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Cognitive radio networks (CRNs) have emerged as a solution for the looming spectrum crunch caused

by the rapid adoption of wireless devices over the previous decade. This technology enables efficient

spectrum utility by dynamically reusing existing spectral bands. A CRN achieves this by requiring its

users – called secondary users (SUs) – to measure and opportunistically utilise the band of a legacy

broadcaster – called a primary user (PU) – in a process called spectrum sensing. Sensing requires the

distribution and fusion of measurements from all SUs, which is facilitated by a variety of architectures

and topologies.

CRNs possessing a central computation node are called centralised networks, while CRNs composed of

multiple computation nodes are called decentralised networks. While simpler to implement, centralised

networks are reliant on the central node – the entire network fails if this node is compromised. In

contrast, decentralised networks require more sophisticated protocols to implement, while offering

greater robustness to node failure. Relay-based networks, a subset of decentralised networks, distribute

the computation over a number of specialised relay nodes – little research exists on spectrum sensing

using these networks.



CRNs are vulnerable to unique physical layer attacks targeted at their spectrum sensing functionality.

One such attack is the Byzantine attack; these attacks occur when malicious SUs (MUs) alter their

sensing reports to achieve some goal (e.g. exploitation of the CRN’s resources, reduction of the CRN’s

sensing performance, etc.). Mitigation strategies for Byzantine attacks vary based on the CRN’s

network architecture, requiring defence algorithms to be explored for all architectures. Because of the

sparse literature regarding relay-based networks, a novel algorithm – suitable for relay-based networks

– is proposed in this work. The proposed algorithm performs joint MU detection and secure sensing by

large-scale probabilistic inference of a statistical model.

The proposed algorithm’s development is separated into the following two parts.

• The first part involves the construction of a probabilistic graphical model representing the

likelihood of all possible outcomes in the sensing process of a relay-based network. This is

done by discovering the conditional dependencies present between the variables of the model.

Various candidate graphical models are explored, and the mathematical description of the chosen

graphical model is determined.

• The second part involves the extraction of information from the graphical model to provide

utility for sensing. Marginal inference is used to enable this information extraction. Belief

propagation is used to infer the developed graphical model efficiently. Sensing is performed by

exchanging the intermediate belief propagation computations between the relays of the CRN.

Through a performance evaluation, the proposed algorithm was found to be resistant to probabilistic

MU attacks of all frequencies and proportions. The sensing performance was highly sensitive to

the placement of the relays and honest SUs, with the performance improving when the number of

relays was increased. The transient behaviour of the proposed algorithm was evaluated in terms of its

dynamics and computational complexity, with the algorithm’s results deemed satisfactory in this regard.

Finally, an analysis of the effectiveness of the graphical model’s components was conducted, with a

few model components accounting for most of the performance, implying that further simplifications

to the proposed algorithm are possible.
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

The ubiquity of wireless systems, owing to the integration of the technology into everyday consumer

electronics, has led to the increased use of the frequency spectrum. The demand for the use of this

spectrum is mismatched by the limited supply. The increase in mobile device traffic is estimated

to be from 11.51 EB (exabytes) in 2017 to 77.49 EB in 2022, in response to the presence of high

bandwidth services such as video-on-demand, mobile application downloads, and the growth of

machine-to-machine devices [1], [2]. Furthermore, the number of mobile subscribers is projected

to almost double over the next decade from 10.7 billion in 2020 to 17.1 billion in 2030, leading to

concerns of a forthcoming spectrum crunch [2].

A number of solutions have been proposed to combat spectrum congestion. The accommodation

of new users is currently facilitated by reducing the bandwidth of existing transmissions or making

use of gaps in higher frequency bands. The former method can be achieved by designing more

bandwidth-efficient modulation schemes or by increasing the information density of the source content

(i.e. data compression). The latter can be achieved by developing sophisticated and expensive radio

frequency (RF) equipment to exploit gaps in higher frequency bands. Mobile network capacity can

also be improved by optimising the cell sizes [2]. The use of these methods can only marginally relieve

spectrum congestion and delay the inevitable spectrum crunch.

Cognitive radio networks (CRNs) offer a long-term solution to spectrum congestion [3], [4]. A CRN

attempts to intelligently reuse the frequency spectrum of a licensed legacy user – called a primary

user (PU) – by allowing the CRN’s own users – called secondary users (SUs) – to broadcast when

the PU’s spectrum is vacant. As a result, the dynamic nature of CRNs allows different transmissions

to share the same portion of the spectrum in the frequency domain. The SUs are responsible for the
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measurement of the PU’s occupancy in a process called spectrum sensing. It is typically beneficial

to let the SUs cooperate with one another to increase the diversity of sensing reports in transmission

environments. The fusion of the various SU reports to determine the PU channel occupancy is referred

to as cooperative spectrum sensing.

The distribution and fusion of SU reports is enabled by a number of different network architectures

and topologies. The centralised architecture is used when a single node performs all processing. There

are two different arrangements, namely fully centralised and cluster-based topologies. All SU reports

are sent directly to a single entity called a fusion centre (FC) for fully centralised topologies. SUs in

networks that employ the cluster-based topology pass their reports to a cluster head (CH), which in

turn sends the reports to an FC [5], [6]. Figure 1.1 illustrates the centralised topologies, where CH

denotes a cluster head.

FC

SU

SU

SU

SU

SU

SU

SU

SU

(a) Fully centralised topology.

CH 1

CH 2

CH 3

SUSU

SU SU

SU

SU

FC

(b) Cluster-based topology.

Figure 1.1. Centralised CRN topologies.

Networks employing multiple computation nodes use the decentralised architecture. Fully distributed

and relay-based topologies exist within decentralised networks. The former is peer-to-peer, requiring

all SUs to perform fusion and schedule the transmission of reports, while the latter distributes the

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

2
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computational burden across specialised relay nodes. Figure 1.2 illustrates the decentralised topologies,

with R denoting a relay.

SU

SU

SU SU

SU

SU

(a) Fully distributed topology.

R1

SUSU

SU

R2

SU

SU SU

(b) Relay-based topology.

Figure 1.2. Decentralised CRN topologies.

The effectiveness of a specific architecture and topology is based on the context of the application; it is

important to develop and investigate fusion schemes for all architectures, as this improves the variety

of applications for CRNs.

CRNs are vulnerable to a number of unique attacks targeted at cooperative sensing, which pose a

threat to the success of CRNs as a pioneering technology for spectrum efficiency [7]. For many

applications, the honesty of the SUs in a CRN cannot be guaranteed prior to sensing and fusion. The

Byzantine attack, where a malicious SU feeds the CRN incorrect information to maximise an objective

that benefits a malicious party, is an example of one such attack [7]–[10]. SUs that report incorrect

information are referred to as malicious or Byzantine users (MUs). For example, an MU may falsely

report the presence of a PU to free the spectrum for its own transmission. Attack strategies can be

even more sophisticated if many MUs collude to attain a specified objective [11]. Protection against

Byzantine attacks in CRNs is enabled by the use of an appropriate defence algorithm. The choice of

the algorithm is determined by the data fusion algorithm used for cooperative sensing, the architecture

of the CRN, and the nature of the Byzantine attack employed by the MUs [8].

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

3



CHAPTER 1 INTRODUCTION

1.2 RESEARCH OBJECTIVE

In general, defence algorithms for centralised CRNs are simpler to implement in comparison to

their decentralised counterparts. Physically realising networks employing centralised architectures

requires fixed infrastructure in the form of an FC – the sensing capability of the network is nullified

if the FC is compromised in some way. Decentralised networks can bypass infrastructure failure as

multiple devices are used to perform fusion. Furthermore, the computational burden is distributed over

the nodes performing fusion in a decentralised network, resulting in the need for less sophisticated

hardware.

Fully distributed networks offer the possibility of ad hoc CRN support for everyday devices. Despite

this, a major shortcoming of fully distributed CRNs is the adverse impact of MUs on the network.

Since each SU plays a role in sensing, an MU can falsify interim algorithm iterates to change the

consensus of the entire network [8], [12]. Relay-based CRNs are decentralised networks that serve as

a compromise between centralised and fully distributed ad hoc CRNs – certain nodes act as distributed

FCs that relay intermediate computations between each other. This topology is more secure than its

fully distributed counterpart, as only trusted entities play a role in the fusion of information, bypassing

the issue of algorithm iterate falsification. Furthermore, relay-based CRNs are more reliable than

centralised CRNs, as computation is not dependent on a single entity. Fusion and data exchange

techniques applied to relay-based networks can be extended to fully distributed networks.

Very few publications in the literature describe the formulation of Byzantine defence strategies in

relay-based and distributed networks. The objective of this research project is therefore to develop

a novel sensing algorithm that minimises the effect of MUs in relay-based CRNs while maintaining

sufficient spectrum sensing accuracy.

1.2.1 Research questions

A number of research questions arise from the objectives defined above.

• Can probabilistic inference be used as an efficient cooperative sensing technique in relay-based

networks?

• How will the sensing performance of the developed algorithm compare with simpler alternatives?

Is it worth the additional overhead incurred?

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

4



CHAPTER 1 INTRODUCTION

• How sensitive is the developed algorithm to a change in model parameters (e.g. MU population

and proportion, increased number of users, etc.)? Does the algorithm scale well, or is it limited

to operating over a small range of parameters?

1.2.2 Research methodology

The aforementioned objectives and research questions are investigated by implementing the proposed

algorithm in software. The algorithm uses measurements that are obtained from a simulation of a CRN

in a noisy unobstructed environment. The effectiveness of the algorithm is determined by performing

a number of tests, including the evaluation of the spectrum sensing performance when varying the

proportion and maliciousness of the MUs, and increasing the number of SUs in the network. The

dynamics and complexity of the algorithm, which include the computational overhead and time to

convergence, are also evaluated. The sensing performance of the algorithm, determined by the overall

sensing error rate, is compared against a control algorithm.

1.3 CONTRIBUTION

A novel secure sensing algorithm for relay-based CRNs is proposed in this work. The proposed

algorithm uses probabilistic inference, and is formulated with computational efficiency and performance

robustness in mind. The contribution is composed of the following parts:

• a comprehensive literature review on CRNs and security techniques,

• a statistical model of the sensing process for a relay-based CRN,

• a decentralised data exchange protocol based on the computation of the statistical model’s

inference, and

• simulation and analysis of the proposed algorithm’s sensing performance.

1.4 RESEARCH OUTPUTS

The work in this dissertation produced a published conference article and a submitted journal article.

The conference article concerned the empirical study of the effects of MUs on decentralised networks,

and was published and presented in the Spring 2019 IEEE Vehicular Technology Conference (VTC2019-

Spring) in Kuala Lumpur, Malaysia. The journal article was submitted to the Wireless Networks journal,

with its content summarising this dissertation’s core contributions. The research outputs are listed

below:
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[1] A. Sivakumaran, A.S. Alfa, and B.T. Maharaj, “An empirical analysis of the effect of malicious

users in decentralised cognitive radio networks,” in 2019 IEEE 89th Vehicular Technology

Conference (VTC2019-Spring), Apr. 2019, pp.1–5.

[2] A. Sivakumaran, A.S. Alfa, and B.T. Maharaj, “Secure spectrum sensing in relay-based

cognitive radio networks,” Wireless Networks, Jan. 2020, in review.

1.5 DISSERTATION OVERVIEW

This dissertation is composed of six chapters, with this introduction being the first chapter. The contents

of the following chapters are summarised below.

• Chapter 2 outlines the background and research existing in this field, while introducing and con-

textualising the main contribution of this work. The concept of the cognitive cycle is introduced,

and important aspects relating to the main contribution are highlighted. The advantages and

disadvantages of the various network architectures are considered. Techniques involved in signal

measurement, quantisation, and data fusion are reviewed. Physical layer security threats to

CRNs are then introduced, with a focus on Byzantine attacks. A framework for Byzantine attack

model formulation is presented, and some examples of attack models are discussed. Existing

defence strategies against Byzantine attacks are then reviewed. Finally, the need for integrated

defence and sensing algorithms in decentralised networks is argued, leading to the development

of the proposed algorithm in the subsequent sections.

• Chapter 3 consists of the development of the statistical model that forms the backbone of the

proposed algorithm. A system model of a relay-based CRN performing cooperative sensing is

first developed; the conditional dependencies present between the variables of the model are

observed. A probabilistic graphical model is used to encode the conditional dependencies. The

graphical model’s structure is developed by mathematically defining the relationship between

the desired variables of the original system model.

• Chapter 4 describes the proposed algorithm, which is the decentralised implementation of the

inference of the statistical model developed in Chapter 3. Efficient inference is achieved by

applying belief propagation to the model; this computation is subsequently broken up and

partitioned over the network’s relays for the decentralised implementation.

• The evaluation and analysis of the proposed algorithm’s performance is found in Chapter 5.

Firstly, the simulation environment is described, including the propagation model, the layout of

the CRN, and the channel noise model used. The performance metrics, which serve to evaluate
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functioning of the algorithm, are then defined. This is followed by an explanation of the tests

performed, along with a motivation for their use. The simulation methodology employed is then

described. Finally, the results are presented; each set of results is accompanied by an analysis

and commentary on its meaning.

• Chapter 6 concludes the thesis, with a retrospective discussion of what was achieved by this work.

Limitations to the proposed algorithm, along with further avenues for research, are identified.
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CHAPTER 2 COGNITIVE RADIO NETWORKS AND

SECURITY

2.1 CHAPTER OVERVIEW

In this chapter, cognitive radio (CR) is introduced as a new paradigm for efficient spectrum management

in terms of the cognition cycle. This cycle, explored in Section 2.2, is divided into a number of

categories, each corresponding to distinct fields of research. The contribution of the work in the

following chapters is contextualised in terms of the cognition cycle, and the constituent processes

that lead to this contribution are identified. The basic architectures for CRNs are discussed in Section

2.3. Local sensing in the form of signal detection methods is found in Section 2.4, and cooperative

spectrum sensing is covered in Section 2.5. Physical layer attacks, specifically Byzantine attacks, are

discussed in Section 2.6, while Byzantine defence strategies are the subject of Section 2.7. Finally,

the need for secure relay-based sensing algorithms is presented as a potential solution to cooperative

sensing-based physical layer vulnerabilities in Section 2.8.

2.2 THE COGNITION CYCLE

CR was envisioned as a replacement for static, licensed radio systems. A fully realised CR, with

the ability to function in dynamic environments, would require some form of autonomy on the part

of the radio device/network. In Mitola’s seminal paper, this autonomy is realised in the form of the

cognition cycle [4]. A simplified version of this cycle is shown in Figure 2.1. The cognitive cycle is a

high-level concept, with each portion of the cycle representing a vast field of research. The following

steps describe the cognitive cycle.

• Observe – A CR device interacts with the outside environment by sensing the frequency

spectrum. A CR was initially intended to measure a number of different phenomena such as

light, humidity, position etc. (for detection of indoor/outdoor environments). Most current
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research, including this work, assumes that a CR only senses the frequency spectrum; the field

of spectrum sensing concerns this operation [13]–[15].

• Orient – The orientation phase governs the alternation between the CR’s modes of operation,

based on the observation of the environment and the current performance of the CR. Reactions

to fault detection or a drastic change in service quality are handled in this phase.

Environment

Observe

Orient

Plan

Decide

Act

Learn

Data fusion and

MU detection

Figure 2.1. Simplified version of Mitola’s proposed cycle of cognition for a CRN. Adapted from [4],

© 2020 IEEE.

• Plan – The planning phase, intended to be fully dynamic in a true CR, involves the optimal

allocation of a network’s resources, given input from the orientation phase. The field of resource

allocation (RA) comprehensively covers the functionality of this phase [16].

• Decide – This stage involves the combination of measurements from different devices expe-

riencing unique environmental conditions. Cooperative sensing by data fusion involves the

combination of various SU reports to determine the occupancy of a PU in an RF environment to

form a decision; it is the primary field of research concerning this phase [17].
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• Act – Different forms of actuation may take place, depending on the context of the operation.

This includes allowing SUs to broadcast because of the vacancy of a PU or identifying and ex-

cluding potentially hostile users from the network. It may also involve the process of reallocating

resources based on a change in the environment.

• Learn – The learning stage involves gaining new knowledge of the environment and the network

after a number of iterations of sensing and decision. This knowledge can be used to improve

sensing results or provide better network throughput, either of which is possible by tuning system

parameters from the preceding phases [17].

The above functionalities can be realised using different network architectures, chosen based on the

nature of the CRN’s application. A discussion of the various architectures is found in Section 2.3. The

research problem defined in Chapter 1, concerning secure cooperative sensing in the presence of MUs,

involves consideration of the following topics from the cognition cycle (shaded in Figure 2.1):

• Local spectrum sensing involves the raw measurement process that is undergone by an individ-

ual SU in the CRN. A number of different techniques can be used to measure the state of the

PU signal reliably. The measurement can be quantised to a binary result representing the PU’s

occupancy or vacancy in a process called signal detection. Detection can be done before or after

fusion. The process of spectrum measurement forms part of the shaded Observe portion of the

cognition cycle in Figure 2.1. Signal detection is part of the Decision node. Measurement is

considered briefly in Section 2.4.1, and individual SU signal detection is discussed in Section

2.4.2.

