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Given the high prevalence of Tuberculosis (TB) and the mortality rate associated with the disease,

numerous models, such as the Gammaitoni and Nucci (GN) model, were developed to model the

risk of transmission. These models typically rely on a quanta generation rate as a measurement of

infectivity. However this state cannot be measured directly.

Since the quanta generation rate cannot be measured directly, the unique contribution of this work is

the development of state estimators to estimate the quanta generation rate from available measurements.

Towards this end, the GN model is adapted into an augmented single-room GN model, and a simplified

two-room GN model. A sensitivity analysis is performed on both models to determine the effects of

deviation of parameters and the effect thereof on the uncertainty of the quanta state. An algebraic

identifiability analysis is performed on the models to determine whether the parameters are identifiable

and distinguishable from one another.

An observability analysis shows that both models are observable, i.e. it is theoretically possible

to estimate the number of quanta (the quanta state) and the quanta generation rate given available
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measurements. An additional measurement (rate of change of the measurable variable) is added to

increase the observability of the models. Kalman filters are used to estimate the quanta state.

First, a continuous-time extended Kalman filter (CEKF) is used for both adapted models using a

simulation and measurement time of 60s. Reasonable quanta state estimates are achieved in both

cases. A more realistic scenario, with a measurement rate of 1 day, is used next. For these estimates, a

hybrid extended Kalman filter (HEKF) is used. Performance of the filter degrades for the quanta state

estimates of the HEKFs. The effects of filter tuning and a greater deviation in initial estimates are also

investigated and compared.

The CEKFs, the adapted models, and real-time measurements could potentially be used in a control

system feedback loop to reduce the transmission of TB in confined spaces such as hospitals.
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LIST OF ABBREVIATIONS

TB Tuberculosis

M. tb Mycobacterium tuberculosis

GN Gammaitoni and Nucci

KF Kalman filter

EKF Extended Kalman filter

CEKF Continuous-time extended Kalman filter

HEKF Hybrid extended Kalman fitler

UKF Unscented Kalman filter

EnKF Ensemble Kalman filter

MHE Moving horizon estimator

WR Wells-Riley

SR Single-room

TR Two-room

DR Dose-response
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis (M. tb) [1]. In most

cases the disease infects the lungs (pulmonary TB). TB is most commonly spread when droplet nuclei,

containing Mycobacterium tuberculosis bacilli, are expelled from persons with active pulmonary

TB and inhaled by susceptible individuals. Estimates show that a quarter of the world’s population

is latently infected with TB. Latently infected persons are infected with the disease but are not

symptomatic. Approximately 5-10% of these persons will become actively infected, with an estimated

10 million world-wide cases of TB in 2018 [1, 2, 3, 4]. TB is one of the top 10 causes of death

globally.

Given the high prevalence of TB and the mortality rate associated with the disease, numerous models

were developed over the years to model risk of transmission, especially for confined spaces. The

Wells-Riley (WR) model is commonly used to model such risk [5, 6, 7]. Another popular model is the

Gammaitoni and Nucci (GN) model [8]. It was shown that the WR and GN models are fundamentally

the same, but that unlike the WR model, the GN model allows for the use of nonsteady-state conditions

of airborne infectious particles [9]. Additionally, the GN model is in state-space format, which makes

it suitable for the design of a state estimator that can estimate unknown states [10]. Other notable

models include the Mass Action and Riley, Murphy and Riley model [9, 11].

An important parameter in TB transmission models is the quanta state. Quanta is defined by [5] as the

number of droplet nuclei that would infect 63.2% of exposed individuals to that number of droplet
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CHAPTER 1 INTRODUCTION

nuclei. It quantifies the infectiousness of the airborne agent. In other words, the infectiousness of

the disease and the number of the infectious agent in the room can be expressed by the number of

quanta [9]. For the remainder of this work, the number of quanta is referred to as the quanta state.

The difference of each individual’s immunological response to the disease and the characteristics of

the pathogen make it impossible to measure quanta directly. Although quanta is a theoretical unit of

measure, it allows one to mathematically compare different scenarios of risk of transmission and how

control mechanisms may affect the risk of transmission [12, 13].

There is considerable variability in infectiousness between patients with respiratory diseases [6]. The

quanta generation rate is defined as the rate at which quanta is produced by infective people [8]. Quanta

generation rate estimates per infectious individual range from 1 - 10 quanta · h−1 for the rhinovirus

and 15-128 quanta · h−1 for influenza [14]. In the case of TB, [15] give 1 - 50 quanta · h−1 as a

suitable range for the quanta generation rate, whereas others indicate a range of 1.25 - 60 quanta · h−1

[16, 17]. In the case of an intubation-related outbreak, the estimate can go as high as 30840 quanta ·

h−1 [8, 9, 17]. If this quanta generation rate in a TB transmission model is can be estimated, rather

than back-calculated, which is the common approach, it will provide a better indication of the risk of

transmission.

The quanta generation rate parameter is often back-calculated, and not estimated as in this work. Back-

calculating this parameter can yield significantly different results, depending on whether a steady-state

of a dynamic model is used. For example, the WR model can be manipulated to back-calculate a

quanta generation rate. The spread of influenza in a Boeing 737 was back-calculated with both a

steady-state and a dynamic WR model in [14]. Quanta generation rates of 15 and 77 quanta · h−1 were

back-calculated using the steady-state WR model for air exchange rates of 0.1 and 0.5/h respectively,

whereas quanta generation rates of 79 and 128 quanta · h−1 were calculated using the dynamic WR

model from the same data. Similar results were also obtained by [16] and [17].

Because of the variability of the quanta state and the ranges of the estimates, the uncertainty of this

parameter is large. The problem of using backwards calculation is that much of the internal dynamics

are lost and only the end result is taken into account. Backwards calculating the quanta generation rate

can lead to an incorrect estimate thereof and most often does not account for non-steady-state cases

such as varying ventilation rates or varying number of infectors.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

For experiments conducted at the AIR facility in eMalahleni, South Africa, a quanta generation rate of

2.5 quanta · h−1 was calculated using a Nelder-Mead search algorithm [4]. Although this method is

more accurate than back-calculation, it is not suited for a control system feedback loop or for real-time

estimates.

1.1.2 Research gap

The standard GN model contains uncertainty lumped into one parameter and any deviation of the

other model parameters will result in a compensation in the said parameter, causing an incorrect

estimate of the estimated parameter. If the parameter can be estimated more accurately, given noisy

measurements and in real time, the models along with the estimators can be used in a control system to

more efficiently reduce the risk of transmission.

1.2 RESEARCH OBJECTIVE

The aim of this work is to estimate the quanta generation rate for risk of transmission as applied to a

multi-room model, and to reduce the uncertainty that is present when estimating this parameter.

1.3 APPROACH

Two models are investigated, a single-room and multi-room model. The two models will be brought

into a form that is more suited to the estimation requirements by estimating the parameter containing

most of the uncertainty. The sensitivity to deviation of the parameters will also be investigated to

determine the effect of the uncertainty in each of the parameters.

The models are analysed using control systems theory to determine whether estimation is possible

and state estimators are then designed to estimate the model states. Different estimators are used and

compared to determine the viability given different measurement intervals.

The effect of estimator tuning parameters and different initial estimates are also compared. Data from

the AIR (Airborne Infections Research) facility and from literature are used to simulate the models

and test the estimators.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

1.4 RESEARCH CONTRIBUTION

This research describes a method to estimate in real-time the number of quanta, i.e., the infectiousness

of TB in a room or ward and provides a foundation on which to implement autonomous control of the

reduction in the transmission of TB through single- and multi-room environments.

1.5 RESEARCH OUTPUTS

This research led to the following publications:

• D. Strydom, R. R. Küsel, and I. K. Craig, "When is it appropriate to model transmission of

tuberculosis using a dose response model?" IFAC-PapersOnLine, vol. 50, no. 2, pp. 31-36, 2017

• D. Strydom, I. K. Craig, and J. D. le Roux, "State Estimation for Non-linear State-space

Transmission Models of Tuberculosis", Risk Analysis, Submitted

1.6 OVERVIEW OF STUDY

Since the quanta generation rate cannot be measured directly, the unique contribution of this work is

the development of state estimators to estimate the quanta generation rate from available measurements.

Towards this end, the GN model is adapted into an augmented single-room GN model, and a simplified

two-room GN model.

Both models are shown to be observable, i.e. it is theoretically possible to estimate the quanta

state given available measurements. Kalman filters are used to estimate the quanta state. First, a

continuous-time extended Kalman filter (CEKF) is used for both adapted models using a simulation

and measurement time of 60s. Accurate quanta state estimates are achieved in both cases for initial

quanta generation rates of 150 quanta ·d−1. The NRMSE of the augmented single-room model is 29.4

times smaller than the standard single-room model and the simplified two-room model is 420.3 times

smaller than the standard two-room model. Comparatively, the initial quanta generation rates of the

standard models would have to be guessed to within 2.5 quanta ·d−1 to achieve better estimates. A

more realistic scenario, with a measurement rate of 1 day, is used next. For these estimates, a hybrid

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

extended Kalman filter (HEKF) is used. Poor quanta state estimates are achieved. The HEKFs, the

adapted models, and real-time measurements could potentially be used in a control system feedback

loop to reduce the transmission of TB in confined spaces such as hospitals.

The models in this work are simulated to mimic the readings from the multi-room AIR (Airborne

Infections Research) facility in eMalahleni, South Africa that studies the risk of transmission of TB

[4, 18, 19]. The CEKFs and HEKFs are then used to see if one can estimate the states and quanta

generation rates of the simulated models.

Different risk of transmission models from literature are presented in Chapter 2 together with model

modifications that allow for improved parameter estimation. Sensitivity and identifiability analyses are

performed in Chapter 3. Observability analyses are performed in Chapter 4 to determine whether the

quanta parameter can be theoretically estimated. Chapter 5 shows the development of continuous-time,

hybrid non-linear state estimators, and the simulation results obtained. Chapters 6 and 7 discuss the

results and conclude the findings respectively.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 TUBERCULOSIS AND RISK OF

TRANSMISSION MODELS

2.1 CHAPTER OVERVIEW

This chapter describes continuous-time nonlinear state-space risk of transmission models that simulate

the infection of uninfected (susceptible) individuals by infectious individuals. Two models are presented

that model the risk of transmission in single- and two-room cases. The models are then modified to

better allow estimation of the model states. Simulation data for the models are presented, which were

used to simulate the risk of transmission at a multi-room AIR (Airborne Infections Research) facility

in eMalahleni, South Africa.

2.2 AIR EXPERIMENT

The multi-room environment considered is an AIR (Airborne Infections Research) facility in eMa-

lahleni, South Africa [4, 18, 19]. The standard GN model only works if the infectious individuals

and susceptible individuals are in the same room [4]. Therefore, a modified two-room GN model is

used in this work [4], where the infectious individuals and susceptible individuals are separated and

placed in adjacent rooms. This two-room GN model is used to simulate the spread of the disease in

the AIR facility [4, 18]. The two-room GN model also incorporates an incubation period which is not

accounted for in the GN model [4].

Simulation data are used to estimate the quanta parameters for risk of transmission of TB models as

applied to a single and multi-room environment from published papers of experiments conducted at

the AIR facility in eMalahleni, South Africa [4, 18, 19]. As in the AIR experiment, sentinel guinea
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

pigs are often used to measure the risk of transmission of TB [4, 20]. The AIR facility has three 2-bed

inpatient wards that are connected by airtight ventilation systems to two identical rooms containing

sentinel guinea pigs [4, 18]. The air is vented from the wards into the animal rooms. The air in the

wards is assumed to be well mixed with the help of paddle fans to circulate the air in the room. A basic

layout of the facility is shown in Figure 2.1.

Figure 2.1. Basic layout of AIR facility in eMalahleni, South Africa [4].

If the ward air was not well mixed, zonal models incorporation the proximity to the source of the

infection would have to be considered [21, 22, 23].

2.3 STATE-SPACE REPRESENTATION

State-space representations can be used to describe numerous processes including processes in chem-

istry, biology, physics and engineering [10]. If a mathematical model can be derived for a process, the

model can be used to control the process and give information about the process.

State-space models can represent linear and nonlinear systems, and although most real world processes

are nonlinear, linear estimation and control is much more accessible and better understood [10].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

The use of state-space representations not only allows the modelling of nonlinear systems, but also

systems with nonzero initial conditions. Another advantage of using state-space includes modelling

systems with multiple inputs and outputs [24].

A state-space model consists of a set of first order differential equations of the states and an algebraic

equation describing the output as a function of the states. A general non-linear state-space model can

be written as:
ẋ = f (x)+g(x)u

y = h(x),
(2.1)

where x is the state vector, ẋ is the derivative of the state vector with respect to time, y is the output

vector, u is the input vector, f is the system function, g is the input function in terms of x, and h is the

output function.

A linear state-space model can be written as:

ẋ = Ax+Bu

y = Zx+Du,
(2.2)

where A is the system matrix, B is the input matrix, Z is the output matrix and D is the feedforward

matrix.

2.4 MODEL DESCRIPTIONS

Two distinct risk of transmission model scenarios are presented: a single-room and a two-room case. In

each case a standard and a modified model is presented. Table 2.1 summarises the states and parameters

of the single-room models in Section 2.4.1, and Table 2.2 summarises the states and parameters of the

two-room models in Section 2.4.2.

