

 Nmex.m.83798
 Efer.m.95025

 Efer.m.95028
 Efer.m.95027
 Vcru.m.22971

 Efer.m.81999
 Efer.m.81996
 Efer.m.81998
 Efer.m.95036
 Efer.m.9410

 Ngih.m.46169
 Ngia.m.106226
 Ngih.m.84720
 Ngia.m.41861
 Ngih.m.27224
 Ngia.m.106228

 Ngih.m.46173
 Npro.m.5618
 Nmid.m.7856

 Nmid.m.58987
 Npro.m.71214

 Nchoo.m.48316
 Npro.m.71211
 Npar.m.81446

 Nchoo.m.48319
 Npar.m.81443

 Ngia.m.106227
 Ngia.m.106222
 Ngih.m.84721
 Ngih.m.84719

 Ngia.m.106229
 Ngia.m.106224
 Ngia.m.106225
 Bsch.m.84558

 Ngia.m.118004
 Nmid.m.58986

 Ngia.m.104784
 Ngih.m.84785

 Nmid.m.42043
 Nmid.m.42044
 Nchoo.m.23339
 Npar.m.32580

 Npro.m.64891
 Npro.m.64894
 Npro.m.64896
 Npro.m.64899
 Nwoo.m.52600
 Nwoo.m.52602

 NC13G0195140
 Ngia.m.106223

 Nwoo.m.47438
 Nchoo.m.77784

 Ngih.m.46170
 Nmex.m.59380
 Nmex.m.59383

 Nuad.56335
 Nuad.56344

 Nuad.56333
 Nuad.32773

 Ngia.m.42852
 Ngia.m.86936
 Ngih.m.46172
 Ngih.m.46174

 Ngia.m.118008
 Ngih.m.95235

 Nwoo.m.56291
 Ngia.m.86932
 Ngih.m.82504

 Ngih.m.82507
 Ngia.m.86935

 Npro.m.43180
 Nwoo.m.47436

 Nchoo.m.18280
 Npar.m.86664
 Nchoo.m.77785
 Nmid.m.62390

 Nmid.m.62394
 Npar.m.92680
 Bsch.m.81030
 Ngih.m.48205
 Nchoo.m.42117
 Npar.m.90031

 NC1G0090810
 Nmid.m.29669
 Nmid.m.15362
 Npro.m.23453

 Nwoo.m.23110
 Bsch.m.82418
 Ngih.m.82503
 Ngia.m.86931
 Ngih.m.48206

 Ngia.m.86933
 Ngih.m.82505
 Ngia.m.118009
 Ngih.m.95231

 Nmex.m.83793
 Ngia.m.118006

 Nmex.m.83795
 Nmex.m.83792

 Efer.m.62625
 Efer.m.62627
 Efer.m.62626
 Vcru.m.22972
 Vcru.m.22973
 Efer.m.95024

 Nmex.m.69546
 Nmex.m.69547
 Nmex.m.69548
 Vcru.m.807

 Efer.m.92849
 Efer.m.92851

 Bsch.m.17038
 Bsch.m.17039

 Efer.m.95021
 Caca.419708

 Nuad.16401
 Nuad.56338
 Nuad.56342

 Bsch.m.78127
 Bsch.m.78128
 Bsch.m.78129

 Nuad.54797
 Nuad.54798

 Bsch.m.48304
 Bsch.m.48306
 Bsch.m.48307

 Bsch.m.48305
 Bsch.m.45634

 Bsch.m.23750
 Bsch.m.45635
 Bsch.m.45623

 Caca.419700
 Caca.419713

 Bsch.m.68567
 Bsch.m.68566

 Caca.104748
 scaffold00071.21

 Gb 04218
 MA 12796g0010
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 Bv1 005810 iqjh
 Bv1 005820 hqts

 AT5G51330.1/SWI1
 Potri.001G126800
 Potri.001G126800.1

 Potri.003G106800
 Potri.003G106800.1

 Solyc03g093370.1.1
 VIT 200s0199g00200

 VIT 200s0829g00010
 NNU 019186-RA

 AT5G23610.2
 evm.model.supercontig 138.28

 Potri.004G137000
 Potri.004G137000.1
 Potri.T012300
 Potri.T012300.1

 VIT 207s0130g00110
 VIT 217s0053g00695

 LOC Os03g44760.1
 Sobic.001G152100.1.p

 Sobic.008G176900.1.p
 LOC Os12g42820.1

 LOC Os12g42830.1
 Aco005830.1

 GSMUA Achr1P28060 001
 GSMUA Achr6P35720 001

 Spipo26G0025000
 Spipo0G0186900

 Zosma33g01080
 scaffold00033.230

 NC2G0035640
 NC3G0222610

 Ngih.m.104452
 Ngia.m.122242

 Tbib.m.35480
 MA 57263g0010

 Phpat.006G030600.1.p
 Phpat.023G049700.1.p

 Smo.404501
 Smo.404503
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AT Arabidopsis thaliana
Potri Populus trichocarpa
Bv Beta vulgaris
VIT Vitis vinifera
Aco Ananas comosus
Sobic Sorghum bicolor
LOC Os Oryza sativa
GSMUA Musa acuminata
Zosma Zostera marina
Spipo Spirodela polyrhiza
Ilhe Illicium henryi
Ngih Nymphaea gigantea
Ngia Nymphaea gigantea
NC Nymphaea colorata
Nwoo Nymphaea woods blue
Npar Nymphaea paramee
Nchoo Nymphaea choolarp
Nmid Nymphaea midnight
Nuad Nuphar advenda
Npro Nymphaea prolifera
Nmex Nymphaea mexicana
Vcru Victoria cruziana
Efer Euryale ferox
Caca Cabomba caroliniana
Bsch Brasenia schreberi
Scaffold Amborella trichopoda
Gb Ginkgo biloba
MA Pines sylvestris
PITA Pines taeda
Smo Selaginella moellendorffii

