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accounting for Geopolitical risks.
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Strong co-movements between energy markets and agricultural markets.
Geopolitical risks negatively impact the correlation between oil and a specific
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Abstract

The link between energy and agricultural markets have been studied extensively in the last two

decades. Nonetheless, the literature fails to consider the effects of geopolitical risks (GPRs),

geopolitical risks due to acts and GPRs due to threats in studying the link between the two

markets. Addressing these issues, we examine the dependence between crude oil prices and

agricultural commodities (oats, corn, wheat and soybean) for a period starting from April 4,

1990, to February 15, 2019. Our study used copula-based techniques to study the co-movement.

We find that strong co-movements between energy markets and agricultural markets, which

are negatively influenced by GPRs. Hence, suggest the ability of agricultural commodities,

particularly corn, oats and wheat, to act as a hedge against oil returns downturn resulting from

geopolitical unrest. This evidence of hedging is further vindicated, when we observe that

agricultural and oil markets are negatively correlated when the former is bullish and the latter

bearish.
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1. Introduction

Conventionally, there is a relationship between energy and agricultural markets. This

link may be direct or indirect. Directly, energy (e.g., natural gas, petrol, diesel and gasoline) is

a major input for agricultural production [1-2]. Indeed, the increased use of corn as ethanol

feedstock exposes the agricultural market to both input-related supply shocks stemming from

rising energy prices and demand-side shifts based on biofuel's role as a petroleum substitute.

At the same time, high crude oil prices make ethanol production relatively more profitable,

which  increases  the  demand  for  corn  [1].  In  the  US,  for  example,  the  Renewable  Fuel

Programme further connected the crude oil and agricultural commodities such as corn and

soybeans on the demand side [3-4].

Higher energy prices lead to a rise in the input cost (e.g., fertilizers and chemicals) and

create higher transportation costs. Besides, high oil prices lead to a higher demand for biofuels,

which in turn raises the need for agricultural inputs for producing biofuels [2, 5-6]. The indirect

link between energy and agriculture works through exchange rate effects. Since energy or oil

is mainly traded in US dollars, changes in oil prices cause appreciation/depreciation of local

currencies and influences the prices of agricultural commodities [6, 7].

Recent studies show a strong correlation between crude oil returns and energy crops or

co-movements [3, 8-9]. These co-movements of prices in energy and agricultural markets have

rejuvenated the empirical research on market integration to assist investors and policymakers

make informed decisions [9]. In periods where the performance of conventional assets is poor,

investors become more interested in commodities that offer counter-cyclic returns, and this has

led to growth in the commodity derivatives market. However, prices of commodities, such as

oil and agricultural commodities fluctuate randomly [10]. Prices of commodities like cereals,

oilseed products, dairy products, and wheat have become more volatile in recent years, and
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there is a growing demand for renewable energy such as bio-fuels, which can result in higher

food prices [11].

Nonetheless, returns from investment in energy and agricultural commodities usually

carry low correlation with financial assets and plausible interdependence among these

commodities may enlarge the common stochastic discount factor [3]. The link between

agricultural and energy markets suggest possible spillover effects. In circumstances where

investors view agricultural commodities as a single class of asset, according to Tang and Xiong

[12] shocks in the energy market is expected to transmit to the feed stocks of bioenergy and

even to food commodities. In the literature, we find that shocks in macroeconomic variables

such as those affecting business cycles and aggregate demand transmit to agricultural

commodity returns through price shocks in the energy market [3, 13]. Thus, while shocks in

one market enhance the correlations of returns, the same shocks may spillover to other markets,

and can cause the return-volatility nexus to persist for a long time [3].

Some reasons have been given to use agricultural commodities to hedge against crude

oil by [3]. The differences in fundamental causes behind price movement of agricultural

commodities and crude oil prices provide scope for investors to hedge crude oil with

agricultural commodities. For instance, fundamentally, weather fluctuations and availability of

land affect the production of crops and therefore commodity prices, while economic activity

influences energy prices.  Further, the rapid expansion of the cultivation of energy crops (corn

and  soybean)  has  the  potential  to  limit  the  allocation  of  land  to  other  commodities  such  as

wheat and oats, and these changes may push up the price of food wheat and oats. This

interconnection among the prices of oil and the underlying agricultural commodities makes a

strong case for exploring the hedging potential of agricultural commodities [3].
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Over the last two decades, the link between energy and agricultural commodities has become

one of the most controversial and has been widely researched [3, 9, 11, 14]. The aim has been

to find the causes of this market integration in commodities to help policymakers and investors

understand these linkages and their potential adverse effects on the broader economy and

provide hedging opportunities in the agricultural markets.  In doing this, several econometric

techniques such as GARCH and copula-based models capable of capturing dependence or

spillover effects related to extreme price observations have been useful in understanding the

link between energy and agricultural markets.

To this point, very few empirical researches have analyzed the dependence among agricultural

commodities and energy integration using a switching copula model. The copula method has

been used to study the spillover or dependence structure of commodities in the literature [9,

16-19]. So, we study the dependence structure of the copula model since it's better to capture

tail dependence, especially during extreme market conditions and can better mimic real-world

situations [9, 16].  The first contribution of this study is the use of dependence structure using

the copula method since it better captures tail dependence, especially during extreme market

conditions and can better mimic real-world situations [9, 19]. The copula method has been used

to study spillover or dependence structure of commodities in the literature [9, 16-19].

Furthermore, several studies on the energy-agricultural market nexus fail to explain other

factors such as geopolitical risks, geopolitical risks due to acts (GPRA) and GPRs due to threats

(GPRT), which are essential to comprehend the link between energy and agricultural markets

[3,  8-9].   Note  that,  geopolitical  risks  are  global  in  nature  and  hence,  are  likely  to  be  more

critical for global commodities we are analyzing here (Economic Bulletin of April 2017 of the

European Central Bank, and the World Economic Outlook of October 2017 of the International

Monetary Fund). Moreover, unlike metrics of uncertainties, which are generally country-

specific at high frequency and are likely to suffer from the problem of Endogeneity (Ludvigson
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et al., [20] to commodity market movements, geopolitical risks are exogenous, besides being

considered as more important than uncertainty when affecting oil markets (Demirer et al., [21]).

Therefore, we investigate the structural dependence between energy and agricultural markets

by accounting for GPRD_ACT and GPRD_THREAT, and analyze hedging of the oil market

via agricultural commodities. Incorporating GPRD, GPRD_ACT, and GPRD_THREAT allow

better to understand the dynamics of the energy and agricultural markets. Thus, our second

contribution is to investigate the structural dependence between energy and agricultural

markets by accounting for GPRA and GPRT and analyze hedging aspect of oil. Incorporating

GPRs, GPRA and GPRT allow better to understand the dynamics of the energy and agricultural

markets.

Using the daily data on crude oil and five primary agricultural commodities (corn, oats, rice,

soybean, and wheat), for a period of April 4, 1990, to February 15, 2019. We find that strong

co-movements between energy markets and agricultural markets, which are negatively

influenced by GPRs. It further suggests that the ability of agricultural commodities, act as a

hedge against oil returns downturn resulting from geopolitical unrest.   The rest of the paper

proceeds as follows. Section 2 provides a review of the relevant literature, while we detail our

methodology in section 3. In section 4, we present and discuss our empirical results. We

conclude the study in section 5 with some policy recommendations.

2. Literature Review

Studying the link between energy and commodity markets is not relatively new. To

analyze the structural dependence between returns of oil price and the agricultural

commodities,  this  section  presents  a  review  of  relevant  literature  on  the  theme.  We

acknowledge that many studies examined the spillovers between the two commodities.

