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Abstract 

The research attempts to resolve which method of estimation is the most consistent for the 
parameters of the earthquake model, and how these different methods of estimation, as well 
as other changes, in the earthquake model parameters affect the damage estimates for a 
specific area. The research also investigates different methods of parameter estimation in the 
context of the log-linear relationship characterised by the Gutenberg-Richter relation. 
Traditional methods are compared to those methods that take uncertainty in the underlying 
data into account. Alternative methods based on Bayesian statistics are investigated briefly. 
The efficiency of the feasible methods is investigated by comparing the results for a large 
number of synthetic earthquake catalogues for which the parameters are known and errors 
have been incorporated into each observation. In the second part of the study, the effects of 
changes in key parameters of the earthquake model on damage estimates are investigated. 
This includes an investigation of the different methods of estimation and their effect on the 
damage estimates. It is found that parameter estimates are affected by observation errors. If 
errors are not included in the method of estimation, the estimate is subject to bias. The nature 
of the errors determines the level of bias. It is concluded that uncertainty in the data used in 
earthquake parameter estimates is largely a function of the quality of the data that is 
available. The inaccuracy of parameter estimates depends on the nature of the errors that are 
present in the data. In turn, the nature of the errors in an earthquake catalogue depends on the 
method of compilation of the catalogue and can vary from being negligible, for single source 
catalogues for an area with a sophisticated seismograph network, to fairly impactful, for 
historical earthquake catalogues that predate seismograph networks.  Probabilistic seismic 
risk assessment is used as a catastrophe modelling tool to circumvent the problem of scarce 
loss data in areas of low seismicity and is applied in this study for the greater Cape Town 
region in South Africa. The results of the risk assessment demonstrate that seemingly small 
changes in underlying earthquake parameters as a result of the incorporation of errors can 
lead to significant changes in loss estimates for buildings in an area of low seismicity. 

Keywords 

Catastrophe modelling, parameter estimates, earthquake risk, Gutenberg-Richter, 
probabilistic seismic risk assessment, Cape Town, South Africa, property insurance, errors, 
uncertainties  
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1 Introduction  

1.1 Background 

Increasing global urbanisation means that the potential impact of a catastrophic event, such 

as an earthquake, is increasing. To this end, insurers are taking a more comprehensive view 

of managing and understanding risk. This means that catastrophe models are becoming more 

sophisticated and the importance of accurate input data is becoming increasingly important 

(Grossi and Zoback, 2009). As an example, Figure 1.1 depicts the effects of a recent seismic 

event in Christchurch, New Zealand; the estimated insurance claims triggered by the event 

were in excess of US$ 12 billion (Booker, 2012).  

This event was by far one of the most costly for insurers in the past decade, (Booker, 2012). 

Concerns arise when we consider that the same kinds of losses can occur due to similar 

seismic events in the near future. By increasing the accuracy of the input parameters for 

earthquake recurrence, it is possible that ultimate insurance loss forecasts will be more 

accurate and more prudent. More accurate and prudent earthquake damage forecasts will 

help to minimise the financial and social impact of earthquake, by assisting insurers in the 

risk management process.  

  

Figure 1.1: The effects of the 7.1 magnitude earthquake in Christchurch, New Zealand in 2011 as well as 
the subsequent aftershock of magnitude 6.7 (news.com.au) 
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To draw some conclusions about events that may happen in the future, real-life phenomena 

are observed in order to collect data and to ascertain what is already known about these 

events. This data is then used to draw some inference from the behaviour of the past events 

to that of possible future events.  

These observations are not always perfect, and usually contain some form of error. 

Observation errors impact a wide range of problems. This includes categories as diverse as 

biological sciences (population estimation models), seismology (earthquake prediction 

models) and finance (equity pricing models). Any field in which estimates or predictions are 

made based on observations is subject to distortion of the results if some observational error 

exists. Since any data that is observed by individuals is likely to contain some form of 

subjectivity, observation errors are present in most types of data. 

The level of accuracy required when implementing models varies depending on the context 

in which the results will be used. However, increased accuracy clearly implies better results 

which will lead to better decision-making. In particular, accuracy in predicting seismic 

activity is of very high importance when dealing with highly populated areas or modern 

critical structures like nuclear power plants.  

Seismic activity in South Africa is of particular concern when it comes to the accuracy of 

forecasting damage caused by seismic events. The area is characterised by few damage-

inducing seismic events which means that the data used for forecasting is scarce. It is 

worrying, when it is considered that the only natural seismicity of damage causing intensity 

has taken place in an area that contains the only nuclear power station in the country. Further 

concerns arise when considering that the deepest underground mining activity in the world 

takes place within several hundred kilometres of the financial hub of Southern Africa. 

Induced seismicity, particularly if caused by underground mining activity, alters the 

seismicity of a particular area. Therefore a clearer view of the seismic activity and possible 

losses connected thereto in the area needs to be established. 

1.2 Research problem 

Uncertainty in data leads to inaccurate parameter estimates for the models which describe 

the data. The effect of these inaccuracies in the context of the extent of estimated damage 

suffered by buildings due to earthquakes in areas of low seismic activity is largely unknown. 

Earthquake magnitude data for those earthquakes that cause notable damage is scarce and 
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several methods of estimation are used for the parameters involved in earthquake models. 

The research endeavours to answer how uncertainty in earthquake magnitude data affect 

parameter estimates in models that estimate damage in an area of low seismic activity such 

as the greater Cape Town area in South Africa. 

1.3 Research objectives 

The research attempts to resolve the problem in two parts, namely, which method of 

estimation is the most consistent for the parameters of the earthquake model, and how these 

different methods of estimation, as well as other changes, in the earthquake model 

parameters affect the damage estimates for a specific area.  

The research investigates different methods of parameter estimation in the context of the log-

linear relationship characterised by the Gutenberg-Richter relation. Traditional methods are 

compared to those methods that take uncertainty in the underlying data into account. 

Alternatives based on Bayesian statistics are also investigated briefly. The efficiency of the 

feasible methods is investigated by comparing their results for a large number of synthetic 

earthquake catalogues for which the parameters are known and errors have been 

incorporated into each observation. 

In the second part of the study, the effects of changes in key parameters of the earthquake 

model on damage estimates are investigated. This includes an investigation of the different 

methods of estimation and their effect on the damage estimates. Probabilistic seismic risk 

assessments are utilised as a catastrophe modelling tool in order to achieve this. 

Equation Chapter (Next) Section 1 
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2 Literature Study  

2.1 Earthquake magnitude and uncertainty  

2.1.1 The Gutenberg-Richter relation 

The Gutenberg-Richter relation (Gutenberg and Richter, 1954) describes the relationship 

between the number of earthquakes and their associated magnitudes for a variety of tectonic 

settings and is defined as: 

 log N a bM= −   (1.1.1) 

where N   is the number of earthquakes associated with seismic events of magnitude M   

and a  and b are suitable parameters. The importance of the Gutenberg-Richter relation and 

its applications to a range of industries that are concerned with earthquake recurrence 

forecasting, for example, engineering, insurance and reinsurance companies as well as 

disaster management, further emphasises the importance of accurate forecasting.  

The occurrence of major catastrophic earthquakes (i.e. where more than 50 000 deaths 

occur) have been few and far between, but seem to be becoming more frequent (see Table 

2.1). The increasing population density in earthquake prone areas is cause for concern that 

the destructive power of future earthquakes, particularly near heavily populated areas, will 

increase greatly (Grossi et al., 2005). 

2.2 Measures of earthquake magnitude and intensity 

Magnitude is the most well-known measure of the “size” of an earthquake and was 

introduced by Charles Richter and Beno Gutenberg during the 1930s. There are several 

different types of magnitude which are based on different characteristics of earthquake 

seismic waves, as measured by seismographs (Werner and Sornette, 2008). 

The original Richter magnitude is defined as:  

“The magnitude of any shock is taken as the logarithm of the maximum trace amplitude, 

expressed in microns, with which the standard short-period torsion seismometer would 

register that shock at an epicentral distance of 100 kilometres.” (Richter, 1935) 
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Table 2.1: Most destructive earthquakes, in terms of number of deaths 

Date Location Deaths Magnitude 

856/12/22 Iran, Damghan 200000 
 

893/03/23 Iran, Ardabil 150000 
 

1138/08/09 Syria, Aleppo 230000 
 

1268 Asia Minor, Silicia 60000 
 

1290/09/27 China, Chihli 100000 
 

1556/01/23 Shaanxi (Shensi), China 830000 8 

1667/11/ Caucasia, Shemakha 80000 
 

1693/01/11 Italy, Sicily 60000 7.5 

1727/11/18 Iran, Tabriz 77000 
 

1755/11/01 Portugal, Lisbon 70000 8.7 

1783/02/04 Italy, Calabria 50000 
 

1908/12/28 Messina, Italy 72000 7.2 

1920/12/16 Haiyuan, Ningxia (Ning-hsia), China 200000 7.8 

1923/09/01 Kanto (Kwanto), Japan 142800 7.9 

1948/10/05 
Ashgabat (Ashkhabad), Turkmenistan (Turkmeniya, 

USSR) 
110000 7.3 

1970/05/31 Chimbote, Peru 70000 7.9 

1976/07/27 Tangshan, China 242769 7.5 

1990/06/20 Western Iran 50000 7.4 

2004/12/26 Sumatra 227898 9.1 

2005/10/08 Pakistan 86000 7.6 

2008/05/12 Eastern Sichuan, China 87587 7.9 

2010/01/12 Haiti region 316000 7.0 

(U.S. Geological Survey, 2012) 

This is not the only definition of magnitude that is used. Several other definitions that 

include body wave magnitudes, surface wave magnitudes and moment magnitudes (Werner 

and Sornette, 2008) are used, sometimes in the same catalogue. One notable exception that 

uses uniform magnitude types is the (Harvard) Centroid Moment Tensor (CMT) catalogue. 

Naturally, there exist some differences in the different measures of magnitude for a 

particular event, which will result in uncertainties of a particular magnitude estimate 
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compared to a magnitude that best forecasts future events, provided the latter exists (Werner 

and Sornette, 2008). This was termed the inter-magnitude uncertainty by Werner and 

Sornette (2008). 

Of particular interest is the uncertainty that arises for individual magnitude observations. 

Several contributing factors add to the errors that are inherent in an observed magnitude. 

These factors include, but are not limited to, the effects of discretization of media and 

equations, the measurement precision of seismometers, the assumed velocity and attenuation 

models of the Earth, the resolution of the inversion algorithm, and, most particularly, the 

definition of an earthquake event (Werner and Sornette, 2008). 

The magnitude of an earthquake is never accurately known. Unit accuracy ranges from 0.1 

units for recent magnitudes, to 0.25 units for older magnitudes and up to 0.6 units for historic 

and paleoseismic earthquakes (Kijko, 1988). Historic earthquakes refer to those earthquakes 

that are recovered from historical records and are not directly observed with the help of 

modern instruments. Paleoseismic earthquakes refer to those earthquakes that are estimated 

by investigation of sediment and rocks. The unit accuracy clearly indicates that modern 

earthquake catalogues contain fewer errors than historical and paleoseismic studies, but the 

additional factors described above still mean that some uncertainty is still present (Werner & 

Sornette, 2008). 

Additionally, for the purposes of assessing losses that can be attributed to seismic events, we 

need to measure the strength of a seismic event at a given site in terms of the resultant 

structural damage to buildings. A well-known measure is the Modified Mercalli (MM) 

intensity scale. A summary of each intensity measure is outlined in Table 2.2 and a full 

summary is provided in Appendix A. Since the scale is, for the most part, subjective, further 

uncertainty persists, especially where eye-witness accounts make up the majority of the body 

of evidence to determine the magnitude of a particular event (Davies and Kijko, 2003). 
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Table 2.2: A summary of the Modified Mercalli Intensity scale 

Scale Description 
I  Not felt except by a very few under especially favourable conditions 

II  Felt only by a few persons at rest, especially on upper floors of buildings 

III 
 Felt quite noticeably by persons indoors, especially on upper floors of buildings.  
Many people do not recognize it as an earthquake.  Parked motor cars may rock 
slightly.  Vibrations similar to the passing of a truck.  Duration estimated. 

IV 
 Felt indoors by many, outdoors by few during the day.  At night, some woke up.  
Dishes, windows, doors disturbed; walls make cracking sound.  Sensation like heavy 
truck striking building.  Parked motor cars rocked noticeably. 

V  Felt by nearly everyone; many woke up.  Some dishes, windows broken.  Unstable 
objects overturned.  Pendulum clocks may stop. 

VI  Felt by all, many frightened.  Some heavy furniture moved; a few instances of fallen 
plaster.  Damage slight. 

VII 
 Damage negligible in buildings of good design and construction; slight to moderate 
in well-built ordinary structures; considerable damage in poorly built or badly 
designed structures; some chimneys broken. 

VIII 

 Damage slight in specially designed structures; considerable damage in ordinary 
substantial buildings with partial collapse.  Damage great in poorly built structures.  
Fall of chimneys, factory stacks, columns, monuments, walls.  Heavy furniture 
overturned. 

IX 
 Damage considerable in specially designed structures; well-designed frame 
structures thrown out of plumb.  Damage great in substantial buildings, with partial 
collapse.  Buildings shifted off foundations. 

X  Some well-built wooden structures destroyed; most masonry and frame structures 
destroyed with foundations.  Rails bent. 

XI  Few, if any (masonry) structures remain standing.  Bridges destroyed.  Rails bent 
extensively. 

XII 
 Damage total. 
 Lines of sight and level are distorted 
 Objects thrown into the air 

(U.S. Geological Survey, 1989) 
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2.2.1 Estimating the Gutenberg-Richter parameters 

Estimation of the parameters of the Gutenberg-Richter relation is of particular importance 

and an extensive body of work exists on the subject. The a parameter is a measure of the 

level, or rate, of seismicity and the b value describes the proportion of seismic events with 

different magnitudes or the relationship between the number of small and large seismic 

events (Kijko and Smit, 2012a; Bengoubou-Valérius and Gilbert, 2013). For global 

seismicity, the b value is approximately 1 (Kagan, 1999), but has been shown to vary 

significantly between regions (Wiemer and Benoit, 1996; Ayele and Kulhánek, 1997; 

Wiemer et al., 1998; Gerstenberger et al., 2001; Schorlemmer et al., 2003).  

Prior to 1964, the parameters of the Gutenberg-Richter relation (1.1.1) were estimated by the 

traditional least squares method (Aki, 1965). This method is based on the principle of least 

squares, which minimises the sum of the squared deviations from the fitted line (Engelhardt 

and Bain, 1992). Consequent investigations indicate that the least squares technique is by far 

the most inaccurate means of estimating the b-value of the Gutenberg-Richter relation 

(Sandri and Marzocchi, 2006). Additionally, the least squares method of estimation does not 

have any statistical foundation for this particular case (Page, 1968; Bender and Bannert, 

1983). 

In 1964, two Japanese seismologists, K. Aki and T. Utsu, working independently, proposed 

the new formula: (Aki, 1965; Utsu 1965) 

 10

min

logˆ eb
m M

=
−

 , (1.1.2) 

which is both the moment and maximum likelihood estimator of the b value. In (1.1.2) , 

which is sometimes called the Aki-Utsu or classical estimator, minM  denotes the level of 

completeness of the catalogue. Since we are dealing with real world phenomena, the 

observed events in an actual catalogue may not always follow the Gutenberg-Richter relation 

exactly.  

Some of the deviation from the Gutenberg-Richter relation can be attributed to a small 

number of events with large magnitude taking place or from incompleteness of the catalogue 

at small magnitudes. This incompleteness arises as a result of a detection threshold (Rydelek 

and Sacks, 1989). This threshold could possibly exist because below a certain magnitude 
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only a portion of events that occur are recorded because they are too small to be recorded by 

enough stations in a seismograph network (Woessner and Wiemer, 2005).  

Alternatively, network operators could decide not to record seismic events below a certain 

magnitude since smaller events are of little interest to them (Woessner and Wiemer, 2005). 

Specifically, for the former problem, seismographs have difficulty recording events with 

small magnitudes due to background noise caused by cultural activity, surface temperature 

and winds (Rydelek and Sacks, 1989). This noise also varies according to the time of day 

and some earthquake below a certain magnitude will only be recorded at night (Rydelek and 

Sacks, 1989). The level of completeness is then defined as the magnitude above which all of 

the events within a specific area and timeframe are detected (Rydelek and Sacks, 1989). 

Several methods for evaluating completeness have been proposed (Rydelek and Sacks, 1989; 

Woessner and Wiemer, 2005), but for the purposes of this study it is assumed that the level 

of magnitude below which no damage to buildings occur (Davies and Kijko, 2003) would be 

chosen. This is generally accepted as a magnitude of 4.0, however, in areas where buildings 

are not specifically designed to withstand seismic activity, magnitudes as low as 3.8 can 

cause notable damage. 

From the maximum likelihood estimator (1.1.2) we can infer that the probability distribution 

function of earthquake magnitude is: 

 ( ) ( )min
min

m M
Mf m e for m Mββ − −= ≥    (1.1.3) 

and that the parameters of the Gutenberg-Richter relation are related to the above by: 

 minloga bMλ= +  (1.1.4) 

where ( )logb eβ=  and  λ  is the mean activity rate which is defined as the number of 

earthquakes in the catalogue that exceed minM  divided by the time interval under 

investigation (Kijko, 2011).  

It is notable that the Aki-Utsu or classical estimator (1.1.2) does not include magnitude 

uncertainty. The effects of magnitude uncertainties in the data used to estimate the b value 

and consequently seismic hazard and risk remained largely unexplored for some time. 

However, this oversight has since been corrected by several others (Shi and Bolt, 1982; Tinti 
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and Mulargia, 1985; Kijko, 1988; Rhoades, 1996; Dowrick and Rhoades, 2000; and 

Marzocchi and Sandri, 2003).  

In general, uncertainties can be divided into two main categories, namely aleatory and 

epistemic uncertainty. Aleatory uncertainties “are those uncertainties that for all practical 

purposes cannot be known in detail or cannot be reduced” (Budnitz, 1997), this is also 

referred to as systematic uncertainty (Ku, 1969), and is uncertainty that can be measured 

(Bommer, 2003). Epistemic uncertainties, however, are those uncertainties that arise from a 

“lack of knowledge”, for the present (Budnitz, 1997). Therefore, epistemic uncertainties can 

be reduced by more adequate models or by better measurement techniques. This type of 

uncertainty is also referred to as random error (Ku, 1969) and is the main type of uncertainty 

that affects magnitude observations (Kijko, 1988).  

A discussion by Bommer (2003) indicates that the use of the terms aleatory and epistemic 

uncertainty are an improvement on the concepts of uncertainty and randomness in that it may 

add to the use of unambiguous terminology. The problem with seismic risk assessment is 

that almost all of it involves a multitude of disciplines, including physicists, seismologists, 

geologists, engineers of various backgrounds and actuaries when the scope is extended to 

damage and loss assessments. This multidisciplinary field calls for unambiguous 

terminology. 

While the uncertainty in the model can be explicitly allowed for, the uncertainty of the 

underlying data is seldom included in the analysis of uncertainty (Dowrick and Rhoades, 

2000). What this study is primarily concerned with is the uncertainty in the underlying data, 

which is in this case, the seismic catalogue. It is notable that data and parameter uncertainty 

should be treated differently (Dowrick and Rhoades, 2000). We can isolate the effect of data 

uncertainties by assuming that noisy estimates use the parameters as the “true” rate (Werner 

and Sornette, 2008). This assumption means that we can ignore parameter uncertainty, and 

focus on data uncertainty when conducting an investigation. 

Furthermore the Aki-Utsu estimator (1.1.2) does not include the upper bound for the 

magnitudes, maxM .  Several methods exist to estimate maxM  (Kijko and Graham, 1998), 

including deterministic and probabilistic methods. Deterministic methods lead to high levels 

of uncertainty. Extreme value theory applied to the maximum values of an earthquake 

indicates that the number of earthquakes can be determined by a Poisson process and that 
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their magnitudes follow the Gutenberg-Richter relation (Kijko and Dessokey, 1987; Kijko 

and Graham, 1998).  

