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ABSTRACT

In this study, we proposed a fractional order model of hepatitis B virus transmission dynam-
ics with two-age structure under vaccination. A qualitative analysis of the model is per-
formed. Basic reproduction number of the model is determined. Local stability conditions of
disease-free equilibrium point are proven by using fractional Ruth-Hurwitz conditions. Global
stability conditions of both disease-free and endemic equilibrium points are shown by con-
structing appropriate Lyapunov functions. Sensitivity analysis was done by using normalized
forward sensitivity index approach. Numerical simulation is performed to investigate the
effect of memory on hepatitis B disease dynamics by varying order of derivatives and to
simulate the effects of vaccinating newborns immediately after birth, vaccinating children
and adult vaccination. Then, we compared their effects on hepatitis B disease dynamics in
the sense of control and elimination. It is observed that the number of infective individuals
decreases faster and even falls to zero over a long run for the model with memory than
memory-less model. Comparing results between vaccination of different ages show that
increasing newborn vaccination immediately after birth has the highest effect on hepatitis B
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disease control.

1. Introduction

Hepatitis is an inflammation of liver and mostly
caused by viruses (Moorman et al., 2015; Rehermann
& Nascimbeni, 2005). Hepatitis viral infection is a ser-
ious public health problem worldwide. Hepatitis B
(HB) disease is liver infection caused by hepatitis
virus called hepatitis B virus (HBV). It can be acute
and resolve without treatment. However, some forms
can cause chronic hepatitis, meaning it lasts more
than six months. Having chronic hepatitis B increases
your risk of developing liver failure, liver cancer or
cirrhosis, (Rehermann & Nascimbeni, 2005; World
Health Organization, 2020). Hepatitis B virus is one
of the most serious and prevalent health problems,
affecting more than 2 billion people worldwide.
Although highly effective vaccines against hepatitis
B virus have been available since 1982, there are still
more than 350 million chronic carriers, 75% of
whom reside in the Asia Pacific region (Liaw & Chu,
2009). It is estimated that 1.4 million deaths per year
are caused by viral hepatitis, which is higher than
death caused by HIV and compared with death
caused by tuberculosis. Of those deaths approxi-
mately 47% are caused by HBV (Rehermann &

Nascimbeni, 2005; World Health Organization and
others, 2017). It is estimated that 240 million people
are chronically infected with hepatitis B. The largest
number of people with chronic HBV lives in the
African region (over 75 million) next to the Western
Pacific region (over 95 million) (Umare, Seyoum,
Gobena, & Haile Mariyam, 2016).

HBV infection can be transmitted through vertical
transmission (from mother to child at birth), horizon-
tal transmission (exposure to infected blood) and
sexual transmission (unprotected sex), and by using
needles with infected persons or inapparent percu-
taneous or permucosal exposure to infected blood
or other body fluids (Liaw & Chu, 2009; World Health
Organization and others, 2012). Although symptoms
not appear on most people when newly infected,
some people have acute illness with symptoms,
including yellowing of the skin and eyes (jaundice),
dark urine, extreme fatigue, nausea, vomiting and
abdominal pain. HB infection becomes chronic
depends on the age at which a person infected.
80%—90% of infants infected during the first year of
life, 30%—50% of children infected before the age of
6years and less than 5% of healthy persons who are
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infected as adults will develop chronic infections
(Dan, Moses-Eisenstein, & Valdiserri, 2015).

Vaccination of susceptible individuals especially
newborns is the most important way to reduce the
incidence of HBV infection (Lai, Ratziu, Yuen, &
Poynard, 2003; Liang, Zu, & Zhuang, 2018). Despite
the success availability of vaccine, problem of HBV
infection still remains. Therefore, it is important to
predict the future trends in HBV prevalence and pro-
vide full information for public health. One of the
possible methods to predict the prevalence of infec-
tious disease is to use mathematical model (Liang
et al,, 2018). As it is directly mentioned in Liaw and
Chu (2009) since the introduction of the hepatitis B
vaccine and other preventive measures, the world-
wide prevalence of hepatitis B infection has fallen.
However, chronic infection remains a challenging
global health problem. Thus, an improved under-
standing of hepatitis B virology, immunology, and
the natural course of chronic infection is important.

Mathematical model can be helpful in both per-
forming qualitative and quantitative evaluation, fore-
casting for both injecting drug wuse and
epidemiological information on the incidence of and
prevalence of infection, and evaluate the impact of
interventions aimed at secondary prevention or
harm reduction (Thomson, 2005). There are several
types of mathematical models have been used to
describe the spread of disease including hepatitis B.
These are the deterministic models, stochastic mod-
els, fractional order models, etc.

A system of ordinary differential equations is the
most used mathematical expression in modelling the
transmission dynamics of hepatitis B (Liang et al.,
2018). When ordinary differential equation is used
the state of the systems at each time does not
depend on the previous history of the systems. It is
memory-less. However, the evolution and control of
epidemic processes in human population can not be
considered without memory effect (Pimenov et al.,
2012). If people know the history of particular dis-
ease in their region, they use different preventive
measures, such as isolation of infected individuals
and vaccination, when possible (Saeedian, Khalighi,
Azimi-Tafreshi, Jafari, & Ausloos, 2017). Since memory
indicates the dependence of the system not only on
the current state of the system but also on previous
history of the system, it enables the prediction of
the future on the basis of experience (Kumar, Ghosh,
Samet, & Goufo, 2020; Pimenov et al.,, 2012; Tarasov,
2018). Fractional calculus is a powerfull tool to
describe the effect of memory. Fractional derivatives
and non-integer orders can be used to describe sys-
tems with memory. Due to its memory properties,
fractional differential equations have been used in
different areas such as physics, engineering,

biological systems and financial systems (Pimenov
et al., 2012; Saeedian et al,, 2017; Tarasov, 2018).

In the modelling of hepatitis B diseases, one of
the most important characteristics is considering age
(Liang et al., 2018). In the last 10 years, many
researchers have been using mathematical model to
study the dynamics of HBV transmission. For
example, the authors (Adu, Aidoo, Darko, & Osei-
Frimpong, 2014; Akbari, Kamyad, & Heydari, 2016;
Aniji, Kavitha, & Balamuralitharan, 2019; Kamyad
et al, 2014; 2014; Khan & Zaman, 2016; Kimbir,
Aboiyar, Abu, & Onah, 2014; Nana-Kyere, Ackora-
Prah, Okyere, Marmah, & Afram, 2017; Nayeem &
Podder, 2014; Seyoum Desta & Koya, 2019; Shaban &
Manoza, 2016; Shi, Lu, & Wang, 2019; Wiah, Makinde,
& Adetunde, 2015; Zhang, Guo, & Smith, 2018; Zou,
Zhang, & Ruan, 2010) propose mathematical model
of HBV transmission dynamics. However, most these
works did not consider both the effect of memory
using fractional order derivatives and age structure
model simultaneously. It is widely accepted that the
fractional order models have played substantial role
in the enhancement of results associated with the
existing mathematical model based on classical sys-
tem of ordinary differential equations. A large num-
ber of researchers have modelled many real
processes with the aid of fractional calculus. Due to
the applicability of differential equations with frac-
tional order in science and engineering, more
applied researchers have been attracted to it
(Carvalho, Pinto, & Baleanu, 2018; Ghanbari, Kumar,
& Kumar, 2020; Kazem, Abbasbandy, & Kumar, 2013;
Khan, Hammouch, & Baleanu, 2019; Khodabakhshi,
Vaezpour, & Baleanu, 2017; Kumar, 2014; Kumar,
Ghosh, et al., 2020; Kumar, Kumar, & Baleanu, 2016;
Qureshi & Atangana, 2019; Rashidi, Hosseini, Pop,
Kumar, & Freidoonimehr, 2014), and the references
there in, just to mention a few. Generally speaking,
fractional calculus is a generalization of classical dif-
ferentiation and integration to arbitrary (non-inte-
ger) order.