WGD

 Spipo16G0011000
 Zosma77g00210

 Zosma203g00250
 Spipo17G0013100
 Spipo11G0022900

 Aco029182.1
 Aco014053.1

 GSMUA Achr4P17960 001
 GSMUA Achr5P14410 001
 GSMUA Achr2P12310 001

 Aco015722.1
 GSMUA Achr7P05730 001
 GSMUA Achr3P12550 001

 GSMUA Achr1P18650 001
 Zosma99g00040
 Aco025592.1
 Aco017586.1

 Aco009397.1
 Sobic.007G179000.1.p

 LOC Os08g43410.1
 Sobic.002G274500.1.p
 LOC Os09g36160.1

 Sobic.002G275000.1.p
 Sobic.010G261700.1.p

 LOC Os06g49830.1
 NNU 016637-RA
 NNU 011845-RA

 AT4G36260.1/STY2
 AT2G18120.1/SRS4

 AT5G66350.1/SHI
 AT5G33210.1/SRS8

 AT3G51060.1/STY1
 evm.model.supercontig 6.196
 Potri.007G017500
 Potri.005G118200

 Solyc02g084680.2.1
 Solyc00g117450.2.1

 Solyc02g062400.2.1
 VIT 203s0038g00310

 Solyc10g054070.1.1
 Solyc01g110140.2.1

 Bv9 223000 hysf
 Potri.009G121600
 Potri.004G160600

 AT2G21400.1/SRS3
 evm.model.supercontig 150.46

 Bv6 126280 awud
 VIT 204s0023g02780

 VIT 218s0001g13420
 AT1G75520.1/SRS5

 AT1G19790.1/SRS7
 evm.model.supercontig 140.14

 Potri.005G234200
 Potri.002G028500

 Bv1 006640 qmia
 Solyc04g080970.2.1

 Caca.57192
 NC7G0310540

 Npro.m.98130
 NC9G0275030

 scaffold00001.233
 Gb 21716

 PITA 000035146-LQ
 MA 2299g0010

 Smo.59082
 Smo.59269

 Phpat.021G058700.1.p
 Phpat.018G029700.1.p

 Smo.59069
 Smo.409925
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 LOC Os02g45850.1
 Sobic.004G280500.1.p
 Sobic.006G190400.1.p

 LOC Os04g49230.1
 LOC Os10g39190.1
 Sobic.001G313800.1.p

 LOC Os03g02900.1
 Sobic.001G528200.2.p

 GSMUA Achr4P12210 001
 GSMUA Achr2P10230 001

 GSMUA Achr4P26430 001
 GSMUA Achr4P30170 001

 GSMUA Achr2P00400 001
 GSMUA Achr5P20340 001

 GSMUA Achr9P18780 001
 GSMUA Achr1P03600 001

 GSMUA Achr5P10220 001
 Caca.612474

 Spipo11G0036600
 LOC Os08g06120.1

 Sobic.007G047500.1.p
 Aco013227.1

 Aco016654.1
 Spipo0G0123100

 Spipo1G0085000
 Spipo16G0014200

 Zosma15g00060
 Zosma4g02160

 Zosma21g00910
 Bv5 099590 mwyu

 Solyc08g013690.1.1
 Solyc08g013700.1.1

 Solyc08g083400.2.1
 VIT 202s0025g03000

 Potri.001G452200
 Potri.011G149700

 evm.model.supercontig 37.108
 NNU 000498-RA

 NNU 022094-RA
 AT1G01030.1/NGA3

 AT4G01500.1/NGA4
 AT2G46870.1/NGA1

 AT3G61970.1/NGA2
 VIT 215s0048g02370

 evm.model.supercontig 57.71
 Potri.002G181600
 Potri.014G107200

 Bsch.m.24154
 Caca.9347

 Bsch.m.35386
 Bsch.m.35378
 Bsch.m.35382
 Bsch.m.35384
 Nmex.m.42635
 Nmex.m.42641
 Nmex.m.42643
 Nmex.m.42637
 Nmex.m.42639
 Ngia.m.75082
 Ngih.m.32388
 Nchoo.m.62933
 Nchoo.m.62935
 Nchoo.m.62937
 Nchoo.m.62939
 Npar.m.62603
 Npar.m.62605
 Nwoo.m.34809

 Npro.m.65540
 Nwoo.m.34811

 NC10G0145200
 Nmid.m.52791
 Efer.m.76156
 Efer.m.76158
 Vcru.m.2009
 Vcru.m.2011
 Nwoo.m.34807
 Nwoo.m.34808
 Nmex.m.28365
 Nmex.m.28366
 Ngih.m.37704
 Vcru.m.14780
 Vcru.m.14783
 Efer.m.16456

 Nmex.m.22139
 Nchoo.m.10664
 Nchoo.m.10665
 Npar.m.9961
 Npar.m.9962
 Nmid.m.52787
 Nmid.m.52789
 Npro.m.65545
 Npro.m.65551
 Nwoo.m.10619

 NC9G0272920
 Npar.m.2663
 Nchoo.m.13423
 Npro.m.65547
 Npro.m.65549
 Ngia.m.58267
 Bsch.m.11651

 Bsch.m.7675
 Ilhe.44936

 scaffold00018.9
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 AT5G02030.1/RPL
 Solyc10g086640.1.1

