Table S1: Description of sampling points.

District	Sample	Samples	Description of samples	Anthropogenic activities
Municipality	sites	collected		
Amathole	S1	Irrigation water	Irrigation water is sourced from a river. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion, dumping of refuse, recreational activities, swimming, and domestic activities in the source river.
	52	Irrigation water and soil	Irrigation water is sourced from a dam. Type of irrigation used is a sprinkler irrigation system. Irrigation is done once in 3 days between 8 am and 3 pm on each day. Soil type is loam and crops grown on it include cabbage, broccoli, butternut, spinach and lettuce.	Animal intrusion in the dam. Soil amendment is with inorganic fertilizer (LAN).
	S3	Irrigation water and soil	Irrigation water is sourced from an artificial pond which receives water from both rainfall and downstream river. Type of irrigation used is a sprinkler irrigation system. Irrigation is done once a day between 8 am and 12 pm, and none on rainy days. Soil type is clay-loam and crops grown on it include cabbage, broccoli, lettuce and onions.	Animal intrusion in the pond and source river. Soil amendment is with livestock waste.
	S4	Irrigation water	Irrigation water is sourced from a dam. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion and domestic use of water.
	S5	Irrigation water and soil	Irrigation water is sourced from an artificial pond, which primarily receives water from the effluents of a poultry and piggery farm. Type of irrigation used is the sprinkler irrigation system. Irrigation is done once every day between 8 am and 5 pm except on rainy days. Soil type is loam and crops grown on it include spinach and cabbage.	Discharge of swine and poultry effluents into the pond. Soil amendment is with poultry and swine faeces.
	S6	Irrigation water	Irrigation water is sourced from a river. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion, recreational activities, swimming, and domestic activities in the source river.
	S7	Irrigation water and soil	Irrigation water is sourced from a river. Type of irrigation used is a sprinkler irrigation system. Irrigation is done twice a week between 8 am and 4 pm on each day. Soil type is clay and crops grown on it include pumpkin.	Animal intrusion, washing of cloths, bathing and other domestic activities in the source river. Soil amendment is with organic compost of livestock origin.

	58	Irrigation water and soil	Irrigation water is sourced from a river. Type of irrigation used is a sprinkler irrigation system. Irrigation is done twice a day between 8 am and 12 pm and between 2 pm and 5 pm and none on days with heavy rainfall. Soil type is clay-loam and crops grown on it include cabbage, lettuce and spinach.	Animal intrusion in both river and close to farm sites. Soil amendment is with cow dung.
	S9	Irrigation water	Irrigation water is sourced from a dam. Type of irrigation used is a sprinkler irrigation system. Irrigation is done once a day and none on days with heavy rainfall.	Animal intrusion
		Soil	Soil type is loamy. Crops grown on it include lettuce and spinach.	Soil amendment is with composted animal waste.
	S10	Irrigation water	Irrigation water is sourced from a river. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion, washing of cloths, and fishing.
	S11	Irrigation water and soil	Irrigation water is sourced from a river and manually irrigated on a backyard farm using watering cans. Soil type is loam and crops grown on it include spinach.	Animal intrusion, swimming, and washing of clothes in the source river. No soil amendment
	S12	Irrigation water and soil	Irrigation water is sourced from treated municipal water. Type of irrigation used is a sprinkler irrigation system. Irrigation is done once a day from 8 am to 1 pm. Soil type is clay-loam and crops grown on it include cabbage, lettuce, onions and spinach.	No visible anthropogenic activity in the water source. Soil amendment is done using inorganic fertilizer (LAN).
	S13	Irrigation water and soil	Irrigation water is sourced from a river. Type of irrigation used is the sprinkler irrigation system. Irrigation is done once a day from 8 am to 12 pm. Soil type is clay-loam and crops grown on it include cabbage, broccoli, lettuce and spinach.	Animal intrusion in the river. Soil amendment is with inorganic fertilizer (LAN).
	S14	Irrigation water and soil	Irrigation water is sourced from a dam. Type of irrigation used is a sprinkler irrigation system. Irrigation is done once a day. Soil type is clay and crops grown on it include cabbage, lettuce and spinach.	No observed anthropogenic activity in the dam. Soil amendment is with inorganic fertilizer (LAN).
Chris Hanni	S15	Irrigation water	Irrigation water is sourced from a river. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion
	S16	Irrigation water and soil	Irrigation water is sourced from a river. Type of irrigation used is the sprinkler irrigation system. Irrigation is done	Animal intrusion. Soil amendment is with organic compost of animal origin

