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Abstract

This paper introduces a new family of matrix variate distributions based on the mean-mix-
ture of normal (MMN) models. The properties of the new matrix variate family, namely sto-
chastic representation, moments and characteristic function, linear and quadratic forms as
well as marginal and conditional distributions are investigated. Three special cases including
the restricted skew-normal, exponentiated MMN and the mixed-Weibull MMN matrix variate
distributions are presented and studied. Based on the specific presentation of the proposed
model, an EM-type algorithm can be directly implemented for obtaining maximum likelihood
estimate of the parameters. The usefulness and practical utility of the proposed methodol-
ogy are illustrated through two conducted simulation studies and through the Landsat satel-
lite dataset analysis.

1 Introduction

The skew-normal (SN) distribution, initially introduced by Azzalini [1], has received consider-
able attention in both theoretical and applied statistics in the past two decades. Various exten-
sions, forms and properties of the SN distribution in the multivariate case were derived in [2-
5], and the acknowledged articles therein. An interesting form of the SN distribution was pre-
sented by Pyne et al. [3] who named it the restricted multivariate SN (rSN) model. Generally,
the rSN distribution can be expressed as a linear transformation of the multivariate normally
distributed random vector and the univariate truncated normal distribution. Although the
rSN model, like the original SN one, can describe the skewness of data, it still is not robust in
dealing with the outlying observations. To cover this drawback, Negarestani et al. [6] used the
rSN transformation to introduce the family of multivariate mean mixture of normal (MMN)
model. Specifically, a p-dimension random vector X is in the family of MMN distributions if
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where “%’ stands for the equality in distribution, Z follows the multivariate normal model with
zero mean and covariance matrix X, and W is an arbitrary random variable independent of Z.
It is clear that the rSN distribution is a special case of (1) where the mixing variable W is fol-
lowed by the truncated standard normal distribution lying within a truncated interval (0, co),
denoted by W ~ TAN(0, 1; (0, 00)). It is shown by Negarestani et al. [6] that the family of
MMN may provide a new model with wider range of skewness and kurtosis than the rSN,
skew-t [4] and skew Student-t-normal [7] distributions. From (1), the probability distribution
function (pdf) of random vector X can be presented as

Suna, (%548, 0, Z, v) = / ¢,(x; 4 + Aw, Z)h(w; v) dw, x € R, (2)

where ¢,(-;-) denotes the pdf of multivariate normal distribution and h(-; v) is the pdf of W
parameterized by the vector parameter v. The notation X ~ MMN » (u, N, Z, W) will be used
to indicate that X has pdf (2). Depending on the random variable W that can take values on
the real line, the pdf (2) can be both symmetric and asymmetric. However, a more flexible and
skewed version of the MMN model can be obtain if W has any asymmetric distribution or any
positive support model like the truncated-normal, exponential and gamma distributions.
Moreover, the pdf (2) can include skew-elliptical models, as the rSN distribution, or can result
in skew non-elliptically contoured models if, for example, W is distributed as the exponential,
Weibull and gamma models. From Fig 2 in Appendix A, it is observed that the family of MMN
distributions offers different orientation compared with the family of mean-variance mixture
of normal (MVMN) distributions [8].

Matrix variate distribution finds its genesis in modeling dependent multivariate observa-
tions in the normal case [9]. The recent use of the matrix variate normal (MVN) distribution
can be found in modeling a wide variety of three-way data appearing in studies including con-
trol theory, stochastic systems, image recognition, repeated vector measurements, multivariate
time series, spatial data, among others [10, 11]. The MVN distribution not only inherits some
appealing properties, features as well as widespread applications from the multivariate normal
model, but also it is still not stable and robust against non-normal features such as asymmetry
and heavy tails. To deal with the heavy tailed data, Kshirsagar and Bartlett [12] proposed the
matrix variate ¢ distribution by showing that the estimator of the parameter matrix of regres-
sion coefficients unconditionally follows matrix variate  model. Bulut and Arslan [13] pro-
posed the matrix variate slash distribution as a scale mixture of the matrix variate normal and
the uniform distributions. Moreover, in accommodating skewness and kurtosis, the interest of
skew distributions provides a platform for robust extension of matrix variate distribution. For
instance, works on the matrix variate versions of SN distribution can be found in [14-17].
Even though the matrix variate SN distribution has many attractive properties, it suffers from
robustness in dealing with heavy tailed data and from parameter estimation. Regarding these
drawbacks of the matrix variate SN model and considering the aforementioned properties of
the MMN family of distributions, the objective of this paper is to propose a family of matrix
variate mean-mixture of normal (MVMMN) distributions. Some properties and features of
our introduced family such as moments, the characteristic function, marginal and conditional
distributions are studied. The maximum likelihood (ML) estimate of model parameters are
computed by applying expectation-maximization (EM) type algorithm [18].

The contribution of this work can be broken down into six parts. We will begin the usual
procedure with the model formulation of the MVMMN distribution in Section 2. Properties
and characteristics of the MVMMN distribution are also studied in Section 3. The parameter
estimation procedure using the EM-type algorithm and some computational strategies of
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implementation are given in Section 4. To examine the performance of the methodology into
practice, simulation and real-world data analyses are presented in Sections 5 and 6. Finally,
Section 7 gives some concluding remarks and future extensions.

2 Proposed family

To start the whole process, we begin with some notations and definitions. A random matrix
variable X € RP*" defined as

Xu e Xln
X= ,
Xpl - le

follows a MVN distribution if its pdf is given as

1 1
np) n petr{_ia(X7M>‘P7Z)}a

<2n>(7 ZI2¥|2

¢p,n (X; M,Z, ‘Il) = (3)

where etr{A} = exp(tr(A)), tr(-) is the trace operator of a matrix, (X, M, ¥, ) = (X - M)
Y 1(X - M) denotes the matrix variate Mahalanobis squared distance, and the mean matrix
M and two dispersion matrices X € RP*?, ¥ € R™" are defined as

Ky My On 7 Oy l//u lpm

:upl T :upn O—pl e O—pp lpnl o lpnn

We shall use notation X ~ N, (M, X, ¥) if X has pdf (3). The following definition is a new
result from the representation (1) in the matrix format.