 Solyc09g011380.2.1
 VIT 208s0007g01290
 NNU 007569-RA
 NNU 011128-RA

 VIT 213s0019g02450
 Potri.008G061000
 Potri.010G197300

 GSMUA Achr10P22520 001
 GSMUA Achr5P07020 001

 GSMUA Achr7P14960 001
 Aco015421.1

 LOC Os01g62920.1
 Sobic.003G356200.1.p

 LOC Os05g38120.1
 Sobic.009G159900.1.p
 Zosma74g01010

 Zosma154g00280
 Zosma239g00210

 Spipo23G0011000
 Spipo6G0075000

 Nuad.76042
 Bsch.m.19114
 Bsch.m.19115
 Bsch.m.19116

 Caca.105585
 NC6G0258750

 Npro.m.2747
 Nchoo.m.90292

 Efer.m.75634
 Vcru.m.35258

 Nmex.m.45974
 Nmex.m.45977

 Bsch.m.82980
 Nuad.76047

 Nchoo.m.17445
 Npar.m.46315

 NC5G0049120
 Nwoo.m.6319
 Nmid.m.32658

 Ngia.m.9718
 Nmex.m.62234
 Nmex.m.62237
 Vcru.m.35261
 Efer.m.75683

 Efer.m.75648
 Efer.m.75658
 Efer.m.75669
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Supplementary Fig. 35 | Genes involved in stamen development had two copies evolved from the 
Nymphaealean WGD. The regulatory pathways of these genes have been described in Extended Data 
Fig. 5. BARELY ANY MERISTEM 1/2/3 (BAM1/2/3) encode receptor-like kinases that regulate early 
anther development. SWITCH1 (SWI1) encodes a novel protein involved in sister chromatid cohesion 
and meiotic chromosome organization during both male and female meiosis. DYSFUNCTIONAL 
TAPETUM 1 (DYT1) encodes a bHLH transcription factor strongly expressed in the tapetum from late 
anther stage 5 to early stage 6 and at a lower level in meiocytes in Arabidopsis. The dyt1 mutant exhibits 
abnormal anther morphology beginning at anther stage 4 in Arabidopsis. RECEPTOR-LIKE PROTEIN 
KINASE 2 (RPK2) encodes a leucine-rich repeat receptor-like kinase that regulates anther development, 
tapetal function, and middle layer differentiation. NAC transcription factors (NST1, NST2, and NST3) 
positively regulate the secondary thickening of walls. NST1 acts in the anther endothecium, the replum 
margin, and the endocarp b layer of the valve. NST2 acts in the anther endothecium and is partially 
redundant with NST1. NST3 acts in the replum margin and in the endocarp b layer of the valve and is 
partially redundant with NST1. CORONATINE INSENSITIVE 1 (COI1) may recruit regulators of pollen 
development for modification by ubiquitination. It is needed in the JA response, which regulates 
defence against some pathogens, wound healing, and pollen fertility. h, REPRESSOR OF GA (RGA) 
encodes a transcriptional repressor of the homeotic genes AP3, PI, and AG. i, ROXY1 and ROXY2 are 
CC-type glutaredoxin genes. ROXY1 is involved in petal initiation in a position-dependent mode rather 
than an organ-dependent mode. ROXY1 influences the temporal and spatial expression of AG by 
restricting it to the 3rd and 4th whorls. Together with ROXY2, it controls anther development. 

 

6.3  Expansion of genes regulating the floral induction network 
Genes regulating floral induction have also been extensively documented, particularly in 
Arabidopsis and rice (Oryza sativa)80; however, they remain understudied in early-diverging 
lineages of angiosperms. Homologues of the Flowering Locus T (FT), which control the 
flowering transition81, have expanded to five members in N. colorata, through the 
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Nymphaealean WGD as well as tandem duplications. In contrast, there is only one FT gene in 
Amborella (Extended Data Fig. 6a). Both GIGANTEA (GI) and CONSTANS (CO) promote 
flowering under long days and GI enhances the expression of both FT and CO26,27. GI is 
relatively conserved in copy number between eudicots and monocots, and has only one 
member in Amborella, yet three GI homologues were found in N. colorata (Extended Data Fig. 
6b). There are also two copies of CO in N. colorata (Extended Data Fig. 6c), compared with 
one in Amborella.  

It is worth noting that N. colorata is an ever-blooming plant that continues to flower even 
when the temperature drops to lower than 18 °C. Flowering Locus C (FLC) homologues are 
important repressors of flowering controlled by prolonged cold or vernalization, thus affecting 
length of crop growth and yields82. FLC genes were previously only identified in monocots and 
eudicots, but not found in Amborella82. Here, we identified two FLC homologues in N. colorata 
that originated from the Nymphaealean WGD (Extended Data Fig. 6d). Both FLC homologues 
show expression in vegetative organs and floral organs (Fig. 3). These findings might suggest 
that the FLC-mediated floral repression might have already been present in the ancestor of 
extant angiosperms, but lost in Amborella. The FLC, FT, GI, and CO genes are in the same 
pathway regulating flowering time (Extended Data Fig. 6e), and their duplicates originating 
from the Nymphaealean WGD have all been retained, potentially contributing to the 
long-lasting blooming in N. colorata.  

 

6.4  Expansion of auxin-related genes and the regulation of floral 
opening and closure in N. colorata 

The emission of fragrant molecules in N. colorata is controlled by floral diurnal opening and 
nocturnal closure, which is tightly regulated by the circadian clock, which is in turn controlled 
by auxin pathways shown in our previous studies83. We found significant expansion of 
auxin-related gene families, such as GLYCOSIDE HYDROLASE3 (GH3), in the genome of N. 
colorata (36 members), compared with only 6 members in Amborella, 14 in Oryza sativa, 16 in 
Nelumbo nucifera, and 9 in Vitis vinifera (Supplementary Fig. 36). The copy number of 
auxin-inducible genes (SMALL AUXIN-UPREGULATED, SAUR) in N. colorata (62 members) 
is, in general, higher than those in Amborella (30 members) and the gymnosperm Ginkgo 
biloba (48 members), and comparable to that in monocots but lower than that in eudicots 
(Supplementary Fig. 37).  

In addition, we measured the expression of GH3 and SAUR genes in N. colorata during 
the circadian cycle. The expression profiles of auxin-inducible genes at five time points 
throughout the day (6:00 am, 7:00 am, 10:00 am, 2:00 pm, and 4:00 pm) were measured. 
Several genes were found to be maximally expressed at 10:00 am, when the opening of the N. 
colorata flower is at its largest angle. The following genes may contribute to circadian 
regulation of floral opening and closure: NC2G0004540, NC2G0004520, NC2G0286630, 
NC2G0286700, NC2G0286680, NC2G0286660, NC2G0286610, NC2G0004510, 
NC2G0286650, NC2G0286640, and NC2G0286720. Surprisingly, we annotated a super 
cluster consisting of 18 auxin-responsive genes, and seven of the 18 genes responded to the 
circadian clock and had maximal expression at 10:00 am. Most of the genes showed highest 
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expression at 10:00 am when the flower is open with the widest angle, whereas some are 
expressed most highly at 4:00 pm when the flower is closed (Supplementary Fig. 37). The 
expansion in copy number of these two gene families might play a role in the regulation of cell 
elongation and promotion of flower opening, similar to the observations in sunflower84.  

