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Abstract We apply the recently introduced framework of admissible homo-
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kernels. The algebra product is a non-commutative extension of the Feller
convolution needed for an adequate operator representation of such kernels: a
pair of homogeneous transition functions uni-directionally intertwined by the
extended Chapman-Kolmogorov equation is a convolution empathy; the asso-
ciated Fokker-Planck equations are re-written as an implicit Cauchy equation
expressed in terms of admissible homomorphisms. The conditions of solvability
of such implicit evolution equations follow from the consideration of generators
of a convolution empathy.
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1 Introduction

The two-space approach1 of empathy theory to the classical absorbing barrier
problem of a stochastic process results in a pair of non-homogeneous Markov
processes with a pair of distinct finite state spaces [12]. The corresponding pair
of transition functions are intertwined by the backward extended Chapman-
Kolmogorov equation. In this paper we consider the continuous analogue of
this problem in the form of two distinct continuous state spaces and two ho-
mogeneous Markov processes which models random transitions within a con-
tinuum of “life” states and from the “life” states to a continuum of “death”
states. The absorbing barrier is more realistically modelled as a continuum as
“death” states (see [1, §8.1.22] for the case of a single “death” or coffin state).

For a single homogeneous Markov process, the Feller convolution cap-
tures the operator representation of the transition function by expressing the
Chapman-Kolmogorov equation as a Feller convolution semigroup. Feller’s op-
erator representation [6, Ch. VIII.3] was introduced without clear motivation.
In §2 we give a precise mathematical interpretation in Palmer’s convolution al-
gebra of translation-invariant or admissible linear functionals ([17, Chp. 1.9.7],
[8, §19]). Admissible linear functionals replace probability distributions, and
the product of admissible linear functionals replaces the Feller convolution of
probability distributions. Then a Feller convolution semigroup is equivalent to
a star-semigroup (§3 Thm. 3).

In the present problem of two distinct state spaces, there are two types
of transitions: (a) from a “life” state to another “life” state and (b) from a
“life” state to a “death state”. Uni-directional transitions of type (b) cannot
be described by Feller’s classical notion of a joint conditional distribution (see
[6, Chap. V.9, Def. (9.3)]). Thus, we introduce the notion of a uni-directional
two-space stochastic kernel (§4, Def. 18).

For an operator representation of a uni-directional two-space stochastic
kernel, the Feller convolution is inadequate. The languages of Feller’s convolu-
tion of distributions and Palmer’s convolution algebra are equivalent. This ren-
ders Palmer’s convolution algebra as inadequate. However we extend Palmer’s
convolution algebra of admissible linear functionals by a vectorization pro-
cess that results in the convolution algebra of admissible C2-valued homomor-
phisms on a product test space (§5). The product of this extended convolution
algebra is an extension of the Feller convolution that gives the required oper-
ator representation of a uni-directional two-space stochastic kernel that have
probability density functions. The extended Feller convolution expresses the
forward extended Chapman-Kolmogorov equation (§6, eqs. (31)) as a convolu-
tion empathy or star-empathy (§6, Thm. 6). In this representation, the second
evolution family evolves in empathy with the first evolution family, which is
an extended Feller convolution semigroup. Thus, the Riesz representation of a
uni-directional two-space distribution is a C2-admissible homomorphism.

1 The two-space approach to the heat equation, where the boundary of the body is treated
as a second distinct body, is presented in Appendix A.
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In §7 we consider normed admissible homomorphisms to handle analytic
conditions on the behaviour of a Feller convolution semigroup near the time
origin. Then such an analytic Feller convolution semigroup can be expressed
as a C0-strongly continuous star-semigroup. When intertwined with another
transition distribution function by the extended Chapman-Kolmogorov equa-
tion, the resulting pair is a strongly continuous star-empathy that is Laplace
transformable (§9 and Lem. 3).

A pair of intertwined Laplace transforms in the form of pseudo-resolvent
equations [14, Lem. 2.3] is the starting point of the analysis in the theory
of classical strongly continuous empathy [14]. Intertwined Laplace transforms
reduces the Fokker-Planck equation of empathy pseudo-Poisson processes [12,
eq. (4.7)] into an implicit evolution equation of the form

d
dt rBuptqs “ Auptq; lim

tÑ0`
rBuptqs “ y P Y, (1)

where the “generators” A and B are unbounded linear operators from a com-
mon domain in a Banach space X to a Banach space Y (see [12, Cor. 4.2]).
Under the invertibility assumption (58), the Laplace transform of the second
family is of the form pλB ´ Aq´1, where A and B are the pair of generators
of an implicit evolution equation (1).

A fully developed Laplace transform theory exists for normed admissible
homomorphisms on a product space. Thus we employ a similar approach of
intertwined Laplace transforms to construct a Fokker-Planck equation for a
strongly continuous Laplace transformable star-empathy. The resulting Fokker-
Planck equation takes the analogous form (see (60) and (62))

d

dt
xb1 ˚ u1ptq, ϕy “ xa1 ˚ u1ptq, ϕy; lim

tÑ0`
xb1 ˚ u1ptq, ϕy “ xθ1

p0,0q
, ϕy, (2)

where ˚ is the extended Feller convolution as opposed to the composition of
operators on Banach spaces as in (1). Indeed, under the invertibility assump-
tion, the Laplace transform of the second family is of the form pλb1 ´ a1q´1.

In §12, given only star-empathy pseudo-resolvent as defined in (63), we
provide sufficient conditions on the pair of generators xa1, b1 y to construct a
star-empathy satisfying a Fokker-Planck equation of the form (2). The classical
operator-theoretic version of this “inverse” problem can be solved by an adap-
tation of Kisyński’s algebraic version of the Hille-Yosida theorem to empathy
theory. Full details are given in [10, §4]. The approach in §12 is to lift this
operator-theoretic version into the framework of admissible homomorphisms.
Moreover, under the invertibility assumption, the Laplace transform of the
second family is also of the form pλb1 ´ a1q´1.

2 Probability Distributions as admissible linear functionals

Feller [6] represents a probability distribution as a bounded linear operator on
a space of continuous functions by means of the Feller convolution. We now
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show that Feller’s operator representation of a probability distribution has an
explicit interpretation in Palmer’s convolution algebra.

Let ΦU be the test space BUCpR,Cq of bounded uniformly continuous
scalar functions defined on a common domain in the form of the additive
group R. Given a probability distributionQ, we define the linear functionalQ1 :
ΦU Ñ C by

xQ1, f y “ Q1pfq :“

ż

R
Qtdyufpyq for all f P ΦU . (3)

We use the notation xQ1, f y for the action of the linear functional Q1 on the
test space function f P ΦU . Thus xQ1, f y is the expectation of f , and Q1 is the
Riesz representation of the distribution Qtdyu. If we define translation by the
parameter x P R as the function fxpyq “ fpy ´ xq, then the function

x ÞÑ rQf f spxq :“ xQ1, f´x y “

ż

R
Qtdyufpx` yq (4)

is well-defined because ΦU is translation invariant. (We use Bobrowski’s al-
ternative format (see [1, Def. 7.5.1]) of the Feller convolution because it is in
accordance with the present framework.) In fact, Q f f P ΦU for all f P ΦU
[11, Thm. 12].