• Cooperative spectrum sensing entails the fusion of various SU reports to enable an informed

decision on the possible state of the PU and CRN. Data fusion schemes typically assume a

predetermined SU report format. Soft fusion is applied when the SUs’ raw measurements are

combined. Hard fusion is applied when the SUs perform signal detection prior to combining.

Cooperative sensing and data fusion are highly dependent on the network architecture employed,

and form part of the shaded Decision node of Figure 2.1. This topic is given attention in Section

2.5, as the fusion of SU reports plays a critical role in the network’s sensing performance.

• MU detection is the process of selecting SUs in the CRN that are deemed to give dishonest

reports. The detection of MUs can be separated or integrated with data fusion, depending on the

type of fusion algorithm that is used. Furthermore, the results of MU detection can be used to

alter the contributions of potential MUs in a way that is beneficial to the sensing performance. As
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a result, MU detection forms part of the Decision and Learn nodes of Figure 2.1. A discussion

of physical layer attacks in CRNs is found in Section 2.6.

Note that actuation (the Act node of Figure 2.1) is dependent on the results from data fusion and

MU detection. In order to capture the functionality of the Decision, Learn, and Act nodes effec-

tively, it is desirable to formulate integrated fusion algorithms that perform their respective functions

simultaneously.

2.3 COGNITIVE RADIO NETWORK ARCHITECTURES

A number of network architectures and arrangements can be used for spectrum sensing and data fusion

[17]. Each architecture has its own advantages and disadvantages, and is determined by the needs of

the sensing application. As mentioned in Section 1.1, the two major categories of network architecture

are centralised and decentralised networks.

2.3.1 Centralised networks

The two topologies for centralised networks – fully centralised and cluster-based – are shown in

Figure 1.1. Fusion algorithms can be implemented on centralised networks with almost no limitations,

as all processing is performed by the FC. Fully centralised networks benefit from simple network

management and low bandwidth requirements, since communication is limited to links between the

SUs and the sole FC [18]. However, because of the inflexible structure of a fully centralised network,

its size and the distance covered by the network are limited [8], [17]. Cluster-based networks offer

greater scalability, allowing groups of SUs to send their reports to a local CH that sends the reports to

the FC. The CHs may perform pre-processing on the reports to reduce the communication bandwidth,

which will result in increased energy consumption. Employing this topology requires some form

of cluster management, resulting in increased bandwidth use. Prior knowledge of the location and

spread of the SUs may be required for cluster formation. Statistical approaches can be used if location

information is unavailable, but additional overhead is incurred with these methods [6].

2.3.2 Decentralised networks

The reliance of centralised networks on a single computation node is a major drawback – fusion cannot

take place if the FC is compromised. To this end, decentralised networks sacrifice the convenience

of a centralised computation node in favour of improved network robustness [19]. Two possible

topologies for decentralised networks – fully distributed and relay-based – are shown in Figure 1.2.

Information can be transferred over a number of routes for fully distributed networks, as all SUs are

responsible for fusion. In contrast, only a single path for information transfer exists for relay-based
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networks (across the relays themselves). The differences between these topologies result in a number

of application-specific advantages for both networks.

Fully distributed networks have the advantage of requiring no specialised infrastructure, with the

computation distributed over each SU in the CRN; this reduces the hardware burden on the network

significantly. Fully ad hoc CRNs are only possible with the distributed topology; an arbitrary group

of users with sensing capabilities can exchange information and form a functioning CRN [19]. A

major disadvantage of these networks is the significant network management required and bandwidth

used when multiple SUs communicate with one another. Furthermore, ad hoc distributed networks are

extremely vulnerable to physical layer attacks, as there is no guarantee that an SU responsible for data

fusion is not malicious [8].

Relay-based networks serve as a compromise between fully distributed and centralised networks.

Instead of allowing all SUs to perform fusion, a number of specialised nodes relay neighbouring

reports and interim fusion results among one another. The relays can be SUs themselves or external

entities. The relay nodes are capable of viewing all the SU reports simultaneously, much like an FC

in a centralised network. Any computations are distributed across each of the relay nodes, similar

to a fully distributed network. The relaying of information from one node to the next is referred to

as a hop [20]. Networks with many relays require more hops for information transfer, resulting in

large delays across the nodes. Large networks do, however, reduce individual computational burden

and possess greater scalability. Energy consumption increases with every relay added to the network,

leading to an upper bound on the number of relays to be deployed in a network [17]. If one of the

relays is compromised, the network can recover by establishing a connection to the next relay [21],

[22]. Relay-based networks are more secure than their distributed counterparts if only trusted entities

are used to form the relay network.

2.4 LOCAL SPECTRUM SENSING

Sensing takes place in the transmission space, which is composed of many dimensions, including

space, time, and frequency [13]. In general, sensing is equivalent to finding regions in the transmission

space that are not occupied by the PU. The simplest way to exploit a gap in the transmission space is

to transmit in the PU’s frequency band when the PU is not broadcasting. The individual estimation of

the PU state is composed of signal measurement and – if hard fusion is used – signal detection.
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2.4.1 Primary user signal measurement

It is assumed that the output of PU measurement is a continuous quantity E, with a large value of E

implying the occupancy of the PU; the converse is true for a small value of E. If hard fusion is used

after individual sensing, a local decision is made by quantising E. The following techniques can be

used to obtain the measurement E:

• Energy detection – This is the simplest, least demanding signal measurement technique [23].

For this reason, it can be applied to many situations. Furthermore, the performance of this

sensing technique can be modelled and evaluated effectively [24], [25]. It is also the most viable

strategy to implement, as it requires no a priori information on the PU. Its simplicity comes at

the cost of low detection accuracy. Mathematically, energy detection can be summarised as

E =
T∑
t=1
|y(t)|2, (2.1)

with T representing the observation period, t the time index, and y(t) the received signal.

• Waveform-based sensing – Some signals have known regularities in their structure, such as

cyclic prefixes or pilot signals. Signals can be detected by observing these patterns. Correlating

the received signal pattern pr(t), a subset of y(t), with a template pattern pt(t) at the receiver

results in [26]

E = pr(t) ? pt(t) + n(t) ? pt(t), (2.2)

where ? refers to the cross-correlation operation. The term n(t) ? pt(t) represents the correlation

of received noise n(t) with the template pattern pt(t). The value of E is large when a signal

feature is detected, and is small otherwise. While this technique is more accurate than energy

detection, it requires a priori knowledge of the PU signal.

• Cyclostationary sensing – Many signals express the phenomenon of cyclostationarity. A

waveform exhibits this behaviour when the statistics describing the waveform vary over time,

but repeat periodically [27]. Knowledge of this can be used to identify a PU signal; this comes

at the cost of increased computational overhead and delays, and is limited to the class of signals

that exhibit this property.

• Matched filter methods – Matched filters are, by definition, optimally designed to reconstruct

the true signal s(t) from a received signal y(t) that travels through a channel h(t) [28]. This
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high level of accuracy comes at the requirement of a large amount of a priori information about

the PU signal, including the demodulation and carrier synchronisation protocols [29]. Matched

filter receivers are specific to a single class of PU signals, and multiple receivers must be present

at each sensor node for greater configurability. This limits the flexibility of matched filter-based

receivers for spectrum sensing.

Regardless of the type of method used, PU measurement results in the continuous estimate E that

describes the perceived occupancy status of the PU signal. This quantity is sent to neighbouring

processing units for cooperative sensing and may be quantised to ease computational and bandwidth

requirements.

2.4.2 Quantisation of the PU measurement

Most SU quantisation techniques use some form of hypothesis testing to make a decision on the

spectrum occupancy of a PU. The generic form of a hypothesis test requires a likelihood ratio to be

calculated [8], [10]:

F = p(E|H1)
p(E|H0) , (2.3)

where F is the likelihood ratio. The null hypothesis H0 represents the case of a PU being absent,

while the alternative hypothesisH1 implies that the channel is in use. The calculation of p(E|H0) and

p(E|H1) is achieved by modelling the local sensing process. The hypothesis is most often determined

using a decision threshold λ, resulting in a Neyman-Pearson test:

u =


H0, if F < λ

H1, if F ≥ λ
. (2.4)

A sequential probability ratio test can be used to attain greater detection accuracy:

u =


H0, if F ≤ η0

H1, if F ≥ η1

, (2.5)

where the pair (η0, η1) denotes the respective upper and lower decision thresholds for either hypothesis.

More sensing rounds are required if the test statistic lies in the range η0 < F < η1. Many iterations

of (2.5) may be required to yield conclusive results. This may take a long time in unfavourable

environmental conditions.
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When soft fusion is used for cooperative sensing, the SUs send their raw measurements to the FC. A

soft fusion rule is used to make a final decision directly. This increases communication overhead, as

floating-point values are required for transmission between the FC-SU links of the CRN [30].

2.5 COOPERATIVE SPECTRUM SENSING

One of the principal challenges in the design of CRNs is the observation of a PU in a non-ideal

communication environment. Channel effects such as path loss or shadow fading cause degradation

of the communication links in the CRN, worsening the quality of the CRN’s observations [11], [31].

Cooperative sensing by data fusion is employed to improve the accuracy of the individual PU occupancy

measurements by exploiting the diversity of SUs experiencing unique environmental conditions. The

CRN considers the results from all the SUs and makes a decision accordingly. Cooperative sensing

also includes the protocol and scheduling of the information transfer between the SUs.

2.5.1 Non-ideal effects

Numerous non-ideal effects degrade the quality of SU reports, among others:

• channel effects due to environmental conditions (e.g. shadow fading and path loss),

• the different sensing characteristics of each SU (caused by variation in hardware and detection

algorithms among SUs), and

• the honesty of all the SUs in the CRN.

Path loss and shadow fading present in the communication channel are common reasons for non-ideal

sensing performance in CRNs [8], [31], [32]. Path loss is caused by the decay of signal intensity due

to propagation [11]. The decay of the PU due to path loss can cause an SU to falsely assume that the

channel is vacant. The nature of the landscape over which the CRN exists causes the received PU

signal power to differ at each SU. Obstacles located in the landscape scatter the PU signal such that

localised regions experience a similar channel gain, resulting in shadow fading. Shadow fading distorts

the PU power measurements taken by the SUs, which in turn reduces the performance of cooperative

sensing in a CRN.

Diversity in SU parameters and channel conditions is typically modelled using detection error prob-

abilities. False alarms, denoted by pfa, represent the event of measuring an occupied PU channel

when it is actually vacant. Missed detections, given by pmd, occur when an occupied channel is

incorrectly assumed to be vacant [11]. False alarms and missed detections only occur under a certain

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

15



CHAPTER 2 COGNITIVE RADIO NETWORKS AND SECURITY

PU hypothesis (H0 andH1 respectively). The quantities pfa and pmd capture the perceived channel

conditions and hardware reliability of each SU. The total probability of error is the weighted sum of

the false alarm and missed detection probabilities (weighted by the frequency of either PU state). The

probability that an SU makes a correct decision can be determined by the complements of pfa and

pmd. These results can be generalised to obtain the sensing performance of the entire CRN.

2.5.2 Data fusion

Data fusion involves combining different pieces of information to form a more accurate global

estimation. Most data fusion algorithms for cooperative sensing can be divided into the following

classes:

• K-out-of-N decision rule,

• consensus algorithm,

• diffusion algorithm, and

• belief propagation algorithm.

The K-out-of-N rule is typically applied to centralised networks, while the consensus and diffusion

algorithms are applied to decentralised networks. Belief propagation algorithms, which are based on

graphical inference, can be applied to both centralised and decentralised networks. Algorithms from

most classes can be sufficiently altered to be compatible with the hard or soft fusion protocols.

2.5.2.1 K-out-of-N rule

A popular choice of centralised fusion rule, owing to its ease of implementation, is the K-out-of-N

rule, which requires at least K SUs (from a total of N SUs) to decide in favour of a state for that state

recognised as the consensus [8], [10]. Each SU, indexed by n, makes a decision un on the channel

occupancy before sending its report for fusion. The fusion rule is expressed as

Ĥ =


H0, if

∑N
n=1 un < K

H1, if
∑N
n=1 un ≥ K,

(2.6)

where Ĥ is the global network PU state estimation. The AND and OR fusion rules represent the

extreme cases of (2.6), where K = N and K = 1 respectively. The simplicity of the basic fusion rule

of (2.6) leads to lack of robustness against non-ideal channel effects and malicious CRN attacks. A
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soft fusion rule version of the K-of-N rule exists, where the contribution of the nth SU is optimally

weighted based on the error probabilities of the SU [33].

2.5.2.2 Consensus algorithm

Distributed networks, which lack the advantage of a central FC, can use the information provided by

their neighbours to iteratively reach consensus [12], [34]. The consensus algorithm is given by

u(k+1)
n = ukn + ε

∑
j∈Nn

(ukj − ukn), (2.7)

where k is the algorithm’s current iteration index, ε is a weighting factor based on the topology of the

network, and Nn is the collection of neighbouring nodes at SU n [12]. Equation (2.7) can be used for

both hard and soft fusion, with un being discrete or continuous for each particular case. If hard fusion

is used, the consensus algorithm becomes equivalent to the K-out-of-N rule in (2.6) with K = N
2 . If

soft fusion is used, a global threshold is required to determine the final decision Ĥ. The final decision

of the decentralised network is the value of ukn when all the SU reports converge on the same result.

The convergence rate of global consensus is linked to the delay between sensing and decision-making

in the network.

2.5.2.3 Diffusion algorithm

The diffusion algorithm is the decentralised solution to an optimisation problem set up to minimise the

difference between the raw individual SU measurements En and the average received power over the

network P [35]–[37]:

J(E) =
N∑
n=1

E
[
|En|2 − P

]
,

Eo = argmin
E

J(E),
(2.8)

where E = [E1, · · · , En, · · · , EN ], Eo is the optimal set of measurements, and E is the expectation

operator. The goal of the diffusion algorithm is to alter the measurements En such that the mean

square estimation error J is a minimum. Furthermore, the solution of (2.8) must be obtained without

the use of an FC. The diffusion algorithm exclusively employs soft fusion, and is intended for use in

decentralised networks.

2.5.2.4 Belief propagation algorithm

The sensing process, composed of unknown variables such as the PU state and SU measurements, can

be represented as a joint distribution, where every combination of variable states is associated with
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a likelihood of occurrence. These likelihoods can be normalised such that they all sum to unity to

form a probability distribution. The most likely states of the unknown variables correspond to where

the probability density of the distribution is largest. Determining this set of optimal states is aided by

inferring the joint distribution. Belief propagation offers an efficient way to perform this inference,

and requires the joint distribution to be converted to a statistical graph. Inference is achieved by

passing messages along the edges of the graph. Performing cooperative sensing in this manner allows

multiple dependent variables to be estimated simultaneously, thus making probabilistic inference

a suitable candidate for integrated fusion and defence algorithms. The message-passing nature of

belief propagation allows it to be readily used for decentralised networks, as the interim algorithm

computations become the information exchanged between the computation nodes.

2.6 PHYSICAL LAYER ATTACKS

Because of the unique nature of CRNs, they are sensitive to a number of physical layer attacks [38].

These attacks can be carried out at any phase of the cognitive cycle in Figure 2.1. Compromising any

one of these phases can lead to poor performance and quality of service for the users of the network.

Physical layer attacks are conducted by entities that can vary from external agents to malicious SUs

in the CRN. These attacking entities are typically motivated by one of the following two reasons

[7].

• Greed – The malicious entity wishes to broadcast in a vacant spectrum hole left behind by a

missed detection error on the part of the CRN.

• Degradation – The malicious entity wishes to compromise the CRN; it attempts to do this by

degrading the CRN’s performance as much as possible.

The following physical layer attacks directly affect cooperative spectrum sensing:

• Primary user emulation attacks – Emulation attacks occur when a malicious entity broadcasts

in the band of the PU, tricking the SUs into incorrectly detecting the PU [7], [8]. If the PU

broadcasts using multiple channels, the malicious entity will transmit in one of those bands,

allowing any users linked with the entity to broadcast in the other unused bands. A typical

countermeasure to emulation attacks is to analyse the signal characteristics and dynamics of any

incoming signal in the PU’s bands; a signal that does not conform to the standard characteristics

of the PU signal will be ignored by the SUs [39]. For example, if it assumed that the PU is a
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television white space (TVWS) broadcaster, an ad hoc malicious entity is unlikely to transmit

a signal with a power as high as the TVWS PU. As a result, any significant drops in the PU’s

received power can be treated as a potential emulation attack [7].

• Byzantine attacks – Byzantine attacks occur when an MU alters its sensing data in order to

change the spectrum-sensing consensus of the CRN [7], [8], [11]. The attackers can follow

an attack strategy either to render the network ineffective or to force a missed detection error

and broadcast in the resulting spectrum hole. A large variety of methods exist to detect and

counteract Byzantine attacks, all of them involving the analysis of an SU’s sensing results in the

context of the CRN’s performance.

The core contribution of this work concerns attack prevention in relay-based decentralised networks.