An estimator for the maximum possible magnitude proposed by Kijko and Graham (1998): 
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The calculation of (1.1.5) is not of particular concern for this study and the formula is noted 

here for completeness. For the purposes of further study an assumption about the value of 

maxM  is made using past available experience for the area under investigation, and 

sensitivity testing is conducted in order examine the effect of changes in the maximum 

magnitude for a specific area on estimates of the parameters of the Gutenberg Richter 

relation and on loss estimates (Kijko et al., 2002). 

In order to include this upper bound for the magnitudes in estimates of the parameters, we 

truncate the exponential distribution of the magnitudes at minM  and maxM  in order to arrive 

at a probability distribution function 
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An estimator that includes this upper bound is Page’s relation (Page, 1968): 
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which is equivalent to the maximum likelihood estimator for the double truncated 

exponential distribution and can also be written as 
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Note that β̂   denotes an estimator of the parameter β  .  
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The first mention of potential bias in the a and b parameters of Gutenberg-Richter relation 

(1.1.1) due to magnitude uncertainty is made by Tinti and Mulargia (1985). In this particular 

paper, the authors propose an improved estimate for parameters a and b, by treating the 

observed magnitudes as random variables with normally distributed observational errors. 

The findings of this paper are reiterated by Marzocchi and Sandri (2003). The studies show 

that magnitude errors do not cause significant bias in the estimation of the b parameter if the 

same degree of earthquake magnitude uncertainty (standard deviation) applies to all the 

magnitudes (Tinti and Mulargia, 1985). It must be noted that this study only considered the 

first iteration of the estimation procedure applied to determine the value of b.  

The assumption that the errors follow a Gaussian distribution has been widely accepted for 

some time. It has been shown that empirical distributions of errors in observation are well 

approximated by the Gaussian distribution (Mertikas, 1985). The assumption implies that 

errors are symmetrical about zero, which means that they are equally likely to be positive or 

negative and that the distribution tails off at higher error values which means that extremely 

high or low error values become very unlikely. Both these assumptions make intuitive sense 

because of what we understand to be true about errors. Significant errors will most likely be 

indicated in data checks and these unlikely observations are usually excluded from the data 

set. 

Research by Werner and Sornette (2008) found that, in case of large magnitude 

uncertainties, the double-exponential (Laplace) distribution might be another good 

approximation of the distribution of the errors. The use of the Laplace (or double 

exponential) distribution increases the possibility of the occurrence of large error outliers 

(Werner and Sornette, 2008). Consequently, this assumption could lead to more conservative 

assumptions regarding the influence of errors, but not necessarily more accurate. The 

properties that are most desirable for error distributions, namely symmetry and low 

probabilities for absolute large values, are also satisfied by the Laplace distribution.  

The most likely use for the Laplace assumption would be for catalogues where the data is 

fairly uncertain, such as historic catalogues that predate sophisticated seismograph networks 

and where earthquake magnitudes are estimated from eye-witness accounts, geological 

survey and photographs or artworks of the damage caused. It is also very likely that only 

those earthquakes that are large enough to cause significant damage would be included in 

these types of catalogues. 
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When we compare the Laplace and Normal error distributions as in Figure 2.1, it can be seen 

that the Laplace distribution has much higher kurtosis than the normal distribution and has 

marginally thicker tails. This means that we are taking a higher probability of larger errors 

into account.  

 

 

Figure 2.1: Comparing Laplace and Normal Distributions with mean 0 and standard deviation 0.3 

 

Measurement uncertainty has been reduced over time due to the introduction of higher-

quality instrumentation (Rhoades, 1996), which would again lead to the fact that 

uncertainties in magnitude determination are not the same for whole earthquake catalogues 

that stretch over considerable periods of time.  Some studies have attempted to provide 

improved estimates for the b value by taking uncertainties into account (Rhoades, 1996, 

Kijko, 1988). It is notable, however, that the moment magnitude is believed to be the most 

stable with uncertainties around 0.1 (Werner and Sornette, 2008; Kijko, 1988).  

The approach by Rhoades (1996) proposes a probability distribution of magnitudes of 

earthquakes in a catalogue as the sum of a uniform random variable and a normal random 

variable with mean 2y σ β−  and variance, 2σ .  Thus the paper proposes an adjustment to 

each observed magnitude of ( 2σ β− ), although it is shown that often this provides an over-

correction to the bias (Rhoades, 1996). Kijko’s (1988) approach is based on the assumption 
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that the observed magnitudes are each from a uniformly distributed interval and proceeds to 

calculate a maximum likelihood estimate.  

The latter two approaches should succeed in calculating more accurate estimates for the b 

value, but can be too dependent on the quality of the data. A method proposed by Kijko and 

Dessokey (1987) solves the problem of changes in data quality within a particular catalogue. 

The method is particularly good when dealing with catalogues that stretch over long periods 

of time where improvements in instrumentation or the seismograph network in a particular 

area have led to changes in the quality of data. The method proposed offers maximum 

likelihood estimates of the activity rate, λ , and the value of β  by taking advantage of 

extreme distribution theory.  By assuming that earthquake occurrence follows a Poisson 

process with parameter ( )Tλ  where T   is a particular time interval and that the magnitudes 

are distributed according to the double truncated exponential distribution as before, we can 

find a distribution for the largest possible earthquake, X , in a time interval T : 
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By applying the maximum likelihood methodology, we find that 
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where 1( ,..., )NX X X=


 is a sequence of the largest earthquake magnitudes selected from the 

corresponding consecutive time intervals 1(T ,...,T )NT =


. The understanding is that higher 

quality data will use shorter time intervals to draw the maximum magnitudes from than 

lower quality data (Kijko and Dessokey, 1987). 
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The technique is useful for catalogues with differing quality, but still does not include 

observation error. It is also particularly difficult to establish the time intervals to consider 

when you have a lot of data available but little knowledge of the actual quality of the data 

(Kijko and Dessokey, 1987).  

There is an apparent need for an approach that will be less onerous to implement and could 

possibly lead to equally accurate, if not more accurate, assumptions of the b value. 

The definition of λ  makes it simple to estimate. Areas of concern arise when we consider 

the choice of the level of completeness and the assumption that earthquake recurrence 

follows a Poisson distribution, however, these assumptions were not investigated further in 

this study. The effect of observation errors on the activity rate are discussed in much detail in 

previous publications and it was found that errors lead to overestimation of the activity rate 

(Tinti and Mulargia, 1985, McGuire, 2001).  

2.3 Earthquakes and the Insurance Industry 

2.3.1 Background 

Insurers are able to accept risks that individuals or companies cannot retain because they 

exploit the concept of pooling risks. The law of large numbers dictates that the average of a 

large number of homogeneous, independent risks will tend towards the expected value 

(Engelhardt and Bain, 1992). This implies that long-term average results will be fairly stable, 

meaning that insurers will have a better idea of their expected average risk than individuals 

or companies. 

Additionally, the central limit theorem also exploits the concept of pooling homogeneous, 

independent risks, since the theorem states that the arithmetic mean of these risks will be 

approximately normally distributed (Engelhardt and Bain, 1992). This means that insurers 

can also formulate an idea of the variance of the risk if they pool a sufficiently large number 

of similar, independent risks together. This implies that insurance companies can reduce 

their uncertainty about specific risks to an extent that is not possible for individual entities. 

Catastrophes pose a threat to the assumptions underlying the principle of risk pooling. 

Catastrophes remove the independence assumption from the equation. Insurers then have to 
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employ risk management tools that are at their disposal to remove risks that arise from 

catastrophes such as overexposure and concentration risk. They can do so by several 

methods, including reinsurance or alternative risk transfer products such as catastrophe 

bonds. Additionally, insurers can avoid these risks by ensuring that their portfolios are 

diverse enough to withstand catastrophic shocks by means of spreading of risk in terms of 

geographical location or by means of portfolio swaps with other insurers. 

Traditionally, reinsurers supply indemnity contracts against unforeseen or extraordinary 

losses to insurers. In terms of earthquakes, reinsurers usually write catastrophe excess of loss 

reinsurance. This is a non-proportional type of reinsurance that protects the reinsured against 

potential aggregation or accumulation of losses that might arise as a result of natural perils. 

For an excess of loss reinsurance product the insured covers all losses up to, and including, a 

fixed monetary amount and the reinsurer pays amounts in excess of this figure up to a further 

identified amount or limit of the layer. A reinsured may purchase several “layers” of excess 

of loss reinsurance from different reinsurers (Paine, 2004). 

For a risk to be insurable several criteria need to be satisfied: 

• the policyholder must have an interest in the risk being insured, 

• a risk must be of a financial and reasonably quantifiable nature, and 

• the amount payable in the event of a claim must bear some relationship to the 

financial loss  

(Acted, 2013). 

The main issue when considering earthquake risk, in terms of property insurance, is setting 

the premiums for a particular risk, since we cannot rely solely on past loss data as with other 

risks because it is insufficient. 

Insurers consider many issues when setting premiums for a particular risk - this process is 

also called ratemaking. While a good understanding of the possible losses that can be 

attributed to a risk event, insurers will also have to consider other issues such as: 

• Are the premiums sufficient to cover the expenses of administering the policy and 

running the business?  

• Will the premiums deliver an acceptable level of profit with an acceptable level of 

confidence? Conversely, does the product avoid an unacceptable level of loss?  
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• Are regulatory standards being met by the particular product?  

(Acted, 2013; Grossi et al., 2005). 

Traditionally insurers use actuarial modelling to determine the quantifiable nature of a 

particular risk. For example, for motor vehicle policies insurers can use past accident and 

claim data to determine the appropriate rates to charge for different types of policyholders. 

This means that young drivers of sporty vehicles will pay higher motor vehicle insurance 

premiums than a middle aged policyholder with young children and stable employment.  

Traditional actuarial approaches, where statistical inference of loss data is heavily relied 

upon, to managing risk is useful for pricing different types of risk, but fail when  applied to 

low probability, high severity events like earthquakes (Grossi and Zoback, 2009). For these 

situations, catastrophe modelling is a much more effective solution. The claims data for 

catastrophe insurance is a lot more limited than other areas of insurance and actuarial 

modelling, whereby past loss data is used to infer probable future losses, is no longer an 

effective tool. This is why catastrophe models are used widely by modern insurers in the 

ratemaking and risk management processes that consider the effects of catastrophes (Grossi 

et al., 2005).  

2.3.2 Catastrophe models 

A catastrophe model aims to maximise the use of available information on a particular risk. 

It also allows insurers and other stakeholders to estimate the potential impact from events 

that might occur in the future. It does this by combining the hazard and risk of an event to 

get some idea of the vulnerability of the portfolio under investigation. The hazard will be the 

loss-causing event and the risk will be the possible losses incurred by the hazard, if and 

when it occurs. In turn, this vulnerability is used to evaluate potential losses for a portfolio of 

risks (Grossi et al., 2005). Equation Section (Next) 

The hazard is the loss-causing event and can be defined as the size and location of a 

catastrophic event as well as other defining characteristics. In the case of an earthquake the 

magnitude would be a measure of the size of an event and would define the earthquake 

hazard. The risk considers the particular portfolio that is exposed to the risk of loss when an 

event occurs. In the case of an earthquake, when considering property insurance, the location 

and building type as well as its age will characterise the risk for a particular policy. The 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

27 

entire portfolio will have to be broken down in this manner to establish the losses possible 

(Grossi et al., 2005). 

In order to determine the effects that an earthquake can have on a particular area, we need to 

determine the adverse consequences of a seismic event. Generally, it is also useful to 

estimate the probabilities associated with these consequences. Catastrophe models that fulfil 

these criteria, built exclusively for the insurance industry, first emerged in the 1980s. For 

earthquake hazard, the models have been mainly focused on risks in the United States 

(Grossi and Zoback, 2009). Natural hazards are problematic for insurers and reinsurers since 

they involve potentially high losses that are extremely uncertain (Grossi et al., 2005).  

When modelling catastrophes, there are three elements to consider: the most likely locations 

of the future events, their frequency of occurrence and their severity (Grossi et al., 2005). By 

taking these elements into account, insurers can forecast future losses and attach a 

probability of occurrence to the losses. By multiplying the potential loss of an event by the 

probability of occurrence of said event, reinsurers can price products accurately and can also 

limit their exposure in areas where substantial, regular losses are forecast (Paine, 2004). 

While the potential losses can be estimated for natural disasters of a given size, the 

probability of occurrence is of importance since it is usually more difficult to calculate. 

For a seismic event the location is important since the soil conditions will determine the rate 

at which ground motion attenuates, which will determine the extent of the area that needs to 

be modelled (Grossi et al., 2005). The frequency is easily approximated by a Poisson 

Process with the activity rate as parameter (Kijko, 2011). Finally, the severity is 

characterised by the magnitude, focal depth and various fault-rupture characteristics such as 

peak ground acceleration (Grossi et al., 2005). For this part of the modelling process the 

expertise of seismologists and other seismic experts is heavily relied upon. 

Similarly, the risk can be determined by the possible damage that earthquakes can inflict on 

buildings. Construction type is the main driving factor when determining building damage. 

The location of the building in relation to the epicentre of the earthquake will also assist to 

determine the likely level of damage (Liechti et al., 2000; Grossi et al., 2005). 

In terms of errors, it is extremely difficult to differentiate between aleatory and epistemic 

uncertainty within a catastrophe model (Hanks and Cornell, 1994). This is because the types 

of uncertainty vary drastically between models. Aleatory uncertainty in one model can easily 
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be classified as epistemic uncertainty in another, or even a later version of the original model 

and vice versa. 

Aleatory uncertainty is taken into account in the probability distributions underlying the 

model. Where it is felt the simple distributions do not adequately reflect the uncertainty an 

additional error term can be incorporated. Epistemic uncertainty is constantly reduced as 

more information becomes available over time. In the meantime, we account for the effects 

of epistemic uncertainty by assuming that our estimates of the parameters reflect the true 

values underlying the model (Werner and Sornette, 2008) and by making an assumption of 

the variance about this estimate and incorporating this into our model (Davies and Kijko, 

2003). 

By improving the accuracy or information generated by a catastrophe model, or at the very 

least the accuracy of the elements that make up the model, insurers will be able to make 

better risk management decisions, which will ultimately lead to better preparedness for 

catastrophic events. It is also wise to be cautious of an overreliance on catastrophe models 

alone. They should be viewed as a tool that can be employed in the risk management process 

rather than a definitive picture of the risk.  

2.3.3 Probabilistic Seismic Risk Analysis 

In order to assess the impact of changes in the Gutenberg-Richter relation’s parameters 

(1.1.1) we need to use a seismic risk model to assess the possible losses for different 

scenarios. To this end, probabilistic seismic risk assessments (PSRAs) are conducted for 

different parameter values. Equation Chapter 2 Section 3  

Deterministic studies are used frequently in the insurance industry and are also known as 

probable maximum loss calculations. The deterministic approach only considers the worst 

case scenario earthquake. The probabilistic approach used here and outlined by Davies and 

Kijko (2003) not only includes the most severe seismic event, but looks at the range of 

events that are likely to occur over a particular time period. For insurance purposes, a time 

interval of one year is sufficient since most cover is reviewed annually. 

It must be noted that the deterministic and probabilistic approaches should be considered 

together since this considers the problem of seismic risk holistically. Following a 

deterministic or probabilistic approach is not mutually exclusive. In some cases more weight 
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is just given to an approach that suits the purposes of the application of the study better 

(McGuire, 2001).  Insurance decisions are highly quantitative and require thorough analysis 

of all the possible scenarios; this means that a probabilistic approach will be favoured in this 

kind of environment (McGuire, 2001).  

It is, however, difficult to classify models in this area of investigation as purely deterministic 

since they will most likely contain some probabilistic elements (Davies and Kijko, 2003). 

Probabilistic models are used extensively to estimate possible losses in seismic risk analysis 

(Cornell, 1968; Shah and Dong, 1991; Schmid and Schaad, 1995).  

One of the main components of seismic risk analysis, attenuation functions, is 

complemented by earthquake occurrence models. Of the earthquake occurrence models in 

use, most are based on the Gutenberg-Richer relation (Liechti et al., 2000).  What follows is 

a summary of the probabilistic seismic risk analysis procedure described by Davies and 

Kijko (2003). 

In order to assess the seismic risk for a particular area, we first need to conduct a 

probabilistic seismic hazard assessment (PSHA). According to Davies and Kijko (2003) 

seismic hazard is: 

 “…the probability of occurrence, within a specified period of time, of a seismic event 

 that could damage buildings or objects.” 

The results of the PSHA are used to estimate seismic risk by translating probabilistic 

estimates of ground motion into damage via ground-motion-damage relationships. 

Earthquakes cause the ground to vibrate, meaning that any motion will not be constant. In 

order to assess the movement of the ground we examine the peak ground acceleration 

(PGA), a’, which is the maximum value of the acceleration recorded at a particular site 

during an event. The PGA is characterised by the following attenuation function: 

 ( ) ( )1 2 3 4ln ' lna c c m c R c R ε= + + + +   (2.3.1) 

where 1 2 3 4, , ,c c c c  are empirical constants, m  is the Richter magnitude of the earthquake, R  

is the distance from the epicentre and ε  is a random error, assumed to follow a Gaussian 

distribution with a mean of zero and a standard deviation of 'aσ  (Boore and Joyner, 1982; 

Ambraseys, 1995). 
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To connect hazard and risk, some kind of connection between seismic parameters and 

damages and losses is required. The PSRA under discussion suggests the use of the work of 

Whitman et al (1973). The damage probability matrix (DPM) divides the extent of damage 

into different states (Table 2.3) and by a range of damage factors or damage expressed as a 

percentage of the total replacement value of the structure.  

A typical DPM for a particular building class is represented in Table 2.4. DPM’s for 

different building types are given in Appendix B. The fraction of buildings in a particular 

damage state is given in the DPM matrix, for each modified Mercalli intensity, or MM 

intensity. The damage state describes the extent of damage in both words and in terms of the 

actual damage as a percentage of the total replacement value of the structure (Davies and 

Kijko. 2003). 

Table 2.3: Description of damage factors  

Damage 

Factor 

Damage 

Factor 

Name 

Description 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

1 None No damage 0 0 

2 Slight 
Limited localised minor damage not 
requiring repair 

0-1 0.5 

3 Light 
Significant localised damage of some 
components generally not requiring 
repair 

1-10 5 

4 Moderate 
Significant localised damage of many 
components warranting repair 

10-30 20 

5 Heavy 
Extensive damage requiring major 
repairs 

30-60 45 

6 Major 
Widespread damage that may result in 
the facility being razed 

60-100 80 

7 Destroyed 
Total destruction of the majority of 
the facility 

100 100 

(Whitman et al., 1973) 
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Table 2.4: Example of a DPM for a particular building type 

Damage 

Factor 

Damage 

Factor 

Range 

(%) 

Central 

Damage 

Factor 

(%) 

Probability of damage (%) by MM intensity and 

damage state 

 

VI VII VIII IX X 

1 0 0.0 95.0 49.0 30.0 14.0 3.0 

2 0-1 0.5 3.0 38.0 40.0 30.0 10.0 

3 1-10 5.0 1.5 8.0 16.0 24.0 30.0 

4 10-30 20.0 0.4 2.0 8.0 16.0 26.0 

5 30-60 45.0 0.1 1.5 3.0 10.0 18.0 

6 60-100 80.0 0.0 1.0 2.0 4.0 10.0 

7 100 100.0 0.0 0.5 1.0 2.0 3.0 

(Panel on Earthquake Loss Estimation Methodology, 1989: 82) 

As mentioned, each DPM uses the MM intensity as a measure of the strength of a seismic 

event at a given site in terms of the resultant structural damage to buildings. The MM 

intensity scale is discussed in Table 2.2 and outlined fully in Appendix A. 

As stated by Freeman (1932) and Davies and Kijko (2003), losses attributable to a particular 

seismic event vary, from very little to substantial damage. Additionally, substantial damage 

and the resultant losses, monetary or otherwise, are usually limited to a small proportion of 

structures. The general public perception is that damage is absolute across the board when a 

seismic event is particularly damaging, when this is, in fact, not the case (Freeman, 1932). 

This expectation is perpetuated by media coverage of buildings that suffer extensive damage 

and the negligence to mention buildings that are left with little or no damage (Freeman, 

1932). DPM’s ensure that damage is considered across an entire area for several building 

types.  

