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Abstract

Tactical asset allocation (TAA) is a dynamic investment strategy which seeks

to actively adjust fund allocation to a variety of asset classes by systematically

exploiting inefficiencies and temporary imbalances in equilibrium values. TAA

adds value by underweighting fund allocation to those assets whose returns

have been forecasted to underperform on a relative basis and overweighting

those whose returns were forecasted to indicate outperformance. This ap-

proach contrasts with strategic asset allocation (SAA) in which a long-term

investment view target allocation is established using a combination of tar-

get return and risk tolerance. Portfolio managers who employ TAA as an

investment strategy aim to benefit from market timing, a non-trivial exercise

involving the entry and exit of selected asset classes based on future perfor-

mance.

TAA decisions are governed by three major considerations: valuation-based

approaches, macroeconomic scenarios and technical/quantitative analyses. This

work explores a quantitative analytical approach for TAA which adjusts port-

folio weights based on forecasted returns of constituent asset classes. Asset

returns are forecasted using the Capital Asset Pricing Model (CAPM), com-

plemented with results obtained from the Kalman filter, a Bayesian forecast-

ing tool whose recent application to time-dependent variable estimation has

shown promising results. Using a decade of recent monthly return data, the

performance of the TAA and SAA approaches are compared using a range of

diagnostic metrics. The TAA approach outperforms its SAA counterpart for

most of these metrics, even when the most recent returns (i.e. those affected

by the coronavirus pandemic) are excluded.
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1 Introduction

Tactical asset allocation (TAA) is a dynamic strategy which seeks to actively adjust the

allocation of funds to a variety of asset classes [62]. It aims to systematically exploit

inefficiencies and/or temporary imbalances in equilibrium values among different asset

classes. The debate around the use of TAA to complement strategic asset allocation

(SAA) techniques has been an ongoing discussion for numerous years. TAA has the

following objectives:

• increasing portfolio returns

• adapting to market conditions, and

• providing diversification.

There exists extensive literature on the use of various tools and methodologies which

have been incorporated into portfolio strategies to deliver the best possible outcome

for investors [1, 6, 12, 14, 49]. These have been tried and tested, but the jury is still

out regarding their effectiveness to produce meaningful returns for tactically managed

portfolios. This is especially true for multi-asset funds which aim to achieve an even

greater level of diversification by investing in largely uncorrelated assets and hence in-

come streams [50]. The decisions that must be made in any active management strategy

are based on a variety of indicators, some of which function on a standalone basis while

others are used in an integrated system, see for example [26]. These indicators are used

to identify a changing economic environment where market inefficiencies possibly exist

and to exploit these inefficiencies to best serve an investor’s portfolio, whether it be retail

investors or institutional investors.

The issue however is that these financial indicators have to be forecasted as accurately as

possible to prevent making decisions which could be to the detriment of an investment
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portfolio. Forecasting of financial data has proven to be a significant challenge to market

practitioners because financial data are often beset with noise [68]. They are not only

tainted with noise, but incorrect data entries, missing data and spurious outliers are also

common in financial data which renders the forecasting thereof a complex procedure.

There therefore exists the need for a dynamic approach to financial forecasting which

produces much more recent and hence relevant estimations of the nature of markets.

The Kalman filter, which has its roots in engineering, has been proposed as an example

of such a dynamic approach and attempts to improve on the performance of other meth-

ods of financial time series estimation such as simple linear regression and exponentially

weighted moving averages. The Kalman filter is not completely new to the financial

world and there already exists many examples of its application in financial engineering

and the broader quantitative finance landscape [10, 20, 57]. In this research the Kalman

filter algorithm will be used to estimate the time-varying, unobservable variables of the

popular Capital Asset Pricing Model (CAPM). The CAPM is written as:

Rp −Rf = α+ β(Rm −Rf ) + ε,

where Rp represents the return achieved by a portfolio of assets, Rf represents the risk-

free rate of return, and Rm represents the return of the overall market. The CAPM

was introduced by Sharpe (1964) [58] and follows directly from portfolio mean-variance

analysis [47], the foundation of passive portfolio construction. It has become one of the

most well-known asset pricing models in recent history and is used in various ways, such

as estimating the cost of capital for firms and, more relevant to this study, evaluating the

performance of managed portfolios [50]. In his work Sharpe (1964) showed that the ex-

cess returns of an asset or a portfolio of assets were a linear function of the excess market

returns, where the returns of the overall market were represented by a market-capitalised

equity index [58]. The CAPM falls into a broad category of single-factor models (SFM)

2



used in the investment industry, although multi-factor models have become increasingly

popular [22, 24].

The use of the Kalman filter in the CAPM framework will assist in the forecasting of

asset returns. Based on these forecasts, a quantitative TAA framework will be developed

and implemented with the intention of achieving the underpinning objectives of tactically

weighted multi-asset portfolios.

The remainder of this dissertation is set out as follows: Chapter 2 provides a brief,

yet detailed description of the Kalman filter algorithm, highlighting some of its current

uses in practice. Given that TAA builds on strategic weights, it necessitates the revision

of some of the key weighting techniques based on the historical returns of a range of as-

sets. This review is discussed in Chapter 3, along with the introduction of the CAPM and

some of its most important characteristics. These characteristics are key to understand-

ing the subsequent sections. Chapter 4 then details the use of the CAPM in combination

with the Kalman filter algorithm and the effect of its use on the determination of the

values of α and β. The difference between the Kalman filter results and results from

standard linear regression is illustrated and it is shown how monthly asset returns are

forecasted using these results.

Chapter 5 provides some background information on the importance of asset allocation

policies in practice and clearly defines both SAA, following on from modern portfolio

theory, and TAA. Since TAA will form the basis of this study, some of the most promi-

nent drivers of market timing are discussed in Chapter 6.

Chapter 7 describes the data and the methodology which were used in the research

with results being displayed and analysed in Chapter 8. Chapter 9 presents the conclud-

3



ing remarks and suggestions for future research. The code which was implemented in a

variety of platforms, together with a schematic representation of its flow, is provided in

the Appendix. The Appendix also includes a discussion about the growth in alternative

assets and the need to consider these assets in modern portfolio construction processes.

Lastly, a comprehensive bibliography is presented.
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2 The Kalman filter explained

The Kalman filter in its simplest form is a time series estimation algorithm which uses

linear programming and variance reduction techniques to estimate hidden variables more

accurately than single measurement approaches. It has been used to great effect in nav-

igation systems, missile guidance systems and other aerospace applications in particular

[29, 43, 44, 55]. Fitting then that it has received more attention in recent years (recent

relative to its use in engineering) in financial engineering and quantitative finance in

general. This chapter attempts to explain the most important aspects of this dynamic

approach to time series estimation.

The first point to highlight is that there exist data which are unobservable, meaning

that there are no historical data that have been observed for a specific variable or set of

variables. Often these types of variables are required as input to other finance and eco-

nomic models and there therefore exists the need to have a system with which to model

these unobservable variables such that it is appropriate for use as input parameters. Pre-

vious applications of the Kalman filter, specifically in finance and economics, includes but

are not limited to estimating; unobservable parameters and state variables in commodity

futures prices [57], unobserved expected monthly inflation rates [10], unobservable stock

betas [20], which is relevant to this study, and many more. The Kalman filter has many

similarities with linear regression analysis, however it also has some unique character-

istics which sets it apart as a superior method of time series analysis, especially when

compared with standard linear regression.

2.1 Deriving the Kalman filter algorithm

The first step in understanding the Kalman filter is to describe its two main building

5



blocks; (i) the measurement equation and the (ii) transition equation.

(i) Measurement equation

The measurement equation relates unobservable variables to observable variables in the

form:

Yt = mtX + bt + εt. (1)

In Eq. (1), Yt represents the observable variable and Xt the unobservable variable. Sim-

ilar to the workings of [4], to simplify the measurement formula, assume that bt is zero

and mt remains constant through time. Additionally, εt is assumed to have a mean of

zero and a variance of rt. Equation (1) then becomes:

Yt = mXt + εt. (2)

(ii) Transition equation

The transition equation is based on a model that allows the unobservable variable to

develop over time. It takes on the following general form:

Xt+1 = atXt + gt + θt. (3)

Again, a simplification of Eq. (3) is adopted for illustrative purposes by assuming that

gt is zero, at remains constant and θt has a variance of qt. Equation (3) then becomes:

Xt+1 = aXt + θt. (4)

Now that the groundwork has been laid, the iterative process that is the Kalman filter

can be derived. Start by first inserting an initial value X0 into Eq. (4), the simplified

transition equation. X0 has a mean value of µ0 and a standard deviation of σ0. Equation

(4) then becomes:

6



X1P = aX0 + θ0, (5)

where X1P represents the predicted value for X1 given the values for the other parame-

ters in Eq. (5). Once this value has been determined it can be inserted into Eq. (2) to

similarly calculate a predicted value for the observable variable:

Y1P = m[aX0 + θ0] + εt.

Given that Y in this context is an observable variable, an actual value for Y1 is observed

as and when it occurs. Therefore, there now exists both a predicted value as well as an

observed value for the observable variable at t1. The next step is to use this information

and compute a variable which measures the error between the predicted and observed

values as follows:

YE = Y1 − Y1P . (6)

Previously, a prediction was made for X1 namely X1P , but given that Y1 has been ob-

served this prediction can be updated by incorporating the error term, Eq. (6). To do

so, establish a new variable representing an adjusted prediction and label this variable

at t1, X1P−ADJ . This follows the same naming convention used in [4]. Mathematically:

X1P−ADJ = X1P + k1YE (7)

= X1P + k1(Y1 − Y1P )

= X1P + k1(Y1 −mX1P − ε1)

= X1P (1−mk1) + k1Y1 − k1ε1,

where k1 is known as the Kalman gain. Determining the values for the Kalman gain re-

quires the determination of the partial derivative of the variance of Eq. (7) with respect
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to k1 to minimise the variance based on k1. Set the partial derivative relative to k1 = 0

and solve for the Kalman gain. If the variance of X1P is p1 (for ease of exposition) then

the process will look as follows:

V ar(X1P−ADJ) = V ar(X1P + k1Y )

∴ V ar(X1P−ADJ) = p1(1−mk1)2 + k21r1, (8)

and
∂V ar(X1P−ADJ)

∂k1
= −2m(1−mk1)p1 + 2k1r1 = 0

∴ k1 =
p1m

(p1m2 + r1)
=
Cov(X1P , Y1P )

V ar(Y1P )
. (9)

The idea is for the Kalman gain to be set to reduce variance of the adjusted predicted

values for X1. Once these steps have been implemented, one can use the adjusted pre-

dicted value in Eq. (4) and start the process again for subsequent time periods. At

this stage it is also important to take note of the distinct advantages of using adjusted

predictions rather than the initial predictions. If the value of k1 in Eq. (9) is substituted

back into Eq. (8) then:

V ar(X1P−ADJ) = p1(1−
1

(1 + r1
p1m2 )

)2 + k21r1.

Earlier it was stated that the variance of X1P equal to p1. Now, as is shown in [4],

p1 = (aσ0)
2 + q0, where the bracketed term is < 1. This term is also squared which

means that it is reduced even further because the quantity is < 1. Consequently the por-

tion of the variance attributed to estimating X1 has been significantly reduced through
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the use of X1P−ADJ instead of X1P .

The entire Kalman filter process is summarised in Table 2.1 [4].

Table 2.1: The Kalman filter process

2.2 Estimating the remaining parameters

Special attention has been paid to the calculation of unobservable and observable vari-

ables, Xt and Yt respectively, but the question now remains how the other parameters

used in the Kalman filter algorithm are estimated. These unknown parameters include

for example εt in the measurement equation and a and θt in the transition equation.