The constructs (3) and (4) are also well-defined for other test spaces Φ in
place of ΦU . When Q1 and Φ have the property

Qf f P Φ for all f P Φ, (5)

we call Q1 a Φ-admissible linear functional. The symbol AΦ will denote the set
of all Φ-admissible homomorphisms.

Following Feller, we define the bounded linear operator Q : ΦÑ Φ by

Qf “ Qf f for all f P Φ. (6)

The expressions (3), (4) and (6) illucidate the construction Qtdyu ÞÑ Q1 ÞÑ Q
implicit in [6] and made explicit in [17, Chp. 1.9.7] and [8, §19], where Q is
called the dualism of Q1. Each admissible linear functional, Q1, plays ‘dual’
roles firstly as a linear functional, and secondly by inducing linear mappings,
Q, in the space of test functions, Φ. The mapping Γ : Q ÞÑ Q will be called
the dualism mapping.

The construction (4)–(6) is a special case of the definition of dualism in [17,
eq. (17)]. This dualism allows the definition of a product of admissible linear
functionals [17, eq. (18)]: if R is another distribution function with associated
homomorphism R1 and dualism R, the product Q1 ˚R1 P AΦ is defined by

xQ1 ˚R1, f y “ xQ1,Rf y for all f P Φ. (7)

If we define the Feller convolution of distributions by

rQ ‹RspBq “

ż

R
QtdyuRpB ` yq (8)
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for all Borel subsets B Ă R, then

rQ ‹Rs1 “ Q1 ˚R1; (9)

Γ pQ1 ˚R1q “ Q ˝R. (10)

At this point we emphasize that Palmer’s convolution algebra of admissible
linear functionals consists of (i) a test space ΦU of scalar functions that are
defined on a common Abelian group, (ii) a class of linear functionals that are
ΦU -admissible and (iii) an associative product ˚ of such linear functionals.

We will use the following subspaces of ΦU as test spaces:

(a) Φ0 :“ C0pR,Cq, the space of continuous functions with zero limits at ˘8;
(b) Φ8 :“ CrR,Cs, the space of continuous functions with finite limits at ˘8.

For Φ “ Φ0 the following result is proved in [8, Lem. 19.5]. Since Φ0 Ă Φ8 Ă
ΦU , this result holds for the other spaces as well.

Theorem 1 Let Φ “ Φ0, Φ “ Φ8 or Φ “ ΦU . Then each admissible ho-
momorphism represents a unique distribution, i.e., the mapping Q ÞÑ Q1 is
injective. Moreover, the convolution of distributions lifts as the product of ad-
missible linear functionals, i.e., eq. (9) holds.

Thus, we can work with admissible linear functionals instead of distributions
and the corresponding convolution ˚ instead of the Feller convolution ‹. The
versatility of the framework of linear functionals rests on the freedom to change
the test space Φ according to the application, with the result such as Theo-
rem 1, remaining valid in the new translation-invariant test space.

3 Feller semigroup as a star semigroup

Let X “ tXtutą 0 be a Markov process as defined in [6] with time-homogeneous
transition function tQtpx,Bqutą 0. We say that tQtpx,Bqutą 0 is intertwined
by the Chapman-Kolmogorov equation if

Qt` spx,Bq “

ż

y PR
Qtpx, tdyuqQspy,Bq for all s, t ą 0. (11)

Equation (11) expresses the Markov property: given the behaviour of the par-
ticle up to time t, the probability to transition in the remaining time s to the
Borel set B, i.e. Qspy,Bq, depends only on the intermediary point y reached
after time t.

We call tQtpx,Bqutą 0 space-homogeneous if

Qtpx,Bq “ Qtpx` r,B` rq for every r P R and every Borel set B Ă R. (12)

We call X a homogeneous Markov process if tQtpx,Bqutą 0 is both time-
homogeneous and space-homogeneous. Then tQtpx,Bqutą 0 reduces to a time
continuum of distributions Q :“ tQttdyuutą 0 “ tQtp0, tdyuqutą 0 sinceQttB´
xu “ Qtpx,Bq, and we call Q a distribution transition function. By (6), Q has
an operator representation tQt : ΦU Ñ ΦUutą 0.
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Theorem 2 Let X be a homogeneous Markov process with transition func-
tion tQtpx,Bqutą 0 intertwined by the Chapman-Kolmogorov equation. Then,
in terms of the the Feller convolution ‹, the distribution transition function Q
is a Feller convolution semigroup:

Qt` stdyu “ Qttdyu ‹Qstdyu for all s, t ą 0; (13)

Qt` s “ Qt ˝Qs for all s, t ą 0. (14)

Proof Since X is homogeneous, the Chapman-Kolmogorov equation (11) can
be expressed independently of x:

Qt` sp0, Bq “

ż

y PR
Qtp0, tdyuqQsp0, B ´ yq for all s, t ą 0. (15)

The right hand side of (15) is precisely the product measure QttdyuˆQstdyu
of the pullback set B2 :“ tpx, yq|x ` y P Bu of B under the sum operation.
This proves property (13). The semigroup property (14) then follows.

Without loss of information, we replace the distribution transition function
Q by a time continuum, q1 :“ tQ1tutą 0, of admissible homomorphisms on
ΦU , which we call an admissible transition function. Then the Feller convo-
lution semigroup of Theorem 2 is expressed in the framework of admissible
homomorphisms as a star-semigroup. Classical semigroup relations are ex-
amples of causal relations built upon composition of evolution operators; a
star-semigroup is a similar relation (see (16)) based upon the product ˚.

Theorem 3 Let X be a homogeneous Markov process intertwined by the Chapman-
Kolmogorov equation (11). Then, in terms of the product ˚, the admissible
transition function q1 is a star-semigroup:

Q1t` s “ Q1t ˚Q
1
s for all s, t ą 0; (16)

Qt` s “ Qt ˝Qs for all s, t ą 0. (17)

Proof Feller’s operator representation Qt of the distribution Qttdyu is pre-
cisely the dualism of the admissible homomorphism Q1t. Indeed, the dual-
ism Qt backtracks from the space of operators to the space of admissible
homomorphism Q1t by the point evaluation map θ10 : f ÞÑ fp0q as follows:
θ10pQtfq “ xQ

1
t, f y for each f P ΦU .