Due to the nature of the South African seismic landscape, which has not suffered much 

damage in recent history, the data required to compile a complete vulnerability assessment is 
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somewhat limited. There are several ways in which damage curves of particular types of 

buildings can be established. Some procedures that can be considered are statistical analysis, 

such as Markov chains, subjective expert opinion or detailed analytical tools, such as a 

combination of systems theory, neural networks and fuzzy logic (Thiel and Zsutty, 1987; 

Sanchez-Silva and Garcia, 2001; Kijko and Smit, 2012a). 

A good source of damage probability matrices is ATC-13 and is widely applied in South 

African studies of seismic hazard. ATC-13 is a seismic risk study that was conducted by the 

Applied Technology Council in 1985. The Earthquake Damage Evaluation Data for 

California report was prepared as a result thereof (ATC-13, 1985). DPM’s are central to the 

ATC-13 framework as well as to those damage assessment criteria used in other areas of the 

United States, China, Russia and the former Soviet Union, New Zealand (Davies and Kijko, 

2003). This is why the ATC-13 framework is could be a good option to borrow concepts 

from in order to apply to the South African seismic landscape. While ATC-13 was used in 

the current study, alternative studies can be considered. In recent years, there has been a shift 

by many European countries from ATC-13 to the European Macroseismic Scale (EMS) 

(EMS, 1998, Spence et al., 2003, Solares and Arroyo, 2004). 

The 12 building classes as defined in ATC-13 and applicable to South Africa are described 

in Table 2.5. Four of the building classes represent the most prevalent structures in South 

Africa. These are 

• Unreinforced masonry, with load bearing wall, low rise (Class 3), 

• Reinforced concrete shear wall without moment resisting frame, high rise  (Class 

7), 

• Reinforced concrete shear wall without moment resisting frame, medium rise  

(Class 8), and 

• Reinforced concrete shear wall without moment resisting frame, high rise (Class 

9). 

Rough estimates imply that these four classes represent over 80% of all South African urban 

buildings (Davies and Kijko, 2003). Figures 2.2 to 2.5 represent examples of these buildings.  
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Table 2.5: Classification of building classes 

Description of Class of Building Ref. No. 

Wood Frame, Low rise 1 

Light Metal, Low Rise 2 

Unreinforced Masonry, Bearing Wall, Low Rise 3 

Unreinforced Masonry, Load Bearing, Frame, Low Rise 4 

Unreinforced Masonry, Load Bearing, Frame, Medium Rise 5 

Reinforced Concrete Shear Wall with Moment-Resisting Frame, Medium 

Rise 
6 

Reinforced Concrete Shear Wall with Moment-Resisting Frame, High Rise 7 

Reinforced Concrete Shear Wall without Moment-Resisting Frame, Medium 

Rise 
8 

Reinforced Concrete Shear Wall without Moment-Resisting Frame, High 

Rise 
9 

Braced Steel Frame, Low Rise 10 

Precast Concrete, Low Rise 11 

Long Span, Low Rise 12 

(ATC-13, 1985) 

 

Figure 2.2: Building class 3, unreinforced masonry, with load bearing wall, low rise (EMS, 1998) 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

34 

 

Figure 2.3: Building class 7, reinforced concrete shear wall, with moment resisting frame, high rise 
(panoramio.com, 2008) 

 

Figure 2.4: Building class 8, reinforced concrete shear wall, without moment resisting frame, medium 
rise (EMS, 1998) 

 
Figure 2.5: Building class 9, reinforced concrete shear wall, without moment resisting frame, high rise 
(EMS, 1998) 
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For the purposes of the PSRA we define seismic hazard, ( )';H a T , as “the probability that a 

certain level of ground shaking characterised by PGA, will be exceeded at least once within 

the specified time interval, T ” (Davies and Kijko 2003) and is given by 

 ( ) ( )''; 1 ';MAX
AH a T F a T= −   (2.3.2) 

where ( )' ';MAX
AF a T  is the cumulative distribution function of the PGA in the specified time 

interval. For insurance purposes we use durations of 1 year. This is because most structural 

insurance policies are sold, or re-rated, on an annual basis. We can then easily define 

( ) ( )' '; '; .MAX
A

df a T H a T
da

= −      

There is no direct link between PGA and seismic risk for insurance purposes, so the 

assessment model links PGA with damage via MM intensity as follows: 

 ( ) ( ) ( ) ( )
max max max

min min

'; | | ' '; d 'd d
d i a

MAX
D D I A

d i a

p d T f d i f i a f a T a i d= ∫ ∫ ∫     (2.3.3) 

with ( )| 'If i a  being the conditional probability distribution function for the MM intensity, 

given by I  given the PGA, 'a  and ( )|Df d i  being the conditional probability distribution 

function for the damage, D , for a given MM intensity, i . The damage d   is substituted in 

the integral by the variable d   in order to use the variable d   as a bound for the integral. 

Additionally mini and  maxi  are the minimum and maximum levels of intensity respectively; 

min'a    and  max'a   are the minimum and maximum levels of PGA respectively and maxd   is 

the maximum level of possible damage. 

The bounds for the integrals are determined. The minimum PGA should be the PGA above 

which damage to infrastructure is likely to result, also termed the PGA of engineering 

interest. This is usually 0.05g , where g   is the acceleration due to gravity. The maximum 

PGA is the maximum possible at the site being investigated. The intensity is determined as 

the scales for the MM intensity which range from IV to XII, since, for scales less than IV, no 

damage results.  

In the vulnerability curves that the PSRA produces, damage values for the MM intensity 

values in the range IV to VI are obtained by linear extrapolation since the derived central 
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damage factors are not available for intensity levels less than VI. As stated previously, any 

intensity level less than IV implies zero damage. An example of a vulnerability curve is 

shown in Figure 2.6. The maximum possible damage is 100% of the total replacement value 

of the building. 

 

Figure 2.6: Vulnerability curve for a specific building class 

 

In terms of an insurance application, we are interested in the expected damage over a 

particular period of time: 

 

( ) ( ) ( ) ( )

[ ] ( ) ( )

max max max

min min min

max max

min min

'

'
'

'

'
'

| | ' '; d 'd d

| | ' '; d 'd

d i a
MAX

D I A
d i a

i a
MAX

I A
i a

E D t d f d i f i a f a T a i d

E D i f i a f a T a i

=  

=

∫ ∫ ∫

∫ ∫
  (2.3.4) 

where  

 [ ] ( )
max

min

| | d
d

D
d

E D i d f d i d= ∫  . (2.3.5) 

4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

BUILDING CLASS #7: Reinforced Concrete Shear Wall 
with Moment Resisting Frame, High Rise

Intensity MMI

C
en

tra
l D

am
ag

e 
F

ac
to

r [
%

]

 

 
 Central Damage Factor
 Central Damage Factor +/- SD

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

37 

When the mean expected damage for a given intensity is plotted against intensity we obtain a 

vulnerability curve. The conditional probability distribution functions are given in the form 

of a DPM. In ATC-13 there are seven damage states and seven MM intensity levels and by 

considering the central damage factors (CDF) we can replace the integral with a summation: 

 [ ]
7

1
| j ij

j
E D i CDF DPM

=

=∑  (2.3.6)  

over the 7 possible central damage factors denoted by subscript j and the level of intensity, i, 

implying that the entries in the column of the DPM corresponding to that intensity need to be 

taken into account in the calculation. As an example, with reference to the DPM given Table 

2.4 we can calculate the expected damage for an event of MM intensity VI as follows: 

 

[ ]| 0 0.95 0.005 0.03 0.05 0.015
0.2 0.004 0.45 0.001 0.8 0 1 0
0.00215
0.215%

E D i VI= = × + × + ×

+ × + × + × + ×
=
=

  (2.3.7) 

So this implies that an earthquake of MM intensity level VI will result in an expected level 

of damage of 0.215% of the total value of the building. Next, we need to define the 

remaining conditional probability distribution functions. For the intensity given PGA, we 

assume that intensity follows a Gaussian distribution (Davies and Kijko, 2003): 

 ( ) [ ]( )2

2

| '1| ' exp
22I

II

i E I a
f i a

σσ π

 − = − 
  

  (2.3.8) 

where [ ]| ' 10.5 1.48ln 'E I a a= +  (Trifunac and Brady, 1975) and 0.75Iσ =  (McGuire, 2001; 

Cao et al., 1999). 

Finally, we have to specify the probability distribution function of the seismic hazard. 

Engineering seismologists usually assume that the occurrence of events with a PGA larger 

than the minimum PGA of engineering interest follows a Poisson distribution. This 

assumption is based on the common assumption made in engineering seismology  

(Davies and Kijko, 2003). The cumulative distribution of the largest PGA recorded at the site 

and is then characterised by a truncated exponential distribution and is given by 
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 ( )
( ){ } ( )
( )

min

'
' min max

max

0 ' '

exp 1 ' exp
'; ' ' '

1 exp
1 ' '

AMAX
A

for a a

F a
F a T for a a a

for a a

ν ν

ν

<


− Τ − − − Τ   = ≤ ≤ − − Τ
 >

  (2.3.9) 

where ( )' 'AF a  is the cumulative distribution of the PGA and follows the truncated Pareto 

distribution (Davies and Kijko, 2003). The truncated Pareto distribution is then given by 

 ( )

min

min
' min max

min max

max

0 ' '

' '' ' ' '
' '

1 ' '

A

for a a
a aF a for a a a
a a

for a a

γ γ

γ γ

− −

− −

<


−= ≤ ≤ −
 >

 . (2.3.10) 

It then follows, by differentiating ( )' ';MAX
AF a T   with respect to 'a  that 

 ( ) ( ) ( )
( ){ }

( ){ } ( )
'

' ' '
'

exp 1 '
'; ' ';

exp 1 ' exp
AMAX MAX

A A A
A

F a
f a T T f a F a T

F a

ν
ν

ν ν

− Τ −  =
− Τ − − − Τ  

  (2.3.11) 

where ν  and γ  are parameters that are estimated according to the maximum likelihood 

procedure in the assessment where ( )' 'Af a denotes the probability density function of the 

PGA at the site (Davies and Kijko, 2003).  

We derive Equation (2.3.11) by first defining a cumulative distribution function for the 

maximum possible earthquake magnitude within a specific time period was developed by 

Kijko and Graham (1999): 

 ( )
( ){ } [ ]

[ ]
0 0 max 0max

0 max
0

exp 1 | , exp
| , , t

1 exp
M

M

t F m m m t
F m m m

t
λ λ

λ

− − − −  =
− −

  (2.3.12) 

where ( ) ( )0 0 0 min max1 | ,m F m m mλ λ λ= = −    is the mean activity rate of earthquake 

occurrence within the specified area with magnitude 0m   and above. In the case under 

discussion, 0 minm m= . 

We can then define the probability that the PGA meets or exceeds a certain level as 
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 [ ]
( ) ( )

( ) ( )

1
max

2

max min

exp exp
'

exp exp

x c
m y

c
P PGA a

m m

β
β

β β

− − 
− −  

 ≥ =
− − −

  (2.3.13)  

where ( )ln 'x a=   and ( ).y   is a function of the form 

 ( ) ( )
max

min

3 4

2

ln
exp

r

R
r

c r c r
f r dr

c
β

+ 
 
 

∫   (2.3.14) 

where, minr   and maxr   are the minimum and maximum distances for the epicentre of the 

earthquake under consideration and for each site, the value of ( ).y   is a constant (Kijko and 

Graham, 1999). 

From the probability of exceedance of the PGA as characterised above, it follows that 

( )ln 'X A=   is distributed in the same manner as earthquake magnitudes: 

 ( ) ( ) ( )
( ) ( )

min
min max

min max

exp exp
| ,

exp expX

x x
F x x x

x x
γ γ
γ γ
− − −

=
− − −

  (2.3.15) 

where 
2c
βγ =   , ( )min minln 'x a=  , ( )max maxln 'x a= , min'a    is the lowest ground acceleration 

of engineering interest and max'a   is the highest possible ground acceleration for the area 

under consideration (Kijko and Graham, 1999). This also leads to the conclusion that the 

distribution of the log of peak ground acceleration, max
XF , is analogous to the distribution of 

the maximum magnitude max
MF  . This means that 

 ( )
( ){ } ( )

( )
min maxmax

min max

exp 1 | , exp
| , ,

1 exp
X

X

t F x x x t
F x x x t

t

ν ν

ν

− − − −  =
− −

  (2.3.16) 

where ν   is the mean activity rate of the selected ground motion parameter experienced at 

the site and needs to be estimated (Kijko and Graham, 1999). It then follows that 

 ( ) ( ) ( )max max
min max min max min max| , , | , , | ,X X xf x x x t tF x x x t f x x xν=   (2.3.17) 

where 
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 ( ) ( )
( ) ( )min max

min max

exp
| ,

exp expX

x
f x x x

x x
γ γ

γ γ
−

=
− − −

  (2.3.18) 

where γ   is an unknown parameter that needs to be estimated (Kijko and Graham, 1999). 

Since ( )ln 'X A=  it follows that 'A   follows the double truncated Pareto distribution with 

parameter γ : 

 ( ) min
' min max min max

min max

' '' | ' , ' for ' ' '
' 'A

a aF a a a a a a
a a

γ γ

γ γ

− −

− −

−
= ≤ ≤

−
 . (2.3.19) 

Now we can find the distribution of the peak ground acceleration over a period of time by 

the relationship between X  and 'A  given by 

 ( ) ( ) ( ) ( )' ' ' ln 'XP A a P e a P X a P X x< = < = < = <   (2.3.20) 

which implies that: 

 ( ) ( )max max
' min max min max' | ' , ' , | , ,A XF a a a t F x x x t=   (2.3.21) 

or: 

 ( )
( ){ } ( )
( )

min

'
' min max

max

0 ' '

exp 1 ' exp
'; ' ' '

1 exp
1 ' '

AMAX
A

for a a

F a
F a T for a a a

for a a

ν ν

ν

<


− Τ − − − Τ   = ≤ ≤ − − Τ
 >

 .(2.3.22) 

It then follows, by differentiating ( )' ';MAX
AF a T   with respect to 'a  that equation (2.3.11) 

holds (Davies and Kijko, 2003). 

In order to summarise the results of the PSRA effectively, some curves are examined. The 

basic seismic hazard curve combines the estimated distribution of the PGA and the 

relationship between the PGA and MM intensities. By averaging the distribution of the PGA 

over the distance and magnitude we obtain the hazard curve that, in turn, can be used to 

obtain the damage curve. Seismic risk curves can be created detailing the annual 

probabilities of exceedance of given values of damage. This is done by combining the 

seismic hazard curve with the vulnerability curves (Davies and Kijko, 2003).  
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The tool used most by insurers in catastrophe modelling is the exceedance probability curve. 

This is a graphical representation of the probability that a certain level of loss will be 

surpassed in a given time period, usually one year. The curve helps insurers when deciding 

in which buildings to insure, in terms of type and location, what kind of coverage to offer, 

which premiums to charge and what percentage of risk to transfer (Grossi et al., 2005). 

The concept of a return period is also closely linked to annual exceedance probabilities. The 

return period is the inverse of an annual probability of exceedance. For example, a 1 in 250 

year return period is equivalent to a 0.4% probability of exceedance (Grossi et al., 2005). It 

is important to note that return periods are just probabilities stated in a different way. The 1 

year in 250 could very well be the current year or the next; therefore the measure should be 

treated with caution. 

Several similar PSRA’s can be compared, by varying only a single variable at a time, it is 

possible to draw inferences about the way in which certain parameters affect the damage 

estimates for certain areas.  

2.3.4 Linking risk assessments and insurance 

One of the main goals of an insurance company is to increase expected profits while 

maintaining an acceptable level of risk. Most insurers take a threefold approach when 

attempting to meet this goal. Insurers focus on ratemaking, portfolio management and risk 

financing. Catastrophe modelling is one of the tools the insurer uses to meet its goals but is 

used in conjunction with tools such as capital allocation and enterprise risk management 

(Grossi et al., 2005). 

The ratemaking process aims to ensure that expected annual losses as well as expenses are 

covered while still making an acceptable level of profit. Premiums are a function of supply 

and demand, and these forces should also be taken into account when setting rates. When 

taking catastrophes into account, insurers have the option of increasing premiums in order to 

cover the additional risk, or to decrease their exposure by increasing excesses payable or by 

ceding risks above a certain threshold to a reinsurer. Additionally regulation concerning 

ratemaking must be taken into account (Acted, 2013; Grossi et al., 2005). 
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Regulation in terms of catastrophes can be a lot more onerous in areas where catastrophes 

have a tendency to occur on a regular basis. In areas of low seismicity it is very likely that 

regulation may not sufficiently allow for the risk under consideration (Grossi et al., 2005). 

Portfolio management is the process whereby insurers actively manage and monitor the risk 

in the existing portfolio of business and aim to apply measures to mitigate or transfer 

undesirable risks. For catastrophes the main issue can arise when there is a geographical 

concentration of risk in one specific disaster-prone area. This is also sometimes referred to as 

accumulation of risk (Acted, 2013). Insurers can mitigate this risk by spreading their policies 

over a wider geographical area or by arranging a swap with an insurer whose risks are a 

good diversification of the company’s current risks. Insurers must also consider risk 

financing. If their exposure to risk is too high they can cede some risk to a reinsurer or make 

use of alternative risk transfer (ART) tools such as discounted covers, integrated risk covers, 

securitisation, insurance derivatives or swaps (Acted, 2013). Catastrophe bonds are an ART 

tool that is increasing in relevance and popularity and particularly relevant to the topic under 

investigation. 

Finally there are other risks that the company will have to take into account but decisions 

made regarding these risks are not directly impacted by the catastrophe models, although 

they could be a helpful auxiliary source of information. The other significant risk that is 

exacerbated by catastrophes is liquidity risk, which is the risk that a company does not have 

enough liquid assets to meet its short term obligations or can only secure these assets at an 

exorbitant cost. Other risks that should be considered are: 

• Credit risk: the risk that third parties default on their debt. 

• Insurance risk: the risk that claims are higher than expected. 

• Exposure risk: the risk that damage is underestimated. 

• Expense risk: the risk that expenses are not adequately allowed for. 

• Reinsurance risk: the risk that reinsurance is insufficient, inadequate, incorrectly 

priced or not available. 

In summary, an insurer will have to work closely with experts in other fields to understand 

the inner workings of a catastrophe model. The results of the model however, can be used for 

a range of applications within the insurance company. It is therefore important to examine 

the effects of changes in the underlying parameters of the model on the results that are 

obtained. Equation Chapter (Next) Section 1 
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3 Methodology Part 1: Estimators  

3.1 Background: Methods of estimation 

There are several ways in which observation errors can be taken into account (Shi and Bolt, 

1982; Tinti and Mulargia, 1985; Kijko, 1988; Rhoades, 1996; Dowrick and Rhoades 2000; 

and Marzocchi and Sandri, 2003, Werner and Sornette, 2008), two of which will be 

discussed in this section. The first method will be examined in detail for estimating the 

parameters of the Gutenberg-Richter relation, whereas the second will be discussed 

generally.  The first method, which is a method well-described by Marzocchi and Sandri 

(2003), involves the classical assumption that the real observation Y  is a sum of two random 

variables, namely, the actual observation Y and some errorε .  This paper (Marzocchi and 

Sandri, 2003) specifically discusses observation errors for the Gutenberg-Richter relation for 

earthquake magnitude predictions and its effect on the b value of this relation.  

Alternative estimates are then derived for the parameters of the model by deriving a 

distribution for the real observations and obtaining a maximum likelihood estimate from the 

distribution. The assumption that errors follow a Gaussian distribution is investigated (Tinti 

and Mulargia, 1985) and a second assumption, that the errors follow a Laplace distribution 

(Werner and Sornette, 2008) is also investigated. The second method which is an application 

of Bayes’ Theorem for the multivariate case is examined further for both distribution types 

considered in the first method, Gaussian (Tinti and Mulargia, 1985) and Laplace (Werner 

and Sornette, 2008), and its possibilities are discussed. 

The estimators that are deemed fit for application are then tested against two other estimates 

that do not incorporate the errors in the observed magnitudes, such as the Aki-Utsu estimator 

(Aki, 1965; Utsu 1965) and Page’s relation (Page, 1968), in order to examine the possible 

implications of using different methods. A probabilistic approach is used to determine the 

effect of the different estimators on an area of low seismicity. Sensitivity tests are then 

conducted to establish the extent to which the different estimators compare under different 

scenarios. 