A system which estimates these unknown parameters is required in order for it to feed

into the Kalman filter algorithm which then produces the values for the unobservable

variables as required. To describe this process, first take into account the distribution
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of the predicted observable variable at time t, YtP . If it is assumed that this variable

is serially independent and normally distributed, and that the mean and variance are of

the form:

E[YtP ] = E[m(XtP−ADJ) + εt] = mE[XtP−ADJ ]

and

V ar(YtP ) = V ar(XtP−ADJ)m2 + rt

respectively, then a joint likelihood function emerges:

t=T∏
t=1


[

1√
2πV ar(YtP )

]T
e
−

∑T
t=1(Yt−E[YtP ])2

2V ar(YtP )

 . (10)

Given that the observable data emerge from this jointly normal distribution, the remain-

ing unknown parameters are chosen such that those values maximise Eq. (10). It is

also common to, instead of using Eq. (10), use the natural logarithm of the likelihood

function, otherwise known as the log-likelihood function:

−T ln(2π)

2
− 1

2

T∑
t=1

ln(V ar(YtP ))− 1

2

T∑
t=1

(Yt − E[YtP ])2

V ar(YtP )
. (11)

Similarly, the unknown parameters are chosen to maximise Eq. (11). Once the set of

parameters is estimated the Kalman filter algorithm is applied, producing new time series

for the variables YtP and XtP−ADJ along with their respective distributions. Thereafter,

the likelihood estimation will commence again producing a new set of maximum likeli-
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hood estimates (MLEs) which, as is clear by now, will be entered into Eq. (1) and Eq.

(3) once again. This iterative process, which combines both the likelihood estimation

and the Kalman filter algorithm, is known as the Expectation Maximisation algorithm [9].

This provides a simplified approach to understanding the main components of the Kalman

filter. The link between the Kalman filter and its use within the context of this study

will become clear in subsequent chapters after more of the groundwork has been laid in

terms of modern portfolio theory in the Chapter 3.
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3 Modern portfolio theory

In Chapter 2 the main components of the Kalman filter, a superior method of time-

sensitive variable estimation, were discussed. This chapter firstly provides a revision

of the main weighting techniques within mean-variance portfolio optimisation, part of

the broader study of modern portfolio theory, and secondly, discusses the single-factor

CAPM. The CAPM forms an integral part to understanding the application of the

Kalman filter in this study.

3.1 Mean-variance portfolio optimisation

One of the most well-known methods of portfolio construction is the mean-variance se-

lection process, introduced by Markowitz (1952) [47]. According to this framework an

investor would select a portfolio by considering the expected returns and risk, measured

as the volatility of returns, of a range of portfolios and select that portfolio which max-

imises the expected return for an investor’s stated risk tolerance. These portfolios all

differ from one another based on the percentage weight it allocates to each of the chosen

asset classes. It therefore also naturally depends on an investor’s objectives and overall

risk tolerance. These factors will ultimately determine the optimal weighting allocation

among the different asset classes to satisfy the investor’s investment goals.

To apply this framework some assumptions must be made. Firstly, investors are assumed

to be risk averse, i.e. for a given level of return an investor will prefer a portfolio with

less risk associated with its returns. Secondly, investors seek to maximise their wealth,

i.e. for a given level of risk or volatility an investor would choose a portfolio which offers

the highest returns. If these assumptions are applied to the range of different percentage

allocations mentioned previously, then one would observe the graph shown in Figure 3.1.
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This is the efficient frontier which plots the different portfolios, constructed using the

available risky assets and their respective return and risk profiles. Any individual asset

or portfolio of these assets which lie to the right of the efficient frontier are inefficient.

Figure 3.1: Efficient frontier

Below some of the most common types of portfolio construction techniques are briefly

described. It is important that these weighting techniques are well understood when

making investment decisions for longer time periods.

3.1.1 Minimum variance portfolio allocation

The efficient frontier depicts the trade-off between risk and reward for various weight

allocations. As the additional risk is taken, an investor would want to be compensated

for the additional risk in the form of increased returns. Even for the minimum amount
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of risk, there is a certain level of return that would be expected, otherwise, given the

assumptions of investors operating in the market, an investor would simply invest all his

wealth in risk-free assets.

On the efficient frontier of risky assets there exists a point beyond which the risk of

any of the portfolios on the efficient frontier can not be decreased any further. This is

the left-most point on the efficient frontier known as the Minimum Variance Portfolio

(MVP). As the name suggests, this portfolio weighting technique aims to construct a

portfolio, using the risky assets, that has the lowest possible amount of risk associated

with it. As a result of this decreased level of risk, this portfolio is expected to offer the

lowest return of all portfolios found on the efficient frontier.

3.1.2 Maximum diversification portfolio allocation

The maximum diversification weighting technique allocates funds among the different

asset classes such that the diversification ratio is maximised. This approach seeks to

take full advantage of the benefits of diversification within one’s portfolio of assets [66].

Mathematically:

DR =
wTσ√
wT
∑
w
,

where σ is an n × 1 vector of individual asset volatilities σ1, ..., σn and
∑

is the corre-

sponding n × n variance covariance matrix of asset returns. The vector of asset weights,

denoted by w, will be used in the diversification ratio optimisation [66].
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3.1.3 Maximum Sharpe ratio/tangent portfolio allocation

Suppose a risk-free asset is included in the universe of investable assets. This inclusion

has a very distinct effect on the shape of the efficient frontier as is illustrated in Figure 3.2.

Figure 3.2: Efficient frontier with risk-free asset

The inclusion of a risk-free asset transforms the efficient frontier into a straight line

with a y-intercept equal to the risk-free rate of return. This straight line is the Capital

Market Line (CML) whose slope shows once again how the return of a portfolio on this

line changes in response to the risk associated with the portfolio. The slope of this line,

using the (x, y) coordinates of the risk-free asset and another point on the CML is ex-

pressed as follows:

Rp −Rf
σp

, (12)
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where Rp is the return of a portfolio on the CML, σp is the risk associated with this

portfolio represented by the volatility of portfolio returns, and Rf is the risk-free rate of

return. This equation is of particular interest in the investment world. This is known

as the Sharpe ratio, and measures the ratio of excess returns a portfolio produces com-

pared to the risk-free rate of return to the volatility of portfolio returns, i.e. its risk. This

ratio is a metric of the performance of the portfolio relative to a risk-free asset [58, 59, 60].

The intercept point of the CML to the efficient frontier of risky assets is called the

tangent portfolio. This portfolio is thus the portfolio on the efficient frontier which max-

imises the Sharpe ratio and is therefore also referred to as the maximum Sharpe ratio

portfolio. This portfolio will also have its own unique weighting scheme among the risky

assets under consideration. This particular weighting technique will lead to a portfolio

choice which will take on more risk relative to the minimum variance portfolio.

The MATLAB implementation of this optimisation problem can be viewed in the Ap-

pendix along with the other optimisation weighting techniques. Figure 3.3 provides a

visual representation of where these portfolios lie relative to the hypothetical efficient

frontier of four different risky assets and a risk-free asset which, in this instance, deliv-

ered an annual return fractionally below 2%.
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Figure 3.3: Visualising different weighting techniques

Figure 3.3 also illustrates an important point regarding the maximum diversification

portfolio in that it is not guaranteed to be an efficient portfolio for a specific risk and

return profile. The maximum diversification portfolio for this set of risky assets and risk-

free asset is in fact inefficient given the historical returns which were used to determine

this portfolio’s weighting scheme.

3.2 Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM) was introduced by Sharpe (1964) [58] and fol-

lows directly from mean-variance analysis discussed previously. It has become one of the

most well-known asset pricing models in recent history and is used in various ways, such
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as estimating the cost of capital for firms and, more relevant to this study, evaluating

the performance of managed portfolios [38, 50, 59, 69]. The CAPM has many attractive

features which explain in part why the model is still so widely used within the finance

world. These features include the simplicity of the model and the ability of the model to

produce intuitively pleasing predictions most individuals can understand.

The development of the CAPM in [58] was largely based on the framework defined by

Markowitz (1952) [47] and it showed that the excess returns of an asset or a portfolio

of assets were a linear function of the excess market returns represented by a market-

capitalised index such as the S&P500 index or the MSCI All World Index. The CAPM

is written as:

Rp −Rf = α+ β(Rm −Rf ) + ε, (13)

where Rp represents the return achieved by a portfolio of assets, Rf represents the risk-

free rate of return, and Rm represents the return of the overall market. Equation (13)

shows how excess portfolio returns are regressed on excess market returns, with the pa-

rameter β indicating the slope between these two quantities and α the intercept. Graph-

ically this linear relationship can be seen in Figure 3.4 below.
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Figure 3.4: Excess return regression used to estimate relevant parameters for CAPM

The parameter β measures the sensitivity of the portfolio returns to the overall market,

calculated as the ratio of the covariance of portfolio returns and market returns to the

variance of market returns:

β =
Cov(Rp, Rm)

V ar(Rm)
.

β thus measures the level of systematic risk faced by the portfolio. This type of risk

is non-diversifiable and is inherent to any portfolio exposed to the various risk factors

which naturally occur within the market.

The α parameter measures the excess portfolio returns when the excess market return

is equal to zero, sometimes also referred to as Jensen’s α [23, 38]. This value can be

seen in Figure 3.4 as the intersection of the CAPM line with the excess portfolio returns

axis and in this instance is 0.83%. Both these parameters are of great importance in

the investment management industry as the ex-post analysis of the parameters play a

significant role in the evaluation of the performance of portfolio managers.
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Given only one risk factor, excess market returns or market premia, is taken into ac-

count, the CAPM essentially states that the amount by which an investor is rewarded

in the form of excess portfolio returns, is directly proportional to the underlying market

risk. Although the CAPM is easy to understand and makes sense within the risk-reward

framework, many studies have used empirical evidence to prove that the theory underpin-

ning this model is not valid [23, 33, 54]. There are numerous other multi-factor models,

e.g the Fama-French factor models [22, 24], that have been proposed as a substitute for

the CAPM, but the study of these models falls outside of the scope of this research.

The basic principles of the CAPM as discussed in this chapter, augmented with the

use of the Kalman filter, will be used to support investment decisions by forecasting

monthly asset returns, as will be shown in Chapter 4.
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4 Using the Kalman filter and the CAPM to forecast asset

returns

Forecasting financial data has proved to be an extremely challenging task for practi-

tioners. One of the reasons for this is noise present in these data, making it difficult

to produce accurate estimates of what the future holds [68]. This is particularly true

when estimating asset returns. The traditional methodology employed in practice for

predicting asset returns is the CAPM discussed in Chapter 3 [68]. The accuracy of the

CAPM formulation requires robust estimates of α and β, usually estimated from market

data using (e.g.) regression or principle component analysis. These parameters should

reflect, as closely as possible, current market dynamics. This chapter aims to address

this issue.

The question then naturally arises, what would be the most effective way of calculating

values for α and β such that it meets this all important requirement of being a fair de-

piction of the current state of financial markets? The nature of the CAPM means that

values for these parameters are determined by the relationship between excess portfolio

or security returns and excess market returns. In this sense a decision has to be made in

terms of the data for both portfolio or security excess returns and excess market returns

which will be used to establish the behaviour of α and β. Traditionally more data are

preferred over fewer. As [68] mentions, using return data over a three month period,

for example, would not provide any valuable information. Using too many data on the

other hand also has its own drawbacks, as certain data from say five years ago are then

used within a regression analysis meant to be reflective of current market dynamics. So

there already exists a question around the amount of historical data that must be used

to capture this relationship between excess returns.
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A possible solution to this dilemma is to use an approach which assigns higher weights

to more recent data and lower weights to those data which occurred longer ago in the

past via an exponential weighting scheme. This exponentially weighted moving average

(EWMA) technique is a well known technique and has been applied in the determination

of volatility, for example [40]. The volatility estimates produced by the EWMA tech-

nique are more responsive to market moves and do not give rise to the phenomenon of

’ghosting’ [15], a scenario found in a normal moving average process, in which volatility

shocks are abruptly incorporated into the volatility calculation and remain in the data

present in the trailing window. Since all the data in the moving average calculation are

equally weighted, these shocks contribute to the overall process in the same way as all

the other, normal, data. As the trailing window moves with the passing of time, these

shocks drop off resulting in inaccurate volatility estimations.