4 Failure of Riesz representation: Two-space stochastic kernels

In [12] the two-space approach to an absorbing boundary of a Markov process
leads to two distinct discrete state spaces: NX :“ t1, 2, ...,mu, the set of m
“life” states, and N

sY :“ t1̄, 2̄, ..., n̄u, the set of n “death” states. The continuous
analogues of NX and N

sY are the continuums of life and death states, RX and
R

sY , respectively. We treat the state spaces RX and R
sY as distinct copies of

R (as in the sense of a disjoint union). We write x (or y) for life states, X for
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the associated random variable, and B Ă RX for the Borel sets in which X is
manifested. For the death states, the corresponding entities are denoted by ȳ,
sY and sB Ă R

sY , respectively.
Intertwinement (or interaction) is affected by the possibility of transition-

ing (a) from a life state to another life state within RX and (b) from a life
state in RX to a death state in R

sY . The single-state space transition (a) is
described by the stochastic kernel Qpx,Bq, which gives the probability of X
transitioning from a point x P RX to a Borel set B Ă RX . Similarly, the
uni-directional transition (b) is described by the two-space stochastic kernel
Rpx, sBq, which gives the probability of sY transitioning from a point x P RX
to a Borel set sB Ă R

sY .
Let Qpx, tdyuq denote the distribution on RX . The distribution Rpx, tdȳuq

on R
sY is defined by the conditional probability

Rpx, sBq “ P psY P sB|X “ xq :“ lim
hÑ 0

P ptsY P sBu and tX P rx, x` hsuq

F prx, x` hsq
, (18)

where F is the distribution of X. The two-space stochastic kernel Rpx, sBq
plays a dual role:

(a) For each x P RX , Rpx, sBq is the probability distribution Rpx, tdȳuq.
(b) For each Borel set sB Ă R

sY , Rpx, sBq is the point function that maps
x P RX to P psY P sB|X “ xq.

Definition (18) differs from Feller’s joint conditional distribution [6, Ch. V.9,
Def. (9.3)], which treats both rx, x`hs and sB as subsets of a single state space
R.

Consider a pair of homogeneous Markov processes pX,Y q intertwined by
the backward extended Chapman-Kolmogorov equation introduced in [12]:

$

’

’

’

&

’

’

’

%

Qt` spx,Bq “

ż

y PR
Qtpx, tdyuqQspy,Bq for all s, t ą 0;

Rt` spx, sBq “

ż

y PR
Qtpx, tdyuqRspy, sBq for all s, t ą 0.

(19a)

(19b)

We call eq. (19b) the two-space backward (extended Chapman-Kolmogorov)
transition equation. We call the pair pX,Y q homogeneous if both transition
functions in the pair pQtpx,Bq, Rtpx, sBqqtą 0 are homogeneous. In that case
it reduces to a pair of distribution transition functions

pQ,Rq :“ pQttdyu, Rttdȳuqtą 0 “ pQtp0, tdyuq, Rtp0, tdȳuqqtą 0.

Then, by arguing as in the proof of Theorem 2, we obtain the following ana-
logue of eq. (15).

Proposition 1 Let pX,Y q be a pair of homogeneous Markov processes in-
tertwined by the backward extended Chapman-Kolmogorov equation. The two-
space backward transition equation (19b) can be expressed in terms of pQ,Rq:

Rt` st sBu :“ Rt` sp0, sBq “

ż

y PR
QttdyuRsp0, sB ´ yq for all s, t ą 0. (20)
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Remark 1 Suppose that we do not make a distinction between RX and R
sY

and take both Qttdyu and Rttdȳu as measures on R. Then the convolution
of measures Qttdyu ‹ Rstdȳu is well-defined (see [1, Def. 1.2.16]) and is pre-
cisely the right-hand side of eq. (20). Thus, by the commutativity of the Feller
convolution [6, Ch. V.4, Thm. 3], eq. (20) has an analogue 2 of eq. (13):

Rt` stdȳu “ Qttdyu ‹Rstdȳu “ Rstdȳu ‹Qttdyu for all s, t ą 0. (21)

Now, let Qt and Rt be the operator representations of Qttdyu and Rttdȳu,
respectively. Then it follows from eq. (21) that Rt` s “ Qt ˝ Rs “ Rs ˝ Qt

for all s, t ą 0. This commutative relation does not hold in a setting with uni-
directional transitions from life states to death states. Moreover, the distribu-
tion Rttdȳu in (20), which involves distinct copies of R, cannot be described
by Feller’s joint conditional distribution (defined in [6, Ch. V.9, Def. (9.3)])
because eq. (20), unlike eq. (15), cannot be expressed as the Feller convolution
of two distributions as in eq. (13) nor as the product of two admissible linear
functionals as in eq. (16).

5 Admissible homomorphisms on a product test space

We vectorize Palmer’s convolution algebra of admissible linear functionals as
a convolution algebra of admissible homomorphisms between a test space of
Banach space-valued functions and the Banach space itself. We implement this
non-commutative vectorization over three steps.

1. Let ΦP :“ BUCpG,Zq denote the class of bounded uniformly continuous
functions defined on the locally compact Abelian group pG,`q; Z is a Ba-
nach space. The notation ϕ shall denote vector-valued functions.

2. Consider (algebraic) homomorphismsQ1P : ΦP Ñ Z. The notation xQ1P , ϕy “
Q1P pϕq; ϕ P ΦP — reminiscent of usage for linear functionals — will be
used. Such a homomorphism is called admissible if the group G-domained

function
Q1
Pϕ : p P G ÞÑ xQ1P , ϕ´p y is back in ΦP . That is, for a fixed ϕ P ΦP ,

the translations Sp : ϕ ÞÑ ϕp generate a bundle of “curves” tϕp : p P Ru
in Z, which is then mapped by Q1P to the curve

Q1
Pϕ. Admissibility re-

quires that this curve be in ΦP . Thus, each admissible homomorphism Q1P
play two roles: the default role of a homomorphism from ΦP to Z; in the
second role they induce operators Q on ΦP , called dualisms, defined by

Qf “
Q1
Pϕ; ϕ P ΦP .

2 The expression Rt` stdȳu “ Rstdȳu ‹ Qttdyu is equivalent to the ex-
pression Rt`spx, B̄q “

ş

yPRX
Rtpx, tdȳuqQspy, B̄q which has no meaning (compare

with (19b)). In particular, for the pair of pseudo-Poisson processes of [12, §2], the inte-

gral
ş

yPRX
Rtpx, tdȳuqQspy, B̄q reduces to the nonsensical expression

ř|X|
k“1 P pYt`s “ j̄|Xt “

kqP pYt “ k|X0 “ iq on setting x “ i, y “ k, and B̄ “ j.
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Point evaluation maps θ1q : ϕ P ΦP ÞÑ ϕpqq P Z are an example of ad-

missible homomorphisms. In fact,
θ1q
ϕppq “ S

´q
ϕppq. In particular,

xQ1P , ϕy “ xθ
1
0
,QPϕy. (22)

The class of admissible homomorphisms is denoted by A
ΦP

.

3. The dual roles of each ΦP -admissible linear functional R1P as a homo-
morphism that is from ΦP to Z and operators RP : ΦP Ñ ΦP give an
algebraic structure to the class AΦP by means of an associative product:
for ΦP -admissible homomorphisms Q1P and R1P , the product Q1P ˚ R

1
P is

given by
xQ1P ˚R

1
P , ϕy “ xQ

1
P ,RPϕy for all ϕ P ΦP , (23)

where RP “ Γ pR1P q is the dualism of R1P . Note that the product Q1P ˚R
1
P

is well-defined even if Q1P is a homomorphism that is not admissible.