The study only refers to the effect of changes in the activity rate as a means of testing the 

sensitivity of the models. The b value estimation is slightly more complex and previous 

investigation has not been as extensive. The a value is dependent on the b value and on λ  
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and the assumptions for the latter parameter are not considered explicitly in this study. This 

research therefore focuses on the estimation of the b value. Equation Chapter 3 Section 1 

3.2 Traditional method  

In order to take the measurement errors into account, consider the apparent magnitude, M , 

as the sum of two independent random variables (Tinti and Mulargia, 1985), this can also be 

viewed as a perturbation of the real magnitudes by independent error (Werner and Sornette, 

2008), i.e. Equation Section (Next) 

 RM M ε= +  , (3.2.1) 

where RM is the real magnitude and ε is the measurement error. As stated previously, we do 

not differentiate between the two distinct types of error at this level of investigation. We can 

isolate the effect of data uncertainties by assuming that noisy estimates use the parameters as 

the “true” rate (Werner and Sornette, 2008). This assumption means that we can ignore 

parameter uncertainty, and focus on data uncertainty when conducting an investigation. 

3.2.1 Assumption 1: Errors follow a Gaussian distribution 

We have to make assumptions about the distributions of the real magnitudes and the errors 

or noise that are added to them. For the first estimator, we will assume that the real 

magnitudes follow the double truncated exponential distribution as the underlying properties 

of the Gutenberg-Richter relation suggest and that the errors follow the Gaussian or normal 

distribution with a zero mean and some standard deviation.  

Since we will most likely have some knowledge of the standard deviation of an earthquake 

catalogue, we will probably not need to estimate the standard deviation of the errors. As 

stated previously, errors in catalogues are acknowledged and are usually stated as an 

approximation in the catalogue at the outset.  
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The real magnitudes are then assumed to have the following probability distribution 

function, (Aki, 1965; Page, 1968): 

 ( ) ( )maxmin
min max

1
R

R

m
M R RMM

f m e M m M
e e

β
ββ

β −
−−

= ≤ ≤
−

 (3.2.2)  

and the errors are assumed to have the following probability distribution function: 

 ( )
2

221
2

f e
ε
σε ε

σ π

−

Ε = ∈  (3.2.3) 

(Abramowitz and Stegun, 1972).  

We can then find the probability distribution function for M  by finding the convolution 

*RM ε  of RM  and ε . Since the random variables are independent their convolution is 

given by the density of their sum, namely 

 ( ) ( )( ) ( ) ( )*
R RM M R M R Rf m f f m f m m f m dm

∞

Ε Ε
−∞

= = −∫  . (3.2.4) 

It then follows that: 

( ) ( )
( )

( ) ( )

( ) ( ) ( )

max

maxmin
min

max

maxmin
min

maxmin

2

2

2 2 2
2

2 2 2
2 2

1 exp
22

1exp 2 . 2
22

1 1exp exp 2 . 2
2 22

R

M
mR

M RMM
M

M

R R R RMM
M

R R RMM

m m
f m e dm

e e

m m m m m dm
e e

m m m m m
e e

β
ββ

ββ

ββ

β
σσ π

β βσ
σσ π

β βσ
σ σσ π

−
−−

−−

−−

 − −
=  

−   

 = − + − − −  

      = − − − +    −     

∫

∫

( ) ( )( )

( )( )

max

min

maxmin

max

min

22 2
2

22
2

1exp
22

1exp .
2

M

R
M

MM

M

R R
M

dm

m m
e e

m m dm

ββ

β βσ
σσ π

βσ
σ

−−

    = − − −  −   

 − − −  

∫

∫
   (3.2.5) 
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In order to evaluate the integral we consider the error function ( )erf z   which is encountered 

when integrating the normal distribution and is defined as 

 ( ) 2

0

2 z
terf z e dt

π
−= ∫   (3.2.6) 

(Abramovitz and Stegun, 1972). 

Consider the integral:  

 

( )( )

( )

( ) ( )

max

min

max

min

max min

22
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22

2 22 2

0 0

1exp
2

exp
2

exp exp .
2 2

M

R R
M

M
R

R
M

M M
R R

R R

m m dm

m m
dm

m m m m
dm dm

βσ
σ

βσ

σ

βσ βσ

σ σ

 − − −  

  − −  = −
    

      − − − −      = − − −
            

∫

∫

∫ ∫

  (3.2.7) 

Then we let 
( )2

2
Rm m

u
βσ

σ

− −
=   and it follows that 

2
Rdmdu
σ

= , which implies that 

 

( ) ( )

( )
( ) ( )

( ) ( )

max min

2 2
max min

2 2

2 22 2

0 0

2 2

0 0

2 2
max min

exp exp
2 2

22
2

2
2 2 2

M M
R R

R R

M m M m

u u

m m m m
dm dm

e du e du

M m M m
erf erf

βσ βσ

σ σ

βσ βσ

σ σ

πσ
π

βσ βσσ π
σ

− − − −

− −

      − − − −      − − −
      
      

 
    = −         
  

 − − − −
 = −
 
 

∫ ∫

∫ ∫

σ

  
  

    

  (3.2.8) 
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and it follows that 

 

( ) ( ) ( )( )
( ) ( )

( )
( ) ( ) ( )

maxmin

2

maxmin

22 2 2 2
2

2 2
max min

2 2
2 max min2

1 2exp 2
2 22

2 2

2 22

M MM

m

MM

f m m m m
e e

M m M m
erf erf

M m M m
e erf erf

e e

ββ

β βσ

ββ

β σ πβσ βσ
σσ π

βσ βσ

σ σ

βσ βσβ
σ σ

−−

− −

−−

     = − − + −      −     
    − − − −    − 

        

  − − − −
  = −
 −   

,
      

   (3.2.9) 

which is the joint probability distribution function of the apparent magnitude.  

By applying the maximum likelihood methodology (Engelhardt and Bain, 1992), we first 

need to find the joint probability distribution function, ( ) ( )
1

i

n

M i
i

L f mβ
=

=∏ , of the apparent 

magnitudes ( )1 2, ,..., nM M M for a given set of observations ( )1 2, ,..., nm m m : 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

2

maxmin

2

1

maxmin

2 2
2 max min2

1

2 22
max min2

1

2 22

.
2 22

i

n

i
i

n m i i

MM
i

n nm
i i

nMMn I

M m M m
L e erf erf

e e

M m M m
e erf erf

e e

β βσ

ββ

β βσ

ββ

βσ β σββ
σ σ

βσ βσβ
σ σ

=

− −

−−
=

− −

−−
=

    − − − −    = −    −      
    − − − −∑     = −    −      

∏

∏

   (3.2.10) 

The assumption that the observed magnitudes are independent from one another is made, 

since earthquake catalogues list distinct seismic events. We can find a maximum likelihood 

estimator for β  by solving the following equation: 

 ( )ln 0L β
β
∂

=
∂

  (3.2.11) 
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It follows that 

 

( ) ( ) ( )

( ) ( )

maxmin 2

1

2 2
max min

1

ln ln ln 2 ln 2
2

ln
2 2

n
MM

i
i

n
i i

i

L n n n e e m

M m M m
erf erf

ββ ββ β βσ

βσ βσ

σ σ

−−

=

=

= − − − − −

       − − − −       + −               

∑

∑
  (3.2.12) 

and 

 

( ) ( )
( )

( ) ( )

maxmin

maxmin

2 22 2
max min

2 2

max min 2

1

2 2

2 2
1 max min

ln

2

.

2 2

i i

MM n

iMM
i

M m M m

n

i i i

M e M enL n m n
e e

e e

M m M merf erf

ββ

ββ

βσ βσ

σ σ

β βσ
β β

σ

βσ βσπ
σ σ

=

+ − + −
− −

=

−∂
= + − + +

∂ −

 
 −  
 

    + − + −
−    

    

∑

∑

 . (3.2.13) 

 

It is beneficial to consider ( )maxminln MMe e ββ

β
−−∂

−
∂

 in more detail since it is not a 

straightforward result.  

If we use the chain rule ( ) ( )
maxmin

log
ln MM d u due e

du dx
ββ

β
−−∂

− =
∂

  where ( )maxmin MMu e e ββ −−= −    

and ( ) 1logd u
du u

=    then 

 ( )
( )

( )

maxmin

maxmin

maxmin
ln

MM

MM
MM

e e
e e

e e

ββ

ββ
ββ

β
β

−−

−−
−−

∂
−

∂ ∂− =
∂ −

 . (3.2.14) 

Now we have to use the chain rule on both terms in the numerator to differentiate the 

numerator: 

Firstly the rule ( )min

u
Md de due

d du d
β

β β
− =   with minu Mβ= −    and ( )u ud e e

du
=   
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( )
( ) ( )

( )
( )
( )

max min

maxmin

maxmin

max min

maxmin

min

min

ln

M M

MM
MM

M M

MM

e M e
e e

e e

e M e

e e

β β

ββ
ββ

β β

ββ

β
β β

β

β

− −

−−
−−

− −

−−

∂ ∂
− + −

∂ ∂ ∂− =
∂ −

∂
− −
∂=

−

 . (3.2.15) 

Similarly for  ( )max

u
Md de due

d du d
β

β β
− =  with maxu Mβ= −  and ( )u ud e e

du
=  : 

 
( )

( )

( )

( )

max min

maxmin

maxmin

max min

maxmin

max min

max min

ln

M M

MM
MM

M M

MM

M e M e
e e

e e

M e M e
e e

β β

ββ
ββ

β β

ββ

β
β

β

− −

−−
−−

− −

−−

∂
− − −

∂ ∂− =
∂ −

−
=

−

 . (3.2.16) 

If we multiply Equation (3.2.16) by 
max min

max min

M M

M M
e
e

β β

β β

+

+   and swop terms around in the denominator 

we find:  

 
( ) ( )

( ) ( )

( )

maxmin
maxmin

maxmin

max min

max min

max min

max min
min

ln

1

MM
MM

MM

M M

M M

M e M ee e
e e

M M e
M

e

ββ
ββ

ββ

β

β

β
−−

− −

− −

∂ −
− = −

∂ −

−
= − −

−

 . (3.2.17) 

We equate the above partial derivative (3.2.13) to zero and divide by n to find an expression 

to evaluate the maximum likelihood estimate for β :  

 

( )
( )

( ) ( )

maxmin

maxmin

2 22 2
max min

2 2

ˆˆ
max min

ˆˆ

ˆ ˆ

2 2

2

2 2
1 max min

1
ˆ

2
1ˆ 0

ˆ ˆ

2 2

i i

MM

MM

M m M m

n

i i i

M e M e
m

e e

e e

n M m M merf erf

ββ

ββ

βσ βσ

σ σ

β

σ

βσ
βσ βσπ
σ σ

+ − + −
− −

=

 −
 − + +
 − 
  
  −     + =     + − + − −           
 

∑

  (3.2.18) 
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where 
1

1 n

i
i

m m
n =

= ∑  . If we let the variance of the error term tend to zero we find that 

 
( )

( )
maxmin

maxmin

ˆˆ
max min

ˆˆ

1 0ˆ

MM

MM

M e M e
m

e e

ββ

βββ

 −
 − + =
 − 

  (3.2.19) 

which is the maximum likelihood estimator for the bounded magnitude distribution.  

Furthermore, if we let the maximum possible magnitude tend to infinity, we find: 

 

( )
( )

( ) ( )

( )

( )

maxmin

maxmin

max min

max min

ˆˆ
max min

ˆˆ

ˆ
max min

min ˆ

min

min

1lim ˆ

1lim ˆ 1

1 limˆ 1

1 since 0  and appˆ

msax

msax

msax

MM

MMM

M M

M MM

M

M e M e
m

e e

M M e
m M

e

e
m M

e

m M e

ββ

ββ

β

β

β

β

β

β

→∞

− −

− −→∞

−∞

−∞→∞

−∞

 −
 − +  − 
 −
 = − + +
 − 

 ∞
= − + +   − 

= − + = maxroaches zero faster than  approaches infinityM

   (3.2.20) 

and which is the Aki-Utsu (1965) maximum likelihood estimate of β . 

3.2.2 Assumption 2: Errors follow a Laplace distribution 

We can vary the assumption about the errors that perturb the actual magnitudes. An 

alternative distribution that can be considered is the Laplace, or double exponential, 

distribution (Werner and Sornette, 2008) with a zero mean and some standard deviation. In 

order to keep some consistency between the estimators we will use the same standard 

deviation for both assumptions in our further investigations. As with the Gaussian 

distribution, this distribution is symmetrical about the mean. We will, once again, assume 

that the real magnitudes follow the double truncated exponential distribution as the 

underlying properties of the Gutenberg-Richter relation suggests.  
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The real magnitudes will then have the following probability distribution function, (Aki, 

1965): 

 ( ) ( )maxmin
min max

1
R

R

m
M R RMM

f m e M m M
e e

β
ββ

β −
−−

= ≤ ≤
−

  (3.2.21) 

and the errors will have the following probability distribution function: 

 ( ) 1
2

c

c

f e
v

ε
νε ε
−

Ε = ∈   (3.2.22) 

where cν  is both the scale and shift parameters. The relationship between the standard 

deviation and the scale and shift parameter is 2 22 cσ ν= , which implies that no further 

assumptions are required if the standard deviation has already been estimated. We can then 

find the probability distribution function for M  by finding the convolution *RM ε  of RM  

and ε .  

Since the random variables are independent their convolution is given by the density of their 

sum: 

 ( ) ( )( ) ( ) ( )*
R RM M R M R Rf m f f m f m m f m dm

∞

Ε Ε
−∞

= = −∫  . (3.2.23) 

It then follows that 

 ( ) ( )
max

maxmin
min

1

min max
1 1 for

2
R

c R

M m m
m

M RMM
cM

f m e e dm M m M
e e

ν β
ββ

β
ν

−
−

−
−−

= ≤ ≤
−∫  . (3.2.24) 

We need to investigate this problem in terms of the possible values within the absolute value, 

i.e. the case where the absolute value exceeds zero and the case where the absolute value is 

less than zero. 

Let 1 RY m=  and 2 RY m mε= + =  then we can find the marginal distribution of m by using 

the convolution formula. However, since we have an absolute value in our formula, we need 

to consider where Rm m>   and where Rm m<  since this will dictate which formula we will 

need to integrate over the interval ( )min max,M M , the area over which Rm   is defined. Figure 

3.1 shows where the probability distribution function is defined (the shaded areas which 
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continue to infinity both positive and negative) and which integral should be considered 

under which circumstances as indicated by the legend. 

 

 

Figure 3.1: Region over which the probability distribution function for m is defined 

 

According to Figure 3.1, we can see that we will define the probability distribution function 

as follows: 

Mmax 

Mmax 

Mmin 

Mmin 

Y2 

Y1 

Y1=Y2 

m>mR 

m<mR 
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( )

( )

( )
( )

( )
( )

( )
( )

( )

max

maxmin
min

maxmin
min

max

maxmin

maxmin

max

min max

1 1 for
2

1 1
2

1 1 for
2

1 1 for
2

R

c R

R

c R

R

c R

R

c R
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m

RMM
cM

m mm
m

RMM
cM

M m mM
m

RMM
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m m
m

RMM
c

e e dm M m
e e

e e dm
e e

f m

e e dm M m M
e e

e e dm
e e

ν β
ββ

ν β
ββ

ν β
ββ

ν β
ββ

ν

ν

ν

ν

−
−

−

−−

−
−

−

−−

−
−

−

−−

−
−

−

−−

< < ∞
−

+
−

=

≤ ≤
−

−∞
−

∫

∫

∫

max

min

min

M

M

m M













 < <

∫

   (3.2.25) 

Since our definition of earthquake catalogue entries determines that  min maxM m M≤ ≤  , we 

will only consider this case. Further in depth investigation of inclusion of the magnitudes 

outside these bounds could yield interesting results but were beyond the scope of the 

simplifying assumptions made here. So we consider the part of the probability distribution 

function as follows: 

 

( )
( )

( )
( )

( )

max

maxmin

maxmin
min

1 1
2

1 1 .
2

R

c R

R

c R

m mM
m

M RMM
cm

m mm
m

RMM
cM

f m e e dm
e e

e e dm
e e

ν β
ββ

ν β
ββ

β
ν

β
ν

− −

−

−−

− −

−

−−

= +
−

−

∫

∫
  (3.2.26) 

Then 

 

( )
( )

( )

( )

( )( )

( )( )

max

maxmin

max

maxmin

max

maxmin

1

1 1
2

2

1
2 1

R

c R

R
R

c

c

c

m mM
m

M RMM
cm

m mM m

R
mc

m Mm

c

f m e e dm
e e

e dm
e e

e e
e e

ν β
ββ

β
ν

ββ

βνβ
ν

ββ

β
ν

β
ν

β
βν

− −

−+
−−

−
− −

− Μ− Μ

− +−

− Μ− Μ

=
−

−
=

−

 
 = −

− +   

∫

∫   (3.2.27) 

and 
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( )
( )

( )

( )

( )( )

( )( )

maxmin
min

maxmin
min

min

maxmin

1

1 1
2

2

1 .
2 1

R

c R

R
R

c

c

c
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m

M RMM
cM

m mm m

R
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m Mm

c

f m e e dm
e e
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e e

e e
e e

ν β
ββ

β
ν

ββ

βνβ
ν

ββ

β
ν

β
ν

β
βν

− −

−−
−−

−
− −

− Μ− Μ

− −−

− Μ− Μ

=
−

−
=

−

 
 = −

− −   

∫

∫   (3.2.28) 

Therefore:

 

( ) ( ) ( )

( )( ) ( )
( )( )

( )
( )( )

( )( ) ( )
( )( )

( )
( )( )

max min

maxmin

min max

maxmin

1 1

2 2

1 1

2 2

1 1 1 1
2 1

1 1 2
2 1

c c

c c

c c

c c

M M M

m M m Mm

c cMM
c

m M M mm

c cMM
c

f m f m f m

e e e
e e

e e e
e e

βν βνβ
ν ν

ββ

βν βνβ
ν ν

ββ

β βν βν
β ν

β βν βν
β ν

+ −

− + − −−

−−

− − − +−

−−

= +

        = − − − + − 
− −         

        = + − − −
− −       

,



  
  (3.2.29)  

which is the joint probability distribution function of the apparent magnitude.  

Then by applying the maximum likelihood methodology (Engelhardt and Bain, 1992), we 

first need to find the joint probability distribution function, ( ) ( )
1

i

n

M i
i

L f mβ
=

=∏ , of the 

apparent magnitudes ( )1 2, ,..., nM M M  for a given set of observations ( )1 2, ,..., nm m m  : 

 

( ) ( )( ) ( )
( )( )

( )
( )( )

( ) ( )

( )
( )( )

( )
( )

min max

maxmin

1

maxmin

min max

1 1

2 2
1

2 2

1

1 1 2
2 1
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1 1

i c i ci
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n

i
i

i c i

c

m M M mmn

c cMM
i c
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n nMMn
c

m M m M

c c

eL e e
e e

e
e e

e e

βν βνβ
ν ν

ββ

β

ββ

βν βν
ν

ββ βν βν
β ν

β

β ν

βν βν

=

− − − +−

−−
=

−

−−

− − −

          = + − − −  
− −           

∑
= ×

− −

 
 + − −
  

∏

( )1

1

2 .
c

c

n

i

ν
+

=

     − 
    

∏

   (3.2.30) 
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We assume that the observed magnitudes are independent form one another, since 

earthquake catalogues list distinct seismic events. We can find a maximum likelihood 

estimator for β  by solving the following equation 

 ( )ln 0L β
β
∂

=
∂

  (3.2.31) 

It follows that 

 

( ) ( ) ( )

( )
( )( )

( )
( )( )

maxmin

min max

2 2

1

1 1

1

ln ln ln 2 ln ln 1

ln 1 1 2
i c i c

c c

n
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c i
i

m M m Mn

c c
i

L n n n e e n m

e e

ββ

βν βν
ν ν

β β β ν β
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  (3.2.33) 

If we equate the above partial derivative to zero and divide by n to find an expression to 

evaluate the maximum likelihood estimate for β :  
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  (3.2.34)  

where 
1

1 n

i
i

m m
n =

= ∑ . If we let the variance of the error term tend to zero, and subsequently 

the scale and shift parameter since they are directly proportional to one another, we find: 
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 (3.2.35)  

which is the maximum likelihood estimator for the bounded magnitude distribution. 

