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Abstract

We study the role of OPEC meeting dates and production announcements for predicting jumps
in the oil market. The period of analysis spans from the daily period of 2nd December 1997 to
26th May 2017, with the start and end date corresponding to our availability of the intraday
data on oil-price data. We, first, apply the standard linear Granger causality test to detect
evidence of the OPEC-based predictors in causing jumps. This test fails to detect predictability
from OPEC-based predictors to oil market jumps. Yet given the strong evidence of nonlinearity
between jumps and the dummies capturing news regarding the OPEC production
announcements and meeting dates, we next use a nonparametric causality-in-quantiles test.
Upon employing this data-driven robust approach, we find strong evidence that the variables
do predict oil market jumps, ranging from the lower end of the conditional distribution of jumps
to around the median.
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1. Introduction

The recent financialization of the oil market has increased participation of hedge funds, pension
funds and insurance companies in the market, thus resulting in oil to be a profitable alternative
investment in the portfolio decisions of financial institutions (see Akram, 2009; Tang and
Xiong, 2012; Silvennoinen and Thorp, 2013; Fattouh et al., 2013; Büyüksahin and Robe, 2014;
Bahloul et al., 2018; Bonato, 2019, among others). Naturally, accurate predictability of large
oil-price movements and volatility is of vital importance to traders in the oil-sector. Oil-price
volatility can be also considered as a measure of uncertainty, which in turn has been found to
negatively influence economic activity (Elder and Serletis, 2010; Aye et al., 2014; van Eyden
et al., 2019). Thus, not surprisingly, a large literature exists on the predictability of daily oil-
price conditional volatility using different kinds of univariate and multivariate models from
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-family, as well as the
Markov-switching multifractal (MSM) model, and variations of the Heterogeneous
Autoregressive  (HAR) model  to  predict  the  realized  volatility  of  oil  returns  (see  Lux et  al.,
2016 and Gkillas et al., 2020a for detailed reviews).

The modelling of unexpected movements in oil prices is also crucial for portfolio risk
management and financial decision making. Volatility as a measure of risk is an unobservable
variable and several problems arise when trying to assess its impacts on financial markets. In
light of this, market agents are known to care not only about the nature of volatility, but also
about its level, with traders often differentiating between good and bad volatility (Giot et al.,
2010). More specifically, “good” volatility is directional, persistent and relatively easy to
anticipate, yet “bad” volatility is jumpy and relatively difficult to foresee (Caporin et al., 2016).
Consequently, “good” volatility is associated with the continuous and persistent part of the
price process, while “bad” volatility is associated with discontinuous movements known as
jumps (Huang et al., 2019). In this context, it has been stressed that incorporating jumps into
volatility models can improve their overall performance, given their dominance in the price
process (Asai et al., 2019; 2020). Hence, the accurate prediction of jumps stands for a key
research question. The inclusion of jumps in the price process is also important for asset
allocation and portfolio risk management. Jumps help to forecast (i) returns (Andersen et al.,
2015), (ii) volatility (Duong and Swanson, 2015), (iii) equity risk premium (Santa-Clara and
Yan, 2010) and (iv) variance risk premium (Li and Zinna, 2017). Nevertheless, it is necessary
to differentiate jumps information from risk. In other words, according to Bollerslev et al.
(2008), jumps add a locally source of non-diversifiable risk in volatility making the prediction
more difficult.

Recently, some studies have highlighted the role of news on the Organization of the Petroleum
Exporting Countries (OPEC) production decisions in driving the (returns and) volatility of the
crude oil market (see Schmidbauer and Rösch, 2012; Mensi et al., 2014; Ji and Guo, 2015;
Loutia et al., 2016; Gupta and Yoon, 2018; Gupta et al., 2019; Derbali et al., 2020, among
others). While in the existing empirical literature there is a body of evidence showing that
jumps are linked to fundamentals (see e.g. Andersen et al., 2007), we still need to shed light on
additional sources of unexpected movements in the oil market. Against this backdrop, given
the importance of oil market jumps in portfolio risk management and asset allocation, the
objective of our paper is to empirically test whether OPEC production decisions involving cut,
maintain, and increase, and also OPEC meeting dates can predict jumps, and in hence provide
a channel through which the “bad” volatility is affected. For our predictability analysis, we rely
on the nonparametric causality-in-quantiles test proposed by Jeong et al., (2012), which allows
us to test for predictability over the entire conditional distribution of jumps and control for