As attractive as the exponentially weighted moving average is due to the more recent

and thus arguably more relevant estimates of α and β it provides, it has been shown that

the effect is still insufficient [67]. A different technique has thus been required to provide

the best estimates for these parameters of the CAPM.

4.1 Kalman filter α and β estimations

Following from the fundamentals highlighted in Chapter 2, it will now be shown how

the Kalman filter can be used as an alternative technique to that of the exponentially

weighted moving average in estimating the parameters α and β in the CAPM. The two

main equations relating to the Kalman filter is the measurement equation and the tran-

sition equation. The measurement equation relates the unobservable variables to the

observable variables. The transition equation on the other hand is based on a model that

governs the development of unobservable variables over time.
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In the context of the CAPM, the unobservable variables are α and β, while the ob-

servable variable is the excess portfolio return or Rp − Rf . The measurement equation

in this instance will take on the form of the CAPM, i.e.

Rp −Rf = α+ β(Rm −Rf ) + ε.

For ease of exposition, the subscripts in the CAPM formula will from now on be written

as superscripts allowing for the use of subscripts to indicate the specific point in time.

Furthermore, the excess returns, both that of the portfolio as well as the market will be

written as single variables, Rp−Rf will be written as Rp, and Rm−Rf will be written as

Rm. To this end the CAPM, and thus the measurement equation, will now take the form:

Rpt = αt + βtR
m
t + εt (14)

at time t and the noise term εt ∼ N(0, σ2ε).

Since the transition equation allows for the development of variables over time, an as-

sumption needs to be made in terms of the process which drives this development, which

would then ultimately also determine the form of the equation. There are various options

to choose from when deciding which underlying stochastic process would be most suitable

for the time-varying unobservable variables α and β. The options consist of processes

such as autoregressive models, mean-reverting models, random walk processes, different

distributional assumptions, etc.

Faff et al. (2000) for example examined the ability of alternative models in captur-

ing the time variation of systematic risk or β [20]. For their implementation of the

Kalman filter three different stochastic processes were tested namely, a random walk, a
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first order autoregressive process with a constant mean and a random coefficient around

a constant mean. The results suggested that the “Kalman filter algorithm, and in par-

ticular with the random walk parameterisation, consistently performs better than the

simple market model beta” [20]. Therefore the random walk process is also incorporated

in this Kalman filter implementation for both of the time-varying parameters in question.

According to the random walk process, current market exposure is assumed to be a

normally distributed random variable with a mean equal to the mean of the previous

period’s exposure and with system noises also assumed to be normally distributed and

uncorrelated [67]. State variables xt εR2 are time-varying coefficients:

xt =

 αt

βt


at time t.

Given the assumption that these variables develop according to a random walk pro-

cess, the transition equation is written, in matrix form, as:

 αt+1

βt+1

 =

 1 0

0 1


 αt

βt

+

 γ

δ

 , (15)

where  γ

δ

 ∼ N

 0

0

 ,

 σ2γ 0

0 σ2δ


 .

Given that Eq. (15) is written in matrix form, the same will be done for Eq. (14).

Therefore the measurement equation can be re-written as:
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Rpt =

[
1 Rmt

] αt

βt

+ εt. (16)

As mentioned in Chapter 2 there are some parameters which are not estimated during

the Kalman filter process, but rather which feed into the algorithm. Maximum likeli-

hood estimation is used to determine the remaining unknown variables, in this instance

σ2γ and σ2δ . The use of maximum likelihood estimation in conjunction with the Kalman

filter algorithm is known as the Expectation Maximisation algorithm [9].

Comparing Kalman α and β with regression

As a precursor to how the Kalman filter will be used to forecast asset returns and there-

fore inform investment decisions, the estimates produced by the Kalman filter will be

compared to that of a normal rolling 36-month unweighted linear regression, similar to

what was done in [68]. This comparison will be done for the two variables respectively,

applying both methods of estimation. For the purpose of this comparison a specific asset

class has been chosen purely for illustration. The full list of asset classes which form

part of this study is discussed in Chapter 7, but for now consider the evolution of both

α and β through time for a portfolio of real estate investments from 2011. The results

are depicted in Figures 4.1 and 4.2 below.
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Figure 4.1: Real estate portfolio α

Figure 4.2: Real estate portfolio β

As can be seen from Figures 4.1 and 4.2 there are differences in the linear regression

estimates and the estimates produced through the use of the Kalman filter, albeit subtle

at times. There are however certain periods where these differences are quite noticeable,

especially for the β estimates. Two periods are highlighted in Figure 4.2, the whole of

2011 where the linear regression and Kalman filter estimates showed the most significant

differences, and during 2014 where the Kalman filter β estimates picked up declining sys-

tematic risk faced by this portfolio quicker than its linear regression counterpart. These

differences in estimates could have played a crucial role in the outcome of the investment
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decisions made by portfolio managers during this time and illustrates the need for an ap-

proach such as the Kalman filter which provides more recent and thus relevant estimates

for effective and timely decision making.

4.2 Forecasting monthly asset returns

It has now been shown how the Kalman filter will be applied to estimate unobservable

state space variables α and β. It will now be discussed how this study aims to use these

estimates to forecast monthly asset returns. Recall from Eq. (13) that the CAPM is

written as:

Rp −Rf = α+ β(Rm −Rf ) + ε,

or as shown in Eq. (14) with the addition of the indicator of the time interval:

Rpt = αt + βtR
m
t + εt.

It can therefore be seen how the return of an asset or portfolio of assets consists of several

components. The question now remains, how can these parts be used to forecast future

returns? In answering this question, two assumptions are made regarding the risk-free

rate of return, Rf , as well as the return of the overall market, Rm. These assumptions

implicitly also determine the nature of the market premium, Rmt , measured as the differ-

ence between the market return and the risk-free rate of return. Consider both Rf and

Rm, which represents returns at t respectively. The expected returns at t+1 are set equal

to the observed returns for Rf and Rm at t, i.e. next month’s returns are expected to

remain at current levels. This follows from the assumption that both the market return

and the risk-free rate of return are Martingales and therefore the conditional expectation
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of the next value in the sequence of returns, given all prior values, is equal to the present

value. The next element, which is εt, is assumed to have µt = 0 and var(εt) = σ2ε , similar

to Eq. (14).

The final elements for which assumptions need to be made are the corresponding values

for α and β. It is here that the results from the Kalman filter are utilised. Given that

market data have been observed at t, adjusted predictions for α and β can be determined,

similarly to what is done in Eq. (7) and related to the CAPM in Eq. (16). The best

possible estimates then for expected values for these parameters at t+1 are then assumed

to be the adjusted predictions at t.

This provides all necessary information to forecast monthly asset returns at t+ 1. Math-

ematically, by decomposing excess returns into their individual components once again:

E[Rpt+1] = E[Rft+1 + αt+1 + βt+1(R
m
t+1 −R

f
t+1) + εt+1]

E[Rpt+1] = Rft + αt + βt(R
m
t −R

f
t ),

where αt and βt represents, as mentioned, adjusted predictions taking into account ob-

served values at t.

This chapter showed how the Kalman filter is incorporated in the CAPM to produce

estimates for the parameters α and β which are more representative of current mar-

ket dynamics. It was seen how, in the case of β in particular, the Kalman filter esti-

mates reflected a changing market environment much more efficiently than the linear

regression estimates, supporting the fact that the Kalman filter is a superior metric for

time-sensitive, noisy measurements. It was also shown how monthly asset returns are
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forecasted using these estimates. The next chapter describes the differences in asset

allocation approaches and the objectives they aim to meet respectively.
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5 The importance of asset allocation

Chapter 4 showed how the Kalman filter can be employed to forecast monthly asset

returns. The aim is to use these forecasts to inform investment decisions and produce

superior performing portfolios. Before this can be done potential approaches to asset

allocation must be discussed.

Asset allocation describes the set of weights of broad asset classes within an invest-

ment portfolio. Asset allocation is the first step in developing an investment program.

The manner in which these weights are allocated defines the behaviour of the overall

portfolio and is ultimately setup to match the risk and return targets of the investor.

As a simple example of how asset weights are determined, consider an investor who is

much more concerned about the volatility of returns of the portfolio. Such an investor

would allocate more funds towards money market funds, which have lower returns but

considerably lower risk, than an investor who is more risk-tolerant.

There are a number of studies which have investigated more closely the importance

of asset allocation policy [2, 5, 16, 34, 35, 61, 63]. Ibbotson (2010) gives an overview

of some of these studies and the conclusions which can be drawn from the results. The

consensus seems to be that asset allocation policy can, on average, describe upwards of

90% of the variability of portfolio returns [34]. Ibbotson and Kaplan (2000) also demon-

strated that asset allocation, on average, explained close to 100% of long-term (five and

10 year horizons) portfolio total returns [35]. If an investor hires index managers, by def-

inition asset allocation will determine majority of future returns. If an investor however

hires highly concentrated managers, asset allocation may be overwhelmed, especially in

the short run, by asset class manager performance. The relative importance of asset

allocation compared to asset class manager performance thus depends on the nature of
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the portfolio in question and the time horizon. For example, with diversified equity and

fixed-income investments, for the long term, asset allocation will always be of greater

importance [35].

It was also determined that “relative performance between two multi-asset class funds is

influenced by asset allocation as well” [35]. Relative returns however are influenced less

than total returns because asset class returns have been removed to a large extent. In

their study it was found that asset allocation only described approximately 40% of the

variability of annual relative returns [35]. The rest of the variability had other factors

driving it such as style, market timing, trading costs and security selection. Thus, asset

allocation did play a role in describing some of the variability of returns, but that factors

other than asset allocation policy were cumulatively more important.

There is thus no doubting the impact asset allocation techniques have on the returns

of portfolios, albeit variability of portfolio returns, total portfolio returns or relative re-

turns among portfolios. It is therefore critical to carefully consider the asset allocation

technique used. There exists a variety of asset allocation techniques, all of which repre-

sent tools that investment professionals use to set optimal asset weights. The following

subsections set out two of the most prominent types of asset allocation techniques and

how these techniques are fundamentally different.

5.1 Strategic Asset Allocation

Strategic asset allocation (SAA) takes on a long-term investment view and establishes

a target allocation among the assets of a defined opportunity set. These asset classes

in general include equities, bonds and cash. In some instances real estate has also be-

come more prevalent in the SAA decision making process. The weights allocated to
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these asset classes are largely determined by the portfolio objective, risk tolerance and

time horizon. These factors are often grouped together and used to allocate funds ac-

cording to an investment mandate. Investment mandates are put in place by the board

of trustees to regulate the behaviour of portfolio managers and limit the amount of in-

fluence they have on investment decisions, particularly for investment products such as

pension funds, endowments and foundations, which by their very nature, are long-term

investment products. This is important because it prohibits to a certain extent the role

a portfolio manager’s own biases and motives have on the overall look and feel of an

investor’s portfolio, particularly institutional investors. It provides investors with a layer

of protection, especially against reckless decisions from portfolio managers and their in-

vestment teams and aims to preserve capital in the long run [7].

Anson delves even further into the nuances of SAA stating that SAA “is designed to

meet the goals of an organisation under normal market conditions over a full market

cycle” [3]. The market cycle being referred to here can last anywhere from two to 10

years. During this period however an organisation will most probably conduct an al-

location study to determine the appropriateness of its SAA “every three to five years”

[3]. The primary risk associated with a fund or portfolio is largely attributable to its

SAA policies. This is the reason why SAA is said to reflect the overall risk tolerance of

investors, often large institutional investors, whose main objective is capital preservation.

It is also important at this stage to highlight the link between SAA and modern portfolio

theory discussed in Chapter 3, in which various passive portfolio allocation techniques

were presented. These portfolios form the foundation of achieving long-term investment

objectives by assigning weights to different asset classes based on their historical returns.

The strategic weights are in no way a reflection of what a portfolio manager perceives the

market to look like in the near future. It takes into account observed performance and
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correlations between different income streams to best position a portfolio for acceptable

future returns given its risk profile. These investors do not aim to add any more value

to a portfolio other than the value which will be unlocked by staying the course and

remaining invested for longer periods to best satisfy the needs of clients [3].