Furthermore, if we let the maximum possible magnitude tend to infinity, we find: 

 min
1 0ˆ m M
β
− + =  , (3.2.36) 

which is the Aki-Utsu (1965) maximum likelihood estimate of β , as given by equation 

(1.1.2) and the derivation is as shown in equation (3.2.20). 

We are now able to compare the results of these estimators with more traditional estimators 

in order to draw inferences about their accuracy and usefulness. Before this comparison is 

made, an alternative investigation is discussed. 

3.3 Alternative method 

A possible alternative approach is investigated in which the magnitude errors are 

incorporated into the parameter estimate, by means of an adaptation of the multivariate case 
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of Bayes’ theorem. This approach has been rejected on several grounds and is discussed in 

this section. Equation Section (Next) 

If we assume that the magnitudes ( )  1,2,...,im i n∀ =  are observations from populations that 

follow a Gaussian distribution with means iµ and the same standard deviation, mσ , across all 

populations.  

Bayes’ Theorem states that: 

 [ ] [ ] [ ]
[ ]

|
| X Y

X
Y

f X f y X x
f x Y y

f y
=

= =   (3.3.1)  

Where X  and Y  are random variables with probability distribution functions ( )Xf x  and 

( )Yf y  respectively. This can easily be extended to the multivariate case by assuming that

1( ,..., )nX X X X= =


, 1( ,..., )nY Y Y Y= =


, 1( ,..., )nx x x x= =
  and 1( ,..., )ny y y y= =

  or any 

other combination of single variable and multivariate distributions. 

In terms of our assumptions, we have the following information: 

 [ ] ( ) ( ) ( )
1

2

,..., 1 2
1 1

1,..., exp
22 .n

n n
i i

M M n iX
i i

m
f x f m m m

µ
φ

σπ σ= =

 −
= = = −  

 
∏ ∏

   (3.3.2) 

which is the joint probability distribution of the magnitudes. 

 [ ] ( ) ( )maxmin
1 1

1

| | ,..., i

n
m

Y n n MM
i

f y X x f M m M m L e
e e

β
β ββ

ββ β −
−−

=

 = = = = = = 
−∏



 (3.3.3)  

which is the conditional distribution of β , given a set of magnitudes. And finally 

 [ ] ( ) ( ) ( )
max max

min min

1
1

... ...
M M n

Y i n
iM M

f y L m dm dmβ β φ
=

= = ∏∫ ∫
  (3.3.4) 

which is a marginal likelihood where the effects of the magnitudes have been removed from 

the distribution of β . 

We can rearrange the joint probability distribution function of the magnitudes and the 

conditional distribution of the parameter β as follows: 
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= =∏ ∏∫
  (3.3.6) 

By applying Bayes’ Theorem using the above information, we can find the joint conditional 

distribution of the magnitudes, given a specific value for the parameter β , ensuring that the 

distribution is normalised to comply with the conditions of a probability distribution 

function: 
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  (3.3.7) 

and by applying the maximum likelihood methodology we can differentiate the log-

likelihood function with respect to β  and equate this to zero: 
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 (3.3.8)  

By applying the general methodology to the assumptions made regarding the distributions 

we find an expression for an estimate of β : 
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  (3.3.9) 

If we assume that the magnitudes are observations taken from Laplace-distributed 

populations with means iµ  and shift and scale parameter, cν , then we are assuming that: 

 ( ) 1
2

i i

c

m

i i
c

m e m
v

µ
νφ

− −

= ∈   (3.3.10) 

and we obtain another expression for β  by solving for ( ) 0β = as above:  

 

1 2
1 2

1 1 1
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1 1

n nn
c c

i i i
i i i c c

n nm m m ν ν
βν βν= = =

− + − − − =
− +∑ ∑ ∑

   

where 1n  is the number of observations where the observed magnitude exceeds the mean 

magnitude and 2n  is the number of observed magnitudes where the observed magnitude is 

less than the mean magnitude. 

Three problems become evident when the estimators derived using this reasoning are 

investigated. Firstly, all the terms that involve β  are dependent on the standard deviation 

inherent in the distribution of the magnitudes. The normalisation constant has the effect of 

removing the terms in the expression that will enable us to draw conclusions about the 

estimators without the effect of the variance.  

Furthermore, there is a fundamental issue with the assumption that the magnitudes are all 

taken from different populations with varying means. The underlying assumption is that each 

observation is taken from a different population with varying mean values and the same 

variance. The mean value for each population is not apparent from the data and we are 

essentially dealing with a sample size of 1 for each population. A possibility may be to look 

at intervals of magnitudes and estimate the mean as the centre of each of these intervals, 

however, the issue of the dependency on the variability still remains.  
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Lastly, when operating under the assumption that the magnitudes are taken from Laplace 

populations, the estimator excludes all those observations that exceed the mean magnitude, 

which seems nonsensical. In the light of all of the above problems, it has been decided that 

the method under investigation would be excluded from the applied tests.   
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4 Methodology Part 2: Comparing methods of estimation  

4.1 Introduction 

In order to compare the estimators derived by means of the traditional method with those 

derived by previous researchers, we need to generate a synthetic data set containing 

earthquake magnitudes and disturbed by a certain amount of noise in order to simulate the 

errors inherent in an actual earthquake catalogue.  

Since the maximum likelihood estimators that are derived in the previous section have no 

theoretical solution but can be solved numerically using iterative methods, such as the 

Newton Raphson, Secant or Regula Falsi methods (Press et al., 1992; Labuschagne et al., 

2006), a single solution of these estimators are only point estimates. This implies that we 

cannot compare these point estimates in terms of unbiasedness, uniformly minimum variance 

estimators, often abbreviated as UMVUE, or relative efficiency (Engelhardt and Bain, 1992).  

We look at a number of point estimates in order to assess the asymptotic characteristics of 

these estimators. We compare simple consistency, asymptotic bias and mean squared error 

consistency in order to establish which method of estimation should be used to estimate β  

most accurately (Engelhardt and Bain, 1992).  

Code has been compiled in Matlab to conduct the calculations described in this section and 

is included in Appendix C. Equation Chapter (Next) Section 2 

4.2 Generating a synthetic earthquake catalogue 

A synthetic earthquake catalogue can be generated by means of Monte Carlo simulation. 

Deciding on the characteristics of a specific site are the primary inputs for the simulation. 

The inputs required are: 

• minm : the smallest possible earthquake magnitude at the specific site 

• maxm : the largest possible earthquake magnitude at the specific site 

• mσ : the standard deviation of the errors for each observed magnitude 

• b : the b value as defined under the Gutenberg-Richter relation 
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• λ : the activity rate, i.e. the number of earthquakes greater than minm  that 

occur  per year 

For the specific catalogue that have been generated, values specific to South African seismic 

activity are chosen. However sensitivity testing is conducted in Sections 4.5 and 4.7 to test 

the robustness of the estimators: 

• min 3.8m =  

• max 7.0m =  

• 0.2mσ =  

• 1b =  

• 7λ = .0  

None of the earthquakes are expected to exceed magnitude 7.  The largest seismic event in 

South Africa took place in the Ceres-Tulbagh region in 1969 which exhibited a local Richter 

magnitude of 6.3 (Kijko et al., 2002). Note that the simulated catalogues include errors that 

follow either a Normal or Laplace distribution. 

Errors should be truncated at a maximum of three standard deviations about the mean value 

of the error distribution, which is usually zero. The errors are truncated since outliers beyond 

three standard deviations from a specific magnitude are highly unlikely. Since we can 

quantify the magnitude of an earthquake by means other than a magnitude measurement on a 

seismograph, for example the Modified Mercalli Intensity Scale, errors will rarely be larger 

than 1 unit of magnitude, let alone infinite.  

As an example, if we consider the damage caused by a magnitude 5 earthquake, as opposed 

to a magnitude 6 earthquake, under the same soil conditions, it is highly unlikely that a 

magnitude 5 earthquake will be mistaken for a magnitude 6 earthquake, and vice versa. 

Therefore we truncate the errors because we can quantify the effects of an earthquake which 

means we can quantify the limits of its magnitude. 

The program then creates a loop for the time interval specified: 

1. Firstly, a random number, u , is generated from a uniform distribution between 0 and 

1. 
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2. Next, provided that the errors follow a Normal distribution, a random number from 

the standard normal distribution is generated and multiplied by the standard deviation 

of the errors to convert it to a random number from the distribution of the errors. 

Alternatively, if the errors follow a Laplace distribution, another random number 

from a uniform distribution between 0 and 1 is generated, say r  , and reduced by 0.5 

to obtain a random number from a uniform distribution between -0.5 and 0.5. A 

random number from a Laplace distribution is then generated by transforming r into 

error by means of ( )( ) ( )sgn ln 1 2cerror r rν= − − . It is also ensured that this 

number lies within three standard deviations about the mean, zero. Any error beyond 

three standard deviations is highly unlikely to occur in terms of the structure of a 

normal distribution and for practical reasons as discussed above. 

 

3. The loop then proceeds to generate a magnitude for the seismic event by 

 ( )( )( )maxmin min
1 ln mm mm e u e e errorββ β

β
−− −= − − − +   (4.2.1) 

 where error is the random number generated in step 2 and 10logb eβ=  and which 

 relates to the distribution of the magnitudes, which is assumed to follow a truncated 

 exponential distribution as given in equation (1.1.6). The first term in equation 

 (4.2.1) is found by isolating the unknown variable m in equation (4.2.2) and using the 

 random uniformly distributed number between 0 and 1, u, that was generated in step 

 1, as a probability.  

4. The time at which the earthquake is expected to have occurred is then generated, 

smaller time intervals are generated within each iteration of the loop at which seismic 

events are assumed to have occurred, which are created by using the activity rate 

parameter, λ . The number of earthquakes exceeding the activity rate parameter per 

year are assumed to follow a Poisson process and the time at which the thi   

earthquake occurs, 
imt , is generated by 

 
( )

1

log 1
i im m

u
t t

λ−

−
= +  . (4.2.2) 
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 Since the waiting times of a Poisson process are exponentially distributed 

 (Engelhardt and Bain, 1992). This ensures that the waiting times are consistent for 

 the seismic catalogue. Equation (4.2.2) is derived in a similar way to equation (4.2.1) 

Figure 4.1 shows a particular simulated catalogue as the number of earthquakes against their 

respective magnitudes. The noise that has been added to the magnitudes is visible. A total of 

737 seismic events are generated for a single earthquake catalogue over 110 years in the 

catalogue depicted. Results for the additional 999 catalogues generated were fairly similar. 

 

Figure 4.1: Example of a synthetic Earthquake Catalogue perturbed by Gaussian errors 

 

4.3 Applying the formulae for the estimators 

Since the maximum likelihood estimators that include errors cannot be solved theoretically, 

numerical methods have to be employed to establish the point estimates for β . Several 

numerical methods can be employed but we will consider the Newton Raphson, Secant and 

Regula falsi methods in turn (Labuschagne et al., 2006). Equation Section (Next) 
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The Newton Raphson method calculates iterations for a root of a function using 

 
( )
( )1 , 0,1,2,...
'

k
k k

k

f x
x x k

f x+ = − =   (4.3.1) 

(Labuschagne et al., 2006) . 

Since the estimators are difficult to differentiate, due to the inclusion of the error function, 

erf, the Newton Raphson method is not the ideal method to calculate the point estimates. 

The secant method does not require differentiation of the function under investigation, but 

rather uses the assumption that a derivative can be approximated by the divided difference of 

a function: 

 ( ) ( ) ( )1

1

' n n
n

n n

f x f x
f x

x x
−

−

−
≈

−
  (4.3.2) 

(Labuschagne et al., 2006). 

The iterations for the secant method can then be calculated using 

 ( ) ( ) ( )
1

1
1

n n
n n n

n n

x xx x f x
f x f x

−
+

−

−
= −

−
  (4.3.3) 

which means that we will require two initial values instead of one as for the Newton 

Raphson method (Labuschagne et al., 2006).  

The Regula falsi, or false position method, is a refinement of the secant method since it adds 

the constraint that the function values for the original iteration values chosen must be of 

opposite sign (Labuschagne et al., 2006). It is preferable since it will always converge and 

we have a good idea within which interval the root lies. 

The false position method starts with two possible root values, 0a  and 0b , which will result 

in values of the function for which the root is required such that, ( )0f a  and ( )0f b  are of 

opposite signs. Therefore we know from the intermediate value theorem that the interval 

( )0 0,a b  contains a root of function ( )f x . We can then find a closer approximation to the 

root by applying the secant method and calculating third value, 0c , by  
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 ( )( )
( ) ( )

0 0 0
0 0

0 0

f b b a
c b

f b f a
−

= −
−

  (4.3.4)   

which is the root of the secant line through ( )( )0 0,a f a  and ( )( )0 0,b f b . The value of the 

function at 0c  is evaluated. If ( )0f c  and ( )0f a  are of the same sign then we let 1 0a c=  and 

1 0b b= , otherwise 1 0b c=  and 1 0a a= . We repeat the process above using the next iterative 

approximation of the root until the value of ( )kf c  is sufficiently close to zero. It then 

follows that kc  is a good approximation of the root (Press, et al., 1992, Labuschagne et al., 

2006). 

Problems arise with the false position method when there is more than one root within the 

initial interval [ ]0 0,a b . The equation will struggle to converge to the correct root. We can 

use the estimate found from the Aki-Utsu estimator, which does not require any iterative 

methods as an approximation of the root and choose small enough intervals around this 

estimated value where one value yields a positive function value and the other a negative 

function value.  

4.4 Assessing the asymptotic properties of the methods of 

estimation when catalogues are generated with Gaussian 

errors  

In order to compare the methods of estimation, the underlying distribution of each estimator 

had to be established. One thousand earthquake catalogues are generated using the same 

parameters, as described above. For each iteration the estimators for β  are calculated using 

the different methods of estimation.  

The various estimators are then used to calculate the sample mean and variance for each 

method. These sample estimates are then used to compare the methods in terms of the 

asymptotic properties of parameter estimates. The estimators themselves are described 

specifically in Table 4.1. In Figure 4.2, the mean of the estimates is plotted for each 

estimator over the number of catalogues generated and compared with one another as well as 

the actual value of β  .  
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Table 4.1: Estimated results 

Notation in 

Graphs  
Description 

Equation 

Number 

1β  Aki-Utsu / Classic estimator (1.1.2) 

2β  
Double bounded exponential distribution / 

Classic bounded estimator 
(1.1.8) 

3β  
Classic bounded estimator with normally 

distributed errors 
(3.2.18) 

4β  
Classic bounded estimator with Laplace 

distributed errors 
(3.2.34) 

Equation Section (Next) 

 

 

Figure 4.2: Average of estimators when catalogues are perturbed by Gaussian errors 
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Figure 4.2 demonstrates that there is very little difference between the estimators. It can also 

be seen that the estimator corrected for normal errors and the bounded classical estimator are 

closer to the actual value of β , on average. This is expected since the underlying data has 

been perturbed by normal errors and because the classical bounded estimator is the same 

estimator, without the perturbation of errors that are relatively small. The first three 

estimators indicate that on average, they overestimate the true value of β , and the final 

estimator, that takes Laplace error into account, underestimates the true value of β . It is also 

evident that the averages of the estimates follow the same pattern, which indicates that the 

estimates are sensitive to the underlying catalogues.  

In order to establish the asymptotic properties of the estimators we first need to examine if 

the estimators are mean squared error consistent, if they are, it follows that such an estimator 

is also simply consistent and asymptotically unbiased (Engelhardt and Bain, 1992). The 

condition for mean squared error consistency is 

 
2ˆlim 0nn

E β β
→∞

 − =   . (4.4.1) 

Note that ˆ
nβ  is the series of estimators derived for each simulated catalogue. The mean 

squared error for each estimate of β  for a specific method is calculated. The results are 

added together and divided by the number of catalogues generated, or estimates found. 

Those close to zero are deemed to have some measure of mean squared error consistency. 

In terms of simple consistency, the absolute error would have to be very small (close to zero) 

for a large number of estimates of β . Since the earthquake catalogues are generated with a 

known value of 2.3026β = , we can calculate each absolute error and count the number of 

times each error is sufficiently close to zero, say within 0.01 units. By dividing this number 

by the number of iterations, 1 000, we will obtain the probability that the absolute error is 

sufficiently close to zero, if this probability is close to 1, the estimator satisfies the condition 

for simple consistency: 

 ˆlim 1nn
P β β ε

→∞
 − < =     (4.4.2) 

for any given ε > 0  . 
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Lastly, the estimators are tested for asymptotic bias. The condition for this asymptotic 

unbiasedness is 

 ˆlim 0nn
E β β

→∞
  − =   . (4.4.3) 

The sample mean of each method of estimation is calculated and compared to the actual 

value of β  and expressed as a percentage of β  by dividing the sample mean less the actual 

value of β  by the actual value of β . Those results that are sufficiently close to zero are 

deemed to be asymptotically unbiased. The value obtained can then be interpreted as the 

average bias for the estimator over the number of catalogues investigated. The results of the 

test for mean squared error consistency, simple consistency and asymptotic unbiasedness are 

summarised in Table 4.2. 

From these tests, we can conclude that all of the methods are likely to yield particularly 

accurate estimators for β  for the particular dataset under investigation. However, since the 

value of β  is not known when applying the methods in practice, further investigation about 

which kinds of results the different estimators yield will most certainly be helpful. The 

following section investigates the effect of changes in the underlying parameters on the 

properties of the estimators.  

Table 4.2: Asymptotic properties of the estimators 

 
1β  2β  3β  4β  

Asymptotic Mean Squared 

Error 
0.008786 0.008804 0.008861 0.016118 

Asymptotic Simple Consistency 

(10% level) 
72.1% 72.3% 72.1% 53.5% 

Asymptotic Bias 0.6% 1.1% 0.2% -3.6% 
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4.5 Sensitivity testing of the estimators when catalogues are 

generated with Gaussian errors  

In order to assess the robustness of the results obtained after the deterministic investigation is 

conducted a number of the parameters are varied, one at a time, in order to assess their 

relative effects on the ultimate parameter estimates and their relative asymptotic properties. 

The effects of increases in the maximum possible earthquake for the catalogues that are 

generated are investigated, since this may provide some insight into the effects of larger 

earthquakes on the estimated parameters. The minimum threshold is not specifically 

investigated since no notable damage to buildings or infrastructure is observed for 

earthquakes of magnitude 3.8 or less.  

Secondly, the activity rate is also varied to investigate any notable effects on the accuracy of 

the various parameters. Thirdly, the standard deviation of the errors is varied in order to 

assess the effects of the size of the errors on the estimates. Lastly, the actual value of the b 

parameter is varied in order to assess the effect of the ratio between small and large 

earthquakes on the accuracy of different parameters. 

Figure 4.3 indicates the changes in mean squared error consistency for each sensitivity test 

as compared with the benchmark discussed in the previous section. We can conclude from 

the results that the first three estimators are all fairly mean squared error consistent since for 

any change in the parameters the average mean squared error remains fairly close to zero.  

The average mean squared error for the estimator that includes Laplace errors is slightly less 

consistent in comparison for most of the parameter changes but is still acceptably low, 

except in the case where the value of σ  is increased by 50% or to 0.3. Here the Laplace 

estimator seems slightly higher, however, the values of the mean squared error are still fairly 

low, even for the Laplace estimator at under 3.5%. For the case where the value of σ  is 

increased by 50%, there is also a slight increase in mean squared error inconsistency for the 

first three estimators as well. Equation Section (Next) 
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Figure 4.3: A comparison of MSE consistency – underlying Gaussian error 

 

Figure 4.4: A comparison of simple consistency – underlying Gaussian error 
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Figure 4.4 compares how simple consistency changes with each change in the underlying 

parameters. Once again there is little to recommend one of the first three estimators above 

the other two, with all three estimators being fairly consistent indicating that around 70% of 

the estimates fall within 10% of the actual value of the parameter.  The Laplace estimator is 

not as consistent, however around 55% of the estimates still fall within 10% of the actual 

parameter value, except for the case where the standard deviation of the errors is increased 

by 50% where only 35% of estimates fall within 10% of the actual parameter value. 