2.4.1 Single-room GN models

2.4.1.1 Standard single-room GN model

For the GN model (obtained from literature), it is assumed that the susceptible guinea pigs and the

infected individuals are in the same room, the guinea pigs do not become infectious (they do not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

contribute to new infections of susceptible guinea pigs), and that the three wards are combined into a

single space.

The GN transmission model is shown in (2.3) [8]:

Ṡ =−
( p

V

)
CS

Ċ = φ Iw− F
V C,

(2.3)

where S is the number of susceptible animals and C is the number of quanta in the room. As per

the model definition in [8], variables S and C are considered as continuous and real. The pulmonary

ventilation rate p, the room volume V , and the quanta generation rate per infectious individual φ ,

are constants. The number of infectious individuals in a room, i.e., the number of sick patients, is

known a-priori and is represented by Iw. The flow rate of air F is measured by means of a SCADA

system.

The number of infected animals is measured through the diagnosis of TB. Therefore, the number of

susceptible animals S is equal to the difference between the initial number of susceptible animals in

the room and the number of infected animals.

Tuberculin skin tests (TST) are used at the AIR facility to measure whether an animal is infected [18].

This is a common test which is easy to administer and evaluate [25] to diagnose TB in both patients

and guinea pigs [26]. If the TST results in induration of >5 mm the animal or patient is assumed to be

infected with TB. The specificity of the test for humans is reported as between 59% and 97%, and

the sensitivity as 77% [27, 28]. The range of specificity is as a result of uncharacterized variance in

the health of patients tested. Since the AIR facility made use of highly susceptible sentinel guinea

pigs, there is little uncertainty whether guinea pigs will be infected if exposed to infectious particles.

Guinea pigs have been successfully used in numerous TB studies [6, 29, 30, 31, 32]. In addition, since

TSTs are conducted by medically trained personnel at the AIR facility, there is low uncertainty in the

diagnosis whether a guinea pig is infected or not [25].

Rewriting the model in (2.3) in state-space format with S = x1 and C = x2 gives:

ẋ1 =−βx1x2 +wx1

ẋ2 = φ Iw− F
V x2 +wx2 .

(2.4)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

Duayn
Highlight



CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

where β = p/V is the pulmonary ventilation rate over room volume, φ is the quanta generation rate.

Since the sentinel guinea pigs are highly susceptible to TB, the process noise is defined as additive zero-

mean Gaussian noise such that wx1 ∼
(

0,(ζ )2
)

, where ζ is 5% of the initial rate of change of x1,and

x10 is the initial condition of x1. As discussed in Section 1.1.1, the quanta generation rate generally

ranges between 24 quanta· d−1 to 60 quanta· d−1 A significant portion of the model uncertainty is

contained within this parameter. Therefore, the process noise for rate of change for x2 is modelled as

additive zero-mean Gaussian noise such that wx2 ∼
(

0,
(

0.05 dx2
dt |t=0

)2
)

, i.e., the standard deviation

is 5% of the initial rate of change in x2.

The state x1 is assumed measured as:

y = x1 + vx1 , (2.5)

where vx1 is zero-mean additive Gaussian measurement noise. The TST is very reliable specifically for

guinea pigs and therefore the measurement noise is defined as vx1 ∼
(

0,(0.02x10)
2
)

.

Table 2.1. Single-room GN model parameters.

Parameter Unit Description

S or x1 animals number of susceptible animals

C or x2 quanta number of quanta in the room

p m3 ·d−1 pulmonary ventilation rate

V m3 room volume

φ or x3 quanta · d−1· ind.−1 quanta generation rate per infectious individual

F m3· d−1 ventilation flow rate

Iw individuals number of infectious individuals

2.4.1.2 Augmented single-room GN model

The model states in (2.4) cannot be accurately estimated if there is a parameter mismatch between

the estimation and simulation models. Therefore, an updated model shown in (2.6) is suggested that

makes use of one additional quanta generation rate state:

ẋ1 =−βx1x2 +wx1

ẋ2 = x3Iw− F
V x2 +wx2

ẋ3 = wx3 ,

(2.6)
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

where x1 and x2 are as in (2.4), x3 represents the quanta generation rate. The process noise is defined

as additive zero-mean Gaussian noise such that wx1 ∼
(

0,(ζ )2
)

, wx2 ∼
(

0,
(

0.01 dx2
dt |t=0

)2
)

, and

wx3 ∼
(
0,482). ζ is calculated as for (2.4). The quanta state x3 is added to allow an estimator to

estimate the quanta generation rate parameter. Since the large uncertainty for the quanta generation

rate x3 is captured by wx3 , the uncertainty represented by wx2 is reduced as compared to (2.4).

Similar to (2.5), the state x1 is assumed measured as:

y = h(x)+ vx1 = x1 + vx1 . (2.7)

Similar to (2.5), the measurement noise is defined as vx1 ∼
(

0,(0.02x10)
2
)

.

It is important to include the additional state x3. If x3 is disregarded and if x1 is measured at a typical

sampling rate of 24 hours (1 day), the number of quanta in the room will reach a steady-state value

faster than an estimator can estimate. This can be seen from converting the equation for ẋ2 in (2.4) to

the Laplace domain:

X2 =
φ IwV

F
V
F s+1

. (2.8)

The shortest time constant of this first-order system is V
F = 513 seconds (the parameter values are

V = 112.84 m3 as given in Table 2.3, and the maximum value of F = 0.22 m3· −1 as shown in Figure

2.3). The settling time for such a system in response to a step input is 4V
F = 2052 seconds or just

over 30 minutes [24]. This is much faster than what an estimator can estimate if x1 is measured once

every 24 hours. The inclusion of the additional state x3 makes it possible for an estimator to correctly

estimate the value of x2.

The number of quanta in the room x2, reaches a steady-state value of x2 =
φ IwV

F , determined by setting

ẋ2 in (2.4) equal to zero. Thus, if the generation rate φ is increased, so does the quanta x2 present in the

room. Inversely, if the ventilation rate F is increased, the quanta in the room x2 decreases. Therefore,

if the ventilation rate F and number of infected individuals Iw are measured and V is known, the

number of quanta in the room x2 can be determined by estimating the quanta generation rate parameter

φ .
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

2.4.2 Two-room GN models

2.4.2.1 Standard two-room GN model

For the two-room GN model (which was also obtained from literature) [4], the room in which the

susceptible animals are in is called the animal room (animal room one from Figure 2.1) and the room

in which the infectious individuals are in is called the ward. The wards in Figure 2.1 were combined

into a single space since the air containing TB bacilli vented from each ward was combined before

being vented to the animal rooms. In this model the individuals who were exposed to the disease and

are not yet infected are labelled exposed individuals. The two-room GN model is described as:

ẋ1 =−
p

V1
x5x1 +wx1

ẋ2 =
p

V1
x5x1−αx2 +wx2

ẋ3 = αx2 +wx3

ẋ4 = φwIw−
Fw

Vw
x4 +wx4

ẋ5 =
Fin

Vw
x4−

Fout

V1
x5 +wx5 ,

(2.9)

where x1 is the number of susceptible animals in the animal room, x2 is the number of exposed animals,

x3 is the number of infected animals, x4 is the number of quanta in the ward, x5 is the number of quanta

in the animal room, p is the pulmonary ventilation rate of the susceptible animals, V1 is the volume

of the animal room, a is the incubation period of the disease, φw is the quanta generation rate per

infectious individual, Iw is the number of infectious individuals in the ward, Fw is the air extraction

ventilation rate of the ward, Vw is the volume of the ward, Fin is the ventilation rate of the air flowing

into the animal room from the ward, and Fout is the ventilation rate of the air extracted from the animal

room.

The process noise wxi ∼ (0,σ2
wi
) is modelled as additive zero-mean Gaussian noise. In accordance with

the discussion of model uncertainty in (2.4), the process noise distributions for (2.9) are as follows,

wx1 ∼
(

0,(ζ )2
)

, wx2,3 ∼
(

0,
(

0.05 dx2,3
dt |t=0

)2
)

and wx4,5 ∼
(

0,
(

0.05 dx4,5
dt |t=0

)2
)

.
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

The measurement is:

y = h(x)+ v =

x1 + vx1

x3 + vx3

 . (2.10)

Similar to (2.5) and (2.7), the measurement noise is defined as vx1 ∼
(

0,(0.02x10)
2
)

and vx3 ∼(
0,
(

dx3
dt |t=0

)2
)

.

Table 2.2. Two-room GN model parameters.

Parameter Unit Description

x1 animals number of susceptible animals

x2 animals number of exposed animals

x3 animals number of infected animals

x4 quanta number of quanta in ward

x5 quanta number of quanta in animal room

p m3· d−1 pulmonary ventilation rate

Vw m3 ward volume

V1 m3 animal room volume

φw quanta · d−1· quanta generation rate per infectious individual

Fw m3· d−1 ward flow rate

Fin m3· d−1 animal room intake flow rate

Fout m3· d−1 animal room outlet flow rate

Iw individuals number of infectious individuals

α d−1 incubation period delay rate

2.4.2.2 Simplified GN two-room model

The two-room GN model has the same estimation problem as the single-room GN model. Because

the quanta in the ward x4 tends to a steady-state value, the state will simply return to that steady-state

value when estimated. If the two-room GN model is modified by removing the incubation period

α and adding the quanta generation rate per infectious individual φw as an additional state, and it is

assumed the number of susceptible animals x1 is measurable, one can estimate the generation rate φw

and the number of quanta in the two rooms x4 and x5. The new model simplified from (2.9) is then

Department of Electrical, Electronic and Computer Engineering
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

given by:

ẋ1 =−
p

V1
x5x1 +wx1

ẋ4 = x6Iw−
Fw

Vw
x4 +wx4

ẋ5 =
Fin

Vw
x4−

Fout

V1
x5 +wx5

ẋ6 = wx6 .

(2.11)

The process noise wxi ∼ (0,σ2
wi
) is modelled as additive zero-mean Gaussian noise, and the distributions

are wx1 ∼
(

0,(ζ )2
)

, wx4 ∼
(

0,(0.01x40)
2
)

, wx5 ∼
(

0,
(

0.05 dx5
dt |t=0

)2
)

and wx6 ∼
(
0,482).

The measurement is now given as:

y = h(x)+ vx1 = x1 + vx1 . (2.12)

Similar to (2.5), (2.7) and (2.10), the measurement noise is defined as vx1 ∼
(

0,(0.02x10)
2
)

.

It is important to note that the modified models are fundamentally the same. For the single-room GN

model, if ẋ3 = 0, then the modified model is the same as the standard model. The same can be said for

the two-room models with the additions that the measurement of the two-room model is no longer the

infected animals but the susceptible animals and that the incubation period is not taken into account.

These alterations to the models allow for better estimation using filters.

2.4.3 Additional models considered

A dose-response (DR) model is discussed in Appendix A for which a sensitivity and identifiablity

analysis is performed. Because no measurements of the infectious dose are available, there is no benefit

in using the DR model [6, 19], and is not discussed further in this research.

Another model that can be considered in future research is one that uses exhaled air in the form of

carbon dioxide (CO2) levels as a measurement instead of ventilation rate [33]. If the sensors are well

placed, this could eliminate the assumption of well mixed air. The model however cannot distinguish

between exhaled air from an infectious or susceptible source.

In cases where the infected individuals become infectious, Susceptible-Exposed-Infectious-Recovered

(SEIR) models can be used to model the risk of transmission [15]. These models also make use of a
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

removed state, which describes the removal of infectious individuals from the model at a certain rate,

either due to being removed from the same space as the susceptible individuals or other means which

prohibit the spread of infection.

2.5 MODEL PARAMETERS AND SIMULATION DATA

Tables 2.3 to 2.6 show the initial model parameters taken from literature for the single- and two-room

models. model state values, the parameter values and the noise distribution for the four different

models discussed in Section 2.4.1. The data for the model states, and parameters were obtained from

an experiment that was conducted at the AIR (Airborne Infections Research) facility in eMalahleni,

South Africa [4] in which sentinel guinea pigs were used to measure the risk of transmission. The data

for the models were sampled at a sampling rate of 60 s. The quanta generation rate x2 was backwards

calculated from experimental data using a Nelder-Mead search algorithm [4, 19].

ζ is calculated for a more severe case of TB, i.e. an office building outbreak as shown in Table 5.12 in

Section 5.5. For this calculation, the ventilation rates are taken as the mean ventilation rate for the

room, Iw is taken as the maximum number of infectious individuals and the other model parameters

are shown in Tables 2.3 to 2.6. Solving for the steady state of the quanta in the ward for these values

and substituting into dx1/dt|t=0, one can calculate ζ for the single room model as:

ζ = 0.05 · pIwφx10
F , (2.13)

where use is made of x2(∞) = φ IwV
F .

ζ for the two room model can be calculated as:

ζ = 0.05 · pIwφV1Finx0

FwFout
, (2.14)

where use is made of x4(∞) = φ IwVw
Fw

and x5(∞) = φ IwV1Fin
FwFout

.