Microorganisms 2020, 8, 1206; doi:10.3390/microorganisms8081206

www.mdpi.com/journal/microorganisms

			once a day. Soil type is loam and crops grown on it include	
S1	7 Irrigation and soil	water	Irrigation water is sourced from borehole groundwater. Types of irrigation used include sprinkler and drip	No anthropogenic activity in the water source. Soil amendment is with inorganic
			irrigation system. Irrigation is done twice a day. Soil type	fertilizer (LAN).
			is clay-loam and crops grown on it include cabbage, lettuce,	
			broccoli and spinach.	
S1	8 Irrigation	water	Irrigation water is sourced from a river. Type of irrigation	Animal intrusion, receiving shed of WWTP
	and soil		used is the center pivot irrigation system. Irrigation is done	effluent. Soil amendment is with inorganic
			once a day. Soil type is loam and crops grown on it is fodder	fertilizer (LAN)
S1	9 Irrigation w	vater	Irrigation water is sourced from a river. Soil samples were not collected due to the inaccessibility of agricultural farms	Animal intrusion, dumping of refuse.

Note: For confidentiality sake, sampling sites are coded with S1-S19. All the information recorded in this table were gotten from the onsite survey as well as from farm owners and workers. Coordinates for each sampling site were retrieved using the "etrex-LEGENDH" GPS equipment. WWTP: Wastewater treatment plant. LAN: limestone ammonium nitrogen.

Target organisms	Target	Primer sequence (5'-3')	PCR cycling conditions	Amplicon	Reference
	gene			size (bp)	
Salmonella genus	invA	F: TATCGCCACGTTCGGGCAA	95 °C, 2min; 35[95 °C, 20 s; 57 °C, 15 sec;	, 2min; 35[95 °C, 20 s; 57 °C, 15 sec; 275	
		R: TCGCACCGTCAAAGGAACC	72 °C, 2 min] 72 °C, 7 min		
	ompC	F: ATCGCTGACTTATGCAATCG	95 °C, 2min; 35[95 °C, 20 s; 57 °C, 15 sec;	204	[3]
		R: CGGGTTGCGTTATAGGTCTG	72 °C, 2 min] 72 °C, 7 min		
Salmonella enterica	typh	F: TTGTTCACTTTTTACCCCTGAA	95 °C, 2min; 30[95 °C, 1 min; 57 °C, 1	401	[4]
serovar Typhimurium		R: CCCTGACAGCCGTTAGATATT	min; 72 °C, 2 min] 72 °C, 5 min		
Enterobacter cloacae	hsp60	F: GTAGAAGAA GGCGTGGTTGC	95 °C, 5 min; 30[94°C, 30 s; 57 °C, 30 s; 72	341	[5]
		R: ATGCATTCGGTGGTGATCATCAG	°C, 60 s] 72 °C, 5 min		
Klebsiella genus	gyrA	F: CGCGTACTATACGCCATGAACGTA	94 °C, 5 min; 35[94 °C, 30 sec; 55 °C, 45	441	[6]
		R: ACCGTTGATCACTTCGGTCAGG	sec, 72 °C, 45 sec] 72 °C, 10 min		
Klebsiella pneumoniae	16S-23S	F: ATTTGAAGAGGTTGCAAACGAT	94 °C, 5 min; 30[94 °C, 30 sec; 55 °C, 30	130	[7]
	ITS	R: TTCACTCTGAAGTTTTCTTGTGTTC	sec; 72 °C, 40 sec] 72 °C, 10 min		
Klebsiella oxytoca	pehX	F: GATACGGAGTATGCCTTTACGGTG	94 °C, 5 min; 30[94 °C, 30 sec; 55 °C, 30	343	[8]
		R: TAGCCTTTATCAAGCGGATACTGG	sec; 72 °C, 40 sec] 72 °C, 10 min		