Definition 1 A random matrix variable Y is said to have a MVMMN distribution if it can be
generated by the stochastic representation

YEM+ WA + X, (4)

where X ~ N, (0,X,'¥), W is a random variable, independent of X, distributed by h(w; v), and

A € R is a skewness matrix defined as

;‘11 T iln
A =
Ay Dy

It can be easily seen that the hierarchical representation of MVMMN model is
YIW=w ~N,,(M+wA XY,
W~ h(w;v).
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Hence, the pdf of Y ~ MYMMN, (M, A, X, ¥, W) can be given as

ﬂﬁM&ﬁ%W:/\%ﬁwﬂwwamewg YER™.  (6)

Applying the well-known property of the MVN distribution, we have
Y ~ MYMMN, (M, A Z, ¥, W) < vec(Y) ~ MMN ,,(vec(M),vec(A), ¥ @ Z, W), (7)

where vec(B) denotes the vectorization operator of matrix B, and ® stands for the Kronecker
product.

Remark 1 Referring to representation (4), it is clear that the mean of Y is M + A E(W), show-
ing the assumption that the mean of MVMMN distribution is not fixed for all members of the
population. We would like to emphasize that the family of matrix variate normal mean-variance
mixture (MVNMVM) models [19, 20], assumes that both the mean and variance of the popula-
tion member are not fixed. Therefore, an interesting extension of the MVMMN distribution can
be introduced by considering the family of scale mixture of MVMMN distributions.

2.1 Special cases

« Restricted matrix variate skew-normal: If W ~ TN (0, 1; (0, 00)) in (4), then restricted
matrix variate SN (RMVSN) distribution is arisen. The resulting pdf of Y directly obtained
by integrating out (6), is

. 2 A2 . pxn
fon GMAZ W) = SRS $,,(Y;M,Z,¥)D(A),  YeR™, (8)
where P =tr(P'ATZ'A) +LA=0"" [tr(P ' AT Z7(Y = M))], and ®(-) denotes the
cumulative distribution function of standard normal model.
Lemma 1 If W ~ TN (g, 0% (0,00)), then

p(u/o)
D(u/a)’

where ¢(-) is the pdf of standard normal distribution.

Proposition 1 Let Y ~ RMVSN (M, A, 2, W) and W ~ TN (0, 1;(0,00)). Then, W condi-
tionally on Y = Y, denoted by Wy, follows TN (A/n,1/1%; (0,0)).

Proof. Using the hierarchical representation (5), the pdf of RMVSN model (8), and the
Bayes’ rule, we have

EW)=pu+o E(W") = uE(W™ ") + (r = 1)a®E(W™?), r=2,3,...,

I M,AE,W) =
I DEMAE) = WM A T W)

~ nexp{—0.5(w[tr(ZAYAT) + 1] — 2w (AP (Y - M) ) + A”)}
B V21 D(A)

_ owiA/n,1/w%)
o(A)

which completes the proof after using some matrix factorizations.

« Convolution with exponential model: The exponentiated MVMMN (MVMMNE) distribu-
tion, say Y ~ MYMMNEM, A, Z, W), is derived as another special case of (4) if
W ~ £(1), where £(1) denotes the exponential distribution with mean 1. This leads to
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obtain the pdf of Y form (6) as

fMVMMNE (Y; M, Av 27 \P)

5

1

2 A*?
Creap {4 o.Mz mon),  Yer™
where > = 1> — 1A} = [wr(W¥ 'A'Z (Y- M)) — 1]/n;.
Proposition 2 Let Y ~ MYMMNEM, A, Z,¥) and W ~ E(1). Then,
Wy ~ TN(AT/TIL 1/"T2; (Ov OO))
Proof. In a similar manner as Proposition 1, the proof can be completed.

Convolution with Weibull model: The mixed-Weibull MVMMN (MVMMNW) distribu-
tion, denoted by Y ~ MVYMMNW(M, A, X, ¥), is arisen when W in (4) follows the Wei-
bull model respectively with shape and scale parameters o = 2 and S =1, WE(2, 1). Hence,
the associated pdf of Y ~ MVYMMNW(M, A, Z, ¥) obtained by (6) is

2v/2n

T AP
fMVMMw (Y; M, AL, \P) = T exp { ’

2

2
2

}qﬁp,ﬂ(Y;M,z, W) x (AD(A) + G(A), Y

e R,

where > = > + 1, A, = tr(P'A'E(Y — M) /1.
Proposition 3 Let Y ~ MVMMNW(M, A, Z,¥) and W ~ WE(2,1). Then, Wy has the
pdf

w o,

Fuy (W; M, A Z W) = WW‘”;A;/"; 1/n7?).

Moreover, forr=1,2,...,

OV =)= gt o)

where V.~ TN (A} /m;,1/m5%; (0, 00)).
Proof. Results can be obtained from the Bayes’ rule and some matrix factorizations.

Theorem 1 The MVMMN distribution is log-concave if W has log-concave pdf.
Proof. Based on [21], if f{ix) and g(y) are log-concave functions, then their convolution, i.e.,

[ sy = [ =gty

is also a log-concave function. Hence, the property of vectorization operator of the
MVMMN distribution (7) and the fact that the MVN is log-concave completes the proof if
W has a log-concave pdf.

Corollary 1 The RMVSN, MVMMNE and MVMMNW distributions are log-concave.
Proof. Since the truncated normal, exponential and Weibull (if the shape parameter is >1)
distributions are log-concave, their associated matrix variate models are, using Theorem 1.

3 Characteristics

This section provides some substantial statistical properties of the MVMMN distribution.
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Theorem 2 If Y ~ MVMMN,, (M, A, X,'¥, W), then the mean and the characteristic
function of Y, respectively, are

E(Y) =M-+E(W)A,
¢, (T) :etr{iTTM—%TTZT‘I’}(pW(tr(TTA)), i=+v—1,

where Qw(-) is the characteristic function of W ~ h(w; v).

Proof. The proof of theorem can be completed by using the presented representations in
Definition 1. Taking expectation on both sides of the stochastic representation (4) the first part
is proved. Moreover for the second part, recall that the characteristic function of the matrix
variate X ~ N, (M, Z,'P) is given as

1
¢ (T) = etr{iTTM - §TTZT‘I’}.

Hence, through the hierarchical representation (5), the characteristic function of Y is
obtained by E(E(tr(iT' Y)|W = w)).

Theorem 3 Let Y ~ MVMMN, (M, A,Z,¥, W), and M = (m;), A = (\y), £ = (0y), ¥ =
(). Then, we have

(). Forl<ipiy<p,andl <jy,j,<n,

E(Y, =o0,.0,, +m

1 2
i1 Yizjz) i1 igja i mizjz + E(W) (miljl /11'212 + /Liljl mizjz) + E(W );Liljl /lizjz .