Byzantine attacks are intrinsically more dangerous to relay-based networks than to their centralised

counterparts, while primary user emulation attacks affect all CRN topologies equally. Since Byzantine

attacks threaten the viability of decentralised networks specifically, they will be solely considered

for the remainder of this work. The contribution of this work provides a base defence strategy for

relay-based networks upon which improvements and alterations can be made, one of which could

include the prevention of primary user emulation attacks. Byzantine attack strategies used by MUs are

discussed further in Section 2.6.1, and the prevention and correction of Byzantine attacks is the focus

of Section 2.7.

2.6.1 Byzantine attack strategies

Formulating pragmatic CRN defence algorithms requires the development of suitable attack models.

These strategies must be able to capture the complex behaviour of an MU looking to accomplish one of

the two goals: satisfying greed or accomplishing degradation. Attackers employing the former method

are irrational, while the latter are more intelligent. Exploitative attackers may behave like ordinary

SUs initially, attempting to gain the rest of the CRN’s trust. The following parameters can be used to

determine the type of MU attack to be used on the CRN [8]:

• the network architecture of the CRN,

• the ratio of MUs relative to the total network population,

• the statistical dependence of the MU attacks with respect to other SUs, and

• the determinism, periodicity, and stationarity of attacks.
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2.6.1.1 Attacking based on the network architecture

In centralised and relay-based decentralised CRNs, MUs attempt to degrade the performance by

sending incorrect reports to the FC or the relays. They are, in general, unable to access the defence

algorithm used by the FC/relays. This fact can be used to detect and eliminate MUs from the sensing

process. Fully distributed networks, which require all SUs to participate in the fusion process, cannot

rely on withholding information on the defence algorithm. Since the MUs of a distributed network

participate in decision fusion, they can also inject incorrect values during the fusion process [12]. This

makes MU attacks in ad hoc CRNs a critical problem.

2.6.1.2 Population of MUs in attacks

The magnitude of an attack is governed by the number of MUs used in a CRN. The effectiveness

of a population-based attack can be appraised by computing the Kullback-Leibler (KL) divergence

between the probability distributions for the data received under either PU hypothesis: H0 orH1 [11].

A large KL divergence implies that the two distributions express vastly different scenarios. Conversely,

a KL divergence of zero would mean that both distributions represent identical situations. The KL

divergence is defined as [11]

D(a||b) =
∑
x

log a(x)
b(x) , (2.9)

where a(x) and b(x) are the distributions for which the divergence is evaluated. Assuming hard fusion

is employed, the following representations are used for a and b:

a(x) = p(u|H1), b(x) = p(u|H0). (2.10)

The critical proportion of MUs that reduces (2.9) to zero represents the “blind point” of the CRN.

Decisions made by the CRN past this point are reduced to random guesses, resulting in a worst case

performance scenario. CRN attacks can thus be classified by the number of attackers; a smaller MU

population would be easier to detect than a large one, as less false information is fed to the network. A

defence algorithm must maximise its blind point to ensure that large MU populations cannot degrade

the network performance significantly.

2.6.1.3 Statistical dependence of attacks

Attacks that are statistically independent of any other variables in the CRN are the simplest to model.

The dependence of each type of attack is illustrated in Figure 2.2. Fully independent attacks, which

could be used for vandalism, do not depend on any state in the CRN. These types of attacks occur in
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the form of always on (un = 1), always off (un = 0), or random attacks [30]. This family of attacks

is the simplest to defend against, as the sensing results from each MU will deviate from those of the

honest SUs. Network-independent attacks include a class of more intelligent MUs that attack based on

the state of the PU they perceive. For example, an MU could intentionally report on the absence of a

PU in a channel when the PU is actually present. An MU could also deliberately try to increase the

global sensing error probability.

Dependent attacks, which are the hardest to detect, rely on all the factors given in Figure 2.2. These

attacks are cooperative in nature, with each MU considering its neighbours’ results before sending its

own responses. The complex attack patterns that can be formulated by these MUs require much more

sophisticated detection algorithms [8], [40]. MUs participating in collusion attacks are rational, and

will disrupt the network in subtle ways to maximise long-term damage.

PU state

Fully indepen-

dent attacks

Environmental

effects

Network inde-

pendent attacks

Other SUs’

results

Dependent

attacks

Figure 2.2. The statistical dependence of each type of attack.

2.6.1.4 Causality of MU attacks

The temporal pattern of MU attacks is an important part of their attack strategy. The statistical

dependence of attacks discussed in Section 2.6.1.3 expresses the conditions required prior to the

launching of an attack, while this section refers to how the attacks are carried out. A deterministic

attack strategy would require the MUs to send reports obtained from a predetermined algorithm. These

types of MUs could adjust their parameters to optimise an objective function (e.g. KL divergence,

throughput). Attackers that consistently send false reports can be detected by the use of reputation-

based defence schemes. To combat this, MUs can attack based on an assigned probability to reduce
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the likelihood of detection by the rest of the CRN [10]. Attacking based on probabilities still presents

patterns to the CRN over long periods of time owing to the statistical stationarity of the random process.

MUs employing a non-stationary probabilistic attack model would require the most complex detection

algorithms, as the CRN would require a longer temporal window to commence detection.

2.6.1.5 Types of attack strategies

Many Byzantine attack models can be derived from the framework described above [8]. A combination

of features from each of the four criteria (i.e. network architecture, population, statistical dependence,

and causality) results in a given class of attack models. To demonstrate the variety in attack strategies,

two attack models – each polarised in terms of complexity – are discussed.

• Strategy 1 – Consider a group of MUs that attack a fully centralised CRN independently. The

number of attackers is large in comparison to the total number of SUs in the CRN. The attackers

constantly send randomly generated reports to the FC.

• Strategy 2 – Now consider another group of MUs that attack a fully distributed network.

Owing to the distributed nature of computation in the network, these users are fed reports from

neighbouring honest users. The attackers use their individual sensing results, along with their

neighbouring users’ results, to alter their sensing reports. To reduce visibility, only a small of

number of these malicious agents are deployed across the network.

Strategy 1 is a centralised, densely populated, independent, and probabilistic attack, similar to a denial-

of-service attack in conventional networks. It intends to disrupt the functioning of the CRN by feeding

numerous completely incorrect reports to the FC. In contrast, strategy 2 is a distributed, sparsely

populated, dependent, and deterministic attack; the MUs alternate intelligently between malicious and

honest modes to avoid detection by neighbouring users. Note that the variety in attack strategies causes

the defence strategies to differ similarly; the attack model is more sophisticated in strategy 2, and the

defence algorithm used to mitigate strategy 2 will be more complicated than the one used to mitigate

strategy 1. Different strategies used to combat Byzantine attacks are discussed in Section 2.7.

2.7 BYZANTINE ATTACK MITIGATION

The detection methods employed by CRNs can be categorised according to

• the nature of the attack strategy,

• the network architecture of the CRN,
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• the homogeneity of the CRN’s SUs, and

• the approach used to mitigate the attacks.

2.7.1 Homogeneous and heterogeneous CRNs

Network homogeneity is a parameter, in addition to the network architecture, that defines the CRN.

Homogeneous networks are a class of CRNs whose constituent SUs all contain identical sensing

characteristics [8]. SUs in a homogeneous network experience identical channel conditions and possess

the same hardware characteristics. The assumption of network homogeneity simplifies the formula-

tion of the defence algorithms at the expense of reducing their effectiveness. Algorithms assuming

homogeneous sensing include outlier, utility, and probability distribution-based methods.

In contrast, heterogeneous networks, which contain SUs with varying sensing characteristics, require

more advanced defence methods. The main cause of heterogeneous conditions – environmental

effects – can be directly modelled to account for the variation in SU parameters. Byzantine attack

mitigation can then be performed by using the aforementioned homogeneous methods. The possibility

of directly modelling each cause of variation is limited, as phenomena that are unknown at the time of

modelling cannot be captured. A more robust approach to accounting for heterogeneity is to identify

differences and similarities in SU reports by directly analysing the emitted data while being agnostic

to the true cause of these differences. This is typically done by inferring the parameters that maximise

the likelihood of some template statistical model. A hierarchy of the different classes of detection

algorithms is shown in Figure 2.3.

MU detection

in CRNs

Homogeneous

sensing

Heterogeneous

sensing

Outlier

methods

Utility-based

methods

Homogeneous

statistical

modelling

Propagation

model-based

methods

Heterogeneous

statistical

modelling

Figure 2.3. Hierarchy of the various categories of MU detection. Adapted from [8], © IEEE 2020.
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2.7.2 Outlier methods

Outlier detection methods that assume an SU’s results are quantised immediately after measurement

(i.e. hard fusion) are the simplest to implement. The CRN can compose a reliability metric by tracking

the deviation of an SU’s prediction from the network’s consensus. Statistical tests, such as the Kruskal-

Wallis test, can be used to determine if a set of samples originated from the same distribution [41]. In

the context of sensing, an SU measurement originates from one of two distributions due to PU vacancy

(H0) or occupancy (H1), which should be mutually exclusive. The Conover-Iman method is used to

determine whether the difference between two samples is significant; if the Kruskal-Wallis test signals

that a group of samples originated from conflicting distributions, the Conover-Iman method can then

be used to determine which report was maliciously altered.

If soft fusion is used, outliers can be determined by extracting the statistical moments of the reports

[9]. The magnitude of an outlier can be measured by

on = En − µ
σ

, (2.11)

where on is the outlier test statistic, andEn is the raw measurement from SU n. The mean and variance

of the PU signal’s power sensed by the neighbouring SUs are given by µ and σ respectively. The

inherent skewness of the distribution of received energy readings implies that more robust statistical

metrics are required for a pragmatic implementation. Furthermore, coalitions can be formed to

improve the outlier estimations such that only SUs with correlated information (over a time window)

are considered for the calculation of µ and σ in (2.11). An extension of this protocol involves the

association of each SU with a penalty score. The reputation of an SU steadily decreases when its

reports conflict with those of its neighbours. Cooperative diversity is exploited when employing outlier

detection since the readings of one SU are compared with all other SUs, each of which has a unique

perspective of the CRN.

Reputation metrics, which track the behaviour of an SU over a fixed time window, can be used by the

CRN to quantify the perceived trust associated with an SU. The deviations from a global decision can

be tracked over T time steps, with an SU considered malicious as soon as it has deviated more than η

times [11]. Outlier detection schemes have been reasonably successful when tested in models that use

a small MU population employing independent attacks. These types of methods tend to fail if the MU

employs a more sophisticated attack model [11].
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2.7.3 Utility-based methods

Utility-based detection methods consider cooperative sensing and MU attacks as a complex interaction

between two parties. Honest SUs (and the FC for centralised networks) attempt to maximise the utility

of the entire CRN by successfully predicting the occupancy of a PU. Rational MUs attempt to disrupt

the CRN by falsifying their measurements. In order to remain undetected, the MUs must still report

some correct measurements. Thus, the utility of an MU can be split into two parts: an MU’s usefulness

to the CRN, and the MU’s own effectiveness in exploiting the CRN’s resources [42]. A CRN can

discourage an MU from falsifying reports by making cooperation a greater incentive (to the MU) than

exploitation. Mechanism design theory, also referred to as reverse game theory, has been applied

to dissuade and detect MUs in a CRN. The FC is given the ability to sense the spectrum, and an

optimisation problem based on minimising the FC’s sensing probability while maximising the cost

associated with an MU falsifying attacks is developed [30].

2.7.4 Homogeneous statistical modelling

Detection of MUs via statistical modelling requires a distribution that models the data emitted by an

SU. The statistical behaviour of each SU can be inferred during cooperative spectrum sensing [43].

The parameters that describe the probability distribution of incoming reports are refined with each

sensing round.

The SUs that falsify reports may contain statistical characteristics that are very different from those of

their honest counterparts; this can be used to identify the MUs. The statistics of the alternation of an

SU’s reports (i.e. an SU choosing between PU occupancy and vacancy) can be modelled as a Markov

process [44]. The transition between the two measurement states un = 1 and un = 0 is represented

by probabilities. The deviation between each SU’s transition probabilities provides a metric for SU

maliciousness. This is because honest SUs will tend to choose decisions in a pattern that matches

the true PU occupancy. In contrast, MUs may occasionally feed the FC incorrect results to free the

spectrum for their own transmission, resulting in a different report sequence.

Note that the above methods rely on the assumption of homogeneity; the models assume that all honest

SUs behave similarly. An extension of these methods for heterogeneous networks is discussed in

Section 2.7.6.
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2.7.5 Propagation model-based methods

Individual SU reports are conditionally independent of one another if the only cause of CRN hetero-

geneity is the channel propagation model. Adjusting each SU’s error probabilities to reflect the effect

of the environment on the sensing results accounts for the variation, provided that the environment

is the only cause of this variation. Methods have been developed to improve sensing robustness by

modelling the shadow fading present in the CRN environment [31]. A distribution that captures the

pattern of the incoming arrivals can be approximated on condition that the characteristics of the shadow

fading field are known. These distributions can then be used to track sensing reports that are outliers.

The formation of coalitions to aid in MU detection is possible by grouping SUs experiencing similar

environmental conditions [32]. Optimal coalitions that jointly minimise power consumption due to

sensing and maximise the probability of detection can also be formed.

2.7.6 Heterogeneous statistical modelling

In many cases, channel effects are not the sole contributors of misleading measurements. Determining

all the true factors and subsequently modelling them are not desirable, as doing this would lead

to a system model that is too specialised. A sufficiently generalisable detection technique can be

constructed by letting the measurements fit the model. This is typically achieved by attempting to

maximise the likelihood of the received measurements. The model parameters that yield the maximum

likelihood or maximum a posteriori (MAP) probabilities are determined.

The process of an SU sensing the spectrum, falsifying a measurement, and sending a message to the

FC can be broken down into a set of functions that alters the state of a set of desired variables [10]. The

interaction between these functions can be represented using a graphical model, and belief propagation

can be used to infer the desired variables. The application of this technique results in probability

distributions of the true hypothesis and the perceived maliciousness of each SU in the CRN. Techniques

used to detect MU collusion in centralised networks can also be derived using belief propagation [40].

Correlations in SU reports are used to cluster similar SUs together. The structure of the graphical model

is determined by these clusters. Yet again, belief propagation is applied to determine the distributions

over the desired variables. Detection of correlated reports without the need for prior assumptions is an

important step towards developing a universal MU detection algorithm.

Expectation maximisation can be used to autonomously select the model parameters that maximise a

specified likelihood function [45]. Expectation maximisation has been used in a variety of different
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fields, most notably for clustering datasets in machine learning. The algorithm can be used to

partition SUs based on classes representing different behaviours [46]. These characteristics are derived

from the heterogeneity of the CRN, where groups of SUs can be formed based on their sensing

measurements.

2.7.7 Defence strategies in decentralised networks

The advanced defence strategies mentioned in this section are only suitable for centralised implementa-

tions. Most existing decentralised attack mitigation algorithms are reputation-based, as sophisticated

schemes require additional information transfer protocols to be implemented, further complicating the

formulation of these strategies. As a result, there is a need for the development of robust decentralised

defence algorithms. In decentralised networks, minimal research has been done on the implementation

of defence algorithms in relay-based networks. As a result, a novel relay-based defence algorithm is

developed and analysed in the remainder of this work.

2.8 INTEGRATED SENSING AND DEFENCE ALGORITHMS

The requirements of the CRN, as implied by the cognitive cycle, result in the need for many complicated

algorithms to execute together. In the physical layer alone, the CRN needs to sense, fuse, allocate

resources, distribute messages, and run security algorithms. Furthermore, some of these algorithms

must run between sensing time increments. As a result, there is a need for the simplification of

computation while sacrificing as little of the intended functionality as possible. This can be achieved

by integrating similar processes into one algorithm, thus limiting bandwidth use and computation

delays across the network. Since Byzantine attack mitigation is closely linked to cooperative spectrum

sensing, these two processes can be combined for more efficient implementation in a CRN.

Belief propagation has been used in performing either spectrum sensing or Byzantine attack miti-

gation exclusively. It can also be used to perform both tasks simultaneously. The combination of

a model-based and data-driven approach – provided by the framework of graphical modelling and

inference – allows a great degree of expressive power. In addition, the message-passing structure of

belief propagation naturally allows implementations of integrated fusion and defence algorithms to

decentralised networks.

2.9 CHAPTER SUMMARY

The functionality of CR was considered in terms of the cognitive cycle. Spectrum sensing and decision-

making strategies were discussed, along with the vulnerabilities to these processes through physical

layer attacks. One of these attacks, termed the Byzantine attack, was analysed in detail; a framework
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for attack strategy formulation was presented, and various defence techniques were discussed. The

literature’s lack of decentralised defence algorithms, along with the need for integrated sensing-defence

schemes, was highlighted. The proposed algorithm detailed in the remainder of this work serves to

address this gap, and the formulation and realisation of the proposed algorithm is considered in the

following chapters. Chapter 3 focuses on the formulation of the statistical model of the relay-based

sensing process. Chapter 4 concerns the application of belief propagation on the developed graphical

model, along with how this is realised in a relay-based CRN.
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CHAPTER 3 PROBABILISTIC INFERENCE FOR

SECURE SENSING

3.1 CHAPTER OVERVIEW

In the previous chapter, lack of research into integrated sensing and defence algorithms for decentralised

networks was identified. As a result, a novel secure sensing algorithm for relay-based networks is

developed and tested over the remainder of this work. This chapter describes the development of the

statistical model forming the foundation of the proposed algorithm. This model allows the PU state and

the maliciousness of any SUs to be determined simultaneously with the aid of probabilistic inference,

allowing the proposed algorithm to be an integrated sensing and defence scheme. The determination

of the desired phenomena is facilitated by joint estimations obtained from the statistical model. A

system model of the relay-based network is first defined in Section 3.2. The notation is introduced,

and the sensing procedure applied by the SUs is presented. The system variables, including the SU

measurements, reports, and maliciousness of the MUs are defined and discussed. The processes by

which a measurement is made by an SU (and subsequently falsified if it is an MU) are explained.