 

 
Supplementary Fig. 36 | The expansion of GH3 genes may be correlated with the elongated stem 
and frequent opening and closure of the Nymphaea colorata flower. a, Expansion of GH3 as shown 
in the phylogenetic tree. The GH3 gene family in angiosperms was divided into five groups. A cluster 
in N. colorata expanded significantly to 29 members. b, The diurnal expression patterns of GH3 genes 
in the N. colorata flower. The blue star indicates the Nymphaealean WGD event. c, The GH3 gene 
cluster on chromosome 8 (NC8G0240690, NC8G0240460, NC8G0240660, and NC8G0240490) 
contains auxin-responsive genes that are expressed significantly in the mature leafstalk as well as the 
sepal and petal floral organs, suggesting that they may regulate the flower’s behaviour of reaching out 
of water and floral opening and closure. 
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Supplementary Fig. 37 | The auxin-inducible gene family (Pfam ID: PF02519) was expanded in 
the Nymphaea colorata genome. a, Phylogenetic tree of the auxin-inducible gene family in 
representative seed plants. The numbers of auxin-inducible genes in each species are as follows: N. 
colorata (62); A. thaliana (78); N. nucifera (88); O. sativa (62); G. biloba (48); A. trichopoda (30). b, 
Gene family size across representative land plants. c, Tandem duplicated auxin-inducible genes across 
syntenic chromosomes of five plants, V. vinifera, N. nucifera, S. polyrhiza, N. colorata, and A. 
trichopoda. The aquatic sacred lotus (N. nucifera) also had significant tandem duplication of 
auxin-inducible genes. d, Proportion of auxin-inducible genes located in syntenic regions among total 
auxin-inducible genes. e, The expression profile of the auxin-inducible gene family in N. colorata at 
five time points: 6:00 am, 7:00 am, 10:00 am, 2:00 pm, and 4:00 pm.  
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7. Floral scent and colour in N. colorata 

7.1  Explosive expansion of the terpene synthase gene family in N. 
colorata 

Materials and Methods 

Most plant terpenes are secondary metabolites, synthesized as a result of selective adaptation 
to multiple ecological niches. In plants, terpene synthase (TPS) genes form a mid-sized gene 
family85, and they synthesize a diverse array of terpenes. We predicted the TPS genes using 
two hidden-Markov model seed sequences, the TPS N-terminal domain (PF01397) and the 
TPS metal-binding domain (PF03936), as search queries against the predicted proteome 
using hmmsearch in HMMER72. The search results were combined, overlapping sequences 
were filtered, and each sequence was manually curated to ensure that the gene length was 
accurate. For TPS identification in the water lily transcriptomes, sequences were manually 
screened to remove identical sequences to ensure that only unique genes were retained. 
Sequence alignment and phylogenetic tree construction were performed as described in the 
methods in the MADS-box section above. The sequence motif was drawn using WebLogo 
software with default parameters (http://weblogo.berkeley.edu/). 

 

Results and Discussion 

We performed the biosynthetic gene cluster analysis using plantiSMASH86. A number of gene 
clusters were predicted including those containing TPS genes (Supplementary Figure. 38) in 
part because many TPS genes are tandem duplicates. We found that some enzymes were 
clustered with the TPS gene, but did not find that p450 was clustered with TPS. According to 
the functional description of these enzymes, these gene clusters are not predicted to be on the 
pathway for synthesis of sesquiterpenes. 

Through careful manual curation, we identified 93 TPS genes in the N. colorata genome. 
The phylogenetic tree classified them into the following previously established subfamilies: b, c, 
e/f, and g (Fig. 4b). Amborella TPS genes were classified into subfamilies b, c, e/f, g, and x, 
indicating that both Amborella and N. colorata lost or did not evolve subfamily a, which has 
members in monocots (Oryza sativa and Sorghum bicolor) and eudicots (Arabidopsis thaliana 
and Populus trichocarpa). The subfamilies c and e/f are involved in the biosynthesis of 
phytohormone gibberellins and other diterpenoids, the subfamilies b and g typically encode 
monoterpene synthases. The terpenoids as floral scent constituents of N. colorata are 
sesquiterpenes, which in monocots and eudicots are known to be produced by the TPS-a 
subfamily proteins. The lack of the TPS-a subfamily in the N. colorata genome suggests that 
the TPS-b/g subfamilies evolved new catalytic functions to produce sesquiterpenes in flowers. 

There was a dramatic expansion of subfamily b in N. colorata, resulting in 86 TPS-b genes 
in this species (Supplementary Table 20). We also examined whether this expansion was 
unique to N. colorata or if it also encompassed other water lilies (Supplementary Table 21). In 
the different water lily species, subfamily b generally had more members than other 
subfamilies, suggesting that expansion of subfamily b may have occurred in the last common 
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ancestor of water lilies. Surprisingly, 62 subfamily-b TPS genes from N. colorata lacked the 
two conserved catalytic motifs ‘DDxxD’ and ‘N/DDxxS/TxxxD/E’ (Supplementary Figures 
39-40), which are typically found in other known plant TPSs85. 

To investigate whether these genes are functional and where they are expressed, we 
performed sequence and expression analyses. From this analysis, we noticed the unusual 
explosion of the TPS-b subfamily with more than 80 members. Only six TPS genes showed 
expression in flowers, including one TPS-b subfamily. The NC11G0123420 is the only gene to 
be highly expressed in the petal (Extended Data Fig. 7). We also found the NC11G0123420 
encoding protein has retained the two catalytic motifs (Extended Data Fig. 7), suggesting that 
it may have catalytic functions to produce sesquiterpenes in flowers of N. colorata. 