Figure 4.5 demonstrates a comparison between the asymptotic biases of each estimator, with 

different underlying assumptions. From the results we can conclude that the Classic bounded 

estimator, 2β  and the Gaussian estimator, 3β  are the most asymptotically unbiased out the 

four estimators since these are closest to zero, except in the case where the maximum 

possible earthquake is increased by 30%, where 1β   is marginally closer to zero. The classic 

estimator, 1β , follows closely behind 3β  in term of lack of bias. The Laplace estimator is not 

particularly biased in its own right, with all scenarios underestimating the actual value of the 

parameter by just fewer than 4%. It should be noted that the Laplace estimator appears to 

become less biased as the standard deviation of the errors increases. The bias is not 

particularly large in any of the cases with the highest bias having an absolute value of 

approximately 3.5%. 

 

Figure 4.5: A comparison of asymptotic bias - underlying Gaussian error 
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While the estimator comparison study does much to recommend one estimator over another 

in a controlled environment, that is one where we control the underlying distributions and 

parameters of the data, we have to consider further implications of the changes in parameters 

on actual earthquake catalogues. However, we can conclude that the Laplace estimator is 

clearly not the best possible choice when the underlying errors cannot be characterised by a 

distribution with increased probabilities of large errors and decreased probabilities of smaller 

errors.  

We need to extend the hazard analysis of the catalogue into a risk assessment pertaining to 

building damage. Firstly, we need to consider the case where the synthetic catalogues are 

perturbed by Laplace errors after which the following section examines the parameters 

underlying a seismic event catalogue and how changes in the parameters will result in 

changes in the damage to buildings.  

4.6 Assessing the asymptotic properties of the methods of 

estimation when catalogues are generated with Laplace 

errors  

In order to further compare the methods of estimation, the properties of each estimator needs 

to be established. One thousand, earthquake catalogues are generated using the same 

parameters, per iteration as described in Section 4.1 above but the errors are generated 

according to the Laplace distribution using a standard deviation of 0.2. 

The various estimators are then used to calculate the sample mean and variance for each 

method. These sample estimates are then used to compare the methods in terms of the 

asymptotic properties of parameter estimates. The estimators themselves are described 

specifically in Table 4.2.  

In Figure 4.6, the mean of the estimates are plotted for each estimator over the number of 

catalogues generated and compared with one another as well as the actual value of β  . 

Equation Section (Next) 
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Figure 4.6: Average of estimators when catalogues are perturbed by Laplace errors 

The results of the test for the asymptotic properties of the estimates for this particular set of 

catalogues are summarised in Table 4.3. The mean squared error, simple consistency 

measure and bias for each estimate of β , for a specific method, is calculated. The results are 

added together and divided by the number of catalogues generated.  

Table 4.3: Asymptotic properties of the estimators 

 
1β  2β  3β  4β  

Asymptotic Mean Squared 

Error 0.008114 0.008213 0.008259 0.013819 

Asymptotic Simple Consistency 

(10% level) 
71.4% 71.9% 71.0% 57.5% 

Asymptotic Bias 0.7% 1.2% 0.7% -3.1% 
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We see some fairly unintuitive results. The estimators that do not take errors into account, 

seem to be far more accurate, in terms of asymptotic measures, than the estimates that do 

take errors into account, although we would expect the opposite to be true. The classic Aki-

Utsu estimator and the estimator that incorporates normal errors yield very similar results. 

We can better understand these results by looking at Figure 4.7. Here we can clearly see 

what perturbing by Laplace errors does to an earthquake catalogue.  

The events at higher magnitudes are not consistent with the Gutenberg-Richter relation, but 

lower magnitudes are fairly consistent. It is suspected that is a result of the truncation of the 

errors and the assumption that the errors follow a Laplace distribution. Since we are 

truncating the errors that lie outside three standard deviations of the mean, we are most likely 

reducing a lot of the synthesised magnitudes to lie closer to the real magnitudes than what 

they should be.  

 

Figure 4.7: Example of a synthetic earthquake catalogue perturbed by Laplace errors 

We suspect that the reason that this does not occur as much with the case where we 

synthesise Gaussian errors is because a much larger probability exists that we will generate 

an error that lies within three standard deviations of zero. Approximately 90% of all 

observations from a normal distribution will lie within three standard deviations of the mean. 

This proportion is lower for the Laplace distribution. Further investigation of the effects of 

the truncation of the errors on the results where we simulate underlying Laplace errors will 
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most likely yield more definitive answers about the results. An investigation of the effects of 

truncation is not included here, but proposed for future expansion of the research. 

We will most likely only consider catalogues to have Laplace instead of normal errors when 

the data is largely historic or paleoseismic in nature. This means that there is a much bigger 

chance of having large errors than small ones, which is consistent with the Laplace 

distribution. Generally, only large earthquakes will be included in these catalogues since the 

events will most likely pre-date the widespread use of seismographs. So for an investigation 

of fairly complete catalogues that are synthesised according to parameters that are more 

fitting with those associated with modern catalogues will yield results that are not as 

expected.  

From the preliminary results we can interpret that the classical Aki-Utsu estimator will likely 

give us accurate results, since it only includes the mean of the magnitudes in the catalogue 

and the minimum magnitude under consideration. This is not necessarily the case when the 

level of completeness is raised. We continue to compare the asymptotic properties of the 

various estimates for the synthesised catalogues in order to establish the sensitivity to 

changes in the underlying parameters in the following section. 

4.7 Sensitivity testing of the estimators when catalogues are 

generated with Laplace errors  

In order to assess the robustness of the results obtained after the deterministic investigation 

conducted a number of the parameters are varied, one at a time, in order to assess their 

relative effects on the ultimate parameter estimates and their relative asymptotic properties. 

The same sensitivity analyses are conducted for the data generated assuming that the errors 

follow the Laplace distribution as in Section 4.5 where the errors are assumed to follow the 

Gaussian distribution. Figure 4.8 indicates the changes in mean squared error consistency for 

each sensitivity test as compared with the benchmark discussed in the previous section.  

As with the previous investigation, the first three estimators are fairly consistent between one 

another and across different scenarios, with all the average mean squared errors being fairly 

close to zero. The mean squared error for the Laplace estimator also follows a very similar 

pattern to the previous investigation, with changes in the value of σ  offering the most 

volatile average mean squared error. Notably, if we consider a smaller standard deviation, 
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there is very little difference between any of the estimators in terms of asymptotic mean 

squared error. Another interesting feature to take note of is that the mean squared error for 

the estimators that include Laplace errors are consistently lower than the mean squared 

errors for the same estimator in Section 4.6. 

 

Figure 4.8: A comparison of MSE consistency - underlying Laplace error 

Figure 4.9 compares how simple consistency changes with each change in the underlying 

parameters. The simple consistency measure also does not change significantly from the 

previous investigation, although all of the estimators are slightly less consistent than in the 

previous investigation, although the differences for the first three estimators are negligible.  

For the Laplace estimator, simple consistency is similar to the previous investigation, with 

most falling between 50% and 60%. The most inconsistent measures are obtained when 

varying the value the standard deviation of the errors.  
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Figure 4.9: A comparison of simple consistency (10% level) - underlying Laplace error 

 

 

Figure 4.10: A comparison of asymptotic bias - underlying Laplace error 
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Figure 4.10 demonstrates a comparison between the asymptotic biases of each estimator, 

with different underlying assumptions. From the results we can conclude that the first three 

estimators are the most unbiased in the investigation, with different estimators being the 

most unbiased under different scenarios, but by negligible amounts. The Laplace estimator 

underestimates the parameter consistently by about 3%, except in the case where the 

standard deviation is increased by 50%, to 0.3, where the underestimation increases to 

almost 5%. 

While the estimator comparison study does much to recommend one estimator over another 

in a controlled environment, that is one where we control the underlying distributions and 

parameters of the data, we have to consider further implications of the changes in parameters 

on actual earthquake catalogues. The difficulty in assuming that the errors follow a Laplace 

distribution is demonstrated by the sensitivity tests. We should be cautious when making this 

assumption for since the truncation of the errors could lead to biased results. It is also 

important to keep in mind that an investigation of fairly complete catalogues that are 

synthesised according to parameters that are more fitting with those associated with modern 

catalogues will yield results that are not as expected since the Laplace assumption is better 

suited to catalogues that only include large earthquakes. 

Furthermore, we need to extend the hazard analysis of the catalogue into a risk assessment 

pertaining to building damage. The following section examines the parameters underlying a 

seismic event catalogue and how changes in the parameters will result in changes in the 

damage to buildings.  
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5 The effect of seismic parameters on insurance losses  

5.1 Background: The South African seismic landscape 

South Africa’s seismic experience is characterised by relatively frequent small events (i.e. 

those smaller than magnitude 3.8), and very few large events. An overall image of the 

seismic hazard, as characterised by peak ground acceleration with a probability of being 

exceeded in 50 years of 10% is depicted in Figure 5.1. Additionally, overall seismic activity 

is depicted in Figure 5.2.Equation Chapter (Next) Section 1 

 

Figure 5.1: PGA probability of exceedance for South Africa (Kijko, 2008) 

Seismicity in South Africa dates back to 1620, and various events have taken place. Most 

information has been gathered from various sources. A number of notable events have taken 

place in the country with three major events taking place in the latter half of the 20th century. 

Since 1971, a network of seismological stations has been developed in South Africa, and is 

called the South African Seismological Network. The network is operated by the Seismology 

Unit of the Council for Geoscience (Council for Geoscience, 2012). 
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Figure 5.2: Seismic map of South Africa (Council for Geoscience, 2012)   
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The largest seismic event in South Africa took place in the Ceres-Tulbagh region on 29 

September, 1969 which exhibited a local Richter magnitude of 6.3. The damage caused by 

this event is depicted in Figure 5.3, Figure 5.4 and Figure 5.5 (Kijko et al., 2002, Davies and 

Kijko, 2003). This earthquake was followed by a number of aftershocks that lasts a 

considerable amount of time, the largest of which was an aftershock of local Richter 

magnitude 5.7 on 14 April 1970 (Kijko et al., 2002).  

 

Figure 5.3: Damage following the Ceres-Tulbagh earthquake of 1969 (ceresmuseum.co.za, 2014) 

 

Figure 5.4: Damage following the Ceres-Tulbagh earthquake of 1969 (Cape Town Gazette) 
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Figure 5.5: Damage following the Ceres-Tulbagh earthquake of 1969 (ceresmuseum.co.za, 2014) 

The second, notable seismic event that caused damage in South Africa, occurred in Welkom 

in 1971 and was recorded as having a magnitude of 5.2. Some of the damage caused by this 

event is illustrated in Figure 5.6. This event was attributed to mining related activity.  

 

 

Figure 5.6: Damage following the Welkom earthquake of 1976 (Council for Geoscience, 2010) 

A third, more recent event was also attributed to mining related activity and took place at 

Stilfontein mine in 2005. The event was an earthquake of magnitude 5.3, which not only 

caused damage on the surface, as depicted in Figure 5.7, but also caused mine operations to 

be suspended for several weeks following the death of two miners (Durrheim et al., 2006).  
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Figure 5.7: Damage following the Stilfontein earthquake of 2005 (Durrheim et al., 2006) 

 

5.2 The study  

In order to assess the effects of changes in the parameters that describe the seismicity of a 

specific area, a probabilistic seismic risk assessment can be used with good results. To 

compare the effect of the different estimators on property damage and consequent insurance 

losses, a number of PSRAs are conducted for the South African landscape.  

The seismic event catalogue used in this study was compiled from several sources. After 

critical analysis of each of the data sources, the main contribution to pre-instrumentally 

recorded seismicity come from Brandt et al. (2005). The instrumentally recorded events are 

mainly selected from databases provided by the International Seismological Centre in UK. 

Various sensitivity tests are conducted, using this catalogue to investigate how changes in 

the β  andλ parameters affect the results of the PSRA. The methods of estimation for β  are 

also applied and compared.   

For the purposes of the study, we consider those events with magnitudes of 3.8 or more, 

since these are the seismic events which will most likely cause significant damage to insured 

buildings (Kijko and Smit, 2012b). The largest possible earthquake is limited to a magnitude 

of 7, due to historical seismic activity in South Africa (Davies and Kijko, 2003). A catalogue 

detailing all the measurable seismic activity in South Africa between 1901 and 2013 is 

considered. The specific area under consideration is an area with the centre of Cape Town at 
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its centre and a radius of 450km around this point, as illustrated in Figure 5.8. Notably, this 

area included the only nuclear power station in South Africa, and the Green Point Stadium 

which is shown in Figure 5.9. The characteristics of the catalogue are summarised in Table 

5.1 (Kijko, 2011). Equation Section (Next) 

None of the earthquakes are expected to exceed magnitude 7.  The largest seismic event in 

South Africa took place in the Ceres-Tulbagh region in 1969 which exhibited a local Richter 

magnitude of 6.3 (Kijko et al., 2002). 

 

 

Figure 5.8: Map of the area under investigation in the PSRA conducted (AfriGIS (Pty) Ltd, 2014) 
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Figure 5.9: Image of Green Point Stadium in Cape Town, South Africa (www.woodford.co.za, 2014) 

Table 5.1: Characteristics of the earthquake catalogue 

Characteristic Value 

Start date 1901 

End date 2013 

minm  3.8 

maxm  7.0 

m  4.2 

Number of events larger than 4.0 1307 

λ  12 
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Four analyses are conducted in order to investigate the effects of uncertainty and the 

different methodologies for estimating β : 

1. A sensitivity test with varying values of b, namely an assumed value of 1, and 

estimates of one standard deviation more, and one less than the assumed value. 

2. A sensitivity test with varying values of the activity rate, namely the mean activity 

rate as estimated by evaluating the catalogue, as well as an activity rate of one 

standard deviation more than the mean rate and one less than the activity rate. 

3. A sensitivity test with varying values of the maximum magnitude, as well as a 

maximum magnitude of 10% more and 10% less than the benchmark maximum 

magnitude. 

4. A side-by-side comparison of the effects of the b values that are estimated by the 

different methodologies discussed in Section 2 and 3 on elements of the PSRA. For 

the purposes of the methodology investigation, the estimators discussed in Section 2 

and 3 are derived for the specific catalogue in question and the PSRA applied and 

compared. The results are summarised in Table 5.2. 

The specific distribution of building classes for metropolitan areas in South Africa is 

outlined in Table 5.3. Note that four building classes, 3, 7, 8 and 9, make up the majority of 

the urban structures as mentioned in Section 2. The PSRA used is coded in Matlab and was 

refined for the purposes of this study. The Matlab code is available on request. 

Table 5.2: Estimates of the b value using different methods on the same 
catalogue 

Description 
Equation 

Number 

b value 

Estimate 

Aki-Utsu (1.1.2) 1.0391 

Double truncated exponential distributed magnitudes (1.1.8) 1.0428 

Double truncated exponential distributed magnitudes + 

Gaussian errors (σ=0.2) 
(3.2.18) 1.0995 

Double truncated exponential distributed magnitudes + Laplace 

errors (σ=0.3) 
(3.2.34) 0.9855 
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Table 5.3: Distribution of building class types in metropolitan areas in South 
Africa 

Class Class Description 

Class 

distribution  

(% of total 

replacemen

t costs) 

1 Wood frame, low rise 0.09% 

2 Light metal, low rise 0.10% 

3 Unreinforced masonry, with load-bearing wall, low rise 9.17% 

4 Unreinforced masonry, without load-bearing wall, low rise 0.09% 

5 Unreinforced masonry, with load-bearing wall, medium rise 5.06% 

6 
Reinforced concrete shear wall, with moment resisting frame, 

medium rise 
5.14% 

7 
Reinforced concrete shear wall, with moment resisting frame, high 

rise 
13.80% 

8 
Reinforced concrete shear wall, without moment resisting frame, 

medium rise 
17.48% 

9 
Reinforced concrete shear wall, without moment resisting frame, 

high rise 
46.01% 

10 Braced steel frame, low rise 0.79% 

11 Precast concrete, low rise 0.51% 

12 Long span, low rise 0.99% 

(Davies and Kijko, 2003) 

For the investigations the adjusted Atkinson and Boore attenuation formulas were used as 

discussed in Kijko et al. (2002). The values of the coefficients, given in Table 5.4, describe 

the regression coefficients for formula (2.3.1) are used for the calculation of the PGA and the 

spectral acceleration for different frequencies. 
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Table 5.4: Regression coefficients for the attenuation formula (2.3.1) 

Frequency (Hz) c1 c2 c3 c4 

0.5 -10.798 1.614 0.0042 -1.250 

1.0 -9.213 1.531 0.0040 -1.237 

2.0 -7.280 1.392 0.0032 -1.228 

3.0 -5.927 1.276 0.0028 -1.259 

5.0 -4.38 1.123 0.0021 -1.283 

7.9 -3.452 1.042 0.0006 -1.279 

10.0 -3.123 1.039 0.0002 -1.324 

13.0 -2.749 0.982 -0.0011 -1.283 

20.0 -2.346 0.968 -0.0033 -1.289 

PGA -2.682 0.980 0.0006 -1.522 

(Kijko et al., 2002) 

5.3 Results  

5.3.1 Investigation 1: Varying the b values 

Three different permutations of the PSRA are conducted for values of b of 0.95, 1 and 1.05 

compared to examine any notable differences. Figure 5.10 demonstrates the different 

distributions of the return period for a range of peak ground acceleration values.  

Figure 5.10 demonstrates the relationship between the weighted mean losses of the building 

classes, with weights as shown in Table 5.3, against the levels of modified Mercalli 

intensity. Finally, Figure 5.12 demonstrates the probabilities of achieving certain levels of 

loss if the building classes are combined as in Table 5.3. Equation Section (Next) 

When considering Figure 5.10 and Figure 5.11 in terms of insurance losses, we have to 

consider at both figures independently. The figures imply, and reiterate the intuitive 

assumption, that variation in the parameters related to the Gutenberg-Richter relation will 

only affect the peak ground acceleration values directly and will not influence how intensity 

will affect losses. This relationship is defined by the building type and earthquake intensity 

and not by the seismic characteristics of a particular area. This means that we know that the 

variation in losses associated with earthquakes in this particular study is due to changes in 
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the parameters that define the seismicity of the region. Therefore we can draw no further 

inference about the differences from Figure 5.11. 

From Figure 5.10 some inferences can be made regarding the peak ground acceleration. As 

expected, a higher b value will lead to a quicker acceleration of the return period. 

Conversely, the lower b value implies a much slower acceleration of the return period in 

terms of peak ground acceleration. It is also notable that the maximum return period for a 

PGA of around 0.7g is much higher that for the models with higher b values. Notably, 

deviation of the three b values only occurs after a peak ground acceleration of 0.3g or even 

0.4g has been reached. 

From consideration of Figure 5.10 and Figure 5.11 we know that the variation in Figure 5.12 

is solely due to the effect of changes in the b value on the peak ground acceleration since 

there is no difference between the mean damage connected to Modified Mercalli Intensity 

when considering different parameter values (Kijko and Graham, 1998). This is because the 

same level of damage is expected for any intensity. The changes in parameters are only 

relevant when considering the PGA (Kijko and Graham, 1998).  

 

Figure 5.10: Return periods for varying b values for Cape Town 
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When considering individual building classes, the results look very similar to Figure 5.12. 

Therefore considering the mean damage is a good approximation of a well-balanced 

portfolio of insurance risks and small deviations from the mean distribution are negligible. 

The results depicted in Figure 5.12 also make intuitive sense. 

Higher b values will lead to lower probabilities of damage since the ratios of small to large 

seismic events are larger. This implies that fewer large events will occur in relation to small 

events that are likely not to cause any real damage to structures. The converse argument 

holds for lower values of b. Variations in the b value are once again compared to the 

benchmark b value of 1. 

 

Figure 5.11: Comparison of mean damage per level of intensity for Cape Town 
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Figure 5.12: Comparison of mean losses for differing b values for Cape Town 
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Three different permutations of the PSRA are conducted for values of λ  of 8, 12 and 16 and 

compared to examine any notable differences. Figure 5.13 demonstrates the different 
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A graph demonstrating the relationship between the weighted mean losses of the building 

classes, with weights as shown in Table 5.3, against the levels of modified Mercalli intensity 

is not included again since there is no difference between the plots. For reference Figure 5.11 

can be used and all arguments about influence of parameters follow from the interpretation 

of Investigation 1. Figure 5.14 demonstrates the probabilities of achieving certain levels of 

loss if the building classes are combined as in Table 5.3. 

The relationships depicted in Figure 5.13 are consistent with our understanding of the effects 
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with a higher return period. This relationship implies that lower values of λ imply less 

seismic activity which is exactly the case when we consider the definition of the activity rate 

(Kijko, 2011).  