For a judicious choice of Banach space Z and group G, we shall later show that
˚ is a non-commutative extension of the classical commutative Feller convolu-
tion ‹ of Borel measures on R. We therefore call it a convolution product. The
product ˚ introduced here is related to composition of linear transformations

in the following way: If Q1P and R1P are in A
ΦP

, then
pQ1
P
˚R1

P
q

f “ QPRPϕ,

where QP ,RP are the dualisms of Q1P , R
1
P respectively. Thus, the product of

homomorphisms corresponds to the composition of their dualisms.
Admissible homomorphisms replace operators in the sense that an operator

on the Banach space Z gives rise to an admissible homomorphism: if A : Z Ñ Z
is a bounded linear operator, the mapping Q1A : f ÞÑ Aθ1

0
f is an admissible

homomorphism. Indeed, rQAf spqq “
Q1
Afpqq “ Afpqq. We call the relation

AÑ Q1A the canonical mapping.
We consider the converse question: Which linear operators on the test space

give rise to admissible homomorphisms from ΦP to Z. Let ∆ be a (vector)
subspace of ΦP . A linear mapping Q : ∆ Ñ ΦP is called translatable if (i) ∆
is translation invariant and (ii) for every p P G and f P ∆, SpQf “ QSpf.
Note that Q induces a homomorphism Q1 defined by xQ1, f y :“ xθ1

0
,Qf y,

where the induced homomorphism Q1 is restricted to the “domain” ∆. We call
such homomorphisms, restricted homomorphisms. Then we have the following
result.

Theorem 4 A linear mapping Q : ΦP Ñ ΦP is translatable if and only if it
is a dualism of a restricted homomorphism. If Q is a one-to-one dualism and
∆ :“ QrΦP s, then Q´1

: ∆ Ñ ΦP is translatable. Sums and compositions of
translatable mappings are translatable.

The framework of admissible homomorphisms is very general. We fix the vec-
torized test space, ΦP , and group, G, for the required non-commutative gen-
eralization of the Feller convolution: we represent sQttdyu and sRttdyu of Re-
mark 1 as admissible homomorphisms on a product test space.
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Construction 1 The two-state space approach forces us to consider the prod-
uct space ΦX ˆ Φ sY , where ΦX :“ BUCpRX ,Cq and Φ

sY :“ BUCpR
sY ,Cq. We

now apply Theorem 1. We replace the intertwined distributions Qttdyu on RX
and Rttdȳu on R

sY by the admissible homomorphisms Q1tpXq on ΦX and R1tp
sY q

on Φ
sY , respectively.

We consider the following group G and Banach space Z to fix the vector
test space ΦP :

(a) The diagonal subgroupG :“ tpp, pq|p P Ru, instead of the product group RXˆ
R

sY , to have one-parameter translations. Then for each
`

f, ḡ
˘

P ΦX ˆ Φ sY ,
we define a corresponding function ϕ : G Ñ Z :“ C2 by ϕpp, pq “
`

fppq, ḡpp̄q
˘

, where p and p̄ denote the same numerical value. The product
test space ΦP is defined as the set of all such functions ϕ.

(b) The Banach space Z :“ C2 “ Cˆ C with the product norm.
(c) The one-parameter translation operators Rpp,pq, p P G, are defined by

R
pp,pq

ϕ “ ϕ
pp,pq

: pq, qq P GÑ ϕpq ´ p, q ´ pq “
`

fpq ´ pq, ḡpq̄ ´ p̄q
˘

.

We shall henceforth denote pp, pq as p, R
pp,pq

as R
p

and ϕ
pp,pq

as ϕp .

From this point onwards the Banach space Z, the group G and the test space
ΦP of vector valued test functions will be defined as in Construction 1, unless
stated otherwise.

Since RX and R
sY are copies of R, the test spaces ΦX and Φ

sY contain
essentially the same functions. Given a test function f P ΦX , we define a
corresponding test function f̄ P Φ

sY by f̄pȳq :“ fpyq, where y and ȳ denote
the same numerical value. In order to work with the product test space ΦP
instead of a single test space ΦX , we define the following mappings to lift
classical linear functionals as C2-linear functionals:

(a) liftings `1 : CÑ C2 : z ÞÑ pz, 0q and `2 : CÑ C2 : z ÞÑ p0, zq;
(b) liftings `X : ΦX Ñ ΦP : f ÞÑ pf, 0

sY q and `
sY : Φ

sY Ñ ΦP : f ÞÑ p0X , f̄q,
where 0

sY P Φ sY and 0X P ΦX are the zero functions;
(c) the projection πX : ΦP Ñ ΦX : ϕ “ pf, ḡq ÞÑ f .

Lemma 1 (a) Let Q1 be a ΦX-admissible homomorphism with dualism Q “

Γ pQ1q : ΦX Ñ ΦX . Let Q1P :“ `1 ˝Q
1 ˝ πX , i.e.,

xQ1P , ϕy “
`

xQ1, f y, 0
˘

P C2 for all ϕ “ pf, ḡq P ΦP . (24)

Then Q1P is a ΦP -admissible homomorphism and its dualism is QP “ Γ pQ1P q “
`X ˝ Γ pQ

1q ˝ πX , i.e.,

QPϕ “
`

Qf, 0
sY

˘

P ΦP for all ϕ “ pf, ḡq P ΦP . (25)

(b) Let R1 be a ΦX-admissible homomorphism with dualism R “ Γ pR1q : ΦX Ñ
ΦX . Let R1P :“ `2 ˝R

1 ˝ πX , i.e.,

xR1P , ϕy “
`

0, xR1, f y
˘

P C2 for all ϕ “ pf, ḡq P ΦP . (26)
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Then R1P is a ΦP -admissible functional and its dualism is RP “ Γ pR1P q “
`
sY ˝ Γ pR

1q ˝ πX , i.e.,

RPϕ “
`

0X ,Rf
˘

P ΦP for all ϕ “ pf, ḡq P ΦP . (27)

Remark 2 Both Q1 and R1 are “life” homomorphisms on ΦX . The lifting of
Q1 as the “life” homomorphism Q1P is analogous to embedding a real num-
ber x as x` 0i on the complex plane. In contrast, the lifting R1P of the “life”
homomorphism R1 is analogous to embedding a real number x as a pure imag-
inary number 0` xi. Then R1P lifts R1 as a “death” homomorphism that has
a “death” dualism on ΦP . Note that both types of liftings, Q1P and R1P , are
very special cases of ΦP -admissible homomorphisms.

6 Extended Feller convolution empathy

As in [12, §3, Thm 3.1], the operator representation of the uni-directional two-
space backward transition equation (19b) is a reverse empathy. In order to
apply empathy theory [11], which does not deal with reverse empathies, we
introduce the notion of a conjugate stochastic kernel to construct the dual
notion of the forward extended Chapman-Kolmogorov equation.

Assume that the stochastic kernels Qtpx,Bq and Rtpx, sBq of eqs. (19)
have probability transition density functions qtpx, yq and rtpx, ȳq, respectively.
Then for t ą 0 and Borel sets B Ă RX , we define the conjugate kernel sQtpy,Bq
by

sQtpy,Bq :“

ż

x PB

qtpx, yqdx, y P RX , (28)

and the conjugate kernel sRtpȳ, Bq by

sRtpȳ, Bq :“

ż

x PB

rtpx, ȳqdx, ȳ P R sY . (29)

The symbols sQttdyu “ sQtp0, tdyuq and sRttdyu “ sRtp0̄, tdyuq will denote the
corresponding distributions on RX .