3

misspecification due to uncaptured nonlinearity (which we show to exist below in our data
from a statistical perspective). This is of paramount importance when the dependent variable,
i.e., jumps in our case may exhibit fat tail behavior (see Bollerslev et al., 2013). This method
also permits us to capture various market phases (sizes), such as booms and crashes, associated
with the jumpy behavior of the prices process of the oil market. Moreover, this method can be
considered as an inherently time-varying method since various parts of the conditional
distribution can be related to different time points throughout the evolution of the dependent
variable. In particular, the method applied in this study has the following two key advantages.
First, it is considered as robust to misspecification errors as it is based on a nonparametric data-
driven method. Second, by applying this method, we can detect casual effects across the entire
conditional distribution of jumps and more importantly in the right end point of the distribution
of jumps (see also Heimstra and Jones, 1994; Diks and Panchenko, 2005, 2006, among others).
To the best of our knowledge, this is the first paper that evaluates the predictive power of OPEC
production decisions on oil market jumps using a quantiles-based nonparametric framework.

From a practical point of view, our study sheds light on the types of events that can trigger
unexpected movements in the oil market. According to Andersen et al. (2007), “it would be
interesting to attempt a more systematic characterization of the types of events that cause the
different markets to jump”. Therefore, there is a practical interest in identifying jumps, which
in turn is important for developing hedging strategies and modelling market risk premia (see
Eraker et al., 2003). Taking also into account that oil is a major production factor, policymakers
have to make decisions during periods of jump-inducing turbulence in the oil market, hence it
is economically important to proceed to a better econometric and statistical understanding of
the behavior of jumps along with the events that cause the oil market to jump (see Gkillas et
al., 2020b; Todorov and Tauchen, 2011).

The  remainder  of  the  paper  is  organized  as  follows.  Section  2  lays  out  the  basics  of  the
methodology involving jumps and the causality-in-quantiles approach. Section 3 presents the
data and reports the empirical results, with Section 4 concluding the paper.

2. Methodology
2.1. Jumps

In the related empirical literature, there is strong evidence that the assumption of a continuous
diffusion is violated. The need for a more detailed description of the price process emerged
from volatility asymmetries. Based on the theoretical studies implement by Barndorff-Nielsen
and Shephard (2004b), Andersen et al. (2007) proposed a jump detection non-parametric
scheme for realized volatility. In this sub-section, we briefly present the methodology for
detecting oil price jumps from realized volatility.

In particular, we construct daily realized volatility with the use of realized variance ( ), as in
Andersen et al. (2007), among many others.  is the benchmark measure of realized volatility.
More analytically, we define the price process in days .  Within  each  day,  there  are + 1
intraday prices or  intraday returns. In any day , the observed prices concern these intraday
time periods: < < . If we assume a constant number of intraday prices per day
across all days considered, intraday returns can be constructed as the logarithmic difference
between two consecutive observed prices given by the following equation:

, = log , log , (1)
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where ,  stands for the intraday return, ,  stands for the intraday price with = (1, … , ),
for the day .

Next, a daily point estimate of  is constructed for each day  by summing all intraday returns
available as follows:

, (2)

where ,  stands again for the intraday return  within day  for = 1, … , and  is the total
number of intraday returns within a trading day.