(). IfM=0,

E(tr(YY")) = E(Wz)iiﬂfj + tr(Z)tr(W).

i=1 j=1

Proof. (i) follows by using the hierarchical representation (5) and applying theorems 2.3.3
of [22]. For M = 0, it is clear from part (i) that

EY,.Y, . )=0

ij1 7~ igja

o +E(W2);L j,

iyj1 7 dgj iyjy “igja "
Therefore, we have
P n P n P n
T )
E(tr(YY')) = E ZZYU’YU - ZZE(YUYU) - ZZ%% +E(W*) A2

i=1 j=1 i=1 j=1 i=1 j=1

which completes the proof.
Theorem 4 The family of MVMMN distributions is closed under the transpose operator, i.e.,

Y ~ MVMMN, (M,AZ¥, W) < YT ~ MVMMN, (M", A", ¥, 2, W).

Proof. Based on theorem 2.3.1 of [22], we have

X~N,, (MZX¥) X'~ /\/’P.n(MTﬁI’,E).
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Now, applying this transpose property of the MVN distribution into the hierarchical repre-
sentation (5) results in

YIW=w~N, (M+wAZY) <Y |W=w~N, (M +wA", ¥ I

Theorem 5 Let Y ~ MVMMN, (M, A, Z,¥, W), and B is a q x p matrix of rank q < p

and D is a n x m matrix of rank m < n. Then,

BYD ~ MVMMAN ,,(BMD, BAD, BZB',D"¥D, W).

Proof. The proof of the theorem is completed through obtaining the characteristic function
of BYD:

Psyp(T) = E(etr{iBYDT'}) = E(etr{iYT| }) = ¢, (T}),
where T) = DT' B. Now, by applying Theorem 2, we have

Puyp(T) = etr{iTTBMD - % T' (BEBT)T(DT\PD)}(pw(tr(TTBAD)),

which is the characteristic function of MVMMN _,,(BMD, BAD, BEB',D"¥D, W).
Theorem 6 Let Y ~ MVMMN, (M, A, X, ¥, W), and partition Y, M, A, X, and ‘¥ as

M, M,
7 M:[ 11 12]’ A=
M, M,

Yll Y12
YQI Y22

X, X v, ¥
E _ [ 11 12] ’ ll‘ _ l 11 12
2'21 222 lI‘Ql lI‘QZ
where Y, ,M,,,A;; € R"" X, € R™, and ¥, € R™". Then,
Y, ~ MVMMNq.m(Mw ALY, W)

All A12
A21 A22

b

b

Similarly, the marginal distribution of Y ,, Y,,, and Y, can be obtained.

Proof. The proof follows by applying Theorem 5 with considering B = (I 0,(4—p)) and D =
(L, Omx(n_m))T, where I; denotes the unit matrix of order d.

Theorem 7 Let Y ~ MVMM/\/'PV"(M, AW, W), and partition Y, X as Theorem 6, and

Y, M, A as follows

1r

= [A A2c]7

lc

] ]
Y= = [ch Yzc]v M= = [Mlc MQ::]? A=

2r 2r 2r

where Y M, A, € R"" and Y, , M, ,A,, € R Then,

1r 1r?

(1) er ~ MVMMNq,n (er’ Alr? z"117 ‘Il’ W)’ and
ch ~ MVMMNpAm(Mlc’ Alc72’ \I’117 W)

(). Y, |Y, =Y, ~ MVMMN,_, (M, +Z,Z (Y, —M,),

Ay —Zp AL, W W,y ) and Yo Y, =Y ~ MVMMN,,

(M,, + (Y,, — M,)¥,'¥,,, A, — A, ¥, ', E, W, Wy, ), where

T = Loy — 202y, Wy, = Woy — W W W, W, ="WIY,, =Y, and

Wchde\ch =Y.
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Proof. The proof of (i) is completed by considering proper matrices B and D in Theorem 5.
Using the hierarchical representation (5) and applying theorem 2.3.12 of [22], the second part
of the theorem is proven.

Corollary 2 If Y ~ RMVSN (M, A, Z,¥) and under partition of Theorem 7, we have

(1) YQr‘er = er ~ MVMMNp—q‘n(MZr + 2212;11(Y1r - er)’ A2r_
2’212;11A177 ., ¥, WY“) where WYM ~ TN(Alr/nm 1/"?7; (0,00)), my, =

tr(\PilAIrzl_rlAlr) + ]‘ and Alr = I:tr(\llflA;E;,l(er - er))} /"n-
(11) Y2C|ch = ch ~ MVMMN (MZC + (ch - Mlc)

p.n—m

‘Pﬁlq’m Ay — ALCW;11T127 Y, WY,[)’ where Wy, ~ TN(A, /. 1/m;(0,00)),
nlc = tr(\PliclA;cmilAlc) + 1’ a?’ld Alc = [tr(\lll’ClAICE’l(ch - Mlc))} /"u-

Corollary 3If Y ~ MVYMMNEM, A, X, ¥) and under partition of Theorem (7), we have

(1) YQY‘er = er ~ MVMMprq,n(MQr + Ele;ll(er - er)7 A2r_
2'212’1711A1m L, Y, Wy“) where Wy, ~ TN(A, /., 1/1;7%5(0,00)),

A; = [tr(‘PilA;E;rl(er - er)) - ]‘] /nﬁlkr’ and "9{7 = tr(TilAIrzl_rlAlr)'
(11) Y2C|ch = ch ~ MVMMN (MZC + (ch - Mlc)

poi—m
‘Pﬁlq’m Ay — ALCW;11T127 Y, WY,[)’ where Wy, ~ TN(AL /. 1/m%;(0,00)),
Ay = [tr(W A XY, — M) — 1] /m,and m;, = tr(¥ A Z'A,,).

The presentation of distribution of the matrix quadratic form, done by [23], can also be
implemented in the context of the MVMMN family of distributions. Referring to theorem 2.2
of [23], they defined the distribution of quadratic form Q = XAX" to be Q,(A, M, L) where A
is a n x n symmetric real matrix of rank r,and X ~ NV, (M, L, I).

Theorem 8 Let Y ~ MVMMN, (M, A, Z,¥, W) and W ~ h(w;v) and A,, any n x n
symmetric matrix of rank r. Then, conditionally on W = w,

J

Q=YAY'|W=w and B=) §B|W=w,
j=1

are identically distributed, where J; are the non-zero eigenvalues of VAW and B; are inde-
pendent non-central Wishart distribution B|W = w ~ W, (1,E,mm]) forj=1, ..., r, where
m; = Ma; and a; are the corresponding orthogonal eigenvectors (a/ a; = 1).

