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A B S T R A C T   

Agroforestry plays a pivotal role for Sahelian communities by allowing simultaneous improvement of food se-
curity and conservation of natural ecosystems and their biodiversity. However, agroforestry systems (AFSs) are 
particularly heterogeneous in sub-Saharan Africa due to small to very small fields, a large variety of agricultural 
practices and a diversity of parkland compositions and configurations. This makes spatial sampling processes 
very important but problematic in terms of representativeness of the landscape heterogeneity to allow an 
effective study of Sahelian AFSs. In this paper, we proposed, tested and assessed a methodological approach for 
landscape sampling, mapping and characterization while considering the different types of spatial heterogeneity 
in complex landscapes, such as Sahelian AFSs. Several complementary methods were combined on the basis of a 
priori knowledge of agroforestry landscape functioning using multisource data, remote sensing methods, and 
statistical and spatial analyses applied to landscape ecology. First, the landscape heterogeneity was stratified and 
used to design two weighted, stratified sampling plans for field surveys of tree species and land use/land cover 
types. Then, with multisource satellite images together with collected field data, the agroforestry systems were 
mapped, with a satisfactory accuracy of 85.12% and a Kappa index of 0.81. Finally, we used landscape metrics 
and diversity indices derived from AFS mapping and the tree species inventory to analyze the diversity of the 
studied AFS located in the Senegalese Peanut Basin. The results of the analysis evidenced the compositional, 
configurational and functional heterogeneity found in the study area. This allowed us to demonstrate the ability 
of the sampling strategy proposed in this paper to capture the various types of heterogeneity in agricultural 
landscapes. We also showed by implementing the method that it can be used for (i) tree biodiversity analysis, (ii) 
mapping and (iii) characterization of a complex AFS in sub-Saharan Africa.   

1. Introduction 

Feeding the world’s continuously growing population and meeting 
the accelerated land expansion needs are leading to both the loss of 
agricultural land through urbanization (e.g., D’Amour et al., 2017) and 
biodiversity loss through agricultural expansion into natural habitats (e. 
g., Kehoe et al., 2017). In this context, many scientists and experts on 
agriculture and food security suggest that diversification and sustainable 

intensification of agricultural production are necessary to achieve the 
global goal of feeding a growing population (e.g. Mbow et al., 2014; 
Ickowitz et al., 2019) while conserving natural ecosystems and their 
biodiversity (e.g., Phalan et al., 2011; Andres and Bhullar, 2016) as 
pledged by the Sustainable Development Goals (SDG#2 and SDG#15). 

To meet this challenge, agroforestry systems (AFSs) are highly rec-
ommended, particularly in sub-Saharan Africa, where smallholder 
farmers are the dominant form of agriculture (e.g., Agroforestry 
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Network, 2018; Mbow et al., 2014). In Africa, AFSs come in a wide 
variety of shapes and forms (Mbow et al. 2014). 

Sahelian agricultural landscapes are particularly heterogeneous due 
to the small to very small fields (Fritz et al., 2015), large variety of 
agricultural practices (Chikowo et al., 2014) and diversity of parkland 
compositions and configurations. Therefore, to effectively study Sahe-
lian AFSs, implementing a representative sampling strategy that takes 
into account the spatial heterogeneity at the landscape scale is crucial 
(Ndao et al., 2017; Soti et al., 2018). However, due to the multidisci-
plinary nature of landscape research, many sampling approaches for 
studying and characterizing landscapes have been proposed in the sci-
entific literature (Simensen et al., 2018). 

Generally, the spatial distribution of sampling sites is based on 
criteria related to the landscape composition: along roads (Waldner 
et al., 2016), along streams or following typical habitats (Bueno et al., 
2019). Other methods set more relevant distribution criteria based on 
the composition and structure or even the functioning of the landscape. 
In these methods, the definition of the criteria is guided by the objective 
of the study, e.g., the bioecological variables of crop pests (Soti et al., 
2018). The distribution of observation sites is done within spatial units 
according to a stratification of landscape heterogeneity (Soti et al., 2018; 
Ndao et al., 2017) or following a landscape gradient (Erikstad et al., 
2015). Spatial units can be regular geometric forms resulting from 
landscape gridding (Soti et al. 2018) or landscape units derived from 
remote sensing and geospatial analysis methods (Bellón et al., 2018; 
Ndao et al., 2017; Bisquert et al., 2015). In satellite imagery, the tem-
poral profile of a landscape depends on the spatiotemporal dynamics of 
its elements. Therefore, using geospatial analysis methods to delineate 
landscape units could allow us to better take into account both land-
scape organization and functioning in the distribution of sampling sites. 

Once observed data have been collected according to a representa-
tive sampling strategy, quantitative analyses of AFS landscapes and their 
spatial heterogeneity, including tree diversity, can be performed using 
landscape metrics and diversity indices. The structure of a landscape is 
primarily a series of patches surrounded by a matrix (Forman and 
Godron, 1981). Therefore, metrics are often used in landscape ecology to 
describe the composition and structure of the landscape (Walz, 2011; 
Uuemaa et al., 2009), to analyze the relationship between landscape 
structure and plant diversity (Uuemaa et al., 2009; Hernández-Stefanoni 
and Dupuy, 2008; Moser et al., 2002) and to assess or model the habitats 
of individual species or species groups (Betbeder et al., 2015; Fernández 
et al., 2007; Fauth et al., 2000). There are many indices in the literature 
for analyzing landscape and tree species diversity. For the latter, it is 
often necessary to combine several indices that frequently appear in the 
literature to assess its three main characteristics: species richness, 
abundance and evenness (You et al., 2009; Kindt and Coe, 2005). 
Various compound indices have been developed to combine these 
different diversity aspects. Shannon’s (H’) and Simpson’s (D1) diversity 
indices are most commonly used as compound indices (Morris et al., 
2014; Marcon, 2017). However, none of the diversity indices provide 
sufficient information on richness, abundance and evenness at the same 
time to allow for a comparison of the diversity of landscape classes and 
ordering them from lowest to highest diversity (Kindt and Coe, 2005). 
Thus, it is recommended to use diversity ordering techniques, such as 
Renyi diversity profiles (Rényi, 1961), which provide enough informa-
tion for comparison (Oldeland et al., 2010; Tothmeresz, 1995). 

In addition, geospatial data and remote sensing methods are very 
useful in landscape studies and characterization (Singh et al., 2010; 
Newton et al., 2009) due to their synoptic and repetitive coverage of 
landscape components and features, which allow landscape variations to 
be captured in an objective and complete fashion (Groom et al., 2006). 
There is in the literature a wide range of proxies derived from geospatial 
data to discriminate vegetation and crop types, allowing evidence of 
different components of agricultural landscapes. Good results were 
achieved for agricultural landscape mapping from Sentinel-2 time series 
data using object-based image analysis (Csillik and Belgiu, 2017) and a 

multisource approach (Lebourgeois et al., 2017). Because of both their 
high spatial (10 m) and temporal (5 days) resolutions, Sentinel-2 images 
are well adapted for monitoring agroforestry landscapes (Mercier et al., 
2019). Studies have combined Sentinel-2 images with very high spatial 
resolution (VHSR) images to refine the segmentation and detection of 
crop types and other small objects in agricultural landscapes (Leb-
ourgeois et al., 2017). 