Note that in the conjugate kernel the roles of the point and the set are
interchanged. For example, in (29) the set B of life states is the start of the
transition and the death state ȳ is the end of the transition. Moreover, the
roles of the state spaces RX and R

sY are interchanged: for fixed ȳ, sRtpȳ, Bq is a
measure in RX ; for fixed x, Rtpx, sBq is a measure in R

sY . (The adjoint measure
sKBpj̄, tiuq defined in [12, p.128] is the discrete version of definition (29).)

Proposition 2 Let Qtpx,Bq and Rtpx, sBq be the stochastic kernels of eqs. (19)
with probability transition density functions qtpx, yq and rtpx, ȳq.

If Qtpx,Bq (Rtpx, sBq, resp.) is space-homogeneous, the conjugate kernel
sQtpy,Bq ( sRtpȳ, Bq, resp.) is also space-homogeneous. Moreover, for every Borel
set B Ă RX and corresponding set sB Ă RY ,

sQttBu “ Qtt´Bu, sRttBu “ Rtt´ sBu. (30)
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Proof Let x P RX . For an arbitrary Borel set sB Ă R
sY ,

ż

ȳ P sB

rtpx, ȳqdȳ “ Rtpx, sBq “ Rtpx` r, sB ` rq “

ż

ȳ P sB

rtpx` r, ȳ ` rqdȳ.

This implies that rtpx, ȳq is space-homogeneous: rtpx, ȳq “ rtpx ` r, ȳ ` rq
for a.e. ȳ P R

sY and all r P R
sY . By the same argument, qtpx, yq is space-

homogeneous. The assertions follow by integration of these relations.

We will now show that the conjugate transition functions sQtpy,Bq and sRtpȳ, Bq
satisfy the forward extended Chapman-Kolmogorov equation

$

’

’

’

&

’

’

’

%

sQt`spy,Bq “

ż

x PR
sQtpy, tdxuq sQspx,Bq for all s, t ą 0;

sRt`spȳ, Bq “

ż

x PR
sRtpȳ, tdxuq sQspx,Bq for all s, t ą 0.

(31a)

(31b)

We call eq. (31b) the conjugate two-space forward (extended Chapman-Kolmogorov)
transition equation.

Theorem 5 Let pX,Y q be a pair of homogeneous Markov processes inter-
twined by the backward extended Chapman-Kolmogorov equation (19) with a
pair of probability transition density functions pqtpx, yq, rtpx, ȳqqtą 0. Then the
corresponding pair of conjugate transition functions p sQtpy,Bq, sRtpȳ, Bqqtą 0 is
intertwined by the forward extended Chapman-Kolmogorov equation (31).

Proof Since qtpx, yq is the Radon-Nikodym derivative of the measureQtpx, tdyuq,
it follows from eq. (19) and the Fubini theorem [13, Thm. 4.17] that

$

’

’

’

&

’

’

’

%

qt`spx, yq “

ż

z PR
qtpx, zqqspz, yqdz for all s, t ą 0;

rt`spx, ȳq “

ż

z PR
qtpx, zqrspz, ȳqdz for all s, t ą 0.

By applying the operator
ş

xPB
dx to these equations and using the Fubini

theorem with the fact that rspx, ȳq is the Radon-Nikodym derivative of the
measure sRspȳ, tdxuq, we obtain eq. (31).

The distribution transition functions Q and R are defined on distinct
spaces, RX and R

sY . The conjugation operation produces a corresponding pair
of distribution transition functions

psQ, sRq :“ p sQttdyu, sRttdyuqtą 0 “ p sQtp0, tdyuq, sRtp0̄, tdyuqqtą 0

on RX . We now have the following analogue of Proposition 1.

Proposition 3 Let pX,Y q be a pair of homogeneous Markov processes in-
tertwined by the backward extended Chapman-Kolmogorov equation. The two-
space forward transition equation (31b) can be expressed in terms of psQ, sRq:

sRt` stBu :“ sRt` sp0̄, Bq “

ż

x PR
sRttdyu sQsp0, B ´ xq for all s, t ą 0. (33)
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The distributions sQttdyu and sRttdyu associated with (33) commute as in
eq. (21) and therefore their operator representations also commute as in Re-
mark 1. However, by the lifting lemma (Lemma 1), we obtain the required non-
commutative generalization of the Feller convolution by representing sQttdyu
and sRttdyu as admissible homomorphisms on a product test space. We replace
the intertwined conjugate distributions sQttdyu and sRttdyu on RX by the ad-
missible homomorphisms sQ1tpXq and sR1tpXq on ΦX , respectively. By virtue of
Lemma 1 we lift sQ1tpXq and sR1tpXq as the ΦP -admissible homomorphisms

Q1P ptq :“ `1 ˝ sQ1tpXq ˝ πX , R1P ptq :“ `2 ˝ sR1tpXq ˝ πX ,

respectively. This produces a corresponding pair of conjugate ΦP -admissible
transition functions pq̄1P , r̄

1
P q :“ p sQ1P ptq,

sR1P ptqqtą 0.

Theorem 6 Let pX,Y q be a pair of homogeneous Markov processes inter-
twined by the backward extended Chapman-Kolmogorov equation (19). Then,
in terms of the product ˚ defined in (23), the pair of conjugate ΦP -admissible
transition functions pq̄1P , r̄

1
P q is a star-empathy:

#

sQ1P pt` sq “
sQ1P ptq ˚

sQ1P psq for all s, t ą 0;

sR1P pt` sq “
sR1P ptq ˚

sQ1P psq for all s, t ą 0.

(34a)

(34b)

Moreover, sQ1P psq ˚
sR1P ptq is the zero homomorphism on ΦP for all s, t ą 0.

Proof Equation (34a) follows from eq. (16) by definition (23) and Lemma 1(a).
Since sQttdyu and sRttdyu are probability measures on RX , the right-hand

side of eq. (33) is precisely the Feller convolution sRttdyu‹ sQttdyu (see Remark
1). Thus, by eq. (9),

sR1t`spXq “
sR1tpXq ˚

sQ1spXq for all s, t ą 0. (35)

Equation (34b) follows from eq. (35) by definition (23) and Lemma 1(b).

In view of eqs. (34) we call pq̄1P , r̄
1
P q the conjugate extended Riesz representation

on ΦP of the distribution transition functions pQ,Rq (analogous to def. (3)
and eqs. (13)–(14)). In order to exploit the machinery of empathy theory,
from this point onward we only deal with the conjugate stochastic kernels
where the second conjugate transition family r̄1P evolves in empathy with the
first conjugate transition family q̄1P that is an extended Feller convolution
semigroup. The evolution family r̄1P is not a semigroup.