Proof. Using hierarchical representation (5) of the MVMMN model, we have
YW =w~N,, (M+wA, X, ¥F). Consequently, the property of the matrix variate normal

distribution leads to Y‘I”%| W=w~N,, (M‘I’f% + wA¥ X, I) . Now, by definition 2.1 of
[23], we have

YW AW YW = w ~ Q, (A, MY wAW S, 2).
On the other hand, through theorem 2.2 of [23], we have

> oBIW =w~ Q,(AMY?+ wA¥ x).
=1

Therefore, the random matrices Q and B have identical distributions.
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4 Parameter estimation

Suppose N matrix observations Yy, . . ., Yy of dimension p x n are drawn independently and
identically from the MVMMN »a(M, A, Z, W, W). Therefore, the log-likelihood function of

0@ = (M, A, Z, ¥, v) based on the observed data {Y,}}", is
N
(©) = logf(Y; M, AL, W, v). (9)
i—1

To obtain ML estimate of ©, an EM-type algorithm is implemented as a powerful estima-
tion approach in dealing with the unobserved (missing and/or censored) data and latent vari-
ables [18]. The computations of EM algorithm are based on two iterative E- and M-steps. In E-
step, the expected value of the complete-data log-likelihood function, the likelihood of the
observed and missing data the latent variable, is computed, while in M-step, parameter esti-
mates are updated by maximizing this expected value.

Through the hierarchical representation (5), the complete-data log-likelihood function of
O, obtained by introducing latent variables W = (wy, . . ., wy) and omitting additive constants,
is

N nN N
£(©) = > loghw;v) — " log |2/ - L= log ||
i=1

- 10
*%Z{”(‘S(Yw M, ¥, E)) + w'tr(FATEA) (10)
i=1

—o,(tr(@'ATZ (Y, = M) + tr(@ (Y, — M) 'Z7'A)) ).

ML estimation of © is performed by using the expectation-conditional maximization
(ECM; [24]) algorithm as follows.

« Initialization: Set the number of iteration to k = 0 and choose a relative starting point @ =
M®, AR, =R gk 4,0y e point out that in our data examples the parameters are initial-
ized by M) = Zf\il Y,/N, A© = Lons O = I, yO = ¢, I,. Here, 1, is a matrix of
dimension p x n with unit elements. Moreover, the elements of two vectors ¢, and ¢, are
computed, respectively, as

N

N n n
G, :Zz(yijl_)_/j)27 )_}j:%ZZyijh j=1...,p,

i=1 =1 i=1 I=1

BN 2 1 L
& = ZZ%I -7 Y ZP*NZZ)/UZ, j=1,...,n

i=1 j=1 i=1 j=1

o E-step: The expected value of the complete-data log-likelihood function (10), called Q-func-
tion, is computed as
N
el 6% =312

i=1

niN _PN
3 log [Z| 5 log ['¥|

N
—%Z{tr(ﬁ(Y“ M, ¥, %)) + iVt (¥ ATZA) (11)
i=1

oY (tr(@ATE (Y, — M) + tr(@ (Y, — M)TZ’lA))}.
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where w = E(W|Y,,0®), " = E(W?|Y,,©®), and depending on h(w; v)
1Y =E (10gh( V)Y, 00).

o First CM-step: Maximizing Q-function with respect to M and A give the following update

N I=N A I
M+ — A (+1) N Zi:1 W'Y, —N"'w Zi:l Y,
= A ,

N T — w2

2

wherew = N S ! andf = N~ 3N B,
« Second CM-step: Update X and P, respectively,

~ 1 & . fo .
Skt WZ{ (Y, = M) (B ®) (7, — M)

A (k+1) ( ) (A (k+1) ) A (k+1) ( )*1(Yi _ M(k+1))T
—w,-” (Y, - M<k+1>><‘i'<k>>*<A<kﬂ>>T},

(k1) 7Z{Y Mk+1)( k+1) (Y Mk+l)

_Ht( (A(k+1 )T( 3 (k+1) )* A(k+1
(A(k+1 )T(Z(k-H ) (Y _ M(k+1))
~ )(Yi _ M k+1)> (ﬁ: (k+1) ) A(k+1)}_

o Third CM-step: The additional parameter v depending on the distribution of W; is updated
by

N
v = arg maxZYEk).

v i=1

Remark 2 The conditional expectations w, and t, involved in the Q-function (11) can be
obtained by Lemma 1 and Propositions 1, 2 and 3 for our three considered models. Furthermore,
we note that in all special cases considered in Section 4, the distribution of mixing random vari-
able W, is parameter free. Therefore, the last step of the ECM algorithm is not necessary.

4.1 Computational aspects

4.1.1 Convergence. The process of the EM algorithm can be iterated until a suitable con-
vergence rule, like max || %) — @® ||< £ or |[/(O*)) — ¢(OW)| < &, is satisfied where &
is a user specified tolerance and €(- ) is defined in (9). An alternative approach to determine
convergence of the EM algorithm is the Aitken acceleration method [25]. To apply this
approach, the asymptotic estimate of the log-likelihood at iteration k + 1, following [26], can
be obtained as

¢ (@ (k+1) ) _ [(@ (k+1) ) (é(@ (k+1) ) ((é(k)))7

1—a®
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where the Aitken acceleration of iteration k is

é((:)(kﬂ)) _ é((:)(k))

a(") = = .
(OW) — ((OK1)

Therefore, the algorithm can be considered to have converged at iteration k + 1 when

((O®D) — (@) < ¢ [27]. In our study, the tolerance € is considered as 10~°.

4.1.2 Model selection. The models in competition in our data analysis are compared
using the most commonly used measures Akaike information criterion (AIC; [28]) and Bayes-
ian information criterion (BIC; [29]) defined as

AIC =2m — 20 1ax  and BIC =mlogN — 20 .«

where m is the number of free parameters and £,,,,, is the maximized log-likelihood value.
Models with lower values of AIC or BIC are considered more preferable.

5 Simulation studies

In this section, the performance of our model and its computational method is illustrated by
conducting two simulation studies. The first simulation study aims at comparing the special
cases of MVMMN model in dealing with skewed and leptokurtic simulated data. The second
simulation study demonstrates whether our proposed ECM algorithm can provide good
asymptotic properties.

Example 1 Model performance

In this experiment, simulated data are generated from a matrix variate normal inverse Gauss-
ian (MVNIG; [20]) distribution with sample sizes N = 50, 100, 500, 1000 and 2000, to compare
the performance of three special cases of MVMMN model. The MVNIG distribution belongs to
the family of MVMVM models where the mixing random variable follows the GTG(—0.5, y, /),
such that GI G denotes the generalized inverse Gaussian distribution with parameter (x, , ¥)
[30]. We consider this matrix variate distribution to generate non-normal data as it offers the
desired level of asymmetry and leptokurtosis. Let y = v = 3 and

-5 2 0 2 1 -1 0 1
M=|-2 03 0], A=1[2 -1 0 -2,
0 1 6 —4 0 -1 0 -3
10 0 0]
1 —05 0.1
0 1 -05 05
T=|-05 1 05|, ¥=
0 —05 1 0.1
01 05 1
0 05 01 1|

Table 1 summarizes the average (€4v) and standard deviation (Std.) of the maximized log-
likelihood together with the frequencies (out of 200 replications) of the particular model chosen
based on the biggest £,,,,, value. The results depicted in Table 1 reveal that the MVMMNE distri-
bution provides a better fit than the other two MVMMN-based models. 1t is clear that the outper-

formance of MVMMNE distribution is improved by increasing the sample size, N.