Zhang, Wang, and Zhang, (2015) consider age
structure model with out memory effect. Wiah et al.
(2015) and Shi et al. (2019) consider memory effect
but they did not consider age structure. To our
knowledge, no works have been done to model the
transmission dynamics of hepatitis B virus infection
by considering both age structure and effect of
memory. Thus, our main contribution is to formulate
a mathematical model that considers both memory
effect (fractional order derivatives) and structure at
the same time. Web has also performed stability ana-
lysis, sensitivity analysis and numerical simulations
and such model is used to investigate the effect of
varying parameters related to the memory and age
structure. Motivated by this, in this paper we



proposed a compartmental model of HBV transmis-
sion dynamics with two age structures by including
memory effect. Fractional calculus involves various
types of fractional order derivatives such as Riemann-
Liouville (RL), Caputo (C), Hamdard (H), Caputo Febrizo
(CF), Atangana-Baleanu (AB) and Atangana-Baleanu-
Caputo (ABC). The three most commonly used frac-
tional order differential operators, especially in model-
ling, are the Caputo, the Caputo-Fabrizio and the
Atangana-Baleanu-Caputo operators (Qureshi &
Atangana, 2019). However, in this paper, we use the
fractional order derivative in the sense of the Capito.
More details and definition of these fractional order
derivatives can be obtained (Podlubny, 1998; Qureshi
& Atangana, 2019) and the references therein.

The rest of the paper is arranged as follows: in
Section 2, we formulate age-structured compartmen-
tal model represented by system of ordinary differ-
ential equations and we extend to fractional order
model represented by system of fractional differen-
tial equations. In Section 3, qualitative analysis of
fractional order model is analysed. In Section 4, we
perform sensitivity analysis of parameters. In Section
5, we present numerical simulation. Summary and
conclusions of our study are presented in Section 6.

2. Model description

We divided the total population into eight classes
where S, represent susceptible children (children not
infected with hepatitis B virus (HBV) and not vacci-
nated), R, children vaccinated immediately after birth,
I children infected with HBV infection at birth, S, sus-
ceptible adult (uninfected adult), E, infected adult with
no symptoms (in latent incubation period), I, acutely
infected adult with symptoms, C, chronically infected
adults and R, recovered adults. New born to infected
mother become infected with (1—k) probability and
those children infected at birth does not go through
the acute phase. Newborn vaccinated immediately
after birth join R, with (w) being effectiveness of vac-
cine. Susceptible children S, join recovered children R,
with (v) rate when they got vaccine. Susceptible adult
become infected with HB infection through horizontal
transmission (any means of blood to blood contact
with infected classes) with (f3) rate of transmission and
join exposed adult E,. Exposed adult E, join acutely
infected adult /, with (¢) rate. Individuals in acutely
infected adult /, naturally recovered and join recovered
children R, with (y) rate and also join chronically
infected adults C, with (0) rate.

The model is based on the following main
assumptions:
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e The death rate is assumed to be constant for all
classes, and the total death is balanced by total
birth (the population constant).

e We assume that latently infected (E,;), acutely
infected (/;) and chronically infected (C,) by hori-
zontal transmission.

e Children born from exposed, infected and chron-
ically infected mothers can be infected at birth
and newborn infected at birth does not go
through the acute phase.

e The susceptible who vaccinated become recov-
ered and got permanent immunity.

e Individuals in acutely infected adults naturally
recovered and not infected again.

Children infected with HB infection at birth are
asymptomatic and do not go through the acute
phase of HB infection and they progress to chronic
phase of HB infection after 20-30years (Goyal &
Murray, 2014). For simplicity, we assume that chil-
dren infected at birth progress to chronic phase after
approximately 14years. We consider two classes,
children (aged< 14 years) and adult (aged > 14
years). The model parameters are defined in Table 1.

We present all information about the model descrip-
tion in the flow diagram given in Figure 1 below.

From the above flow diagram, the model without
memory can be represented by the following system
of nonlinear ordinary differential equations

B S pSalEatlat C)—(p + d)Ss

% =b(1-)(Sa + Ra + k(Eq +la + Ca))—(v + m 4 d)S,,
% = bw(Sq + Rg + Eg + lg + Ca) + vSc—(m + d)R,,

% =b(1—w)(1=k)(Eq + la + Ca)—(m + d)I.,

% = BSa(Eq+ lg + Ca)—(0 + d)Eg,

%a: gEa—(y+ 6+ d)l,,

7 = Vo + mle—(d +0)Ca,

dd'i“ = mR; + pSq + yl,—dR,,

(2.1

where the total population at any time t > 0 is given
by, N(t) = Sa(t) + Ea(t) + la(t) + Ca(t) + Ra(t) + Sc(t)
+R(t) + I(t) and given initial conditions are S4(0) =
Saos Sc(o) = Sco, Rc(o) = Reo, lc(o) = leo, Ea(o) = Eq0,lq
(0) = lao, Ca(O) = Cao, and Ra<0> = Rao.

To include the effect of memory we rewrite sys-
tems of ordinary differential equations (2.1) using
time-dependent integrals as given below,
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Bl [ 1) .03~ BSu6) €0 + 6) + Colo0)~(p -+ )50,
dS‘;it) = :0 01 (t—x)(b(1—w)(Sa(x) + Ra(x) + k(Eq(x) + Ia(x) + Ca(x)))—(v + m + d)Sc(x))dx,
Pl _ 31 (02 (D520 + Ralo) + Ea) + 1) + Co(x)) + V5.(x) (m + d)Ac(x)),
240 _ 5 (tX) (61 ) (1K) B0 + 1) + Ca0))—(m + e(x) ),
£t 31 (6X) (B3 (x) (Ea0) + 1a6) + Co06)) (o + A)Ea())c -
dlt) _ to(x (t—x) (0Ea(X)— (7 + 0 + d)la(x))dx,
dcc‘;t(t) - J: 51 (t—x) (01 (X) -+ Ml () (d + 6)Ca(x) ),
Rell) J 1 (6=X) (MR(x) + PSalx) + 71a(x)—Re (X)),
where 6, (t—x) used as time-dependent kernel defined by the following power law correlation function.
01 (t—x) = F(;_ ) (t—x)""2, (2.3)
where 0 <2 < 1 and I'(x) represents Gamma function.
If we substitute (2.3) into (2.2), then (2.2) becomes
S ()" 2(mS ()~ BSa(X) (Ea ) + 1a(x) + CalX)) —(p + d)Sa())l,
) iy | 60 (6005500 + Rul) (B0 +10) + Colw)) v+ + i)
) |, (07 2000550 + Ral) +Ex) 10+ Cal) + V500~ -+ Rl
:Eff) ~ i | 07 600010600 + 100 + o)~ + o) Y
20 L 0 S €l + 100 + o) (o + D)
d’;ﬁ” o (a1_ 5 : (t=x)"2(0Ea(X)— (7 + 0 + d)la(x))dbx,
dcd"t(t) - = (a1_ 3 : (t=x)""2(0la(x) + M (x)—(d + 6)Ca(x))dx,
Bt i | 0 ) 45,0 4 1000
The right-hand side of system of Equation (2.4) is fractional integral of order (z—1), 0 < & < 1 on the interval

[to, t], which is represented by D,

(a=1)

Since fractional derivatives are left inverse of fractional integrals, we apply Caputo fractional derivatives of

order (o—

Caputo is

1) on both sides of Equation (2.4). Then, the following system of fractional differential equations in
sense obtained.