Among fatty acid derivatives of N. colorata floral scent constituents is methyl decanoate (Fig. 
4a), which has not been detected as floral scent compounds in monocots or eudicots87. As a 
fatty acid methylester, it could be conceived to be the product of methylation of the carboxyl 
group of decanoic acid. We hypothesized that it is biosynthesized by a SABATH 
methyltransferase88. An analysis of the expression patterns of the 12 SABATH genes in N. 
colorata indicated that NC11G0120830 has the highest level of expression in the petal (Fig. 4c 
and Supplementary Fig. 41). Therefore, it was the leading candidate responsible for the 
biosynthesis of methyl decanoate. To verify this prediction, a full-length cDNA of 
NC11G0120830 was cloned into a protein expression vector and the recombinant protein 
expressed in Escherichia coli was tested for methyltransferase activity using decanoic acid 
and a few other related fatty acids as substrates. NC11G0120830 exhibited the highest 
catalytic activity towards decanoic acid (Fig. 4d). Its product was verified to be the carboxyl 
methylester of decanoic acid (Supplementary Fig. 42), indicating that NC11G0120830 
functions as a fatty acid methytransferase (FAMT) (Supplementary Fig. 42), a novel activity 
of the SABATH family. It was noted that NC11G0120830 could also use octanoic acid as 
substrate (Fig. 4c). Its product methyl octanoate is a minor constituent of the floral scent of N. 
colorata (Fig. 4a). The TPS and SABATH families might have played critical roles in the 
evolution of floral scent in water lilies. It also suggests parallel evolution of floral scent 
constituents in Nymphaeales and mesangiosperms.  
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Supplementary Fig. 38 | Genome-wide clustering analyses of the Nymphaea colorata genes using 
plantiSMASH86 reveal multiple tandem duplications of the TPS genes. 36 biosynthetic gene 
clusters were identified in the genome of N. colorata, of which 9 were TPS gene related clusters. 

Cluster Record Type From To Size (kb) Core domains CD-HIT Clusters
Cluster 1 Chr1 Saccharide 8933038 8997718 64.68 AMP-binding, Glycos_transf_2 3
Cluster 2 Chr1 Terpene 35909415 35994683 85.27 Terpene_synth, Terpene_synth_C 6
Cluster 3 Chr10 Saccharide-Polyketide 12726555 12900013 173.46 Chal_sti_synt_C, Chal_sti_synt_N, UDPGT_2, p450 4
Cluster 4 Chr10 Saccharide 17056891 17219965 163.07 NAD_binding_1, UDPGT_2, UbiA 4
Cluster 5 Chr11 Saccharide 5781238 6087333 306.1 Epimerase, UDPGT_2, p450 3
Cluster 6 Chr11 Putative 7252017 7456158 204.14 Methyltransf_2, Peptidase_S10 5
Cluster 7 Chr12 Terpene 13875418 13979212 103.79 Methyltransf_7, Terpene_synth, Terpene_synth_C 3
Cluster 8 Chr13 Terpene 3628671 3876562 247.89 Amino_oxidase, Epimerase, Prenyltrans, SQHop_cyclase_C, SQHop_cyclase_N 3
Cluster 9 Chr13 Terpene 4607138 4707345 100.21 SQHop_cyclase_C, SQHop_cyclase_N 3
Cluster 10 Chr13 Terpene 5004755 5122848 118.09 SQHop_cyclase_C, SQHop_cyclase_N 3
Cluster 11 Chr13 Terpene 13491076 13527259 36.18 Terpene_synth, Terpene_synth_C 3
Cluster 12 Chr14 Polyketide 40859 498496 457.64 Chal_sti_synt_C, Chal_sti_synt_N, Transferase, adh_short 4
Cluster 13 Chr2 Putative 1012260 1182139 169.88 Epimerase, p450 4
Cluster 14 Chr2 Saccharide 8454982 8519597 64.61 UDPGT_2, p450 3
Cluster 15 Chr2 Saccharide 10219947 10609103 389.16 Epimerase, UDPGT_2 3
Cluster 16 Chr3 Saccharide 6591839 6727352 135.51 Epimerase, UDPGT_2 3
Cluster 17 Chr3 Saccharide-Alkaloid 18624254 18705027 80.77 Acetyltransf_1, Bet_v_1, Glycos_transf_2 3
Cluster 18 Chr3 Saccharide 22249341 22301442 52.1 2OG-FeII_Oxy, DIOX_N, Glycos_transf_2, UDPGT_2 3
Cluster 19 Chr3 Putative 25814929 25997119 182.19 Peptidase_S10, Transferase 4
Cluster 20 Chr3 Saccharide 28289224 28380360 91.14 2OG-FeII_Oxy, DIOX_N, UDPGT_2 4
Cluster 21 Chr4 Terpene 5442016 5497632 55.62 Terpene_synth, Terpene_synth_C 3
Cluster 22 Chr4 Saccharide-Terpene 14384768 14494163 109.39 Glycos_transf_1, Terpene_synth, Terpene_synth_C 3
Cluster 23 Chr4 Saccharide 19565836 19712418 146.58 Transferase, UDPGT_2, adh_short 3
Cluster 24 Chr4 Putative 24058106 24229165 171.06 Methyltransf_2, p450 4
Cluster 25 Chr4 Saccharide 24571695 24649611 77.92 SE, UDPGT_2 3
Cluster 26 Chr5 Polyketide 11014004 11296556 282.55 Chal_sti_synt_C, Chal_sti_synt_N, Epimerase, Methyltransf_11, Peptidase_S10 5
Cluster 27 Chr6 Polyketide 1211157 1345515 134.36 Chal_sti_synt_C, Chalcone, adh_short_C2 3
Cluster 28 Chr6 Terpene 14600994 14830169 229.18 Acetyltransf_1, Chalcone_2, Terpene_synth, Terpene_synth_C 3
Cluster 29 Chr6 Putative 19065087 19202365 137.28 adh_short, p450 4
Cluster 30 Chr6 Terpene 21461507 21576391 114.88 Terpene_synth, Terpene_synth_C 4
Cluster 31 Chr7 Putative 4670496 4904608 234.11 Acetyltransf_1, Amino_oxidase, COesterase, Epimerase 5
Cluster 32 Chr8 Saccharide 3334970 3460119 125.15 UDPGT_2, p450 3
Cluster 33 Chr8 Saccharide 14906122 14994573 88.45 Amino_oxidase, Methyltransf_11, UDPGT_2 4
Cluster 34 Chr9 Saccharide 11648959 11741802 92.84 Glycos_transf_1, SQS_PSY, adh_short_C2 3
Cluster 35 Chr9 Putative 22014437 22117918 103.48 Methyltransf_11, p450 5
Cluster 36 scaffold1 Terpene 4568478 4650176 81.7 Terpene_synth, Terpene_synth_C