In this paper, we propose combining the different methods previ-
ously reviewed to optimize the sampling processes in complex land-
scapes, such as Sahelian AFSs. We hypothesized that by combining 
several complementary methods, we would be able to design a robust 
sampling strategy that considers the different types of spatial hetero-
geneity within agroforestry landscapes related to their composition, 
organization (structure) and functioning. We aimed to propose, test and 
assess a methodological approach for agroforestry landscape sampling, 
mapping and characterization. First, an optimized sampling strategy 
was carried out on the basis of landscape stratification. We then used 
this sampling strategy to map and characterize the agroforestry land-
scape and finally analyzed the heterogeneity of the AFS - including tree 
diversity - to assess the ability of the proposed sampling strategy to 
capture the different forms of landscape heterogeneity. The approach 
was based on a priori knowledge of agroforestry landscape functioning 
and used multisource data, including landscape ecology indices and 
remote sensing data. It was applied to an agroforestry parkland in the 
Senegalese Peanut Basin. 

2. Materials and methods 

2.1. Overall approach 

The proposed methodology is illustrated by the flowchart presented 
in Fig. 1. It was organized around a sequence of four consecutive steps: 
(i) landscape stratification, (ii) sampling implementation, (iii) AFS 
mapping, and (iv) AFS heterogeneity analysis. 

(i) First, the area was segmented into agricultural landscape units 
using an object-based image analysis method. These units were then 
classified with a hierarchical clustering method (HCPC) according to 
relevant landscape functioning variables to stratify the landscape spatial 
heterogeneity. These variables were derived from geospatial data on the 
basis of a priori knowledge of agricultural landscape functioning (see 
section 2.3.1). 

(ii) Then, two weighted stratified sampling plans based on landscape 
stratification were implemented to collect field data on tree species and 
on the land use/land cover (LULC) types (see section 2.3.2). 

(iii) From multisource satellite images together with the collected 
field data, remote sensing methods were used to carry out agroforestry 
system mapping (see section 2.3.3). 

(iv) Finally, the landscape metrics and diversity indices derived from 
AFS mapping and the tree species inventory were used to analyze the 
diversity of the studied AFS. This allowed evidence of the ability of the 
sampling strategy to capture the various types of heterogeneity in 
agricultural landscapes (see section 2.3.4). 

2.2. Materials 

2.2.1. Study area 
The study area was located in the Senegalese Peanut Basin, covering 

an area of approximately 20 km × 20 km centered on the commune of 
Ngayokheme (district of Fatick; Fig. 2). The region is characterized by a 
tree-based agricultural system dominated by Faidherbia albida, which is 
a nitrogen-fixing species with an inverted phenology that is reported to 
increase soil fertility and crop yields (Félix et al., 2018). Pearl millet, 
which is used for on-farm consumption, and groundnut, which is used as 
a cash crops, are the main staple crops of the study area. The climate is 
semiarid with an annual rainfall that ranges between 400 mm and 600 
mm. Soils can generally be classified into two main types: dior soils, 
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which are ochre-colored, and deck soils, which are gray to black; some 
intermediate categories are also present (deck-dior and dior-deck). Dior 
soils are sandy, occupying flat areas and dune patterns, while deck soils 
are more clayey and are located in interdune and lowland areas (Ler-
icollais, 1999). Dior and deck-dior soils generally correspond to tropical 
ferruginous soils, while deck soils with a high water retention capacity 
are instead hydromorphic (Lericollais, 1999; BPS, 1993). The relief is 
not very uneven. Between the plain slightly raised by the dunes and the 
lowlands the difference in altitude is a few meters. The hydrographic 
network, more pronounced in the southwestern part, consists of small 
rivers and temporary ponds in small depressions and interdunes (Ler-
icollais, 1999, 1969). 

With more than 60% of the country’s rural population and cultivated 
lands, the Senegalese Peanut Basin is facing strong demographic pres-
sure, a reduction in the fallow period and crop management using many 
kinds of external inputs. This leads to vegetation degradation, erosion of 
biodiversity and a decline in soil fertility (Bignebat and Sakho-Jimbira, 
2013). 

2.2.2. High and very high spatial resolution (HSR & VHSR) images 
To carry out the segmentation of the study area into agricultural 

landscape units, a time series of Sentinel-2 images (10 m spatial reso-
lution) from January (start of the dry season) to October (end of the 
cropping season) in 2017 was used. Sentinel-2 data were subjected to 
Level-2A processing by the French Centre National d’Etudes Spatiales 
(CNES) and were retrieved from the Theia center (https://theia.cnes. 
fr/atdistrib/rocket/#/home). For each image in the Sentinel-2 time 
series, the normalized difference vegetation index (NDVI) was computed 
as proposed by Rouse et al. (1974). 

A second Sentinel-2 image time series acquired in 2018 together with 
a PlanetScope image from October 4th, 2018 were used for AFS mapping 
in 2018. This second time series was used because the field surveys were 
conducted in 2018. The PlanetScope image was a Level-3B Analytic 
Ortho Scene product, which was acquired with an approximately 3 m 
pixel size. It was converted into top-of-atmosphere (TOA) reflectance 
using at-sensor radiance and the coefficients supplied with each scene 
(Planet Team, 2018). 

Fig. 1. Data used and flowchart of the proposed methodology with (i) landscape stratification, (ii) sampling implementation, (iii) AFS mapping, and (iv) AFS di-
versity analysis. OBIA: Object-based image analysis. 
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To extract the woody vegetation, in particular the parkland with 
scattered trees, a Pléiades image acquired during the dry season on April 
29th, 2018, was used. Pléiades satellites provide very high-resolution 
panchromatic (0.5 m) and multispectral (2.5 m) optical imagery with 
high-quality product standards (https://earth.esa.int/web/eoportal/s 
atellite-missions/p/pleiades). This enables the detection of small trees 
and shrubs in Sahelian areas. 

2.2.3. Ancillary variables 
With the knowledge that agroforestry landscape structures are 

driven by environmental and anthropic factors, five proxies of landscape 
functioning and vegetation productivity were inferred from geospatial 
data, including satellite imagery and its derived products, and then used 
for landscape stratification. 

Two ecophysiological variables, namely, vegetation productivity and 
its dynamics during the 2000–2015 period, were derived from 16-day 
MODIS NDVI time series (MOD13Q1; spatial resolution: 250 m) 
(Didan, 2015). The average annual integral of NDVI was computed and 
used as an indicator of the overall vegetation productivity. The vege-
tation productivity dynamics were obtained from annual MODIS NDVI 
linear trends over the 2000–2015 period (see Leroux et al., 2017). 