5.2 Tactical Asset Allocation

Tactical asset allocation (TAA), in contrast to SAA, is a dynamic strategy which seeks to

actively adjust the allocation of funds to a variety of asset classes. TAA has the following

objectives:

• increasing portfolio returns

• adapting to market conditions, and

• providing diversification.

A TAA strategy adjusts asset weights based on short-term forecasts of asset returns. It

aims to systematically exploit inefficiencies and/or temporary imbalances in equilibrium

values among different asset classes. TAA attempts to add value by underweighting

asset classes which are forecasted to underperform on a relative basis and conversely

overweighting those asset classes which show possible outperformance [45, 52, 62].

Investors who incorporate TAA in their investment strategies seek to gain from short

term market movements, expect to change their asset weights in the near future and are

in general not as concerned about the implications of the average weight invested in an

asset class in the long run. These active allocation strategies are often also built around

strategic weights, allowing for changes in asset weights, but limiting these shifts such that

the tactical bets don’t overwhelm the strategic allocation as set out in the investment
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mandate.

To effectively employ a TAA strategy is however non-trivial and it has been shown

in the past how TAA decisions have had an inverse effect and consequently subtracted

value from a given portfolio [3, 18]. It is therefore extremely important to have a system

in place which allows for correct decisions to be made in a timely manner such that a

portfolio can benefit as much as possible from these TAA decisions. An important dis-

tinction here is also the players involved in the TAA framework. SAA is often set out by

a board of trustees whereas for TAA periodic changes in asset allocation are determined

by the investment staff. It is however also true that the role of the board of trustees

and that of the investment staff can sometimes become less clear with a lack of guiding

principles [3].

This chapter aimed to provide greater insight into asset allocation policies and the im-

portance thereof, clearly defining two different approaches to asset allocation. These

approaches are different in terms of the goals they aim to achieve and the individuals

who are involved in their respective decision making processes. The next chapter pays

special attention to TAA and the tools and methodologies used to construct portfolios

which aim to benefit from market-timing and, in doing so, deliver superior performance.
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6 Key drivers of market timing

Chapter 5 highlighted the role that asset allocation policies play in portfolio and risk

management. More importantly, it clearly distinguished between two approaches to as-

set allocation, strategic and tactical, and how these approaches have clearly defined and

unique objectives. This chapter serves as a short literature review of some of the most

well-known tools used for TAA purposes.

Portfolio managers who decide to employ TAA in their portfolios are said to attempt to

benefit from “market timing” [8]. This is non-trivial and the implementation of market-

timing strategies which allow one to exit and more importantly, re-enter a given mar-

ket segment at exactly the right moment has proven to be a strenuous exercise for

investment teams. There exists a plethora of literature on TAA drivers and the dif-

ferent tools which have been used in the past and are still being developed today to

time one’s position in the market the most efficiently. There are three main categories

of TAA drivers; valuation-based methods, macroeconomic scenarios and more techni-

cal/quantitative analyses. These categories are discussed below, following a similar struc-

ture to [26].

6.1 Valuation-based

Valuation-based methods have in the past attempted to exploit various market regimes

and identify possible changes in market regimes in order to time the market [26]. This

method is based on the underlying principle of value investing whereby investors aim

to buy into markets that are cheap and exit positions or avoid markets altogether that

are deemed expensive. The market is described as cheap when equity data suggest it

is undervalued relative to historical norms and expensive when overvalued relative to
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historical norms.

There are various indicators which are commonly used within value investing, some

being used in combination with one another or that are layered in different filtering

levels. The most popular of these indicators include the price-to-earnings or PE ratio,

the price-to-book ratio and the price/earnings-to-growth ratio. An indicator which has

recently received considerable attention from market practitioners is the cyclically ad-

justed price-earnings ratio or CAPE, which was introduced to asset allocation in [11].

The CAPE ratio is calculated using the current stock price of a company and dividing it

by its long-term average earnings, adjusted for inflation. Importantly, this ratio assesses

financial performance over a specified period, while isolating the impact of economic cy-

cles. Given that it explicitly accounts for economic cycles, it allows analysts to evaluate

a company’s broader profitability over time by smoothing out any cyclical effects.

As is evident in this definition of the CAPE ratio, it will allow portfolio managers to

make decisions regarding the equity portion of their investment portfolios by considering

the overall financial stability of individual stocks, but also that of different sectors and

industries. Using the information contained in this ratio, portfolio managers can decide

to limit their exposure to the equity market, or certain portions thereof, if they foresee a

drop in returns or perhaps increased volatility levels and instead move some of the funds

to other asset classes such as cash. The changes to weights allocated to different asset

classes based on the outlook one may have of certain segments of the market encapsulates

the main motivation behind TAA [62].
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6.2 Macroeconomic scenarios

Another method of establishing a changing market environment, which will ultimately

also affect the nature of returns of various asset classes, uses macroeconomic indicators.

In [12] the authors state how it has been shown that the “sensitivities of size-sorted stock

portfolios to rates, industrial production, inflation, credit spreads, and consumption ex-

plain a significant portion of their relative performance over time”.

Fama and French (1989) also conduct a study into the effect of macroeconomic vari-

ables in the returns of securities [21]. The first factor considered in this study is the

so-called default spread, measured as the difference in yield between a market portfolio

of corporate bonds and AAA rated bonds. The second factor investigated was the divi-

dend yield, a factor commonly used to forecast stock returns. The final factor considered

is the term spread, which indicates the spread in yield earned on AAA rated bonds and

the one-month US treasury bill rate. Fama and French (1989) concluded that the default

spread, a business-conditions variable, is high during periods of persistently poor per-

formance by business evident, for example, during periods such as the Great Depression

[21]. The default spread is low on the other hand in the presence of strong economic con-

ditions. The dividend yield was found to be correlated to the default spread and moves

in a similar fashion relative to long-term business conditions. Lastly, the term spread is

related to shorter-term business cycles. It is high near troughs and low during peaks [21].

These findings are then briefly summarised in practical terms as is explained in the

context of people’s behaviour during different periods of business cycles, both in their

capacity as consumers and also as investors. When business conditions are poor and

income is low, people have less disposable income which they can use to invest, therefore

expected returns on stocks and bonds in particular are high to incentivise investment

with lower levels of income. On the other hand, when business is seemingly booming and
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there exists increased levels of income, the market is expected to clear at lower levels of

return [21].

There exists even more evidence on the effect of macroeconomic factors on security re-

turns and how this ultimately influences decision-making regarding asset allocation and

the tactical tilting of weights across various asset classes. Many of these factors are listed

in [12], which suggests that all these factors are indeed priced into markets, albeit to

different extents.

6.3 Technical/quantitative analyses

The third of the three broad categories of drivers of market timing is in certain ways

much simpler in its application, yet extremely useful in terms of the benefits it offers to

portfolio managers. As mentioned in [26], these types of indicators have recently become

common practice in many systematic trend-following trading strategies to tactically scale

portfolio exposures to a range of asset classes. The indicators, even though it is easier

to understand and implement, can also vary in terms of its complexity relative to other

indicators in this same category. According to [19], the following criteria are necessary

to implement a purely quantitative method to allocation:

1. It must have simple, purely mechanical logic.

2. The same model and parameters must be used across all the different asset classes

being invested in.

3. It must be a price-based model.
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By meeting this set of requirements it will ensure that these quantitative strategies are

simple enough for investors to follow and mechanical enough to remove emotions and

hence also subjective decision-making, oftentimes the downfall of many TAA approaches.

This is especially true when economic variables need to be forecasted. Take, for example,

a country’s gross domestic product or GDP, which can also affect the behaviour of mar-

kets significantly. For one to make forecasts about this quantity, one requires knowledge

of potential foreign exchange rates, unemployment rates, fiscal deficits, business innova-

tions and changes in consumer behaviour, all of which will inherently include a certain

level of subjectivity [67]. This means that any forecasts made using these variables can

and probably will be influenced by the individual or team who are responsible for these

forecasts. Therefore, any system which removes these issues regarding subjectivity, de-

serves just as much, if not more attention, specifically from portfolio managers in this

instance who themselves might be confronted by their own perceptions and/or biases

regarding current market and business cycle conditions.

The system proposed in [19] adheres to this criteria and uses one of the most well-

known measures of trend, the 200-day simple moving average (SMA), together with one

simple trading rule. The rule stated that when the equity index in question was trad-

ing above its 200-day SMA then the exposure to equities would remain unchanged and

when the index was trading below its 200-day SMA then this exposure would be de-

creased, with the excess funds being allocated to cash or cash-like securities. This simple

system was implemented, at first only considering two asset classes, equities and cash,

and produced a portfolio which generated equity-like returns at levels of volatility often

associated with bonds. These results were observed over an extended time-period and

included many important historical events and encompassed multiple business cycles,

essential for meaningful evaluation of TAA strategies.
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A closer look however at more recent annual returns of this system revealed that it had

underperformed equities for six of the eight years spanning from 2009 to 2016. This period

saw equities gain substantial ground post the Great Financial Crisis of 2007/2008. As

mentioned, this strategy only considered two asset classes and given the highlighted un-

derperformance additional assets were incorporated. The inclusion of these asset classes

naturally provided another source of diversification which was absent during the original

investigation [19].

The updated system weighted all the new asset classes equally, i.e. 20% allocation

across each of the five asset classes in question. Each of the asset classes were considered

independently, with exposures remaining at the stated 20% level unless it was trading at

levels below its own 200-day SMA, in which case the 20% allocation was moved to cash

once again. This method, termed the quantitative tactical asset allocation (QTAA) port-

folio was compared to a global tactical asset allocation (GTAA) portfolio which simply

represented a buy-and-hold portfolio using an equal weighting scheme across the same

asset classes. The results for both the in-sample and out-of-sample periods showed the

same trends, with the QTAA portfolio providing higher returns and with lower levels of

risk [19].

Other literature shows how another quantitative indicator, the VIX (CBOE Volatil-

ity Index), is used [46, 49, 51, 70]. The VIX measure was created to measure expected

volatility in the equities market, specifically the volatility in the US equity market and

is often referred to as the “fear index”. It is based on the prices of options contracts writ-

ten on the S&P 500 index and is calculated aggregating weighted asset prices of these

options, both put and call options, over a range of strike prices.

When there exist elevated levels of uncertainty in the equities market, then the amount
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investors are willing to pay to purchase options contracts to hedge their positions also

increase. The increase in the premiums for options is reflected in an increase in the

VIX. Maggie and Copeland (1999) show how this indicator is statistically significant

and how on days following increases in the VIX, “portfolios of large-capitalisation stocks

outperform portfolios of small-capitalisation stocks” [46]. During this period value-based

portfolios also outperform growth-based portfolios. This point is interesting given the

current speculation around the effectiveness of value-based strategies which in recent

years have underperformed their growth-based counterparts. On the days following a de-

crease in the VIX the opposite occurs. This once again gives portfolio managers a sense

of the performance of markets in the short term, presenting them with an opportunity

to add value to their portfolios if executed accurately.

Probabilistic momentum and implied volatility, which when used in combination can

produce a four-state market classification [26], is another example among the literature

on the use of quantitative indicators in TAA.

There are of course also arguments against the idea of market timing and hence TAA

in general, as a profitable and sustainable method of portfolio construction. Figure 6.1

shows the impact on portfolios when missing some of the best trading days experienced in

the equities market. This is relevant as most approaches to TAA, whether quantitative or

not, inform decisions based on the underweighting or overweighting of the equities asset

class and the moving of funds to and from other asset classes such as cash to accommo-

date these portfolio tilts. It therefore illustrates the impact of poor market timing, both

in terms of exiting but also re-entering the equities market in particular. In this instance

the S&P 500 Total Return Index was used to represent the overall equities market [42].
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Figure 6.1: Impact of being out of the market (USD)

These sentiments are shared in [18] which explores the impact of Black Swan events1

on investment portfolios. The study shows how, given 107 years worth of return data

for the Dow Jones Industrial Average Index, missing “the best 10 days, out of 29 190 in

the sample, resulted in portfolios 65% less valuable than a passive investment” [18]. It

also shows the positive impact of avoiding the worst 10 trading days on portfolio values

which just further emphasises the fact that the points of exiting and entering the market

are equally important and both could have drastic effects on the overall portfolio value.