Historical information that is useful to the sensing process is identified.

In Section 3.3, the utility of probabilistic inference in determining joint estimations is discussed. The

variables introduced in Section 3.2 are partitioned based on whether they are directly observable

or latent. The general form of a joint distribution describing all outcomes of the sensing process is

obtained using this partition. Marginal inference can be performed on this distribution to obtain the joint

estimates needed for the proposed algorithm; the brute-force computation associated with marginal

inference is too inefficient for use in real-time spectrum sensing. Thus, an alternative technique – belief

propagation – is chosen to perform efficient inference on the distribution.
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Applying belief propagation requires the formulation of a graphical model, which is an alternative

representation of the joint distribution. A graphical model visually expresses the joint distribution in

terms of the conditional relationships of the system variables. The discovery and definition of these

relationships are found in Section 3.4. A graphical model based on the conditional dependencies is

then constructed in Section 3.5. Candidate graphical models are explored first, with an appropriate

model chosen to capture the interactions between the variables sufficiently. A graphical model of the

sensing process is then built, allowing the mathematical form of the corresponding joint distribution to

be obtained. This concludes the development of the statistical model, with the efficient inference and

implementation of this model considered in Chapter 4.

3.2 SYSTEM MODEL

The proposed algorithm aims to combine the sensing reports from the SUs of the network to perform

the following two tasks:

1. determine the true state of the PU, and

2. identify which SUs are malicious.

The above two tasks are to be performed on a relay-based CRN, with any computations distributed

across the relays of the network. The following two types of SUs are used to achieve this:

1. Trusted users (TUs) – These SUs function as the relays of the network, and are responsible for

data fusion. These users have established mutual trust; sensing reports made by these users are

always assumed to be honest (i.e. TUs never maliciously alter their reports).

2. Untrusted users (UTUs) – These SUs, forming the bulk of the network, include any devices

with some sensing capability that are added to the network on an ad hoc basis. Prior to sensing,

they are assumed to be untrusted and may be dishonest (i.e. some UTUs may maliciously alter

their reports). In other words a subset of malicious UTUs exists.

All SUs contribute to spectrum sensing by measuring and reporting their PU occupancy estimates, but

only TUs perform data fusion. Initially, the TUs are unaware of which UTUs are malicious. Thus, the

proposed algorithm needs to discern the subset of MUs from the UTUs while maintaining an accurate

PU state estimation. These tasks are dependent upon each other, and it is desirable to perform them

jointly.
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There areNk TUs (indexed by k) andNm UTUs (indexed bym) in the relay-based network. If SUs are

referred to generally, they are indexed by n. The total number of SUs in the CRN is Nsu = Nk +Nu.

The sensing process is segmented over discrete time increments t = 1, t = 2, · · · , t = T . The true

state of the PU at time t is represented by H(t) = 1 = H(t)
1 when the PU is broadcasting in the

environment, andH(t) = 0 = H(t)
0 when the PU is absent. At time t, an SU senses the spectrum by

measuring the power in the PU’s allocated band. It collects R samples (denoted by s), storing them as

a vector:

s = [s1, s2, · · · , sR] . (3.1)

Hard fusion is used to save bandwidth; the nth SU’s measurement s(t)
n is quantised to a PU state

estimate u(t)
n ∈ {H(t)

0 ,H(t)
1 }. An SU broadcasts its sensing reports in the form y

(t)
n ∈ {H(t)

0 ,H(t)
1 }.

A measurement made by a TU is denoted by u(t)
tk

, and reports made by TUs are always the same as

their measurements (i.e. u(t)
tk

= y
(t)
tk

). A measurement is denoted by u(t)
m for UTUs. Reports made

by UTUs (y(t)
m ) are not always the same as their measurements, as malicious UTUs may alter their

sensing results. The global PU state estimate, formed by fusing all SU reports, is given by Ĥ(t). For

the remainder of this work, notation will be abused for clarity, and the superscript “(t)” will be dropped

when referring to sensing in the current time instant.

3.2.1 Information transfer in the network

Figure 3.1 shows an example of the described network, with three TUs and five UTUs1. The TUs are

enumerated prior to sensing. Each UTU sends its sensing reports to the most conveniently located TU.

The kth TU shares and processes the information with either of its adjacent neighbours in the form of

Mk,k+1 or Mk,k−1. The proposed algorithm is implemented by sending this information across the

TUs.

3.2.2 Obtaining un – individual estimation of the PU state

The conversion of the spectral power sn to a PU state estimate un is facilitated by a likelihood test.

The magnitude of sn is compared against a threshold that is based on the noise characteristics of the

environment. Assuming that additive white Gaussian noise is present in the environment, the following

threshold can be used [47]:

τ(ε) = σ2
v

[
1 +
√
RQ−1(ε)

]
, (3.2)

1Note that these numbers are chosen for clarity. The number of UTUs is typically much larger than the number of TUs.
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where ε is the desired false alarm rate, σ2
v is the noise power in the environment, and Q−1(x) is

the inverse Q-function. It is assumed that the environment in which the CRN exists is statistically

stationary; the threshold remains the same for all SUs over the sensing period. The likelihood test is

formulated using the defined threshold τ(ε):

Fn = 1
R
||sn||2 − τ(ε), (3.3)

where Fn is the nth SU’s test statistic, which is converted to un as follows:

un =


0, if Fn < 0

1, if Fn ≥ 0
. (3.4)

TU1

UTU 1 TU 2

TU 3

UTU 2 UTU 3

UTU 4

UTU 5

TU Service Channel
TU-UTU link

y1

M2,1

M1,2

y2

y3

y5

y4

M3,2

M2,3

Figure 3.1. Example of the described relay-based network.

3.2.3 Obtaining yn – reported PU state estimations

In general, it is assumed that a malicious group exists within the group of UTUs. Maliciousness, for

the scope of this work, is defined as the frequency with which an MU changes its sensing reports. The

maliciousness of a UTU m is determined by the variable rm ∈ [−1, 1]. When rm < 0, the MU tends

to alter its reports in favour of enforcing missed detections. Conversely, rm > 0 results in a skew

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

32



CHAPTER 3 PROBABILISTIC INFERENCE FOR SECURE SENSING

towards false alarm reports. The larger the magnitude of rm, the greater the maliciousness of the UTU

m [10]. In the event that an MU with rm < 0 measures um = 1, the probabilities of the MU altering

or keeping its sensing result are governed by

p(ym = 0|um = 1) = |rm|, or

p(ym = 1|um = 1) = 1− |rm|,
(3.5)

respectively. Similarly, if an MU with rm > 0 measures um = 0, the probabilities associated with the

MU’s reports are

p(ym = 0|um = 0) = 1− rm, or

p(ym = 1|um = 0) = rm.

(3.6)

It is assumed that the MUs do not change their maliciousness over time. For TUs, ytk = utk in all

cases. Note that, using the framework described in Section 2.6.1, the MU strategy employed here is a

decentralised, population-variable, network-independent, and probabilistic attack.

3.2.4 Storage of historical information

The variables defined thus far are only specific to a single time instant. Historical information can

improve the robustness of the PU state estimation. The behaviour of the SUs can be averaged over a

time period to account for possible outliers and variations in the reports for the current time instant yn.

Information from time instants t = 1 to t = T can be represented in the form of previous PU state

estimations

Ĥ(T ) = [Ĥ(1), Ĥ(2), · · · , Ĥ(T )], (3.7)

and sensing reports broadcast by all SUs:

Y(T ) =



y
(1)
1 . . . y

(1)
n . . . y

(1)
Nsu

y
(2)
1 . . . y

(2)
n . . . y

(2)
Nsu

...
...

...
. . .

...

y
(T )
1 . . . y

(T )
n . . . y

(T )
Nsu


. (3.8)

The historical information is assumed to be known by the TUs. The tth row of Y(T ) represents the

measurements made by all SUs at time increment t. The nth column is given by y(T )
n , and represents

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

33



CHAPTER 3 PROBABILISTIC INFERENCE FOR SECURE SENSING

all measurements made by SU n until time t = T .

3.2.5 Combining reports to estimateH – cooperative spectrum sensing

The task of the proposed algorithm is now redefined in terms of the newly introduced notation. The

proposed algorithm combines the individual sensing reports of each SU for the current time instant

y = [y1, . . . , yn, . . . , yNsu ], the sensing reports from the previous T time instants Y(T ), and the

historical PU state estimations Ĥ(T )
to perform the following tasks:

1. determine the current PU stateH by use of an estimate Ĥ, and

2. determine the subset of MUs by estimating their maliciousness r = [r1, r2, · · · , rm, · · · , rNm ].

An integrated fusion and defence algorithm can be formulated to obtain all estimates simultaneously.

Probabilistic inference provides a very convenient framework to achieve this by allowing probability

distributions over the latent variables of the system model to be determined. These latent variables

cannot be measured directly by the TUs and include the PU state H, UTU maliciousness values r,

and UTU measurements u = [u1, u2, · · · , um, · · · , uNm ]. Furthermore, applying inference in this

manner leads to the graphical representation of a probability distribution that can be used to compute

the inference in a distributed manner – a property probabilistic inference methods hold over their

alternatives (i.e. consensus and diffusion algorithms).

3.3 COOPERATIVE SPECTRUM SENSING BY PROBABILISTIC INFERENCE

A joint distribution of a system associates every possible variable state combination of that system with

a probability density. Inference can be performed on this distribution to extract useful information,

which requires a full description of the distribution’s mathematical form. In formulating the joint

distribution, it is first important to define the variables that exist in this system, and subsequently

to partition those variables into known (i.e. measurable) and desired (i.e. latent) subsets. The joint

distribution is then formulated in terms of the desired variables and conditioned on the known variables.

Let Ps represent the joint distribution of the sensing process composed of the variable set Xs. The

desired variables are in the set Zs, and the observed variables are in the set Es. The following partitions

are present in the sensing model:

1. The system of variables is

Xs =
{

u, r,H, Ĥ(T )
,Y(T )

}
. (3.9)
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2. The set of variables known by the TUs at time t, which functions as the evidence for the statistical

model, is

Es =
{

Ĥ(T )
,Y(T )

}
. (3.10)

3. The set of unknown variables desired for inference is

Zs = {u, r,H} . (3.11)

Thus, the form of the observed joint distribution at time t is

p(Zs|Es) = p(u, r,H|Ĥ(T )
,Y(T )). (3.12)

The following notation is used to condense and imply the conditional relationship between the desired

and known variables:

Ps = ps(u, r,H) = p(u, r,H|Ĥ(T )
,Y(T )). (3.13)

The raw information contained in Ps requires extraction to provide usable information for sensing.

This is done by the inference of (3.13).

3.3.1 Inference of the joint distribution Ps

Inference is enabled by the computation of the marginals associated with (3.13). Marginals are

distributions with respect to subsets of variables belonging to the parent joint distribution. For the

problem at hand, the TUs require estimates of the PU state, the maliciousness of all UTUs, and the

original measurements of all UTUs. Thus, the marginals are of the form

b(um) ≈ ps(um) = p(um|Ĥ
(T )
,Y(T )),

b(rm) ≈ ps(rm) = p(rm|Ĥ
(T )
,Y(T )), and

b(H) ≈ ps(H) = p(H|Ĥ(T )
,Y(T )),

(3.14)

where b(um), b(rm), and b(H) are estimates of the marginals called “beliefs”.

The marginals in (3.14) are a set of posterior probability distributions, each over a single desired

variable. Obtaining these marginals gives insight into the states that are favoured by the model, given
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the evidence Ĥ(T )
and Y(T ). These favoured states are determined using the MAP estimate; this is

the state in which the posterior marginal distribution is at its maximum:

ûm = argmax
um

b(um),

r̂m = argmax
rm

b(rm),

Ĥ = argmax
H

b(H).

(3.15)

The MAP estimates ûm, r̂m, and Ĥ jointly represent the most likely variable states. This is because

Ps considers the interaction between the variables multilaterally. These estimates become the final

decisions made by the network (i.e. the network concludes that the PU band is vacant if Ĥ =

H0 = 0 and vice versa). Thus, marginal inference of (3.13) accomplishes the following tasks

simultaneously:

1. Detection of MUs – If the evidence deems it likely that a UTU report has been altered (i.e.

ym 6= um), the belief b(rm) is shifted such that the UTU is considered more malicious.

2. Weighting of UTU contributions – The contribution of a report coming from a UTU deemed

malicious is lowered. In some cases, if the MU is observed to be extremely malicious (i.e.

|r̂m| >> 0), its report is reversed (i.e. ym = H0 is changed to ym = H1). These changes affect

the PU state prediction.

3. Determining the most likely PU state – The MAP estimate Ĥ is the peak of the belief b(H).

This estimate is the amalgamation of MU detection and UTU report weighting/combining. For

example, the model would deem Ĥ = H1 = 1 more likely when a large number of re-weighted

UTU measurement estimates are ûm = 1.

In summary, the model variables are combined to form the joint distribution in (3.13); this is done prior

to sensing. The estimates û, r̂, and Ĥ are then obtained from the inference of the joint distribution,

which is done during sensing. This process is illustrated in Figure 3.2. Thus, cooperative spectrum

sensing is equivalent to performing marginal inference on (3.13) to obtain the estimates in (3.15).

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

36



CHAPTER 3 PROBABILISTIC INFERENCE FOR SECURE SENSING

Ps = ps(u, r,H) Inference

Ĥ(1)

Ĥ(T )

y(T )
n

y(T )
1

û1

ûm

Ĥ

r̂1

r̂m

Evidence Statistical model Decisions

...

...

...

...

Figure 3.2. High-level view of how the variables are combined and extracted to perform cooperative

spectrum sensing.

3.3.2 Computation of the marginals

The brute-force computation of the marginals in (3.14) involves summing (for a discrete variable) or

integrating (for a continuous variable) Ps over all unknown variables, with the exception of the variable

that is the subject of the marginal distribution. For the problem at hand, the brute-force approach yields

the following expressions for the marginals:

ps(um) ∝
∫ 1

−1

∑
u\um

∑
H
Psd{r},

ps(rm) ∝
∫ 1

−1

∑
u

∑
H
Psd {r \ rm} , and

ps(H) ∝
∫ 1

−1

∑
u
Psd{r},

(3.16)
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where d{r} denotes an iterated integration over the elements of the vector r. The notation “u \ um”

and “r \ rm” represents the set of u and r with the exception of um and rm respectively. Applying

the brute-force approach becomes prohibitively costly for joint distributions of many variables. The

general computational cost of the brute-force approach is O(LN ), where L is the number of states for

each variable (assuming all variables have the same number of states) and N is the total number of

variables [45]. The brute-force approach assumes that no variables in Ps are conditionally independent

– an assumption that is not generally true.

3.4 VARIABLE INTERACTIONS IN THE SENSING MODEL

Probabilistic graphical models are representations of joint distributions in terms of their conditional

dependencies. The dependence structure of a distribution, exposed by representing it as a graphical

model, can be exploited to perform marginal inference much more efficiently in comparison to the brute-

force case. For the special class of graphical models that represent Markov chains, the computational

cost can be reduced to O(L2N). This approach, which involves scheduling and saving intermediate

summations and products in the computation of the marginal distribution, is called belief propagation

[48], [49]. Thus, if efficient marginal inference is desired, Ps needs to be expressed graphically. Before

doing this, it is important to identify and define the conditional dependencies present between the

variables in Xs, as this will allow the most appropriate graphical model to be chosen. This section

explores and defines the variable interactions present in the sensing model of Section 3.2. These

interactions will be defined in terms of likelihood functions. These functions are eventually combined

to form a graphical model Gs that corresponds to Ps.

3.4.1 PU stateH, and SU measurements um and utk

When the PU is broadcasting (i.e. H = H1 = 1), an SU’s original measurement is more likely to

correspond to the PU state (i.e. un = H1 = 1). This is also true when the PU is vacant. Thus,

knowledge of H changes the expectation of an SU’s measurement. A reliable SU that is placed in

a favourable location is more likely to measure the state of the PU correctly. A simple relationship

between an SU n’s measurement and the PU stateH can be determined by the abstraction of an SU’s

reliability using the error probabilities pnfa and pnmd. An SU with a large false alarm probability is

prone to incorrectly measuring a PU signal when there is none, and an SU with a large missed detection

probability will often fail to sense a PU signal’s presence.

Table 3.1 shows the function αtk(utk ,H) that expresses the relationship between a TU’s measurement

utk and the PU state H. A “∗” denotes a variable that is unknown prior to sensing (i.e. a desired
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variable). For αtk , utk is known since the SU k is trusted (utk = ytk ).

Table 3.1. Description of the likelihood function αtk for a TU k.