An agrometeorological variable, namely the actual evapotranspira-
tion (AET), which allows the soil-air interface and plant functioning 
(WMO, 2012) to be considered, was extracted from the FAO WaPOR 
database (https://wapor.apps.fao.org/home/1). These data comprise a 
time series of the averaged AET available from 2010 to 2016 at a spatial 
resolution of 250 m. 

A woody cover map derived from MODIS FAPAR (Fraction of 
Absorbed Photosynthetically Active Radiation from MODIS; Brandt 

et al., 2016) was also used to derive information related to tree density 
as an ecological and anthropic (related to the cropping practices) 
variable. 

For information on soil properties, a soil type map from the Institut 
National de Pédologie (INP –Senegalese National Institute of Soil Sciences 
– http://inp-senegal.com/) was used. It is an extract of a 1:500,000 soil 
type map at the national scale (INP, 2013). Soils were classified ac-
cording to the CPCS’s classification (CPCS, 1967). In the study area, 
three main types of soils were distinguished: tropical ferruginous soils 
which usually correspond to dior and deck-dior soils, hydromorphic 
soils, and saline hydromorphic soils which are rather deck soils. 

2.3. Methods 

2.3.1. Landscape spatial heterogeneity stratification 
The methods used to stratify the landscape spatial heterogeneity 

were based on geographic object-based image analysis (OBIA; Blaschke, 
2010) in which NDVI time series from Sentinel-2 images in 2017 were 
merged into objects corresponding to agroforestry landscape units. 
Then, the landscape units were classified according to landscape func-
tioning variables to obtain the major landscape classes. These two steps 
are described in the two following subsections. 

2.3.1.1. Delineation of agroforestry landscape units. Agroforestry land-
scapes with the same environmental dynamics, e.g., with similar park-
land, crop cover composition and ecoclimatic factors, are expected to 
have, on average, similar vegetation productivity and phenological 
development and thus to have similar NDVI temporal profiles. On this 
basis, an OBIA was performed on the Sentinel-2 NDVI time series to 

Fig. 2. Location of the study area. Zoom on a Pléiades image (Dry season, April 29th, 2018) of the study area. Names on the study area represent the municipal-
ity names. 
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obtain homogeneous landscape units in terms of environmental condi-
tions, vegetation development, and farming practices. NDVI is known as 
an indicator of vegetation productivity (Tucker, 1979) and therefore of 
vegetation development. It is well adapted to capture the difference 
among agricultural land use systems within a landscape (Bellón et al., 
2018). To this end, the feature extraction module from the ENVI © 
software was used to carry out segmentation on the NDVI time series. It 
proceeded in two stages: (1) the images were segmented by setting the 
“scale level”, then (2) the segments were merged by setting the “merge 
level”. The “scale level” (ranging from 0.0 to 100.0) controls the relative 
segment size. A high “scale level” causes fewer segments to be defined, 
and a low “scale level” causes more segments to be defined. The “merge 
level” (ranging from 0.0 to 100.0) represents the threshold lambda value 
to aggregate small segments within the larger (ITT Vis, 2008). Several 
“scale level” and “merge level” values were iteratively tested by per-
forming a qualitative analysis consisting of a visual inspection based on 
a Pleiades image in the background (Srivastavak, 2006). The best 
delineation of landscape units was obtained with values of 90 for the 
“scale level” and 30 for the “merge level”. 

2.3.1.2. Classification of the landscape units. The objective of this clas-
sification was to stratify the study area into landscape subtypes in terms 
of composition and dynamics. Therefore, the landscape units, which 
were previously obtained through the OBIA, were classified according to 
the five identified landscape functioning variables (i.e., the vegetation 
productivity, the vegetation productivity dynamics, the AET, the woody 
cover and the soil type; see section 2.2.3). 

To do so, the means and standard deviations of the five variables 
were first computed for each landscape unit. The mean value represents 
the general trend, while the standard deviation value includes the 
spatial variability within a landscape unit. Then, the landscape units 
were classified using a hierarchical clustering on principal components 
(HCPC) approach. HCPC is an unsupervised hierarchical clustering 
method that finds subgroups or clusters of similar observations in a 
dataset (Kassambara 2017b). It enables the combination of the three 
standard methods used in multivariate data analyses, which are prin-
cipal component methods, hierarchical clustering, and k-means clus-
tering (Husson et al., 2010). Due to the presence of both quantitative and 
qualitative data in the variable dataset, we used a factor analysis of 
mixed data (FAMD) to carry out factor analysis, which defines the 
principal components (Kassambara 2017a). To appreciate the coherence 
of clustering, i.e., of landscape spatial heterogeneity stratification, we 
used descriptive statistics, including analysis of variance (ANOVA), for 
first assessment. 

2.3.2. Sampling implementation 
AFS mapping and tree biodiversity monitoring require both land 

use/land cover (LULC) and tree species field surveys. Based on the 
landscape stratification (see section 2.3.1.), an optimized sampling 
strategy was developed for the field campaigns. The observation sites 
were regularly distributed across the landscape heterogeneity classes 
and according to the weight of each class. We applied weighted stratified 
sampling, whereby the number of observation sites in each class of 
landscape stratification was proportional to the number of landscape 
units within the class. The spatial distribution of the observation sites in 
each class was determined using an HCPC of the landscape units within 
the class. These HCPCs for observation site distributions were still based 
on the identified landscape functioning variables (see section 2.2.3). 

From this process, two sampling plans were designed for two field 
campaigns. The first one was an in situ inventory of trees conducted at 
the end of the dry season in July 2018 at 213 observation sites. At each 
site, an exhaustive tree inventory was conducted in a one-hectare plot. 
To optimize the diversity of the species collected (including all/almost 
all tree species in the area), this plot inventory was supplemented by a 
nonexhaustive survey within a 400 m radius of the observation plot 

targeting species that were not yet registered. The name of each tree 
species and its location were recorded using a GPS (GSMAP 64S). The 
second campaign for LULC data collection was conducted in September 
2018 during the cropping season at 45 observation sites. At each site, the 
geographic coordinates of the different LULC types were recorded using 
a GPS. Then, on the basis of the collected coordinates, a total of 750 
polygons of land use/land cover types were digitized and labeled using a 
VHSR image in the background. 

2.3.3. Agroforestry system mapping 
The MORINGA processing chain (https://gitlab.irstea.fr/raffaele.gae 

tano/moringa) developed by CIRAD researchers was used to perform the 
agroforestry system mapping. Based on the research of Lebourgeois 
et al., (2017), MORINGA is an automatic image processing chain that 
uses multisensor fusion for crop mapping and generally LULC mapping 
and is particularly adapted to tropical agricultural systems. It produces a 
land use map based on a VHSR image, a time series of Sentinel-2, and a 
training database (labeled polygons). The processing chain uses func-
tions from the Orfeo Toolbox (OTB), which are coordinated by Python 
scripts (Gaetano et al., 2019). 