D*Sq = mSc—BSa(Eq + 1g 4+ Co)—(p + d)Sa,

D*S. = b(1—w)(Sq + Ra + k(Eq + Ig + Cq))— (v + m + d)S,,
D*R. = bw(Sqg + Ry + Eq + 1g + Cg) + vSc—(m + d)Re,

D*l. = b(1—w)(1—k)(Eq + I + Cg)—(m + d)l,,

D*E; = BSa(Ey + 1g + Co)—(0 + d)Eg,

D*ly = 6Eq—(y + 0+ d)lg,

D*Cy = 0l, + mi.—(d + 0)Cy,

D*R, = mR, + pSy + yl,—dR,.

Since the total population N(t) = S4(t) + Eq(t) + la(t) + Ca(t) + Ra(t) + Sc(t) + Rc(t) + Ic(t), we normalize by
dividing both sides by (N(t)) as 1 =S, + E; + Ig + C4 + Ra + S¢c + Rc + I, where Sg,Eg, 14, Ca, Ra, Sc, Re, I are frac-
tion of each classes in the total population.



Since, Ry=1—(Sq+Es+1la+Ca+Sc+R+1),
we omit the last equation of (2.5) and replace for R, in
the second and third equations of (2.5), then we obtain

D", = 6Eg—(y + 0 + d)lg,
D*C, = 0l, + ml.—(d + 0)C,,

where D:% and D* represents Caputo fractional

derivatives of order O0<a<1. 54(0) =Sz >
0,5:(0) =Sc0 > 0,R:(0) =R > 0,1.(0) =l > 0,E,
(0) = an >0, /G(O) = /00 >0, and CG(O) = Cao >0
are given initial conditions.

3. Model Analysis
3.1. Basic mathematical properties of the model

Here, we show the solution to model Equation (2.6)
is non-negative. Since we are dealing with the num-
ber of population which cannot be negative number,
we show there is non-negative solution to
our model.

Theorem 3.1 (Non-negativity of the solution).
Solution to our fractional order model system (2.6) is
non-negative, where, Sgo > 0,50 > 0,Rc0 > 0,10 >
0,Es > 0,150 > 0, and Cyo > 0.

Proof. We prove non-negativity of the solution to
system of Equation (2.6) as follows
Let us take the first equation of (2.6)
D*Sg = mS.—BSq(Eq + la + Ca)—(p + d)S4
= D*Sq > —fSa(Ea+ la + Ca)—(p+ d)Sq (3.1
= D*Sg > —(Bh1 + p + d)S,,
where hy = max{E; + I + C4}.
By taking the Laplace transform of (3.1), we get
L{D“Sa} > L{—(ﬁfh +p+ d)sa}
= $*L{Sq}—5*""Sq0 > —(Bh1 + p + d)L{S4}
= (" + (Bh +p + d))L{Sq} > 5" "Sao (3.2)
51—1500
= {S}>—r———.
{Sa) ~s*4phi+p+d
By applying the inverse Laplace transform to (3.2),
we obtain

sot—lso
Sg > L7 —a}.:>5
= {5“+ﬂh1—|—p+d ?

> SeoFs 1 (—(Bh1 +p + d)t).

Since Sg0 >0 and 0<E, ;(—(Bhi +p+d)t*) <1,
Sa >0, then S,(t) >0, Vt>O0.
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Let us take the second equation of (2.6):
D*Sc = b(1—w)—b(1—w)((1—k)(Eg + Is + Cq) + Sc +
Re+1)— (v+m+d)S.. When =1, we have

D*S; = mSc—Sa(Eq + 1l + Co)—(p + d)Sa,

D*S. = b(1—w)—b(1—w)(1—k)(Eq + la + C4) + Sc + Rc + Ic)— (v + m + d)S,

D*R. = boo—bw(Sc + Rc + Ic) + vSc—(m + d)R,,

D*l. = b(1—w)(1—k)(Eg + I + Cg)—(m + d)l,, (2.6)
D*E; = fSa(Eq + 1g + Cq)— (0 + d)E,,

D*S. > —(v+m+d)S.. (3.3)
Taking Laplace transform of (3.3), we get
5x_15c0
L{s}>—- 34
{C}_s“+v+m+d 34

Applying the inverse Laplace transform to (3.4), we
obtain
SC > SCOE%] (—(V +m-+ d)ta).
Since, S0 >0, and 0 < E, 1 (—(v+m+d)t*) <1, we
have S, > 0
Let us take third equations of (2.6)

D*R. = boo—bw(Sc + Rc + Ic) + vSc—(m + d)R.  (3.5)
= DR, > boo—bw(Sc + Rc +Ic)—(m+ d)R..  (3.6)

When w =0, we have

D*R. > —(m + d)R.. (3.7)
Taking Laplace transform of (3.7), we get
5“_1Rc0
LR} > ——— . 3.8
{ }_(s“+m+d) (38)

By taking inverse Laplace transform of (3.8), we
obtain
RC Z RC()EO“ (7(m + d)t“) Z 0.
Let us take fourth equation of (2.6)
D*lc = b(1—w)(1—k)(Eg + Ig + Cq)—(m + d)l,

= DI, > —(m + d)L. (39)

By taking Laplace transform of (3.9), we obtain

7—1/c
i} = ommar
by applying inverse Laplace transform we get
le > IoEy 1 (—(m +d)t*) > 0.

Let us take the fifth equation of (2.6)

D*Eq = BSa(Eq + la + Ca)— (0 + d)Eq

= DB, > —(0 + d)Es. (3.10)

Solving (3.10) by method of Laplace transform,
we obtain
Eq > EgoEy1(— (0 + d)t*) > 0.
Let us take sixth equation of (2.6)
D*ly = 6Eq—(y + 0 + d)l,,
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=D*g > —(y+0+d),. (3.11)

When solving (3.11) by method of Laplace transform
we obtain
la > laoEs 1 (—(y + 0+ d)t*) > 0.
Let us take seventh equation of (2.6)
D*Cq = Olg + mlc—(d + 9)C,.
So,

= D*C, > —(d + 8)C,. (3.12)

Solving (3.12) by method of inverse of Laplace trans-
form, we obtain

Ca > CaoEy 1 (— (6 + d)t*) > 0.
Therefore, solution to system of fractional differential
equation (2.6) is non-negative provided that initial
data are non-negative.