However, the review of literature is limited to studies dealing with volatility transmission,

dynamic correlations, and hedging between crude oil and agriculture markets. Du et al. [22]
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explored the correlation between oil and agricultural commodity markets in the US using a

stochastic volatility approach and weekly future prices for November 1998 to January 2009.

They find that oil price volatility spills over to wheat and corn prices. Thus, there is a volatility

spillover from the energy market to agricultural markets.

Furthermore, using the data of the USA, Wu et al., [23] examined volatility spillover of oil

prices to the corn market using weekly data for the period 01-1992 to 06-2009. The authors

employed GARCH specification to analyze the data and found a significant volatility

transmission from crude oil to the corn market after 2005. It suggests that dependence between

energy markets and agricultural commodity markets. In another study, Serra et al., [24]

examined the possible volatility transmission from oil to the ethanol market in Brazil. Using

the BEKK model and weekly price data covering 07-2000 to 11-2009, they found a strong

volatility linkage among the oil, sugar, and ethanol markets.

Commodity futures are a popular asset class, as the total value of various commodity

index-related instruments increased from $15 billion in 2003 to $200 billion in mid-2008. The

raising concerns that index investment as a form of financial speculation may cause

unwarranted increases in energy and food prices through induced excessive price volatility

[12]. Indeed, studies have shown that oil price shocks contributed more than demand-side

shocks to the volatilities in agricultural commodity prices post-2008 crisis. Reboredo [25]

examined the co-movements between oil prices and that of soybean, wheat and corn. In their

bivariate copulas with time-varying dependence parameters on weekly data covering 01-1998

to 04-2011 and found no evidence of dependence between oil and agricultural prices.

Using Double Smooth Transition Conditional Correlation DSTCC-GARCH model and

weekly price data, Silvennoinen and Thorp [26] studied the dynamics of oil-agriculture

correlation for the period 2005–2007. They find a strong correlation between the prices of these
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commodities. On the other hand, Lucotte [27] used VAR forecast errors to find co-movement

between oil and agricultural commodity prices. Similarly, Ghorbel et al., [28] also used time-

varying Archimedean copulas to study dependence between oil and commodities markets such

as wheat, rice, cotton and coffee were examined alongside that of oil. They found that there is

structure dependence between oil and agricultural commodities.

Koirala et al. [17] investigated the dependence between agricultural commodity futures

prices and energy futures prices using daily data covering 03-2011 to 09-2012. After employing

the copula method for estimation, they find that agricultural commodity and energy futures

prices are highly correlated and exhibit a positive and significant relationship. Similar results

reported earlier by Mensi et al. [18]. They used VAR-BEKK-GARCH and VARDCC-GARCH

models for daily spot prices of WTI oil, Europe Brent oil, gasoline, heating oil, barley, corn,

sorghum, and wheat between 04-01-2000 and 29-01-2013. Their estimations showed evidence

of dependence between these energy and agricultural markets.

The dependence between the implied volatility indices of crude oil and two agricultural

commodities (wheat and corn) has been examined using wavelets copula methods [16, 19]. The

authors find evidence of time-varying asymmetric tail dependence in most of the cases. It

implies that the dependence structure between the commodities is sensitive to time horizon

under consideration.  In a similar work, Jiang et al. [29]  combined copula and wavelets

methods to analyze the dynamic dependence among oil, agricultural raw material and metal

markets. They find that oil market lags behind agricultural markets but leads metal markets.

Ji et al. [9] used a time-varying copula with a switching dependence to examine the conditional

dependence between energy and agricultural commodity markets. They find that the lower tail

dependence is much stronger in a bearish regime than in a bullish regime, highlighting the

importance of systematic risk spillovers during extreme downward movements. They also
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found a significant risk spillover from energy to agricultural commodities markets. On the other

hand, Eissa and Al Refai [8] used linear and nonlinear Autoregressive Distributed Lag (ARDL)

models to investigate the dynamic linkages between oil prices and agricultural commodities.

They use seasonally adjusted monthly price series for crude oil and agricultural commodities

(i.e., barley, rapeseed oil and corn) for the period 01-1990 to 12-2018. Their nonlinear analysis

showed that the prices of agricultural commodities and oil prices co-move in the long run. They

also found that prices of agricultural commodities respond rapidly and strongly to cyclical

movements in oil prices, but adjustments towards equilibrium take relatively longer. Liu et al.

[30] used Markov-switching GRG copula to analyze the dependence structure between crude

oil futures price and 12 Chinese agricultural commodity futures prices. They find that there is

a dependence between oil futures prices and the majority of agricultural commodity futures

prices, although the strength of dependence depends on the regime.

There are several other studies have examined the structure dependence between

agricultural commodities and energy markets and spillover effects (see, for example, Fowowe,

[14]; Nazlioglu et al., [31]; Pal and Mitra, [3]; Teterin et al., [32]). Similarly, most recent

studies Mostashari-Rad et al., [33] examine the optimize energy usage and determine the

justification of greenhouse emissions in crops of Guilan Province, Iran. Their results display

that the highest energy consumption was related to tea and lowest with kiwifruit production. In

another study, Kaab et al., [34] used optimization techniques for environmental effect decline

and energy usage optimization in planted and ratoon farms of sugarcane production at Imam

Khomeini Sugarcane Agro-Industrial Company. They concluded that a rise of energy

consumption efficiency was mostly ascribed to electricity, diesel fuel, human labour and

nitrogen fertilizer in sugarcane production.

Many recent studies linked the environmental and climates issues related to energy

consumption with agricultural commodities. For example, Ghasemi-Mobtaker et al., [35]
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implemented an application of the photovoltaic system as a substitute clean energy energy-

environmental sustainability using irrigation methods. They determined that cumulative exergy

demand findings show that shares of Non-renewable, fossil for barley production mainly result

from electricity and diesel fuel. Likewise, Hosseini-Fashami et al., [36] analyzed energy-

environmental life cycle valuation of greenhouse strawberry production in Iran. They

concluded that energy-environmental indices improve greenhouse strawberry production and

help to move toward higher sustainability. In another study Saber et al., [37] examine the

exergoenvironmental aspects across rice production systems, including conventional, low

external input, and organic structures in Iran. They determined that the cumulative exergy

demand analysis indicated that Non-renewable, fossil fuel was the primary energy

consumption.

Mostashari-Rad et al., [38] evaluated environmental damages of horticultural crops

under different cropping systems including citrus, hazelnut, kiwifruit, tea, and watermelon in

Guilan province of Iran. They found that among all horticultural crops studied, and hazelnut

production involves greater energy consumption. When compared for environmental impacts

and energy forms, the citrus production was the best, due to the low emissions across all

horticultural productions. We can conclude from the literature that a lot of literature analyzed

the relationship between energy and agricultural commodities using a variety of different

models.   However,  none  has  accounted  for  considering  geopolitical  risk  and  threats,  which

could also influence the dependence structure of energy and agricultural markets. We believe

GPRs and GPRTS in modelling the dependence between energy and agricultural commodity

markets.
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3. Methodology

3.1. Data

For the empirical analysis, we used daily futures prices traded on the New York

Mercantile Exchange (NYMEX) during April 4, 1990, to February 15, 2019, for oil and

agricultural commodities. The data agrarian commodities, as well as energy, was obtained from

the DataStream. We used crude oil as a proxy of energy. While for agricultural commodities,

we used five commodities, i.e., corn, oats, rice, soybean, and wheat. Since corn, rice, and

soybean are oil (ethanol and biodiesel) producing agricultural commodities. Following Pal and

Mitra [3], we classify corn, rice and soybean as energy crops and wheat and oats as food crops.