The PlanetScope image with TOA reflectance and 3 m spatial reso-
lution (see section 2.2.1) was used as the VHSR image. In the processing 
chain, the VHSR image was used for object segmentation (i.e., the land 
units to which a unique LULC type will be assigned). Then, the zonal 
statistics of the segmented objects were computed using time series 
images of Sentinel-2 spectral bands (TOA reflectance), and five radio-
metric indices are presented in Table 1. 

Finally, the LULC classification was carried out using a random forest 
(RF) classifier (Breiman, 2001; Cutler et al., 2007; Sharma et al., 2017) 
applied to the zonal statistics dataset with the field survey polygons as 
the training data. The accuracy of the classification was assessed using 5- 
fold cross validation (Sharma et al., 2017). 

The MORINGA LULC map was subsequently postprocessed to include 
a “woody vegetation” class, which was identified using a VHSR Pléiades 
image (0.5 m resolution) because of the small size of trees and shrubs in 
the Sahel (Hashim et al., 2019; Thierion et al., 2014). In particular, an 
image acquired during the dry season was used, when woody vegetation 
was less likely to be confused with surrounding deciduous vegetation, 
enabling identification through a simple thresholding of the NDVI 
values (Hashim et al., 2019; El-Gammal et al., 2014) 

The LULC map obtained was subsequently used to calculate land-
scape metrics and indices for the analysis and characterization of 
agroforestry landscape diversity. 

2.3.4. Agroforestry system heterogeneity analysis 
The objective was to demonstrate the different forms of landscape 

heterogeneity that the stratification (sampling strategy) proposed in this 
paper allowed us to highlight. Landscape heterogeneity is expressed in 
terms of compositional heterogeneity (the number and proportions of 
different cover types) and configurational heterogeneity (the spatial 
arrangement of cover types) (Fahrig et al., 2011). The concept “func-
tional heterogeneity” was included in this study to account for the 
functioning of LULC types. Analyses were performed by using statistical 
methods with landscape metrics and diversity indices according to the 
landscape stratification classes. 

2.3.4.1. Landscape metrics and diversity indices. For tree diversity anal-
ysis, we first derived a set of four indices commonly used in the literature 
(Kindt and Coe, 2005; You et al., 2009), namely, the richness index (i.e., 
the measure of the number of patch types present in the area, Mcgarigal, 
2015), Shannon’s diversity index (SHDI; Shannon, 1948) and Simpson’s 
diversity index (SIDI; Simpson, 1949), to appreciate the abundance and 
species diversity (Morris et al., 2014; Marcon, 2017), and Pielou’s 
evenness index (Pielou, 1966) to take into account the spatial evenness. 
The SHDI and SIDI indices were both retained because descriptive 
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analyses of species abundance showed significant presence of both rare 
and dominant species. In fact, SHDI is sensitive to rare species, while 
SIDI is sensitive to dominant species (Marcon, 2017). In addition, the 
Renyi diversity profile (Rényi, 1961) was used for comparison by 
ordering tree diversity from lowest to highest across the classes of 
landscape heterogeneity stratification. For this, the order of super-
position of the profile curves defines the order of the class diversity 
ranking (Oldeland et al., 2010; Kindt and Coe, 2005). 

For landscape heterogeneity analysis, it has been reported that there 
are “many quantitative measures of landscape composition, including 
the proportion of the landscape in each patch type, patch richness, patch 
evenness and patch diversity” (Mcgarigal, 2015). Landscape diversity 
metrics were thus used to analyze the landscape heterogeneity in terms 
of the LULC type diversity (patch diversity) according to the landscape 
stratification classes. We used landscape metrics that included patch 
richness and Shannon and Simpson’s diversity indices. 

Furthermore, to better appreciate landscape heterogeneity regarding 
the topic of agroforestry, we focused on three classes of interest, namely, 
(i) cereal crops (millet and sorghum), (ii) leguminous crops (peanut and 
cowpea), and (iii) woody vegetation (trees). Two class metrics were used 
for analysis: the land proportion (LP), which provides information on 
dominance, and the number of patches (NP), which informs about the 
abundance. 

2.3.4.2. Statistical analyses. Statistical methods, including descriptive 
analysis of species abundance, correspondence analysis (CA) and anal-
ysis of variance (ANOVA), were applied to the datasets (tree inventory 
data, calculated metrics and indices). The abundance analysis provided 
a description of the distributions of the different tree species and 
therefore allowed us to identify rare species and those dominating the 
studied environment. Correspondence analysis was carried out on the 
dominant species to understand the frequencies of species according to 
the landscape stratification classes and to deduce their relative re-
lationships and attachment to landscape classes (Coly et al., 2005). 
Finally, using ANOVA with the calculated landscape metrics and di-
versity indices, we compared the landscape stratification classes to 
identify different forms of agroforestry landscape heterogeneity. 
ANOVA is suitable for comparing more than two independent samples of 
quantitative data with more than 30 observations and homogeneous 
variances (AnaStat, 2020). Statistical analysis was performed using R 
software (R Core Team., 2018). 

3. Results and discussion 

The results were structured as follows:  

• “Designing field sampling plans based on landscape stratification” 
(section 3.1.) reveals the landscape spatial heterogeneity stratifica-
tion and the two field sampling plans derived from this stratification;  

• “Agroforestry system mapping” (section 3.2.) presents the map 
resulting from remote sensing processing using multisource satellite 
images with training data from the previous field sampling plan.  

• “Tree diversity and landscape heterogeneity analysis” (section 3.3.) 
reports the results of the tree species diversity analysis (section 
3.3.1.) and the results of the landscape heterogeneity analysis (sec-
tion 3.3.2.). 

3.1. Designing field sampling plans based on landscape stratification 

Using OBIA on the Sentinel-2 NDVI time series in 2017, 668 agro-
forestry landscape units were delineated (Fig. 3). The unit areas varied 
from 10.61 ha to 489.68 ha. The hierarchical clustering of these land-
scape units according to the landscape functioning variables resulted in 
a landscape spatial heterogeneity stratification map that was composed 
of four classes (or landscape subtypes; Fig. 3). This landscape stratifi-
cation map, which refers to the within class variance which is less than 
the between class variance (Wang et al., 2016), represents the spatial 
variability of the landscape functioning and structure among classes. 

Descriptive statistics allowed us to characterize the four classes ac-
cording to the landscape functioning variables and thus to appreciate the 
coherence of the landscape spatial heterogeneity stratification. The p- 
values from ANOVA showed a significant difference between landscape 
stratification classes for the variables vegetation productivity, AET, 
vegetation productivity dynamics and woody cover (Fig. 4a). Regarding 
the soil type distribution, class 1 consisted of saline hydromorphic soils, 
class 2 was largely dominated by tropical ferruginous soils, and class 4 as 
largely dominated by hydromorphic soils. The tropical ferruginous soils 
and the hydromorphic soils were mixed in class 3 (Fig. 4b). 