Even more so when considering portfolios which are invested for longer time periods and

thus being exposed to more Black Swan-like events along with the swings experienced

by the market during seemingly normal economic conditions.

This chapter provided some necessary context regarding TAA and some key market-

timing drivers used in practice. The next chapter gives a detailed explanation of the

1Taleb (2007) describes a Black Swan event as:
1) An outlier outside the realm of regular expectations because nothing in the past can convincingly
point to its occurrence.
2) The event carries an extreme impact.
3) Explanations for the occurrence can be found after the fact, giving the impression that it can be
explainable and predictable [65].
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returns data that are used and the methodology which is implemented to make timely

investment decisions. A quantitative TAA approach is adopted using the results from

the application of the Kalman filter within the CAPM to forecast monthly asset returns.
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7 Data and methodology

Chapter 6 explored the different categories of key market-timing drivers that are used

to enhance portfolio performance through TAA. This chapter provides more insight into

the proposed quantitative approach to TAA. This approach uses monthly returns data

and incorporates the Kalman filter estimations for the time-varying variables α and β as

used in the CAPM.

Before the mechanics of the strategy can be discussed, the return data of various as-

set classes available for investment by a portfolio manager, must be considered. Given

the many types of underlying products found within each of these asset classes, decisions

had to be made in terms of the indices used as proxies for their overall performance. The

chosen indices are also products in which investors can take long or short positions and

have over the years grown extensively in terms of notional amounts traded on a daily

basis, so much so that it is deemed to provide the best picture of the overall state of

various parts of the market.

7.1 Data

This section sets out the finer details relating to the data that are used for the purpose

of this research. It also explains how the relevant data were sourced to allow for proper

comparison between various investment approaches, both from a passive point of view,

but also in portfolios which make use of tactical and timely tilts in asset weights.

7.1.1 Universe of investable assets

For the purpose of this study the available assets for SAA have been limited to equities,

bonds, cash, real estate and commodities, similarly to what was done in [19]. These
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assets inherently also formed part of the TAA strategy’s universe of investable assets,

ensuring that both the SAA and TAA strategies had the same set of asset classes with

which to construct portfolios. Table 7.1 shows these different asset classes and the indices

used to represent each asset class’s overall performance.

Table 7.1: Asset classes and their respective indices
Asset class Index
Equities MSCI ACWI
Bonds FTSE WGBI
Cash Three-month treasury bills

Real Estate S&P Global REITs
Commodities S&P GSCI

7.1.2 Description of indices

The MSCI ACWI is designed to “represent performance of the full opportunity set of

large- and mid-cap stocks” [48]. It consists of stocks from as many as 23 developed

and 26 emerging markets. The most recent research conducted established that this

index covered approximately 85% of the total free float-adjusted market capitalisation

in each market, ranging across 11 sectors and more than 3000 constituents [48]. The

FTSE WGBI measures the performance of fixed-rate, local currency, investment-grade

sovereign bonds. It currently includes sovereign debt from over 20 countries, denomi-

nated in a variety of currencies and has historical performance data spanning more than

30 years [27]. This index is also widely used as the benchmark of choice to evaluate

several fixed-income investment products and thus made for an ideal candidate to use as

an index for bonds in this study.

REITs or real estate investment trusts are investment vehicles which allow individuals

to invest in large–scale, income producing real estate without having to physically own

any commercial property. Majority of REITs do not develop property for the purpose
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of reselling, but rather to hold it as part of their investment portfolio. The index used

to best represent the performance of REITs across the world is the S&P Global REITs

index [64]. Lastly, the S&P GSCI was the first major investable commodity index in

the world. “It is one of the most widely recognised benchmarks that is broad-based and

production weighted to represent the global commodity market beta” [64]. This index

is designed to be investable through the inclusion of some of the most liquid commodity

futures, and provides additional diversification with low correlation to other asset classes.

It is clear that there exists some overlap between the different asset classes and under-

lying instruments using this chosen set of indices. This is a theme which is unavoidable

in the context of this study, however all of these indices offer different products which

investors can use and which are currently being traded in large volumes across the globe,

and as such will also be considered for the TAA approach being investigated.

7.1.3 Sourcing the necessary data

Monthly price data were gathered for all of the selected indices. Majority of the price

data were gathered using [71] as it provides a platform where data are easily and freely

accessible. The data for the MSCI ACWI were collected directly from this institution’s

platform [48], which provides data for many investors who also use this index as one of

the most important benchmarks in their investment performance and risk measurements.

The Federal Reserve Bank of St Louis provided data for three-month US treasury bills,

a proxy for cash returns [25].

As many data as possible were collected across the different asset classes. The earli-

est date for which there were data across all of the asset classes was selected as the

starting point for this investigation. This date is set at 31 December 2007. The final
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date for which data were available at the time this study was conducted was 31 May

2020. This end date is quite significant given the market downturn experienced during

the early months of 2020 at the height of the coronavirus pandemic. Special attention will

be paid to this time period to evaluate the performance of the TAA approach compared

to some of the other investment strategies employed during normal market conditions.

The price data sourced for the various asset classes’ indices were then used to deter-

mine the logarithmic monthly returns according to:

Ri = ln(
Pt+1

Pt
).

These returns are used to compute excess security/portfolio returns, the observable vari-

able in the Kalman filter algorithm which in turn is used to estimate time-varying,

unobservable variables, α and β.

7.2 Methodology

According to [19], the following criteria are necessary to implement a purely quantita-
tive method to asset allocation:

1. It must have simple, purely mechanical logic.

2. The same model and parameters must be used across all the different asset classes

being invested in.

3. It must be a price-based model.

These requirements provided the guiding principles in the formulation of the proposed

alternative quantitative approach to TAA. The strategic weights, which are set first on
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an annual basis, at the start of each new year, serve as the foundation on which the

TAA framework will attempt to construct portfolios which aim to benefit from market-

timing. When the strategic weights are set, they remain unchanged until the rebalancing

of portfolios, i.e. from the start until the end of that specific calendar year. The strategic

weights are set according to a selected reference portfolio. An investor has the option of

choosing one of the following portfolios: minimum variance portfolio, maximum diversi-

fication portfolio or maximum Sharpe ratio portfolio. Then, in terms of time periods, an

investor or portfolio manager acting on behalf of the investor, has the freedom to choose

a lookback period and a desired evaluation period, both of which are in months.

The lookback period will determine how many months’ worth of return data will be

taken into consideration when setting the strategic weights for the selected reference

portfolio. The lookback period has a significant effect on the weights and so careful

consideration has to be given to this parameter. It is also important to remember that

past returns are not always the best indicator of future performance and so it might be

that the minimum variance portfolio, constructed based on historical monthly returns, is

not necessarily the portfolio with the minimum variance of all portfolios on the efficient

frontier when keeping these strategic weights constant over the evaluation period.

The evaluation period is the window over which the SAA and TAA frameworks will

be compared. The window should ideally be 12 months or less to allow for the possible

rebalancing of the appropriate reference portfolio. If the evaluation period is required

to be longer than 12 months then it is suggested that the same process is followed over

each year, rebalancing at the start of each new 12-month period. However, as mentioned

previously, studies of the particular allocation and its appropriateness are usually con-

ducted every three to five years [3]. Thus, there is a case for no rebalancing even when

the evaluation period extends for more than 12 months.
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At this stage the investor or portfolio manager has selected a lookback period, a reference

portfolio for strategic weights and an evaluation period. The other two parameters that

can be set are the maximum allocation to cash or cash-like securities and the portion of

funds, expressed as a percentage of the weight allocated in equities, which is allowed to

be invested in other asset classes. The maximum cash allocation for SAA has a strong

bearing on the weights allocated towards the other asset classes, particularly equities,

and can determine whether the fund sits at the high or low equity spectrum of multi-

asset funds. In simpler terms, the lower the allocation in cash, the more funds are made

available for investment in the other asset classes which form part of the opportunity set

of investable assets.

This particular TAA strategy then allocates funds between equities, bonds, cash, real

estate and commodities using either the min-max framework or the optimisation frame-

work, with the strategic weights serving as the starting point for these portfolio tilts.

Table 7.2 summarises the parameters which the user would be able to set depending on

their preferences.

Table 7.2: Parameters for TAA approach
Parameter name Example value

Rebalancing of SAA portfolio Annual
Portion for TAA 50%

Maximum cash allocation 20%
Lookback period 60 months
Reference portfolio Minimum variance

Initial investment (Rands) 100
Equity bounds [0.4, 0.6]
Bond bounds [0.4, 0.6]
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7.2.1 Min-max framework

Next, it will be discussed how to decide whether to:

1. move funds from equities to either cash, real estate or commodities or

2. increase the holding in the equity asset class by taking a short position in either

cash, real estate or commodities or

3. take two opposite and offsetting positions in the real estate or commodities asset

classes.

To clearly set out the decision making process for the TAA strategy, different scenarios

will be considered along with the corresponding actions that will be taken depending on

what the following month’s estimated asset returns look like. This TAA framework only

looks at those asset classes which offer the minimum and maximum estimated returns

as forecasted by the CAPM which incorporates the Kalman filter estimates of α and β.

This process is described in Chapter 4. To this extent, various scenarios are highlighted

below, followed by the action taken according to this TAA framework.

• Equities estimated to offer minimum return and this return is positive

In this instance the strategic weight invested in equities is reduced and funds are

allocated to either cash, real estate or commodities, depending on which is esti-

mated to offer the maximum return, also positive in this instance, over the next

month.

• Equities estimated to offer minimum return and this return is negative, the maxi-

mum estimated return is however positive
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Here the strategic weight invested in equities is again reduced and funds are allo-

cated to either cash, real estate or commodities, depending on which is estimated

to offer the maximum return, also positive in this instance, over the next month.

• Equities estimated to offer minimum return and this return along with the maximum

estimated return are both negative

Here the strategic weight invested in equities is once again reduced and funds

are allocated to either cash, real estate or commodities, depending on which is

estimated to offer the maximum return, also positive in this instance, over the next

month. This could entail a long position being taken in an asset class which is

also estimated to offer negative returns to decrease the effect of the most negative

returns offered by the equity asset class.

• Real estate or commodities is estimated to produce the minimum return, but this

return is positive

If the strategic weight is negative, i.e. a short position, this position will remain

the same to prevent hurting portfolio returns as a result of changes to this position.

If the strategic weight is positive, the weight will be reduced and excess weight will

be allocated to the asset class which offers the best possible return, also positive,

over the next month.

• Real estate or commodities is estimated to produce the minimum return which is

negative and the maximum estimated return across the remaining assets is positive

A short position is taken, thus resulting in a positive return, and a long position

is taken in the asset which is estimated to offer the highest returns. If this asset

class is either the equity asset class or cash, then its existing strategic weight will

simply be increased.

• Real estate or commodities is estimated to produce the minimum return and both

this return and the estimated maximum return are negative
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Strategic weights are kept the same to avoid taking a potential long position for the

upcoming month in an asset class which is estimated to produce a negative return.

• Cash is estimated to produce the minimum return

Given how reluctant portfolio managers of multi-asset funds are to reduce their

holding in cash, especially during extremely volatile market conditions, the strategic

weights, which are already dependent on the maximum cash allocation parameter,

will under no circumstances be lowered. It can be increased as was shown in the

scenarios above.

This framework was manually built out using MATLAB code and can be viewed in

the Appendix. Throughout this min-max TAA decision making process the weights are

allocated in such a way that the sum of the weights invested across the different asset

classes is still equal to one, with short selling being allowed as mentioned above. There

is however no leverage which is used within this portfolio construction technique.

7.2.2 Optimisation framework

An alternative approach to the one mentioned previously was tested. Within the optimi-

sation framework weights were allocated among the different asset classes, still adhering

to bands set around the strategic weights, that resulted in the maximum portfolio return

based on the forecasted returns of the individual asset classes. This approach was tested

using the same parameters which were used in the min-max framework, e.g. maximum

cash allocation, lookback period, evaluation period, etc. The results however illustrated

how this type of approach was more heavily influenced by inaccurate forecasted returns.