Conversely, a higher value of λ implies that earthquake activity is increased since peak 

ground acceleration is higher for lower return periods although acceleration is not as quick. 

Notably, deviation of the three values for λ  only occurs after a peak ground acceleration of 

0.1g has been reached. 

From consideration of  Figure 5.13 and Figure 5.11 we know that the variation is solely due 

to the effect of changes in the activity rate on the peak ground acceleration. Once again, 

when considering individual building classes, the results look very similar to Figure 5.14. 

The results make intuitive sense. Higher activity rates will lead to higher probabilities of loss 

since more earthquakes above magnitude 3.8 are expected to happen within a single year 

(Kijko, 2011). The converse argument for lower activity rates holds. Variations in the 

activity rate are once again compared to the benchmark value of 12. The variation in the 

probabilities is similar than that of Figure 5.12. 

 

Figure 5.13: Return periods for differing activity rates for Cape Town 
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Figure 5.14: Comparison of mean losses for differing activity rates for Cape Town 
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plots. For reference Figure 5.11 can be used and all arguments about influence of parameters 

follow from the interpretation of Investigation 1. Figure 5.16 demonstrates the probabilities 

of achieving certain levels of loss if the building classes are combined as in Table 5.3. 

We can see here that higher maximum magnitudes values yield higher peak ground 
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If it is varied significantly more, the possible damage caused by the maximum possible 

earthquake will be significantly different and the loss estimates will differ, especially 

towards the lower probabilities and higher levels of damage. 

It should be kept in mind that the loss estimate is still a function of the catalogue data, so a 

very large maximum magnitude will not have a significant effect on the loss estimates if 

there is not a similar magnitude contained in the catalogue. This could be a possible shortfall 

of the estimates if the catalogue is taken over a period of time that does not include large 

seismic events. 

 

 

Figure 5.15: Return periods for varying m_max in Cape Town 
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Figure 5.16: Comparison of mean losses for different m_max for Cape Town 
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show that the estimator which includes Laplace error has the shortest return periods for given 

levels of peak ground acceleration. The peak ground acceleration for the estimator that 

includes Gaussian errors has the highest return period. The differences, however, are not 

very significant since there is little difference between these return periods. 

Interestingly, the estimator that includes Gaussian error is slightly higher than those 

estimates that do not include errors. The estimates that yield results in the middle of the 

possible loss distributions are the classical and bounded classical estimates. This is expected 

since their values are very close to one another. This could mean that there is an argument to 

be made that the classic estimator continues to be a good approximation of the underlying b 

value contained in earthquake catalogues. However, it is no great exercise to expand the 

estimate to include the maximum possible earthquake within the region under consideration.  

The relationship of the classic estimate with other estimates could imply that the classic 

estimate is a reasonable estimator for areas of low seismicity, but this is largely dependent on 

the underlying assumptions and the data, such as the minimum and maximum earthquake 

values considered. 

It must also be noted that the choice of method of estimation for the b value is largely a 

function of the quality of the data. For catalogues where little information is available about 

their origin and composition, the classic (Aki-Utsu) estimator would be a good place to start. 

For catalogues that consist of information from a single source, and are fairly recent, the 

bounded classical estimator will be a reasonable choice.  
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Figure 5.17: Return periods for different estimates of the b value for Cape Town 
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Figure 5.18: Comparison of cumulative distributions described by the estimators with actual data 
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Figure 5.19: Comparison of mean losses for different estimates of the b value for Cape Town 
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6 Conclusion and further research 

Increasing global urbanisation means that the potential impact of a catastrophic event, such 

as an earthquake, is increasing. To this end, insurers are taking a more comprehensive view 

of managing and understanding risk. The research proposes several ideas that may aid in 

understanding earthquake risk in an area of low seismicity, such as South Africa.  

Parameter estimates are affected by observation errors. If errors are not included in the 

method of estimation, the estimate is subject to bias. The nature of the errors determines the 

level of bias. We can therefore conclude that uncertainty in the data used in earthquake 

parameter estimates is largely a function of the quality of the data that is available. The 

inaccuracy of parameter estimates depends on the nature of the errors that are present in the 

data. In turn, the nature of the errors in an earthquake catalogue depends on the method of 

compilation of the catalogue and can vary from being negligible, for single source catalogues 

for an area with a sophisticated seismograph network, to fairly impactful, for historical 

earthquake catalogues that predate seismograph networks.  

The research attempts to resolve the problem in two parts, namely, which method of 

estimation is the most consistent for the parameters of the earthquake model, and how these 

different methods of estimation, as well as other changes, in the earthquake model 

parameters affect the damage estimates for a specific area.  

Firstly, the research investigates different methods of parameter estimation in the context of 

the log-linear relationship characterised by the Gutenberg-Richter relation. Traditional 

methods are compared to those methods that take uncertainty in the underlying data into 

account. Alternatives based on Bayesian statistics are also investigated briefly. The 

efficiency of the feasible methods is investigated by comparing the results for a large number 

of synthetic earthquake catalogues for which the parameters are known and errors have been 

incorporated into each observation. 

The study only refers to the effect of changes in the activity rate as a means of testing the 

sensitivity of the models. The b value estimation is slightly more complex and previous 

investigation has not been as extensive. The a value is dependent on the b value and on λ  

and the assumptions for the latter parameter are not considered explicitly in this study. This 

research focuses on the estimation of the b value. 
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Sensitivity tests of the different methods of estimation based on synthetic catalogues with 

known parameters, indicate that for those catalogues where the underlying errors are 

assumed to follow a normal distribution, there is little difference between the asymptotic 

properties of the classic, classic bounded and classic bounded with normal errors added 

estimators. The asymptotic properties of these estimators are also not very sensitive to 

changes in the underlying parameters. The classic bounded estimator that includes Laplace 

errors is less desirable as an estimator under these conditions as indicated by the asymptotic 

properties and their sensitivity to changes in the underlying parameters. However, under the 

correct circumstances the classic bounded estimator that included Laplace errors could 

indicate the most reasonable set of assumptions. The investigations show that the Laplace 

estimator is not particularly biased in its own right. Additionally it should be noted that the 

Laplace estimator appears to become less biased as the standard deviation of the errors 

increases. 

For sensitivity tests conducted when synthetic catalogues are perturbed by errors that follow 

a Laplace distribution, the results are not exactly as expected. Those estimators that do not 

include Laplace errors demonstrate more desirable asymptotic properties than those 

estimators that do take Laplace errors into account. Several reasons for these results are 

proposed, including the truncation of the errors at a maximum of three standard deviations 

from the mean, but not tested. Further investigation into this particular problem is warranted.  

We will most likely only consider catalogues to have Laplace instead of normal errors when 

the data is largely historic or paleoseismic in nature. This means that there is a much bigger 

chance of having large errors than small ones, which is consistent with the Laplace 

distribution. Generally, only large earthquakes will be included in these catalogues since the 

events will most likely pre-date the widespread use of seismographs (Kijko and Dessokey, 

1987). So an investigation of fairly complete catalogues that are synthesised according to 

parameters that are more fitting with those associated with modern catalogues will yield 

results that are not as expected. The sensitivity tests in the study were conducted for a 

catalogue with both small and large events. 

In the second part of the study, the effects of changes in key parameters of the earthquake 

model on damage estimates are investigated. This includes an investigation of the different 

methods of estimation and their effect on the damage estimates. Probabilistic seismic risk 

assessments are utilised as a catastrophe modelling tool in order to achieve this.  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

103 

Probabilistic seismic risk assessment can be used as a catastrophe modelling tool to 

circumvent the problem of scarce loss data in areas of low seismicity and is applied in this 

study for the greater Cape Town region in South Africa. The results of the risk assessment 

demonstrate that seemingly small changes in underlying earthquake parameters as a result of 

the incorporation of errors can lead to significant changes in loss estimates for buildings in 

an area of low seismicity.  

While subjective to some degree, the PSRA is a good way of testing the potential losses 

related to seismic events for a particular area. The investigations conducted indicate that 

variability in the parameters of the Gutenberg-Richter relation influence the probabilities of 

potential mean losses from seismic activity. Furthermore, the investigations indicate that, for 

areas of weak seismicity, changes in the parameters have significant effects on loss 

probabilities.  

It can clearly be seen from the results of the investigations that lower estimates of the b value 

and higher estimates of the activity rate lead to over-cautious loss estimates. Similarly, 

higher estimates of the b value and lower estimates of the activity rate, lead to under-

cautious loss estimates. Specifically, higher b values will lead to lower probabilities of 

damage since the ratios of small to large seismic events are larger. This implies that fewer 

large events will occur in relation to small events that are likely not to cause any real damage 

to structures. The converse argument holds for lower values of b. Lower values of λ  imply 

less seismic activity and consequently, lower expected levels of damage. Conversely, a 

higher value of λ  implies that earthquake activity is increased since more earthquakes are 

expected to occur in a given time period and will lead to higher levels of expected damage. 

Different methodologies for estimating the b value yield vastly different results, in particular 

for areas of weak seismicity, but it is vitally important to consider the nature of the catalogue 

when deciding on the best estimate to use. It may be a good idea to include a possible range 

of estimates for the parameters of the Gutenberg-Richter relation in order to draw more 

accurate inferences about the potential losses.  

Particular care should be taken when assuming that errors within a catalogue follow a 

Laplace distribution since this assumption is most likely to hold only when the quality of the 

catalogue is particularly circumspect. The choice of methodology is dependent on the quality 

of the underlying data and care should be taken when making assumptions about the 
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distribution underlying the earthquake catalogue. The results of the risk assessment are 

influenced by the parameter values that characterise these distributions and damage 

estimates can vary significantly for different assumption as is indicated in the application of 

the PSRA. 

The application of Bayes’ theorem should be investigated further. Different assumptions or a 

slight variation in approach could yield interesting results. Further study should be 

conducted to examine the nature of errors that are not symmetrically distributed. 

Additionally, the tail behaviour assumptions could be strengthened, especially when 

considering historical earthquake catalogues, where the uncertainty is likely to be much 

higher than for modern catalogues. 

The method for estimating the parameters over a catalogue with differing levels of the 

quality of data as proposed by Kijko and Dessokey (1987) could be refined when examining 

which time intervals to consider for which types of catalogues. Additionally, it might be 

possible to introduce observation errors into the estimators employed by this method. The 

catalogue synthesising approach for this kind of investigation will have to be adjusted to 

generate catalogues with varying data quality. The use of a logic tree as an additional 

investigation of the effect of uncertainty in the parameters could be considered in subsequent 

investigations but was not considered within the scope of the study. 

Finally, the traditional method of incorporating errors into parameter estimates could be 

refined for the estimation of earthquake parameters by truncating the distribution of the 

errors at three standard deviations about the mean, to take the implicit assumption that is 

implied by the quantifiable nature of earthquake magnitudes by the damage they cause into 

account.  
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Appendix A 

Description of the Modified Mercalli Intensity (Davies and Kijko, 

2003) 

MM I: not felt, except rarely under especially favourable circumstances. Under certain 

conditions, at and outside the boundary of the area in which a great shock is felt: 

• sometimes birds or animals are reported to be uneasy or disturbed; 

• sometimes dizziness or nausea is experienced; 

• sometimes trees, structures, liquids, bodies of water, may sway, or doors may swing, 

very slowly. 

MM II: felt indoors by few, especially on upper floors, or by sensitive, or nervous persons. 

Also, as in MM I, but often more noticeable: 

• sometimes hanging objects may swing, especially when delicately suspended; 

• sometimes trees, structures, liquids or bodies of water, may sway, or doors may 

swing, very slowly; 

• sometimes birds or animals are reported to be uneasy or disturbed; 

• sometimes dizziness or nausea is experienced. 

MM III: felt indoors by several, motion usually rapid vibration. 

• The event is sometimes not recognised to be an earthquake at first. 

• The duration is estimated in some cases. 

• Vibration is experienced like that due to the passing of light or lightly loaded trucks, 

or heavy trucks some distance away. 

• Hanging objects may swing slightly. 

• Movement may be appreciable on upper levels of tall structures. 

• Standing motor cars are slightly rocked. 

MM IV: felt indoors by many, outdoors by few. 

• The event awakens a few, especially light sleepers. 
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• It frightens no one, unless apprehensive from previous experience. Vibration is 

experienced like that due to the passing of heavy or heavily loaded trucks. Sensations 

like a heavy body striking the building, or the falling of heavy objects inside, may be 

experienced. 

• Dishes, windows and doors may rattle; glassware and crockery may clink and clash. 

• The creaking of walls or the frame may be heard especially in the upper range of this 

grade. Hanging objects swing in numerous instances. 

• Liquids in open vessels are slightly disturbed. 

• Standing motor cars slightly are slightly rocked. 

MM V: felt indoors by practically all, outdoors by many or most; outdoors, the direction of 

the event may be estimated. 

• The event awakens many, or most. 

• It frightens few, but slight excitement may be reported; a few may run outdoors. 

• Buildings tremble throughout. 

• Dishes and glassware are broken to some extent. 

• Some windows may be cracked. 

• Small or unstable objects are overturned occasionally falling. 

• Hanging objects, doors, swing generally or considerably. 

• Pictures are knocked against walls, or swung out of place. 

• Doors and shutters are abruptly opened or closed. 

• Pendulum clocks stop, start, or run fast, or slow. 

• Small objects and furnishings are moved, the latter to a slight extent. 

• Liquids are spilt in small amounts from well-filled open containers. 

• Trees and bushes are shaken slightly. 

MM VI: felt by all, indoors and outdoors. 

• The event frightens many, excitement is general, there is some alarm, and many run 

outdoors. It awakens all. 

• Persons are made to move unsteadily. 

• Trees and bushes are shaken slightly to moderately. 

• Liquid is set in strong motion. 
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• Small bells are rung at churches, chapels, schools etc. 

• Damage is slight in poorly built buildings. 

• Plaster falls in small amount. 

• Plaster is somewhat cracked, especially fine cracks in chimneys in some instances. 

• Dishes and glassware are broken in considerable quantity, also some windows. 

• Ornaments, books and pictures fall. 

• Furniture is overturned in many instances. 

• Moderately heavy furnishings are moved. 

MM VII: frightens all, raising general alarm, and all run outdoors. 

• Some or many find it difficult to stand. 

• The event is noticed by persons driving motor cars. 

• Trees and bushes are shaken moderately to strongly. 

• Waves form on ponds, lakes, and running water. 

• Water is turbid from stirred-up mud. 

• Sand or gravel stream banks cave in to some extent. 

• Large church bells etc. are rung. 

• Suspended objects are made to quiver. 

• Damage is negligible in buildings of good design and construction, slight to 

moderate in well-built ordinary buildings, considerable in poorly built or 

badly designed buildings, abode houses, old walls (especially where laid up 

without mortar), spires, etc.  

• Chimneys are cracked to a considerable extent, walls to some extent. 

• Plaster falls in considerable to large amount, also some stucco. 

• Numerous windows, and to some extent furniture, are broken. 

• Loosened brickwork and tiles are shaken down. 

• Weak chimneys are broken at the roof-line, sometimes damaging roofs. 

• Cornices fall from towers and high buildings. 

• Bricks and stones are dislodged. 

• Heavy furniture is overturned, with damage from breaking. 

• Damage to concrete irrigation ditches is considerable. 

MM VIII: general fright; alarm approaches panic. 
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• Disturbs persons driving motor cars. 

• Trees shaken strongly – branches, trunks, broken, especially palm trees. 

• Ejected sand and mud in small amounts. 

• Changes occur in the flow of springs and wells; flow is renewed in dry wells; 

the temperature of spring and well waters changes. 

• Damage is slight in brick structures, especially those built to withstand 

earthquakes. 

• Damage is considerable, to the extent of partial collapse, in ordinary 

substantial buildings; in some cases, wooden houses tumble down; panel 

walls are thrown out of frame structures, decayed piling is broken off. Walls 

topple. 

• Solid stone walls are seriously cracked and broken. 

• Ground is wet to some extent. 

• Chimneys, columns, monuments, factory stacks and towers twist and fall. 

• Very heavy furniture is conspicuously moved and overturned. 

MM IX: general panic. 

• Ground cracks conspicuously. 

• Damage is considerable in masonry structures built especially to withstand 

earthquakes. 

• Some wood-frame houses built especially to withstand earthquakes are 

thrown out of plumb. 

• Substantial masonry buildings are badly damaged, some collapsing in large 

parts. 

• Frame buildings may be wholly shifted off their foundations. 

• Reservoirs are seriously damaged. 

• Underground pipes are sometimes broken. 

MM X: cracked ground, especially when loose and wet, up to a width of several inches; 

fissures up to a metre in width running parallel to canal and stream banks. 

• Considerable landslides occur from river banks and steep coasts. 

• Sand and mud shifts horizontally on beaches and flat land. 

• The level of water in wells is changed. 
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• Water is thrown out on the banks of canals, lakes, rivers, etc. 

• Serious damage occurs to dams, dykes and embankments. 

• Well-built wooden structures and bridges are severely damaged; some are 

destroyed. 

• Dangerous cracks develop in excellent brick walls. 

• Most masonry and frame structures are destroyed, including their 

foundations. 

• Railway lines are slightly bent. 

• Underground pipe-lines are torn apart or crushed. 

• Open cracks and broad wavy folds appear in cement pavements and asphalt 

road surfaces. 

MM XI: disturbances in ground many and widespread, varying with ground material. 

• Broad fissures, earth slumps, and land slips occur in soft, wet ground. 

• Water is ejected in large amounts, charged with sand and mud. 

• Sea-waves of significant magnitude occur. 

• Wood-frame structures are severely damaged, especially near shock centres. 

• Dams, dykes and embankments are severely damaged, often for long 

distances. 

• Few, if any, masonry structures remain standing. 

• Large, well-built bridges are destroyed by the wrecking of supporting piers or 

pillars. 

• Yielding wooden bridges are less affected. 

• Railway lines are severely bent. 

• Underground pipe-lines are forced completely out of service. 

MM  XII:  damage  total;  practically  all  works  of  construction  greatly  damaged  or 

destroyed. 

• Disturbances in the ground are great and varied, numerous shearing cracks 

appearing. 

• Landslides and falls of rock are significant, and the slumping of river banks 

etc. is extensive. 

• Large rock masses are wrenched loose and torn off. 
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• Fault  slips  develop  in  firm  rock,  with  notable  horizontal  and  vertical  

offset displacements. 

• Water channels, both surface and underground, are disturbed and modified 

greatly. 

• Waterfalls are produced and rivers are deflected. 

• Waves are seen on ground surfaces. 

• Lines of sight and level are distorted. 

• Objects are thrown upward into the air. 