Theorem 3.2 (Positively Invariant Region). The region
Q = {(Sa:Sc/ReslerEarla, Ca) € R|0 < S¢ +Re + I + Sq

D*l; = gEg—(y+ 0 +d)l, =0,
D*Cy = Olg + ml.—(d + 6)Cq = 0.

+E, + 1o+ Cq < 1} is positively invariant region given
that the initial data is non-negative.

Proof. Suppose 0 < S¢o + Reo + lco + Sao + Eao + lao +
Cqo < 1. Then adding all equations of (2.6), we get
D*(Sc + Re +le + Sa + Ea + la + Ca)
=b—d(Sc+Rc+1lc+Sa+ Eqg + la + Ca)
—b(Sc + Rc + Ic)—mR:—pSq—yla—0C,,
= D*(Sc + Rc + lc + Sq + Eq + 1o + Ca)
<b—d(Sc+Rc+lc+Sa+Eq+ 1o+ Ca)
Let Z=(Sc+Rc+1lc+Sa+Eq+1q+ Cy)., then
D*Z < b—dZ = L{D"Z} < L{b—dZ},
= s*L{Z}—s*""Zy < bsT'—dL{Z}
= (" +d)L{Z} < bs' +5*7'Z,

571 Sa71

R R )

VA

LZ} b 571 5171
=17} < ,
R R )

where L is Laplace transform operator. By applying
inverse Laplace transform we obtain Z <
bt"Ey i1 (—dt*) + E, 1 (—dt*).

Using the relation E, 43(2) :zEWH;(z)—&—ﬁ we

have t"E, ,1(—dt") =L (1—E, (—dt*)). Then Z <
5 (1=E, 1 (—dt*)) + E, 1 (—dt*).

Since 0<E,(—dt*) <1, we have 0<Z<1
which implies that, 0 < (Sc+ R+

le4+Sa+Ei+1,+C) <1.

Therefore, region Q = {(Sa Sc.Re,lciEarla,Ca) €
RZ|0<Sc+Rc+1lc+Sq+E+la+Cq <1} is posi-
tively invariant region.

3.2. Disease-free equilibrium(DFE) point and
basic reproduction number (R,)

We begin by determining the disease-free equilib-
rium (DFE) point when there is no infection in the
population. So DFE point of model system (2.6) is
obtained by making all equations of (2.6) equal to
zero. That is

D*Sq = mSc—PSa(Eq + g + Co)—(p + d)Sa = 0,

D*Sc = b(1—w)—b(1—w)((1=Kk)(Eg + la + Cq) + Sc + Rc + Ic)—(v+ m + d)S. = 0,
D*R. = bo—bw(Sc + R + Ic) + vSc—(m + d)R. =0,

D*lc = b(1—w)(1—k)(Eq + la + Ca)—(m + d)I. = 0,

D*E, = BSq(Eq+ 1o+ Cq)—(c+ d)E; =0,

(3.13)

Since, at DFE point there is no infection we have
l.=0,E,=0,l, =0, and C; =0, when we substi-
tute I. =0,E, =0,l;, =0 and C, = 0 into system of
Equation (3.13), we obtain

mSc—(p+d)Sqe =0,
b(1—w)—b(1—w)(Sc + Rc)— (v + m+d)S. = 0,
bow—bw(S; + R.) + vSc—(m + d)R. = 0.

(3.14)

Therefore, DFE point is obtained by solving for sys-
tem of Equation (3.14). From first equation of (3.14),
we have

m
Se =—S.. 3.15
“= o rde (3.15)
From the second equation of (3.14), we have
v+m+d
Re=1-S—-——"_5,. 3.16
C C b(.l _ CU) C ( )
From the third equation of (3.14), we have
bw v—bw
R, = Se. 3.17
¢ (bw+m+d)+(bw+m+d) ¢ (3.17)

Equate (3.16) and (3.17) and solve for S, we
obtain
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o b(1—w)(m+d)
SC_(\/erer)(b+m+d)' (3.18)

Substituting (3.18) into (3.15), we get
0 mb(1—w)(m + d)

Sa p+d)(v+m+d)(b+m+d)’

Then substituting (3.18) into (3.16), we get
R0 bv + bo(m + d)

¢ (v+m+d)(b+m+d)’

Therefore, DFE point is given by,
mb(1—w)(m + d) b(1—w)(m + d) bv + bo(m +d)

0 <@+mw+m+mw+m+®’w+m+®w+m+w’w+m+®w+m+®

= ,0,0,0, 0) .
Next, we find threshold parameter known as basic reproduction number (Ry). Basic reproduction number is
defined as the average number of secondary infective produced by the presence of one-infective individuals
in totally susceptible populations. To compute Ry, we use method of next-generation matrix method and R is
spectral radius of next-generation matrix (Van den Driessche & Watmough, 2002).
Let us consider from (2.6) only an equation of infective classes only as follows

D*lc = b(1—w)(1—k)(Eq + Ia + Cg)—(m + d)I,

D*Eq = BSa(Eq + I 4 Ca)—(0 + d)Eq,

D*l, = 6E,—(y + 0 + d)l,,

D*Cy = 0l + mi.—(d + 9)C,.

Let f be the rate of introduction of new infective and v be transmission after new infection and transfer of
individual out of compartment, then

b(1-0)(1-K)(Ea + 1o + Ca)
BSa(Ea + la + Ca)
(m+d)l.
(o +d)E,
(y+0+d)ls—0ckE,
(d + 6)Ca—0lg—ml,

f:

vV =

Let F and V be the Jacobian matrix of f and v evaluated at DFE point, then
0 b(1—w)(1—k) b(1—w)(1-k) b(1—w)(1—k)

.o ps? st st
0 0 0 0
0 0 0 0
(m+d) 0 0 0
Vo 0 (6+44d) 0 0
a 0 - (y+0+d) 0
-m 0 -0 (0+4d)
The inverse of V is given by
! 0 0 0
(m+d)
1
0 0 0
-1 _ (O' + d)
YT 0 i 1 0
(c+d)(y+0+d) (y+0+4d)
m al 0 1

m+d)o+d) (+d)(e+d)(y+0+d) (+d)(y+0+d) (5+4d)
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Then
arbs ai(by+bs+bs) ai(bs+b;) aibs
v — axbs Gz(bz + b3 + be) 02(b4 + b7) a,bg
0 0 0 0|’
0 0 0 0
Where a‘| = b(1 7(,{))(1*/(), az == ,352,()2 = ((ild)’ b3 :W‘VM, b6 :WM, b7 :W(M, bg ==

1 b — m
(0+d) ' 75 — (m+d)(6+d)

The characteristic polynomial of FV~" is given by p(1) = (1)*(A—a;bs—a, (b, + bs + bg)). The eigenvalues
of FV~" are roots of characteristic polynomials P(%).

Roots of characteristic polynomial are 1 = A, = 43 =0 and 4 = a1bs + a>(b, + b3 + bg).

When we substitute for ay, bs, ay, by, bs and b, we get 14

; _ mb(1-w)(1-k) Pmb(1—w)(m +d)((6 + d)(o + y+ 0+ d) + ¢0)
T mrd)6+d)  (prd)b+m+d)(v+m+d)(o+d)(y+0+d)S+d)

>0.