7 Normed admissible homomorphisms

With the canonical relationship between distributions and admissible homo-
morphisms in mind, we have thus far studied time-dependent members of AΦ

instead of traditional families of distributions, with the Feller convolution of
distributions replaced by the product ˚ of admissible homomorphisms. Thus,
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in the classical case of a single homogeneous Markov process X, the admissible
transition function q1 “ tQ1tutą 0 replaces the distribution transition function
Q “ tQttdyuutą 0.

Suppose that Q is an analytic Feller convolution semigroup as defined by
Bobrowski [1, Def. 7.6.1]: it satisfies eq. (13) and the initial condition

lim
tÑ0`

Qttdyu “ δ0. (36)

The analytic condition (36) on Q denotes the weak convergence (or rather
weak*) of the distributions Qttdyu to δ0, the Dirac measure concentrated at 0,
on the space ΦU of all bounded uniformly continuous functions3. This analytic
condition (36) can be replaced by the condition

lim
tÑ0`

xQ1t, f y “ xθ
1
0, f y for all f P ΦU (37)

in the framework of normed admissible homomorphisms which we now de-
scribe.

Under the supremum norm, the test space ΦU is a Banach test space and
we can consider the norms of the bounded linear functional Q1 on ΦU . It
follows that every bounded linear functional is Φ-admissible and the map p P
G ÞÑ f´p P ΦU is uniformly continuous for each fixed f P ΦU . The point
evaluation maps θ1q : f P ΦU ÞÑ fpqq are examples of bounded admissible
homomorphisms. The class of bounded admissible homomorphisms is denoted
by A

B
. The following theorem follows from [11, Thm. 12].

Theorem 7 The bounded admissible homomorphisms A
B

equipped with the
product ˚ is a Banach algebra with unit θ1

0
. The dualism mapping Γ : Q1 ÞÑ Q is

an isomorphism into the algebra of linear transformations on ΦU that preserves
norms: }Q1} “ }Q}.

From this point onward we work in the framework of normed admissible ho-
momorphisms, where we work mostly with bounded admissible homomor-
phisms. For bounded admissible homomorphisms we get sharper results by
studying q1 “ tQ1t P AButą0 in conjunction with its isometric dualism family
Q :“ tQt “ ΓQ1tutą0. For example, by eq. (37), we have the following result.

Proposition 4 In the framework of normed admissible homomorphisms, an
analytic Feller convolution semigroup is expressed as a C0-strongly continuous
star-semigroup in AΦU and as an isometric operator C0-semigroup on ΦU .

8 Strongly continuous conjugate convolution semigroup

Our starting point is pX,Y q, a pair of homogeneous Markov processes in-
tertwined by the backward extended Chapman-Kolmogorov equation (19)
with a pair of probability transition density functions pqtpx, yq, rtpx, ȳqqtą 0.

3 Intuitively, assumption (36) expresses the idea that the transition density function (in-
stead of the actual probabilities) converges to the Dirac delta functional as tÑ 0`.
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In this section we only consider the first of the pair of distribution functions
pQ,Rq “ pQttdyu, Rttdȳuqtą 0 and associated admissible transition function
q1 “ tQ1tutą 0. We will establish sufficient conditions for the star-semigroup
q1 and its conjugate q̄1 “ t sQ1tutą 0 to be strongly continuous. We will show
that the conjugation operation preserves strong continuity. These results will
be applied to the conjugate transition family q̄1P in §9.

Consider the classical case of a single homogeneous Markov process X such
that the distribution transition function Q “ tQttdyuutą 0 is an analytic Feller
convolution semigroup (see (36)). We henceforth assume that each stochastic
kernel Qtpx,Bq has a transition density function qtpx, yq, as in eq. (28). Next
we investigate how well the conjugation operation preserves the properties of
Q.

Example 1 Let X be the standard Brownian motion in R. Due to the symmetry
of the normal transition density function, the distributions Qttdyu and sQttdyu
are both equal to the normal (Gaussian) distribution with zero mean and
variance t. Thus both Q and sQ are convolution semigroups.

Lemma 2 Let Q be a homogeneous transition function with a probability tran-
sition density function. If Q is an analytic convolution semigroup then so too
is its conjugate sQ “ t sQttdyuutą 0.

Proof For each f P ΦU , defineMf P ΦU byMfpxq “ fp´xq. Then x sQttdyu, f y “
xQttdyu,Mf y by eq. (30).

Theorem 8 Let X be a homogeneous Markov process such that Q is an an-
alytic Feller convolution semigroup. Then sQ is an analytic convolution semi-
group: q̄1 is a strongly continuous star-semigroup and the dualism transition
function sQ :“ t sQtutą 0, where sQt “ Γ p sQ1tq, is an operator C0-semigroup.

Proof By Lemma 2 and condition (36), x sQ1ptq, f y Ñ xθ10, f y as t Ñ 0` for
all f P ΦU . The strong continuity of q̄1 follows from the fact that θ10 is the
identity admissible homomorphism. Thus sQ is an operator C0-semigroup due
to its isometry with q̄1 [11, §11, Prop. 5].

Theorem 8 holds for any test space that is a closed subspace of ΦU , in partic-
ular the smaller Banach test space Φ8 used by Feller [6, §IX.2]. By [9, Thm.
11.5.2], the strongly continuous operator semigroups Q and sQ restricted to
Φ8 have generators defined on dense subspaces of Φ8. Feller’s definition [6,
§IX.2, Def. 4] of a generator differs slightly from that of Hille and Phillips [9].
The Feller generators, A and sA, of Q and sQ, respectively, are defined on the
subspace C8rR,Cs of infinitely differentiable functions in Φ8 with derivatives
in Φ8.

In the setting of the backward extended Chapman-Kolmogorov equation,
the distribution transition function Q is defective (i.e., Qtpx,Rq ă 1 for all
t ą 0 and all x P R). If Q is defective, then so too is sQ, by eq. (30).

Proposition 5 Let X be a homogeneous Markov process such that Q is an
analytic Feller convolution semigroup and defective. Then there exist a unique
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c ą 0 and a unique distribution transition function P “ tPttdyuutą0 that is a
convolution semigroup with proper distributions such that

Qttdyu “ e´ctPttdyu. (38)

The Feller generator of Q is A´ cI, where A is the Feller generator of P.

Proof Let QttRu denote the total mass of the distribution Qttdyu. Then
Pttdyu “ pptqQttdyu, where pptq “ pQttRuq´1, is a proper distribution. Now
tPttdyuutą0 is a convolution semigroup if and only if pps ` tq “ ppsqpptq for
all s, t ą 0 and pptq Ñ 1 as t Ñ 0`. Thus, since p is a measurable function,
pptq “ ect for some c P R, namely c “ ´t´1 lnQttRu. By the defectiveness of
Q, c ą 0.

Let A be the Feller generator of the operator semigroup associated with
P. Then A ´ cI is the Feller generator of the operator semigroup associated
with Q since for small positive t we can approximate e´ct by 1´ ct.

Example 2 Assume that X and Q satisfy the hypotheses of Proposition 5 and
that P is the transition distribution function associated with the standard
Brownian motion of Example 1. Then we call X a defective Brownian motion.
In this case the Feller generator sA of sQ is given by

sAf “
´1

2

d2

dx2
´ c

¯

f for all f P C8rR,Cs. (39)

Remark 3 Example 2 is an elementary example of a generator of a conjugate
Feller convolution semigroup. From this point onwards we use this elementary
example of the generator sA to simplify the exposition of the second intertwined
distribution transition family R.