Turning now our attention to jumps, it is important to mention that when volatility at the given
point estimate  includes jump variation, then it cannot be considered as an unbiased estimator
of integrated variance. Therefore, price increments can be distinguished between jump
variation and continuous variation. The former can be computed as the difference between the
total variation - which is estimated by the  as it measures both the continuous and jump
variation - and the continuous variation. The standardized realized bipower variation ( )
used in this study captures only the amount of continuous variation, therefore it has been
considered to be a jump-robust estimator of realized volatility. More precisely, the asymptotic
results of Barndorff-Nielsen and Shephard (2004) enable the nonparametric distinction
between continuous and jump variation. Following Barndorff-Nielsen and Shepherd (2004,
2006), we use the  as  a  jump-free  volatility  estimator  for  the  continuous  sample  path
variation.  can be considered as a jump-robust estimator of integrated variance, that is, it
is a less biased estimator than other realized measures of in the presence of jumps. The
is constructed by the following:

| , || , | (3)

where 2/ = (| |) is the mean of the absolute value of a random variable ( ) which
follows a normal distribution.

We use the Andersen et al.’s (2007) jump statistic to detect realized jump intensity. The jump
statistic, as used here, is given as follows:

( )
[( + 2 5) {1, }] / (4)

where  is the integrated quarticity which is estimated using the standardized realized tri-
power quarticity measure as / | , | / | , | / | , | / , while /  is  equal  to
2 / (7/6) (1/2) = | | / . The  is a ratio statistic which follow the standard normal
distribution ( (0,1), as ). The  is used as a pre-test, testing the null hypothesis
of no jumps against the alternative hypothesis of existence of jumps. A significant jump is
identified by an indicator function, { > }, under the following condition:

{ > }[ ] (5)

Analogically, the continuous component denoted by ,  is  equal  to { } , where
, + , .  The  non-negativity  of  both  components  corresponds  directly  to  a

significance level of = 0.05 (Andersen  et  al.,  2007).  To  put  it  differently,  the  difference
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between the  and  is equal to zero when there is no jump and strictly positive when a
jump occurs in the oil market (asymptotically).

2.2. Causality-in-Quantiles

In this sub-section, we briefly present the methodology for testing nonlinear causality as
developed by Jeong et al., (2012).1 As already stated, this approach is a robust approach far
away from the center of the distribution. Furthermore, it enables us to capture nonlinear
dynamic casual effects between two time series. In our study, let  be the dependent variable
which stands for jumps ( ), while  stands for the predictor variable, in our case the dummies
used in turn corresponding to OPEC meeting dates, and production decisions made on those
dates involving a cut, maintain or increase (as described in detail in the Data segment of the
paper below).

Let ( , … , ), ( , … , ), = ( , ), and ( | •) denote the
conditional distribution of  given •. Defining ( ( | ) and (

( | ), we have | { ( )| } =  with probability 1. The (non) causality in
the -th quantile hypotheses to be tested are:

: | { ( )| } = = 1
: | { ( )| } = < 1 (6)

Based on the study implement by Jeong et al. (2012), the feasible kernel-based test statistics is
given as follows:

=
1

( 1)
,

(7)

where (•) is the kernel function with bandwidth ,  is the sample size,  is the lag order,
and = { ( )  is the regression error, where ( ) is an estimate of the

-th conditional quantile and {•} is the indicator function. The ( ) is estimated by the
Nadarya-Watson kernel estimator as follows:

( ) =
{ },

,

(8)

with (•) denoting the kernel function.

Note that, asymptotic normality holds for . The empirical implementation of causality testing
via quantiles entails specifying three key parameters: the bandwidth ( ), the lag order ( ), and
the kernel types for ) and ). We use a lag order of six based on the Schwarz Information
Criterion (SIC). We determine  by leave-one-out least-squares cross validation. Finally, for

) and ), we use Gaussian kernels.

1 What is more, the exposition in this section closely follows Nishiyama et al. (2011) and Jeong et al. (2012). Our
description is compact because the details of the test have been laid out in, e.g. recent contributions by Balcilar,
et al. (2016a) and Balcilar et al. (2016b), Balcilar et al. (2016c) and Balcilar et al. (2017), among others.
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3. Data and Results
3.1. Data