Based on this landscape heterogeneity stratification map, two opti-
mized and spatially representative field sampling plans were designed 
(Ndao et al. 2017). The first sampling plan utilized 213 observation sites 
for tree species inventories, and the second involved 45 observation sites 
for georeferenced data collection of landscape elements (LULC). The 
observation sites were regularly distributed among the 4 classes of 
landscape spatial heterogeneity stratification and according to the 
weight of each class (Fig. 3). This weighted stratified sampling design 
respected the proportions of the different entities within the studied 
population, i.e., within the landscape. 

3.2. The agroforestry system mapping 

The LULC map of the AFS was obtained using the LULC field training 
data with satellite images (Sentinel-2 time series and PlanetScope). It 
included 9 classes: (i) cereal crops (millet and sorghum), (ii) leguminous 
crops (peanut and cowpea), (iii) woody vegetation, (iv) artificialized 
land (villages and roadways), (v) ponds, (vi) fallow land, (vii) shrub-
bery, (viii) marshlands and valley, and (ix) shores and bare ground. All 
LULC classes were relatively well classified, with accuracies between 
69.87% and 97.85%. The overall accuracy was satisfactory, at 85.12% 
with a Kappa index of 0.81 (Fig. 5). These results showed that the 
combined use of VHSR images, such as PlanetScope, with a Sentinel-2 
image time series was appropriate to obtain a relevant LULC map in 
complex agroforestry systems. The high spatial resolution of the Plan-
etScope image was indicated for accurate segmentation of landscape 
features, while the spectral and temporal resolutions of Sentinel-2 were 
important for the discrimination of crop classes and other landscape 
objects. The relevance of combining different sources of geospatial data 
to improve the accuracy of LULC classification and mapping has already 
been demonstrated (Chen et al., 2017; Shi et al., 2019), in particular the 
use of multisource data (simulated Sentinel-2 time series, VHRS images 
and DEMs) for crop mapping in smallholder agricultural landscapes 
(Lebourgeois et al., 2017). 

Table 1 
Radiometric indices used for LULC classification with NIR: near-infrared band, 
R: red band, G: green band, SWIR: shortwave infrared band.  

Indices Formulas Uses References 

NDVI (NIR-R)/(NIR +
R) 

Vegetation density and health Rouse et al., 
1974 

NDWI (G-NIR)/(G +
NIR) 

Discrimination of water vs. 
vegetation 

McFeeters, 
1996 

MNDWI (G-SWIR)/(G +
SWIR) 

Improves water detection vs. 
certain built-up areas 

Xu, 2006 

MNDVI (NIR-SWIR)/ 
(NIR + SWIR) 

Sensitive to water within 
vegetation 

Gao, 1996 

NDRE (NIR-Red Edge)/ 
(NIR + Red 
Edge) 

Less sensitive to the upper part of 
the canopy (more reliable in the 
later crop stages) 

Barnes et al., 
2000  
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3.3. Tree diversity and landscape heterogeneity analysis 

3.3.1. Tree diversity analysis 
During the tree inventory campaign, 9258 trees distributed among 

63 species were identified and georeferenced in the study area. This tree 
dataset allowed the analysis of tree diversity according to classes of 
landscape spatial heterogeneity stratification. Fig. 6 shows the distri-
bution of species abundance throughout the study area and according to 
the landscape classes. F. albida was by far the most abundant, making up 
42% of the recorded trees. Four other dominant species were Balanites 
aegyptiaca, Anogeissus leiocarpus, Adansonia digitata and Acacia nilotica, 
which were the predominant species, representing 71.6% of all in-
dividuals. On the other hand, 52 species that represented more than 80% 
of the species richness of the area can be considered uncommon or even 
rare in the study area, each with less than 1% of the inventoried in-
dividuals. In addition, comparison of the distribution of the five main 
species through their proportions in the landscape classes shows some 
discrepancy between them. Indeed, the distribution is relatively more 
balanced in class 1 than in the other classes. Classes 2 and 3 seem quite 
similar while class 4 compared to classes 2 and 3 has a higher proportion 
of B. aegyptiaca with less F. albida (Fig. 6). In a complex AFS (Jagoret, 
2011; Michon and De Foresta, 1999, 1997), tree diversity is generally 

characterized by a dominant community (dominant species) coexisting 
with many other plant components (trees, treelets, lianas, and herbs). In 
agroforestry parklands, dominant species are deliberately favored by 
farmers due to their useful properties, either in terms of high agrofor-
estry potential or because they are food species or sources of revenue 
(Sambou et al., 2017; Bayala et al., 2014; Michon and De Foresta, 1999). 
For example, the species F. albida, which was very dominant in the 
studied AFS, is a nitrogen-fixing species that acts as a ‘fertility hot spot’ 
(see Sileshi, 2016 for a review). Farmers know that under these trees, 
plants grow more vigorously (Manfo et al., 2015), and the improvement 
of millet yields in the vicinity of F. albida trees in the region has long 
been studied (Bayala et al., 2012; Kho et al., 2001; Louppe et al., 1996). 

Through a correspondence analysis, species frequencies were 
analyzed according to their respective frequencies in the four landscape 
classes (Fig. 7). In terms of the tree species composition, the landscape 
class 1 was very different from the other classes. Additionally, classes 2 
and 3 were not very different, but they could be differentiated from class 
4. The frequency of species such as Mytragina inermis, Diospiros mes-
piliformis and Acacia seyal in class 1 indicated heavy soils of varying clay 
content in temporarily flooded lowlands and wetlands, such as pools and 
rivers (Arbonnier, 2019). On the other hand, the species Sclerocary bir-
rea, which is frequent in classes 2 and 3, revealed a preference for 

Fig. 3. Landscape spatial heterogeneity stratification map and landscape units of the study site, which were obtained from an OBIA and a hierarchical clustering 
approach based on landscape functioning variables. The symbols represent the location of the sample sites used for tree inventory (black circles) and LULC (blue 
circles) surveys. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

B. Ndao et al.                                                                                                                                                                                                                                    



Ecological Indicators 125 (2021) 107481

8

generally dry and sandy soils (Arbonnier, 2019). The heterogeneous 
distribution of the soil types was already shown by the assessment of the 
coherence of the landscape stratification (see section 3.1.; Fig. 4). The 
variations in soil cover defined ecological gradients that explained a 
significant part of the variability in plant stands in terms of the den-
drometric structures and floristic composition (Freycon et al., 2003). 
Finally, it should be noted that the dominant species, F. albida, was more 
abundant in classes 2 and 3. 

To better appreciate the spatial organization of tree diversity, 
comparative analyses of the indices were carried out among the classes 
from the landscape heterogeneity stratification. 