Table S2: Primer sequence and PCR cycling conditions used for the molecular detection of members of Enterobacteriales

Antibiotic class	Genes	PCR primer sequence (5'–3')	PCR cycling condition	Amplicon size (bp)	Reference
Tetracyclines	tetA	F: GCTACATCCTGCTTGCCTTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	210	[9]
		R: CATAGATCGCCGTGAAGAGG	72 °C,1.5m]; 72 °C,5m		
	tetB	F: TTGGTTAGGGGCAAGTTTTG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	659	[10]
		R: GTAATGGGCCAATAACACCG	72 °C,1.5m]; 72 °C,5m		
	tetC	F: CTTGAGAGCCTTCAACCCAG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	418	[10]
		R: ATGGTCGTCATCTACCTGCC	72 °C,1.5m]; 72 °C,5m		
	tetD	F: AAACCATTACGGCATTCTGC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	787	[10]
		R: GACCGGATACACCATCCATC	72 °C,1.5m]; 72 °C,5m		
	tetE	F: AAACCACATCCTCCATACGC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	278	[11]
		R: AAATAGGCCACAACCGTCAG	72 °C,1.5m]; 72 °C,5m		
	tetG	F: GCTCGGTGGTATCTCTGCTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	468	[12]
		R: AGCAACAGAATCGGGAACAC	72 °C,1.5m]; 72 °C,5m		
	tetK	F: TCGATAGGAACAGCAGTA	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	169	[13]
		R: CAGCAGATCCTACTCCTT	72 °C,1.5m]; 72 °C,5m		
	tetL	F: TCGTTAGCGTGCTGTCATTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	267	[14]
		R: GTATCCCACCAATGTAGCCG	72 °C,1.5m]; 72 °C,5m		
	tetM	F: GTGGACAAAGGTACAACGAG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	406	[13]
		R: CGGTAAAGTTCGTCACACAC	72 °C,1.5m]; 72 °C,5m		
Sulfonamides	sulI	F: CGGCGTGGGCTACCTGAACG	94 °C,5m; 30[94 °C,30s; 65 °C,30s;	433	[15]
		R: GCCGATCGCGTGAAGTTCCG	72 °C,2m]; 72 °C,10m		

Table S3: The primer sequence and expected amplicon size used for the screening of resistance genes in members of Enterobacteriales