In this respect, higher prices for energy crops will increase the price of energy, such as ethanol

and biodiesel. Conversely, since energy is a key input in the production of agricultural

commodities, high energy prices commonly increase the agriculture commodity prices (for

details, please refer to Esmaeili and Shokoohi [11]; Mensi et al., [16, 19]).

Besides,  since  we  want  to  relate  the  dependence  of  oil  and  the  other  agricultural

commodities with geopolitical risks (GPRD), we use the associated daily index developed by

Caldara and Iacoviello [39]. They calculate the index by counting the number of articles related

to geopolitical  risk in 11 newspapers (as a share of the total  number of news articles)1. The

index is then normalized to average a value of 100 in the 2000-2009 decade. The search

identifies articles containing references to six groups of words: Group 1 includes words

associated with explicit mentions of geopolitical risk, as well as mentions of military-related

tensions involving large regions of the world and a US involvement; Group 2 includes words

directly related to nuclear tensions; Groups 3 and 4 include mentions related to war threats and

terrorist threats, respectively, and; finally, Groups 5 and 6 aim at capturing press coverage of

1 The Boston Globe, Chicago Tribune, The Daily Telegraph, Financial Times, The Globe and Mail, The Guardian,
Los Angeles Times, The New York Times, The Times, The Wall Street Journal, and The Washington Post
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actual adverse geopolitical events (as opposed to just risks) which can be reasonably expected

to lead to increases in geopolitical uncertainty, such as terrorist acts or the beginning of a war.

Based on the search groups above, Caldara and Iacoviello [39] further disentangle the direct

effect of adverse geopolitical events from the impact of pure geopolitical risks by constructing

two indexes.  The  Geopolitical  Risks  associated  with  Threats  (GPRD_THREAT) index  only

includes words belonging to Search groups 1 to 4 above. The Geopolitical Risks due to actual

Acts (GPRD_ACT) index only includes words belonging to Search groups 5 and 62.

3.2. Methodologies

3.2.1 Copula specification

We examined the structure dependence between oil price return (X1) and the returns on

agricultural commodities (X2). We apply the copula-based framework as its marginal

distribution is similar in internal (0 1), and it is a multivariate distribution function. Besides,

for the case of two arbitrary time series, the copula framework utilized to examine the bivariate

combined distribution function F (x , x ). According to Sklar [40], the combined

distribution of two arbitrary time series could be explained in terms of a copula after converting

uniform distributions from marginal distribution. Therefore, the combined distribution of the

two-time series could be denoted by a copula function C represented as:

, , , ; , ; = ( , , , , , ); . (1)

In the above equation , ; , K = 1, 2 is the marginal aggregate distribution

function of ,  while  are the parameter sets of , ;  and C, respectively.

Considering all the aggregate distribution are distinguishable, we can write the bivariate joint

density as follow;

, , , ; , ; = ( , , , ; ) , ; , (2)

2 The GPR data is available from https://www.matteoiacoviello.com//gpr.htm.

https://www.matteoiacoviello.com//gpr.htm.
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where , , , ; , ; = , , , ; , ; , ,  is  the  combined

distribution of , , . , is the likelihood integral conversion of ,  based  on

, ; , K = 1, 2; , , , ; = , , , =

, , , ;
, ,  is the copula distribution function and finally, , ;  is

the marginal distribution of , , where K= 1, 2. The bivariate combined distribution of , , and

,  is the product of copula distribution and two marginal distributions.

As clarified before, the co-movement between oil price and agriculture commodities returns

can be negative or positive. The positive co-movement can be due to return chasing effect,

whereas a negative relationship could be due to portfolio rebalancing effect. These two impacts

could rule on various occasions inside a similar retro. Consequently, the two variables switch

between negative and positive dependence systems. With the utilization of Markov Switching

copula model, we could capture the expressed switching dependence. For this situation, the

latent variable influences both the copula capacity and minimal models (Wang et al. [41-42]).

Consider the below state-varying copula:

, , , , ; = , , , ; , = 1

, , , ; , = 0

In the above equation,  is a latent series whereas , , , ;  and , , , ;  are

the negative and positive dependence structures, correspondingly. As explained previously, the

copula model combines the Clayton Copula (Cc) with the Survival Clayton copula (CSC)3.

, , , ; = , , , ; + , , , ; , (3)

, , , ; = , , , ; + , , , ; , (4)

3 According to Wang et al. [42], Gumbel copula can be used as an alternative. Although, Gumbel copula model
does not fit effectively using different selection criteria such the Akaike information criteria.
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where  =  ( , )', = ( , )'; ( , , ) = ( + 1) , ( , , ) =

( + 1) + ( , 1 , ) and (0, ). The predictable shape parameter, , can

be converted into Kendall's , the coefficient of the correlation , the tail dependence  with

= (2 + ), = sin( 2) and = 0.5 2 , for  i = 1, 2, 3, 4.

( ) measures the dependence of soaring oil price and high (low) agricultural commodity

prices and ( ) measures the dependency of lower oil prices and lesser (higher) agricultural

commodity prices. Therefore, ( ) evaluates the dependability of very high oil prices with

enormously high (low) agricultural commodity prices. Whereas ( ) assess the dependency

of low oil prices with enormously low (high) agricultural commodity prices.

The latent series St based on the modes of Markov Switching chain with a conversion likelihood

matrix described as follows:

=

In the above equation  = Pr [ = | = |] for I, j = 0, 1. In this case, the variables

change  across  two  states,  i.e.,  positive  and  negative  states.  So,  we  can  define  the  bivariate

density function as follow:

, , , , , , , = Pr( = ) ( , , , ; ) Pr( =

) ( , , = ) (5)

By modifying equation five into log-likelihood, we get;

( ) = ( ) + ( , ) (6)

From equation 6, the log of the copula density and the marginal density of Xk, are =

( , , , , , , , ); ( ) ( , ) correspondingly. These are further

explained as:

( ) = log[Pr( = 1) ( , ; ) + (1 Pr( = 1) (( , ; )],

, = log[Pr( = 1) ( : . = 1) + (1 Pr( = 1) ( , . = 0)]
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where = ( , , , ).

3.2.2 Marginal models

We used an ARMA(m,n)-GJR-GARCH(p,q) model, developed by  Glosten, Jagannathan,

and Runkle [43], with skewed t-distribution to model the oil and agriculture returns. We started

with a simple returns series as below:

= +  ,

In the above equation,  is the expected returns, and  is a white noise with a zero-mean. More

specifically we say that ~  if  we  can  write = , where  is standard

Gaussian as follow;

= + ( + ) + . (7)

where  is a constant,  is the ARCH component and  is the GARCH component and

= 0 , 1
1 , 1 < .

We selected the lags (p, q) based on the Akaike Information Criteria (AIC).

3.2.3 Estimation methodology

Following the Canonical Maximum Likelihood (CML) method, we converted the standardize

residuals into a consistent distribution by employing the beneath marginal cumulative

distribution function.

( ) = ( , ), (8)

In the above equation, I(.) is a dummy variable which equals one if , , otherwise 0.