Our analysis involves the measure of oil market jumps and four OPEC related variables over
the daily period of 2nd December 1997 to 26th May  2017,  with  the  start  and  end  date
corresponding to our availability of the intraday data on oil price. Intraday data reveal important
information about the market compare to, for example, to daily data, such as intraday price
changes and market microstructures. In this vein, Hansen and Huang (2016) noted that realized
volatility is more accurately estimated at a daily frequency employing intraday data. We use
intraday data on oil futures traded in NYMEX over a 24-hour trading day (pit and electronic)
to extract our daily measure of jumps. We use futures data as futures have lower transaction
costs related to futures trading, and therefore, our paper can be considered more relevant for
analysts for practical applications (e.g. hedging analyses). Additionally, price discovery takes
places mainly in futures markets as futures respond faster to new information than the spot
markets because of the ease of short selling and lower transaction costs that they have (see
Shrestha, 2014). The futures price data, in continuous format, is obtained from: Disktrading
database (http://www.disktrading.com) and Kibot database (http://www.kibot.com). Close to
expiration of a contract, the position is rolled over to the next available contract, provided that
activity has increased. We define daily returns as the end of day (New York time) price
difference (close to close). In the case of intraday returns, last-tick interpolation gives 1-minute
prices (if the price is not available at the 1-minute stamp, the previously available price is
imputed), and finally we compute 5-minute returns by taking the log-differences of these
prices, and then these returns to construct a daily point estimate of realized oil volatility.

OPEC news announcements on production decisions are made during OPEC conferences,
which occur at least twice a year. The decisions may take the form of quota reductions,
increases, or maintenance of the status quo. Three dummy variables are constructed in terms
of the type of production decisions undertaken, and are included in the analysis, along with a
dummy variable corresponding to the meeting date. The data for conference decisions were
obtained from the OPEC website (http://www.opec.org). There were 75 announcements during
our period of consideration, involving 16 cut, 12 increase, 47 maintain decisions.

The summary statistics of jumps is reported in Table A1, and as can be seen from this table,
the variable is positively skewed and has excess kurtosis, resulting a non-normal distribution.
This is also indicated by the overwhelming rejection (at 1 percent level of significance) of the
null of normality under the Jarque-Bera test. Such statistical properties provide a preliminary
justification for the causality-in-quantiles test used in this empirical analysis.

3.2. Results

Before we present the findings of the causality-in-quantiles test, for the sake of completeness
and comparability, we first conduct the standard linear Granger causality test. The resulting

2(6)  statistics  are  presented  in  Table  1,  and  as  can  be  seen  from  the  table,  the  null  of  no-
Granger causality running from the four OPEC-based dummies to jumps cannot be rejected in
any of the cases, even at the 10% level of significance.

Given the insignificant results obtained from the linear causality tests, we statistically examine
the presence of nonlinearity in the relationship between jumps and the four OPEC dummies.
For this purpose, we apply the Brock et al., (1996) test (known also as BDS test) to the residuals
from the jump equation involving six lags of jumps and the four alternative OPEC dummies,

http://www.disktrading.com/
http://www.kibot.com)./
http://www.opec.org)./
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considered by turn. Table A2 in Appendix 1 presents the results of the BDS test of nonlinearity.
As shown in this table, we find strong evidence for the rejection of the null of independent and
identically distributed (i.i.d.) residuals at various embedded dimensions ( ), which in turn, is
indicative of nonlinearity in the relationship jumps and the dummies associated with cuts,
increases, maintain and meeting dates. This results further indicate that the results based on the
linear Granger causality test cannot be deemed robust and reliable.

Table 1: Granger Causality Test Estimates for Oil Market Jumps
Independent variable 2(6)-statistic p-value

Meeting 9.9319 0.1275
Cut 8.3267 0.2151

Maintain 5.9475 0.4291
Increase 3.4897 0.7453

Notes: This table reports the estimates for the standard linear causality test between oil market jumps
and OPEC news announcements. The OPEC news announcements on production decisions are made
during OPEC conferences, which occur at least twice a year. The decisions may take the form of quota
reductions, increases, or maintenance of the status quo. Three dummy variables are constructed in terms
of the type of production decisions undertaken, and are included in the analysis, along with a dummy
variable corresponding to the meeting date. ***, ** and * indicate the rejection of the null hypothesis
of no-causality from OPEC news announcements to oil market jumps.