Here the ranking of the individual assets did not matter, the weights were purely set

according to the particular combination which would maximise the return of the overall
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portfolio. Therefore, if majority of the forecasted returns were significantly different from

realised returns then this weighting regime would provide extremely inefficient weight

combinations.

It was thus decided that this approach did not show the necessary qualities to be in-

vestigated any further and the min-max approach was adopted as the TAA weighting

technique of choice. The code for the optimisation framework can also be found in the

Appendix.

An extremely detailed description of the different asset classes and their respective in-

dices has now been provided. The two frameworks that were considered, the min-max

framework and the optimisation framework, were also discussed, paying close attention

to the rules that exist within each framework and the parameters that can be tailored to

the needs of portfolio managers and their clients. The next chapter shows the results that

were obtained using the min-max framework and compares the performance of common

SAA approaches and their associated TAA approaches.
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8 Results of TAA approach compared to common SAA

approaches

In Chapter 7 the details regarding the implementation of the proposed quantitative TAA

approach were discussed. This included information on the data that were used as well

as an explanation of the two main methodologies of which the min-max framework was

chosen as the most suitable system. This chapter illustrates the results of this imple-

mentation through the use of various tables, graphs and other visualisations which allow

for a rigorous comparison between common SAA approaches and their TAA counterparts.

To do so, the necessary performance and risk metrics had to first be established. The

following section describes these metrics and thereafter the results are shown, along with

a detailed discussion.

8.1 Description of performance and risk metrics

8.1.1 Annual return and risk

Price data collected were monthly values. When portfolio managers or risk and per-

formance analysts evaluate the risk and performance of a portfolio over a specific time

horizon, annual values are preferred and are also much easier to explain to investors.

Therefore, the monthly returns had to be converted into annual values. There exists

two ways in which monthly return data are converted into annual return data. The first

method is a very simple approach and purely applies linear scaling of monthly return

data. For the purpose of this study however, the following method was adopted to con-

vert monthly returns, Rm, into annual returns, R:
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R = (1 + R̄m)12 − 1, (17)

where R̄m represents the average monthly return over a specified period, e.g. 12, 24 or

36 months.

For the conversion of monthly volatility into annual volatility, the standard approach was

used:

σ = σm
√

12.

This method is derived from the well-known square root of time rule which is based on

the assumption that returns are normally distributed which leads to linear scaling with

time of the return variance.

8.1.2 Sharpe ratio

The Sharpe ratio, Eq. (12), is commonly used to gauge the performance of a security

or portfolio by adjusting for its risk [59, 60, 61]. It is the ratio of portfolio returns less

the risk-free rate of return to the volatility associated with the returns of the portfolio.

It subtracts the risk-free rate since this is the return investors expect to earn without

taking on any risk, and so the Sharpe ratio considers those returns earned in excess of

the risk-free rate per unit of risk - a proxy for which is volatility. Generally, the higher

the Sharpe ratio the more attractive the risk-adjusted returns of the portfolio.

The Sharpe ratio is calculated using the returns produced by the TAA approach. These

are compared to other SAA approaches’ Sharpe ratios.
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8.1.3 Tracking error

Tracking error is one of the most important ways to gauge the performance of a portfolio

relative to a benchmark portfolio, and the ability of a portfolio manager to generate

excessive returns and beat the chosen the benchmark, in line with the risks undertaken

by portfolio managers [39]. Tracking error is defined as:

TE =
√
V ar(Rp −Rb), (18)

where Rp represents the return achieved by a portfolio of assets and Rb represents the

return achieved by the benchmark portfolio.

Lower tracking errors indicate that the performance of the portfolio closely resembles

that of the benchmark portfolio, whereas high tracking errors reveal that there is a sig-

nificant difference between the performance of the respective portfolios. A high tracking

error is not negative per se, as [36] found that funds with a low tracking error show a

higher beta, similar standard deviation and lower alpha compared to funds with high

tracking error. Regardless, in practice restrictions are put in place for tracking error

which active portfolio managers must adhere to [56].

8.1.4 Information ratio

“The information ratio is an important - perhaps the most important - measure of invest-

ment performance” [30]. Its calculation is based on the standard statistical formulas for

the mean and standard deviation. In simpler terms, the information ratio is the average

excess returns of a tracking portfolio beyond that of a benchmark portfolio, per unit of

volatility in excess returns. This volatility in excess returns is calculated using Eq. (18).

Mathematically the information ratio can then be calculated using:
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IR =
Rp −Rb
TE

. (19)

Equation 19 holds when computing the annual information ratio. There are however

some nuances involved when computing the information ratio over a specific time pe-

riod when returns are observed more frequently than on an annual basis. This study

uses monthly returns produced by SAA and TAA portfolios. Therefore, one needs to

be extremely careful when using these monthly returns to report an annual value for

the information ratio. There are various ways in which to do this, but for this study it

was decided that the first method discussed in [28] would be used. This method uses

the arithmetic mean of excess returns, which then gets annualised using Eq. 17, in the

numerator and applies the square root of time rule to convert the monthly tracking error

to an annual tracking error in the denominator.

It is also important to note that the mean excess returns and volatility in excess re-

turns or tracking error, are calculated over a specified time period, e.g. 12, 24 or 36

months.

Portfolio managers will prefer an investment strategy with the highest possible infor-

mation ratio [30]. It is however important to keep in mind that the information ratio

should be used to compare portfolios within the same style and universe of investable

assets. With that being said, research conducted by [31] shows that a top quartile man-

ager has an information ratio of 0.5 and an exceptional manager should achieve a value

of 1.0 or above. Once again, these values depend on the universe of assets from which

managers can choose and results vary across different fund categories [28].
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8.1.5 Maximum drawdown

The maximum drawdown, or MDD, reflects the maximum fall in the value of an invest-

ment. It is measured as the difference between the value of the lowest trough and that

of the highest peak before the trough [13]. Ideally the MDD is calculated over a long

period of time to allow the value of an investment or portfolio to go through several

so-called boom-bust cycles. The MDD is therefore used as another method of measuring

the investment risk associated with a portfolio which consists of a basket of assets, such

as the TAA portfolios used in this study. MDD is defined as:

MDD =
(TroughV alue− Peak V alue)

Peak V alue
.

A low MDD value indicates slight fluctuations in the value of a portfolio and, therefore, a

lesser degree of risk and vice versa. When comparing two different portfolios, an investor

who wishes to receive the guarantee of more stable returns over a longer time horizon

would more than likely choose the portfolio with a lower MDD. In line with normal

risk-reward expectations, an investor who wishes to receive a higher return and therefore

willing to take on additional risk would prefer a portfolio with a higher MDD.

8.2 Results

This section shows the results obtained by applying the rules-based TAA approach. It

first focuses on the main metrics used to evaluate the performance of different investments

and the risk associated with these investments. The parameters used are the same as

the example set of parameters provided in Table 7.2. One could ultimately choose the

exposure to equities one desires, but for the purpose of this section it was chosen to limit

the exposure to equities to no more than 60% of the total portfolio and no less than 40%

in terms of strategic weights set on an annual basis. This was done in an attempt to
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replicate a real-life example where the investment team could potentially be mandated

to keep the average exposure to equities within certain thresholds in terms of SAA.

8.2.1 Performance and risk

Reference is made to the “market”, which simply represents a 100% investment to the

equity index chosen for this research, the MSCI ACWI. Table 8.1 shows the main per-

formance metrics, average annual return, average annual volatility, Sharpe ratio and

maximum drawdown. These metrics are measured from January 2011 to the end of May

2020.

Table 8.1: Descriptive statistics for market, SAA and TAA portfolios using data spanning
January 2011 to May 2020

Minimum variance Market SAA TAA
Annual return 5.64% 3.62% 6.29%

Annual volatility 13.57% 6.94% 7.27%
Sharpe ratio 0.37 0.43 0.78

Maximum drawdown -22.69% -11.31% -7.59%
Maximum diversification

Annual return 5.64% 1.99% 4.47%
Annual volatility 13.57% 9.48% 8.33%
Sharpe ratio 0.37 0.15 0.46

Maximum drawdown -22.69% -17.55% -13.79%
Maximum Sharpe ratio

Annual return 5.64% 6.80% 12.34%
Annual volatility 13.57% 8.75% 11.62%
Sharpe ratio 0.37 0.71 1.01

Maximum drawdown -22.69% -10.74% -10.30%

For all three SAA weighting techniques, the addition of the TAA framework saw an

improvement in the average annual return achieved by the portfolios. For the minimum

variance weighting technique the average annual return was also increased from being

below that offered by the market to exceeding market returns. This was done without

a significant increase in the risk faced by the portfolio, measured as the average annual
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volatility of portfolio returns. In the case of the maximum diversification ratio weighting

technique, the TAA portfolio showed decreased levels of risk when compared to its SAA

counterpart. For the maximum Sharpe ratio portfolio there was a noticeable increase in

the risk associated with the TAA portfolio.

In terms of the Sharpe ratio, and as would be evident from the preceding paragraph,

the TAA portfolios all saw an improvement during the time period under observation.

The Sharpe ratio for the maximum diversification TAA portfolio, for example, more than

doubled the value achieved by the SAA portfolio. The maximum drawdowns faced by

these portfolios were also less than its SAA counterparts, albeit to varying magnitudes

across the three weighting techniques. This is promising for investors who place a great

deal of emphasis on capital preservation, especially during negative market conditions.

Supplementary to the results illustrated in Table 8.1, Figures 8.1, 8.2 and 8.3 quan-

tify characteristics of the returns produced by each of the portfolios in question. This is

done in the form of boxplots and fitted normal distributions to the respective observed

portfolio returns.

Figure 8.1: Boxplot and return distribution of minimum variance SAA and TAA portfo-
lios
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The boxplot in Figure 8.1 shows that the TAA portfolio was capable of producing

significantly larger positive returns compared to the TAA portfolio. This can also be

seen when looking at the respective return distributions, with a larger region under the

TAA graph for higher positive annualised portfolio returns. This larger spread in pos-

itive portfolio returns also give the return distribution of the TAA portfolio a flatter

appearance compared to the SAA portfolio. There is greater variability in the returns of

the TAA portfolio which confirms the observation of a higher average annual volatility

compared to the SAA portfolio.

Figure 8.2: Boxplot and return distribution of maximum diversification SAA and TAA
portfolios

For the maximum diversification weighting technique the differences between the TAA

and SAA portfolios are more subtle. From the boxplot in Figure 8.2 the TAA portfolio

once again was able to achieve higher positive returns and at the same time, provided

some downside protection with smaller negative returns. In general, as can be seen from

both the boxplot and return distribution, the returns of the TAA portfolio showed a

lower level of dispersion, resulting in a higher average annual return and a lower average

annual volatility of returns. These two characteristics are essential for portfolio managers

as they aim to produce more consistent returns with less uncertainty.
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Figure 8.3: Boxplot and return distribution of maximum Sharpe ratio SAA and TAA
portfolios

Despite the maximum Sharpe ratio TAA portfolio’s ability to produce significantly

higher positive returns and achieving a higher average annual return over the time pe-

riod being considered, it came at the cost of much higher volatility of portfolio returns,

evident from Figure 8.3. This confirms the results observed in Table 8.1 regarding the

average annual volatility of the TAA portfolio returns compared to its SAA counterpart.

As a result, the TAA portfolio does show potential to deliver large positive returns, but

it does also leave the portfolio vulnerable to a higher probability of excessive negative

returns compared to the SAA portfolio, which will undoubtedly hurt the portfolio per-

formance over longer periods, potentially suffering from large capital losses.