9 Strongly continuous conjugate convolution empathy

Consider a pair of homogeneous Markov processes pX,Y q with a pair of distri-
bution transition functions pQ,Rq defined on distinct state spaces RX and R

sY

(distinct copies of R) and intertwined by the backward extended Chapman-
Kolmogorov equation (19). In §6 the conjugate extended Riesz representation
of the distribution transition functions pQ,Rq is the star-empathy pq̄1P , r̄

1
P q of

admissible homomorphisms on the test space ΦP of vector test functions. The
framework of normed admissible homomorphisms on the vector test space ΦP ,
which is described next, allows us to consider the analytic condition of the
strong continuity of q̄1P and r̄1P .

We introduce a vector topology on a closed subspace of ΦP (see Construc-
tion 1). The subspace is the product test space associated with Φ8pXqˆΦ8psY q
where,

Φ8pXq :“ CrRX ,Cs Ă ΦX , Φ8psY q :“ CrR
sY ,Cs Ă Φ

sY ,

are two distinct supremum normed Banach spaces (required for joint consider-
ation of the two distinct state spaces RX and R

sY ). From this point onward, the
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symbol ΦP will denote this closed subspace of ΦP . Equipped with the product
norm, ΦP is a Banach space such that the translation map p P G ÞÑ R

p
ϕ P Φ

is continuous for each fixed ϕ P ΦP .

The lifting, θ10pXq, of the point evaluation map θ10 : f P Φ8pXq ÞÑ fp0q
is an example of a bounded ΦP -admissible homomorphism. Here θ10pXq :“
`1 ˝ θ

1
0 ˝ πX , i.e.,

xθ10pXq, ϕy “ pxθ
1
0, f y, 0q “ pfp0q, 0q for all ϕ “ pf, ḡq P ΦP .

The class of bounded admissible homomorphisms on ΦP is denoted by A
P

.

Theorem 9 [11, Thm.12] The bounded admissible homomorphisms A
P

equipped
with the product ˚ is a Banach algebra with a unit. Every Q1P : ΦP Ñ Z
bounded homomorphism is ΦP -admissible and the dualism mapping Γ : Q1P ÞÑ
QP is an isomorphism into the algebra of linear transformations on ΦU that
preserves the norm: }Q1P } “ }QP }.

Proof The unit of AP is the point evaluational functional θ1
p0,0q : pf, ḡq ÞÑ

pfp0q, ḡp0̄qq for every ϕ :“ pf, ḡq P ΦP . The inequality }Q1P } ď }QP } follows
from the analogue of equation (22) and the product norm on Z. The reverse
inequality follows form the fact that the translation maps Rp are isometries
for all p P G.

The ΦP -dualism conjugate transition functions are denoted by

Q̄P “ tQ̄P ptqutą 0, R̄P :“ tR̄P ptqutą 0,

where Q̄P ptq “ Γ pQ̄1P ptqq and R̄P ptq “ Γ pR̄1P ptqq. From Theorem 8 we obtain
the following result.

Proposition 6 If Q is an analytic Feller convolution semigroup, then q̄1P is
strongly continuous, i.e., the mapping t ÞÑ sQ1P ptq from p0,8q to C2 is contin-
uous, since

x sQ1P ptq, ϕy Ñ xθ10pXq, ϕy as tÑ 0` for all ϕ P ΦP . (40)

Moreover, sQP is an operator C0-semigroup on ΦP .

Corollary 1 If Q is an analytic Feller convolution semigroup, then pq̄1P , r̄
1
P q

is a strongly continuous empathy. The corresponding operator dualism fam-
ily psQP , sRP q is also strongly continuous.

Proof By Theorem 6, pq̄1P , r̄
1
P q is a star-empathy. Thus, as in the proof of [16,

Thm. 2], the strong continuity of q̄1P ensures the strong continuity of r̄1P on
p0,8q. By the continuity of the dualism mapping Γ , this also implies the
strong continuity of the corresponding dualism families, sQP and sRP .
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10 Intertwined Laplace Transforms

From this point onward we only consider normed admissible homomorphisms
on ΦP . Specifically, we consider time-dependent members, x1P :“ tX 1P ptq P
AP utą0, of AP that are integrable near the origin, that is, for every α ą 0,
the Bochner integral

ş

p0,αq
xX 1P ptq, ϕydt exists for every ϕ P ΦP . We denote

this class by L1

loc
pp0,8q,A

P
q. It will be the new algebraic-analytic setting for

the study of double families of intertwined admissible transition distribution
functions. This vectorization of L1

loc
pp0,8q,Rq replaces the algebra R natu-

rally with another (convolution) algebra AP . We use the algebra product ˚
of the convolution algebra AP to transfer the scalar convolution theorem as
opposed to a bounded bilinear form as in well known vector valued convolution
theorems of L1

loc
pp0,8q, Xq where X is a Banach space. Thus, the framework

of normed admissible homomorphisms has a full Laplace transform theory,
which we will apply to q̄1P and r̄1P (in §11). We give the relevant details in this
section. For full details see [11, §5, 11].

Proposition 7 Let pX,Y q be a pair of homogeneous Markov processes inter-
twined by the backward extended Chapman-Kolmogorov equation (19). Then
the pair of conjugate ΦP -admissible transition functions pq̄1P , r̄

1
P q are integrable

near the origin.

Proof Since sQttdyu and sRttdyu are probability measures, q̄1P and r̄1P are uni-
formly bounded on p0,8q. Furthermore, by Corollary 1, the strong continuity
of q̄1P and r̄1P ensures the existence of the Bochner integrals

ş

p0,αq
xQ̄1P ptq, ϕydt

and
ş

p0,αq
xR̄1P ptq, ϕydt for all α ą 0.

The following version of a well-known theorem [9, Thm. 3.8.2, p.85] is central
to the study of strong integrability of x1P .

Theorem 10 [11, Thm.5] Suppose that for each ϕ P ΦP , the function t Ñ
xX 1P ptq, ϕy; t P p0,8q are (strongly) Lebesgue measurable in Z. If, for an
interval I Ă p0,8q, the Bochner integral

x

ż

I

x1
P
, ϕy “

ż

I

xX 1P ptq, ϕydt, (41)

exists for every ϕ P ΦP , the homomorphism
ş

I
x1
P

: ΦP Ñ Z is bounded and
hence ΦP -admissible.

We now introduce the Laplace transform of the family x1P formally, for ϕ P ΦP
and λ ą 0 by the expression

xx1P pλq, ϕy “

ż

p0,8q

e
´λt
xX 1P ptq, ϕydt “

ż

p0,8q

xe
´λt

X 1P ptq, ϕydt. (42)

The class of all functions for which x1P pλq exists will be denoted by Lappλ,A
P
q.

The following result is an immediate consequence of Theorem 10.
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Theorem 11 If for some λ ą 0 the Laplace transform x1P pλq exists, it is
bounded and therefore in A

P
. Moreover, Lappλ,A

P
q Ă L1

loc
pp0,8q,A

P
q.