The infectious individual excitation data (number of infectious individuals in the ward Iw) is shown in

Figure 2.2. Figure 2.3 shows the ventilation rate out of the ward Fw. The ventilation rate into and out

of the animal rooms (Fin and Fout) are shown in Figure 2.4 [4].
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

Table 2.3. Initial state values, parameter values, and noise distribution for the standard single-room

GN model in (2.4) and (2.5):

Model states Initial Value

x1 90 animals

x2 0 quanta

Parameters Value

φ 60 quanta ·d−1

p 0.23 m3· h−1

V 112.84 m3

Process and measurement noise Distribution

wx1

(
0,(0.3312)2

)
wx2

(
0,(22.603)2

)
vx1

(
0,(1.8)2

)

Table 2.4. Initial state values, parameter values, and noise distribution for the augmented single-room

GN model in (2.6) and (2.7):

Model states Initial Value

x1 90 animals

x2 0 quanta

x3 60 quanta · d−1

Parameters Value

p 0.23 m3· h−1

V 112.84 m3

Process and measurement noise Distribution

wx1

(
0,(0.3312)2

)
wx2

(
0,(22.603)2

)
wx3

(
0,(48)2

)
vx1

(
0,(1.8)2

)
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS
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Figure 2.2. Measured number infectious individuals in the ward [4].
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Figure 2.3. Air flow out of the ward, measured in m3· s−1 [4]. The flow rate was measured in m3· s−1

but time scaled to m3· d−1 in the simulations.
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

Table 2.5. Initial state values, parameter values, and noise distribution for the standard two-room GN

model in (2.9) and (2.10):

Model states Initial Value

x1 90 animals

x2 0 animals

x3 0 animals

x4 0 quanta

x5 0 quanta

Parameters Value

φ 60 quanta · d−1

p 0.23 m3· h−1

Vw 112.84 m3

V1 3.4965 m3

α 0.03 d−1

Process and measurement noise Distribution

wx1

(
0,(0.6912)2

)
wx2

(
0,(0.0112)2

)
wx3

(
0,(0.0014)2

)
wx4

(
0,(23.603)2

)
wx5

(
0,(0.6918)2

)
vx1

(
0,(1.8)2

)
vx3

(
0,(0.007)2

)
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CHAPTER 2 TUBERCULOSIS AND RISK OF TRANSMISSION MODELS

Table 2.6. Initial state values, parameter values, and noise distribution for the simplified two-room GN

model in (2.11) and (2.12):

Model states Initial Value

x1 90 animals

x4 0 quanta

x5 0 quanta

x5 60 quanta · d−1

Parameters Value

p 0.23 m3· h−1

Vw 112.84 m3

V1 3.4965 m3

Process and measurement noise Distribution

wx1

(
0,(0.6912)2

)
wx4

(
0,(23.603)2

)
wx5

(
0,(0.6918)2

)
wx6

(
0,(48)2

)
vx1

(
0,(1.8)2

)
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Figure 2.4. Air flow out of and into the animal room, measured in m3· s−1 [4]. The flow rate was

measured in m3· s−1 but time scaled to m3· d−1 in the simulations.
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CHAPTER 3 SENSITIVITY AND

IDENTIFIABILITY

3.1 CHAPTER OVERVIEW

In this chapter sensitivity analyses were performed on the models in Section 2.4 to determine the

sensitivity to deviation in each of the model parameters. An identifiability analysis was performed on

the models in order to determine whether the model parameters are distinguishable given available

measurements.

3.2 SENSITIVITY ANALYSIS

In order to determine the sensitivity of the number of susceptible individuals to deviations of the model

parameters, the simulation parameters were deviated by increasing and decreasing the initial values by

10% from the values in Tables 2.3 and 2.5 [4, 19]. The results are shown in Figures 3.1 to 3.7, and the

sensitivities for the modified GN models, (2.6) and (2.11), are plotted separately.

Figure 3.1 shows a deviation of a single infectious patient Iw in the wards instead of a 10% deviation,

seeing that there cannot be a 10% increase in the number of patients. Figure 3.2 shows the effect of a

10% deviation of the quanta generation rates x3 and x6 on the the number susceptible guinea pigs x1.

The sensitivity to a deviation of the pulmonary ventilation rate p on the the number susceptible guinea

pigs x1 is shown in Figure 3.3. The effect of a 10% deviation of the ward extraction ventilation rate F

or Fw on the the number susceptible guinea pigs x1 is shown in Figure 3.4. A 10% deviation of the

ventilation rate into and out of the animal room Fin and Fout on the the number susceptible guinea pigs

x1 is shown in Figures 3.5 and 3.6, respectively. Figure 3.7 shows the effect of a larger deviation of
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

30% in the ranges of the quanta generation rates on the the number susceptible guinea pigs x1. The

larger deviation for the quanta generation rates was investigated because of the uncertainty that lies in

this parameter.

Figure 3.1. Sensitivity of number of susceptible guinea pigs to deviation of the number of infectors

for the augmented single-room and simplified two-room GN models. The deviations at the end of the

simulations are 21.098% and 10.040%.

Figure 3.2. Sensitivity of number of susceptible guinea pigs to deviation of the quanta generation rates

for the augmented single-room and simplified two-room GN models. The deviations at the end of the

simulations are 8.866% and 4.305%.
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

Figure 3.3. Sensitivity of number of susceptible guinea pigs to deviation of the pulmonary ventilation

rate for the augmented single-room and simplified two-room GN models. The deviations at the end of

the simulations are 8.867% and 4.306%.

Figure 3.4. Sensitivity of number of susceptible guinea pigs to deviation of the ward ventilation rate

for the augmented single-room and simplified two-room GN models. The deviations at the end of the

simulations are 7.978% and 3.871%.

The analysis in Figures 3.1 to 3.4 and Figure 3.7 shows that the augmented single-room GN model in

(2.6) has deviations of 21.098% for the predicted number of susceptible guinea pigs for a deviation of
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

Figure 3.5. Sensitivity of number of susceptible guinea pigs to deviation of the ventilation rate into

the animal room for the augmented single-room and simplified two-room GN models. The deviation at

the end of the simulation is 4.309%.

Figure 3.6. Sensitivity of number of susceptible guinea pigs to deviation of the ventilation rate out of

the animal room for the augmented single-room and simplified two-room GN models. The deviation at

the end of the simulation is 3.922%.

a single infectious individual Iw, 8.866%, 8.867% and 7.978% for the predicted number of susceptible

guinea pigs for the x3, p, and F parameters respectively and a 29.035% deviation was noted in Figure
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

Figure 3.7. Sensitivity of number of susceptible guinea pigs to deviation of the range of the quanta

generation rate for the augmented single-room and simplified two-room GN models. The deviations at

the end of the simulations are 29.035% and 13.484%.

3.7 for the larger deviation of the quanta parameter x2.

Figures 3.1 to 3.7 show that the two-room model in (2.11) has deviations of 10.04% for the deviation

of a single infector Iw, 4.305%, 4.306%, 3.871%, 4.309% and 3.922% for the predicted number of

susceptible guinea pigs for the deviation of the x3, p, Fw, Fin and Fout parameters, respectively. A

deviation of 13.484% was observed in Figure 3.7 for the larger deviation of the quanta parameter

x6.

The deviation is measured at the end of each simulation. The non-linear relationship of the deviation of

each of the model parameters and the predicted number of susceptibles adds to the model uncertainty.

Table 3.1 summarises the results obtained for the deviation of the number of susceptibles x1 at the end

of each simulation.

In general, the augmented single-room GN model is more sensitive to parameter variations than the

simplified two-room GN model, except for changes in the ventilation rate into and out of the animal

room as shown in Figures 3.5 and 3.6, respectively. This is because the deviation that occurs in one

parameter for the single-room GN model is divided between two rooms for the two-room model. Only

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

Table 3.1. Resulting deviation at the end of the simulation for the sensitivity analysis.

Deviated

parameter

Parameter

deviation

amount

Resulting deviation

of single-room x1

Resulting deviation

of two-room x1

Iw 1 individual 21.098% 10.04%

φ 10% 8.866% 4.305%

p 10% 8.867% 4.306%

Fw 10% 7.978% 3.871%

Fin 10% - 4.309%

Fout 10% - 3.922%

φ 30% 29.035% 13.484%

a fraction of the deviated parameter affects the animal room because only a fraction of air is vented

from the ward to the animal room. The sensitivity of the augmented single-room GN model is the same

as the standard single-room GN model since the quanta generation rate parameter simply becomes

a state instead of a parameter. The sensitivity of the simplified two-room GN model is less than the

standard two-room GN model because of the reduced number of uncertain parameters, although some

of the internal dynamics are lost.

3.3 IDENTIFIABILITY ANALYSIS

The sensitivity analysis showed little variation between the two models when parameter sweeps are

performed. To investigate the difference in the identifiability of the augmented single-room and

simplified two-room models, an algebraic identifiability method was used. Algebraic identifiability

is a means to determine whether various parameters of an equation can be distinguished from output

measurements given known inputs [34]. The algebraic identifiability gives a theoretical indication of

what variables and parameters are independently identifiable in the model.

Since only the susceptible animals x1 is measurable, the solution of x2 from the single-room GN model

in (2.4) is:

x2 =
IwφV

F
+ k1e−

F
V t , (3.1)
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

where k1 is a constant.

The infectious particles at time zero are taken as x2(0) = x20 and is substituted into (2.4), which

gives:

dx1

dt
=− p

V

(
IwφV

F
+

(
x20−

IwφV
F

)
e−

F
V t
)

x1. (3.2)

For simplicity the most common case was considered, where the number of infectious particles are

zero for the initial time frame considered. Therefore:

dx1

dt
=− pIwφ

F

(
1− e−

F
V t
)

x1. (3.3)

To solve this algebraically, let:

θ1 =−
pIwφ

F

(
1− e−

F
V t
)
, (3.4)

and expressing the equation in terms of the measured variable gives:

ẏ = θ1x1. (3.5)

The rank is calculated in order to determine whether the parameters are identifiable:

[x1] [θ1] = [ẋ1]

rank [x1] = 1.
(3.6)

Since the rank is the same length as the unknown parameter θ , this parameter is algebraically identi-

fiable. From (3.5) it is evident that at least two measurements are necessary to identify the paramet-

ers.

The derivation as performed in (3.1) is repeated for the simplified two-room model. The results

obtained are shown below in (3.7) and (3.8). The analytic solution of x4 and x5 in (2.11) is,

x4 =
IwφVw

Fw
+

(
x40−

IwφVw

Fw

)
e−

Fw
Vw

t

x5 =
Fin

Vw

V1

Fout

(
IwφVw

Fw
+

(
x40−

IwφVw

Fw

)
e−

Fw
Vw

t
)
+

(
x50−

Fin

Vw

V1

Fout
x40

)
e−

Fout
V1

t
.

(3.7)
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CHAPTER 3 SENSITIVITY AND IDENTIFIABILITY

This can be substituted into dx1
dt in (2.11) to give,

dx1

dt
=− p

V1

(
Fin

Vw

V1

Fout

(
IwφVw

Fw
+

(
x40−

IwφVw

Fw

)
e−

Fw
Vw

t
)
+

(
x50−

Fin

Vw

V1

Fout
x40

)
e−

Fout
V1

t
)

x1. (3.8)

Let x40 = 0 and x50 = 0 then:

dx1

dt
=− pFinIwφ

FoutFw

(
1− e−

Fw
Vw

t
)

x1. (3.9)

Again let:

θ2 =−
pFinIwφ

FoutFw

(
1− e−

Fw
Vw

t
)
. (3.10)

As with the equation above, (3.9) is expressed in terms of measured variables:

ẋ1 = θ2x1. (3.11)

The rank results in the same rank as in (3.6). Using this method of algebraic identifiability, it can be

seen that only a single parameter of the model is identifiable from measured data. However, what this

also reveals, is that backwards calculation of the parameters would contain any deviations of the other

parameters from the actual value.

For example, if the average pulmonary ventilation rate of the guinea pigs was 10% less compared to

the value taken from the literature, and the source of infectious particles is backwards calculated, then

the source of infectious particles would be estimated to be 10% greater than it actually is.

This implies that it is impossible to distinguish the difference of the deviation of one parameter from

its true value of one parameter from that of another.
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CHAPTER 4 OBSERVABILITY

4.1 CHAPTER OVERVIEW

In this chapter, observability analyses are performed for each of the models in Section 2.4 to determine

whether the states are observable and can therefore be estimated from a theoretical point of view.

4.2 OBSERVABILITY THEORY

4.2.1 Linear Observability

The observability of a system is a measure of how well one can observe the states of a system or, rather,

the ability to determine the initial conditions given measured inputs and outputs [10]. A definition for

continuous-time observability is given for an LTI SISO system [10]:

A continuous time system is observable if, for any initial state x(0) and any final time t > 0, the

initial state x(0) can be uniquely determined by knowledge of the input u(τ) and output y(τ) for all

τ ∈ [0, t].

For the general linear system given in (2.2), the observability matrix is given as:

O =


Z

ZA
...

ZAn−1

 . (4.1)

where Z is the output matrix and A is the system matrix.
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CHAPTER 4 OBSERVABILITY

The system in (2.2) is said to be observable if the rank of the observability matrix of the system is

equal to the number of states n [10, 24].