TPS gene cluster Terpene synthesized by SQHop cyclase domain containing gene cluster



 62 

 
Supplementary Fig. 39 | Alignment of three representative terpene synthases (TPSs) from 
Nymphaea colorata. NC1G0260360 belongs to the TPS-g subfamily, and NC11G0123440 and 
NC288820 are TPS-b subfamily members. While both NC1G0260360 and NC11G0123440 contain 
two highly conserved catalytic motifs (red box), these motifs are absent in NC288820. 
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Supplementary Fig. 40 | WebLogo diagram for 62 subfamily-b terpene synthases from Nymphaea 
colorata. This diagram shows the region where the two conserved catalytic motifs ‘DDxxD’ and 
‘N/DDxxS/TxxxD/E’ are typically found in known plant terpene synthases. Except for the gene 
NC11G0123420, the motif changed to ‘EDxxx’ and the second motif was completely absent in the rest 
subfamily b members. 
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Supplementary Fig. 41 | A phylogenetic tree of SABATH methyltransferases from Nymphaea 
colorata and selected plants. IAMT, indole-3-acetic acid methyltransferase. Other species reference 
figure 4b. 

Tree scale: 1

IAMT, 1 in N. colorata

12 in N. colorata



 65 

 

Supplementary Fig. 42 | Experimental validation of the catalytic product of NC11G0120830. a, 
the product of NC11G0120830 is methyl decanoate verified by authentic standard. Mass spectra of 
methyl decanoate authentic standard (b) and the product of NC11G0120830 using decanoic acid as 
substrate (c). d, Reaction scheme catalysed by NC11G0120830 as a fatty acid methyltransferase 
(FAMT) for the production of methyl decanoate using decanoic acid as substrate. SAM, 
S-adenosyl-L-methionine. SAH: S-adenosyl-homocysteine. Three biological repeats were performed 
independently with similar results. 
 

7.2  Molecular basis of the blue floral pigment in N. colorata petals 
Materials and Methods 

Approximately 0.05 g of frozen dried petals of N. colorata were pulverized in liquid nitrogen, 
extracted with 1 mL of extracting solution (99.8: 0.2, v/v, methanol: formic acid) in a test tube, 
sonicated with KQ-500DE ultrasonic cleaner (Ultrasonic instruments, Jiangsu Kunshan, China) 
at 20 °C for 20 min, and then centrifuged in SIGMA 3K30 (SIGMA centrifuge, Germany) with 
10,000 g for 10 min. The supernatants were collected into fresh tubes. The above operation 
was repeated three times. All extracts were combined and filtered through 0.22 μm reinforced 
nylon membrane filters (Shanghai ANPEL, Shanghai, China) before the I-Class 
ultra-high-performance liquid chromatography (I-Class UPLC) (Waters, USA) analysis. We 
made three replicates for each sample. 
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We used I-Class ultra-high-performance liquid chromatography/Xevo triple-quadrupole 
mass spectrometry (I-Class UPLC/Xevo TQ MS) for qualitative analysis. The liquid 
chromatograph was equipped with an ACQUITY UPLC HSS C18 column (2.1 mm ⋅ 100 mm, 
1.7 μm) (Waters, USA). Eluent A was 1% formic acid aqueous solution and Eluent B was 
acetonitrile. The following gradient profile was used: 5% B at 0 min, 45% B at 6 min, 90% B at 
7 min, 10% B at 7.1 min, 10% B at 10 min, 5% B at 10.2 min, 5% B at 13 min. The flow rate 
was 0.4 mL/min and the injected volume was 7 μL. Column temperature was maintained at 
35 °C and sample temperature was 10 °C. Chromatograms of anthocyanidins and other 
flavonoids were acquired at 525 nm and 350 nm, respectively. We performed mass 
spectrometry with the following conditions: the positive-ion (PI) mode for anthocyanidins and 
negative-ion (NI) mode for other flavonoids; capillary voltage of 3.00 kV; cone voltage of 27 V 
for PI mode and cone voltage of 50 V for NI mode; desolvation gas (N2) flow of 800 L/h; cone 
gas flow of 50 L/h; collision gas flow of 0.12 mL/min; collision energy of 23 eV; desolvation 
temperature of 400 °C; source temperature of 150 °C; and scanning range of 100–1000 (m/z) 
units.  

Transcriptome data for blue-petals cultivars of N. colorata have been obtained from 
previous tissue transcriptome sequencing data. The transcriptome material of the white-petal 
cultivars was taken in the same way as the previous method, and we obtained the 
transcriptome data of the petals, carpel, sepal, stamens, leaves and roots of the white-petal 
cultivars. They were analysed to obtain expression values of each gene in different tissues. 

For the qPCR quantification of floral color genes, the total RNAs from leave of 12 
coloured water lilies (N. ‘Perri’, N. ‘Kala sunlight’, N. ‘Moon light’, N. ‘Ox eye’, N. ‘Panama 
Pacific’, N. ‘Fox fire’, N. ‘Hilary’, N. ‘Danquanshi’, N. ‘Islamda’, N. ‘Indian red’, N. ‘campfire’, 
and N. ‘Ganna’) were extracted. These include thee yellowish petal water lilies (N. ‘Perri’, N. 
‘Kala sunlight’, and N. ‘Moon light’), six bluish or purplish petal water lilies (N. ‘Ox eye’, N. 
‘Panama Pacific’, N. ‘Fox fire’, N. ‘Hilary’, N. ‘Danquanshi’, and N. ‘Islamda’), and three reddish 
water lilies (N. ‘Indian red’, N. ‘campfire’, and N. ‘Ganna’).  