Given the strong evidence of nonlinearity in the relationship between jumps and OPEC news
announcements,2 we now turn our attention to the causality-in-quantiles test, which is robust
to linear misspecification due to its nonparametric (i.e., data-driven) approach, besides
providing evidence of predictability (if any) over the entire conditional distribution of jumps.
As can be seen from Table 2, all the four OPEC related variables provide strong evidence of
causality over the quantile range from 0.05 to 0.55, with the strongest impact in terms of
statistically significant observed at the lowest considered quantile. More importantly, unlike
the linear Granger causality test, where evidence of predictability is non-existent, we find
evidence of predictability from the lowest quantile to the quantile just above the median.
Recalling that quite a number of recent studies have suggested that OPEC news announcements
drive volatility, one can argue that a channel through which this happens is that OPEC
production decisions affect primarily the jump component in a similar manner, and hence,
“bad” volatility. From a practical point of view such evidence indicates that the role of OPEC
production decisions becomes important for sudden movements oil-prices associated with
adverse events as when volatility is interpreted as uncertainty, it becomes a key input to
investment decisions and portfolio choices (Poon and Granger, 2003). But, although OPEC
production decisions can significantly help in the predictability of jumps, large jumps due to
large price movements that happened in the oil market cannot be linked with OPEC production
decisions.

2 In addition, by applying the Bai and Perron’s (2003) test of multiple structural breaks on the jump equation (with
six lags each of jumps and cut, increase, maintain, or meeting date dummies), two breaks (in September, 2001
and August, 2006) were detected between jumps series and each of the four OPEC news related variables. This
result in turn, further warranted the need of a nonlinear approach to detecting causality in our context. Complete
details of the structural break tests are available upon request from the authors. We also apply standard unit root
tests to reveal whether oil market jumps series is stationary. The results are also available upon request and suggest
that jumps can be employed directly without further transformation in the causality-in-quantiles procedure.
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Table 2. Nonparametric Causality-in-Quantiles Results for Oil Market Jumps
Quantile Meeting Cut Maintain Increase

0.05 2685.1220*** 2692.4390*** 2676.4040*** 2697.4810***

0.10 1502.1840*** 1507.2630*** 1496.8810*** 1510.2930***

0.15 934.8305*** 938.0227*** 930.9399*** 940.0763***

0.20 586.4426*** 588.2303*** 583.3897*** 589.6616***

0.25 402.5122*** 403.0630*** 399.7872*** 404.1003***

0.30 279.5168*** 279.3823*** 278.4010*** 281.8445***

0.35 181.0650*** 180.3274*** 179.9614*** 182.2018***

0.40 204.5213*** 207.7911*** 204.3135*** 205.5889***

0.45 293.8399*** 298.0508*** 293.3934*** 296.0927***

0.50 21.2322*** 20.9058*** 20.9493*** 21.3410***

0.55 503.8821*** 510.0203*** 503.7456*** 508.2684***

0.60 0.0391 0.0487 0.0390 0.0409
0.65 0.0398 0.0219 0.0238 0.0195
0.70 0.0458 0.0499 0.0364 0.0384
0.75 0.0484 0.0490 0.0382 0.0463
0.80 0.0868 0.1126 0.0910 0.1251
0.85 0.0452 0.0098 0.0178 0.0077
0.90 0.0670 0.0274 0.0343 0.0154
0.95 0.0304 0.0086 0.0104 0.0009

Notes: This table reports the estimates for the causality-in-quantiles test between oil market jumps and
OPEC news announcements. The OPEC news announcements on production decisions are made during
OPEC  conferences,  which  occur  at  least  twice  a  year.  The  decisions  may  take  the  form  of  quota
reductions, increases, or maintenance of the status quo. Three dummy variables are constructed in terms
of the type of production decisions undertaken, and are included in the analysis, along with a dummy
variable corresponding to the meeting date. ***, ** and * indicate the rejection of the null hypothesis
of no-causality from OPEC news announcements to oil market jumps for various quantiles at 1 percent,
5 percent and 10 percent levels of significance, respectively. The corresponding critical values of the
test are 2.575, 1.96 and 1.645.