Following this, we calculated the cumulative distribution function for every observation of

, and indicated by , = , , = 1, 2; = 1, 2, … , ;  = 0, 1.
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As the dependence structure follows the Markov-Switching process, so to rearrange the log-

likelihood function, Hamilton's filtered system used as follow:

( ) = log |

| = | |

| = | ,

=
( , : ) ( , : ) ,  ; ,

( , : ) ( , : ) ,  ; ,

In the above equation, the Hadamard product described as "o" and indicates density

u=function for = 0, 1. The vector of the parameters  = ( , , , , , , , ) is

then determined by maximizing ( )4

= max ( ) (9)

The time-varying dependence between oil and agricultural commodities can be created to

estimate the model's parameter. So, it is ( ( , )) = ( , ) ( , ), then,

Kendall's  of the mixed copula under the positive dependence regime is given as:

= [ 2 + ] + (1 )[ 2 + ] (10)

Likewise, Kendall's of the diversified copular beneath the negative dependence regime is =

[ 2 + ] + (1 )[ 2 + ]5 (11)

The correlation coefficient of the mixed copula under different dependence regimes is thus

calculated as = sin /2 j = 0, 1. Thus, the smoothing correlation  is defined

as:

= , , = , sin( ) , sin( ) (12)

4 According to Wang et al. [42], it is good to make use of the simplex search method in order to evade illogical
value to obtain the . Thus, we could start with the MLE estimates of as the basic value of h.
5 For a rigorous and through derivation about the Kendall’s correlation and smooth correlation of the mixed
copular, please see Wang et al. [41-42]
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Where A = 0.5, and = 0.5 [ + ( ) ], = 0.5 [ + ( ) ] and

,  is the smoothing probability in regime j for j = 0, 1 (for details, see Kim and Nelson [44]).

4. Empirical Findings

4.1. Descriptive statistics

For  the  empirical  analysis,  the  data  consisted  of  energy  and  four  agricultural

commodities prices. We used the oil prices and agriculture commodities (i.e., corn, oats,

soybean, and wheat) futures prices traded on NYMEX from April 4, 1990, to February 15,

2019.   Our  choice  of  this  data  set  is  mainly  directed  because  of  the  well-known  cost-push

impacts in the literature (for details see, Esmaeili and Shokoohi [11]; Mensi et al., [16, 19]). It

states  that  high  energy  prices  commonly  increase  the  agriculture  commodity  prices  as  it  is

considered a key input for the production process. We use log returns for oil and agricultural

commodities. The descriptive statistics are presented in Table 1.

Table 1 exhibits the basic statistics and essential diagnoses test for the commodity

returns. The average returns throughout the period for all the commodities are positive.

Amongst the agricultural commodities, corn has the lowest mean, whereas the highest standard

deviation is for oats. Oil returns display quite a high standard deviation. It also has a large range

between minimum and maximum values and exhibits higher uncertainty compared to

agricultural commodities. All the series (except wheat) display negative skewness. Further, the

series shows that kurtosis is quite high and rejects that the series are normally distributed. It is

also confirmed by the significant statistics of Jarque–Bera.

We also presented the results of the ADF unit root test in Table 1. The significant test

statistics  imply  that  all  the  commodities  series  are  stationary  except  rice.  Further,  we  also

presented the results of Ljung-Box statistics, Q and Q2, and significant statistics confirm the

presence of heteroscedasticity. The LM test for the presence ARCH impact also significant at

1% and justify to use GARCH-class models estimation.
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Table 1: Descriptive Statistics
Oil Corn Oats Soybean Wheat Rice

Panel A

Mean 0.0001 0.0000 0.0001 0.0001 0.0001 0.0000

Std.Dev. 0.024 0.017 0.023 0.016 0.018 0.017

Minimum -0.401 -0.276 -0.255 -0.234 -0.128 -0.245

Maximum 0.164 0.128 0.154 0.203 0.111 0.281

Skewness -0.697* -1.112* -1.014* -1.006* 0.059 0.0361

Kurtosis 17.872* 24.003* 14.691* 20.672* 5.901* 27.183*

Jarque-Bera 66719.7* 133374.8* 42093.9* 94586.6* 2519.7* 174863.2*

Panel B: diagnoses

ADF -26.78* -24.79* -27.69* -24.99* -25.24* -19.152

L-B 42.00* 41.40* 64.60* 56.60* 36.83 43.0 *

L-B2 906.00* 80.40* 117.10* 1189.60* 1084.50* 49.6 *

ARCH LM 475.40* 58.00* 90.70* 955.20* 408.10* 41.5 *

Observations 7176 7176 7176 7176 7176 7176
Note: Table reports the descriptive statistic along with diagnoses test results for Oil and agricultural commodities
returns. Std.Dev. is the standard deviation. The residual-based diagnostics L-B is the Ljung-Box test for autocorrelation
of returns and squared returns along with ARCH LM test is also presented in panel B. * denotes significance at 1%
level.

Table 2 presents results of Nonlinearity tests, i.e., Teraesvirta neural network test,

White neural network test, Tsay test, and likelihood ratio test for threshold nonlinearity. In the

majority of the cases,  the results are significant at  1% level.  The results are stronger for the

Tsay test as all the series (excluding rice) shows significant results.

Table 2: Nonlinearity test
Oil Corn Oats Soybean Wheat Rice

Teraesvirta NN Test 21.72* 1.89 15.83* 225.28* 3.52 14.987*

White NN Test 2.34 0.09 10.14* 31.72* 2.57 47.3185*

Tsay Test 4.70* 2.03* 1.98* 3.36* 2.673* 0.9574

Likelihood Ratio Test 26.53 52.47 138.99* 138.99* 48.89* 21.288*

Note: * denotes significance at 1% level.
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4.2. Results from Marginal distribution models
 The results of the estimation for the marginal distribution of ARMA (m, n)-GJR-GARCH

(p, q) are presented in Table 3. From the table, looking at the mean equation, we conclude that

each of the commodity return series has a different ARMA (m, n) and significant at 1%.

Moving towards variance equation, we find volatility persistence (sum of ARCH and GARCH

is near one) that in the minority of the cases, except oil and rice return series. Furthermore, the

asymmetric parameter (gamma) is negative and statistically significant for the Oats, Soybeans,

and wheat, which indicate that negative surprises end up with higher conditional volatility

compared to positive surprises of the same size. So, we conclude that bad news impacts the

volatility more compared to the good news.

Table 3 also reports the results of the Ljung-Box statistics on standardized residuals as well as

standardized squared residuals for different lag structures: lag (1), lag (23), and lag (39). We

conclude, from the significance of the results, that there is an absence of serial correlation in

the standardized residuals as well as standardized squared residuals. Moreover, results from

ARCH-LM test also confirms the nonexistence of conditional heteroscedasticity in the series

for the different specification of ARCH lags (ARCH (3), ARCH (5), and ARCH (7)).

Comparing these results with those in Table 1, we conclude that the ARMA (m, n)-GJR-

GARCH (p, q) model is for the oil as well as agricultural commodities.