αtk(utk ,H∗) H∗ = 0 H∗ = 1

utk = 0 1− pkmd pkmd

utk = 1 pkfa 1− pkfa

Table 3.2 shows the function αum(um,H) expressing the relationship between a UTU’s measurement

um and the PU stateH. This function is mostly similar to αtk , with the exception that um is unknown,

since it is not guaranteed to be the same as ym.

Table 3.2. Description of the likelihood function αum for a UTU m.

αum(u∗m,H∗) H∗ = 0 H∗ = 1

u∗m = 0 1− pmmd pmmd

u∗m = 1 pmfa 1− pmfa

In both cases, a higher likelihood for a measurement corresponding to the PU state is assigned to an

SU with smaller error probabilities. Each TU is associated with a single αtk factor, and each UTU is

associated with a single αum factor.

3.4.2 TU reports ytk and UTU reports ym

Shared spatial and environmental factors result in a correlation between TU reports ytk = utk and

UTU reports ym, both of which are linked to the PU state H. This correlation can be leveraged

to refine the estimation of the PU state. Consider a pair of two SUs: one is a TU k, and the other

is a UTU m. The correlation between these SUs’ reports can be represented by two probabilities

ζmk = p(ym = 0|ytk = 0) and τmk = p(ym = 1|ytk = 1). Large values of ζmk and τmk mean that

UTU m and TU k make similar reports. A small value of ζmk or τmk implies that UTU m makes

dissimilar reports to TU k when ytk = 0 or ytk = 1 respectively. The function γmk(utk , ym,H) relates

the relevant variables to these quantities, as shown in Table 3.3. Note that ytk is replaced by utk for

uniformity in notation with the other factors.
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Table 3.3. Description of the likelihood function γmk.

γmk(utk , ym,H∗) H∗ = 0 H∗ = 1

ym = 0
utk = 0 ζmk 1− ζmk
utk = 1 τmk 1− τmk

ym = 1
utk = 0 1− ζmk ζmk

utk = 1 1− τmk τmk

The probabilities ζmk and τmk are assumed to be unknown and need to be determined during sensing.

This can be achieved in various ways. The simplest technique to estimate ζmk and τmk is to take the

sum of all reports where ym = utk = 1 and ym = utk = 0 until time t = T :

ζ̂mk =
∑T
t=1{utk = ym}0

T
,

τ̂mk =
∑T
t=1{utk = ym}1

T
,

(3.17)

where {utk = ym}i = 1 when utk = ym = i, and is 0 otherwise. These estimates ζ̂mk and τ̂mk are

used in place of the true values during sensing. Every pair of connections between the UTUs m and

the TUs k is associated with a γmk function.

3.4.3 Historical information, UTU reports ym, and maliciousness rm

If a UTU m is malicious, it cannot be guaranteed that um = ym. When |rm| is large, there is a high

probability that um 6= ym, with the converse true for small |rm|. A function δam(ym, um, rm) can

be used to capture the relationship between a UTU’s measurement, report, and maliciousness – this

function is shown in Table 3.4 [10]. The output of δam gives the likelihood of the original measurement

and maliciousness given the UTU’s report.
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Table 3.4. Description of the likelihood function δam .

δam(ym, u∗m, r∗m) ym = 0 ym = 1

u∗m = 0
r∗m > 0 1− r∗m r∗m

r∗m ≤ 0 1 0

u∗m = 1
r∗m ≥ 0 0 1

r∗m < 0 |r∗m| 1− |r∗m|

Another similar function can be used to refine the estimation of rm further by using the UTU’s historical

sensing performance. In this case, the PU state estimate Ĥ and UTU report from historical time instant

i ≤ T can be used to infer the maliciousness. The function δibm
(y(i)
m , Ĥ(i), rm), shown in Table 3.5,

fulfils this task.

Table 3.5. Description of the likelihood function δibm
.

δibm
(y(i)
m , Ĥ(i), r∗m) y

(i)
m = 0 y

(i)
m = 1

Ĥ(i) = 0
r∗m > 0 1− r∗m r∗m

r∗m ≤ 0 1 0

Ĥ(i) = 1
r∗m ≥ 0 0 1

r∗m < 0 |r∗m| 1− |r∗m|

Each UTU is associated with a single δam function and a set of δibm
functions for each historical time

instant i ≤ T .

Figure 3.3 summarises how the variables are related to the functions. This diagram is specific to a

subject TU k and UTU m. The clear and hatched nodes represent the known and unknown variables

respectively.

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

41



CHAPTER 3 PROBABILISTIC INFERENCE FOR SECURE SENSING

H

Function αum :

Contribution of

current PU state to

UTU measurement.

um

Function δam :

Effect of current

sensing results on

maliciousness rm.

rm

Function δibm
: Effect

of past sensing results

on maliciousness rm.

Y(T ) Ĥ(T )

ym

Function γmk:

Likelihood of current

report based on

neighbouring reports.Function αtk :

Contribution of

current PU state to

TU measurement.

utk

Figure 3.3. Diagram showing how the variables in the sensing model are related to one other.
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Note that the conditional dependencies between the variables have already been exposed in Figure

3.3 – observing ym changes the knowledge of rm which influences the knowledge of um, which in

turn influences the knowledge of H. Note that arrows are not present between the nodes as these

conditional relationships work both ways, and for any path across the variables. The joint distribution

Ps is mathematically expressed as the product of the functions αtk , αum , γmk, δam , and δibm
– the

order in which the product is structured is highlighted using an appropriate graphical model.

3.5 FORMULATION OF THE GRAPHICAL MODEL

Since the variable interactions have been established, a graphical model Gs representing Ps can now

be determined. As mentioned previously, the graph captures the conditional relationships between

the variables in Xs. This is essential for the efficient computation of the marginal distributions of Ps.

Furthermore, the mathematical expression of Ps can be obtained from Gs in a straightforward and

intuitive manner. A suitable type of graphical model must first be chosen to encode the interactions of

Section 3.4 accurately in terms of conditional dependencies.

3.5.1 Types of graphical models

A variety of graphical models exist, including Bayesian networks, Markov random fields (MRFs), and

factor graphs. These models are explored in this section, and a suitable model is selected based on the

aforementioned variable interactions. A generic graphical model G and its associated joint distribution

P will be used here. The model G contains a variable set X.

3.5.1.1 Bayesian networks

Bayesian networks are directed acyclic graphs that represent unilateral conditional relationships

between variables. The graph consists of variable nodes (each representing a variable in X) connected

by arrows pointing at each neighbour. An arrow pointing from a variable xi at another variable xj

represents the direction of influence between the variables. In other words, knowledge of xi leads to

an update in the knowledge of xj :

p(xj , xi) = p(xj |xi)p(xi). (3.18)

As a result, the Bayesian network is a graph G that expresses a joint distribution P in terms

of its conditional relationships. Consider the following example distribution, with X =

{x1, x2, x3, x4, x5}:

P = p(X = {x1, x2, x3, x4, x5}) = p(x1|x2, x3)p(x3)p(x2|x4, x5)p(x4)p(x5). (3.19)
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The equivalent Bayesian network of the distribution in (3.19) is shown in Figure 3.4.

x1

x2 x3

x4 x5

Figure 3.4. Example of a Bayesian network with X = {x1, x2, x3, x4, x5}.

Note that Bayesian networks cannot represent bilateral dependence structures where p(xj |xi) and

p(xi|xj) both exist; these networks are appropriate for modelling systems of variables that display

clear unilateral interactions between each other.

3.5.1.2 Markov random fields

MRFs are undirected graphs that can contain cycles. This allows them to capture cyclic bilateral

influences between systems of variables. Similarly to Bayesian networks, MRFs contain variable nodes

corresponding to each element of X. The edge connecting a node xi to another node xj is associated

with a potential function ψij = ψji. The function ψij represents the mutual likelihood of xi and xj .

The potential is formulated such that ψij >> 0 if xi and xj are observed, and these observations are

deemed likely by the model.

The joint distribution corresponding to an MRF, with a system of variables X, is the product of all

edge potentials in the graph:

P = p(X = {x1, · · · , xN}) = 1
Z

∏
{i,j}∈G

ψij(xi, xj), (3.20)

where {i, j} refers to a pair of connected variables xi and xj in G, and Z is the normalising constant

required to make (3.20) a valid probability distribution. An example of an MRF is shown in Figure 3.5

below.
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x1 x2

x3

x4

x5

ψ12 ψ24

ψ45ψ25

ψ35

Figure 3.5. Example of an MRF with X = {x1, x2, x3, x4, x5}.

The joint distribution corresponding to G in Figure 3.5 is

P = p(X = {x1, x2, x3, x4, x5}) = 1
Z
ψ12(x1, x2)ψ24(x2, x4)ψ25(x2, x5)ψ35(x3, x5)ψ45(x4, x5).

(3.21)

MRFs are limited to capturing models with only bilateral influences between a pair of variables, as the

edge potentials are only functions of two variables. These models are suitable for applications where

correlations are present between system variables.

3.5.1.3 Factor graphs

Factor graphs have a fundamentally different graphical architecture in comparison to Bayesian networks

and MRFs. Factor graphs consist of two different types of nodes: variables and factors. The variable

nodes represent each element of the set X, and define the skeleton of the graph. The factor nodes, which

are elements of the set F = {f1, f2, · · · }, connect the variable nodes. Factors represent likelihood

functions that relate the variables to one other, and are a function of a subset of variables xi from X.

Thus, a factor graph has the following form: G = [X,F]. In G, a factor fi(xi) is connected to all the

variables of xi. The joint distribution represented by G is the product of all the factors in F:

P = p(X = {x1, · · · , xN}) = 1
Z

∏
fi∈F

fi(xi). (3.22)

Factor graphs allow for cycles and undirected bilateral relationships between variables, unlike Bayesian

networks. Furthermore, factor graphs have greater expressive power than MRFs, as the presence of
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factor nodes allows more than two variables to be influenced by the same factor. The generality of

factor graphs allows Bayesian networks and MRFs to be converted to factor graphs, with the converse

not always being possible.

The factor graph representation of the Bayesian network in Figure 3.4 is given in Figure 3.6. In this

case, the variable set is X = {x1, x2, x3, x4, x5}, and the factor set is F = {f1, f2, f3, f4}, with

f1 = p(x1|x2, x3), f2 = p(x3), f3 = p(x2|x4, x5), f4 = p(x4), and f5 = p(x5). Similarly, the

factor graph representation of the MRF in Figure 3.5 is given in Figure 3.7. In this case, the edge

potentials make up the factor set such that f1 = ψ12(x1, x2), f2 = ψ24(x2, x4), f3 = ψ35(x3, x5),

and f4 = ψ45(x4, x5).

x1 x2 x3 x4 x5

f1 f2 f3 f4 f5

Figure 3.6. Factor graph corresponding to the Bayesian network of Fig. 3.4.

x1 x2 x3 x4 x5

ψ12 ψ24 ψ25 ψ35 ψ45

Figure 3.7. Factor graph corresponding to the MRF of Fig. 3.5.
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Consider the following joint distribution, assuming that f1, f2, and f3 cannot be factorised any

further:

P = p(X = {x1, x2, x3, x4, x5}) = f1(x1, x2, x3)f2(x2, x4, x5)f3(x4, x5). (3.23)

The factor graph corresponding to (3.23) is shown in Figure 3.8. Note that many variables in this graph

are influenced by the same factor (i.e. f1 and f2), meaning that an MRF would be unable to capture this

behaviour. The graph is also cyclic and undirected, properties that a Bayesian network cannot handle.

Thus, the behaviour of the system of variables in (3.23) can only be captured by a factor graph.

x1 x2 x3 x4 x5

f1 f2 f3

Figure 3.8. Example of a unique factor graph that captures the cyclic multilateral influences between

variables.

3.5.2 Choice of graphical model for Ps

The interactions listed in Section 3.4 contain cyclic and multilateral conditional dependence structures.

This is highlighted in Figure 3.3, where knowledge of utk and um changes the knowledge ofH, with

the reverse scenario also true. These interactions disqualify Bayesian networks as a suitable candidate

for the graphical sensing model, as they cannot handle the bilateral influences of the variables in Xs.

Now consider the function δam , which accounts for a UTU’s maliciousness rm, its sensing reports ym,

and its true measurements um. All three variables are influenced by δam simultaneously, an interaction

that cannot be captured by an MRF. Thus, the only graphical model that can capture the interactions

between the variables of Xs is the factor graph.
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H
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um
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Figure 3.9. Factor graph Gs showing the relationship between the variables of Xs.
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3.5.3 Construction of the factor graph Gs

The interactions of Xs are summarised as a factor graph, denoted by Gs = [Xs,Fs] in Figure 3.9.

The variables and factors are represented by circles and squares respectively. The graph Gs is formed

by considering the functions αtk , αum , δam , δibm
, and γmk as members of the factor set Fs. An edge

in Gs exists between a given variable in Xs and all the factor functions associated with that variable.

Note that the graph represents the distribution Ps in which a certain set of variables has already been

observed. The goal is to infer the “hidden” unobserved variables. The hatched circles in Figure 3.9

denote the unknown variables in the set Zs. A solid line denotes the connection between an unknown

variable and a factor, and a dashed line denotes the connection between a known variable and a

factor.

3.5.4 Construction of the joint distribution

The mathematical form of the joint distribution Ps can be determined by applying (3.22) to all factors

in Gs. Before doing so, it is important to note that Gs in Figure 3.9 can be conveniently partitioned into

subgraphs with

1. a subgraph for every UTU m in the network:

Gm =
[
Xm = {um, rm, ym,y(T )

m ,H, Ĥ(T )},Fm = {δ1
bm
, · · · , δTbm

, δam , αum}
]
, (3.24)

2. and a single subgraph for the all TUs combined:

Gk = [Xk = {utk ,H},Fk = {αt1 , · · · , αtk , γm1, · · · , γmk, }] . (3.25)

3.5.4.1 Local distribution for UTU m

The subgraph Gm is responsible for the estimation of the mth UTU’s maliciousness and the weighting

of the UTU’s contribution to the PU state estimation. Using Figure 3.9, the corresponding joint

distribution for Gm is

Pm ∝ αum (um,H) δam (um, ym, rm)
∏

i∈{1,2,...,T}
δibm

(
y(i)
m , rm

)
. (3.26)
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3.5.4.2 Distribution for TUs

The subgraph Gt combines all the weighted reports and performs the estimation ofH. The effects of

correlations between neighbouring SU reports, and their impact onH, are also handled by this portion

of Gs. The corresponding joint distribution for Gk is

Pk ∝
∏

k∈{1,2,...,Nk}
αtk (utk ,H)

∏
m∈{1,2,...,Nm}

γmk (utk , ym,H) . (3.27)

3.5.4.3 Global joint distribution

Since the combination of the subgraphs Gk and Gm forms the complete graph Gs, the global joint

distribution is formed by multiplying Pk (representing all TUs in the network) and Pm (for each UTU

in the network):

Ps = ps(u, r,H) ∝ Pk
∏

m∈{1,2,...,Nm}
Pm. (3.28)

Note that the proportionality sign ∝ is used, as the individual factors are likelihood functions; a

normalising constant is required to ensure that Ps, Pt, and Pm are valid probability distributions.

Equation (3.28) completes the mathematical description of Ps. Now that Gs and Ps are fully defined,

belief propagation can be applied to infer Ps efficiently and find the estimates in (3.15).

3.6 CHAPTER SUMMARY

The objectives of the proposed algorithm were identified, and a statistical model forming the foundation

of the algorithm was developed in this chapter. The system model for the sensing process of a relay-

based CRN was first developed. Probabilistic inference was proposed as a sensing technique to

perform joint estimations on the desired variables. Belief propagation was introduced as an efficient

technique to infer graphical models, especially in comparison to the brute-force alternative. This

required a graphical model representing the conditional relationships of the system to be developed.

The conditional relationships between the variables of the system model were determined, and various

candidate graphical models were explored. Factor graphs were identified as a sufficient model to

capture the behaviour of the system variables. Once the graphical model had been developed, the

mathematical form of the statistical model was obtained. The application of belief propagation, along

with the implementation of the subsequent marginal computations on a relay-based network, are

considered in Chapter 4.

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

50



CHAPTER 4 IMPLEMENTATION OF THE SECURE

SENSING ALGORITHM

4.1 CHAPTER OVERVIEW

The statistical model developed in Chapter 3 is used to formulate a real-time spectrum-sensing algorithm

in this chapter, which is divided into two major sections. Section 4.2 entails the efficient inference of

the statistical model by the application of belief propagation, which results in analytical expressions

for the computation of the desired marginals. Section 4.3 contains the formulation of the proposed

algorithm, which involves the distributed computation of the marginal expressions.

Section 4.2 introduces the rules for belief propagation by considering an arbitrary factor graph first.

Once the general rules have been obtained, they are applied to the graphical model developed in

Chapter 3. The application of the rules of belief propagation yields a set of sub-computations called

“messages”, which can be combined to form the desired marginal distributions (and in turn the joint

estimates).