In a recent paper, Plante (2019) introduced a newspapers (the Financial Times, the Houston
Chronicle, the New York Times and the Wall Street Journal) articles count index related to
OPEC that rises in response to important OPEC meetings and events connected with OPEC
production levels. Plante (2019) showed that this index can predict oil market volatility. This
index is constructed at a monthly frequency and is available over the period from January 1986
to December 2016. In addition to this benchmark index, the author also developed two other
indices, with the first one being the raw number of articles written about OPEC and divided by
the total number of articles produced by the four newspapers over the same time period, and
the second one based on Google search volume data on “OPEC” covering January, 2004 to
December, 2016.3 As a robustness check to our daily analysis of jumps obtained from intraday
data, we now computed the monthly jumps from daily data on WTI oil prices. The daily data
are  obtained  from  the  FRED  database  of  the  Federal  Reserve  Bank  of  St.  Louis  (
(https://fred.stlouisfed.org/). To detect monthly jumps from realized volatility we employ the
jump detection scheme presented in Appendix 2. The application of this scheme to monthly
realized volatility is possible in the same way as it is to daily realized volatility estimates

3 The newspaper- and Google search volume-based indices are available for download from the website of Dr.
Michael D. Plante at: https://sites.google.com/site/michaelplanteecon/research.

https://fred.stlouisfed.org/.
https://sites.google.com/site/michaelplanteecon/research.
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constructed from intraday data, on the grounds that it is not dependent on direct estimates of
the transition density function and directly builds on the theoretical results of Barndorff-
Nielsen and Shephard (2004). Barndorff-Nielsen and Shephard (2004) noted that the
conception of realized bi-power variation and jumps can be applied to finite number of
observations and a fixed interval of time, even in case it is a trading day or a calendar month.
Following Giot and Laurent (2007), the explanatory power of the monthly jumps is consistent
with implied volatility in encompassing regressions. Monthly jumps are also studied by
(Gkillas et al., 2018; Gkillas et al., 2020b, among others). Furthermore, when we repeated the
causality-in-quantiles test in Table A3 in the Appendix 1, we find that in general, our results
are similar to those obtained under the daily data. The strongest impact in terms of statistically
significant observed at the lowest quantile and the causality ranges to till just above the median
(especially under the two newspapers based indices).

4. Conclusion

Recent evidence tends to suggest that news on OPEC production decisions can affect oil market
volatility. Given that the volatility-related literature also stresses the importance of jumps in
forecasting oil price volatility, we study the role of announcements of production decision by
the OPEC in predicting daily oil market jumps derived from intraday data. For our
predictability analysis, we rely on a nonparametric causality-in-quantiles test, which is robust
to not only misspecification due to nonlinearity being a data-driven procedure, but also
provides evidence of causality over the entire conditional distribution of jumps. Our results
indicate that dummy variables capturing information on OPEC meeting dates, as well as
production decisions associated with cuts, increases, or maintaining the status quo indeed
predict oil market jumps very strongly at the lower end of the conditional distribution, and
ranges till just above the median. In summary, our analysis shows that OPEC’s production
decisions  can  affect  “bad”  oil  market  volatility  as  it  can  trigger  jumps  via  small  to  normal
jumps. But this result can only be detected when we rely on a nonparametric quantiles-based
causality framework, instead of standard causality linear models. Standard linear models fail
to capture any evidence of predictability due to misspecification that arises as they are unable
to capture nonlinearities exist in the relation between jumps and OPEC meeting dates and
production announcements.

From a practical point of view, our study sheds light on the types of events that cause
unexpected movements in the oil market. To this end, we take the point of view of investors
that are exposed to jump-risk that may occur due to OPEC meeting dates and production
announcements. Thus, we proceed to a systematic characterization of the types of events that
cause the oil market to jump. In other words, we determine whether OPEC announcements can
be considered as a source of “bad” volatility for the oil market. Our findings do reveal
predictability from OPEC meeting dates and production announcements to oil market jumps
when controlling different market phases and regimes. Such evidence has ample practical
implications for portfolio selection and risk management, as well as policy implications as it
is widely accepted that oil market uncertainty negatively affects economic activity (see Elder
and Serletis, 2010). Thus, our findings imply that both investors and policymakers can use the
information contained in OPEC announcements to predict unexpected movements in the oil
market. As part of future research, our paper can be extended to analyzing the role of news
associated with OPEC in predicting volatility and jumps of other financial markets.
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Appendix 1

Figure A1. Data Plot of Jumps
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Notes: This figure depicts data plots for oil market jumps over the daily period of 2nd December 1997 to 26th

May 2017, with the start and end date corresponding to our availability of the intraday data on oil price.