Since the largest eigenvalue is A4, then the basic reproduction number is given as

~ mb(1—w)(1—k) pmb(1—w)(m +d)((5 + d)(c + 7 + 0+ d) + a0)
T m+d)(0+d)  (p+d)b+m+d)(v+m+d)(o+d)(y+0+d)(5+d)

3.3. Local and global stability of disease-free equilibrium point

Theorem 3.3. (Local stability of DFE) The disease free equilibrium (DFE) point of our model system (2.6) is locally
asymptotically stable if and only if Ry < 1.

Proof. To show that the DFE point of our model system (2.6) is locally asymptotically stable, we need to
show that all the eigenvalues of Jacobian matrix J of system of Equation (2.6) evaluated at DFE point satisfies
the condition |arg(4;)| > «5.

Let us find the Jacobian matrix J of model system of Equation (2.6) at DFE point. Jacobian matrix J of (2.6)
evaluated at DFE point is given by

~(p+d) 0 0 0 B0 By pS]
0 a, —b(1 —w) —b(1 —w) ar ar ar
0 —bw+v as —bw 0 0 0
Jpo = 0 0 0 —(m+d) b(1—w) b(1—w) b(1-w) |,
0 0 0 0 BS2—(c+d) BS8 BS?
0 0 0 0 g —(y+0+d) 0
0 0 0 m 0 0 —(0+d)

where —b(1—w)—(v+m+d) = a1, —b(1—w)(1—k) = a3, —bw—(m + d) = as. The characteristic polynomial
P(2) of Jp is given by

P)=—(p+d+A)(v+m+d+i)(b+m+d+ )2 +A2+Di*+Hi+Q),

where A=c+7y+0+5+4d—pS%, D=(y+0+d)(c+d)+(c+7+0+2d)(6+m+2d)+ (5+d)(m+
d)—BS2c+y+0+0+m+3d) —mb(1—w)(1—k), H=(c+7y+0+2d)(0+d)(m+d)+(y+0+d)(c+
d)(6+m+2d) —mb(1 —w)(1 —k)(c+7y+0+2d) — BSL((6+d)(m+d)+ (6+m+2d)(y+0+d) +o(m+
o+0+2d), Q=(y+0+d)(c+d)(6+d)(m+d)(1—Ry).

The eigenvalues of Jpo are the roots of P(1). Roots of characteristic polynomial are 1 = —(p+d), 1, =
—(v+m+d), A3 =—-(b+m+d) and

AR +DP+HA+Q=0.
Let us set
p(2) =*+ AP +D)* + HL+Q. (3.19)

To show all roots of polynomial (3.19) satisfies |arg(4;)| > a5, we use fractional Ruth-Hurwitz conditions
(Ahmed, El-Sayed, & El-Saka, 2006)
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The discriminant D(p) of the polynomial p(1) is given by

)
Y
S
Il
oo Mo O -—
w
>
N
(w]
T oocool oo

0 0 0 4 3A 2D
D(p) = 16D*Q + 144DH*Q + 144A°DQ’ + 18ADH? + A’D’H? + 18A*DHQ + 68AD*HQ
+ 256Q% —64D*Q*—4A’D>Q—27A%Q*—27H* —4D*H? —4A3H? —192AHQ?* —6A’H?Q.

All roots of polynomial (3.19) satisfies |arg(4;)| > 7 if the following conditions holds

e If D(p)>0,A>0,D>0,H>0,Q>0,0<73, then all roots of polynomial (3.19) satisfies |arg(¥;)|>aZ,
which implies E° is locally asymptotically stable.

e If D(p)>0,A<0,D<0,H<0,00> 3, then all roots of polynomial (3.19) are not satisfies |arg(h;)|>aZ,
which implies E° is unstable.

e If D(p)>0,A>0,D>0,H>0,ADH—H?* = A’Q, then all roots of polynomial (3.19) satisfies |arg(};)| > aZ for
all o € (0,1).

e If D(p)<0,A>0,D>0,H>0,Q>0,0< 3, then all roots of polynomial (3.19) satisfies |arg(};)| > o.Z

e If D(p)<0,A<0,D<0,H<0,0> 7, then all roots of polynomial (3.19) are not satisfies |arg(};)| > aZ.

e If D(p) <0,A>0,D>0,H>0,ADH—H?* = A?Q, then all roots of polynomial (3.19) satisfy |arg(};)| > a2, for
alla e (0,1)

The necessary condition that all roots of (3.19) satisfy |(4;)| >«5is Q>0, and Q > 0, if and only if Ry < 1.

Theorem 3.4. (Global Stability of DFE). The disease free equilibrium point is globally asymptotically stable
if Rg < 1.

Proof. To proof this theorem we construct a Lyapunov function given below

yo_m /+[(5+d)(0+“/+9+d)—|—90]t_ <9+(5+d
(c+d)(y+0+d) T \y+0+d

el >/a+Ca.

Then, we find Caputo fractional derivatives of V, to obtain

(0+d)(c+y+0+d)+0a] _, 0+6+d\ -, .
(c+d)(y+0+d) Fat y+0+d Dla +D"Ca.

Then substitute for D*I., D*E,, D*I,, and D*C, from system (2.6) into (3.20), we get
‘ 3+d)(o+y+0-+d)-+-0
DV = 15 (b(1=0)(1=K)(E @+ o+ Co)—(m +d) 1) + [HAZEE0] (85, (Ea + la + Co)— (0 + d)Ea) +

(3.20)

m
DV =—D%
m+d C+[

m-+d
(ﬁﬁ@@&*W+0+dmy+wg+mu4d+®g)
This implies
D“V:M(Ea—Ha—kCa)—mlc
m—+d
(5+®®+v+0+®+ﬁj F5+®w+y+9+@+gg
Sa(Eq + 1o + Co)— E
[ (c+d)(y+0+d) FSalEa tla +Ca) (y+0+d) a
0+6+d
g;:@;ggﬁ—w+5+dm+ﬂm+mk4d+®g.

By collecting like term we obtain
mb(1—w)(1—k)
m+d
(6+d)(oc+y+0+d)+ 0o
(6+d)(y+0+d)

D*V = (Eq + g+ Ca)

BSa(Ea +la + Ca)—(0 + d)Eq— (5 + d)(la + Ca),

which implies
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L, [mb(1—0)(1—K) [0+ d)(o+7+0+d)+00] .

DV—{ T d [ 10+ 01 d) }ﬂsa (5+d)](Ea+la+Ca).
So, we have

. mb(1—0)(1-k) [0+ d)(o+7+0+d)+00] .

DV_(5+d)[(5+d)(m+d) {(5+d)(o+d)(~/+0+d)}ﬁsa 1]<E“+’“+C")' (3.21)

At the DFE point, (3.21) becomes

D*V = (6 + d)[Ro — 1](Eg + Is + Cp), thatis, D*V =[Ry — 1](0 + d)(Eq + I5 + Cy).

So, D*V <0, if Rg < 1.

Furthermore, D*V =0 if E;, =1, =C,=0 or Ry = 1. Therefore, V is Lyapunov function on the feasible
region and the largest compact set in the feasible region.

{(SasSciResle, Earla, Ca) € R7,D*V = 0} is the singleton (52,52, R?,0,0,0,0).