A different perspective would be to look at the total return, shown as the cumulative

value of a portfolio over the period in question, of the various SAA reference portfolios

as well as its associated TAA portfolios. The final values of the portfolios were measured

at the end of May 2020 and is shown in Figures 8.4 and 8.5. For illustrative purposes

the cumulative return of the market is also shown in both the figures.
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Figure 8.4: Cumulative performance of various SAA portfolios using data spanning Jan-
uary 2011 to May 2020

Figure 8.5: Cumulative performance of various TAA portfolios using data spanning Jan-
uary 2011 to May 2020

When looking at the SAA portfolios, only the maximum Sharpe ratio portfolio man-

aged to outperform the market over this time period. There were however two TAA

portfolios which managed to outperform the market, the minimum variance and max-

imum Sharpe ratio portfolios, whereas the cumulative performance of the maximum

diversification portfolio came in only just below that of the market.

Instead of plotting all the SAA portfolios on one graph and all TAA portfolios on another,
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Figures 8.6, 8.9 and 8.12 plot each individual SAA portfolio against its TAA counterpart

to more easily observe the difference in cumulative performance between the portfolios.

Figures 8.7, 8.10 and 8.13 show the exponentially weighted moving average volatilities

of these portfolios, while Figures 8.8, 8.11 and 8.14 show the evolution of the annualised

tracking error and information ratio of the respective TAA portfolios over the specified

time period. Figures 8.8, 8.11 and 8.14 also include shaded areas which represent “good”

information ratios as discussed in Section 8.1 [31].

For the purpose of calculating tracking error and information ratio, 36 months of return

data were used and thus these values are shown from January 2014, where a sufficient

amount of data had been observed. The results obtained are shown for each of the

weighting techniques investigated in this study.

Figure 8.6: Cumulative performance of minimum variance SAA and TAA portfolios using
data spanning January 2011 to May 2020
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Figure 8.7: EWMA volatilities of minimum variance SAA and TAA portfolios

Figure 8.8: Annualised tracking error and information ratio for minimum variance TAA
portfolio
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Figure 8.9: Cumulative performance of maximum diversification SAA and TAA portfolios
using data spanning January 2011 to May 2020

Figure 8.10: EWMA volatilities of maximum diversification SAA and TAA portfolios
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Figure 8.11: Annualised tracking error and information ratio for maximum diversification
TAA portfolio

Figure 8.12: Cumulative performance of maximum Sharpe ratio SAA and TAA portfolios
using data spanning January 2011 to May 2020
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Figure 8.13: EWMA volatilities of maximum Sharpe ratio SAA and TAA portfolios

Figure 8.14: Annualised tracking error and information ratio for maximum Sharpe ratio
TAA portfolio

The results show that each of the TAA portfolios produced a higher portfolio value

than the associated SAA portfolio at the end of May 2020. The maximum diversification

TAA portfolio did so without any noticeable differences in EWMA volatility over the

entire period. The minimum variance TAA portfolio showed similar levels of EWMA

volatility compared to the SAA portfolio until the end of 2014, at which point its volatil-

ity was somewhat elevated. It did however return to levels similar to that of the SAA
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portfolio before a brief spike during 2020.

The EWMA volatility of the maximum Sharpe ratio TAA portfolio would be worry-

ing for a portfolio manager seeing that not only was it elevated compared to its SAA

counterpart for certain time periods, but also that it was significantly higher than the

EWMA volatility of market returns. The significantly higher portfolio value thus came at

some price in terms of the risk faced by the portfolio and the overall risk tolerance of the

investor would ultimately determine whether such a TAA strategy would be acceptable.

This highlights perhaps one of the shortcomings of the proposed TAA framework, as it is

evident in this instance, that it does not take into consideration excess risk the decisions

regarding portfolio tilts imposes on the portfolio of assets.

When looking at tracking error from 2014 onward, and using the SAA portfolios as the

benchmark portfolios, both the minimum variance and maximum diversification TAA

portfolios stay within 1%-5%. For the minimum variance TAA portfolio in particular,

the tracking error remains below 4% majority of the time. The maximum Sharpe ratio

TAA portfolio shows the highest levels of tracking error, meaning greater dispersion of

excess returns around the mean excess return delivered by the portfolio relative to the

SAA portfolio. The higher tracking error observed for the maximum Sharpe ratio TAA

portfolio could be attributable to the lack of constraints regarding the size of the tacti-

cal deviations from the strategic benchmark weights, commonly referred to as “tactical

ranges” [13]. With the other two weighting techniques, the allocation towards equities is

oftentimes less than what would be observed with the maximum Sharpe ratio portfolio,

and since the size of portfolio tilts are dependent on the portion of the SAA portfolio

allocated towards equities, the tactical deviation from the strategic weights are less ex-

treme.
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Lastly, for the given time period, all three TAA portfolios delivered information ratios

which were predominantly positive, indicating the ability of the portfolios to produce

excess returns over the benchmark portfolios when taking into consideration 36 months’

worth of return data. The information ratios across all three weighting techniques also

entered and remained within the 0.5-1.0 shaded area for large parts, which is indica-

tive of outperformance over a sustained period of time, a promising result for this TAA

framework [56]. There were indeed some periods during which the TAA portfolios un-

derperformed their SAA counterparts per unit volatility of excess returns, i.e. a negative

information ratio.

It is however important to highlight that this study doesn’t factor in fees of any kind,

which would be expected to erode some of the positive values of the information ratio

these portfolios managed to achieve.

From the above it is clear that the amount which is allowed to be invested for TAA

purposes, and consequently tilting the weights allocated to the different asset classes,

could possibly have a significant effect on the behaviour of the TAA portfolios relative to

its SAA counterparts. This became visible when observing the results of the maximum

Sharpe ratio TAA portfolio, where the percentage weight allocation for TAA purposes is

greater than the other weighting techniques given the large portion of the overall portfo-

lios invested in equities. Figures 8.15, 8.16, 8.17 and 8.18 show the same figures as before,

but for various percentage weight allocations, specifically for the maximum Sharpe ratio

TAA portfolio.
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Figure 8.15: Cumulative performance of various maximum Sharpe ratio TAA portfolios
using data spanning January 2011 to May 2020

Figure 8.16: EWMA volatilities of various maximum Sharpe ratio TAA portfolios
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(a) TAA 20% (b) TAA 30%

Figure 8.17: Annualised tracking error and information ratio for various maximum
Sharpe ratio TAA portfolios (20% and 30%)

(a) TAA 40% (b) TAA 50%

Figure 8.18: Annualised tracking error and information ratio for various maximum
Sharpe ratio TAA portfolios (40% and 50%)

Figure 8.15 suggests that by decreasing the percentage weight allocation and thus

making the tactical ranges narrower, the cumulative performance of the maximum Sharpe

ratio TAA portfolio is reduced. Despite the weaker performance, the EWMA volatility of

the portfolio, shown in Figure 8.16, is however reduced the as the percentage allocation is

decreased. The narrower tactical ranges also reduced the tracking error, meaning that the

behaviour of the TAA portfolio more closely resembled that of the SAA portfolio. The

20% weight allocation for example produced a maximum Sharpe ratio TAA portfolio with

a tracking error which did not exceed 5%, similar to the other two weighting techniques.
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Despite this, the information ratio remains at similar levels. This suggests that the

mean excess returns achieved by the TAA portfolios, once again over a 36 month period,

decreased in line with the decrease in tracking error, leaving the information ratio largely

unaffected.

8.2.2 Portfolio composition

To provide a clearer picture with regards to the entering and exiting of positions within

the different asset classes, Figure 8.19 illustrates how, over the course of five years in

this instance, the weight allocation to the commodities asset class changed on a monthly

basis using the minimum variance portfolio as the reference SAA portfolio. Figure 8.20

shows the same positions, but this time using the maximum diversification portfolio as

the reference SAA portfolio. Recall from Chapter 7 that the amount available for use

for tactical allocation purposes is dependent on the portion of the portfolio invested in

equities, i.e. the higher the amount allocated towards equities, the higher the amount

for TAA and vice versa.
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Figure 8.19: Long/short positions over the last five years for commodities using minimum
variance portfolio as reference portfolio

Figure 8.20: Long/short positions over the last five years for commodities using the max-
imum diversification portfolio as reference portfolio

These periodic changes in weights were as a direct result of commodites’ forecasted

returns relative to equities and the other asset classes as described by the min-max

framework in Chapter 7. This process is repeated on a monthly basis, when the TAA

framework is active, resulting in different weights being invested in different asset classes.

This could be in the form of long positions as shown by the green bars in Figures 8.19
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and 8.20, or in the form of short positions, i.e. the red bars. These graphs would look

different for the various asset classes considered in this study and the commodities asset

class was used purely for illustrative purposes.

As mentioned in Chapter 5, portfolio managers who employ tactical investment deci-

sions are not as concerned about the implications of the average weight invested in an

asset class in the long run. Figures 8.21, 8.22 and 8.23 however illustrates the effect

the proposed TAA framework had on the average weight allocated to each asset class.

Absolute weights were used in the construction of these graphs but in reality, for the

minimum variance SAA and TAA portfolios, the weight allocated to real estate and

commodities were both negative, whereas for the maximum Sharpe ratio SAA and TAA

portfolios only the allocation to commodities was negative. The maximum diversification

portfolios, although it did employ short selling, had overall long positions for all the asset

classes.

Figure 8.21: Average weight allocation across asset classes for minimum variance SAA
and TAA portfolios
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Figure 8.22: Average weight allocation across asset classes for maximum diversification
SAA and TAA portfolios

Figure 8.23: Average weight allocation across asset classes for maximum Sharpe ratio
SAA and TAA portfolios

Figure 8.23 once again illustrates the impact of a lack of constraints on deviations

from strategic weights which resulted in holdings in commodities (short) and real estate

(long) which would undoubtedly cause some concerns for many investors. This issue

was further exacerbated through opposite and offsetting positions being taken in these

two asset classes simultaneously based on their forecasted returns. Similar to what was

done for Figures 8.15-8.18, the results can be compared when varying percentage weight

allocations are considered for TAA purposes.

This chapter focused on the results that were obtained and the use of these results

for comparison between SAA and TAA approaches. This was done using clearly defined

and widely used performance and risk metrics. Both portfolio performance and portfolio

composition were illustrated to understand the behaviour of the TAA approach relative
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to its SAA reference portfolio. The next chapter provides some concluding remarks based

on these observations and points to be considered for future research and development

of a more robust TAA framework.
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9 Conclusion and suggestions for future research

An alternative TAA approach was investigated to establish whether it would improve

the performance of various SAA investment portfolios. This approach is quantitative

in nature and uses estimations of α and β parameters as they appear in the CAPM to

forecast asset returns. These estimations are produced using the Kalman filter, a time

series estimation algorithm which has seen increasing popularity in quantitative finance.

This algorithm aims to produce estimations of unobservable data which are more recent,

relative and thus a much more accurate representation of current market conditions as

measured by α and β.

These estimations and subsequent return forecasts where used to test two separate TAA

frameworks; the min-max and the opitmisation frameworks. The approach of choice was

the min-max framework which ranked the return potential of various assets according

to estimated best and worst performers. Based on these rankings, asset weights were

tactically adjusted on a monthly basis to improve on purely strategic strategies. The

three SAA weighting techniques explored were the minimum variance, maximum diver-

sification, and maximum Sharpe ratio portfolios. The TAA approach used the strategic

weights set by these techniques and tilted holdings of different asset classes in an attempt

to improve portfolio performance measured by a set of metrics commonly employed in

the investment industry.

For the period 2011 to May 2020 it was seen, for all three SAA weighting techniques,

the addition of the TAA framework saw an improvement in the average annual return

achieved by the portfolios. For the minimum variance weighting technique the average

annual return was also increased from being below that offered by the market to exceed-

ing market returns. This was done without a significant increase in the risk faced by the
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portfolio, measured as the average annual volatility of portfolio returns. In the case of the

maximum diversification ratio weighting technique, the TAA portfolio showed decreased

levels of risk when compared to its SAA counterpart. For the maximum Sharpe ratio

portfolio there was a noticeable increase in the risk associated with the TAA portfolio.

These trends were also observed when considering the EWMA volatilities of portfolio

returns.