	sulII	F: GCGCTCAAGGCAGATGGCATT	94 °C,5m; 30[94 °C,30s; 65 °C,30s;	293	[15]
		R: GCGTTTGATACCGGCACCCGT	72 °C,2m]; 72 °C,10m		
Phenicols	cmlA1	F: CACCAATCATGACCAAG	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	115	[16]
		R: GGCATCACTCGGCATGGACATG	72 °C,1.5m]; 72 °C,5m		
	catI	F: AGTTGCTCAATGTACCTATAACC	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	320	[17]
		R: TTGTAATTCATTAAGCATTCTGCC	72 °C,1.5m]; 72 °C,5m		
	catII	F: ACACTTTGCCCTTTATCGTC	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	543	[17]
		R: TGAAAGCCATCACATACTGC	72 °C,1.5m]; 72 °C,5m		
Aminoglycosi	strA	F CTTGGTGATAACGGCAATTC	94 °C,4m; 30[94 °C,45s; 50 °C,45s;	348	[1]
des		R: CCAATCGCAGATAGAAGGC	72 °C,45s]; 72 °C,5m		
	aadA	F: GTGGATGGCGGCCTGAAGCC	94 °C,4m; 30[94 °C,45s; 50 °C,45s;	525	[1]
		R: AATGCCCAGTCGGCAGCG	72 °C,45s]; 72 °C,5m		
	aac(3)-IIa	F: CGGAAGGCAATAACGGAG	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	428	[17]
	(aacC2) ^a	R: TCGAACAGGTAGCACTGAG	72 °C,1.5m]; 72 °C,5m		
	aph(3)-Ia	F: ATGGGCTCGCGATAATGTC	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	600	[17]
	(aphA1)ª	R: CTCACCGAGGCAGTTCCAT	72 °C,1.5m]; 72 °C,5m		
	aph(3)-IIa	F: GAACAAGATGGATTGCACGC	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	510	[17]
	(aphA2) ^a	R: GCTCTTCAGCAATATCACGG	72 °C,1.5m]; 72 °C,5m		

PCR name	Targeted β-Lactamase(s)	Primer name	Primer sequence (5' –3')	Amplicon
	5		-	size (bp)
Simplex AmpC	АтрС	AmpC_for	TTCTATCAAMACTGGCARCC	550
		AmpC_rev	CCYTTTTATGTACCCAYGA	
Multiplex I TEM, SHV	TEM variants including TEM-1 and	MultiTSO-T_for	CATTTCCGTGTCGCCCTTATTC	800
and OXA-1-like	TEM-2	MultiTSO-T_rev	CGTTCATCCATAGTTGCCTGAC	
	SHV variants including SHV-1	MultiTSO-S_for	AGCCGCTTGAGCAAATTAAAC	713
		MultiTSO-S_rev	ATCCCGCAGATAAATCACCAC	
	OXA-1, OXA-4 and OXA-30	MultiTSO-O_for	GGCACCAGATTCAACTTTCAAG	564
		MultiTSO-O_rev	GACCCCAAGTTTCCTGTAAGTG	
Multiplex II CTX-M	Variants of CTX-M group 1 including	MultiCTXMGp1_for	TTAGGAARTGTGCCGCTGYAb	688
group 1, group 2 and	CTX-M-1, CTX-M-3 and CTX-M-15	MultiCTXMGp1-	CGATATCGTTGGTGGTRCCAT ^b	
group 9		2_rev		
	variants of CTX-M group 2 including	MultiCTXMGp2_for	CGTTAACGGCACGATGAC	404
	CTXM-2	MultiCTXMGp1-	CGATATCGTTGGTGGTRCCAT ^b	
		2_rev		
	Variants of CTX-M group 9 including	MultiCTXMGp9_for	TCAAGCCTGCCGATCTGGT	561
	CTX-M-9 and CTX-M-14	MultiCTXMGp9_rev	TGATTCTCGCCGCTGAAG	
CTX-M group 8/25	CTX-M-8, CTX-M-25, CTX-M-26 and	CTX-Mg8/25_for	AACRCRCAGACGCTCTAC ^b	326
	CTX-M-39 to CTX-M-41	CTX-Mg8/25_rev	TCGAGCCGGAASGTGTYAT ^b	
Multiplex III ACC, FOX,	ACC-1 and ACC-2	MultiCaseACC_for	CACCTCCAGCGACTTGTTAC	346
MOX, DHA, CIT and		MultiCaseACC_rev	GTTAGCCAGCATCACGATCC	
EBC (plasmid-mediated	FOX-1 to FOX-5	MultiCaseFOX_for	CTACAGTGCGGGTGGTTT	162
AmpC)		MultiCaseFOX_rev	CTATTTGCGGCCAGGTGA	
	MOX-1 MOX-2 CMX-1 CMX-8 to	MultiCaseMOX for	CCAACAACGACAATCCATCCT	895
	CMY-11 and CMY-19	MultiCaseMOX_rev	CCCATACCCCTAACTCTCCCAA	070
	DHA-1 and DHA-2	MultiCaseDHA_for	TGATGGCACAGCAGGATATTC	997
		MultiCaseDHA_rev	CTTTCACTCTTTCCCTATTCC	<i>,,,,</i>
	I AT-1 to I AT-3 BII -1 CMV-2 to MV-	MultiCaseCIT for		538
	7 CMV-12 to CMV-18 and CMV-21 to	MultiCaseCIT_rov		550
	CMY-23		ACCOACAGOGITAGGATAGI*	
	ACT-1 and MIR-1	MultiCaseEBC_for	CGGTAAAGCCGATGTTGCG	683
		MultiCaseEBC_rev	AGCCTAACCCCTGATACA	