4.2.2 Non-linear Observability

The system in (2.1), with dim(x) = n and dim(y) = m, is locally (weakly) observable at x0 if there

exists a neighbourhood X0 of x0 such that for every x1, which is an element of the neighbourhood

X1 ⊂ X0 of x0, the indistinguishability of the states x0 and x1 implies that x0 = x1. The two states, x0

and x1, are said to be indistinguishable if for every admissible input, u, the output y of (2.1) for the

initial state x0 and for the initial state x1 is identical [35].

Distribution is the assignment of a subspace to each point x in the vector space R, and codistribution is

then the linear forms (including pointwise addition and multiplication) of a distribution.

The observability codistribution of x0 is given by:

dO= span{dh j,dL f h j, ...,dLn−1
f h j}; j = 1...m, (4.2)

where h j is the j-th measurement function and L f is the Lie derivative to be defined shortly. (The linear

span of a set S of vectors, denoted span(S), is the smallest linear subspace that contains the set. Given

a set of smooth vector fields the distribution D(x) is defined as: D(x) = span f1, ..., fm(x) such that the

elements of D at any point x are of the form: α1(x) f1(x)+α2 f2(x)+ ...+αm(x) fm(x). The dual of a

distribution is a codistribution such that the elements of a codistribution are row vectors [36].)

If the system satisfies the so called observability rank condition, i.e. the observability codistribution

dO has dimension n at x0, then the system is locally observable [35].

L f h denotes the Lie derivative of h with respect to f , which is calculated using:

L f h =
n

∑
i=1

∂h
∂xi

fi. (4.3)

The Lie derivative of dh with respect to f is given as:

L f dh =

(
∂dhT

∂x
f
)T

+dh
∂ f
∂x

= dL f h. (4.4)
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CHAPTER 4 OBSERVABILITY

Once the observability is determined and the system is indeed observable, the states of the model can

be theoretically estimated using state estimators [10].

4.3 SINGLE-ROOM GN MODEL OBSERVABILITY

4.3.1 Observability of standard single-room GN model

The standard single-room GN model in (2.4) and (2.5) can be written in the state-space form of (2.1)

as:
ẋ1 = f1 =−βx1x2

ẋ2 = f2 = φ I− F
V x2

y = h = x1.

(4.5)

The partial derivative of h in (4.5) with respect to x is:

dh =
[
1 0

]
. (4.6)

The Lie derivative of the model in (4.5) is:

L f h =−βx1x2, (4.7)

and its partial derivative with respect to x is:

dL f h =
[
−βx2 −βx1

]
(4.8)

The observability codistribution for (4.5) is:

dO=

 dh

dL f h

=

 1 0

−βx2 −βx1

 . (4.9)

The rank of dO in (4.9) is 2, and is equal to the number of states in (2.4). This means that the model is

locally observable at x0. The determinant of the observability codistribution matrix is:

det(dO) =−βx1. (4.10)
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CHAPTER 4 OBSERVABILITY

Therefore, the standard single-room model is observable as long as:

−βx1 6= 0. (4.11)

4.3.2 Observability of augmented single-room GN model

The augmented single-room GN model given in (2.6) and (2.7) can be written in the state-space form

of (2.1). Given the measurement x1, the observability codistribution can be obtained as follows. The

partial derivative of h in (2.7) with respect to x is:

dh =
[
1 0 0

]
(4.12)

The Lie derivative of the model in (2.6) is:

L f h =
[
−βx1x2

]
, (4.13)

and its partial derivative with respect to x is:

dL f h =
[
−βx2 −βx1 0

]
. (4.14)

The repeated Lie derivative of the model in (2.6) is:

L2
f h =

[
β 2x1x2

2−βx1(Iwx3− F
V x2)

]
, (4.15)

and its partial derivative with respect to x is:

dL2
f h =

[
β 2x2

2−β (Iwx3− F
V x2) 2x1x2β 2 + F

V x1β −β Iwx1

]
. (4.16)

The codistribution of the augmented single-room GN model with the added measurement then be-

comes:

dO=


1 0 0

−βx2 −βx1 0

A B −β Iwx1

 , (4.17)
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CHAPTER 4 OBSERVABILITY

where:

A = β
2x2

2−β (
F
V

x2− Iwx3)

B = 2x1x2β
2 +

F
V

x1β .

(4.18)

The rank of dO in (4.17) is 3 and is equal to the number of states in (2.6). The determinant of the

observability codistribution matrix is:

det(dO1:3;1:3) = β
2Iwx2

1. (4.19)

Therefore, the augmented single-room model is locally observable as long as:

β 2Iwx2
1 6= 0. (4.20)

4.4 TWO-ROOM GN MODEL OBSERVABILITY

4.4.1 Observability of standard two-room GN model

Although it is not shown, the rank of dO for the standard measurement function (2.12) is 4. Since

this is less than the number of states in (2.9), the model is unobservable. Using the results obtained

from an algebraic identifiability analysis in a previous study and adding another measurement to the

model, this rank can be increased [19]. The additional measurement is the rate of change in number of

susceptibles ẋ1. Therefore, the measurement vector (2.10) for the standard two-room GN model is

amended as follows:

y = h(x) =


x1

x3

ẋ1

 , (4.21)

where ẋ1 =− p
V1

x5x1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

Duayn
Highlight



CHAPTER 4 OBSERVABILITY

Eq. (2.9) and (4.21) can be written in the form of (2.1) to give the state-space representation of the

standard two-room GN model.

ẋ1 = f1(x) =−
p

V1
x5x1

ẋ2 = f2(x) =
p

V1
x5x1−αx2

ẋ3 = f3(x) = αx2

ẋ4 = f4(x) = φwIw−
Fw

Vw
x4

ẋ5 = f5(x) =
Fin

Vw
x4−

Fout

V1
x5

y = h(x) =
[
x1 x3 ẋ1

]

(4.22)

If ẋ1 is added as a measurement, the observability codistribution matrix is as in (4.26). The partial

derivative of h in (4.21) with respect to x is:

dh =


1 0 0 0 0

0 0 1 0 0

− px5
V1

0 0 0 − px1
V 1

 (4.23)

The Lie derivative of the model in (4.22) is:

L f h =


− px1x5

V1

αx2

p2x1x2
5

V 2
1

+ Fout px1x5
V 2

1
− Fin px1x4

V1Vw

 , (4.24)

and its partial derivative with respect to x is:

dL f h =


− px5

V1
0 0 0 − px1

V1

0 α 0 0 0
p2x2

5
V 2

1
+ Fout px5

V 2
1
− Fin px4

V1Vw
0 0 −Fin px1

V1Vw

Fout px1
V 2

1
+ 2p2x1x5

V 2
1

.

 (4.25)
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CHAPTER 4 OBSERVABILITY

The resulting observability codistribution matrix is:

dO=



1 0 0 0 0

0 0 1 0 0

− p
V1

x5 0 0 0 − p
V1

x1

− p
V1

x5 0 0 0 − p
V1

x1

0 0 α 0 0

O1 0 0 O2 O3


, (4.26)

where:

O1 =
pFoutx5

V 2
1
− pFinx4

V1Vw
+

p2x2
5

V 2
1

O2 =−
Fin px1

V1Vw

O3 =
Fout px1

V 2
1

+
2p2x1x5

V 2
1

.

(4.27)

The rank of dO in (4.26) is 5 and is equal to the number of states in (2.9).

The determinant of the full-rank portion (rows 1 to 3, 5 and 6; and columns 1 to 5) of the observability

codistribution matrix is:

det(dO1:3,5,6;1:5) =−
Finα p2x2

1

V 2
1 Vw

. (4.28)

Therefore, the standard two-room model is locally observable as long as:

−Finα p2x2
1

V 2
1 Vw

6= 0. (4.29)

4.4.2 Observability of simplified two-room GN model

Similar to (4.21) above, the measurement in (2.12) is amended as follows:

y = h(x) =

 x1

− p
V1

x1

 . (4.30)
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CHAPTER 4 OBSERVABILITY

Therefore, if (2.11) and (4.30) are written in the form of (2.1), and dh, dL f h and dL2
f h are calculated

as in (4.31) and (4.33). The partial derivative of h in (4.30) with respect to x is:

dh =

 1 0 0 0

− px5
V1

0 − px1
V1

0

 (4.31)

The Lie derivative of the model in (4.22) is:

L f h =

 − px1x5
V1

p2x1x2
5

V 2
1

+ Fout px1x5
V 2

1
− Fin px1x4

V1Vw

 , (4.32)

and its partial derivative with respect to x and the partial derivative of the repeated Lie derivative with

respect to x is:

dL f h =

− px5
V1

0 − px1
V1

0

O1 O2 O3 0


dL2

f h =

O4 O5 O6 0

O7 O8 O9 O10.


(4.33)

The resulting observability codistribution matrix is:

dO=



1 0 0 0

− p
V1

x5 0 − p
V1

x1 0

− p
V1

x5 0 − p
V1

x1 0

O1 O2 O3 0

O4 O5 O6 0

O7 O8 O9 O10


, (4.34)
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CHAPTER 4 OBSERVABILITY

where:

O1 = O4 =
pFoutx5

V 2
1
− pFinx4

V1Vw
+

p2x2
5

V 2
1

O2 = O5 =−
Fin px1

V1Vw

O3 = O6 =
Fout px1

V 2
1

+
2p2x1x5

V 2
1

O7 =
FinFout px4

V 2
1 Vw

−
3Fout p2x2

5

V 3
1

− F2
out px5

V 3
1
−

p3x3
5

V 3
1

+
FinFw px4

V1V 2
w
− FinIw px6

V1Vw
+

3Fin p2x4x5

V 2
1 Vw

O8 =
FinFout px1

V 2
1 Vw

+
FinFw px1

V1V 2
w

+
3Fin p2x1x5

V 2
1 Vw

O9 =
3Fin p2x1x4

V 2
1 Vw

− F2
out px1

V 3
1
− 6Fout p2x1x5

V 3
1

−
3p3x1x2

5

V 3
1

O10 =−
FinIw px1

V1Vw
.

(4.35)

The rank of dO in (4.34) is 4 and is equal to the number of states in (2.11). Therefore, the simplified

two-room model is locally observable as long as the states do not reduce the rank of (4.34) to less than

4.

The determinant of the full-rank portion (rows 1,2, 5 and 6; and columns 1 to 4) of the observability

codistribution matrix is:

det(dO1,2,5,6;1:4) =−
F2

inIw p3x3
1

V 3
1 V 2

w
. (4.36)

Therefore, the simplified two-room model is locally observable as long as:

−F2
inIw p3x3

1
V 3

1 V 2
w
6= 0. (4.37)
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS

AND RESULTS

5.1 CHAPTER OVERVIEW

Continuous-time EKFs and hybrid EKFs are used to estimate the states in the models given in Section

2.4 from the available measurements. Simulation setup and results for the continuous-time and hybrid

EKFs for the modified and unmodified models are given in this section.

5.2 BACKGROUND TO KALMAN FILTERING

5.2.1 Kalman Filters

A nonlinear system can be approximated by a linear system using Taylor series expansion [10, 24].

The system is expanded around a nominal operating point x̄. If the system is linearized around a point

such that x̃ = x− x̄ is small, the higher powers of the Taylor series expansion will also be small. For

the nonlinear system in (5.2), assuming x̃ is small, the system can be approximated as:

ẋ≈ f (x̄, ū, w̄)+
∂ f
∂x

∣∣∣∣
0
(x− x̄)+

∂ f
∂u

∣∣∣∣
0
(u− ū)+

∂ f
∂w

∣∣∣∣
0
(w− w̄)

= ˙̄x+Cx̃+Bũ+Lw̃,

(5.1)

where higher order terms were neglected and C = ∂ f
∂x |0, B = ∂ f

∂u |0, and L = ∂ f
∂w |0.

By subtracting ˙̄x from both sides and setting w̄ = 0 since the mean of the noise is zero, one obtains

(5.2):

˙̃x =Cx̃+Bũ+Lw. (5.2)
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Processes are often affected by important variables that are not measured, measured and/or unmeasured

disturbances, and noisy instruments. State estimators can combine measurements containing noise

with process models to estimate the states of such processes.

A dependency on the information of the states of a process is prevalent in model-based control [37].

Deterministic approaches or Bayesian approaches may be used to develop state estimators, with the

most commonly used Bayesian estimator being the Kalman filter (KF) [38]. The KF can be used to

accurately estimate states of a process where the number of measurements are limited. The KF can

also account for uncertainties in the models and the effects of unmeasured disturbances [37]. The

KF generates the maximum a posteriori estimates in the Bayesian case for a linear dynamic system

subjected to additive process and measurement noises with a multivariate Gaussian distribution [39].

If there is a case where the noise in the system is not Gaussian, the KF is still the best linear filter

[10].

The KF propagates the mean and the covariance of a system over time. The mean and covariance

of each state are then the estimates of the state and the state covariance respectively. Each time a

measurement is made, the estimates of the states are updated by the KF. A priori and a posteriori state

estimates are made, where the a priori estimate is the state estimate before a measurement is made and

the a posteriori estimate is the state estimate after a measurement is made. The time-update estimates

for the states and the estimates for the covariance of the estimates are derived and used to calculate

the KF gain. The time-update estimates are made a priori. The KF gain is used to calculate the a

posteriori estimates after each measurement.