4.3. Results of single-copula

 In this section, we present the empirical results from the single copula estimations between

oil and agricultural commodities. Following Wang et al., [41], the results of the analysis for

each  pair  of  oil  and  five  agricultural  commodities  returns  for  six  single  copula  models  are

presented in Table 4. The six copula models consist of the normal copula, student-t copula, and

four types of the Clayton copula (see Table 4).
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Table 3: Parameter estimates for the marginal distribution models
Oil Corn Oats Soybean Wheat Rice

Panel A: Mean equation
Constant 0.0000

(0.70)
0.0001
(0.37)

0.0002
(0.43)

0.0002
(0.12)

0.0001
(0.60)

0.0001
(0.50)

AR(1)
0.4514
(0.00)

0.0217
(0.08)

0.6427
(0.00)

1.1235
(0.00)

-0.7241
(0.00)

AR(2)
-0.6874

(0.00)
-0.9457

(0.00)
-0.4433

(0.03)

AR(3)
-0.2486

(0.02)
0.1839
(0.43)

AR(4)
0.5326
(0.00)

0.0754
(0.00)

MA(1)
-0.4710

(0.00)
-0.5994

(0.01)
-1.1485

(0.00)
0.7364
(0.00)

MA(2)
0.6832
(0.00)

-0.0443
(0.01)

0.9703
(0.00)

0.42963
(0.03)

MA(3)
0.2230
(0.05)

0.0031
(0.81)

-0.0149
(0.01)

-0.2099
(0.36)

MA(4)
0.0077
(0.57)

-0.0111
(0.36)

-0.0166
(0.04)

-0.56737
(0.00)

MA(5)
-0.0299

(0.01)
-0.0075

(0.53)
0.0000
(0.09)

Panel B: Variance equation
Constant 0.0000

(0.30)
0.0000
(0.15)

0.0000
(0.00)

0.0000
(0.00)

0.0000
(0.00)

0.0842
(0.00)

ARCH
0.0485
(0.00)

0.0702
(0.00)

0.0947
(0.00)

0.0818
(0.00)

0.0466
(0.00)

0.9106
(0.00)

GARCH(1)
0.7130
(0.00)

0.9150
(0.00)

0.8992
(0.00)

0.9371
(0.00)

0.9611
(0.00)

GARCH(2)
0.2170
(0.00)

-0.0108
(0.37)

Asymmetry
0.0307
(0.00)

0.0114
(0.42)

-0.0428
(0.00)

-0.0520
(0.00)

-0.0296
(0.00)

1.0498
(0.00)

Skew
0.9263
(0.00)

1.0266
(0.00)

0.9996
(0.00)

0.9547
(0.00)

1.0798
(0.00)

4.4896
(0.00)

Shape
6.9087
(0.00)

5.0413
(0.00)

3.6456
(0.00)

5.4306
(0.00)

6.9376
(0.00)

0.0001
(0.46)

Log Likelihood 17749.96 20119.3 18024.29 20870.13 19440.89 20351.28

Akaike -4.9426 -5.6052 -5.0201 -5.8130 -5.4138 -5.6698

Bayes -4.9272 -5.5975 -5.0086 -5.8006 -5.3985 -5.6621

Shibata -4.9426 -5.6052 -5.0202 -5.813 -5.4139 -5.6698

Hannan-Quinn -4.9373 -5.6025 -5.0162 -5.8087 -5.4086

Panel C: Diagnostic tests
Ljung-Box Test on Standardized Residuals

Lag[1]
2.134
(0.14)

0.694
(0.41)

6.786
(9.19E-03)

5.421
(0.02)

2.176
(0.14)

1.553
(0.21)

Lag[23]
6.355
(1.00)

2.116
(0.17)

12.184
(1.46E-11)

11.270
(0.00)

12.057
(0.99)

1.768
(0.30)

Lag[39]
10.608
(0.99)

3.228
(0.37)

18.595
(1.90E-02)

16.987
(0.23)

22.875
(0.44)

2.628
(0.53)

Ljung-Box Test on Standardized Squared Residuals

Lag[1]
2.266
(0.13)

0.018
(0.00)

0.2537
(0.61)

8.158
(0.00)

0.02254
(0.88)

1.106
(0.29)

Lag[5]
7.66

(0.11)
0.66884

(0.85)
1.9134
(0.64)

9.843
(0.01)

0.27599
(0.98)

1.627
(0.71)

Lag[39]
12.968
(0.06)

1.39452
(1.71)

5.7974
(0.32)

11.143
(0.03)

1.2917
(0.97)

2.128
(0.88)

ARCH LM Tests

ARCH (3)
0.041
(0.84)

0.736
(0.35)

0.407
(0.52)

1.147
(0.28)

0.048
(0.83)

0.220
(0.64)

ARCH (5)
0.074
(0.99)

1.029
(0.65)

3.117
(0.27)

2.291
(0.41)

0.394
(0.91)

0.277
(0.95)

ARCH (7)
2.016
(0.74)

1.529
(0.75)

5.926
(0.15)

2.596
(0.59)

0.9296
(0.92)

0.716
(0.95)

Note: This table presents the estimation for the marginal distribution of ARMA(m,n)-GJR-GARCH(p,q).  The
lags of the model (m,n,p,q)  are selected based on AIC. The residual-based diagnostics L-B is the Ljung-Box
test for autocorrelation of returns and squared returns along with ARCH LM test for the existence of ARCH
effect is also presented in panel C. The p-values are reported in the parenthesis.
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Table 4: Estimation of single-copula models: oil and agricultural commodity futures
Corn Oats Soybean Wheat Rice

Normal copula
0.1250*** 0.0795*** 0.1282*** 0.1019*** 0.0058***

SE (0.011) (0.012) (0.012) (0.012) (0.012)
LL 56.54 22.77 59.44 37.52 0.12
AIC -111.08 -43.53 -116.89 -73.04 -1.76
BIC -104.20 -36.65 -110.01 -66.16 -8.640
Student-t copula

0.1276*** 0.0822*** 0.1330*** 0.1033*** 0.0058***

SE (0.012) (0.012) (0.012) (0.012) (0.012)
DoF 20.91*** 14.96*** 17.69*** 13.19*** 99.99***

SE (5.590) (2.989) (4.019) (2.602) (104.856)
LL 64.35 37.19 70.61 58.48 0.30
AIC -126.70 -72.38 -139.23 -114.96 -1.39
BIC -119.83 -65.50 -132.35 -108.08 -8.27
Clayton(u, v)

0.1286*** 0.0839*** 0.1345*** 0.1024*** 0.0033***

SE (0.015) (0.014) (0.015) (0.014) (0.012)
LL 45.24 21.09 48.34 30.94 0.04
AIC -88.48 -40.17 -94.68 -59.88 -1.92
BIC -81.60 -33.29 -87.79 -53.01 -8.79

Rotated Clayton copula (with tail dependence in upper tail instead of lower): Clayton(1-u, 1- v)

0.1241*** 0.0795*** 0.1277*** 0.1115*** 0.0082***

SE (0.015) (0.014) (0.015) (0.014) (0.012)
LL 42.30 19.03 43.72 36.30 0.239
AIC -82.61 -36.06 -85.44 -70.61 -1.52
BIC -75.73 -29.18 -78.56 -63.73 -8.399
Rotated Clayton copula (half rotated): Clayton(1 - u, v)

0.0001 0.0001 0.0001 0.0001 0.0051***

SE (0.012) (0.013) (0.012) (0.012) (0.012)
LL 0.07 0.04 0.06 0.05 0.03
AIC 2.13 2.08 2.20 2.09 2.06
BIC 9.01 8.96 8.99 8.98 8.94
Rotated Clayton copula (half rotated): Clayton(u, 1 - v)

0.0001 0.0001 0.0001 0.0001 0.0001
SE (0.012) (0.012) (0.013) (0.012) (0.012)
LL 0.06 0.03 0.07 0.05 0.48
AIC 2.12 2.06 2.14 2.09 0.01
BIC 9.01 8.94 9.02 8.97 2.01
Note: SE, LL, AIC and BIC represent standard error, log-likelihood, the Akaike information criterion, and the
Bayes information criterion, respectively. DoF shows the degrees of freedom for the Student-t distribution.

 is the shape parameter,  is the correlation coefficient of two series in the Normal or Student-t copula. The
numbers in parentheses are standard errors. *** indicates significance 1% level, respectively.