Table S4: The primer sequence and expected amplicon size used for the screening of *AmpC* β-lactamase [1] and ESBLs in members of Enterobacteriales [44].

Multiplex IV VEB, PER	GES-1 to GES-9 and GES-11	MultiGES_for	AGTCGGCTAGACCGGAAAG	399
and GES		MultiGES_rev	TTTGTCCGTGCTCAGGAT	
	PER-1 and PER-3	MultiPER_for	GCTCCGATAATGAAAGCGT	520
		MultiPER_rev	TTCGGCTTGACTCGGCTGA	
	VEB-1 to VEB-6	MultiVEB_for	CATTTCCCGATGCAAAGCGT	648
		MultiVEB_rev	CGAAGTTTCTTTGGACTCTG	
Multiplex V GES and	GES-1 to GES-9 and GES-11	MultiGES_for	AGTCGGCTAGACCGGAAAG	399
OXA-48-like		MultiGES_rev	TTTGTCCGTGCTCAGGAT	
	OXA-48-like	MultiOXA-48_for	GCTTGATCGCCCTCGATT	281
		MultiOXA-48_rev	GATTTGCTCCGTGGCCGAAA	
Multiplex VI IMP, VIM	IMP variants except IMP-9, IMP-16,	MultiIMP_for	TTGACACTCCATTTACDG ^b	139
and KPC	IMP-18, IMP-22 and IMP-25	MultiIMP_rev	GATYGAGAATTAAGCCACYCT [♭]	
	VIM variants including VIM-1 and	MultiVIM_for ^c	GATGGTGTTTGGTCGCATA	390
	VIM-2	MultiVIM_rev ^c	CGAATGCGCAGCACCAG	
	KPC-1 to KPC-5	MultiKPC_for	CATTCAAGGGCTTTCTTGCTGC	538
		MultiKPC_rev	ACGACGGCATAGTCATTTGC	

^aAnnealing position within the corresponding open reading frame (from the base A of start codon ATG).

^bY=T or C; R=A or G; S=G or C; D=A or G or T.

^cThis primer pair was previously described by [18].