In order to compare the accuracy of parameter estimates to the real values, the Frobenius

(Frob.) norm is adopted. For a given d x m matrix A = [a;;], the Frob. norm is defined as the
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Table 1. Mean and standard deviation for the maximized log-likelihood and frequency of model outperformance in 200 replications for various sample sizes.

RMVSN MVMMNE MVMMNW
N [ Std. Freq. Luv Std. Freq. v Std. Freq.
50 -731.14 35.60 55 -729.90 35.54 141 -733.99 35.82 4
100 -1503.40 43.96 46 -1501.06 43.65 154 -1508.61 43.98 0
500 -7622.68 114.60 14 -7610.95 113.25 186 -7649.34 115.98 0
1000 -15278.40 147.93 2 -15254.32 145.88 197 -15329.81 148.41 1
2000 -30574.13 206.84 1 -30528.32 205.33 198 -30680.56 206.61 1

https://doi.org/10.1371/journal.pone.0230773.t001

square root of the sum of the squares of its elements, i.e. ||A||, = Y7, > a;. Table 2 shows
the average Frob. norm of (M —M.), (A — A,), (£ — £.) and (¥ — W), where M, A ., 2. and
W, are the ML estimates of the fitted model in the ith replication. It is observe that the Frob.
norm decreases when the sample size increases. We can also see that the Frob. norm for X and ¥
for all models are very close to each other while the MVMME model has the furthest estimates of
M and A.

Example 2 Performance of the model under AR(1) dependent structure

In order to investigate the effect of auto-regressive (AR(1)) dependent structure in = and A to
the parameter estimates, we conduct another Monte Carlo simulation. In this experiment, we set
A=0and ¥ '=1I,and

R A 1 p p?
A= A1 2 /12 = [)Lli_j‘], Y= p 1 0 = [p\i*i\]’
o1 A p> p 1

where A = 0.5,2 and p = 0.5, 0.8. For generating a random sample from the MVMMN model, the
value 0.001 is added to the diagonal elements of X to ensure that it is a positive definite matrix.
In each replication of 200 trials, the we generate data from the MVNIG distribution with true
parameter values displayed above and y = y = 3 for the sample sizes N = 100 and 1000. By fitting
the RMVSN, MVMMNE and MVMMNW distributions to the generated data, the Frob. norm of

M—M),(A—A),(E—2)and (¥ — W) are obtained. Table 3 summarizes the average Frob.

Table 2. Mean of Frob. norm for parameter estimates of the candidate distributions for various sample sizes.

parameter— M—-M A—A

N| RMVSN MVMMNE MVMMNW RMVSN MVMMNE MVMMNW
50 1.7135 2.0228 1.1425 1.3717 2.1097 1.5439
100 1.6714 2.0197 0.8540 1.0385 2.0324 1.0986
500 1.5130 1.8976 0.3955 0.6317 1.9081 0.6722
1000 1.4822 1.8772 0.3033 0.5559 1.8806 0.6163
2000 1.4796 1.864 1 0.2460 0.5268 1.8752 0.5931
parameter— y_3 Y _

N| RMVSN MVMMNE MVMMNW RMVSN MVMMNE MVMMNW
50 0.3536 0.3546 0.3520 0.4378 0.4370 0.4361
100 0.2311 0.2314 0.2300 0.2997 0.3000 0.2986
500 0.1043 0.1039 0.1044 0.1300 0.1291 0.1303
1000 0.0744 0.0739 0.0741 0.0981 0.0976 0.0979
2000 0.0515 0.0511 0.0513 0.0707 0.0701 0.0702
https://doi.org/10.1371/journal.pone.0230773.t002
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Table 3. Mean of Frob. norm for parameter estimates of the candidate distributions for some selected values of 4 and p.

A P
0.5 0.5
0.8
2 0.5
0.8
P
0.5 0.5
0.8
2 0.5
0.8

RMVSN
100 1000
1.1167 0.5698
1.0401 0.6036
3.5017 2.9992
3.3566 1.1863

RMVSN
100 1000
0.2829 0.1004
0.2931 0.0916
0.2412 0.0768
0.2489 0.0470

M—-M
MVMMNE
100 1000
1.2671 0.9176
1.2095 0.9326
4.1028 3.5957
3.8494 1.4686

MVMMNW
100 1000
1.2919 0.4306
1.1386 0.3661
1.2340 0.7310
1.2609 0.3373

RMVSN
100 1000
1.2240 0.3709
1.1023 0.3522
1.8416 1.3392
1.8779 0.6136

A—A
MVMMNE
100 1000
1.2753 0.9257
1.2184 0.9407
4.2938 3.7512
4.0888 1.5914

MVMMNW
100 1000
1.5625 0.6880
1.3944 0.6036
1.3229 0.6188
1.1736 0.2349

-3 v -
MVMMNE MVMMNW RMVSN MVMMNE MVMMNW
100 1000 100 1000 100 1000 100 1000 100 1000
0.2754 0.0963 0.2821 0.0943 0.3376 0.1028 0.3319 0.1026 0.3384 0.1000
0.2889 0.0903 0.2906 0.0890 0.3345 0.0995 0.3310 0.1002 0.3333 0.0979
0.2395 0.0747 0.2411 0.0779 0.3041 0.0917 0.3048 0.0931 0.3039 0.0912
0.2463 0.0464 0.2480 0.0477 0.3064 0.0536 0.3070 0.0550 0.3056 0.0532

https://doi.org/10.1371/journal.pone.0230773.t003

norm of the ML estimates of the fitted models. As expected, the Frob. norm of the parameters
decreases as the sample size increases. It can also be observed that the MVMMNW distribution

has the smallest Frob. norm of (M — M) and (A — A) for the selected combinations of . and p.