The continuous-time KF for the linear system in (2.2) is given in (5.3):

K = PZT R−1

˙̂x = Ax̂+Bu+K(y−Zx̂)

Ṗ =−PZT R−1ZP+AP+PAT +Q,

(5.3)

where K is the KF gain, P is the estimation-error covariance matrix, R is the measurement noise

covariance matrix and Q is the process noise covariance matrix. For the continuous-time KF the

propagation and estimation updates are made at the same time, as seen in (5.3).

The estimation-error covariance is effectively an indication of the uncertainty of the estimate. The
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

diagonal elements P11 to Pnn of the matrix P shows the covariance of the error between the estim-

ated and actual states of the model and thereby the variance for each of the model states x1 to xn,

respectively.

5.2.2 Extended Kalman filters

The most commonly used non-linear state estimator is the extended Kalman filter (EKF) [10, 38, 40].

Alternative estimators such as the unscented Kalman filter (UKF) or ensemble Kalman filter (EnKF)

have been proposed for nonlinear systems because the EKF is not the optimal nonlinear state estimator.

Because of the prevalence and increased interest in constrained controllers, the use of a constrained

estimator such as the moving horizon estimator (MHE) has been suggested. The UKF, EnKF and MHE

techniques, including techniques designed for non-normal and non-Gaussian process features, have

been proposed for chemical processes [37, 40]. Implementing these techniques require knowledge

about the process states and the process model. These models often contain model-plant-mismatch in

both the parameters and the structure of the model [37, 41].

An EnKF has been used for parameter estimation for the infection rate and fraction of smear positive

cases in India. The study uses a deterministic model of TB that models the risk of infection of TB

across India and makes use of least squares estimation and an EnKF to determine the infection rate and

the number of new cases [42]. Unlike this Indian case study, the work described in this paper estimates

the generation rate of quanta for models in confined spaces such as hospitals and workplaces.

5.2.2.1 Continuous-time EKF

Many systems can be approximated as linear systems, and for these an ordinary KF can be used [10].

If a non-linear system can be linearized such that the states represent the deviation from a nominal

trajectory of the non-linear system, a linearized KF, known as an EKF, can be used. The EKF estimates

the deviation from the nominal state trajectory of a non-linear system. If the nominal state trajectory

is unknown, the EKF estimate can be used as the nominal state trajectory. The system is linearized

around the estimate, and the estimate is based on the linearized system.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Continuous-time EKFs (CEKF) were designed for the systems in (2.4), (2.6), (2.9) and (2.11). The

system equations for the CEKFs are defined as [10]:

ẋ = f (x,u,w, t)

y = h(x,v, t)

w(t)∼ (0,Q);v∼ (0,R),

(5.4)

where f (x,u,w, t) is the continuous-time system, h(x,v, t) is the measurement model, w(t) and v(t) are

the zero-mean Gaussian process noise and measurement noise respectively, and Q and R is the process

noise covariance matrix and the measurement noise covariance matrix respectively. Matrices Q and R

are positive definite and constant.

The continuous-time EKF algorithm consists of two steps, the linearization step and the measurement

update step [10]. The linearization step, which uses a Taylor series approximation, is given as:

Γ =
∂ f
∂x
|x̂

L =
∂ f
∂w
|x̂

H =
∂h
∂x
|x̂

M =
∂h
∂v
|x̂.

(5.5)

The measurement update step is:

˙̂x = f (x̂,u,w0, t)+K[y−h(x̂,v0, t)]

K = PHT R−1

Ṗ = ΓP+PΓ
T +LQLT −PHT R−1HP,

(5.6)

where x̂ is the estimate of x, P is the estimation-error covariance of x̂, and K is the KF gain [10, 38].

The estimation algorithm can be changed for cases where measurement updates occur at irregular

sampling intervals, which itself occurs at multiples of the sampling time to form a hybrid EKF.

The EKF is initialised using:

x̂0 = E[x0]

P0 = E[(x0− x̂0)(x0− x̂0)
T ],

(5.7)

where x0 is a vector containing the initial states and x̂0 is the initial estimates of x0.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

5.2.2.2 Hybrid EKF

Increasing the simulation step time and the measurement time for the models can result in numerical

integration inaccuracies when running simulations [43]. To circumvent this, a hybrid EKF (HEKF)

can be used. The HEKF will allow one to simulate the system and update the filter at different time

intervals or when measurements are available.

HEKFs are used for continuous-time systems where discrete-time measurements are available. The

HEKF uses continuous-time update equations to evaluate the discrete-time values of the model states,

x, and the covariance of the estimation error, P, and updates the state estimate using a discrete-time

KF.

The HEKF process is similar to the EKF. However, the update step is split into the continuous-time

update equations (where the models are simulated in continuous-time) and the discrete measurement

update equations (where the filter estimates are updated).

The continuous-time update equations are:

˙̂x = f (x̂,u,ω0, t)

Ṗ = ΓP+PΓT +LQLT ,
(5.8)

and the discrete measurement update equations are:

Kk = P−k HT
k (HkP−k HT

k +MkRkMT
k )
−1

x+k = x−k +Kk[yk−hk(x̂−k ,v0, tk)]

P+
k = (ID−KkHk)P−k (ID−KkHk)

T

+KkMkRkMT
k KT

k ,

(5.9)

where k denotes the k-th discrete-time measurement, P−k is the covariance of xk before the measurement

update, and P+
k is the covariance of xk after the measurement update. ID is an identity matrix. x−k is the

estimate of x before the measurement update is made and x+k is the estimate of x after the measurement

update is made.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

5.2.3 Setting up the Kalman filter

5.2.3.1 The covariance matrices Q and R

Proper functioning of the KF depends on the correct specification of the process and measurement

noise covariance matrices, Q and R. These matrices are indicative of the relative confidence of the

filter model and the measurements. Q is then the amount of uncertainty one has in the model and R is

the uncertainty in the measurements [37]. The Q and R matrices can, if incorrectly specified, cause the

filter to under-perform or cause the estimates to diverge [37].

The R matrix can usually be derived from the measurement device characteristics. Increasing the

covariance estimate of R can make the filter more robust to errors in measurements. Selecting a too

large R can cause an offset or divergence in the presence of model mismatch [40]. Q is commonly

chosen arbitrarily because estimation of the process noise covariance is more complicated [37, 40]. If

Q is guessed lower than the actual covariance, then the filter may be too confident in the model and

if the covariance is guessed too high the estimates may be noisy and the uncertainty in the estimates

would increase [37].

Various methods for estimating the process noise covariance exist including Bayesian methods, max-

imum likelihood methods, covariance matching, and correlation techniques [38, 40, 44]. These

methods can however be computationally excessive or give biased estimates. A least-squares method

can be used wherein the Q and R covariances are estimated and calculated using least-squares problem

solving [44]. This method does not consider structural and parametric errors [40].

The methods mentioned thus far assume that the noise characteristics are zero mean and have Gaussian

distribution [38]. This would only be the case for processes at steady state [37]. Time-varying

online computation of Q have more recently been used [37, 38, 40]. Online estimation of the process

noise covariance has been made using linearised, Monte Carlo and direct optimisation and extended

expectation maximisation approaches. The linearised and Monte Carlo approaches make use of

calculated parameter covariances and probability density functions of the parameters, respectively to

calculate a time-varying Q(t) [37, 40]. The direct optimisation approach finds the optimal solution to

minimise an objective function to solve for Q(t) [38]. The extended expectation maximisation approach
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

uses linearisation of the model along with smoothed state and covariance estimates to calculate Q(t)

[38]. The direct optimisation and extended expectation maximisation methods also compute R(t), P0

and x0.

Since the measurement data in this paper are generated using the models in Section 2.4, and meas-

urement and process noise is added to these models in the form of Gaussian noise, the Q and R are

known a priori and chosen based on this knowledge. Both Q and R for the KFs are chosen as 1.5 times

greater than the actual measurement and process noise covariances to ensure the uncertainty of the

KFs are greater than that of the simulated models [40].

5.2.3.2 The initial error covariance matrix

Assuming a more severe outbreak, such as an office building outbreak (Table 5.12), the range of each

of the states is either known, or can be calculated. According to [40], P0 can be specified as:

x̂0 = E[x0]

P0 = diag((x̂0− x0)
T (x̂0− x0)),

(5.10)

where x0 is assumed to be the minimum value of x, x0 = xmin and x̂0 is the nominal value of x,

x̂0 = 0.5(xmax + xmin).

Table 5.1 shows the ranges of each of the states for each model. The maximum number of quanta

in each room is obtained by using the average ventilation rates of Fw, Fin and Fout and calculating

the steady state value of the number of quanta in the room for the maximum number of infectious

individuals Iw measured.

Because there is low uncertainty in the measurement of the number of infected guinea pigs, P0 for x1 is

chosen smaller than the nominal value. P0x1
is chosen using x̂0 = 0.1(xmax + xmin).
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Table 5.1. Range of each state for each model given in Section 2.4.1.

Standard single-room GN model states Range

x1 (0,90)

x2 (0,35.283)

Augmented single-room GN model states Range

x1 (0,90)

x2 (0,35.283)

x3 (0,300)

Standard two-room GN model states Range

x1 (0,90)

x2 (0,90)

x3 (0,90)

x4 (0,35.283)

x5 (0,0.6666)

Simplified two-room GN model states Range

x1 (0,90)

x4 (0,35.283)

x5 (0,0.6666)

x6 (0,300)

5.3 SINGLE-ROOM GN MODEL

The model parameters are time-scaled to the sampling time used in the simulations in Sections 5.3.1,

5.3.2 and 5.3.3 and the simulation duration is 3 months.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

5.3.1 CEKF for the standard single-room GN model

5.3.1.1 Simulation scenario and setup

Gaussian noise is added to the measured number of susceptibles and each of the states (measurement

and process noise) at an interval of 60 s with power equal to R and Q. It is assumed that each

infectious individual generates the same number of quanta x2 and that each of the animals has the

same susceptibility. It is also assumed that the infectious individuals Iw remained in the room for the

duration of the experiment.

The model parameters are time-scaled to the sampling time used in the simulations and the simulation

duration is 3 months. The simulation time step size for the CEKF is the same as the measurement time

of 60 s. Table 5.2 shows the measurement noise and process noise covariance matrices and Table 5.3

shows the initial parameters for the CEKF. The initial quanta generation rate φ is set as 150 quanta ·

d −1 for the EKF, which results in a parameter mismatch between the simulated model and the EKF

model. The simulation data given in Tables 2.3 is used for the simulations.

Table 5.2. CEKF covariance matrix parameters.

R Q

4.86

0.1838 0

0 766.34


Table 5.3. CEKF initial parameters for the standard single-room GN model.

Parameter Estimated Value

x̂0

 81

17.14


P0

81 0

0 311.22


The initialisation parameters for the CEKF are given in Table 5.3.

The initial number of susceptible animals is taken as x̂1 = 81 animals and the initial quanta in the

room as x̂2 = 17.14 quanta. The quanta generation rate is taken as φ = 150 quanta· d−1· ind−1. The
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

initial estimates in Table 5.3 of the measurable parameters are purposely changed from the actual

values in Table 2.3 because the CEKF requires some perturbation to estimate the parameters [10]. The

CEKF measurement update matrix K and the estimation-error covariance matrix P are updated as in

(5.6).

5.3.1.2 Simulation results

Figures 5.1 and 5.2 show the results of the EKF for the simulated number of susceptible animals and

number of quanta in the room states for the standard single-room model. The estimated number of

susceptible animals converges almost immediately with the simulated number of susceptible animals.

Almost no error can be seen between the estimated and simulated number of susceptible animals.

The estimated number of quanta in the room does not converge. The estimated number of quanta in

the room and the simulated number of quanta in the room appear to correlate well, except for a large

offset resulting from the parameter mismatch. A zoomed version of the number of quanta in the room

is shown in Figure 5.3.

Month 1 Month 2 Month 3
30

40

50

60

70

80

90

100

x
1

Simulated

Estimated

Figure 5.1. Number of susceptible animals of the standard single-room GN model CEKF simulation

with a sampling time of 60 s. The simulated number of susceptible animals is shown in blue and the

estimated number of susceptible animals is shown in orange.
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Month 1 Month 2 Month 3
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Figure 5.2. Number of quanta in the room of the standard single-room GN model CEKF simulation

with a sampling time of 60 s. The simulated number of quanta in the room is shown in blue and the

estimated number of quanta in the room is shown in orange.
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Figure 5.3. Zoomed number of quanta in the room of the standard single-room GN model CEKF

simulation with a sampling time of 60 s. The simulated number of quanta in the room is shown in blue

and the estimated number of quanta in the room is shown in orange. The period shown is 3 days.
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Figure 5.4. Covariance of the estimation-error of the standard single-room GN model CEKF simulation

with a sampling time of 60 s.

The diagonal terms of figure 5.4 show the variance of each of the states. Both variances of the states x1

and x2 decrease very quickly and remain low for the duration of the simulation.

5.3.2 CEKF for the augmented single-room GN model

5.3.2.1 Simulation scenario and setup

Considering the models given in (2.3) to (2.6), the variable x1 and parameters p, V , Iw and F can all be

measured. The variable x2 and parameter φ can not be measured but can be estimated. Since x2 is a

function of the measured parameters, Iw, V , and F , and the estimated parameter φ , one only needs to

estimate φ to obtain x2.