First, the average tree density per sampling site was calculated 
instead of the abundance per class because the classes did not have the 
same sample sizes (number of sampling sites). According to this indi-
cator, classes 2 and 3 had the highest tree densities, while class 1 had the 
lowest (Fig. 8a). In terms of the species richness, classes 2, 3 and 4 were 
not very far away, unlike class 1, which had a small number of species, 
with approximately one-third of the species encountered (Fig. 8b). 
However, it should be noted that class 1 had a rather homogeneous 
spatial distribution of species. Even so, the spatial distribution of species 
in the three remaining classes (2, 3 and 4), as in the landscape in general, 
was very heterogeneous (Fig. 8c). As previously shown in section 3.1, 
class 1 was dominated by saline soils, which were already known to have 
a negative influence on tree density and diversity and canopy cover in 
the study area (Sambou et al., 2017). In contrast to trends in species 
richness measures (Fig. 8b), SHDI and SIDI showed that class 1 had the 
highest diversity and class 3 the lowest (Fig. 8d & Fig. 8e). Actually, 
diversity refers to both richness and evenness (Kindt and Coe, 2005). 
Between classes 2 and 4, the two indices SHDI and SIDI made contra-
dictory assessments, giving a mixed ranking (Fig. 8d & Fig. 8e). In some 
situations such as this, where there are both many rare species and very 
dominant species, the SHDI and SIDI indices used separately are not 
always sufficient to compare tree diversities, and only the combination 
of several diversity indices allows for a better appreciation. 

Thus, to better rank the class diversities, the Renyi diversity profiles 
were calculated (Oldeland et al., 2010; Kindt and Coe, 2005; Tothmer-
esz, 1995). However, the resulting profile curves intersected, meaning 
that it was impossible to order them from the lowest to the highest di-
versity (Fig. 8f). 

Indeed, the descriptive analyses showed the significant occurrence of 
both very dominant and rare species. Shannon’s index is sensitive to rare 
species, whereas Simpson’s index is sensitive to abundant species. 
Additionally, as recognized by Hill (1973) and Pielou (1966), the indices 
that are most commonly used by ecologists, namely, species richness, 
SHDI and SIDI, are specific cases of Rényi’s entropy formula (Oldeland 
et al., 2010). 

The combination of these different indices provided a more balanced 
assessment that considered the influence of both rare and dominant 
species. This was even more important since SHDI and SIDI can deliver 
contradictory results, such as that in this study for tree diversity in 
classes 2 and 4 of the landscape stratification. 

3.3.2. Landscape diversity analysis 
ANOVAs of the main landscape diversity indices, namely, the patch 

richness (PR) and Shannon and Simpson’s indices, yielded significant to 
very significant differences (p-values) among the landscape classes 
(Fig. 9). This revealed compositional heterogeneity and configurational 
heterogeneity between the four classes of landscape stratification. 

Indeed, the patch richness showed that there was a significant dif-
ference in the composition of LULC types according to the landscape 
classes. Additionally, Shannon’s index and Simpson’s index, which take 
into account both richness and the evenness (Dejong, 1975; Strong, 
2016), showed that in addition to the difference in the composition of 
LULC types, there was also a significant difference in their organization, 
i.e., in the spatial distribution of the landscape elements (structure of the 
landscape) (Fig. 9). In particular, class 3 and class 1 had the greatest 
diversity of landscape elements, i.e., compositional heterogeneity. In 
terms of the configuration, the diversity was less marked, but class 1 
remained the most diverse. On the other hand, classes 2 and 4, in terms 
of both composition and configuration, remained the least diverse. 

Studies have reported that species diversity is dependent on the 
structure of the landscape (Walz and Syrbe, 2018) and that agroforestry 
landscapes and their heterogeneity contribute to biodiversity conser-
vation (Udawatta et al., 2019; Jose, 2012; 2009). It was noted in model 
experiments that if the degree of landscape heterogeneity decreases, 
then both the local and regional species diversity decrease (Steiner and 
Köhler in Walz, 2011). However, this relationship was not verified by 
our results. In fact, the tree diversity analysis showed that class 3 had the 

Fig. 4. Descriptive statistics of the mean landscape functioning variables according to the four classes resulting from the HCPC: a) Populations were compared using 
an ANOVA; Boxplot of vegetation productivity, actual evapotranspiration (AET), woody cover and vegetation productivity dynamics; b) Partitioning of soil types 
among the four landscape classes. 
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Fig. 5. Final LULC map of the AFS obtained from the MORINGA processing chain. Acc. = Accuracy. Zoom on a representative part of the identified classes (8 out of 
the 9 classes present). Leguminous and cereals fields are visible as the scattered trees inside fields forming the parkland. 
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lowest tree diversity (Fig. 8d & Fig. 8e), whereas the landscape diversity 
metrics conferred the greatest heterogeneity to class 3. Our result in 
class 3 could be explained by the fact that the region was highly 
anthropized (Bignebat and Sakho-Jimbira, 2013). It is well known that 
in sub-Saharan Africa, the diversity of parklands in AFSs is largely 
dependent on their socioecological properties, including human activ-
ities and the role of farmers in the conservation of tree species (Bayala 
et al., 2014; Faye et al., 2010). Recently, Sambou et al. (2017) evidenced 
the farmer’s contributions to tree diversity in three villages of the Peanut 
Basin, which were particularly different in terms of species composition 
according to the land use types. 

These results from the landscape metrics have been deepened using 
analyses at the level of land use classes. The ANOVA p-values showed 
very significant differences between the landscape classes according to 
the abundance and dominance of the LULC classes of interest (i.e., 
woody vegetation, cereal crops and leguminous crops) (Fig. 10). 

Landscape class 1 was relatively heterogeneous given the low land 
proportion (LP) of the three LULC classes of interest, which suggested 
the presence of several LULC classes (Fig. 10a, Fig. 10b & Fig. 10c). In 
particular, both cereal and leguminous crops were relatively less 
extensive in landscape class 1. This could be due to the presence of saline 
hydromorphic soils, which characterized landscape class 1, as already 
shown in section 3.1. (Fig. 4). Landscape class 2 appeared to be the most 
cultivated class, with a higher proportion of cereals and leguminous 
crops (Fig. 10b & Fig. 10c). It was also relatively homogeneous in terms 
of landscape composition given its low number of patches (NP) 
(Fig. 10d, Fig. 10e & Fig. 10f) together with its high proportion of crops. 
Landscape class 3 was characterized by a high level of fragmentation, 
suggesting high heterogeneity in terms of landscape configuration, as 
revealed by its high NP in the three LULC classes of interest (Fig. 10d, 
Fig. 10e & Fig. 10f). Landscape class 4 was characterized by higher 
proportions of cereal crops (Fig. 10b). These results still testify, as pre-
viously, to configurational and compositional heterogeneity that follows 
landscape heterogeneity stratification. 