References

- 1. Velusamy, S.; Gillespie, B. E.; Lewis, M. J.; Nguyen, L. T.; Headrick, S. I.; Schukken, Y. H.; Oliver, S. P. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. *Veterinary Microbiology* **2007**, *124*, 319–328, doi:10.1016/j.vetmic.2007.04.040.
- 2. Abouzeed, Y. M.; Hariharan, H.; Poppe, C.; Kibenge, F. S. B. Characterization of Salmonella isolates from beef cattle, broiler chickens and human sources on Prince Edward Island. *Comparative Immunology, Microbiology and Infectious Diseases* **2000**, *23*, 253–266, doi:10.1016/S0147-9571(99)00079-X.
- 3. Jawad, A. A.; Al-charrakh, A. H. Outer Membrane Protein C (ompC) Gene as the Target for Diagnosis of Salmonella Species Isolated from Human and Animal Sources. *Avicenna Journal of Medical Biotechnology* **2016**, *8*, 42–45.
- 4. Olsen, J. E.; Aabo, S.; Rasmussen, O. F.; Rossen, L. Oligonucleotide probes specific for the genus Salmonella and for Salm. typhimurium. *Letters in Applied Microbiology* **1995**, *20*, 160–163, doi:10.1111/j.1472-765X.1995.tb00416.x.
- 5. Akbari, M.; Bakhshi, B.; Peerayeh, S. N. Particular distribution of Enterobacter cloacae strains isolated from urinary tract infection within clonal complexes. *Iranian Biomedical Journal* **2016**, *20*, 49–55, doi:10.7508/ibj.2016.01.007.
- 6. Brisse, S.; Verhoef, J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. *International Journal of Systematic and Evolutionary Microbiology* **2001**, *51*, 915–924.
- 7. Turton, J. F.; Perry, C.; Elgohari, S.; Hampton, C. V. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. *Journal of Medical Microbiology* **2010**, *59*, 541–547, doi:10.1099/jmm.0.015198-0.
- 8. Kovtunovych, G.; Lytvynenko, T.; Negrutska, V.; Lar, O.; Brisse, S.; Kozyrovska, N. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. *Research in Microbiology* **2003**, *154*, 587–592, doi:10.1016/S0923-2508(03)00148-7.

- 9. Mendez, B.; Tachibana, C.; Levy, S. B. Heterogeneity of tetracycline resistance determinants. Plasmid 1980, 3, 99–108, doi:10.1016/0147-619X(80)90101-8.
- 10. Marshall, B.; Tachibana, C.; Levy, S. B. Frequency of tetracycline resistance determinant classes among lactose-fermenting coliforms. *Antimicrobial agents and chemotherapy* **1983**, *24*, 835–40, doi:10.1128/AAC.24.6.835.
- 11. Marshall, B.; Morrissey, S.; Flynn, P.; Levy, S. B. A new tetracycline-resistance determinant, class E, isolated from Enterobacteriaceae. *Gene* **1986**, *50*, 111–117, doi:10.1016/0378-1119(86)90315-X.
- 12. Zhao, J.; Aoki, T. Nucleotide Sequence Analysis of the Class G Tetracycline Resistance Determinant from Vibrio anguillarum. *Microbiology and Immunology* **1992**, *36*, 1051–1060, doi:10.1111/j.1348-0421.1992.tb02109.x.
- 13. Warsa, U. C.; Nonoyama, M.; Ida, T.; Okamoto, R.; Okubo, T.; Shimauchi, C.; Kuga, A.; Inoue, M. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. *The Journal of antibiotics* **1996**, *49*, 1127–32, doi:10.7164/antibiotics.49.1127.
- 14. Burdett, V.; Inamine, J.; Rajagopalan, S. Heterogeneity of tetracycline resistance determinants in Streptococcus. Journal of bacteriology 1982, 149, 995–1004.
- 15. Kerrn, M. B.; Klemmensen, T.; Frimodt-Møller, N.; Espersen, F. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. *Journal of Antimicrobial Chemotherapy* **2002**, *50*, 513–516, doi:10.1093/jac/dkf164.
- 16. Post, V.; Hall, R. M. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. *Antimicrobial agents and chemotherapy* **2009**, *53*, 2667–71, doi:10.1128/AAC.01407-08.
- 17. Maynard, C.; Bekal, S.; Sanschagrin, F.; Levesque, R. C.; Brousseau, R.; Masson, L.; Lariviere, S.; Harel, J. Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin. *Journal of Clinical Microbiology* **2004**, *42*, 5444–5452.
- 18. Ellington, M. J.; Kistler, J.; Livermore, D. M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. *Journal of Antimicrobial Chemotherapy* **2007**, *59*, 321–322, doi:10.1093/jac/dkl481.