The proposed algorithm determines the desired joint estimations by computing the messages obtained

in a distributed manner across the relays of the relay-based CRN. This is formulated in Section 4.3

by allowing the TUs to expose only specific messages to neighbouring TUs. The choice of which

messages to expose is facilitated by considering the local and global utility of these messages to data

fusion. In this context, local utility refers to knowledge gained about a specific device in the CRN

(i.e. the UTU m), and global utility refers to knowledge gained concerning the entire network (i.e.

the current PU state). Only messages providing global utility are chosen to be exchanged among the

relays. The transfer of this information is realised using sequential hops across the relay nodes.
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Since historical information needs to be accumulated over time, phases are introduced to the proposed

algorithm in Section 4.3.4. A learning phase and execution phase are used to divide the functionality

of the algorithm to allow for adaptation to time-varying conditions. Finally, the complexity of the

algorithm is analysed in Section 4.3.5.

4.2 APPLICATION OF BELIEF PROPAGATION TO THE GRAPHICAL MODEL

Expressions for the marginal probabilities of the sensing model Ps in (3.14) are efficiently determined

by the application of belief propagation to the graphical model Gs. Belief propagation entails passing

interim computations called messages across the edges of Gs; these messages and expressions are

obtained in this section.

4.2.1 Belief propagation on factor graphs

Consider an arbitrary joint distribution P – assume that P can be expressed as a product of functions

such that an equivalent factor graph G exists. The distribution P is a function of V variables in

X = {x1, x2, · · · , xV }; an arbitrary variable in the set is denoted by xi ∈ X, with 1 ≤ i ≤ V . The

mathematical expression of P is defined by the product of L factor functions F = {f1, f2, · · · , fL};

an arbitrary factor in the set is denoted by fn, with 1 ≤ n ≤ L. Each factor fn is a function of a subset

of variables from X; the subset associated with fn is denoted by xn ⊂ X. Similarly, the factors that

are a function of a variable xi form a subset fi ⊂ F. Thus, the factor graph G possesses a variable set

X and a factor set F = {f1(x1), f2(x2), · · · , fL(xL)}.

Belief propagation reduces the overall computational burden of marginalisation by reusing interim

computations for future ones; this concept is termed “dynamic programming”. Furthermore, application

of belief propagation results in the simultaneous computation of all the marginals in P . The following

two types of interim computations exist:

• the contribution from a factor fn to the marginalisation of an associated variable xi if xi ∈ xn,

and

• the amalgamation of all the marginalisation contributions from the factors fi associated with a

specific variable xi.

These computations are called “messages” and are expressed as the information transferred from a

factor to a variable (in the former case) and a variable to a factor (in the latter case). A message passed

from a factor fn to a variable xi is denoted by λfn→xi
, and a message passed from a variable xi to
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a factor fn is denoted by µxi→fn . Both types of messages represent probability distributions, and

are functions of the variable node with which they are associated. Figure 4.1 shows two instances

of message passing in the factor graph G. Figure 4.1(a) is focused on a factor fn(xn) passing a

message to xi, with xn = {x1, xi, · · · , xk, · · · , xK}, k ∈ {1, 2, . . . ,K},K ≤ V , and k 6= i. Figure

4.1(b) is focused on a variable xi passing a message to fn(xn), with fi = {f1, fn, · · · , fj , · · · , fJ},

j ∈ {1, 2, . . . , J}, J ≤ L, and j 6= n.

x1

xk

xK

fn xi
µxk→fn(xk)

λfn→xi
(xi)

...

...

(a) Factor-to-variable message passing.

xifn fj

f1

fJ

λfj→xi
(xi)

µxi→fn(xi)
...

...

(b) Variable-to-factor message passing.

Figure 4.1. Message passing along the factor graph G.

The mathematical forms of the messages are obtained in terms of the notation and structure of the

factor graph fragments of Figure 4.1. The messages are determined iteratively; a message from the next

iteration is dependent on the messages of the current iteration. The iteration index is given by l, and

the total number of iterations is denoted by η. Note that if any of the variables in X are continuous, the

summations in the message computations change to integrations over the domains of the continuous

variables.

4.2.1.1 Factor-to-variable messages

The factor-to-variable message λfn→xi
(xi) is the marginalised product of the factor fn and all variable-

to-factor messages entering fn, with the exception of µxi→fn(xi) (i.e. the message coming from xi).

The summation/integration is performed over all variables except xi. The expression for λfn→xi
(xi) is
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obtained in the context of the graph fragment in Figure 4.1(a):

λ
(l+1)
fn→xi

(xi) ∝
∑

xn\xi

fn(xn)
∏

xk∈xn
k 6=i

µ
(l)
xk→fn

(xk). (4.1)

Equation (4.1) passes the marginal computation of fn and all marginal computations associated with

the clique of fn (besides xi) to the variable xi.

4.2.1.2 Variable-to-factor messages

The mathematical form of the variable-to-factor message µxi→fn(xi) of the next iteration is obtained

by taking the product of all factor-to-variable messages entering the variable xi in the current iteration,

with the exception of λfn→xi
(i.e. the message from fn). The expression for µxi→fn(xi) is obtained in

the context of the graph fragment in Figure 4.1(b).

µ
(l+1)
xi→fn

(xi) ∝
∏
fj∈fi

j 6=n

λ
(l)
fj→xi

(xi). (4.2)

This message combines marginalisation information from the factors associated with xi (besides factor

fn), and passes this to factor fn.

4.2.1.3 Marginal distributions

The marginal distributions associated with a specific variable are determined by computing the product

of the factor-to-variable messages entering that variable:

p(xi) ≈ b(l)(xi) ∝
∏
fj∈fi

λ
(l)
fj→xi

(xi). (4.3)

The proportionality sign ∝ is used to highlight that all messages must be normalised prior to computa-

tion. When the factor graph has no cycles/loops, the value of b(xi) can be guaranteed to converge to

p(xi) (given enough iterations) [50]. All messages are computed in parallel, but acyclic graphs can

commence message passing on an arbitrary root node to simplify the computation.

4.2.2 Applying the message-passing rules to Gs

The message-passing rules of (4.1) and (4.2), along with the expression for the beliefs in (4.3), can now

be applied to the graphical model Gs developed in Chapter 3 to obtain the marginals of (3.14). Detailed

portions of Figure 3.9, with focus on the TUs (i.e. the subgraph Gk) and UTUs (i.e. the subgraphs Gm),

are shown in Figures 4.2 and 4.3 respectively; these figures also show the messages passed along the

edges of the graphs.
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H

αt1 αtk

ut1 utk

γ11 γmk

γm1 γ1k

To y1 To ym

To ym To y1

To αumTo αu1

· · ·

· · ·

λαtk
→H

λγmk→H

µH→αumλαu1→H

Figure 4.2. Messages passed along the edges of subgraph Gk.

Using the rules in (4.1), along with the factor graph fragments in Figures 4.2 and 4.3, results in the

following set of expressions for the factor-to-variable messages:

λ(l+1)
αum→um

(um) ∝
∑
H
αum(H, um)µ(l)

H→αum
(H),

λ
(l+1)
αum→H(H) ∝

∑
um

αum(H, um)µ(l)
um→αum

(um),

λ
(l+1)
αtk
→H(H) ∝ αtk(H, uk),

λ
(l+1)
δam→rm

(rm) ∝
∑
um

δam(um, rm, ym)µ(l)
um→δam

(um),

λ
(l+1)
γmk→H(H) ∝ γmk(uk, ym,H),

λ
(l+1)
δam→um

(um) ∝
∫ 1

−1
δam(um, rm, ym)µ(l)

rm→δam
(rm)drm,

λ
(l+1)
δi

bm
→rm

(rm) ∝ δibm
(Ĥ(i), rm, y

(i)
m ).

(4.4)
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αum

um

δam

rm

ym

δ1
bm

δTbm

y(1)
m Ĥ(1) Ĥ(T ) y(T )

m

ToH

µrm→δam λδam→rm

λδam→um
µum→δam

λαum→um
µum→αum

λδT
bm
→rm

λαum→H µH→αum

Figure 4.3. Messages passed along the edges of subgraph Gm.

Similarly, application of the rules in (4.2), along with the factor graph fragments in Figures 4.2 and

4.3, results in the following set of expressions for the variable-to-factor messages:

µ
(l+1)
H→αum

(H) ∝
Nu∏
j=1
j 6=m

λ
(l)
αuj→H

(H)×
Nk∏
j=1

λ
(l)
αtj→H

(H),

µ(l+1)
um→αum

(um) ∝ λ(l)
δam→um

(um),

µ
(l+1)
um→δam

(um) ∝ λ(l)
αum→um

(um),

µ
(l+1)
rm→δam

(rm) ∝
T∏
i=1

λ
(l)
δi

bm
→rm

(rm).

(4.5)

Each message must be initialised such that the probabilities associated with each state are equal and
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sum to unity. If a variable xi has L states, an initial state s of the message entering/exiting each

variable/factor is

µ
(0)
xi→fn(xn)(xi = s) =

1
L
, and

λ
(0)
fn(xn)→xi

(xi = s) =
1
L
.

(4.6)

Note that only the messages between an unknown variable and factor need to be computed iteratively,

as messages between known variables and factors remain the same over the iterations. The beliefs

associated with the unknown variablesH, um, and rm can be computed by applying (4.3):

b(l)(H) ∝
Nk∏
k=1

λ
(l)
αtk
→H(H)×

Nm∏
m=1

λ
(l)
αum→H(H)×

Nk∏
k=1

Nm∏
m=1

λ
(l)
γmk→H(H), (4.7)

b(l)(um) ∝ λ(l)
αum→um

(um)× λ(l)
δa→um

(um), (4.8)

b(l)(rm) ∝ λ(l)
δam→rm

(rm)×
T∏
i=1

λ
(l)
δi

bm
→rm

(rm). (4.9)

The factor-to-variable and variable-to-factor messages in (4.4) and (4.5), along with the beliefs of

(4.7), (4.8), and (4.9), are computed by the TUs; Section 4.3 provides details on how this is achieved.

The above beliefs are proportional (and not equal) to the product of the factors as the beliefs are

approximates of probabilities, and must sum to unity. A normalising constant can be applied after the

computation of the products to ensure that the beliefs sum to unity.

4.3 FORMULATING THE PROPOSED ALGORITHM

This section details the formulation of the proposed algorithm, which performs marginal inference

on Ps (expressed in (4.7), (4.8), and (4.9)) using the relay-based network model of Section 3.2.

This is done by letting the TUs expose only specific messages from (4.4) and (4.5) to neighbouring

TUs. The messages that are selected for exposure are determined based on their utility to local

(UTU m maliciousness) and global (PU state detection) estimations. A TU sends information to a

neighbouring TU over a single hop; the final beliefs are recursively computed with each hop through

the network.

4.3.1 Hop-based implementation

A sequential hop-based protocol is used to facilitate this implementation. A hop occurs when TU

k passes information Mk,k+1 to TU k + 1 (or vice versa, with Mk−1,k). The aim of the hop-based

protocol is to supply every TU with only a subset of the messages derived in Section 4.2 (i.e. (4.4)
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and (4.5)), such that each TU is able to compute the belief b(H) independently. The computation of

the beliefs b(um) and b(rm) associated with UTU m is done locally by the TU that is connected to

the UTU. It is assumed that only one path is taken from TU 1 to TU Nk and vice versa. The order of

the hops is represented as a sequence C over the enumeration of the TUs; the TUs are cycled in an

alternating ascending-descending order based on the TU enumeration:

C =
l=0 l=2︷ ︸︸ ︷ ︷ ︸︸ ︷

{1, 2, · · · , Nk − 1, Nk, Nk − 1, · · · , 2, 1, 2, · · · , Nk − 1, Nk, Nk − 1, · · · }︸ ︷︷ ︸
l=1

, (4.10)

where an element of C corresponds to the index k of a TU. A single iteration of belief propagation

(i.e. l) corresponds to a single ascending pass (i.e. information is transferred across all TUs from TU

1 to TU Nk) or descending pass (i.e. information is transferred across all TUs from TU Nk to TU

1). The beliefs are fully computed once M (l)
k,k+1 or M (l)

k−1,k has been propagated to either TU 1 or TU

Nk.

4.3.2 Grouping the messages based on utility

The beliefs b(um), b(rm), and b(H) can be grouped based on the local or global utility provided by

their knowledge. The belief b(H) provides global utility, as every SU in the CRN must be aware of

its state. Since b(um) and b(rm) are specific to a single UTU m, they provide local utility to sensing.

Note that the subgraph Gk in Figure 4.2 is linked to global utility, as this graph contains the variable

node H. Similarly, the subgraph Gm in Figure 4.3 is linked to local utility, as this graph contains

the variables um and rm. The messages can be partitioned into the following groups, based on the

subgraphs and variables with which they are associated:

1. Group 1 – All messages that are enclosed in Gm are responsible for the inference of the

variables associated with the UTU m. These messages provide local utility and are computed

and used internally by the TUs. No information exchange between the TUs is required for their

computation.

2. Group 2 – Messages that are directed towards the variableH form this group. These messages

amalgamate all local fusion results to provide a global prediction on the state of the PU. The

messages of this group form the information that is exchanged between TUs.

3. Group 3 – Messages that are directed away from the variable H form this group. These

messages provide local feedback by updating the group 1 messages based on global fusion

results. Messages in this group require information from neighbouring TUs (i.e. group 2
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messages) to update the local inferences of UTU m. Only one class of messages (µH→αum
)

exists in Gs that qualifies for this criterion.

Table 4.1 shows the messages that belong to these groups. The second column refers to the SU type

that is the subject of the messages. A short description of the utility of the messages to sensing and

detection is also given.

Table 4.1. Grouping of the messages in (4.4) and (4.5).

Group Subject Message Utility

1 UTU m

µum→αum

Contains the estimation of the corrected UTU measurement

in the form of a probability distribution over um.

µum→δam

Transfers the adjusted feedback measurement of λαum →um

to δam in order to update the estimate of rm.

µrm→δam

Combines UTU maliciousness estimates over all T historical

sensing periods.

λδam →um

Adjusts the UTU m’s report to discern the true measurement.

The adjustment is based on the historical performance of the

UTU and the current sensing result.

λδam →rm

Adjusts the UTU maliciousness rm based on the sensing re-

sults from other SUs using the adjusted feedback measurement

from µum→δam
.

λδi
bm

→rm

Updates the UTU m’s maliciousness based on the predictions

and reports of time t = i ≤ T .

λαum →um

Adjusts and converts the feedback measurement from other

SUs to a distribution over um.

2

UTU m λαum →H

Converts the corrected UTU measurement to a probability

distribution overH. This is sent to the neighbouring TUs for

fusion.

TU k

λαtk
→H

Contribution of the TU k’s measurement to data fusion. The

measurement is converted to a distribution overH.

λγmk→H
Conversion of the correlation between ym and utk to a distri-

bution overH; this is used directly for data fusion.

3 UTU m µH→αum

Feedback measurement to a UTU m’s variables based on the

global consensus of the likely state ofH.
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4.3.3 Data exchange in the decentralised network

Two of the three beliefs (i.e. b(um) in (4.8) and b(rm) in (4.9)) can be determined using group 1

messages. As a result, these beliefs only require a single local TU for computation. In contrast, b(H)

in (4.7) requires the group 2 messages, spread over different TUs, for computation. The TUs must

broadcast their group 2 messages to other TUs in order to fully determine b(H).

In an ascending pass of C, a TU k sends information to the next TU k + 1 in the form of M (l)
k,k+1.

The information is represented by M (l)
k,k−1 during a descending pass in C. The content of M (l)

k,k+1 or

M
(l)
k,k−1 changes with the belief propagation iteration index l and can be composed of the following

information:

1. At the beginning of the fusion process (i.e. l = 0), the messages are initialised and all UTUs send

their occupancy reports to their local TUs. The reports are stored and transferred cumulatively

from TU k to TU k + 1. The information transferred in this phase is

M
(l=0)
k,k+1 = [yN1 , · · · ,yNk

] , (4.11)

where Nk is the neighbour set of UTUs connected to TU k. All UTU reports are available to

the final TU when (4.11) is applied over all TUs. Since iteration l = 0 always begins on an

ascending pass over the TUs, some UTU reports must be sent back to the other TUs in iteration

l = 1. Figure 4.4 illustrates the information transfer between TUs at iteration l = 0.

TU 1 TU 2 TU 3

UTU 1

UTU 2

UTU 3

UTU 4

UTU 5

y1

y2

y3

y4

y5
M

(0)
1,2 =[y1, y2]

M
(0)
2,3 =[y1, y2, y3]

Figure 4.4. Transfer of information between TUs at l = 0. Note that y4 and y5 must be transferred

back to TUs 1 and 2 during the descending pass in l = 1.
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2. The main fusion phase occurs when 1 < l ≤ η and the beliefs need to be determined, with all

UTU reports made (or being made) available to the TUs. A TU k sends M (l)
k,k+1 to TU k + 1 if l

is even (ascending pass), or M (l)
k,k−1 to TU k − 1 if l is odd (descending pass). Only a single

TU k is needed to compute the beliefs b(um) and b(rm) using the group 1 and 2 messages

from the previous iteration. In contrast, computation of the messages associated with b(H) in

(4.7) requires information from all TUs. With each hop, the product of the group 3 messages

associated with TU k is computed and broadcast to a neighbouring TU. The neighbouring TU

multiplies this product with its own product of group 3 messages. This computation is propagated

over all TUs. The content of M (l)
k,k+1 becomes the recursive product of the contributions to b(H)

from all TUs up to k:

M
(l)
k,k+1 = M

(l)
k−1,k × λ

(l)
αtk
→H(H)×

∏
m∈Nk

λ
(l)
αum→H(H)×

∏
m∈{1,2,...,Nm}

λ
(l)
γmk→H(H),

(4.12)

where M (l)
k,k+1 changes to M (l)

k,k−1, and M (l)
k−1,k changes to M (l)

k+1,k for a descending pass. Note

that in this case, the information M (l)
k,k+1 is a function of H, which only has two states. Thus,

only two floating-point numbers are required to be transferred between TUs for this phase.