Concerning the woody vegetation in particular, the LP and NP values 
presented contradictions among the landscape classes that revealed a 

difference in the landscape functioning. Indeed, in Fig. 10d, the NP 
showed that there were more trees in terms of abundance in landscape 
class 3 than in landscape class 4, as already shown in Fig. 8a, whereas in 
Fig. 10a, the LP showed that trees covered more area (dominance) in 
landscape class 4 than in landscape class 3. Trees therefore appeared to 
be more developed in terms of growth (larger size) in landscape class 4 
than in landscape class 3. This difference in tree growth reflected a 
functional heterogeneity of the studied landscape that could be inferred 
from different biophysical conditions, leading to a diversity of tree 
species. These are additional arguments towards the importance of trees 
for the diversity of agroforestry landscapes and their functioning. As 
reported by Sinare and Gordon (2015) and Kuyah et al. (2016) in their 
literature review, trees provide numerous ecosystem services in AFSs in 
sub-Saharan Africa. In fact, natural communities of trees that charac-
terize complex agroforestry systems (Michon and De Foresta, 1999) are 
an ecological asset in terms of biodiversity, soil protection and nutrient 
recycling (Sinare and Gordon, 2015). 

3.4. General discussion 

Landscape studies and characterization approaches are very diverse. 
Recently, Simensen et al. (2018) highlighted in their literature review 
several approaches to landscape characterization and mapping. Gener-
ally, the different approaches, especially in landscape ecology, require 
field sampling, which allows inferences to be made about the func-
tioning of ecological processes (Samalens, 2009). For landscape sam-
pling, Godard (2007) argued that there are, in absolute terms, no good 
or bad methods to collect field samples. Several landscape sampling 
approaches are reported in the literature (Thorpe et al., 2016; Froger 
et al., 2016; Godard, 2007). However, it must be recognized that the 
accuracy of inference depends on the representativeness of the field 
sample. A representative field sample is one that allows to capture the 
variability of the surveyed landscapes and is similar to these in terms of 
composition and structure (Godard, 2007). In complex AFSs, especially 
in sub-Saharan Africa, the question of representativeness remains 
crucial because of their high heterogeneity in terms of composition 

Fig. 6. Descriptive analysis of the abundance of tree species: species distribution and percentage per landscape class and over the whole area.  
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(number of different cover types), structure (spatial arrangement of 
cover types) and functioning (Fahrig et al. 2011). 

The approach proposed in this study was robust insofar as it allowed 
us to simultaneously capture the different forms of heterogeneity in a 
complex agroforestry landscape. The results highlighted (i) composi-
tional, (ii) configurational, and (iv) functional heterogeneities of the 
landscape classes obtained through an original method of stratification 
and landscape sampling. We showed that this stratification approach 
effectively represented the variability of the landscape subtypes present 
in the area. 

An appropriate field sampling strategy takes into account the three 
main aspects of field sampling processes (Wang et al., 2013): the vari-
able of interest, the sampling approach, and the distribution of sampling 
locations (Sedda et al. 2019). In our approach, the choice of stratifica-
tion variables (variable of interest) is guided by the theme of interest, i. 
e., biodiversity and AFS functioning. The variables of interest were 
identified on the basis of a priori knowledge of agroforestry landscape 
functioning and on the assumption that the landscape is mainly struc-
tured by the variety of natural conditions (Jedicke, 2001). Regarding the 
sampling approach and sampling location distribution, hierarchical 
clustering techniques are commonly used in combination with unsu-
pervised classification (Simensen et al., 2018). In this study, we used 

hierarchical clustering techniques, namely, HCPC methods, to stratify 
the landscape into classes and for the spatial distribution of observation 
sites. The number of observation sites was defined by weighting ac-
cording to the landscape classes. Thus, taking into account landscape 
functioning variables when designing landscape stratification and using 
a weighted distribution of sampling sites provides better representa-
tiveness than the approaches based on criteria related to landscape 
composition or structure only (Bueno et al., 2019; Waldner et al., 2016). 

Furthermore, if the landscape quantification and characterization 
approach is based on the analysis of landscape metrics, the choice of 
appropriate spatial observational units is another critical issue because 
landscape metrics are sensitive to the extent over which they are 
calculated (Hunsaker et al. 1994). According to Mcgarigal (2015), 
landscape metrics can be defined at four levels corresponding to a 
logical hierarchical organization of spatial heterogeneity in patch mo-
saics: cell-level metrics, patch-level metrics, class-level metrics, and land-
scape-level metrics. However, Yang and Liu (2005) reported that the 
landscape ecology literature does not provide much guidance on how to 
choose spatial observational units and suggested further efforts to design 
spatial observational units. Thus, to optimize the analyses in this study, 
assuming that landscapes with the same environmental dynamics will 
have similar temporal profiles for remote sensing, the landscape metrics 

Fig. 7. Correspondence analysis of the common species.  
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were analyzed at the level of landscape units derived from satellite 
image time series segmentation. The choice of the segmentation scale 
being crucial to delineate relevant landscape units, it was assessed by an 
approach of trial-and-error. Different scales were tested while assessing 
accuracy by visual inspection overlaying the resulting landscape units 
on a VHSR image. The best chosen scale allowed to identify relevant 
landscape units relatively detailed. Studies have shown the relevance of 

using only Earth observation data and remote sensing methods to 
delineate homogeneous landscape units in terms of the phenological 
development of vegetation, agro-environmental conditions and farming 
practices (Bellón et al., 2018; Bisquert et al., 2015). Choosing spatial 
observational units derived from satellite image time series processing 
allows landscape metrics to be performed at a hierarchical level related 
to both landscape organization and functioning. This is another strong 

Fig. 8. Tree diversity analysis based on the tree inventory with the (a) density, (b) richness index, (c) Pielou’s evenness index, (d) Shannon’s diversity index (SHDI), 
(e) Simpson’s diversity index (SIDI), and (f) Renyi diversity profile, per landscape class and for the whole area. 

Fig. 9. Boxplot comparing landscape metrics (patch richness, Shannon’s diversity index and Simpson’s diversity index) according to the four classes of landscape 
heterogeneity stratification. P-values resulting from the ANOVA are provided as well. 
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contribution of the approach proposed in this paper. 
The analysis of the implementation of the sampling strategy showed 

that it can be used for (i) tree biodiversity analysis, (ii) mapping, and (iii) 
characterization of a complex AFS in sub-Saharan Africa. Analyses of 
tree datasets from field surveys using this sampling strategy approach 
revealed the occurrence of three dimensions of landscape heterogeneity 
(compositional, configurational and functional) in the collected tree 
sample. Additionally, AFS mapping was carried out with good accuracy 
with remote sensing methods using training data from this sampling 
strategy. The analysis of agroforestry classes of interest (trees and crops) 
resulting from that mapping strategy also showed the three dimensions 
of landscape heterogeneity (compositional, configurational and func-
tional). Finally, the approach to designing spatial observational units 
using remote sensing methods was simultaneously validated. 