Example 3 Finite sample properties of the ML estimates

The second simulation study aims at investigating the finite-sample properties of ML estima-
tors obtained by using the ECM algorithm. We consider the situation where Monte Carlo samples
of sizes N = 100 and 500 are generated for each of the three special cases of MVMMN distribu-
tion. The presumed parameters for all distributions are same as used in Example 1. Fig 1 shows
the marginal distributions of the columns, labeled by V1, V2, V3, and V4, for the RMVSN,
MVMMNE and MVMMNW distributions of a typical dataset with size 100. The solid red line
highlights the marginal mean. In each replication of 1000 trials, the synthetic dataset was fitted
with the true generator model via ECM algorithm. To investigate the estimation accuracies, we
calculate the bias and the mean squared error (MSE), defined as

1000 . 1 1000 . )
Bias=——)» 0,—0 d MSE=—— 0,—0
1as 1000 kzzl: k true an 1000 ‘s ( k rrue) ’

where 0, denotes the ML estimate of 0,,,,. (a specific parameter) at the kth replication.

The detailed numerical results are reported in Table 4. It can be observed that the bias and
MSE for all three special cases of MVMMN distribution tend to decrease toward zero by increas-
ing the sample size, showing empirically the consistency of the ML estimates obtained via the
ECM algorithm.

6 Analysis of Landsat data

To investigate the performance of the developed model in real-world data analysis, we con-
sider Landsat satellite data (LSD) originally obtained by NASA and available at Irvine machine
learning repository (http://archive.ics.uci.edu/ml). Each line of the LSD contains of four spec-
tral values of nine pixel neighborhoods in a satellite image. In other words, the lines of LSD are
related to a matrix of observations of 4 x 9 dimension. Moreover, each of the LSD matrix of
observations belongs to one of six different classes, namely red soil, cotton crop, grey soil,
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Vi V2 V3 V4

ANANIN

value
MNININ

-5=

1.0 15 2.0 25 3.01.0 1.5 2.0 25 3.01.0 1.5 2.0 2.5 3.01.0 1.5 2.0 2.5 3.0
Index

Fig 1. Marginals of a typical simulated data form the RMVSN, MVMMNE and MVMMNW distributions if the drawing has
been lengthwise stretched.

https://doi.org/10.1371/journal.pone.0230773.9001

damp grey soil, soil with vegetation stubble, and very damp grey soil. In our analysis, we focus
on two classes, the red soil and cotton crop, with size 461 and 224, respectively, for illustrative
purposes.

We fitted RMM VSN, MVMMNE and MVMMNW distributions by implementing the
ECM algorithm. Table 5 shows a summary of ML fitting results, including the parameter esti-
mates, maximized log-likelihood values, AIC and BIC of the three fitted models. It is observed
that the MVMMNW and MVMMNE distributions respectively outperform the others for the
red soil and cotton crop data. Based on the values of the shape matrix A, it is clear that the esti-
mated skewness parameters are moderately to highly significant, showing that the distribution
of matrix observation is skewed. Moreover, the estimated scale matrices X and ¥ highlight the
covariance structure in the data.
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Table 4. Simulation results for assessing the consistency of ML parameter estimates with two sample sizes.

Model N Measure M A ) b4
RMVSN 100 Bias 0015  0.003 —0.002 0.015 —0.019 —0.001 0.001 —0.015 —0.023  0.010 —0.003 —~0.001 —0.002 0.004 —0.002
—0.008 —0.014 0.005 —0.018 0.012 0014 —0.009 0.015 0.010 —0.024 —0.014 —0.002  0.007 —0.003 0.004
—0.007 —0.007 0.002 —0.010 0.009  0.006 —0.007 0.008 —0.003 —0.014 —0.025 0.004 —0.003 0.003 —0.002
—-0.002 0.004 —0.002 0.003
MSE 0.030 0.030 0.030 0.028 0.036 0.036 0.030 0.034 0.006 0.003 0.003 0.007 0.004 0.004 0.005
0.035 0.030 0.031 0.037 0.055 0.037 0.031 0.055 0.003 0.006 0.004 0.004 0.006 0.004 0.005
0.030 0.029 0.030 0.042 0.029 0.035 0.031 0.083 0.003 0.004 0.007 0.004 0.004 0.005 0.004
0.005 0.005 0.004 0.007
500 Bias 0.004 0.001 —0.001 0.001 —0.005 0.000 0.000 0.000 —~0.004 0.002  0.001 —~0.001 —0.001 0.001  0.000
—0.002 0.001 —0.001 —0.003 0.004  0.000 0.000 0.001 0.002  —0.004 —0.002 —0.001  0.002 —0.001 0.003
0.000 0.004 0.000 —0.001 0.000 —0.004 0.003 —0.001 0.001  —0.002 —0.003 0.001  —0.001 0.000 —0.001
0.000  0.003 —0.001 0.002
MSE 0.006  0.006 0.006 0.006 0.007 0.007 0.006 0.007 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.007 0.006 0.006 0.007 0.011 0.007 0.006 0.010 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.006  0.006 0.006 0.009 0.006 0.007 0.006 0.016 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001
MVMMNE 100 Bias 0.015 —0.010 —0.004 0.004 —-0.022 0.021 0002 —0.021 —-0.017  0.009  0.004 0.001  —0.003 0.005  0.000
0.011  0.000  0.003 —0.009 —0.039 0.018 —0.003 0.036 0.009  —0.017 —0.011 —0.003 0.008 —0.006 0.003
0.005 0.003 —0.002 —0.016 0.002 0.016 —0.003 0.057 0.004 —0.011 —0.018 0.005 —0.006 0.005 —0.003
0.000  0.003 —0.003 —0.001
MSE 0.021 0.020 0.020 0.019 0.020 0.020 0.011 0.018 0.005 0.003 0.003 0.006 0.004 0.004 0.004
0.023 0.020 0.019 0.024 0.047 0.019 0.011 0.045 0.003 0.006 0.004 0.004 0.006 0.005 0.004
0.020 0.018 0.018 0.030 0.011 0.018 0.011 0.092 0.003 0.004 0.006 0.004 0.005 0.006 0.003
0.004 0.004 0.003 0.006
500 Bias 0.000 0.000 —0.003 0.001 —0.004 0.002 0.002 —0.005 ~0.002 0.001  0.001 —~0.001 —0.002 0.002  0.000
0.003 0.000 0.002  0.002 —~0.007 0.004 —0.001 0.007 0.001  —0.003 —0.003 —0.002  0.003 —0.002 0.001
0.001 0.002 —0.002 0.003 0.002 0.002 0.003  0.011 0.001  —0.003 —0.003 0.002 —0.002 0.002 —0.001
0.000  0.001 —0.001 —0.001
MSE 0.003 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.003 0.003 0.003 0.003 0.004 0.003 0.002 0.004 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.007 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001
MVMMNW 100 Bias 0.005 —0.010 0.001  0.004 —~0.006 0.014 —0.007 —0.006 —~0.023  0.011 —0.004 0.002 —0.001 0.003 —0.001
0.008 0.001 —0.003 —0.015 —~0.009 0.003 0.005 0.022 0.011  —0.023 —0.014 —~0.001  0.006 —0.004 0.004
0.011 —0.007 0.004 —0.021 —0.006 0.012 —0.003 0.028 —0.004 —0.014 —0.030 0.003 —0.004 0.003 —0.002
—0.001 0.004 —0.002 0.003
MSE 0.053 0.056 0.050 0.056 0.056  0.061 0.051 0.058 0.006 0.004 0.003 0.007 0.005 0.004 0.005
0.062 0.055 0.050 0.067 0.071 0.058 0.051 0.073 0.004 0.006 0.004 0.005 0.006 0.005 0.005
0.053 0.058 0.055 0.085 0.057 0.063 0.055 0.104 0.003 0.004 0.007 0.004 0.005 0.006 0.004
0.005 0.005 0.004 0.008
500 Bias —~0.004 0.001 0001  0.002 0.002 0.004 —0.003 —0.006 —0.007 0.003  0.000 0.002 —0.001 0.002 —0.001
0.003  0.000 —0.001 —0.006 —0.007 0.001 0.003 0.010 0.003  —0.004 —0.002 —0.001  0.001 —0.001 0.001
0.001  —0.001 0.002 —0.003 0.000 0.002 —0.003 0.006 0.000 —0.002 —0.005 0.002 —0.001 0.000 —0.002
—0.001 0.001 —0.002 0.000
MSE 0.011 0.011 0.01 0.011 0.012 0.011 0.01 0.012 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.013 0.011 0.01 0.013 0.014 0.011 0.01 0.014 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.010 0.011 0.01 0.017 0.010 0.012 0.01 0.020 0.001  0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001
https://doi.org/10.1371/journal.pone.0230773.t004
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Table 5. Parameters estimates and the performance summary of three matrix models on the LSD subsets.