Application of (4.12) over all TUs in the network is equivalent to computing (4.7), with b(H)

yielded by M (l)
1,2 or M (l)

Nk−1,Nk
for an ascending or descending pass respectively. Figures 4.5 and

4.6 illustrate the information transfer between TUs at iterations l = 1 (descending pass) and

l = 2 (ascending pass) respectively. The transfer of UTU reports during the descending pass is

omitted from Figure 4.5 for clarity.

TU 1 TU 2 TU 3
M

(1)
3,2M

(1)
2,1

λ
(1)
αum→H

λ
(1)
γm1→H

λ
(1)
αt1→H

λ
(1)
αum→H λ

(1)
γm2→H

λ
(1)
αt2→H

λ
(1)
αum→H

λ
(1)
γm3→H

λ
(1)
αt3→H

Figure 4.5. Transfer of information between TUs at l = 1.
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TU 1 TU 2 TU 3
M

(2)
1,2 M

(2)
2,3

λ
(2)
αum→H

λ
(2)
γm1→H

λ
(2)
αt1→H

λ
(2)
αum→H λ

(2)
γm2→H

λ
(2)
αt2→H

λ
(2)
αum→H

λ
(2)
γm3→H

λ
(2)
αt3→H

Figure 4.6. Transfer of information between TUs at l = 2.

3. When l = η, and the final beliefs have been determined, only TU 1 or TU Nk will know the

value of b(H). The final belief must be sent to the other TUs in the network for a final pass, with

l = η + 1. For an ascending pass, the information is

M
(η+1)
k,k+1 = b(H), (4.13)

where M (η+1)
k,k+1 changes to M (η+1)

k,k−1 for a descending pass. The TUs can now independently

perform the joint estimations in (3.15), allowing the CRN to start or cease broadcasting in the

PU’s band. The information transfer between TUs at l = η + 1 = 3 is shown in Figure 4.7.

TU 1 TU 2 TU 3
M

(3)
3,2 =b(H)M

(3)
2,1 =b(H)

Figure 4.7. Transfer of information between TUs at l = η + 1 = 3.

4.3.4 Phases of spectrum sensing

At t = 1, there is not enough prior information to use the distribution Ps meaningfully. The quantities

Ĥ(T )
and Y(T ) require a few time steps (denoted by Tl) of learning to provide the TUs with sufficient

information. As a result, the proposed algorithm is broken up into the following two phases:

1. The learning phase – from t = 1 to t = Tl, (4.11) is used to accumulate all the sensing reports

for each TU and UTU in the form of Y(Tl). A record of all the PU state predictions until

t = Tl, in the form of Ĥ(Tl), is also kept in this phase. When t = 1, any component of the

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

62



CHAPTER 4 IMPLEMENTATION OF THE SECURE SENSING ALGORITHM

graphical model Gs requiring historical data does not contribute to the inference of the unknown

probabilities. Because of the lack of data available, the prediction quality in this phase is poor.

The learning phase serves to bootstrap the algorithm.

2. The execution phase – once enough SU reports are received, and a sufficient number of PU pre-

dictions are made, the algorithm is ready for sensing and MU detection. No further information

needs to be acquired in order to make predictions. If the environment is time-varying, new SU

reports can overwrite old ones. In this case, Ĥ(T )
and Y(T ) represent reports and predictions

over a time window of length Tl.

A flow diagram summarising the proposed algorithm, from message passing to the phases of spectrum

sensing, is given in Figure 4.8.

4.3.5 Complexity of the proposed algorithm

The proposed algorithm requires 2 + η ascending or descending passes to run: UTU reports are

propagated in the first pass, η iterations of belief propagation are performed, and the beliefs are sent

back to all TUs in the final pass. The complexity of the proposed algorithm depends on either Nk or

Nm.

• An increase in Nk (number of TUs) affects the global complexity, and results in more hops being

required for the computation of the final beliefs. Increasing Nk may result in a more accurate

estimation, but this comes at the cost of increased latency, as more hops must be performed for a

single pass through the TUs. Note that an increase in Nk results in more parallel computation

taking place, thus having no net effect on the local complexity.

• An increase in Nm (number of UTUs) affects the local and global complexity, as a greater

number of UTUs will require verification by the TUs, resulting in more group 1 messages being

computed. The local computational overhead incurred by each TU increases linearly (O(Nm))

in this case. This may increase the delay between sensing and prediction, depending on the

hardware used for the TUs.
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(4.5) and (4.4).
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TU k sends final

belief b(H) to the

next TU (4.13).
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Figure 4.8. Flow diagram summarising the proposed algorithm.
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4.4 CHAPTER SUMMARY

In this chapter, belief propagation was used to determine the marginals associated with the joint

distribution Ps and the graphical model Gs efficiently. Expressions for the messages passed along the

edges of Gs, and in turn the marginals, were determined. The proposed algorithm was formulated

by establishing a protocol of information transfer where only a certain group of belief propagation

messages is exchanged between the TUs. This subset of messages was determined by grouping all the

messages according to their utility. Use of this protocol allows the TUs to determine all beliefs and

estimations by transferring information using sequential hops across the CRN. In order to facilitate the

accumulation of historical sensing information, the proposed algorithm was divided into two phases: a

learning phase and an execution phase. The interaction between these two phases was summarised

by the flow diagram in Figure 4.8. Finally, the complexity of the proposed algorithm with respect to

the number of SUs was considered, with the computational cost for each TU scaling linearly with the

number of UTUs, and the total number of hops increasing with the number of TUs.
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5.1 CHAPTER OVERVIEW

The performance of the proposed algorithm developed in Chapter 4 is evaluated in this section. The

methodology is described first in Section 5.2, including details on the structure of the simulation

platform used, the parameters selected for the characterisation of the environment, the metrics and

control used to evaluate the algorithm’s performance, and an explanation of the tests used to obtain the

results. The results corresponding to the tests are then presented in Section 5.3, with each set of results

accompanied by an interpretation. In Section 5.4, a holistic view of the algorithm’s performance is

obtained by summarising all the results.

5.2 METHODOLOGY

This section begins with a description of the software simulation used to obtain the results shown later

in the chapter. The environment parameters, performance evaluation metrics, control algorithm, and

tests used are also documented here.

5.2.1 Simulation description

The proposed algorithm in Figure 4.8 was simulated using the Python programming language. A flow

diagram of the structure of the simulation is shown in Figure 5.1. The function main.py is used to

select the input parameters for the simulation, including the size of the environment, the noise power,

and the number of SUs in the CRN. The class CrnEnvironment is initialised and run using these

parameters, and the SU positions and UTU maliciousness values are assigned. The SU measurements

are sent to a class MeasurementHandler, which handles the buffering of the measurements for

learning. A script called TopologyGenerator is used to generate the topology of the factor graph

based on the input parameters. The factor graph topology is then sent to the FactorGraph class, which

contains the implementation of belief propagation. The buffered measurements are also sent to the
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FactorGraph class, and the final PU occupancy predictions are sent back to main.py for performance

appraisal and plotting. Note that all results are obtained through Monte Carlo simulations.

class FactorGraph

TopologyGeneratormain.py

class

CrnEnvrionment

class

MeasurementHandler

Topology

Nu, Nk, Tl, T

Nu, Nk, Area

SU measurements

Buffered

measurements

Predictions

Figure 5.1. High-level diagram of the simulation and test environment.

5.2.2 Environment

The system model described in Section 3.2 was simulated in an environment characterised by the

following properties (unless stated otherwise):

• An area Acrn = 50 m × 50 m with no obstacles. A simple environment was chosen for the

experiment to limit the variation in placement possibilities and to improve the accuracy of the

Monte Carlo simulation.

• A PU transmit power Pt = 20 dB at the centre of the area, with a carrier frequency fc =

150 MHz.

• A noise power of −10 dB, which was assumed to be known by the SUs prior to fusion. The

desired false alarm rate of (3.2) was set to ε = 0.1.

• Transmitter and receiver antennas with Gt = 12 dBi and Gr = 2.5 dBi.
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• A free space path loss model, with the relationship between the transmission power Pt and

received power Pr as follows:

Pr = GtGr

 λ

4πd

 , (5.1)

withGt andGr representing the transmitter and receiver antenna gains respectively. The distance

between the antennas is given by d. The wavelength λ corresponds to the PU’s carrier frequency

fc.

• The false alarm and missed detection probabilities for factors αum and αtk in Tables 3.1 and

3.2 were assumed to be p(n)
fa = 0.01 and p(n)

md = 0.99. Note that these assumptions are not truly

accurate, as the true error rates would vary depending on the relative position of the SUs and the

PU. The error in these assumptions is mitigated by the use of the γmk factors, which adaptively

change over the learning phase, accounting for the variation in sensing performance among the

SUs without requiring location information.

0 10 20 30 40 50
x

0

10

20

30

40

50

y

Honest UTUs
TUs
MUs
PU Location

Figure 5.2. Example of a CRN placed in a 50 m × 50 m area. Nodes with black outlines measure

un = 1.

An example of a CRN in a generated simulation environment is shown in Figure 5.2, where Nsu = 30.

The location of the PU, placed in the centre of the area, is assumed to be unknown by all SUs. The SUs
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were also unaware of the distances between neighbouring SUs. When the PU was broadcasting in the

given scenario, the outlined nodes were likely to report PU occupancies (un = 1), while nodes without

outlines were likely to report PU vacancies (un = 0). Note that, owing to the cause-agnostic nature of

the proposed algorithm, the sensing accuracy is solely dependent on the quality of the received reports,

and not on the specific details of the environmental model used.

5.2.3 Performance metrics

The spectrum-sensing performance of the proposed algorithm was evaluated using one of the following

metrics:

• Global false alarm rate pfa – a measure of how likely an algorithm is to detect the presence of

the PU incorrectly when it is not broadcasting. This is determined by counting the total number

of false alarms and averaging the total over the number of times the PU does not broadcast:

pfa =
∑T
t=1 e

(t)
fa

Tfa
,

e
(t)
fa =


1, if Ĥ(t) 6= H(t) = 0

0, otherwise
, (5.2)

where Tfa is the number of times the PU does not broadcast in the sensing time period (i.e. the

total number of times a false alarm can occur). If pfa is high, the algorithm tends to be too

sensitive in its use of sensing reports.

• Global missed detection rate pmd – a measure of how likely an algorithm is to fail in the detection

of the PU when it is broadcasting. This is determined by counting the total number of missed

detections and averaging the total over the number of times the PU broadcasts:

pmd =
∑T
t=1 e

(t)
md

Tmd
,

e
(t)
md =


1, if Ĥ(t) 6= H(t) = 1

0, otherwise
, (5.3)

where Tmd is the number of times the PU broadcasts in the sensing time period (i.e. the total

number of times a missed detection can occur). If pmd is high, the algorithm is either receiving

reports of poor quality (e.g. the network could be in a location where the PU power is low) or it

Department of Electrical, Electronic, and Computer Engineering
University of Pretoria

69



CHAPTER 5 RESULTS AND EVALUATION

is not prioritising accurate sensing reports.

• Spectrum sensing error rate pe – the sum of missed detection and false alarm rates, and a measure

of the overall performance of the algorithm. If it is assumed that p(H0) = p(H1) = 0.5, then

the error is

pe =
pfa + pmd

2 . (5.4)

5.2.4 Control algorithm

A control is required to compare and contextualise the performance of the proposed algorithm. The

K-out-of-N algorithm was used:

Ĥ =


H0, if

∑Nsu
n=1 un < K = Nsu

2

H1, if
∑Nsu
n=1 un ≥ K = Nsu

2

, (5.5)

where K is the decision threshold. Since K = Nsu
2 , the technique is termed the majority decision

rule (MDR). It is equivalent to the distributed consensus fusion rule, assuming that the reports are

quantised prior to fusion. This algorithm was chosen because of the lack of assumptions required prior

to fusion.

5.2.5 Tests

The following test categories were used for the performance appraisal of the proposed algorithm.

• Resistance to MU attacks – This is the basic functionality of the algorithm; testing involved

the exposure of the CRN to malicious agents of varying maliciousness and proportion.

• Effect of increasing the number of SUs – This involved the analysis of the change in perfor-

mance when either the number of TUs or UTUs was changed.

• Dynamics and complexity – The transient behaviour of the algorithm was analysed here. The

speed of the algorithm’s response to changing network conditions, the computational overhead

incurred by increasing the size of the network, and the time taken for the algorithm to converge

were considered.

• Factor effectiveness analysis – Finally, the effectiveness of the likelihood functions defined in

Section 3.4 was evaluated by assessing the sensing performance after the functions’ sequential

removal.
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5.2.5.1 Resistance to MU attacks

The following tests were performed in the evaluation of the proposed algorithm’s resistance to MU

attacks.

• Varying the node maliciousness of MUs – The network was exposed to a fixed population

of MUs; a Monte Carlo simulation was performed to estimate the global pfa and pmd of the

CRN in these conditions. The simulation was repeated with the maliciousness of the MU

population varied in the range −1 ≤ r ≤ 1 with steps of 0.1. The results of this simulation,

plotted in Figure 5.3, show how well the algorithm reacted to groups of users attacking at a

given frequency (proportional to |r|). Furthermore, the algorithm’s operating limits were tested

with the consideration of extreme maliciousness values (i.e. r = ±1).

• Varying the proportion of MUs – The network was exposed to an increasing population of

MUs with fixed maliciousness. Again, a Monte Carlo simulation estimating pfa and pmd

was performed for a given MU proportion. A proportion of MUs in the UTU population was

considered in the range of 0% to 100% with steps of 10%. The sensing results associated with

these MU proportions are plotted in Figure 5.4. This simulation shows how well the proposed

algorithm handles large groups of attackers.

• MU detection performance – A snapshot of a scenario where a set of MUs with varying

degrees of maliciousness attack the CRN was considered. The final beliefs associated with the

malicious nodes were obtained, and are plotted in Figure 5.5. Since the proposed algorithm

was formulated to perform joint estimations on un, Ĥ, and rm, the information from b(rm) is

automatically fed back to augment the other beliefs (i.e. (4.7) and (4.8)).

5.2.5.2 Increasing the number of SUs

Since the network contains two types of SUs (i.e. TUs and UTUs), a test involving the sensing

performance associated with increasing either type of SU exclusively was performed.

• Increasing the number of TUs in the network – The network was initialised with only one

TU, along with a number of UTUs (of which a fixed proportion were MUs). Once a complete

Monte Carlo simulation involving the estimation of pfa and pmd had been performed, an honest

UTU was converted to a TU; this process was iterated until an upper bound on the number of

TUs was reached. The results of this simulation for three scenarios – plotted in Figures 5.6, 5.7,
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and 5.8 – show how relay-based networks can augment performance by increasing the number

of users providing a “ground truth” reference.

• Increasing the number of UTUs in the network – The network was initialised with a fixed

number of TUs and a small number of UTUs (of which a fixed proportion were MUs). Once a

complete Monte Carlo simulation involving the estimation of pfa and pmd had been performed,

a UTU was added to a random position in the network. This process was iterated until an upper

bound on the number of UTUs was reached. The results of this simulation are plotted in Figure

5.9. An appropriate number of MUs were added to keep the MU proportion constant throughout

the UTU population increase. This simulation shows how effectively the proposed algorithm

leverages the additional data it receives, and how many UTUs are required in a network to attain

a desired sensing performance.

5.2.5.3 Dynamics and complexity

The learning speed and computational complexity govern the temporal dynamics of the proposed

algorithm.

• Learning speed – Multiple instances of the learning phase (see Section 4.3.4) were simulated

for increasing periods of time (i.e. from t = 1 to t = Tl). The average pe was determined from

these simulations and plotted against time in Figure 5.10. Since the likelihoods ζ̂mk and τ̂mk are

updated and approach their true values with each time instant, pe is expected to improve over

time.

• Computational complexity – The entire sensing process was run many times, and the average

time taken for the proposed algorithm to make a final prediction was measured; this process was

iterated over an increasing Nm, and is plotted in Figure 5.11. The purpose of this simulation was

to provide empirical verification of the proposed algorithm’s linear computational cost (O(Nm)).

• Iterations and convergence – A Monte Carlo simulation of the sensing process was performed,

and the number of iterations taken for the proposed algorithm to converge on the beliefs was

plotted in Figure 5.12. Since the sensing graph Gs contains no loops, belief propagation

will converge to the true marginal distributions given a number of iterations η. The speed

of convergence is an important factor when considering the algorithm’s implementation in a

multi-hop network. As mentioned in Section 4.3.5, η is proportional to the number of hops in

the network – it is desirable to keep this as low as possible.
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5.2.5.4 Factor effectiveness analysis

The importance of the information provided by the factors defined in Section 3.4 was evaluated

by nullifying each factor’s contribution separately; the drop in performance caused by this was

subsequently measured. The contribution of the factors was nullified as follows:

• for αtk and αum , the error probabilities p(n)
fa and p(n)

md were set to zero,

• for factor γmk, the mutual measurement likelihood estimates γ̂mk and ζ̂mk were set to 0.5, and

• for factors δam and δibm
, the perceived maliciousness rm was set to zero.