The simulation time step size for the CEKF is again the same as the measurement time of 60 s. The

measurement and process noise covariance matrices R and Q, were chosen as shown in Table 5.4. The

CEKF model is given a 90 quanta · d −1 mismatch for the quanta generation rate parameter, φ or x3 in

(2.6). The simulation data is the same as for Section 5.3.1.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Table 5.4. CEKF covariance matrix parameters.

R Q

4.86


0.1838 0 0

0 766.34 0

0 0 3456



The initialization parameters for the CEKF are given in Table 5.5.

Table 5.5. CEKF initial parameters for the augmented single-room GN model.

Parameter Estimated Value

x̂0


81

17.14

150



P0


81 0 0

0 311.22 0

0 0 22500


The initial number of susceptible animals is taken as x̂1 = 81 animals and the initial quanta in the

room as x̂2 = 17.14 quanta. The quanta generation rate is taken as x̂3 = 150 quanta· d−1. The initial

estimates in Table 5.5 of the measurable parameters are purposely changed from the actual values

in Table 2.4 because the CEKF requires some perturbation to estimate the parameters [10]. The

CEKF measurement update matrix K and the estimation-error covariance matrix P are updated as in

(5.6).

5.3.2.2 Simulation results

The number of susceptible animals x1 decays from 90 to 38 animals in 3 months for a quanta generation

rate of x3 = 60 quanta · d−1 per infectious individual as shown in Figure 5.5. The CEKF estimate of

the number of susceptibles x1 starts at 81 and converges to the measured number of susceptibles within

0.1542 days. The number of quanta x2 in the room is simulated in Figure 5.6 and a zoomed version is
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

shown in Figure 5.7. The estimated number of quanta converges to the simulated number of quanta

after 3.9 days.

As seen in Figure 5.8, the estimated quanta generation rate x3 converges to within 2% of the measured

values after just 3.9 days of simulation. This shows that the CEKF can converge to an accurate estimate

of the quanta generation rate of the model.

The diagonal terms of figure 5.9 show the variance of each of the states, as with the standard single-

room GN model. The variance of the state x1 decreases very quickly and remains low for the duration

of the simulation. The variance for the x2 state decreases from the initial value but remains large.

The variance of the x3 state reduces by a large amount and steadily increases for the remainder of the

simulation.

Month 0 Month 1 Month 2 Month 3
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Figure 5.5. Number of susceptible animals of the augmented single-room GN model CEKF simulation

with a sampling time of 60 s. The simulated number of susceptible animals is shown in blue and the

estimated number of susceptible animals is shown in orange.

Although it is not shown, the CEKF was also simulated for measurement sampling times of both twice

per day and once per day in order to view the effects of different sampling times on the estimates. It

is important to note that if the sampling time becomes fairly large, some integration error occurs in

the simulation. The number of susceptible animals x1 reduces to 38 animals in the simulation with a

measurement sampling time of 60 s and in the worst case only reduces to 44 animals in the simulation
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Figure 5.6. Number of quanta in the room of the augmented single-room GN model CEKF simulation

with a sampling time of 60 s. The simulated number of quanta in the room is shown in blue and the

estimated number of quanta in the room is shown in orange.
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Figure 5.7. Zoomed number of quanta in the room of the augmented single-room GN model CEKF

simulation with a sampling time of 60 s. The simulated number of quanta in the room is shown in blue

and the estimated number of quanta in the room is shown in orange. The period shown is 3 days.
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Figure 5.8. Quanta generation rate of the augmented single-room GN model CEKF simulation with a

sampling time of 60 s. The blue line indicates the actual quanta generation rate per infectious individual

and the orange line represents the estimated quanta generation rate per infectious individual.

with a measurement sampling time of 1 day. The simulation with a measurement sampling time of 1

day also only converged after 2 months. To improve on this situation, an HEKF is used for simulations

where the time between measurements of the number of susceptibles is greater than the time between

measurements of the other parameters, as is the case in Section 5.3.3.

In order to obtain the best sampling rate (measurement time), one can use a fast Fourier transform of

the simulated quanta in the room (or ward) to determine the Nyquist frequency. The Nyquist frequency

results in a measurement rate of twice per day and the second harmonic gives a measurement rate

of once per day. Sampling at the Nyquist frequency is a minimum requirement for preserving the

information contained in the quanta state [45].

The generation rate parameter x3 = φ only influences the gain of the state x2 as seen in (2.8), and is

a time-independent constant. Because quanta state x2 is dependent on the generation rate x3 (which

is constant) and the ventilation rate F (which is measured at a sampling rate of 60 s, much faster

than the Nyquist frequency), the estimated number of quanta in the room x2 can be updated at a rate

slower than the Nyquist frequency, seeing as the only uncertain parameter is a constant and that the

simulation time is the same as the ventilation sampling rate. Therefore sampling at the second harmonic
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would be sufficient to estimate the quanta generation rate x3 and thereby the number of quanta x2. A

measurement sampling rate of once per day, and not twice per day, is therefore used.

The CEKF performs well seeing that the estimated states rapidly converge to the measurements when

using a measurement sampling time of 60 s. However, taking measurements every 60 s is unrealistic,

but is used here to see what estimates can be obtained under ideal circumstances. A more realistic

scenario, with a measurement rate of once per day, is discussed in the next section.

It is important to note that the artificial zero-mean Gaussian noise parameter, wp, allows the EKF to

better adjust the estimate of the quanta generation rate [10].

5.3.3 HEKF for the augmented single-room GN model

5.3.3.1 Simulation scenario and setup

The same model as in Section 5.3.2 is used here, but with a measurement time of 1 day (24 hours). The

HEKF parameters are given in Tables 5.5 and 5.6. The same noise is added as in Section 5.3.2.

Table 5.6. HEKF parameters.

Simulation Time Measurement

Time

R Q

60 s 1 day 4.86


0.1838 0 0

0 766.34 0

0 0 3456


The simulation data, as shown in Figures 2.2 to 2.4, are the same as for the simulation in Section

5.3.2.

5.3.3.2 Simulation results

The model in (2.6) is simulated with a simulation step size of 60 s and a sampling (measurement)

time of 1 day because the measurement data are not available at 60 s sampling intervals as assumed in
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Section 5.3.2. The resulting simulations are shown in Figure 5.10 to Figure 5.13.
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Figure 5.10. Number of susceptible animals of the augmented single-room GN model HEKF parameter

estimation simulation with a sampling time of 1 day and simulation step size of 60 s. The simulated

number of susceptible animals is shown in blue and the estimated number of susceptible animals is

shown in orange.

From the Figures 5.10 to 5.13 it is can be seen that the HEKF quanta generation rate x3 estimate

converges using the same noise covariance matrices as used in Section 5.3.2, however the estimate is

not very accurate, but remains within 0.5wx1 after 40.031 days. The number of susceptible animals x1

also reduces to 38 as it should. A large amount of deviation can be seen in the number of quanta in the

room due to the discontinuities present in the measured state x1.

The diagonal terms of figure 5.14 again show the variance of each of the states. The variance of the

state x1 decreases very quickly and remains low for the duration of the simulation, however some noise

due to the discrete measurements can be seen. The variance for the x2 state decreases from the initial

value but remains large and increases throughout the remainder of the simulation. The variance of the

x3 state increases by a large amount for the remainder of the simulation.
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Figure 5.11. Number of quanta in the room of the augmented single-room GN model HEKF parameter

estimation simulation with a measurement time of 1 day and simulation step size of 60 s. The simulated

number of quanta in the room is shown in blue and the estimated number of quanta in the room is

shown in orange.
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Figure 5.12. Time-zoomed number of quanta in the room of the augmented single-room GN model

HEKF parameter estimation simulation with a measurement time of 1 day and simulation step size

of 60 s. The simulated number of quanta in the room is shown in blue and the estimated number of

quanta in the room is shown in orange. The period shown is 3 days.
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Figure 5.13. Quanta generation rate per infectious individual of the augmented single-room GN model

HEKF parameter estimation with a measurement time of 1 day and simulation step size of 60 s. The

simulated quanta generation rate per infectious individual is shown in blue and the estimated quanta

generation rate per infectious individual is shown in orange.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

5.4 TWO-ROOM GN MODEL

The model parameters were time-scaled to the sampling time used in the simulations in Sections 5.4.1,

5.4.2 and 5.4.3 and the simulation duration was 3 months.

5.4.1 CEKF for the standard two-room GN model

5.4.1.1 Simulation scenario and setup

The simulation sampling time for the standard two-room GN model is 60 s. The CEKF measurement

updates are made using (5.6). Simulation data are used as in Section 2.5 (Figures 2.2 to 2.4 and Table

2.5). The measurement and process noise covariance matrices, R and Q, are given in Table 5.7.

Table 5.7. CEKF covariance matrix parameters.

R Q


4.86 0 0

0 4.86 0

0 0 0.003375





0.35 0 0 0 0

0 0.013 0 0 0

0 0 0.0015 0 0

0 0 0 22.603 0

0 0 0 0 0.6918



The initial parameters for the standard two-room GN model are given in Table 2.5, and the initial

CEKF parameters in Table 5.8. The initial number of susceptible animals are taken as x̂1 = 81 animals,

the initial number of exposed individuals are taken as x̂2 = 9, the initial number of infected individuals

are taken as x3 = 9, the initial quanta in the ward is taken as x̂4 = 17.14 quanta and the initial quanta

in the animal room as x̂5 = 0.3333 quanta.

5.4.1.2 Simulation results

Figures 5.15 to 5.21 show the results of the CEKF for the standard two-room model. The simulated

number of susceptible animals, number of exposed animals and number of infected animals are shown
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Table 5.8. CEKF initial parameters for the standard two-room GN model.

Parameter Estimated Value

x̂0



81

9

9

17.14

0.3333



P0



81 0 0 0 0

0 81 0 0 0

0 0 81 0 0

0 0 0 302.76 0

0 0 0 0 0.1111



in Figures 5.15, 5.16 and 5.17, respectively. The number of quanta in the ward and animal room for

the standard two-room model are shown in Figures 5.18 to 5.21, respectively. The estimated number

of susceptible animals converges quickly, like the standard single-room model CEKF, and has almost

no error. The number of exposed and infected animals also converge after 6.25 days and 2.13 days,

respectively.

The estimated number of quanta in the ward does not converge with the simulated number of quanta in

the ward, as can be seen in Figure 5.18. The quanta state offset is also present in the number of quanta

in the ward, as with the single-room model. A zoomed version of the number of quanta in the ward is

shown in Figure 5.19. The estimated number of quanta in the animal room also does not converge, but

deviates slightly more from the offset present in the ward. The number of quanta in the animal room is

shown in Figure 5.20 and a zoomed version is shown in Figure 5.21.

The diagonal terms of figure 5.22 show the variance of each of the states. The variances of the states

x1, x2 and x3 decrease quickly and remain low for the duration of the simulation. The variances of the

x4 and x5 states increase throughout the simulation.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS
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Figure 5.15. Number of susceptible animals of the standard two-room GN model estimation with a

sampling time of 60 s. The simulated number of susceptible animals is shown in blue and the estimated

number of susceptible animals is shown in orange.
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Figure 5.16. Number of exposed animals of the standard two-room GN model estimation with a

sampling time of 60 s. The simulated quanta generation rate is shown in blue and the estimated quanta

generation rate is shown in orange.
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Figure 5.17. Number of infected animals of the standard two-room GN model estimation with a

sampling time of 60 s. The simulated quanta generation rate is shown in blue and the estimated quanta

generation rate is shown in orange.
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Figure 5.18. Number of quanta in the ward of the standard two-room GN model estimation with a

sampling time of 60 s. The simulated number of quanta in the ward is shown in blue and the estimated

number of quanta in the ward is shown in orange.
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Figure 5.19. Time-zoomed number of quanta in the ward of the standard two-room GN model estima-

tion with a sampling time of 60 s. The simulated number of quanta in the ward is shown in blue and

the estimated number of quanta in the ward is shown in orange. The period shown is 3 days.
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Figure 5.20. Number of quanta in the animal room of the standard two-room GN model estimation

with a sampling time of 60 s. The simulated number of quanta in the animal room is shown in blue and

the estimated number of quanta in the animal room is shown in orange.
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Figure 5.21. Time-zoomed number of quanta in the animal room of the standard two-room GN model

estimation with a sampling time of 60 s. The simulated number of quanta in the animal room is shown

in blue and the estimated number of quanta in the animal room is shown in orange. The period shown

is 3 days.

5.4.2 CEKF for the simplified two-room GN model

5.4.2.1 Simulation scenario and setup

The simulation sampling time is again 60 s and the CEKF measurement updates are made using (5.6).

Simulation data are used as in Section 5.3.2 (Figures 2.2 to 2.4 and Table 2.6). The measurement and

process noise covariance matrices, R and Q, are given in Table 5.9.

Table 5.9. CEKF covariance matrix parameters for simplified two-room GN model.

R Q

4.86 0

0 0.003375




0.35 0 0 0

0 22.603 0 0

0 0 0.6918 0

0 0 0 48
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

The initial parameters for the simplified two-room GN model are given in Table 2.6, and the initial

CEKF parameters in Table 5.10. The same noise is added as in Section 5.3.2.

Table 5.10. CEKF initial parameters for the simplified two-room GN model.