Table A1. Summary Statistics of Oil Market Jumps
Statistic Value
Mean 1.98E-05
Median 2.50E-06
Maximum 0.001480
Minimum 0.000000
Standard Deveation 4.23E-05
Skewness 12.18215
Kurtosis 332.2824
Jarque-Bera 22962445

-value 0.0000***
Observations 5055

Notes: This table reports summary statistics for oil market jumps over the daily period of 2nd December
1997 to 26th May 2017, with the start and end date corresponding to our availability of the intraday data
on oil price. The null hypothesis that the data is normally distributed is also tested by the Jarque-Bera
test. The p-values of the test are given below in brackets. ***, ** and * indicate the rejection of the null
hypothesis of the skewness being zero and the excess kurtosis being zero at 1 percent, 5 percent and 10
percent levels of significance, respectively.
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Table A2. Brock et al. (1996) (BDS) test of nonlinearity
Dependent

variable
Independent

variable Dimension

2 3 4 5 6

Jumps

Meeting 27.2511*** 33.5470*** 38.6822*** 43.3977*** 48.6534***

Cut 27.2010*** 33.5395*** 38.6393*** 43.3688*** 48.5535***

Maintain 27.4109*** 33.6064*** 38.6291*** 43.2205*** 48.4024***

Increase 27.5014*** 33.7918*** 38.7891*** 43.3925*** 48.5096***

Notes: This table reports the estimates for Brock et al.’s (1996) test (BDS) of nonlinearity between oil
market jumps and OPEC news announcements. The OPEC news announcements on production
decisions are made during OPEC conferences,  which occur  at  least  twice a  year.  The decisions may
take the form of quota reductions, increases, or maintenance of the status quo. Three dummy variables
are constructed in terms of the type of production decisions undertaken, and are included in the analysis,
along with a dummy variable corresponding to the meeting date. The test is applied on the residuals
arising  from  the  regression  between  oil  market  jumps  as  dependent  variable  and  the  OPEC  news
announcements as independent variables (including twelve lags) recovered from the VAR(6) model.
The number of lags is defined from the Akaike Information Criterion (AIC). The null hypothesis of
independent and identically distributed residuals (i. i. d.) at various embedded dimensions ( ) is tested
by a z-statistic of the BDS test. ***, ** and * indicate the rejection of the null hypothesis of the BDS
test at 1 percent, 5 percent and 10 percent levels of significance, respectively.
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Table A3. Nonparametric Causality-in-Quantiles Estimates for Monthly Oil Market Jumps

Quantile
OPEC Newspaper

Index
Alternative

Newspaper Index
Google Search
Volume Index

0.05 27.0996*** 29.1435*** 36.8897***

0.10 14.9814*** 16.4169*** 18.9854***

0.15 9.5543*** 10.7645*** 10.9073***

0.20 6.3436*** 7.4399*** 6.2517***

0.25 4.2819*** 5.3149*** 3.3899***

0.30 2.9346*** 3.9322*** 1.6912*

0.35 2.2036** 3.1739*** 0.9640
0.40 1.7457* 2.7437*** 0.7737
0.45 1.6974* 2.5224** 0.8431
0.50 1.9715** 2.6516*** 0.6129
0.55 1.7881* 2.3049** 0.5693
0.60 1.4271 1.9956** 0.3205
0.65 1.5730 1.9193* 0.2484
0.70 1.5422 1.4499 0.2461
0.75 1.8836* 1.7918* 0.2292
0.80 1.3745 1.1396 0.5821
0.85 1.6242 1.1269 0.5034
0.90 1.0378 0.9288 0.4475
0.95 0.8072 0.7524 0.4679