 Table 4 displays the estimated coefficient for oil and each of the agricultural commodities

as well as the standard error (SE), log-likelihood (LL), the Akaike information criterion (AIC)

and Bayes information criterion (BIC). The results exhibit significant parameters at 1% level

for four of the copula models (normal, student-t, Clayton and 180-degree Clayton copula) for
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all the pairs of oil and agricultural commodities.6 Our results are more significant compared to

Ji et al., [9].  If we compare the copula models based on LL, AIC, and BIC, no copula model

performed better than other copula models. It is argued in the literature that normal copula and

student-t copula can elucidate symmetric negative and positive dependencies. Nonetheless,

normal copula does not address tail dependence; whereas the student-t copula deals with

symmetric tail dependence ((see Liu et al., [46])). To address the issue of asymmetric tail

dependence, we use a dependence-switching copula model.

The results of the regular copula or single-copula model show there is structure dependence

between the energy market and the agricultural market. In all the four copula models, the

dependence measure is positive. Therefore, we conclude that there exists a positive structure

dependence between crude oil prices and agricultural commodity returns. The results are in

tandem with a recent study by Ji et al., [9].

4.4. Results of dependency switching copula

The estimation from the dependence-switching copula models with positive and negative

correlation regime as well as regime switching are presented in Table 5. The results show the

coefficients for the dependence-switching copula for each set of oil and agricultural

commodities. The copula coefficients in the case of positive correlation regime (when both

markets are bearish as well as when both markets are bullish, see panel A and B) are positive

and significant at 1% for all pair of oil and commodities except oil-rice pair. These results are

consistent with the results of Ji et al. [9]. However, the results from the negative correlation

regimes (in case of bearish oil markets and bullish agricultural markets) are significantly

negative at 5% level (at least) for oil-corn, oil-oats, and oil-wheat. No significant results were

found in the case of oil-soybeans, oil-rice pair when the oil market is bullish and agricultural

6 The mixture copula models proposed by Zimmer [45], as reported in Table A1 in the Appendix of the paper,
yields a similar dependence pattern.
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markets are bearish. These results suggest that corn, oats and wheat can serve as a hedge against

oil returns, given that the correlation is negative and significant in these agricultural markets

when the oil market is declining. Still, the same cannot be said for oil clearly.

Table 5: Estimation of the dependence-switching copula model.
Corn Oats Soybean Wheat Rice

A Positive correlation regime– Panel A and Panel B

Panel A: Both markets are bearish
0.8955***

(0.24)
0.6664***

(0.12)
0.6951***

(0.09)
0.5891***

(0.08)
-0.0254
(0.02)

0.4669***

(0.08)
0.3825***

(0.05)
0.3941***

(0.04)
0.3498***

(0.04)
-0.0203
(0.02)

0.2306*** 0.1767*** 0.1845*** 0.1541*** 3.29E+11***

(0.05) (0.03) (0.03) (0.03) (0.23)

Panel B: Both markets are bullish

0.5205***

(0.15)
0.2321***

(0.08)
0.3739***

(0.08)
0.2619***

(0.07)
0.0198
(0.04)

0.3187***

(0.07)
0.1627***

(0.05)
0.2449***

(0.04)
0.1809***

(0.04)
0.0155
(0.03)

0.1321***

(0.05)
0.0252
(0.03)

0.0784***

(0.03)
0.0354
(0.03)

3.58E-16
(2.63E-14)

Negative correlation regime – Panel C and Panel D

Panel C: Oil markets are bearish, agricultural markets are bullish

-0.1109***

(0.03)
-0.0692**

(0.03)
-0.0167
(0.04)

-0.08334***

(0.04)
0.0651
(0.07)

-0.0921***

(0.03)
-0.0563**

(0.03)
-0.0132
(0.03)

-0.0683***

(0.03)
0.0495

(0.0497)
259.27

(497.59)
1.11E+04

(5.18E+04)
4.88E+17**

(0.40)
2045.94

(7347.52)
1.19E-05

(0.000131)

Panel D: Oil markets are bullish, agricultural markets are bearish

-0.0467
(3.70E-02)

0.0382
(3.26E-02)

-0.0028
(3.42E-02)

0.0384
(3.68E-02)

-0.1330
(0.11)

-0.0376
(3.04E-02)

0.0294
(2.47E-02)

-0.0022
(2.70E-02)

0.0296
(2.78E-02)

-0.1117
(0.09)

1.37E+06
(1.61E+07)

6.43E-09*
(9.98E-08)

2.69E+107***

(0.41)
7.08E-09

(1.23E-07)
91.638

(390.26)
Panel E: Regime Switching

P11 0.9977*** 0.9989*** 0.9989*** 0.9978*** 0.9984
P00 0.9984*** 0.9998*** 0.9995*** 0.9963*** 0.9949
LL 15491.87 15517.53 15449.45 15511.41 15577.00
AIC -31023.70 -31075.10 -30938.90 -31062.80 -31193.94
BIC -31161.30 -31212.60 -31076.50 -31200.40 -31331.51

Note:  is the shape parameter of the dependence-switching copula, and  and are the measures of dependence
and tail dependence, respectively. The numbers in parentheses are standard deviations. LL, AIC and BIC denote
the estimated log-likelihood value based on equation (4), the Akaike information criterion, and the Bayes
information criterion, respectively. P11 and P00 are two transition probabilities. Values are in the order of the first
parameter and the standard error. ** and *** indicates significant at 5% and 1% level of significance, respectively.

Panel E of Table 5 presents the coefficients of the regime-switching model. The results

conclude that probabilities P11 and P00 are positive and significant at level 1%. However, we did
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not find any significant results for rice. The coefficients of the probabilities are close to 1,

which confirms a high persistence of the same dependence regime. In line with Ji et al., [9], we

also reported the results of parameter  and which measures the dependencies and tail

dependencies across oil and agricultural commodities, respectively. The tail dependencies,

according to Ji et al., [9], measure the probability of large losses or profits occurring

simultaneously in both energy and agricultural markets. Therefore, under any extreme market

conditions, the tail dependencies serve as a good signal for systemic risks.

 Consistent with the literature, we find that commodity markets co-move together and suffer

from extreme shocks (Pindyck and Rotemberg, [47]; Ji and Fan [48]; Ji et al. [9]). It is because

the coefficients for most of the dependence and tail dependence during the positive correlation

regime are significantly positive, whereas the majority are insignificant under negative

correlation regime.

As the results of dependence-switching copula model in the previous section are much stronger

for positive correlation regime, so we focused more on their features. Therefore, we presented

the smoothing probability of positive correlation regime among oil returns and agricultural

commodities returns for the full sample in Figure 1. It is clear from the graphs that all the pairs

of oil and agricultural commodities exhibit similar patterns (excluding rice) with the highest

jump to the probability to 1 during the global financial crisis.

Figure 2 displayed the smoothing correlation coefficients of agricultural commodities with oil

as time-varying structures over time.  From the graphs, it is clear that the level of correlation

during the normal states for most of the pair of oil–agricultural are pretty low and are below

0.1. However, all the pairs of oil-agricultural commodities (except rice) show similar patterns

with jumps in correlations to the highest level to 0.4 during the global financial crisis period.

It concluded that the tails dependencies are important for risk consideration, specifically during

the financial crisis. However, for the pair of oil-rice, the values are very low (few times



24

approach 0) compared to other oil and agriculture commodities pares.