The reference genes for qPCR were AP47 (NC4G0238290) and ACT11 
(NC13G0025720), which were chosen based on a previous study89. The specific primers were 
designed using Roche LCPDS2 software. For ACT11 gene NC13G0025720, the forward and 
reverse primers are GTCTGGATTGGAGGGTCTA and CTCATCATATTCTGCCTTCGC. For 
the AP47 gene NC4G0238290, the forward and reverse primers are 
ACAATCAAGGAATTGGGTAGG and CTGGCACTTTGACTACAACTC. For ANS gene 
NC9G0274510, the forward and reverse primers are CTTGATAATCCATGTGGGCG and 
CCTCACCTTCTCCTTGTTC. For the UDPGT gene NC8G0218160, the forward and reverse 
primers are CCAGCCGACCAACTGTAGATA and GCACTCTCTTTCCATTCGT. The reaction 
system was: 2*ChamQ SYBR qPCR Master Mix, 5 μL; 10 μM Forward primer, 0.2 μL; 10 μM 
Reverse primer, 0.2 μL; cDNA, 1 μL; Nuclease-free H2O, 3.6 μL. PCR cycles 95 °C 30s; 95 °C	  
10 s, 60 °C 30 s, 40 cycles. Each study was repeated three times. 
 

Results and Discussion 

Analysis of the expression atlas of genes for the delphinidin-modification enzyme, Uridine 
Diphosphate glucuronyltransferase (UDPGT), showed that two genes in N. colorata 
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(NC3G0231100 and NC8G0211600) had the highest expression values in blue petals 
(Supplementary Fig. 43). We compared the genes involved the floral pigment biosynthetic 
pathway obtained from transcriptomes of the blue- and white-petal cultivars. The two UGTs 
also had the highest expression values in white petals and did not show significant expression 
bias between the blue and white cultivars. However, we identified two genes that have 
significantly higher expression in the blue petal than in white petal. One gene encodes 
anthocyanidin synthase (ANS, NC9G0274510) and the other encodes UDPGT 
(NC8G0218160). The predicted products of the proteins encoded by these two genes are the 
last two steps of this pathway; therefore, the two genes are the key genes for the synthesis of 
blue pigments in the petals, suggesting a potentially critical role of these genes in blue 
colouration. 

Based on the qPCR analyses, we identified the expression of the ANS gene 
NC9G0274510 and the UDPGT gene NC8G0218160 across the 12 different petal-coloured 
water lilies (Supplementary Fig. 44). Using both reference genes as control, AP47 
(NC4G0238290) and ACT11 (NC13G0025720), we found similar patterns that this ANS gene 
was only highly expressed in the petal of N. ‘Fox fire’, which has blue-purple petals. However, 
this UDPGT gene was highly expressed in all the bluish petal water lilies and had very low 
expression levels in the yellowish or reddish petal water lilies. These also suggest these two 
genes are potentially regulators responsible for synthesizing the blue anthocyanins in the 
petals. 
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Supplementary Fig. 43 | Expressional profile of UDPGT genes from different organs of Nymphaea 
colorata (blue). 
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Supplementary Fig. 44 | qPCR based expression profile of ANS and UDPGT genes from water lilies 
with different petal colours. a, The sampled 12 water lilies with three major classes of petal colours. b, 
Using AP47 as the reference gene, the expression of NC9G0274510 among the 12 water lilies. c, Using 
AP47 as the reference gene, the expression of NC8G0218160 among the 12 water lilies. d, Using 
ACT11 as the reference gene, the expression of NC9G0274510 among the 12 water lilies. e, Using 
ACT11 as the reference gene, the expression of NC8G0218160 among the 12 water lilies. Three 
biological repeats were performed independently and the values shown are the average value of three 
repeats. 
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8. Genomic basis of stress and immune signalling in N. 

colorata 

8.1  Expansion of N. colorata kinome 
We observed significant expansions of immune and stress-related genes (Extended Data Fig. 
9a) in N. colorata compared with Amborella. The angiosperm kinomes are usually larger than 
those in other land plants and other eukaryotes, with a multitude of functions including a 
significant role in plant immune and stress responses90. In N. colorata, we annotated a total of 
1,148 kinase genes, vastly exceeding the 647 kinases found in Amborella (Supplementary Fig. 
45).  

In land plants, the kinome form the largest gene family, and can be divided into two groups, 
receptor-like kinases (RLKs) usually located in the membrane and soluble kinases (SKs) 
usually located in the cytosol90. RLKs are responsible for sensing and transducing the 
extracellular environmental signals into the cell, while SKs are responsible for the signal 
cascade and activation of target transcription factors, which in turn activate the target genes to 
respond to the environmental stimuli. The kinome represents the largest gene family in land 
plant genomes; for example, the Arabidopsis genome encodes 942 kinase genes91, and the 
soybean kinome comprises 2,166 kinase genes92.  