Dataset Parameter red soil cotton crop
MVRSN M 54.50 53.70 53.88 53.63 53.39 53.75 53.64 53.88 54.03 46.00 4245 40.70 4854 4592  43.23 5043 4926  47.54
76.02 75.05 75.05 7440 73.96 74.09 73.97 73.95 T74.11 34.02 2835 2529 38.63 3385 29.33 4276 40.14 36.56
91.92 91.21 9146 90.98 89.88 90.31 90.76 90.44 89.65 11513 116.99 116.38 113.82 115.33 116.39 111.31 112.05 112.91
77.10 76.85 77.29 76.28 7578 76.27 76.65 76.13 76.04 123.46 128.03 127.46 119.52 124.22 126.47 114.94 116.70 119.61
A 11.01 11.62 1098 11.51 11.46 10.70 10.77 10.32 10.24 4.28 8.62 11.76 0.46 3.43 705 —0.90 013 252
22.97 2397 23.05 24.49 2517 24.09 23.99 24.43 2384 8.52 16.03 21.88 1.49 6.46 13.16 —2.07 0.43 5.53
18.88 20.09 1897 19.92 21.24 20.27 19.70 20.68 20.95 —-198 =377 =337 036 -1.19 -1.98 268 1.78 047
1343 13.87 13.07 14.44 1515 14.20 13.97 14.58 14.13 =744 -12.73 -13.18 —-1.24 -6.06 -9.47 327 134 -3.06
z 10.12  8.07 532 3.97 17.43 24.37  -13.00 -27.12
8.07 26.56 16.33 10.51 24.37 50.79  —25.58 —53.50
532 16.33 23.70 11.04 —13.00 —25.58 44.79 53.03
3.97 1051 11.04 1246 —27.12 —53.50 53.03  98.70
v 216 136 076 1.12 0.80 043 0.66 0.46 0.22 r2.78 188 1.31 200 160 097 135 122 097
1.36 203 1.39 0.84 0.88 089 043 045 045 1.88 218 1.62 147 135 112 096 0.81 0.79
0.76 1.39 230 0.56 0.81 1.30 0.26 046 0.74 131 1.62 220 1.18 106 1.11 0.83 0.69 0.64
112 084 056 1.95 099 049 1.21 0.90 047 200 1.47 118 271 1.80 108 206 1.83 132
0.80 0.88 0.81 099 1.51 0.97 069 0.77 0.72 1.60 135 1.06 1.80 214 1.45 1.51 159 1.54
0.43 0.89 1.30 049 097 2.07 045 0.72 1.15 097 112 111 1.08 145 1.96 122 131 1.53
066 043 0.26 121 0.69 045 2.53 1.44 0.72 1.35 096 083 2.06 151 122 3.23 244 181
046 045 046 090 077 072 144 186 112 122 081 069 1.83 159 131 244 2.83 219
L022 045 074 047 072 115 072 112 191 L0.97 079 064 132 154 153 181 219 276
MVMMNE M 55.37 54.60 54.73 54.53 54.28 54.58 54.48 54.69 54.81 46.82  44.03  42.84 4846 46.39  44.35 49.94 48.95 47.67
77.59 76.71 76.64 76.07 7570 75.73 75.58 T75.60 75.71 35.60 31.34 29.34  38.63 34.79 3145 41.74 39.62 37.01
93.17 92,58 92.79 92.33 91.34 91.72 92.10 91.85 91.06 11494 116.50 11598 114.24 11551 116.47 112.39 11294 113.59
77.99 T7.82 7822 77.26 76.82 77.26 77.62 77.13 76.99 12224 12579 12521 119.77 123.59 125.29 116.45 117.85 119.93
A 868 9.19 869 9.09 9.06 847 851 816 8.11 226  4.61 6.29 041 199 393 -0.15 040 1.68
18.38 19.16 1843 19.59 20.12 19.29 19.22 19.57 19.10 4.53 851 11.64 1.06 3.70 732 —046 0.83 3.51
15.14 16.08 15.14 1594 16.99 16.19 15.77 16.56 16.78 —-1.23 -221 -2.02 -0.16 -1.03 -150 0.84 038 —0.34
10.77 11.08 1042 11.56 12.12 11.34 11.16 11.66 11.32 —4.12 —-689 -7.20 -1.14 -372 -5.61 084 -0.19 -251
z 10.55 853 5.66 4.22 18.13 2528 —13.55 —28.27
8.53 27.63 17.04 10.98 25.28  52.87 —26.70 —55.89
566 17.04 24.61 11.50 —13.55 —26.70 47.29  55.88
422 1098 11.50 12.93 —28.27 —55.89 55.88  103.84
v r2.11 134 077 111 0.80 0.44 0.67 047 024 r2.65 178 1.24 1.90 151 091 1.27 1.15 0.90
1.34 200 1.37 0.85 0.89 090 045 047 0.46 1.78 205 1.51 1.39 126 1.02 0.88 0.74 0.71
0.77 1.37 225 057 0.82 129 028 048 0.74 1.24 151 204 1.10 098 1.00 0.74 0.61 0.56
111 085 0.57 1.91 099 0.50 1.20 0.90 0.48 1.90 139 1.10 258 1.71 1.02 1.97 1.74 125
0.80 0.89 0.82 0.99 149 097 0.70 0.77 0.73 151 126 098 1.71 202 1.35 143 151 1.44
0.44 090 1.29 050 097 204 047 0.72 1.14 091 1.02 1.00 1.02 1.35 1.82 1.13 1.22 142
0.67 045 0.28 120 0.70 047 247 1.41 0.72 1.27 088 0.74 197 143 1.13 3.09 233 1.72
0.47 047 048 090 0.77 0.72 141 182 1.11 115 0.74 0.61 1.74 151 122 233 270 208
[0.24 046 0.74 048 0.73 1.14 0.72 111 1.87 L0.90 0.71 0.56 1.25 1.44 142 1.72 208 2.61
MVMMNW M 51.52 50.57 50.93 50.53 50.32 50.89 50.74 51.09 51.27 45.01 3948 36.28 49.35 4519 40.75 51.86 50.09 47.16
70.14 68.86 69.10 68.14 67.51 67.91 67.93 67.72 68.00 3200 2274 17.18  39.81 3233 2459 45.62 4155 3542
87.15 86.03 86.52 85.90 84.42 85.04 85.75 85.13 84.26 114.99 117.62 116.95 112.69 114.92 116.43 109.29 110.53 111.96
73.70 7323 73.86 72.62 T71.90 7258 73.06 72.37 7240 124.78 131.89 131.66 118.19 125.29 129.24 111.68 114.63 119.67
A 1321 1393 13.16 13.79 13.73 12.81 1291 1239 12.27 4.77 10.74 15.06 —0.57 3.74 884 —243 -0.86 2.57
2721 2846 27.37 29.00 29.83 28.56 28.32 28.93 28.26 9.54 2006 2791 —-0.13 721 16.62  —5.09 -1.29 5.99
2230 23.84 2257 23.58 2519 24.10 23.31 24.52 24.85 —1.51 =390 -3.50 1.62 —0.51 —1.71 4.62 3.27 1.51
15.88 16.51 1557 17.08 17.95 16.88 16.57 17.31 16.76 —-7.81 -1523 -16.00 052 —6.36 -11.22 6.57 3.55  —2.64
(Continued)
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Table 5. (Continued)