Hence, the DFE point of our model is globally asymptotically stable if and only if Ry < 1.

3.4. Endemic equilibrium (EE) point

Endemic equilibrium point occurs when the disease exist in the population. EE point of our model is obtained
by making right hand side of all equations of system (2.6) equal to zero. EE point of our model is obtained by
solving the following system of equations

mSc—PSa(Eq + g + Co)—(p + d)Sq = 0,

b(1—w)—b(1—w)(1—k)(Ea + Ia + Ca) + Sc + Rc + Ic)—(v + m + d)S. = 0,

baw—bw(Sc + Rc + Ic) + vSc—(m + d)R. =0,

b(1—w)(1—k)(Eg + Ig + Ca)—(m+d)l. =0, (3.22)
pSa(Ea +1a + Ca)—(0 + d)E; =0,

oEa—(y+0+d)ly =0,

Olg + mlc—(d + 6)Cq = 0.

From fourth equation of (3.22) we have

(m+d)
E,+1 =7 . 2
From sixth equation of (3.22) we have
o
I, = 3.24
T (p+0+4d) (3-24)
From seventh equation of (3.22) we have
0 m
= — .. 2
Cq d+6a+d+5c (3.25)
Plugging (3.24) into (3.25)
Oo m

C, = (3.26)

E,+ Ic.
d+8)(y+0+d) * d+6°
Substituting (3.24) and (3.26) into (3.23) and solving for E, in terms of I, we obtain

(y+0+d)((m+d)(d+d)—mb(1—w)(1—k))

T BT o)1 K+ )7+ 0+ d)+o(0+d) +0) 3.27)

From the fifth equation of (3.22), we have
BSa(Ea+1a + Cq) = (0 + d)E,. (3.28)
Put (3.23) and (3.27) into (3.28) and solve for S,

o _ (04 +0+d)(m+d)(6 +d)=mb(1-)(1-k))
° Bm+d)(6+d)(y+0+d)+0(0+d)+a0)

(3.29)

Substitute (3.23) into the second equation of (3.22) and solve for R, in terms of /- and S, we get

m+d v+m-+d
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From third equation of (3.22), we have

bw v—bw bw

R. = c— Ic. 3.31
T T botmtd botmid boimid (3:31)

By equate (3.30) and (3.31) and solve for S, in terms of /., we get

b(1—w)(m +d) m+d
= - l . . 2
= (v+m+d(b+m+d) vim+d© (3.32)
Substituting (3.28) into the first equation of (3.22) yields

mSc—(o + d)E;—(p+ d)S, =0 (3.33)

Substituting (3.27), (3.29) and (3.32) into (3.33) gives
mb(1—w)(m + d) B m(m +d)l B (c+d)(y+0+d)((m +d)(5+d)—mb(1—w)(1—k))l _(p+d)S =0
Vimtdbimid vim+dS b —w)(d—K(o+d)(y+0+d) +o06+d +a)c ¥ a =
mb(1—w)(m + d) _m(m+d) _(cr+d)(y+0+d)((m+d)(5+d)—mb(1—w)(1—k))
v+m4d)(b+m+d) vdm+d b(1—w)(1—k((0+d)(y+0+d) +a(d+d)+ab)

I = (p+d)S;,.

Hence, we have
mb(1—w)(m + d)
(v+m+d)(b+m+d)

—(p+d)S, = (m(m+d) (a+d)(y+0+d)((m+d)(5+d)mb(1w)(]k)))lc.

vim+d b1 —o)(1—k)(0+d)(y+0+d) +a(d+d) +a0)

After some calculation, we obtain
I =M(Ro—1), (3.34)

C
where M = 20=elI0Em OG0  gnd y = mb(1-w)  (1-k)(m +d)((6+ d)(o+7+0+d)
+00) + (o +d) (y + 0+ d)(v+m+d)((m+ d)(6 +d) —mb(1-w)(1-k)).
Substituting (3.34) into (3.27), we obtain

EX = MiM(Ro—1), (3.35)
— (+0+d) ((m+d)(5+d)—mb(1—w) (1—k)
where My = b((1/ 7w)(17(kr;1((64)r(d)(7+6r+nd)(+a(a(;J£d)+a>9)‘
Substituting (3.35) into (3.24), we obtain
O'M]M
I = (Ry—1) ———-. 3.36
a ( 0 )(V+0+d) ( )
Substituting (3.34) and (3.36) into (3.26), we get C; = (RO*UM((M(%% ﬁ)
Substituting (3.34) into (3.32) we get S} = B (b(1-w)~M(b +m + d)(Ro—1)).
Substituting (3.32) into (3.30), then (3.30) becomes
bv+b d
- v+ bo(m +d) v (3.37)

(v+m+db+m+d) v+m+d°©

Then substituting (3.34) into (3.37), we obtain
. bv+bo(m+d)—v(b+m+ d)MRy—1)
R = .
¢ (b+m+d)(v+m+d)

Hence, if Ry > 1, then model (2.6) has unique endemic equilibrium point given by E* = (S}, St R: 15, ELL 15, C).
In this section, we prove global stability of endemic equilibrium (EE) point (E*).

Theorem 3.5. (Global Stability of Endemic Equilibrium(EE) Point). Let o« € (0,1) and R, > 1,then unique endemic
equilibrium point E* is globally asymptotically stable.

Proof. Consider the following function
L(t) = L1(Sa(t)) 4 L2(5c(t)) 4 L3(Re(t)) + La(le(t)) + Ls(Ea(t)) + Lo(la(t)) + L7(Ca(t)),
where  Li(Sa(t) = 5(Sa=5%,  La(Sc(t) =3 (Sc=S:)2 L(Re(0)) =  (Re=R)?, La(l(t) = 3 (le—1e ) Ls(Ea(1)) =
L (Ea—E5)2 Lo(la(t)) = 1 (la—13)* and Ly(Co(t)) = 1 (Ca—Cy)>.
The function L is well defined, continuous, and positive definite for
all Sg(t) >0,5:(t) >0,R(t) >0,I(t) >0,Eq(t) > 0,I4(t) >0,C4(t) > 0.
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Table 1. Table of parameter symbols and their description.

Parameter symbol Parameter description

Transmission rate

Progression rate from exposed adult to acutely infected adult
Progression rate from acutely infected adult to chronically infected adult
Birth rate

Death rate

Recovery rate from acutely infected adult

Disease-induced death rate in chronically infected adult

Infant vaccination coverage immediately after birth

U2 QAT DA™

e

p Adult vaccination coverage

m Maturation to adult age above 14 years of age

v Vaccination coverage in children

1—k Probability that disease transmit to new born at birth

The Caputo fractional derivative of L yields
D*L(t) < (Sa=55)D*(Sa—S;) + (Sc=57)D*(Sc—5¢) + (Re—RE)D*(Re—R?) + (le—Ig)D* (Ie—I¢)
+(Ea—E5)D*(Ea—E3) + (la—=15)D* (la=13) + (Ca—C5)D*(Ca—C5).
= D*L(t) < (5a—S;)D"Sq + (5.—5;)D*Sc + (R—R})D*Rc + (Ic—1I%)D*I. + (Eq—E};)D*Eq
+(lg—15)D*lq + (Cq—C)D*C.