Figure 1: Smoothing probability of the positive correlation regime between the oil returns and agricultural
commodity returns

0

0,2

0,4

0,6

0,8

1

1,2

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Smoothing probability Corn

0

0,2

0,4

0,6

0,8

1

1,2

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Smoothing probability Otas

0

0,2

0,4

0,6

0,8

1

1,2

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Smoothing probability Soybean

0

0,2

0,4

0,6

0,8

1

1,2
19

90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Smoothing probability Wheat

0

0,2

0,4

0,6

0,8

1

1,2

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Correlation Rice



25

Figure 2: Smoothing correlation coefficients of the positive correlation regime between the oil returns and
agricultural commodity returns
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4.5. Geopolitical Risks and dependence between energy and agricultural markets.

The correlations for the agricultural commodities with oil under the positive correlation regime

were also used as dependent variables to assess the effect of geopolitical risks, and hence the

hedging ability of agricultural commodities in the wake of heightened geopolitical risks.

Almost all the GPRs recorded a negative coefficient and were statistically significant at 1%.

The only exception is GPRD_ACT and correlation for soybeans and rice. It suggests the

existence of diversification benefits for investors by moving from oil to the agricultural

commodities during periods of heightened risks associated with geopolitical factors.

 Overall, these results on geopolitical risks and threats suggest that the GPRs influence the co-

movement between energy and agricultural markets, and more importantly agricultural markets

can hedge the risks of the oil market since geopolitical risks negatively affect the oil market

(Cunado et al. [49]). The result in terms of the hedging ability of agricultural commodities,

particularly corn, oats and wheat, for the oil market is also in line with the dependence results

obtained earlier for bearish oil and bullish agricultural market, whereby we saw a negative

correlation. Now, geopolitical risks can be used as a source for the bearish oil market.

Table 6: Geopolitical Risks and the Correlations for all Commodities with Oil

Variable Correlations
corn

Correlations
oats

Correlations soybeanns Correlations
wheat

Correlations
Rice

Part A
Coefficient Coefficient Coefficient Coefficient Coefficient

GPRD -0.00011*** -0.00013*** -7.61E-05*** -8.40E-05*** -0.000326***
(1.54E-05) (1.38E-05) (2.04E-05) (1.32E-05) (2.43E-05)

C 0.122937*** 0.073157*** 0.116992*** 0.101898*** 0.773388***
(0.001806) (0.001619) (0.002382) (0.00155) (0.002839)

Part B
Variable Coefficient Coefficient Coefficient Coefficient Coefficient
GPRD_ACT -2.14E-05* -3.06E-05*** 6.31E-06 -2.02E-05** 1.77E-05

(1.21E-05) (1.08E-05) (1.59E-05) (1.04E-05) (1.90E-05)
GPRD_THREAT -8.61E-05*** -9.80E-05*** -7.98E-05*** -6.78E-05*** -0.000312***

(1.49E-05) (1.33E-05) (1.96E-05) (1.28E-05) (2.34E-05)
C 0.123085*** 0.0734*** 0.116963*** 0.102183*** 0.771417***

(0.001814) (0.001626) (0.002392) (0.001557) (0.002849)
Standard errors in parenthesis. ***, **, * denote significance at 1%, 5% and 10% respectively.
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5. Conclusion

 This study has investigated the structure dependence between energy and agricultural

markets using copula method and prices on crude oil, corn, soybean, wheat and oats from April

4, 1990, to February 15, 2019. We used copula methods to investigate the dependence structure.

Similar to Ji et al. [9], we used a dependence-switching copula approach while analyzing the

dependence between oil and the four agricultural commodity markets.

 Overall,  our  study  shows  that  there  is  positive  co-movement  between  energy  and

agricultural commodities. In particular, during the positive correlation regime, i.e., when oil

and any specific agricultural commodity markets are in either bull or bear markets together.

Dependence and tail dependence is stronger in the bearish markets under the positive

correlation regime, suggesting that if oil and a specific agricultural commodity is in the

downturn, their co-movements is stronger then, than when both markets are in the upturn. At

the same time, in the negative correlation regime, dependence is only significant when

agricultural markets are bullish, while oil market is bearish, suggesting that agricultural

markets, especially, corn, oats and wheat, can hedge downturns in oil returns. This line of

reasoning is further confirmed when we show that in the positive correlation regime, the

correlation between oil and a specific agricultural commodity is negatively impacted by

geopolitical risks.

Our results have financial implications. The significant tail dependence parameters indicate

that traders or investors in one commodity market (say corn) should not overlook risks in other

commodity  markets  (say  crude  oil)  as  well  as  geopolitical  risks.   Thus,  commodity  traders

should pay equal attention to all commodity markets and geopolitical risks. To insulate oneself

from the dual risks from the energy and agricultural markets, traders to carefully optimize their

investments in these markets. Similarly, our results from the tail dependence, which measure

extreme risk co-movement provide valuable evidence that can help to make a timely decision
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about risk management decisions as well as suitable portfolio approaches to protect investors.

Specifically, we find the existence of a systematic risk during large market movements as well

as with switching tail-risk interdependence, which could affect the portfolio managers or

investors who often used commodities to diversify the risk.
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Appendix

Table A1: Mix Copulas results with Oil
Corn Oats Soybean Wheat Rice

Mix 1: Gumbel copula + Clayton copula

parameter1
0.213855 0.072976 0.115712 0.884045 0.021017
0.109236 0.035544 0.049198 0.044201 0.076052

parameter2
1.274734 1.856058 1.741313 1.042595 1.223303
0.176217 0.540894 0.412464 0.00924 0.937646

parameter3
0.083957 0.040609 0.075004 0.746758 0.004197
0.025087 0.018275 0.019605 0.305931 0.013465

LV 59.32278 27.41203 63.47673 51.36329 0.554206
AIC -112.646 -48.8241 -120.953 -96.7266 4.891588
BIC -100.889 -37.0671 -109.196 -84.9696 16.64858
Observations 7176 7176 7176 7176 7176
Mix2: Rotated Gumbel copula + rotated Clayton copula

parameter1
0.200647 0.124271 0.189708 0.149401 0.256547
0.081702 0.03725 0.056313 0.05718 NaN

parameter2
1.349377 1.638232 1.494507 1.425069 1.01
0.179337 0.226457 0.182384 0.215358 0.002834

parameter3
0.067952 0.018783 0.053222 0.060408 1.01
0.022113 0.01865 0.020596 0.020076 0.005512

LV 60.05545 33.33949 67.23685 51.31047 0.004637
AIC -114.111 -60.679 -128.474 -96.6209 5.990725
BIC -102.354 -48.922 -116.717 -84.8639 17.74772
Observations 7176 7176 7176 7176 7176
Mix3: Gumbel copula + rotated Gumbel copula

parameter1
0.194973 0.876229 0.094203 0.854792 0.0001
0.110352 0.038594 0.049824 0.059893 0.32467

parameter2
1.261838 1.01 1.737651 1.032816 0.0001
0.181184 0.010425 0.483701 0.010776 NaN

parameter3
1.048718 1.624281 1.0492 1.398643 0.008189
0.014255 0.224951 0.011787 0.208866 0.012199

LV 60.14103 33.10197 65.09481 52.32301 0.239798
AIC -114.282 -60.2039 -124.19 -98.646 5.520403
BIC -102.525 -48.4469 -112.433 -86.889 17.2774
Observations 7176 7176 7176 7176 7176
Mix4: Clayton copula + rotated Clayton copula

parameter1
0.185666 0.110198 0.155744 0.135974 0.0001
0.080511 0.034189 0.045811 0.047613 0.32467

parameter2
0.592692 1.002529 0.933522 0.679532 0.0001
0.297491 0.346699 0.320282 0.264863 NaN

parameter3
0.091964 0.042457 0.081695 0.082827 0.008189
0.019734 0.016082 0.018048 0.01705 0.012199