  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

119 

Appendix B 

Damage Probability Matrices (ATC-13, 1985) 

Building Class 1: Wood Frame, Low Rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 68.5 26.8 1.6 0.0 0.0 0.0 0.0 

3 1-10 5 27.8 73.2 94.9 62.4 11.5 1.8 0.0 

4 10-30 20 0.0 0.0 3.5 37.6 76.0 75.1 24.8 

5 30-60 45 0.0 0.0 0.0 0.0 12.5 23.1 73.5 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 0.0 1.7 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Building Class 2: Light Metal, Low Rise 

  

Damage 

Factor Range 

(%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 23.6 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 70.9 47.8 11.5 0.4 0.0 0.0 0.0 

3 1-10 5 5.5 52.2 88.5 93.7 31.9 3.4 0.0 

4 10-30 20 0.0 0.0 0.0 5.9 67.7 80.7 45.5 

5 30-60 45 0.0 0.0 0.0 0.0 0.4 15.9 54.5 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Building Class 3: Unreinforced Masonry, bearing wall, low rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 9.1 0.6 0.0 0.0 0.0 0.0 0.0 

3 1-10 5 90.5 55.5 10.9 0.5 0.0 0.0 0.0 

4 10-30 20 0.4 43.4 66.0 22.4 2.0 0.1 0.1 

5 30-60 45 0.0 0.5 22.9 65.9 35.0 10.1 3.4 

6 60-100 80 0.0 0.0 0.2 11.2 62.5 83.1 50.4 

7 100 100 0.0 0.0 0.0 0.0 0.5 6.7 46.1 

 

Building Class 4: Unreinforced Masonry, bearing wall, medium rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 5.2 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 38.8 3.2 0.7 0.0 0.0 0.0 0.0 

3 1-10 5 55.9 84.1 37.9 5.5 0.8 0.2 0.1 

4 10-30 20 0.1 12.7 55.4 52.6 20.6 6.9 2.5 

5 30-60 45 0.0 0.0 6.0 40.4 60.8 40.2 17.7 

6 60-100 80 0.0 0.0 0.0 1.5 17.8 51.7 62.8 

7 100 100 0.0 0.0 0.0 0.0 0.0 1.0 16.9 
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Building Class 5: Unreinforced Masonry, load bearing frame, medium rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 15.3 2.9 0.0 0.0 0.0 0.0 0.0 

3 1-10 5 81.2 66.6 13.5 1.9 0.3 0.0 0.0 

4 10-30 20 3.0 30.1 69.3 40.6 14.1 2.0 0.2 

5 30-60 45 0.0 0.4 17.2 54.4 63.4 28.4 8.5 

6 60-100 80 0.0 0.0 0.0 3.1 22.2 67.5 78.8 

7 100 100 0.0 0.0 0.0 0.0 0.0 2.1 12.5 

 

Building Class 6: Reinforced concrete shear wall, with moment resisting frame, medium 

rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 20.4 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 70.3 15.5 0.0 0.0 0.0 0.0 0.0 

3 1-10 5 9.3 84.5 88.4 28.9 1.4 0.0 0.0 

4 10-30 20 0.0 0.0 11.6 71.1 81.6 38.7 3.8 

5 30-60 45 0.0 0.0 0.0 0.0 17.0 61.3 88.7 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 0.0 7.5 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Building Class 7: Reinforced concrete shear wall, with moment resisting frame, high rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 19.1 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 62.9 7.2 0.2 0.0 0.0 0.0 0.0 

3 1-10 5 18.0 92.2 83.4 17.6 0.6 0.0 0.0 

4 10-30 20 0.0 0.6 16.4 81.9 70.1 6.2 0.7 

5 30-60 45 0.0 0.0 0.0 0.5 29.3 86.5 59.2 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 7.3 40.1 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Building Class 8: Reinforced Concrete Shear Wall, without moment resisting frame, medium 

rise 

Damage 

Factor 

Damage 

Factor Range 

(%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 59.0 8.6 0.0 0.0 0.0 0.0 0.0 

3 1-10 5 38.5 89.2 66.4 11.7 0.4 0.0 0.0 

4 10-30 20 0.0 2.2 33.6 83.9 56.9 19.7 3.7 

5 30-60 45 0.0 0.0 0.0 4.4 42.7 77.0 77.6 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 3.3 18.7 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Building Class 9: Reinforced concrete shear wall, without moment resisting frame, high 

rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 49.9 2.5 0.0 0.0 0.0 0.0 0.0 

3 1-10 5 47.3 86.8 42.3 2.8 0.4 0.0 0.0 

4 10-30 20 0.0 10.7 57.3 70.8 19.3 1.8 0.3 

5 30-60 45 0.0 0.0 0.4 26.4 80.0 67.2 27.3 

6 60-100 80 0.0 0.0 0.0 0.0 0.7 31.0 72.4 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Building Class 10: Braced Steel Frame, Low rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 18.9 0.6 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 60.4 29.2 2.6 0.0 0.0 0.0 0.0 

3 1-10 5 20.7 70.2 90.3 54.4 15.5 1.2 0.0 

4 10-30 20 0.0 0.0 7.1 45.6 82.9 64.1 20.4 

5 30-60 45 0.0 0.0 0.0 0.0 1.6 34.7 77.3 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 0.0 2.3 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Building Class 11:  Precast Concrete, low rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 49.6 12.8 0.3 0.0 0.0 0.0 0.0 

3 1-10 5 40.6 86.8 72.4 1.8 0.2 0.0 0.0 

4 10-30 20 0.0 0.4 27.3 80.7 27.0 8.2 3.3 

5 30-60 45 0.0 0.0 0.0 17.5 69.6 71.1 44.9 

6 60-100 80 0.0 0.0 0.0 0.0 3.2 20.7 51.6 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

 

Building Class 12: Long span, low rise 

Damage 

Factor 

Damage 

Factor 

Range (%) 

Central 

Damage 

Factor (%) 

Probability of damage (%) by MM intensity and 

damage state 

VI VII VIII IX X XI XII 

1 1 0 37.4 5.2 0.0 0.0 0.0 0.0 0.0 

2 0-1 0.5 56.7 52.0 7.7 0.0 0.0 0.0 0.0 

3 1-10 5 5.9 42.8 89.1 64.7 18.7 0.4 0.0 

4 10-30 20 0.0 0.0 3.2 35.2 77.9 53.2 6.9 

5 30-60 45 0.0 0.0 0.0 0.1 3.4 46.3 83.8 

6 60-100 80 0.0 0.0 0.0 0.0 0.0 0.1 9.3 

7 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Appendix C 

Matlab code for testing asymptotic properties of estimators 

% Program Mult_Cat 
% =================================================================== 
  
% The program will generate a specified number of synthetic earthquake 
% catalogues with specified parameters and then calculates beta using  
% different estimators in order to compare them. 
  
clear; 
  
%% INPUT PARAMETERS 
iterations = 100; 
iter = 0; 
m_min = 3.8; 
m_max = 7; 
sd_mag = 0.2; 
bvalue = 1; 
year_begin = 1900; 
year_end = 2010; 
lambda = 7; 
est_b = zeros(iterations,5); 
est_beta = zeros(iterations,5); 
  
% END OF INPUT PARAMETERS 
  
  
    
% ====================================================================== 
  
% Further calculations related to input data  
  
beta = bvalue/(log10(exp(1))); 
time_span = year_end - year_begin; 
  
  
     
% Loop estimates  a number of times to obtain a sample set of estimates 
  
  
while (iter < iterations) 
  
     
% Reset catalogue inputs 
time = 0.0; 
nr_eq_total1 = 0;     
sum_mag = 0; 
sd_mag3 = sd_mag * 3.0; 
   
  
%% CATALOGUE COMPUTATIONS ---------------------------------------- 
while (time < time_span) 
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  eps3 = 3.0 * eps; 
  r_n = rand; 
   
  if r_n < eps3 
     r_n = eps3; 
  end; 
   
  if (1.0 - r_n) < eps3; 
      r_n = 1.0 - eps3; 
  end; 
  
  int = -log(1.0 - r_n) / lambda;    % RANDOM TIME INTERVAL [Y] 
                                     % CORRESPONDING TO LAMBDA 
   
  time = time + int; 
   
  nr_eq_total1 = nr_eq_total1 + 1; % NR OF EQ-s STARTING FROM m_min 
  
  a1  = exp(-beta * m_min); 
  a2  = exp(-beta * m_max); 
  a12 = a1 - a2; 
  
  r_n1 = rand;  
  
% Calculate d_mag if errors follow the Gaussian distribution 
  d_mag = randn * sd_mag;         
  
% Calculate d_mag if errors follow the laplacian distribution  
% nu_c = sqrt((sd_mag^2)/2); 
% r_n2 = rand - (0.5); 
% d_mag = -nu_c * sign(r_n2) * log(1-2*abs(r_n2)); 
   
 % Truncate the errors 
  if abs(d_mag) > sd_mag3         
     if d_mag > 0 
        d_mag = sd_mag3; 
     else 
        d_mag = -sd_mag3; 
     end;    
  end; 
  
  % Simulate the real magnitude 
  rmag = -log(a1 - r_n1 * a12) / beta;      % G-R MAGNITUDE  
   
  % Add the real magnitude and error 
  mag = rmag + d_mag;                % APPARENT G-R MAGNITUDE 
  
  mag = .01 * round(100 * mag); 
  
  % Write to the catalogue 
  M(nr_eq_total1,iter+1) = mag;  
  %cat(nr_eq_total1,iter+1) = mag;  % removed for laplace run 
  sum_mag = sum_mag + mag; % added for laplace run 
   
end; 
count2 = nr_eq_total1; 
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% Exclude magnitudes below m_min % this causes the programme to fail and 
% the estimates to become distorted 
  
%count1 =0; 
%count2 =0; 
%while count1 < nr_eq_total1 
    %if cat(count1+1,iter+1)<m_min 
%       count1 = count1 + 1; 
        %M(count2+1,iter+1) = m_min; 
        %count2 = count2 + 1; 
        %sum_mag = sum_mag + M(count2,iter+1); 
    %else 
%       M(count2+1,iter+1) = cat(count1+1,iter+1); 
%       count2 = count2 + 1; 
       %count1 = count1 + 1; 
 %      sum_mag = sum_mag + M(count2,iter+1); 
    %end; 
%end; 
  
  
nr_eq_total = count2;  
  
mean_mag = sum_mag / nr_eq_total; 
  
  
%% Calculate estimators 
  
 if nr_eq_total > 0 
     
   %% Calculate b1 (Classic)  
  
  beta1 = 1/(mean_mag-m_min); 
  b1 = log10(exp(1))*beta1; 
  %b1 = 0.01 * round(100 * b1);     
   
   
    
   
   %% Calculate b2 (Classic-bounded) using the Regula falsi/ False 
position method 
   
   % Bounds 
  a = beta-0.5; 
  b = beta+0.5; 
  flag = 1; 
  maxerr = 0.00001; 
   
   % First iteration 
  fa3 = 1/a - mean_mag + m_min + ((m_max)*exp(-a*(m_max-m_min)))/(1-exp(-
a*(m_max-m_min))); 
  fb3 = 1/b - mean_mag + m_min + ((m_max)*exp(-b*(m_max-m_min)))/(1-exp(-
b*(m_max-m_min))); 
   
  % Ensure fa and fb have differing signs: 
  while sign(fa3) == sign(fb3) 
      a = a + 0.001; 
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      b = b + 0.001; 
      fa3 = 1/a - mean_mag + m_min + ((m_max)*exp(-a*(m_max-m_min)))/(1-
exp(-a*(m_max-m_min))); 
      fb3 = 1/b - mean_mag + m_min + ((m_max)*exp(-b*(m_max-m_min)))/(1-
exp(-b*(m_max-m_min))); 
  end; 
   
  c = b - (fb3*(b-a))/(fb3-fa3); 
  %c = (a*fb3 - b*fa3)/(fb3-fa3); 
   
  fc = 1/c - mean_mag + m_min + ((m_max)*exp(-c*(m_max-m_min)))/(1-exp(-
c*(m_max-m_min))); 
  fa = fa3; 
   
   
  % Subsequent iterations 
  while abs(fc) > maxerr 
      if sign(fa) == sign(fc) 
          a = c; 
      else 
          b = c; 
      end;       
      fa = 1/a - mean_mag + m_min + ((m_max)*exp(-a*(m_max-m_min)))/(1-
exp(-a*(m_max-m_min))); 
      fb = 1/b - mean_mag + m_min + ((m_max)*exp(-b*(m_max-m_min)))/(1-
exp(-b*(m_max-m_min))); 
      c = b - (fb*(b-a))/(fb-fa); 
      %c = (a*fb - b*fa)/(fb-fa); 
      fc = 1/c - mean_mag + m_min + ((m_max)*exp(-c*(m_max-m_min)))/(1-
exp(-c*(m_max-m_min))); 
      flag = flag +1; 
      if (flag == 1000) 
            break; 
      end; 
  end; 
  beta2 = c; 
  b2 = log10(exp(1))*beta2; 
  %b3 = 0.01 * round(100 * b3);  
   
  %% Calculate b3 (Classic-bounded + normal error) using the Regula 
falsi/false position method 
   
     % Bounds 
  a = beta-0.5; 
  b = beta+0.5; 
  flag4 = 1; 
  maxerr = 0.00001; 
  sd_err = sd_mag; 
   
   % First iteration 
  calc_a4 = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_a4 = calc_a4 + num/den; 
  end; 
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  fa4 = 1/a - mean_mag + (m_max*exp(m_min*a)-
m_min*exp(m_max*a))/(exp(m_min*a)-exp(m_max*a)) + a*(sd_err^2) + 
calc_a4*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
  
  calc_b4 = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_b4 = calc_b4 + num/den; 
  end;   
  fb4 = 1/b - mean_mag + (m_max*exp(m_min*b)-
m_min*exp(m_max*b))/(exp(m_min*b)-exp(m_max*b)) + b*(sd_err^2) + 
calc_b4*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi)));        
   
  % Ensure fa and fb have differing signs: 
   
  while sign(fa4) == sign(fb4) 
       
      a = a+0.001; 
      calc_a4 = 0; 
      for i = 1:nr_eq_total 
          y1 = (m_max+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
          y2 = (m_min+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
          num = exp(-(y1^2))-exp(-(y2^2)); 
          den = erf(y1) - erf(y2); 
          calc_a4 = calc_a4 + num/den; 
      end; 
      fa4 = 1/a - mean_mag + (m_max*exp(m_min*a)-
m_min*exp(m_max*a))/(exp(m_min*a)-exp(m_max*a)) + a*(sd_err^2) + 
calc_a4*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
  
      b = b + 0.001; 
      calc_b4 = 0; 
      for i = 1:nr_eq_total 
          y1 = (m_max+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
          y2 = (m_min+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
          num = exp(-(y1^2))-exp(-(y2^2)); 
          den = erf(y1) - erf(y2); 
          calc_b4 = calc_b4 + num/den; 
      end;   
      fb4 = 1/b - mean_mag + (m_max*exp(m_min*b)-
m_min*exp(m_max*b))/(exp(m_min*b)-exp(m_max*b)) + b*(sd_err^2) + 
calc_b4*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
  end; 
   
  c = b - (fb4*(b-a))/(fb4-fa4); 
   
   
  calc_c4 = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+c*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+c*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_c4 = calc_c4 + num/den; 
  end;  
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  fc = 1/c - mean_mag + (m_max*exp(m_min*c)-
m_min*exp(m_max*c))/(exp(m_min*c)-exp(m_max*c)) + c*(sd_err^2) + 
calc_c4*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
   
  fa = fa4; 
   
  % Subsequent iterations 
  while abs(fc) > maxerr 
      if sign(fa) == sign(fc) 
          a = c; 
      else 
          b = c; 
      end; 
       
  calc_a = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+a*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_a = calc_a + num/den; 
  end; 
  fa = 1/a - mean_mag + (m_max*exp(m_min*a)-
m_min*exp(m_max*a))/(exp(m_min*a)-exp(m_max*a)) + a*(sd_err^2) + 
calc_a*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
  
  calc_b = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+b*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_b = calc_b + num/den; 
  end;   
  fb = 1/b - mean_mag + (m_max*exp(m_min*b)-
m_min*exp(m_max*b))/(exp(m_min*b)-exp(m_max*b)) + b*(sd_err^2) + 
calc_b*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
   
  c = b - (fb*(b-a))/(fb-fa); 
   
   
  calc_c = 0; 
  for i = 1:nr_eq_total 
      y1 = (m_max+c*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      y2 = (m_min+c*sd_err^2-M(i,iter+1))/(sqrt(2*sd_err^2)); 
      num = exp(-(y1^2))-exp(-(y2^2)); 
      den = erf(y1) - erf(y2); 
      calc_c = calc_c + num/den; 
  end;  
  fc = 1/c - mean_mag + (m_max*exp(m_min*c)-
m_min*exp(m_max*c))/(exp(m_min*c)-exp(m_max*c)) + c*(sd_err^2) + 
calc_c*((sqrt(2)*sd_err)/(nr_eq_total*sqrt(pi))); 
  
  flag4 = flag4 +1; 
      if (flag4 == 1000) 
            break; 
      end; 
  end; 
  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

131 

  beta3 = c; 
  b3 = log10(exp(1))*beta3; 
  %b4 = 0.01 * round(100 * b4);  
   
  %% Calculate b4 (Classic-bounded + Laplace error) using the Regula 
falsi/False position method 
  
  nu_c = sqrt((sd_mag^2)/2); 
  % Bounds 
  a = beta-0.5; 
  b = beta+0.5; 
  flag = 1; 
  maxerr = 0.00001; 
   
   % First iteration 
   
   y=a; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
   for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end;  
   fa5 = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total; 
    
   y=b; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
  for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end; 
   fb5 = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total; 
    
   fa5_1 = fa5; 
   fb5_1 = fb5; 
   
  % Ensure fa and fb have differing signs: 
  while sign(fa5_1) == sign(fb5_1)  
      %    a = a + 0.001; 
           
      %    y=a; 
      %    calc = 0; 
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      %    z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
      %    z11 = (y*nu_c-1); 
      %    z12 = (y*nu_c+1); 
           
      %for i = 1:nr_eq_total 
      %y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      %y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      %x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      %x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      %num = x1*y1-x2*y2; 
      %den = -z12*y1+z11*y2+2; 
      %calc = calc + num/den; 
   %end;  
        
          %fa5_1 = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total; 
           
          b = b + 0.000001; 
           
          y=b; 
          calc = 0; 
          z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
          z11 = (y*nu_c-1); 
          z12 = (y*nu_c+1); 
           
     for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end;  
      fb5_1 = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total; 
           
      end;           
       
  
      c = b - (fb5_1*(b-a))/(fb5_1-fa5_1); 
       
       
   y=c; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
    
   for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end; 
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  fc = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total;   
   
  fa = fa5_1; 
   
  % Subsequent iterations 
  while abs(fc) > maxerr 
       
      if sign(fa) == sign(fc) 
          a = c; 
      else 
          b = c; 
      end; 
       
   y=a; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
   
   for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end; 
   fa = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total; 
   
    
   y=b; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
     
    for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end; 
   fb = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total;       
  
   c = b - (fb*(b-a))/(fb-fa); 
         
   y=c; 
   calc = 0; 
   z1 = (2*(nu_c)^2*y)/((nu_c^2)*y^2-1); 
   z11 = (y*nu_c-1); 
   z12 = (y*nu_c+1); 
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    for i = 1:nr_eq_total 
      y1 = exp(((M(i,iter+1)-m_min)*z11)/nu_c); 
      y2 = exp(((M(i,iter+1)-m_max)*z12)/nu_c); 
      x1 = nu_c + (M(i,iter+1)-m_min)*z12; 
      x2 = nu_c + (M(i,iter+1)-m_max)*z11; 
      num = x1*y1-x2*y2; 
      den = -z12*y1+z11*y2+2; 
      calc = calc + num/den; 
   end; 
   fc = 1/y - mean_mag + (m_max*exp(m_min*y)-
m_min*exp(m_max*y))/(exp(m_min*y)-exp(m_max*y)) + z1 + calc/nr_eq_total;  
       
      flag = flag +1; 
       
      if (flag == 20000) 
            break; 
      end; 
       
  end; 
   
  beta4 = c; 
  b4 = log10(exp(1))*beta4; 
  %b5 = 0.01 * round(100 * b5);  
  
   
  %% Write estimates to data set 
  est_beta(iter+1,1) = beta1; 
  est_beta(iter+1,2) = beta2; 
  est_beta(iter+1,3) = beta3; 
  est_beta(iter+1,4) = beta4; 
   
   
  est_b(iter+1,1) = b1; 
  est_b(iter+1,2) = b2; 
  est_b(iter+1,3) = b3; 
  est_b(iter+1,4) = b4; 
   
  
end; 
  
iter = iter +1; 
  
end; 
  
% END OF CATALOGUE AND ESTIMATE CALCULATIONS =========================== 
  
%% ASYMPTOTIC PROPERTY CALCULATIONS 
  
MSE = zeros(iterations,4); % Mean squared error 
AE = zeros(iterations,4);  % Absolute error 
count = zeros(1,4); % Number of absolute errors below a certain threshold 
  
iter1 = 0; 
  
while iter1 < iterations 
    for i = 1:4 
        MSE(iter1+1,i) = (est_beta(iter1+1,i)-beta)^2; 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

135 

        AE(iter1+1,i) = abs(est_beta(iter1+1,i)-beta); 
        if AE(iter1+1,i) < 0.1 
            count(1,i) = count(1,i)+1; 
        end;         
    end;     
    iter1 = iter1 + 1; 
end; 
  
asymp_est = zeros(3,4); 
  
for j = 1:4 
    asymp_est(1,j) = nansum(MSE(1:iterations,j))/iterations; 
    asymp_est(2,j) = count(1,j)/iterations; 
    asymp_est(3,j) = (nansum(est_beta(1:iterations,j))/iterations-
beta)/beta; 
end; 
  
% END OF PROGRAM: mult_cat ============================================== 
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