In a general context of improving food security and biodiversity 
conservation in Sahelian AFS, it remains essential to understand their 
functioning taking into account their specific characteristics in terms of 
landscape heterogeneity. Indeed, the three levels of landscape hetero-
geneity captured by our study, i.e. compositional, configurational, and 
functional, are closely linked and should be analyzed together to opti-
mize designing and implementing successful interventions in Sahelian 
AFS. For example, Harlio et al. (2019) reported for semi-natural grass-
lands that “incorporating landscape heterogeneity into multi-objective 
spatial planning improves biodiversity conservation”. Particularly it is 

well known that, because of their diversity and according to their 
composition and structure, Sahelian AFS provide a variety of socio- 
ecosystem services to smallholder farmers (Sinare and Gordon, 2015; 
Miller et al., 2017). Benefits range from producing food that can be 
directly used for consumption (Chivandi et al., 2015) or improving the 
production of crops and livestock (Foli et al., 2014; Leroux et al., 2020) 
to the improvement of pest regulation (Soti et al., 2019; Sow et al., 2020) 
or the increase of household income (Koffi et al., 2020). For instance, 
over our study area, Leroux et al. (2020) have reported that increasing 
the tree density in F. albida parklands would have a positive effect on 
staple crops only up to a woody cover of 35%. Subsequently, it appears 
that having an efficient approach to analyze the heterogeneity of the 
landscape as proposed by this study is needed in order to incorporate it 
in the management of the AFS in particular. 

4. Conclusion 

The originality of this reproducible approach for optimizing field 
sampling plans in complex landscapes lies in its multidisciplinary 
character, which combines landscape agro-climatological and ecological 
properties, Earth observation techniques, and statistical and spatial 
analyses that are applied to landscape ecology. The implementation of 
the proposed sampling strategy showed that this approach was effective 
in representing the spatial heterogeneity of an agroforestry landscape 

Fig. 10. Boxplot comparing the class metrics according to the four classes of landscape heterogeneity stratification. LP stands for land proportion and NP for number 
of patches. P-values resulting for the ANOVA are provided as well. 
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and thus enabled improved AFS mapping and characterization. 
From the geospatial data sources using OBIA combined with a hi-

erarchical clustering method, landscape spatial heterogeneity stratifi-
cation was performed by relying only on a priori knowledge of landscape 
functioning. The landscape heterogeneity stratification made it possible 
to develop an optimized sampling strategy that allowed us to collect 
samples that were spatially representative of the varieties of heteroge-
neity in agroforestry landscapes. 

The representativeness of the collected data was important to 
properly mapping AFS with an overall accuracy of 85% and then to 
analyze tree biodiversity and agroforestry landscape heterogeneity. Di-
versity indices and other landscape and class metrics that were extracted 
from the LULC map at the level of spatial observational units derived 
from remote sensing methods were efficient for correctly analyzing 
agroforestry landscape heterogeneity in all its dimensions. 

Implementing this sampling strategy demonstrated after analysis 
that the three dimensions of landscape spatial heterogeneity (composi-
tional, configurational and functional heterogeneities) were captured in 
the collected field samples. In feedback, these results confirmed the 
validity of the landscape heterogeneity stratification approach based 
only on a priori knowledge of landscape functioning combined with 
geospatial data and remote sensing methods. In landscape studies, this 
approach will enable the stratification of landscape spatial heteroge-
neity before sampling in the field, allowing us to take into account the 
different landscape subtypes in the sampling process and in the study in 
general. This reproducible approach was applied to illustrate that it can 
be used for tree biodiversity analysis, characterization and mapping of a 
complex AFS in sub-Saharan Africa. 

To conclude, it should be noted that tree components represent an 
important dimension in the definition and conservation of biodiversity 
and in the improvement and sustainability of AFS productivity. Thus, to 
contribute to effective monitoring of the state of biodiversity conser-
vation in AFSs (SDG15), as well as food security (SDG2), which is closely 
linked to AFS productivity and tree species diversity, these results 
should be further developed towards more exhaustive mapping of tree 
species. This tree dataset (9258 individuals) could then be used as 
training data to perform multisource remote sensing techniques using 
VHSR images. The density and representativeness of the tree dataset 
could also enable experimentation with species distribution modeling 
techniques. 
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Sentinel-2, PlanetScope and Pléiades, respectively. The authors are very 
thankful to Dr. Ibrahima Thiaw, Cheikh Mamor Mbodji and Mor Fall for 
their help during the field survey in 2018. 

References 

Agroforestry Network. https://www.siani.se/wp-content/uploads/2018/09/ 
AchievingTheGlobalGoalsThroughAgroforestry_FINAL_WEB_144 ppi-1.pdf. 

AnaStat, 2020. Formations, Etudes, Conseil en Statistiques. https://www.anastats.fr/. 
Andres, Christian, Bhullar, Gurbir S., 2016. “Sustainable Intensification of Tropical Agro- 

Ecosystems: Need and Potentials”. Frontiers in Environmental. Science 4 (FEB), 1–10. 
https://doi.org/10.3389/fenvs.2016.00005. 

Arbonnier, Michel, 2019. Arbres. Arbustes et Lianes Des Zones Sèches d’Afrique de 
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activités économiques locales : étude du bassin arachidier du Sénégal. Mondes en 
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Sénégal. Ministère. Sénégal. 
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Seine-et-Marne). L’Espace Géographique 36 (3), 237–250. 

Groom, Geoff, Mücher, C.A., Ihse, Margareta, Wrbka, Thomas, 2006. Remote Sensing in 
Landscape Ecology: Experiences and Perspectives in a European Context. Landscape 
Ecology 21, 391–408. https://doi.org/10.1007/s10980-004-4212-1. 

Harlio, Annika, Mikko Kuussaari, Risto K. Heikkinen, and Anni Arponen. 2019. 
“Incorporating Landscape Heterogeneity into Multi-Objective Spatial Planning 
Improves Biodiversity Conservation of Semi-Natural Grasslands.” Journal for Nature 
Conservation 49 (December 2018): 37–44. https://doi.org/10.1016/j. 
jnc.2019.01.003. 

Hashim, H., Z. Abd Latif, and N. A. Adnan. 2019. “Urban Vegetation Classification With 
Ndvi Threshold Value Method With Very High Resolution (Vhr) Pleiades Imagery.” 
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences XLII-4/W16 (October): 237–40. https://doi.org/10.5194/isprs- 
archives-xlii-4-w16-237-2019. 

Hernández-Stefanoni, J. Luis, Dupuy, Juan Manuel, 2008. Effects of Landscape Patterns 
on Species Density and Abundance of Trees in a Tropical Subdeciduous Forest of the 

Yucatan Peninsula. Forest Ecology and Management 255 (11), 3797–3805. https:// 
doi.org/10.1016/j.foreco.2008.03.019. 

Hill, M.O., 1973. Diversity and evenness: A unifying notation and its consequences. 
Ecology 54 (March), 427–432. https://doi.org/10.2307/1934352. 

Hunsaker, Carolyn T., O’Neill, Robert V., Jackson, Barbara L., Timmins, S.P., 
Levine, Daniel A., Norton, Douglas J., 1994. Sampling to Characterize Landscape 
Pattern. Landscape Ecology 9 (3), 207–226. https://doi.org/10.1007/BF00134748. 

Husson, François, Josse, Julie, Pagés, Jérôme, 2010. Principal Component Methods - 
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