LV 59.79565 31.46876 65.86922 50.26681 0.239798
AIC -113.591 -56.9375 -125.738 -94.5336 5.520403
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BIC -101.834 -45.1805 -113.981 -82.7766 17.2774
Observations 7176 7176 7176 7176 7176
Mix5: t copula + Gumbel copula

parameter1
0.9999 0.9999 0.9999 0.701088 0.9999

0.005352 0.001858 0.002731 0.427361 NaN

parameter2
0.126889 0.080669 0.132571 0.13507 0.0058
0.012026 0.01236 0.012101 0.079404 0.011946

parameter3
20.70039 15.39561 17.24521 9.883718 100
5.512978 3.16291 3.845704 5.314288 133.0658

parameter4
1.01 1.01 1.01 1.016637 1.01E+00
NaN NaN NaN 0.044889 NaN

LV 63.62593 35.14036 70.49914 58.41253 0.30334
AIC -119.252 -62.2807 -132.998 -108.825 7.393319
BIC -109.495 -52.5237 -123.241 -99.0681 17.15031
Observations 7176 7176 7176 7176 7176
Mix 6: t copula + rotated Gumbel copula

parameter1
0.942616 0.942519 0.9999 0.73272 0.612118
0.218049 0.049514 0.031728 0.47357 NaN

parameter2
0.133632 0.046096 0.13257 0.134087 0.0001

NaN 0.026073 0.012481 0.09041 0.026064

parameter3
19.84606 21.06665 17.24515 10.15411 100
4.822382 7.368059 3.864101 5.879173 55.68405

parameter4
1.01 1.832023 1.01 1.01 1.01E+00
NaN 0.578307 NaN 0.057821 NaN

LV 63.62847 36.88593 70.49923 58.33552 0.490272
AIC -119.257 -65.7719 -132.998 -108.671 7.019457
BIC -109.5 -56.0149 -123.241 -98.914 16.77645
Observations 7176 7176 7176 7176 7176
Mix 7: t copula + Clayton copula

parameter1
0.82294 0.908261 0.9999 0.739837 0.053434

0.804488 NaN NaN 0.816211 NaN

parameter2
0.153597 0.088959 0.132572 0.138541 0.055908
0.145825 NaN 0.008506 0.203739 NaN

parameter3
17.85981 14.08094 17.24479 10.11084 6.286447
13.54104 NaN 3.767572 9.474166 NaN

parameter4
0.003506 0.0001 0.002888 0.0001 1.00E-04

0.1142 NaN NaN 0.218651 NaN
LV 63.64393 35.14278 70.49924 58.33703 0.406109
AIC -119.288 -62.2856 -132.998 -108.674 7.187781
BIC -109.531 -52.5286 -123.241 -98.9171 16.94478
Observations 7176 7176 7176 7176 7176
Mix 8: Frank copula + rotated Gumbel copula

parameter1
0.90713 0.873238 0.907347 0.84722 0.001001

0.050967 0.047939 0.048818 0.056206 NaN
parameter2 0.492512 0.058919 0.48134 0.140371 0.001
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0.121444 0.142023 0.130507 0.136191 NaN

parameter3
1.600576 1.658528 1.825396 1.541124 1.004247
0.322849 0.236605 0.443216 0.208136 0.004915

LV 61.11721 32.92319 69.27932 47.31611 0.451922
AIC -116.234 -59.8464 -132.559 -88.6322 5.096157
BIC -104.477 -48.0894 -120.802 -76.8752 16.85315
Observations 7176 7176 7176 7176 7176
Mix9: Clayton–Frank

parameter1
0.060801 0.091129 0.057932 0.111312 0.011037
0.039894 0.041241 0.040566 0.047914 0.022703

parameter2
1.097897 1.151281 1.763781 0.795083 0.879429

0.703 0.478515 1.39012 0.334389 1.415341

parameter3
0.598013 0.210768 0.598391 0.339174 0.021811
0.10109 0.119695 0.109453 0.112517 0.083932

LV 59.1719 29.30924 67.13719 41.43151 0.544013
AIC -112.344 -52.6185 -128.274 -76.863 4.911975
BIC -100.587 -40.8615 -116.517 -65.106 16.66897
Observations 7176 7176 7176 7176 7176
Mix10: Frank–Gumbel

parameter1
0.91435 0.963337 0.968223 0.817119 0.011037

0.055225 0.026552 0.016644 0.097212 0.022703

parameter2
0.537561 0.308283 0.635404 0.211559 0.879429
0.119015 0.121789 0.102729 0.142444 1.415341

parameter3
1.523385 2.850389 3.880913 1.343664 0.021811
0.321094 1.548384 1.809636 0.198394 0.083932

LV 59.37259 27.45844 68.14281 44.38301 0.544013
AIC -112.745 -48.9169 -130.286 -82.766 4.911975
BIC -100.988 -37.1599 -118.529 -71.009 16.66897
Observations 7176 7176 7176 7176 7176
Mix11: Clayton–Joe

parameter1
0.237893 0.123442 0.191346 0.159704 0.011037

0.0985 0.034631 0.052948 0.050838 0.022703

parameter2
0.517693 0.965312 0.830731 0.653967 0.879429
0.254709 0.313411 0.279835 0.237338 1.415341

parameter3
1.061577 1.025707 1.051522 1.0552 0.021811
0.016527 0.011159 0.014354 0.012714 0.083932

LV 58.53503 31.12587 63.16957 51.79664 0.544013
AIC -111.07 -56.2517 -120.339 -97.5933 4.911975
BIC -99.3131 -44.4947 -108.582 -85.8363 16.66897
Observations 7176 7176 7176 7176 7176
Mix12: Gumbel–Joe
parameter1 0.237893 0.123442 0.191346 0.159704 0.011037

0.0985 0.034631 0.052948 0.050838 0.022703
parameter2 0.517693 0.965312 0.830731 0.653967 0.879429

0.254709 0.313411 0.279835 0.237338 1.415341
parameter3 1.061577 1.025707 1.051522 1.0552 0.021811
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0 0.016527 0.02277 0.012714 0.083932
LV 58.53503 31.12587 63.16957 51.79664 0.544013
AIC -111.07 -56.2517 -120.339 -97.5933 4.911975
BIC -99.3131 -44.4947 -108.582 -85.8363 16.66897
Observations 7176 7176 7176 7176 7176
Mix13: Frank–Joe

parameter1
0.93111 0.123442 0.981374 0.115407 0.893668

0.084045 0.034631 0.009249 0.041777 3.850856

parameter2
0.682706 0.965312 0.704671 4.784168 0.054942
0.109252 0.313411 0.084313 1.8505 0.237912

parameter3
1.40694 1.025707 6.846663 1.032303 1.003023

0.610329 0.011159 2.887671 0.012395 0.101569
LV 57.49036 31.12587 65.39433 44.80067 0.260427
AIC -108.981 -56.2517 -124.789 -83.6013 5.479145
BIC -97.2237 -44.4947 -113.032 -71.8443 17.23614
Observations 7176 7176 7176 7176 7176
Note: * denotes statistical significant at 5% level. The value in parenthesis is the standard error.
The highlighted copulas are the copula with the best goodness-of-fit for the respective
countries.