Once the contribution from a factor had been removed, a Monte Carlo simulation was performed to

obtain pfa and pmd for the proposed algorithm; this process was repeated with an increasing MU

proportion. The drop in sensing performance due to the removal of each factor is plotted against the

MU proportion in Figure 5.13. The results are interpreted as follows: consider two arbitrary factors –

if the first factor’s removal results in a larger sensing performance drop than that of the second factor’s

removal, the first factor is deemed more important.

5.3 RESULTS

The plots of the corresponding tests mentioned in Section 5.2.5 are found here. Tables 5.1 - 5.5 are

sets of CRN parameters that are used in the simulations below.

Table 5.1. CRN parameter set 1.

Parameter Value

Nsu 30

Nk 5

Tl 30

η 3

Acrn 50 m× 50 m
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Table 5.2. CRN parameter set 2.

Parameter Value

Nsu 10

Nk 5

Tl 30

η 3

Acrn 50 m× 50 m

Table 5.3. CRN parameter set 3.

Parameter Value

Nsu 30

Nk {1, 2, 3, · · · , 15}

Tl 30

η 3

Acrn 65 m× 65 m

Table 5.4. CRN parameter set 4.

Parameter Value

Nsu {10, 12, 15, · · · , 30}

Nk 5

Tl 30

η 3

Acrn 50 m× 50 m

Table 5.5. CRN parameter set 5.

Parameter Value

Nsu 30

Nk 5

Tl 30

η 3

Acrn 75 m× 75 m
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5.3.1 Resistance to MU attacks

5.3.1.1 Varying the node maliciousness of MUs

The effect of varying the node maliciousness (r) in the network is shown in Figures 5.3(a) and 5.3(b);

the CRN parameters of Table 5.1 were used for this simulation. Note that “proposed algorithm”

is abbreviated as PA in these figures. The sensing performance, as a function of the change in

maliciousness, is plotted in these figures. It is clear that for |r| > 0.6, the MDR struggled to handle

the effect of altered reports, to the point that pfa and pmd approached unity. The proposed algorithm

was able to use its learned knowledge of the MUs to reduce the incidence of errors significantly, with

neither pfa nor pmd exceeding an error rate of 0.2.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
Node maliciousness (r)

0.0

0.2

0.4

0.6

0.8

1.0

p m
d

MDR (60% MUs)

PA (60% MUs)

MDR (90% MUs)

PA (90% MUs)

(a) Sweep in the range −1 ≤ r ≤ 0.

0.0 0.2 0.4 0.6 0.8 1.0
Node maliciousness (r)

0.0

0.2

0.4

0.6

0.8

1.0

p f
a

MDR (60% MUs)

PA (60% MUs)

MDR (90% MUs)

PA (90% MUs)

(b) Sweep in the range 0 ≤ r ≤ 1.

Figure 5.3. Effect of varying the node maliciousness of MUs in the CRN.

5.3.1.2 Increasing the proportion of MUs in the network

The effect of varying the proportion of the MUs, while keeping the node maliciousness of each MU

fixed, is shown in Figure 5.4(a) for SUs with r = {−0.9,−0.6} and Figure 5.4(b) for r = {0.6, 0.9}.

In both cases, the CRN parameters in Table 5.1 were used. The MDR struggled to make accurate

predictions for large MU proportions. In contrast, the proposed algorithm handled the MUs effectively,

with only a marginal increase in error rates at higher MU proportions.
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Figure 5.4. Effect of increasing the proportion of MUs in the CRN.

5.3.1.3 MU detection performance

A snapshot of a scenario where a set of MUs with varying degrees of maliciousness attacks the CRN

was considered; the CRN parameters in Table 5.2 were used. The final beliefs associated with the

malicious nodes (b(r2), b(r4), b(r5), b(r6)) are given in Figure 5.5. The vertical lines in Figure 5.5

represent the true maliciousness of the respective nodes. The proposed algorithm overestimated the

maliciousness associated with the MUs. This is because the algorithm cannot distinguish between

reports that are malicious and reports that are measured incorrectly owing to noise and path loss. The

loss in sensing performance due to an incorrect measurement is the same as that of a maliciously altered

measurement; discrimination of reports from users making unreliable measurements still resulted in a

sensing performance improvement.
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Figure 5.5. Final beliefs b(rm) for a group of MUs.

5.3.2 Effect of increasing the number of SUs

5.3.2.1 Increasing the number of TUs in the network

Because of the large amount of variety present in the placement of the TUs, three scenarios – each

with a distinct set of SU maliciousness values – were considered. The CRN parameters in Table 5.3

were used for this simulation. A larger area (65 m× 65 m) was used to increase the variation of the

possible SU placements. The CRN diagrams and sensing results are shown for scenarios 1, 2, and 3

in Figures 5.6, 5.7, and 5.8 respectively. The enumerations of the TUs in Figures 5.6(b), 5.7(b), and

5.8(b) correspond to their order of introduction in the CRN. In general, using more TUs led to an

overall improvement in the sensing performance. Adding TUs that were far away from the PU (low

measurement quality) led to – in most cases – a small reduction in performance. In some instances,

such as the addition of TU 3 in scenario 1, a much larger drop in sensing accuracy occurred. The

impact of the performance reduction was minimised when more TUs were used in the network. Adding

TUs that were close to the PU (high measurement quality) led to a significant improvement in sensing

performance.
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Figure 5.6. Scenario 1 – TU sweep with r = [−0.369, 0.960,−0.278, 0.288,−0.964, 0.588,−0.865]
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Figure 5.7. Scenario 2 – TU sweep with r = [0.242, 0.168, 0.474,−0.249, 0.088, 0.916,−0.356]
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Figure 5.8. Scenario 3 – TU sweep with r = [0.960, 0.465, 0.804, 0.167, 0.481, 0.033, 0.294]

5.3.2.2 Increasing the number of UTUs in the network

The network was initialised with five TUs and five UTUs. A small number of UTUs were added to

each following simulation instance. The sensing results over the many instances, as a function of MU

proportion (with maliciousness fixed to r = −0.8), is shown in Figure 5.9. The CRN parameters in

Table 5.4 were used for the simulation. Increasing the number of UTUs resulted in a compromise,

as the improvement in sensing performance due to the addition of more information was traded off

against an increase in the overall number of MUs. Figure 5.9 shows that the CRN had a critical point of

UTUs past which the sensing error dropped to zero. This point shows where the UTUs had “saturated”

the CRN area; the point remained the same regardless of the sensing algorithm used. Figure 5.9(b)

shows that the proposed algorithm can mitigate the adverse effects of attacks for networks with a small

number of UTUs, even when the proportion of MUs in the UTU population is large.
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Figure 5.9. Sensing performance as a function of the number of UTUs in the network and an increasing

MU proportion.

5.3.3 Dynamics and complexity

5.3.3.1 Learning speed of the proposed algorithm

The CRN parameters in Table 5.5, with an MU proportion of 30% (r = −0.3), were used for this

simulation. The plot in Figure 5.10 shows the learning process for the proposed algorithm. At

time t = 1, the algorithm possessed no prior knowledge of the UTUs, with its sensing performance

equal to the MDR. The proposed algorithm began with no prior information on the state of the

CRN, treating each SU report independently. As measurements and results were stored, the proposed

algorithm built up associations between SU reports, eventually leading to the preference of reports the

algorithm deemed reliable. This caused an improvement in sensing performance when compared to

the MDR. After two time instants, the proposed algorithm accrued enough information to improve the

sensing performance significantly, as more information was available to express the distribution in

(3.28).
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Figure 5.10. Comparison of the sensing performance for the proposed algorithm and the MDR over

30 time instants.

5.3.3.2 Computational complexity of the proposed algorithm

The CRN parameters in Table 5.4 were used for the simulation. The number of UTUs was increased

from 10 to 30, and the time taken to run each sensing instant was measured; the results are plotted in

Figure 5.11. An Intel Core i5-6600 processor was used to perform the simulation. The form of the plot

in Figure 5.11 shows that the algorithm’s computational cost grows approximately linearly.
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Figure 5.11. Average computation time to run a simulation of the process in Figure 4.8 with an

increasing number of UTUs.

5.3.3.3 Iterations and convergence

Figure 5.12 shows the plot of the number of iterations against the estimated (and true) beliefs; the

proposed algorithm’s belief in H converges to the true state in the first iteration, resulting in η = 3

hops across the network to make a single prediction. The CRN parameters in Table 5.1 were used

for this simulation. While the rapid convergence of beliefs in the algorithm is useful for a multi-hop

implementation, it could imply that the technique is overly aggressive with PU state predictions.

5.3.4 Factor effectiveness analysis

The sensing performance after removing the influence of a single class of factors in Gs, measured over

an increasing MU proportion, is shown in Figure 5.13. The maliciousness of the MUs was fixed to

r = −0.9, and the CRN parameters of Table 5.1 were used for the simulation.
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Figure 5.12. Belief b(H) as a function of iterations.
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Figure 5.13. The impact of removing the contribution of a class of factors from the factor graph.

5.4 ANALYSIS

This section contains the analysis of the results presented in Section 5.3.
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5.4.1 Resistance to MU attacks

The proposed algorithm was highly resistant to MU attacks, but the performance degraded slightly

when exposed to very malicious attacks (i.e. large |r|) and large attack populations (MU proportion

close to 1). The algorithm could not distinguish between altered and incorrect reports; measurements

from SUs placed in unfavourable conditions were discriminated as though they were maliciously

altered, resulting in the algorithm overestimating the maliciousness of the SUs in a noisy and lossy

CRN environment (as seen in Figure 5.5).

It should be noted that the probabilistic attack model assumed by the algorithm is limited in sophistica-

tion. Employing a more sophisticated attack model may lead to worse results, but the cause-agnostic

nature of the algorithm’s formulation ensures that reports deviating from the norm, regardless of attack

model, will be discriminated. Efficiently counteracting more complicated attacks requires the sensing

model Gs to be re-formulated.

5.4.2 Increasing the number of SUs

It is clear from the scenarios in Figures 5.6, 5.7, and 5.8 that while a non-monotonic relationship was

observed between pe and Nk, the overall trend was an improved sensing performance for a greater

number of TUs. The placement of the TUs relative to the PU location played an important role in the

enhancement of sensing performance. Performance was reduced when TUs far away from the PU

were introduced to the network; conversely, performance improved significantly when the TU was in

a reliable location. Since the PU location was not known prior to sensing, a specific number of TUs

was required in the network to ensure an improvement in performance. Thus, the proposed algorithm

was found to be highly sensitive to TU diversity and location. The utility of the TUs in decentralised

sensing could be improved further if location awareness is added to the algorithm – facilitating this

change would require adapting the sensing model Gs accordingly.

The effect of the number of UTUs on the sensing performance of the CRN was dependent on the

proportion of MUs present in the UTU population. The sensing error rate pe initially increased with

the introduction of new UTUs. For a given MU proportion, pe then dropped after a critical number of

UTUs was introduced; this number was identical for both the proposed algorithm and majority decision

rule. The proposed algorithm did, however, result in a much lower pe when Nm was below the critical

number, implying that this sensing scheme may be more effective for smaller networks.
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5.4.3 Dynamics and complexity

Figure 5.10 shows the adaptation of the proposed algorithm to the network conditions; the buffering of

the SU measurements used to estimate ζ̂mk and τ̂mk results in a “learning period” for the algorithm.

This functionality allows the algorithm to adapt to a sudden change in network conditions. The

bulk of the sensing performance improvement occurs within the first few time instants, with the

remaining time instants only marginally improving the performance. This, coupled with the algorithm’s

quick convergence (seen in Figure 5.12), shows that the dynamics are favourable for a real-time

implementation. The algorithm’s computational cost grows linearly, as seen in Figure 5.11. This is due

to linear growth in the number of variable and factor nodes in the sensing graph Gs. Thus, a decrease

in complexity would require a fundamental change in the shape of Gs.

5.4.4 Factor effectiveness analysis

The removal of each class of factor adversely affected the sensing performance when the MU proportion

was increased.

1. The removal of the γmk factors, responsible for capturing the mutual occurrence of measurements

from a given UTUm and a TU k, resulted in the steepest drop in sensing performance. This drop

was especially pronounced for larger proportions of MUs, showing that this factor contributes

significantly to MU resistance. The CRN does not leverage cooperative sensing without the use

of this factor, as all other factors only consider the effects of an SU in isolation. Furthermore, the

generality of this factor allows it to serve as a catch-all for phenomena that were not accurately

determined, such as the assumptions made for p(n)
md and p(n)

fa .

2. The αum factors contributed moderately to PU state prediction. The reduction in sensing

performance here shows the effects of incorrectly assuming p(n)
md and p(n)

fa . Setting p(n)
md = 0.5

and p(n)
fa = 0.5 results in a drop in sensing performance when MUs are present. The magnitude

of this drop is mitigated by the presence of the γmk factor.

3. The removal of the αtk factors did not significantly influence the sensing performance when the

CRN was under MU attacks. This was due to the small of number of αtk factors in comparison

to the αum factors (since there are typically many more UTUs than TUs in the CRN).

4. The δam factors (responsible for determining b(rm) using the current report) also contributed

significantly to sensing performance, as evidenced by the large increase in pmd for an increasing

MU proportion.
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5. The δibm
factors (responsible for determining b(rm) using historical reports) contributed little to

sensing performance. These factors serve to fine-tune the MU maliciousness estimation made

by the δam factors, and are only somewhat effective against a large MU population.

The sensing performance and computational requirements can be traded off by selectively removing

factors from the factor graph (based on their effectiveness).

5.5 CHAPTER SUMMARY

The performance of the proposed algorithm was evaluated using a simulation platform developed in

Python. The results were obtained from tests formulated according to a number of criteria, including

the algorithm’s resistance to the probabilistic attack model, the effect of changing the number of SUs

in the network, the dynamics and complexity of the algorithm, and the effectiveness of the factors of

which the sensing model Gs is composed. The MDR was used as a control for the experiment. The

results were summarised, with the algorithm deemed to handle the impacts of the probabilistic attack

model for which it was formulated effectively.
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CHAPTER 6 CONCLUSION

A novel algorithm, used to perform secure sensing in relay-based decentralised CRNs, was developed

in this work. The following outputs emanated from the formulation of the proposed algorithm:

• A literature review of CRNs and security was presented in Chapter 2. The cognitive cycle was

introduced as a new paradigm in radio communication. The subfields of CR were defined in

terms of the nodes in this cycle. Individual and cooperative sensing techniques, physical layer

attacks, and defence algorithms were summarised. The formulation of integrated sensing and

defence algorithms was presented as a step forward in the realisation of a fully cognitive radio.

• The statistical model forming the backbone of the proposed algorithm was described in Chapter

3. The factor graph was chosen as an appropriate model to capture the intricacies of the sensing

process. An analytical expression for the joint distribution encoding all possible outcomes of the

sensing process was obtained, concluding the development of the sensing model.

• Belief propagation was applied to the developed statistical model to obtain the proposed al-

gorithm in Chapter 4. A data exchange protocol for a relay-based decentralised CRN was

formulated by interpreting the utility and meaning of the messages derived.

• A performance evaluation and analysis of the proposed algorithm was conducted in Chapter

5. The algorithm was found to be resistant to MU attacks. The sensing performance improved

when more UTUs and TUs were added to the network, showing that cooperative diversity was

exploited effectively; the performance was, however, highly sensitive to the TU placement

relative to the PU. The favourable dynamics of the algorithm – including the convergence

speed and the buffering of measurements to handle changes in the environment – show that

probabilistic inference-based algorithms are suitable candidates for distributed sensing and

fusion.



CHAPTER 6 CONCLUSION

6.1 FUTURE WORK

Further research in Byzantine MU and distributed sensing either involves refining already developed

concepts or solving existing problems with the proposed algorithm. The following avenues for further

research exist:

• A framework for graphical modelling in secure distributed sensing – The sensing model

developed for this work can be reused to formulate a similar algorithm to prevent primary user

emulation attacks in the same CRNs. Furthermore, the sensing model considered in this work is

not exclusive to CRNs; the developed graphical model and data exchange protocol can be reused

for other secure estimation problems in the domain of wireless sensor networks.

• Formulating and understanding advanced Byzantine attack models – Significantly more

advanced attack protocols can be developed using techniques from machine learning. Specif-

ically, deep learning models can be used by malicious agents to determine the best possible

falsification strategies for a given defence algorithm. More research into the effects of deep

learning-based Byzantine attacks on CRNs must be conducted.

• Structure learning to prevent Byzantine attacks – Structure learning can be used to estimate

the conditional dependencies between desired variables autonomously, given some form of

input data – effectively automating the model development in Chapter 3. This technique can be

used to observe the relationships between variables in complicated sensing and attack models;

sophisticated defence algorithms can be created by performing inference on the generated

graphical models.
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