In terms of the Sharpe ratio, the TAA portfolios all saw an improvement during the

time period under observation. The Sharpe ratio for the maximum diversification TAA

portfolio, for example, more than doubled the value achieved by the SAA portfolio. The

maximum drawdown faced by these portfolios were also less than its SAA counterparts,

albeit to varying magnitudes across the three weighting techniques.

In terms of cumulative performance, only the maximum Sharpe ratio SAA portfolio

managed to outperform the market over this time period. There were however two TAA

portfolios which managed to outperform the market, the minimum variance and maxi-

mum Sharpe ratio portfolios. All the TAA portfolios showed higher portfolio values over

the period, but as has been mentioned already, this improved cumulative performance

was accompanied by an increase in risk, particularly for the minimum variance TAA and

maximum Sharpe ratio TAA portfolios.

When looking at tracking error from 2014 onward, using 36 months of return data and the

SAA portfolios as the benchmark portfolios, both the minimum variance and maximum

diversification TAA portfolios stayed within a 1%-5% range. For the minimum variance

TAA portfolio in particular, the tracking error remained below 4% majority of the time.

The maximum Sharpe ratio TAA portfolio showed the highest levels of tracking error,

meaning greater dispersion of excess returns around the mean excess return delivered
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by the portfolio relative to the SAA portfolio. All three TAA portfolios delivered infor-

mation ratios which were predominantly positive, indicating the ability of the portfolios

to produce excess returns over the benchmark portfolios, and regularly were at levels

greater than 0.5. There were however some periods during which negative information

ratios were observed for these portfolios.

An overall cause for concern of this approach was the elevated levels of volatility and

tracking error for the maximum Sharpe ratio TAA portfolio in particular, given the

higher amount available to execute the proposed TAA framework. The min-max frame-

work allows for varying percentage weight allocations to tilt portfolio holdings, but it

does not take into account the overall risk of the portfolio and residual risk compared

to the benchmark portfolios which in this instance were the associated SAA portfolios.

The results for cumulative performance, EWMA volatility of portfolio returns, tracking

error and information ratio for the maximum Sharpe ratio TAA portfolio were computed

again for different weight allocation percentages. The EWMA volatilities decreased with

a decrease in amount allowed for TAA purposes along with a decline in cumulative

performance. The tracking error also decreased with lower percentage values, but inter-

estingly this occurred without any impact on the levels of the observed information ratio.

This same process could be repeated for the other weighting techniques to establish

whether similar trends would be observed. In general, the proposed TAA framework

could be adjusted to explicitly and dynamically account for risk faced by the portfolio

and the residual risk when compared to the benchmark portfolios. Furthermore, more so-

phisticated methods could be used to determine the optimal percentage or amount made

available in order to perform the necessary portfolio tilts and consequently improve the

performance of the TAA portfolios for any weighting technique or investment strategy.
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The performance of the TAA portfolios also would have been largely aided by the ability

to take short positions in the commodities market in response to declining oil prices and

to reduce the equity portion of the portfolio to escape some of the negative effects of the

coronavirus on the market. Both of these events occurred during 2020 and to perhaps

provide a different perspective of the performance of the TAA portfolios, one might be

inclined to exclude the returns of 2020 and focus on a time period with no exogenous

shocks and more stable market conditions. Table 9.1 shows pertinent performance met-

rics for the time period 2015 to the end of 2019.

Table 9.1: Descriptive statistics for various portfolios using data spanning January 2015
to December 2019

Minimum variance Market SAA TAA
Annual return 6.63% 0.87% 2.26%

Annual volatility 11.73% 5.85% 6.07%
Sharpe ratio 0.47 -0.04 0.19

Maximum drawdown -15.59% -11.01% -6.62%
Maximum diversification

Annual return 6.63% 0.98% 2.09%
Annual volatility 11.73% 7.76% 7.45%
Sharpe ratio 0.47 -0.01 0.14

Maximum drawdown -15.59% -15.56% -13.65%
Maximum Sharpe ratio

Annual return 6.63% 3.76% 6.57%
Annual volatility 11.73% 7.28% 10.70%
Sharpe ratio 0.47 0.37 0.51

Maximum drawdown -15.59% -7.49% -10.30%

Some of the same patterns mentioned in Chapter 8 can be observed again from 2015

to 2019. It can be seen how the TAA framework managed to improve the average annual

return across all three weighting techniques. The average annual volatility of portfolio

returns for the minimum variance TAA portfolio increased slightly compared to its SAA

counterpart. For the maximum diversification weighting technique on the other hand,

the TAA framework managed to decrease the average annual volatility slightly. The max-
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imum Sharpe ratio TAA portfolio saw a significant increase in average annual volatility.

The maximum drawdowns experienced by the TAA portfolios were all less than that

of the market. Only one TAA portfolio, the maximum Sharpe ratio portfolio showed

a worse maximum darwdown than its SAA counterpart. Sharpe ratios in general saw

an improvement across all three weighting techniques, with two of the TAA portfolios,

the minimum variance and maximum diversification TAA portfolios, changing the nega-

tive Sharpe ratios which would have been achieved by the SAA portfolios into positive

values. Once again it should be highlighted that these results do not take into account

additional fees which would have been associated with the increased level of activity in-

herent in managing these TAA portfolios.

Lastly, the statistics shown in Table 8.1 and those statistics mentioned throughout the

study, are based on data from the end of 2007 to May 2020. To draw more informed

conclusions regarding the results and hence validity of this type of approach, its be-

haviour and performance will have to be examined over a longer time frame. Some of the

indices used in this study were only formed much later in the piece given new develop-

ments in the market and the type of products on offer to investors. Given that some of

these indices are very much still in its infancy stages, there were no available data which

stretched further back than 2007. Therefore, as time goes by, newly realised returns

should be incorporated such that there are returns for multiple asset classes and their

representative indices across numerous business cycles. By exposing this approach to a

longer time frame, one would inevitably encounter more market crashes, recessions and

possibly even depressions. It would be worth taking note of the performance of portfolios

during extreme events and prolonged market trends.

The objective of this TAA approach, which assesses forecated returns produced by the
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CAPM using Kalman filter estimates of α and β, and adjusts weights accordingly on a

monthly basis, was to improve the overall performance and risk characteristics of portfo-

lios which would otherwise employ a strategic and thus more static weighting allocation.

These improvements would be as a result of an effective quantitative market-timing mech-

anism which allows a portfolio manager to enter and exit certain market segments in such

a way that it could exploit inefficiencies and temporary imbalances in equilibrium values.

Definite changes in the overall behaviour of the TAA portfolios were observed compared

to their SAA counterparts. This is evident when calculating key performance and risk

metrics used in industry using a little less than 10 years of monthly portfolio returns.

The TAA portfolios showed a definite improvement in terms of average annual return,

Sharpe ratio and cumulative performance. Results varied when considering the average

annual volatility in portfolio returns and observing EWMA volatilities over this specific

time period, as some TAA portfolios increased the amount of volatility in returns and

thus risk faced by the portfolio, whereas others managed to limit this risk. The max-

imum drawdown of the TAA portfolios also showed noticeable improvements, albeit at

different levels. These trends were also observable when looking at a shorter time pe-

riod which did not include an exogenous shock such as the coronavirus pandemic of 2020.

Despite a lack of explicit constraints relating to the behaviour of the TAA portfolios

relative to its SAA counterparts, the tracking error of two of the TAA portfolios never

exceeded 4%, whilst still producing average to above average information ratios for sus-

tained periods of time. It was shown how, in the case of elevated tracking error values, a

decrease in the percentage weight allocation for TAA purposes can address concerns in-

vestors and portfolio managers may have without negatively affecting the corresponding

information ratios.
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10 Appendix

10.1 Growth in alternative assets

There has been a dramatic change in the alternative asset landscape in the aftermath

of the financial crisis during which equity returns in particular were devastated [37].

This change has been evident in terms of both notional amounts invested and liquidity

in markets for these assets as more investors look towards alternative assets because of

their low correlation with “classical financial assets” [32]. This has prompted portfolio

managers to actively consider including these asset classes in their clients’ portfolios.

This consideration is important for any TAA approach which aims to take advantage of

market inefficiencies. Two reports, from JP Morgan and PwC respectively, echo these

sentiments [41, 53].

JP Morgan suggests that: “As investor sophistication increases, and plans are less con-

strained in their view of asset class boundaries and the management of α and β - al-

ternatives are playing an even more important role in enhancing portfolio risk/return

characteristics” [41]. The possible inclusion of alternative assets in a portfolio not only

expands the opportunity set, but also allows investors flexibility in deciding when and

where these assets should be incorporated. Figure 10.1 shows some early results of how

the allocation of funds among the different asset classes has changed.
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Figure 10.1: Shift in allocation from traditional to alternative assets

PwC states: “Alternative firms, with their emphasis on investment outcomes rather

than products, and specialisation rather than commoditisation, will increasingly attract

investors seeking customisation, diversification and genuine long-term alpha” [53]. More

recent data regarding the growth in alternative assets as can be seen from Figure 10.2

[53].

Figure 10.2: Increasing investments in alternative assets

Taking all of the above data into consideration it is clear that any future study of asset
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allocation would have to ultimately include various assets which do not form part of the

more traditional asset classes. These alternative assets could potentially be added to the

opportunity set of asset classes for SAA and TAA strategies as more return data become

available and more thorough research on the return characteristics of these assets can be

conducted by analysts and portfolio managers.

10.2 Support VBA code to Kalman filter

The following code shows, in detail, the implementation of the Kalman filter algorithm

in VBA. The various steps that form part of this time series estimation method are

discussed in Chapter 2, whereas its specific application to the CAPM and subsequent

forecasting of asset returns are discussed in Chapter 4.
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10.3 Schematic representation of the functionality and programme flow of
the TAA strategy

Figure 10.3 shows the different steps and components of the method used for this study.
It graphically illustrates Sections 10.4 to 10.9 from the parameterisation of the invest-
ment problem at hand to the calculation of various performance and risk metrics.

Figure 10.3: Schematic representation of TAA strategy

10.4 Parameterisation of investment problem

The code below shows how a user of this strategy can, at their own discretion, select

various parameters which will be used to build and execute the applicable TAA strategy.
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10.5 Setting up the evaluation and lookback periods based on dates of

available data

The amount of return data used forms an integral part to the TAA strategy setup. Here

it is shown how, based on the time frame specified by the user, only certain portions

of the return data are selected from all available historical data. It is also shown how

the amount of time over which the strategy will be implemented and evaluated is selected.
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10.6 Implementation of SAA approaches according to investment

mandate using only equities, bonds and cash

The following code illustrates how the different SAA weighting allocations are determined

depending on the choice of optimisation method. It also includes the lines of code used

to construct the efficient frontier.
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10.7 Visualising the various SAA approaches with the efficient frontier

The code below is used to plot the portfolios of the various SAA weighting techniques

relative to the efficient frontier.
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10.8 TAA problem setup

The two TAA frameworks that were tested are the min-max framework and the optimi-

sation framework. Here these two frameworks are implemented in MATLAB. As can be

seen, the code is divided into different blocks. For the min-max framework a loop is run

to calculate the minimum and maximum return vectors based on the forecasted monthly

returns of the universe of assets. It then does the weighting allocation based on several

checks which replicate the scenarios mentioned in Chapter 7.

The “elseif” statement shows where the optimisation framework starts. It does so by

first establishing the upper and lower weight limits of each asset class and performs the

optimisation process which determines weights, within the prescribed limits, which pro-

duces the portfolio with the highest possible return based on the forecasted monthly asset
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returns.

Lastly, the actual return of the TAA portfolios is calculated using the above mentioned

weightings by multiplying it with the respective observed monthly asset returns.
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10.9 Calculating the necessary performance and risk metrics and some

visualisations

This snippet of code briefly illustrates how some of the main performance and risk met-

rics were determined. This includes portfolio returns, cumulative returns, annual returns

and risk, the calculation of Sharpe ratios, etc.

Graphs are constructed to show the distribution of monthly portfolio returns for both the

SAA and TAA approaches. Boxplots are also determined for these returns by leveraging

on the statistical and visualisation functionalities of MATLAB.
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