In N. colorata, 1,148 kinase genes were annotated, which is 1.77 times greater than the 
647 kinase genes in Amborella and also greater than the 1,008 kinases in Arabidopsis (the 
number in the TAIR 10 annotation). The N. colorata kinome is also larger than the kinomes of 
the following species: Ricinus communis (868), Medicago truncatula (911), Cucumis sativus 
(776), Prunus persica (1,024), Citrus sinensis (1,018), Citrus clementina (1,145), Arabidopsis 
lyrata (998), Carica papaya (601), Vitis vinifera (877), Mimulus guttatus (992), Aquilegia 
coerulea (981), Brachypodium distachyon (1,041), Sorghum bicolor (1,093), Spirodela 
polyrhiza (784), and Zostera marina (743). Phylogenetic inference and locus analyses 
confirmed that the WGD and tandem duplication events contributed to the accumulation of 
kinase genes in the water lily genome (Supplementary Fig. 45). Note the N. colorata genome 
encodes 754 RLK genes, which has more members than the eudicot grape and Arabidopsis. 
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Supplementary Fig. 45 | The kinome tree of Nymphaea colorata and Amborella trichopoda. a, The 
tree was divided into two parts, receptor-like kinases usually located in the membrane and soluble 
kinases usually located in the cytosol. A total of 1,148 kinase genes were annotated in N. colorata, 
which is 1.77 times greater than the 647 kinases in Amborella and also more than the 1,026 kinases in 
Arabidopsis (we found a few more than in the previous report91). b, The distribution of kinase genes 
across the representative algae and land plants. The background colours indicate the numerical 
variation in each species. Note that N. colorata encodes the highest proportion of kinase genes 
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compared to gymnosperms and other earlier land plants. c, Example regions showing that tandem 
duplication and WGD contributed to the expansion of the N. colorata kinome. 
 

8.2  R genes in the N. colorata genome 
The plant R gene family is usually divided into three subfamilies according to their domain 
constitutions: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), and RPW8-NBS-LRR (RNL)93. The 
416 R genes in the N. colorata genome were divided into the three subfamilies as follows: 271 
CNLs, 129 TNLs, and 16 RNLs. According to the phylogenetic tree constructed using multiple 
representative land plants (Extended Data Fig. 9b), CNLs and TNLs expanded significantly in 
N. colorata, compared with only 89 CNLs and 15 TNLs in Amborella. Since CNLs have been 
implicated in bacterial pathogen response in soybean and Arabidopsis93, their expansion in N. 
colorata suggests that altered pathogen resistance may have contributed to the evolution of N. 
colorata. Similar to eudicots, there is a striking expansion of TNLs in N. colorata compared 
with Amborella (only 15 TNLs) and with none in 9 representative monocots. RNLs also 
expanded substantially in N. colorata, some eudicots, and gymnosperms, especially compared 
with 1 RNL in Amborella.  
 

8.3  Anti-fungal domain-containing genes in N. colorata 
Proteins with a stress-antifungal domain PF01657 (Pfam database, http://pfam.xfam.org) are 
involved in salt stress responses and have anti-fungal activities94. There were 102 anti-fungal 
domain-containing genes in N. colorata, in contrast with only 31 in the Amborella genome. The 
family of anti-fungal domain-containing genes was divided into six subfamilies according to the 
tree topology in this study. We found dramatic expansion of N. colorata genes (77 genes) in 
group V, in contrast with the 10 group V genes in Amborella (Supplementary Fig. 46). The 
dramatic expansion in the N. colorata genome suggests that these genes may have 
contributed to stress adaptation in this species. Compared with Amborella, we also found a 
dramatic expansion of the the xylanase inhibitor (TAXi domain) gene family in N. colorata (232 
in N. colorata versus 70 in Amborella) (Supplementary Fig. 47). 
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Supplementary Fig. 46 | Phylogeny of anti-fungal domain-containing stress-related genes using 
sequences from Amborella trichopoda, Nymphaea colorata, and Arabidopsis thaliana.  
 

 
 
Supplementary Fig. 47 | Phylogenetic tree of the TAXI domain-containing gene family. The tree 
was divided into 26 subfamilies according to the tree topology, with diversification at the ancestor of 
angiosperms. Explosive expansion was found in subfamily 1. 
 

8.4  Expansion of the WRKY gene family in N. colorata 
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The WRKY transcription factor genes are widely distributed from chlorophyte algae to 
flowering plants, with roles in signalling pathways such as biotic and abiotic stress pathways 
as well as growth and development95. The N. colorata genome contains 69 WRKY genes, 
which is more than the 32 genes in Amborella and 39 in Ginkgo (Supplementary Fig. 48). The 
N. colorata WRKY genes fall into subfamilies I, IIa, IIb, IIc, IId, IIe, and III. We also found three 
WRKY gene clusters in the N. colorata genome, 
NC4G0199920-NC4G0199930-NC4G0199940-NC4G0199950-NC4G0199960, 
NC6G0255840-NC6G0255850-NC6G0255860, 
NC6G0255970-NC6G0255980-NC6G0255990, 
NC8G0124330-NC8G0124390-NC8G0124520, which could partially account for the large size 
of the WRKY family in N. colorata.  
 

 

Supplementary Fig. 48 | Phylogenetic tree of WRKY genes and their subfamily classification. 
WRKY transcription factors are components of plant signalling networks that regulate plant responses 
to biotic and abiotic stresses; they are also involved in plant developmental processes. WRKYs are well 
studied in the model plants Arabidopsis and rice. All transcription factors were compared with 
Amborella, and the number of WRKY genes in N. colorata was twice the number in Amborella. 
Subfamilies I, IIa, IIc, and IId had 6, 5, 6, and 8 WRKY genes, respectively. WRKYs from subfamilies 
I and IIc have been characterized as key transcription factors that regulate both biotic and abiotic 
stresses, and they are important players in plant defence responses as shown in Arabidopsis and rice. 
Therefore, the expanded WRKY family in N. colorata may have contributed to the wide adaptation of 
water lily compared with the narrow distribution of Amborella. 
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Others

Tandem duplication 
Arabidopsis thaliana 
Vitis vinifera 
Oryza sativa 
Nymphaea colorata 
Amborella trichopoda

Species WRKY
Arabidopsis thaliana 73
Populus trichocarpa 102
Beta vulgaris 43
Solanum lycopersicum 81
Vitis vinifera 62
Nelumbo nucifera 64
Oryza sativa 94
Sorghum bicolor 97
Ananas comosus 56
Musa acuminata 153
Spirodela polyrhiza 43
Zostera marina 44
Nymphaea colorata 69
Amborella trichopoda 32
Ginkgo biloba 39
Picea abies 71
Pinus taeda 100
Selaginella moellendorffii 19
Physcomitrella patens 32
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