Notes: This table reports the estimates for the causality-in-quantiles test between oil market jumps and
news OPEC-related indices. The indices considered are OPEC Newspaper Index, Alternative
Newspaper Index and Google Search Volume Index. The first index is newspapers articles count index
related to OPEC that rises in response to important OPEC meetings and events connected with OPEC
production levels. This index is constructed at monthly frequency and is available over the period of
January 1986 to December 2016. The second index is the raw number of articles written about OPEC
and divided by the total number of articles produced by the four newspapers over the same period. The
third index is based on Google search volume data on “OPEC” covering January 2004 to December
2016. ***, ** and * indicate the rejection of the null hypothesis of no-causality from OPEC news indices
to oil market jumps for various quantiles at 1 percent, 5 percent and 10 percent levels of significance,
respectively. The corresponding critical values of the test are 2.575, 1.96 and 1.645.
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Appendix 2
This appendix offers a detailed overview of the procedure used in this study to detect monthly
jumps from a monthly point estimate of realized volatility estimated employing daily returns.
French et al. (1987), Schwert (1990) and Schwert and Seguin (1991) suggested the construction
of realized volatility using daily returns. Campbell et al. (2001) were the first to employ various
alternative measures to estimate the dispersion of returns in a monthly frequency, based on the
conception  of  the  nonparametric  realized  volatility  estimation.  Gkillas  (Gillas)  et  al.  (2018)
studied the properties of monthly realized volatility.

In this paper, we estimate monthly realized volatility with the use of daily returns, as in
Christensen and Hansen (2002), and Barroso and Santa-Clara (2015), among others. More
specifically,  we  employ  daily  oil  log  returns  of  the  to  construct  monthly  point  estimates  of
realized variance ( ). The  is the benchmark and widely used realized volatility measure.
More specifically, for each month , we construct a monthly point estimate by using all daily
returns, as follows:

, (1)

where ,  stands for the daily return for day  within month  for = 1, … , and  is the total
number of daily returns within a month .

The asymptotic results of Barndorff-Nielsen and Shephard (2004) enable the nonparametric
distinction between continuous and jump variation of returns. Although the realized variance

 de ned in Equation (1) measures both the continuous and jump variation, the standardized
realized bipower variation ( ) which captures only the amount of continuous variation,
therefore it has been considered to be a jump-robust estimator of . The RBV is given by the
following:

| , || , | (2)

where  is equal to 2/ = (| |) and (| |) stands for the mean of the absolute value of a
random variable ( ) which is follow a normal distribution.

We use the logarithmic transformation of Andersen et al.’s (2007) jump statistic to detect
realized jump intensity. In an earlier version of their study, Andersen et al. (2007) found no
difference between the plain jump statistic and its logarithmic transformation. The log-version
of the jump statistic, used in this study, is given by the following:

(log( ) log( ))
[( 2 5) ( ) ] / (3)

where  is the integrated quarticity which is estimated using the standardized realized tri-
power quarticity measure as / | , | / | , | / | , | / , while /  is  equal  to
2 / (7/6) (1/2) = | | / . The  is a ratio statistic which follow the standard normal
distribution ( (0,1), as ). The  is used as a pre-test, testing the null hypothesis
of no jumps against the alternative hypothesis of existence of jumps. A significant jump is
identified by an indicator function, { > }, under the following condition:
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{ > }[log( ) log( )] (4)

where continuous component ,  is  equal to { } log( ) and log( ) is equal to
+ , . The non-negativity of both components corresponds directly to a significance level

of = 0.05 (Andersen et al., 2007). The application of this detection scheme to monthly
realized volatility estimates is possible in the same way as it is to daily estimates, on the grounds
that it is not dependent on direct estimates of the transition density function and directly builds
on the theoretical results of Barndorff-Nielsen and Shephard (2004). Barndorff-Nielsen and
Shephard (2004) showed that the conception of realized bi-power variation and jumps is
applicable to finite number of observations and a fixed interval of time, even in case it is a
trading day or a calendar month.