Parameter Estimated Value

x̂0


81

17.14

0.3333

150



P0


81 0 0 0

0 302.76 0 0

0 0 0.1111 0

0 0 0 22500



The initial number of susceptible animals are taken as x̂1 = 81 animals, the initial quanta in the ward is

taken as x̂4 = 17.14 quanta, the initial quanta in the animal room as x̂5 = 0.3333 quanta and the initial

quanta generation rate is taken as x̂6 = 150 quanta · d−1.

5.4.2.2 Simulation results

The estimate of the number of susceptible animals x1 converges to the correct number of susceptible

animals after 16 days, as seen in Figure 5.23.

Figures 5.24 and 5.26 show that the initial estimates of the number of quanta in the ward x4 and animal

room x5 converge quickly as with the number of susceptible animals x1 estimate and converge to the

simulated number of quanta in the ward and animal room in 16 days. The estimate of the number of

quanta in the ward follows the simulated number of quanta accurately, resulting in an accurate estimate

of the number of quanta in the animal room. Time-zoomed figures are shown in Figures 5.25 and 5.27.

The quanta generation rate x6 estimate also converges after 16 days as seen in Figure 5.28.

The diagonal terms of figure 5.29 show the variance of each of the states. The variances of the states

x1 and x4 decrease quickly and remain low for the duration of the simulation. The variances of the x3
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Figure 5.23. Number of susceptible animals of the simplified two-room GN model estimation with a

sampling time of 60 s. The simulated number of susceptible animals is shown in blue and the estimated

number of susceptible animals is shown in orange.

Month 0 Month 1 Month 2 Month 3
0

2

4

6

8

10

C
w

Simulated

Estimated

Figure 5.24. Number of quanta in the ward of the simplified two-room GN model estimation with a

sampling time of 60 s. The simulated number of quanta in the ward is shown in blue and the estimated

number of quanta in the ward is shown in orange.
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Figure 5.25. Time-zoomed number of quanta in the ward of the simplified two-room GN model

estimation with a sampling time of 60 s. The simulated number of quanta in the ward is shown in blue

and the estimated number of quanta in the ward is shown in orange. The period shown is 3 days.
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Figure 5.26. Number of quanta in the animal room of the simplified two-room GN model estimation

with a sampling time of 60 s. The simulated number of quanta in the animal room is shown in blue and

the estimated number of quanta in the animal room is shown in orange.
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Figure 5.27. Time-zoomed number of quanta in the animal room of the simplified two-room GN

model estimation with a sampling time of 60 s. The simulated number of quanta in the animal room is

shown in blue and the estimated number of quanta in the animal room is shown in orange. The period

shown is 3 days.
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Figure 5.28. Quanta generation rate of the simplified two-room GN model estimation with a sampling

time of 60 s. The simulated quanta generation rate is shown in blue and the estimated quanta generation

rate is shown in orange.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

and x4 states decrease from their initial value and remain lower than the initial value throughout the

simulation.

5.4.3 HEKF for the simplified two-room GN model

5.4.3.1 Simulation scenario and setup

The same model as in Section 5.4.2 is used and the initial parameters are given in Tables 2.6, 5.10, and

5.11. The simulation data is the same as for the simulation in Section 5.4.2. The same noise is added

as in Section 5.3.2.

Table 5.11. HEKF parameters.

Simulation

Time

Measurement

Time

R Q

60 s 1 day

4.86 0

0 0.003375




0.35 0 0 0

0 22.603 0 0

0 0 0.6918 0

0 0 0 48



5.4.3.2 Simulation results

The model in (2.11) is simulated with a simulation step size of 60 s and a measurement time of 1 day,

as in Section 5.3.3. Figure 5.30 to Figure 5.35 show the results.

Figure 5.30 shows that the number of susceptible animals x1 are estimated fairly well. Figures 5.31

and 5.33 show that the filter does not estimate the correct quanta in the ward x4 and animal room x5.

Time-zoomed figures are shown in Figures 5.32 and 5.34. The quanta generation rate x6 estimate is

shown in Figure 5.35, with the estimate converging to within 1wx6 after 1 month. A large amount of

deviation can be seen in the number of quanta in the rooms due to the discontinuities present in the

measured state x1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

Duayn
Highlight

Duayn
Highlight



CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

Month 1 Month 2 Month 3
60

70

80

90

100

S

Simulated

Estimated

Figure 5.30. Number of susceptible animals of the simplified two-room GN model HEKF estimation

simulation with a measurement time of 1 day and simulation step size of 60 s. The simulated number

of susceptible animals is shown in blue and the estimated number of susceptible animals is shown in

orange.
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Figure 5.31. Number of quanta in the ward of the simplified two-room GN model HEKF estimation

with a measurement time of 1 day and simulation step size of 60 s. The simulated quanta in the ward is

shown in blue and the estimated quanta in the ward is shown in orange.
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Figure 5.32. Time-zoomed number of quanta in the ward of the simplified two-room GN model HEKF

estimation with a measurement time of 1 day and simulation step size of 60 s. The simulated quanta in

the ward is shown in blue and the estimated quanta in the ward is shown in orange.
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Figure 5.33. Number of quanta in the animal room of the simplified two-room GN model HEKF

estimation simulation with a measurement time of 1 day and simulation step size of 60 s. The simulated

number of quanta in the room is shown in blue and the estimated number of quanta in the room is

shown in orange.
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Figure 5.34. Time-zoomed number of quanta in the animal room of the simplified two-room GN

model HEKF estimation simulation with a measurement time of 1 day and simulation step size of 60 s.

The simulated number of quanta in the room is shown in blue and the estimated number of quanta in

the room is shown in orange.
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Figure 5.35. Quanta generation rate of the simplified two-room GN model HEKF estimation with

a measurement time of 1 day and simulation step size of 60 s. The simulated quanta in the ward is

shown in blue and the estimated quanta generation rate is shown in orange.
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CHAPTER 5 STATE ESTIMATION, SIMULATIONS AND RESULTS

The diagonal terms of figure 5.36 show the variance of each of the states. The variances of the state x1

decreases quickly and remains low for the duration of the simulation. The variances of the x2 and x3

states decrease from their initial value and remain lower than the initial value throughout the simulation.

The variance of the x3 state increases greatly throughout the simulation.

5.5 TESTING EXTREMES

The limits of the quanta generation rate parameter mismatch was tested in order to further determine

the performance limits of the HEKF. The initial quanta generation rate parameter was set as in Table

5.12 for each of the simulations.

5.5.1 Simulation scenario and setup

A range of quanta generation rates were tested as in Table 5.12 [9]. The other simulation data remain

the same as in Sections 5.3.3 and 5.4.3 for the single- and two-room models, respectively. Because of

the large deviations for the quanta generation rates, the full range is taken for the calculation of the

variance of the quanta generation rate P0x3,6
.

Table 5.12. Initial generation rate parameters and estimation-error covariance for single- and two-room

GN models [9].

Description Quanta per day Single-room P0x3,6

Average TB patient 30 quanta · d−1 [17] 92903

Office building outbreak 304.8 quanta · d−1 [17] 92903

Laryngeal case 1440 quanta · d−1 [17] 92903

Bronchoscopy-related outbreak 6000 quanta · d−1 [17] 92903

Bronchoscopy-related outbreak 8640 quanta · d−1 [8] 92903

5.5.2 Single-room GN model simulation results

Figures 5.37 to 5.41 show the results of the simplified two-room HEKF for the initial estimated quanta

generation rates x̂3 in Table 5.12.
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Figure 5.37. Augmented single-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 30 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.

5.5.3 Two-room GN model simulation results

Figures 5.42 to 5.46 show the results of the simplified two-room HEKF for the initial estimated quanta

generation rates x̂6 in Table 5.12. The generation rate estimate in Figure 5.42(d) can be seen to converge

after 29 days, the same as for the HEKF in Section 5.4.3.

5.5.4 Discussion of extremes results

The results from Figures 5.37(a) to 5.41(c) showed that for initial generation rate parameters of

30 quanta·d−1 to 1440 quanta · d−1 for the augmented single-room GN model, the HEKF quanta
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Figure 5.38. Augmented single-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 304.8 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.

generation rate estimates converges in less than 2 months. For the remaining initial generation rate

estimates in Table 5.12, the filter performance severely degrades.

From Figures 5.42(a) to 5.46 it can be seen that the same applies for initial generation rate parameters

of 30 quanta·d−1 to 304.8 quanta · d−1 for the simplified two-room GN model, the HEKF converges in

less than 40 days for any of the initial generation rate estimates in Table 5.12.

The HEKF quanta generation rate therefore converges to within wx3,6 for quanta generation rates given

in Table 5.12 that are up to 24 times larger for the single-room GN model and 5 times larger for the

two-room GN model.
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Figure 5.39. Augmented single-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 1440 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.40. Augmented single-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 6000 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.41. Augmented single-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 8640 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.42. Simplified two-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 30 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.43. Simplified two-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 304.8 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.44. Simplified two-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 1440 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.45. Simplified two-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 6000 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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Figure 5.46. Simplified two-room GN model HEKF simulation with a measurement time of 1 day,

simulation step size of 60 s and a quanta generation rate of 8640 quanta · d−1. The measured data are

shown in blue and the estimated data are shown in orange.
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5.6 SUMMARY OF RESULTS

Table 5.13 shows a summary of the results and a normalised root mean square error (NRMSE) of

each of the simulations for the number of quanta in the ward and animal room. These are normalised

since the two models will have different levels of quanta and are compared directly. The NRMSE is

calculated as:

NRMSE =

√
∑

(y−ŷ)T ·(y−ŷ)
N

max(y)
. (5.11)

The analysis is performed using the data after the estimate has reached steady-state because of the

large deviation of the estimate at the start of the simulation. The NRMSE is calculated for the error

between the estimated and simulated quanta after 1 month because this is close to the longest settling

time of the models with 10% mismatch, which is 29 days. The NRMSEs of the standard single-room

and two-room GN models are also given in Table 5.13.

NRMSEs of the augmented single-room and simplified two-room GN models where the initial

estimation-error covariance estimates (P33 for the augmented GN model and P44 for the simplified

two-room GN model) are increased to 100 are shown below the initial results and the NRMSEs of the

varied generation rate estimates are shown in the third section of the table.
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Table 5.13. Root mean square error of the simulated and estimated number of quanta in the ward and

animal room.
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N
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SE
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Q

ua
nt

a
in

an
im

al
ro
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af

te
r

30

da
ys

Standard SR model CEKF 22500 150 60 s 60 s - 0.52736 -

Augmented SR model CEKF 22500 150 60 s 60 s 4 d 0.017927 -

Augmented SR model HEKF 22500 150 60 s 86400 s 40 d 0.19391 -

Standard TR model CEKF 22500 150 60 s 60 s - 0.524115 0.264879

Simplified TR model CEKF 22500 150 60 s 60 s 16 d 0.001247 0.001610

Simplified TR model HEKF 22500 150 60 s 86400 s 29 d 0.197057 0.127613

Augmented SR model HEKF 92903 30 60 s 86400 s 29 d 0.138239 -

Augmented SR model HEKF 92903 304.8 60 s 86400 s 37 d 0.207078. -

Augmented SR model HEKF 92903 1440 60 s 86400 s 56 d 0.842612 -

Augmented SR model HEKF 92903 6000 60 s 86400 s 85 d 1.917687 -

Augmented SR model HEKF 92903 8640 60 s 86400 s 93 d 3.945932 -

Simplified TR model HEKF 92903 30 60 s 86400 s 10 d 0.049026 0.031235

Simplified TR model HEKF 92903 304.8 60 s 86400 s 40 d 0.199792 0.129669

Simplified TR model HEKF 92903 1440 60 s 86400 s 63 d 1.293609 0.797211

Simplified TR model HEKF 92903 6000 60 s 86400 s 84 d 2.990538 1.944071

Simplified TR model HEKF 92903 8640 60 s 86400 s 90 d 3.471771 2.269840
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CHAPTER 6 DISCUSSION

6.1 DISCUSSION

6.1.1 Single-room GN models

The GN model is in state-space format which allows for simulation with non-zero initial conditions,

the use of nonsteady-state parameters (such as the ventilation rate), and the design of state estimators.

The state-space format also allows one to easily add additional states to the model, such as the quanta

generation rate per infectious individual.

The single-room GN model, as opposed to the two-room GN model, has fewer states but the same

number of measurements. Fewer states make state estimation easier as it implies fewer parameters that

are susceptible to noise and unknown disturbances. The single-room GN model describes the infection

of susceptible entities by infectious entities who occupy the same room. This is often the case in

hospital settings, but it does not account for the ventilation of infectious droplets to other rooms.

The model assumes that the susceptible animals are immediately infected upon exposure to the droplet

nuclei and therefore incorporates the incubation period of the disease into the quanta parameter. The

other assumptions made are that the air in the room is well mixed, the infectious entities are equally

infectious, the susceptible animals are equally susceptible and that they have the same pulmonary vent-

ilation rate. The quanta parameter now essentially contains the uncertainty of each of the assumptions

made, the measurement noise, and unknown disturbances.

The single-room GN model was augmented with the quanta generation rate as an additional state and a

sensitivity and identifiability analysis was performed on the model. The sensitivity to deviation is the
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CHAPTER 6 DISCUSSION

same for both models regarding the quanta generation rate parameter, pulmonary ventilation rate of the

susceptible animals and ward ventilation rate.