From model equation (2.6) it follows that
D*L(t) < (Sa—S;)(MSc—pSa(Eqa + la + Ca)—(p + d)Sa)

+ (5c=5;7)(b(1—w)—b(1—w)(1—k)(Eq + la + Ca)—b(1—w)(sc + Ic + Re)—(v + m 4 d)S.)

+ (Re—R;)(bw—bw(Sc + R + Ic) + vSc—(m + d)Rc) + (I-—15) (b(1—w)(1—k)(Eq + la + Ca)—(m + d)l¢)

+ (Ea—EZ)(BSa(Ea + la + Ca)—(0 + d)Eq) + (la—13)(0Ea— () + 0 + d)la) + (Ca—C3)(0lg + mic—(5 + d)Cq).

This implies D*L(t) < mS:Sq +BSaSy (Ea+1la +Ca) + (p+d) SaSi—BS2 (Eq+ g+ Ca)—(p +d) S2—mS. S+
b(1-w)Sc+ b(1—w)(1=k)(Ea +la+ Ca)S; +b(1—w)(Sc +R c+1)Si+(v+m+d)Sc S;—b(1—w)(1-k)(Eq
+g + Ca) —b(1=®)(Sc + Re +1c)Sc—(v+m+d) S2—b(1—w)S: +bwR: + VScR+ b (Sc + Re+ Ic)R: + (m +
d)Re  R:—bw(Sc+  Rc+I)R—(m+d)  RP—bwR:—VvSR:  +b(1—w)(1—k)(Eg+la+ Co)le  +(m+
dE—b(1—w)(1—k) (Eq+1lqa + Ca)li—(m+d)? + B Sa(Eq+ lg + Ca)Ea + (0 + d) EqEi—(0+ d)E2 —pSa(Eq +1
a+Co)Es + 0Ealg+  (y+0+d)aly, —(y+0+d)P—cE, [E+01,C, +miCo+ (0+d)Ca  Ci—(5+d)C
—HlaCa m ICCa'
By collecting the positive terms together and negative terms together, we obtain D*L(t) < Y—X, where

Y = Sa(mSc + (p 4 d)S}) + BSa(Eq + la + Ca) (Sh + Eq) + b(1—w)(1—k) (Eq + Ig + Ca) (S + 1)
+ (b(1—w)S; 4+ bR ) (Sc + Re +Ic) + Sc(v(S; + Rc) + b(1—w)) + bR + (m + d)(RR: + II7 + 5c57)
+ (6 4 d)E4E} + 0la(Eq + E2) + (Olg + mle + (8 + d)C)Ca
And
X = BSa(Eq+la+ Ca)(Sa + Ej) + (p + d)S; + mSS; + b(1—w)(1—k) (Eqa + la + Ca) (Sc + I7)
+ (b(1=)Sc + bwR:)(Sc + Re + Ic) + vSZ + b(1—w)SE + (ba» + VSR + (m + d)(S2 + R2 + 12) + (0 + d)E2
+(y+ 0+ d) + ol + (6 + d)C2 + 01,C;, + mIC,.
Hence, D*L(t) <0 if and only if Y <X.
Furthermore, D’L(t) = 0 if and only if Sq = S}, Sc = S5, R =R e =I5 Ea = Ef Ia =15, Co = C.

Therefore, L is Lyapunov function on the feasible region and the largest set in the feasible region
{(Sa,Sc/Rerle, Earla, Cq) € R7, DL = O} is the singleton (S, St R:, 1%, Ex, 15, Cr).

4. Sensitivity analysis

In this section, we do sensitivity analysis of model parameters. For this, we do sensitivity analysis of basic
reproduction number R, by computing the sensitivity index of each parameter. Sensitivity index allows to
measure the relative change in basic reproduction number when parameter value changes. For this, we use
normalized forward sensitivity index of basic reproduction number with respect to a given parameter using
similar approach used (Tilahun, Makinde, & Malonza, 2017; Utoyo & Sa’adah, 2018).



Definition 4.1. (Utoyo & Sa’adah, 2018) Normalized
forward sensitivity index of basic reproduction num-
ber (Ry) with respect to the given parameter k is
Ro _ ORo k
defined as Y,° = WRT,
Using the above formula, we obtained the sign

of the sensitivity index for each parameter in

Table 2. Parameter symbols and their sensitivity indices.

Parameter symbols Sensitivity indices

p +ve
0 +ve
b +ve
m +ve
1—k +ve
a -ve
d -ve
y -ve
0 -ve
w -ve
p -ve
v -ve

Table 3. Table of parameter symbols and their value.

Parameter symbols Parameters value Sources

B 0.3795 Assumed

0 0.4 (Goyal & Murray, 2014)
b 0.0335 Assumed

m 0.07142 (Goyal & Murray, 2014)
1—k 0.9 (Goyal & Murray, 2014)
o 2.511 Assumed

d 0.0078 Assumed

y 3.6 (Goyal & Murray, 2014)
0 0.0013 (Goyal & Murray, 2014)
%) 0.9 (Goyal & Murray, 2014)
p 0.00013 Assumed

v 2.0401 Assumed
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basic reproduction number, summarized in
Table 2.

Next, we present the interpretation of sensitivity
indices. From Table 2, those parameters with positive
indices include b, 5,0,m, and 1—k and those param-
eters with negative indices include v,p, w,9,d, s, and
7. Those parameters with positive indices have great
role in the expansion of the disease in the popula-
tion as their value increases because when their
value increases, basic reproduction number
increases. Those parameters with negative indices
have great role in eliminating the disease from the
population as their value increases. Therefore, to
eliminate the diseases from the population it is
important to increase the value of those parameters

with negative indices.

as

5. Numerical simulation

Under this section, we performed numerical simula-
tion of the proposed fractional order model. For
simulation parameters value from Table 3 is used. To
obtain the numerical results of fractional order
model we used Euler fractional method. We simulate
effects of memory (order of derivatives)(«) on num-
ber of HB-infected individuals. We also simulated the
effects of newborn vaccination immediately after
birth(w), vaccination of children(v) and adult vaccina-
tion(p) and their effects compared on the number of
HB-infected individuals when the order of derivative
s (« = 0.85).

b (Sa‘+ Ra+Ea+Ia+ Ca)

b(1-w)(1-k) (Ea +Ia + Ca) 1‘

T |

T R

_bU-w)Sa+

Ra +1<»(Ea +1Ia+ Ca))

‘ bw(SalFRa—E'1+Ia+Ca) 4

“ “ |
|
+

d

P R
BSa (Ea+Ia+ Ca)

d

Figure 1. Flow diagram of the model. (a) Effects of memory (order of derivatives) () on /.. (b) Effects of memory (order of

derivatives) (o) on E,. (c) Effects of memory (order of derivatives) () on /,.

on C,.

(d) Effects of memory (order of derivatives) ()
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Figure 2. Effects of memory (order of derivatives) (x). (a) Effects of newborn vaccine immediately after birth(w) on /. (b)
Effects of newborn vaccine immediately after birth(w) on E,. (c) Effects of newborn vaccine immediately after birth(w) on /.

(d) Effects of newborn vaccine immediately after birth(w) on C,.