Dataset Parameter
z
v
Model Criterion —
RMVSN
MVMMNE
MVMMNW

https://doi.org/10.1371/journal.pone.0230773.t005

red soil cotton crop
10.04 789 517 3.86 17.55 24.60 —13.16 —27.40
7.89 2642 16.21 10.42 24.60 51.26  —25.85 —54.03
517 1621 23.60 10.97 —13.16 —25.85 44.80 53.22
3.86 10.42 1097 1241 —27.40 —54.03  53.22 99.23
[2.14 134 073 110 0.77 040 0.64 043 0.19 r2.82 194 139 202 163 1.02 1.37 124 1.00
1.34 200 1.36 0.82 085 086 041 042 0.42 1.94 224 169 153 139 1.16 1.02 0.86 0.83
0.73 1.36 227 053 0.78 1.27 023 044 0.71 1.39 169 228 1.26 112 1.16 091 0.77 0.71
1.10 0.82 0.53 1.93 097 046 1.19 0.88 0.44 2.02 153 126 270 1.82 1.13 205 1.82 1.34
0.77 0.85 0.78 0.97 1.48 0.95 0.67 0.74 0.70 1.63 1.39 1.12 182 216 148 152 1.61 1.56
0.40 0.86 1.27 046 0.95 205 043 0.69 1.13 1.02 116 1.16 1.13 148 199 1.26 135 1.56
0.64 041 023 119 0.67 043 252 1.42 0.70 1.37 1.02 091 2.05 152 126 3.19 242 181
043 042 044 088 0.74 0.69 142 1.83 1.10 1.24 086 077 1.82 161 1.35 242 282 220
L0.19 042 071 044 070 1.13 0.70 1.10 1.89 L1.00 083 0.71 134 156 1.56 1.81 220 2.78
red soil cotton crop
Cmax AIC BIC [ AIC BIC
-46110.78 92475.55 93000.49 -24169.20 48592.41 49025.69
-46167.80 92589.60 93114.54 -24137.68 48529.37 48962.65
-46079.34 92412.68 92937.62 -24183.09 48620.18 49053.46
7 Conclusion

This paper has introduced a new family of matrix variate distributions whose component pdfs
arise from the mean-mixture of matrix variate normal model. Some properties and character-
istics as well as three special cases of the new model are derived. We have developed a compu-
tationally EM-based algorithm for calibrating the matrix type parameters to the data. It is
shown that the MVMMN distribution is closed under the formation of marginal and condi-
tional distributions and under affine transformation which make it flexible to use in the vari-
ous fields of three-variate data analysis, such as multivariate time series, image processing and
longitudinal data analysis. Simulation results show that the ML estimates obtained via the
ECM algorithm are empirically consistent. Moreover, numerical results from application to
real dataset reveal that the proposed model is well suited in dealing with the skewed matrix
variate experimental data.

The utility of our current approach can be extended to accommodate censored data based
on a recent work studied in the multivariate case by [31, 32]. It may also be interesting to pro-
pose a family of scale mixture of MVMMN distribution to deal with heavy tailed three-way
data. Another possible extension of the work herein is to consider finite mixture model based
on the MVMMN distribution as a promising tools in classification and clustering heteroge-
neous matrix-valued asymmetric data [19, 33]. It would be of interest the distributions of the
associated eigenvalues of the quadratic form (Theorem 8; for the complex form) to compute
the channel capacity in wireless communication systems, since experimental data do not fol-
low necessarily a normal distribution (see [34, 35]). All computations were carried out by R
language and the computer program is available from the first author upon request.

Appendix A: Comparison of contour plots of the MMN and MVMN
families

Fig 2 illustrate the contour plots of the bivariate rSN and bivariate exponentiated MMN
(MMNE) distributions as special cases of MMN family as well as the contour plots of the bivar-
iate generalized hyperbolic skew-t (GHST) and bivariate normal inverse Gaussian (NIG) dis-
tributions as special cases of MVMN family. O
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Fig 2. Contour plots comparison of special cases of the MMN and MVMN families.
https://doi.org/10.1371/journal.pone.0230773.g002
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