The algebraic identifiability analysis indicates that the single-room model is identifiable. However,

with only the measurement of the susceptibles available, it is only possible to solve for the combined

unmeasured parameters θ1. This means that the effect of the different parameters (like the pulmonary

ventilation rate p and quanta generation rate φ ) are indistinguishable from each other. This means that

only one of the parameters that make up the combined unmeasured parameters θ may be unknown

in order to solve for that parameter. Any deviation in the actual value of the variables, that are set as

fixed and derived from literature, will result in a compensating deviation of the variable that is solved

for. As an example, if φ is chosen to be solved for, and all the other parameters in θ are chosen from

literature, but the actual value of p, which is a value from literature, is 10% greater for this group of

guinea pigs, then the solution of φ will be 10% less than the actual value of φ for this group. This

implies the variable that is solved for has significant uncertainty.

The observability analysis showed that the single-room GN model is observable. It should also be

noted that if the number of susceptible animals reduce to 0, the rank of the observability matrix reduces

to 1 and the model becomes unobservable. The determinant of the observability codistribution matrix

must be non-zero in order for the system to be observable.

Results from the CEKF, for which a measurement time of 60 s is used, are quite favourable. An

NRMSE of the quanta in the ward of 0.017927 was obtained. This is 29.4 times less than when using

the standard single-room GN model (for which the quanta in the ward estimate could not converge),

also using a measurement time of 60 s. The HEKF, for which a measurement time of 1 day is used,

resulted in an NRMSE of 0.19391 which is 2.72 times greater than the standard single-room GN model.

The convergence time for the CEKF and HEKF were 3.9 and 40 days, respectively.

Figures 5.37 to 5.41 show the results obtained when the quanta generation rate parameter is varied

between 0.5, 5, 2 4, 100 and 144 times the simulated quanta generation rate of 60 quanta · d−1 for

the modified single-room model. These generation rates were used from literature to determine the

extremes for which the HEKF can estimate the generation rate. The varied generation rate mismatch

HEKFs do not perform as well as the CEKF. The filter can, for a deviation of up to 24 times greater,

estimate the quanta in the ward with NRMSEs less than that of the standard single-room GN model,
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CHAPTER 6 DISCUSSION

but a large amount of deviation in the estimate is present. The variances of the states for the CEKF

simulations decrease and remain lower than the initial values. The variances for the x2 and x3 states

increase however for the HEKF simulation, indicating poor performance.

The quanta generation rate and thereby the number of quanta in the ward can therefore be accurately

estimated using the augmented GN model CEKF, but performance is degraded for the the HEKF.

The CEKF results can be used to better determine the number of quanta present in a ward and are

less susceptible to measurement noise and unknown disturbances than when determining the number

of quanta and generation rates when using for example methods such as a Nelder-Mead search

algorithm.

The estimators for the augmented single-room GN model require measurements of the ventilation rate

out of the ward, the pulmonary ventilation rate of the susceptible individuals (measured or estimated),

the total room volume, measurements of the number of susceptible individual and the time between

each measurement. Most of these measurements only have to be made once or can be obtained from

sensors.

6.1.2 Two-room GN models

The two-room GN model adds the incubation period and the transmission of the disease between

two-rooms through ventilation. The model is able to simulate the transmission of the disease as it

spreads from one room to another, assuming that the ventilated air is not sterilised and the ventilation

rates between the rooms are measured. The model can also be expanded to more than two-rooms,

making it possible to model disease transmission throughout a building.

The number of quanta φ in the two-rooms and the incubation period α of the disease cannot be

measured and the uncertainty of the model lies in these three parameters. The same assumptions are

made as for the single-room GN models, with the added assumption that the incubation period of the

disease is the same for each individual. The uncertainty that is contained in these assumptions are

spread across the number of quanta in the ward and number of quanta in the adjacent rooms.

The simplified two-room GN model removed the incubation period, added the quanta generation rate
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CHAPTER 6 DISCUSSION

as a state, and assumed that once an animal has been exposed to the disease it shows signs of infection.

This assumption however causes the estimate of the number of quanta to be less than it actually is

because there might be more animals who have not tested positive but have been exposed, meaning the

quanta would be greater if those animals are included in the measurements.

Although the sensitivity of the simplified two-room GN model is less than that of the augmented

single-room GN model regarding the quanta generation rate, pulmonary ventilation rate and ward

ventilation rate parameters, the two-room model also showed sensitivity to deviation of the animal

room ventilation rate, increasing the uncertainty of the model. Like the augmented single-room GN

model, the simplified two-room GN model is identifiable and any deviation in the variables will

result in a compensating deviation of the variable that is solved for. This means that the variables are

indistinguishable from one another, as with the augmented single-room GN model.

For the two-room GN augmented model, a measurement of the change in number of susceptible

animals in addition to the number of susceptible animals is required to make the two-room GN model

observable. A problem arises if the air flow into the animal room becomes zero. When the air flow

into the animal room becomes zero, the rank of the observability codistribution matrix becomes 2 and

the model becomes unobservable.

The CEKF (measurement time 60 s) and HEKF (measurement time 1 day) estimates of the quanta in the

ward and animal rooms converge after 16 and 29 days respectively. The NRMSEs of the quanta in the

ward and the quanta in the animal rooms for the CEKF are 420.3 and 164 times smaller, respectively,

than for the standard two-room GN model. The HEKF NRMSEs for the quanta in the ward and animal

rooms are 2.66 and 2.07 times smaller respectively than for the standard two-room GN model.

Figures 5.42 to 5.46 show the results obtained when the quanta generation rate parameter is varied

between 0.5, 5, 24, 100 and 144 times the actual quanta generation rate of 60 quanta · d−1 for the

modified two-room model. Only the NRMSEs of the mismatched HEKFs with deviations of up to 5

times greater are less than that of the standard two-room GN model. The variances of the states for the

CEKF simulations decrease and remain lower than the initial values, and the simplified two-roon GN

model CEKF performs well. The variances for the quanta and quanta generation rate states increase

again for the HEKF simulation, indicating poor performance.
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CHAPTER 6 DISCUSSION

The number of quanta in the two rooms and the quanta generation rate can therefore be estimated

reasonably well. This model requires the same measurements as the single-room GN model in addition

to the added ventilation rate and volume of the animal room.
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CHAPTER 7 CONCLUSION

A reduction in the transmission of TB is essential to reduce new cases and thereby reduce the number of

deaths from TB in the future. Towards this end, two TB risk of transmission models in literature were

investigated [8, 19]. Both models rely on a quanta generation rate that cannot be directly measured,

as a measurement of infectiousness. If this quanta generation rate can be estimated using nonlinear

state estimators, a feedback control system can potentially be used to reduce the transmission of TB by

controlling room ventilation rates and, where applicable, also use ultraviolet germicidal irradiation

(UVGI) to prevent transmission [12, 46, 47, 48].

Simulating the sensitivity of each model to deviation in parameters showed that the two models are

practically the same and in the case of the two-room model, an increased uncertainty arises from the

additional room. The algebraic identifiability indicates that both the models are identifiable. Only (3.4)

can be solved for indicating that the effect of the different parameters (like the pulmonary ventilation

rate p and quanta generation rate φ ) are indistinguishable from each other. This means that only one

of the parameters that make up the combined unmeasured parameters θ may be unknown in order to

solve for that parameter. This implies the variable that is solved for has significant uncertainty.

The standard Gammaitoni and Nucci (GN) model was adapted into an augmented single-room GN

model, and a two-room GN model from literature was adapted into a simplified two-room GN model.

Both modified models were shown to be observable, which means that it is theoretically possible to

estimate the quanta state in these models given the available measurements.

Kalman filters were used to estimate the quanta state. First, a continuous-time extended Kalman filter

(CEKF) was used for both adapted models using a simulation and measurement time of 60 s. Accurate
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CHAPTER 7 CONCLUSION

quanta state estimates were achieved in both cases. Taking measurements every 60 s is however

unrealistic, but was used to see what estimates can be obtained under ideal circumstances.

A more realistic scenario, with a measurement rate of once per day, was used next. For these estimates,

a hybrid extended Kalman filter (HEKF) was required as it is able to deal with simulations where the

time between model output measurements is greater than the time between measurements of other

model parameters. The quanta state for both the augmented single-room and simplified two-room GN

models was estimated reasonably well.

Real-time measurement of the number of quanta in a room is not possible since the parameter contains

uncertainty related to an individual’s immune response [6] and TST measurements can take up to 72

hours to indicate infection [4]. The measurement of the concentration infectious particles in the air is

possible using bioaerosol particle sensors [49, 50, 51]. Pairing the infectious particle concentration

measurement with a modified dose-response model, more accurate estimates of the risk of transmission

can be made [52, 53].

The measurements would only be able to identify the concentration of bio-aerosols of a specific size,

1-5 µ m [6, 33, 54, 55], and not the exact composition thereof [49]. The estimates could therefore

be further improved using filters. The effects of control measures could then also be investigated in

real-time.

The efficacy of UV control measures and the placement thereof relative to the ventilation in- and

outlets should also be taken into account [56, 57]. Zonal models can be used to model the interaction

between these control measures.
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ADDENDUM A DOSE RESPONSE MODEL

A dose response model is given in (A.1). A dose-response (DR) model based on the Wells-Riley model

makes use of infectious dose data to determine the probability of infection, where the dose is the

number of pathogen required to infect a certain amount of the population. A 50% infectious dose is

therefore the dose of pathogen required to infect half of the exposed population [52, 58].

dS
dt

=− p
V

CS
dC
dt

=−F
V

C+ IGζ (A.1)

where G is the number of airborne TB bacilli released per infector per unit of time and ζ is the fraction

of infectious particles deposited in the alveolar region [58], then the infectious particles are measured

in infectious doses. The GN model uses quanta as a measurement of infectivity and the dose response

model uses infectious dose as a measurement for this purpose. Otherwise the two models are the

same.

The DR model has the benefit of taking the immune status and susceptibility of an individual into

account, via the β parameter. This term is separate from the generation of infectious dose parameter

whereas in the GN model, the generation and susceptibility is one term. It is of great importance that a

realistic level of exposure in susceptible individuals is determined when using DR models.

A.1 SENSITIVITY ANALYSIS

The figures in this section show the comparison of the sensitivity to deviation of the model parameters

for the standard GN model compared to the dose response model. Figure A.1 shows a deviation of a

single patient instead of a 10% deviation, seeing that there cannot be a 10% increase in the number of
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ADDENDUM A DOSE RESPONSE MODEL

patients. Figure A.2 shows the effect of a 10% deviation of the quanta and infectious dose generation

rates. Figure A.3 shows the effect of a 10% deviation of the fraction of infectious particles deposited

in the alveolar region. The sensitivity to a deviation of the pulmonary ventilation rate is shown in

Figure A.4. The effect of a 10% deviation of the ward extraction ventilation rate is shown in Figure

A.5.

Figure A.1. Sensitivity to deviation of the number of infectors for the dose-response and the GN

models.

Figure A.2. Sensitivity to deviation of the quanta and infectious dose generation rates for the GN and

dose-response models.
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ADDENDUM A DOSE RESPONSE MODEL

Figure A.3. Sensitivity to deviation of the beta parameter for the dose-response model.

Figure A.4. Sensitivity to deviation of the pulmonary ventilation rate for the dose-response and GN

models.
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Figure A.5. Sensitivity to deviation of the ward ventilation rate for the dose-response and GN models.
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A.2 IDENTIFIABILITY ANALYSIS

Assuming that a method is available to measure the number of infectious particles, the measured

variables become:

y1(t) = S(t)

y2(t) =C(t).
(A.2)

The model in (A.1) can be expressed in terms of these measured variables:

ẏ1 =−
p
V

y1y2

ẏ2 =−Ny2 + γ.

(A.3)

To solve this algebraically, let

θG1 =−
p
V

θG2 =−N

θG3 = γ,

(A.4)

which gives:

ẏ1 = θG1y1y2

ẏ2 = θG2y2 +θG3.

(A.5)

Equation A.5 was used to determine the identifiability of θG1.[
y1y2

][
θG1

]
=
[
ẏ1

]
rank

[
y1y2

]
= 1

(A.6)

This is the same as the length of the vector containing the unknown θG1, meaning that this unknown

can be estimated from these measurements. As with the GN model identifiability, two measurements

of y1 and one measurement of y2 is required.
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ADDENDUM A DOSE RESPONSE MODEL

Taking equation A.5, the identifiability of θG2 and θG3 can be determined:y2 1

ẏ2 0

θG2

θG3

=

ẏ2

ÿ2


rank

y2 1

ẏ2 0

= 2.

(A.7)

This is the same as the length of the vector containing the unknowns θG2 and θG3, meaning that

these unknowns can also be estimated from these measurements. However, in order to estimate these

parameters, at least two measurements of y1 and three measurements of y2 are needed. This shows that

three parameters are identifiable for the case where both the number of susceptibles and number of

particles can be measured.

A.3 DOSE RESPONSE MODEL DISCUSSION

The measurement of infectious TB particles would be required to justify using infectious doses

when modelling the risk of transmission of tuberculosis. The dose response model can be useful for

simulation studies without such a measurement, but there is little benefit in using the more complex

dose response model unless the number of infectious TB particles can be measured. This is because the

uncertainties associated with the additional dose response model parameters are otherwise lumped into

the parameter representing the generation of infectious particles, as with the GN model [19].
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