5.1. Effect of memory on HB infection

Here, we simulate the effects of memory (order of
derivatives)(x) on the number of HB-infected individ-
uals. In simulation, we compare the number of
infected individuals for memory-less(integer order)
model that is when (¢ =1) and model with memory
that is when (z = 0.85 and o = 0.65). We display the
effects of memory(order of derivatives)(z) on the
number of HB-infected individuals on Figure 2a-d.

As we observe in Figure 2a, the number of I is
larger in system with out memory(memory-less mod-
el)(e=1) compared with systems with memory
(¢« = 0.85 and o = 0.65).

Similarly as we observe from Figure 2b,c, the
number of E; and I, is larger in system with out
memory(memory-less model)(« = 1) compared with
systems with memory (¢ = 0.85 and o = 0.65). From
Figure 2d, the number of C,; increases initially, this is
due to movement from /. to C, by maturation and

progression form [, to C, but through time the
number of C, becomes larger in system without
memory(memory-less model)(« = 1) compared with
systems with memory (= 0.85 and « = 0.65). In
other words, as we observe from Figure 2a-d as
memory decreases (order of derivatives(x) increases)
the number of infected individuals decreases slowly
through time.

5.2. Effect of newborn vaccine immediately
after birth(w)

Here, we simulate the effect of newborn vaccine ()
on HB infection by comparing the number of HB-
infected individuals when no vaccine implemented(w
= 0, v=0 and p=0) and when only newborn vac-
cine immediately after birth ()
implemented(w # 0,v=0 and p =0).
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Figure 3. Effects of newborn vaccine immediately after birth(w). (a) Effects of children vaccination(v) on /.. (b) Effects of chil-
dren vaccination(v) on E,. (c) Effects of children vaccination(v) on /. (d) Effects of children vaccination(v) on C,,.

On Figure 3a-d, we simulate the effects of new-
born vaccine immediately after birth(w) on the num-
ber of HB-infected individuals order of derivative
is (o« = 0.85).

From Figure 3a, the number of /. decreases as
value of (w) increases and also from Figure 3b,c, the
number of E, and I, decreases and even falls to zero
over times as value of (w) increases. From Figure 3d,
increasing value of (w) decreases the number of C,.
Therefore, as we observe from Figure 3a-d, increas-
ing newborn vaccine (w) decreases the number of
infected individuals.

5.3. Effect of children vaccination(v) on
HB infection

Here, we simulate effect of children vaccination(v)
on HB infection by comparing the number of HB-
infected individuals when no vaccine implemented(w
= 0, v=0 and p=0) and when only children vacci-
nation(v) implemented(w = 0,v # 0 and p=0).

On Figure 4a-d, we simulate the effects of chil-
dren vaccination(v) on number of HB-infected indi-
viduals when order of derivative is (« = 0.85).

From Figure 4a,d, increasing value of children vac-
cination(v) reduces the number of /. and C,. From
Figure 4b,c, the number of E, and I, decreases and
even falls to zero over time as children vaccination(v)
increases. In general as we observe from Figure
4a-d, increasing children vaccination(v) reduces HB
infection from the population.

5.4. Effect of adult vaccination(p) on
HB infection

Here, we simulate the effect of adult vaccination(p)
on HB infection by comparing the number of HB-
infected individuals when no vaccine was
implemented(w = 0, v=0 and p=0) and when
only adult vaccination(p) is implemented(w
0,v=0 and p # 0). On Figure 5a-d, we simulate the
effects of adult vaccination(p) on the number of
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Figure 4. Effects of children vaccination (v). (a) Effects of adult vaccination (p) on /.. (b) Effects of adult vaccination (p) on E,.
(c) Effects of adult vaccination (p) on /. (d) Effects of adult vaccination (p) on C,.

HB-infected
is (o« = 0.85).
From Figure 5a,d, the number of /. and (,
increases as adult vaccination(p) decreases. From
Figure 5b,c, the number of E, and I, decreases as
adult vaccination(p) increases. Therefore, from Figure
5a-d, we conclude that increasing adult vaccination
reduces the number of HB-infected individuals.

individuals when order of derivative

5.5. Comparing the effects of newborn vaccine
immediately after birth(w), children
vaccination(v) and adult vaccination(p) on

HB infection

Here, we compare the effects of newborn vaccine(w),
children vaccination(v), and adult vaccination(p) on
HB infection by comparing number of infected indi-
viduals when no vaccine implemented (v = 0, v=0
and p=0), only newborn vaccine immediately after
birth (w) implemented (w # 0, v=0 and p=0), only

children vaccination(v) implemented (w = 0,v #0
and p =0) and only adult vaccination(p) implemented
(w = 0, v=0 and p # 0) when order of derivative is
(o = 0.85). On Figure 6a-d, we compare the effects of
newborn vaccine (w), children vaccination(v), and
adult vaccination(p) on the number of HB-infected
individuals when order of derivative is (x = 0.85).
From Figures 6a,d, we observe that increasing
newborn vaccine (w) decreases the number of /. and
C, than increasing children vaccination(v) and adult
vaccination(p). From Figure 6b,c, we observe that
increasing children vaccination(v) decreases the
number of E; and /I, than increasing newborn vac-
cine (w) and adult vaccination(p), and also increasing
newborn vaccine (w) decreases the number of E,
and [/, than increasing adult vaccination(p).
Therefore, as we observe from Figure 6a-d, increas-
ing newborn vaccine (w) is preferable to eliminate
HB infection from the population than increasing
children vaccination(v) and adult vaccination(p).
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Figure 5. Effect of adult vaccination (p). (a) Comparing the effects of newborn vaccine (w), children vaccination (v) and adult
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E,. (c) Comparing the effects of newborn vaccine (w), children vaccination (v) and adult vaccination (p) on /.. (d) Comparing
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6. Summary and conclusions

In this study, we formulated mathematical model of
HB disease using fractional order to study the
dynamics of HB disease in the population taking into
consideration memory effect. In Section 2, we
described the model assumptions and formulated
the deterministic model represented by systems of
ordinary differential equations and the model
extended to fractional order. In Section 3, model
analysis was done by proving positively invariant
region in which the solution to the fractional order
model is bounded and non-negative, finding equilib-
rium points and basic reproduction number. Local
and global stability analyses of both disease-free and
endemic equilibrium points are presented. In Section
4, local normalized sensitivity analysis is performed.
In Section 5, numerical simulation was performed to
investigate the effect of memory on HB disease

dynamics and also to study the effects of newborn
vaccine immediately after birth, children vaccination
and adult vaccination and to compare their effects
on HB disease dynamics. We used MATLAB to per-
form numerical simulationa.

Using numerical simulations, we investigated the
impact of memory on the number of HB-infected
individuals, effect of new born vaccination immedi-
ately after birth, vaccination of children and adult
vaccination by using different values for the order of
fractional derivative. Generally, our result shows that
memory has great influence on disease dynamics
and the result of the comparison between vaccin-
ation shows that increasing newborn vaccination is
better to eliminate HB disease. The dynamics of the
HVB is complicated and needs further research both
biologically and mathematically. Although the mod-
ern fractional order models developed in this
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research study could produce better results in the
comparison of existing classical models, we strongly
believe that this research analysis can further be
enhanced. However, we notice that the models with
fractional derivatives are more complicated than the
ones with classical derivatives.
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