Then, by the argument in the proof of Prop. 7, the Laplace transforms of q̄1P
and r̄1P exist for all λ ą 0.

Lemma 3 For all ϕ P ΦP and all λ ą 0, the Laplace transforms of q̄1P and r̄1P ,

xq̄1P pλq, ϕy :“

ż

p0,8q

e´λtx sQ1P ptq, ϕyd t , xr̄
1
P pλq, ϕy :“

ż

p0,8q

e´λtxR̄1P ptq, ϕydt,

respectively, exist as Lebesgue integrals.

By Lemma 3 and Theorem 11, for all λ ą 0, the Laplace transforms q̄1P pλq
and r̄1P pλq are bounded admissible homomorphisms on ΦP .

One of the keys to reducing the proof of the classical scalar Convolution
Theorem (see [4, Theorem 11.9B]) in L1

loc
pp0,8q,Rq to the proof of the Convo-

lution Theorem in L1

loc
pp0,8q,A

P
q (see [11, Thm.8]) is to combine the notion

of closedness with the notion of AP -Laplace transformability and closedness.
We say a family x1P is closed with respect to y1P P Lappλ,AP q if for each fixed
s ą 0,

X 1P psq ˚ y
1
P pλq “

ż

p0,8q

e´λtpX 1P psq ˚ Y
1
P ptqqdt. (43)

It should be noted, however, that the closedness condition (43) is not as el-
ementary at is might seem. In the present it means that for every ϕ P Φ
the mapping t ÞÑ xX 1P psq ˚ Y

1
P ptq, ϕy is strongly measurable in Z and the in-

tegral
ş

p0,8q
X 1P psq ˚ e

´λ¨y1P is a ΦP -admissible bounded homomorphism for

each s ą 0. The following result follows from direct calculations based on from
eqs. (28)–(29).

Lemma 4 Let pX,Y q be a pair of homogeneous Markov processes intertwined
by the backward extended Chapman-Kolmogorov equation (19). Then q̄1P is
Laplace-closed with respect to itself (see [11, eq. (9) & p. 210]) and r̄1P is
Laplace-closed with respect to q̄1P : for all s ą 0 and all λ ą 0,

$

’

’

’

&

’

’

’

%

sQ1P psq ˚

ż 8

0

e´λt sQ1P ptqdt “

ż 8

0

e´λt sQ1P psq ˚
sQ1P ptqdt;

sR1P psq ˚

ż 8

0

e´λt sQ1P ptqdt “

ż 8

0

e´λt sR1P psq ˚
sQ1P ptqdt.

(44a)

(44b)

The new framework of L1

loc
pp0,8q,A

P
q has Laplace transform theorems [11,

Thm. 9] that are identical in nature to the well-known Laplace transform the-
orem of L1

loc
pp0,8q,Rq. These Laplace transform theorems then enable us to

capture the different resolvent equations of semigroups of empathy theory, C0-
semigroups, and n-times integrated semigroups in one formulation uniformly.
In L1

loc
pp0,8q,A

P
q, the convolution of unlike parameters of the Laplace trans-

forms x1P pλq˚y
1
P pµq generates the resolvent equations from the causal relations
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(see [11, eqs.(11)-(13); (14)-(15)]). Similarly by [11, Thm. 11], we have the fol-
lowing intertwined pseudo-resolvent equations for the double family pq̄1P , r̄

1
P q

intertwined by the star-empathy causal relation analogous to classical empathy
pseudo-resolvent equations [14, Lem. 2.3].

Theorem 12 Let pX,Y q be a pair of homogeneous Markov processes inter-
twined by the backward extended Chapman-Kolmogorov equation (19). The
conjugate extended Riesz representation on ΦP of pQ,Rq satisfies the pseudo-
resolvent equations

#

q̄1P pλq ´ q̄1P pµq “ pµ´ λqq̄
1
P pλq ˚ q̄

1
P pµq;

r̄1P pλq ´ r̄1P pµq “ pµ´ λqr̄
1
P pλq ˚ q̄

1
P pµq

(45a)

(45b)

for all λ, µ ą 0. In addition, for all t ą 0,

q̄1P pλq ˚
sQ1P ptq “

sQ1P ptq ˚ q̄
1
P pλq; (46)

sr1P pλq ˚
sQ1P ptq “

sR1P ptq ˚ q̄
1
P pλq. (47)

We call the pair of intertwined Laplace transform equations (45) the star-
empathy pseudo resolvent equations and the equations (45)-(47) the funda-
mental star-empathy identities. As in [11], we call pq̄1P , r̄

1
P q an intertwined star

pseudo-resolvent.

For λ ą 0, let

sQP pλq :“ Γ pq̄1P pλqq,
sRP pλq :“ Γ pr̄1P pλqq

be the dualisms of the Laplace transforms. These dualisms may be seen as
“induced” Laplace transforms. In fact, sQP pλq is the λ-potential operator or
resolvent operator defined in [3, §1.3, eq. (1.29)]. By Proposition 12, sQP pλq
and sRP pλq are bounded operators on ΦP .

Example 3 Let pQ,Rq be as in Proposition 6 with Q as in Example 2. Then
the Feller generator of sQ1P is defined on ∆P :“ C8rRX ,Cs ˆ Φ8psY q and is
given by

sAPϕ “
`

1
2f
2 ´ cf, 0

sY

˘

for all ϕ :“
`

f, ḡ
˘

P ∆P . (48)

Moreover, for all ϕ :“
`

f, ḡ
˘

P ∆P ,

r sQP pλqϕspx, xq “

ż 8

0

e´pλ`cqtrpt ˚ f spxqdt for all x P R, (49)

where ptpyq “
1?
2πt

exp
`

´
y2

2t

˘

is the probability density function of the stan-

dard Brownian motion (Example 1).
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11 Implicit star Fokker-Planck equation

A classical Fokker-Planck equation is a partial differential equation in the
smooth probability transition density function instead of the actual Markov
process, which can be discontinuous. In [12], implicit Fokker-Planck equations
are derived for a pair of discontinuous intertwined counting processes by means
of a pair of intertwined Laplace transforms. The unknowns in these Fokker-
Planck equations are operator representations of the transition functions that
results from a pair of evolution families. One family evolves in empathy with
the second family, which is a semigroup. Since these distribution functions are
not homogeneous, the Fokker-Planck equations cannot be formulated directly
in terms of the distributions. In the present setting, the homogeneity of the
transition functions enables us to overcome this limitation by expressing the
Fokker-Planck equation as convolution equations. This convolution is the non-
commutative extended Feller convolution introduced in §5. We call such an
equation an implicit star Fokker-Planck equation.

Let pX,Y q, pQ,Rq and pq̄1P , r̄
1
P q be as in §9 and assume that X is a

defective Brownian motion, as in Example 3. We call pX,Y q an intertwined
Brownian motion since there is another homogeneous Markov process Y in
empathy with a convolution semigroup X. For each fixed ϕ “

`

f, ḡ
˘

P ∆P ,
define a pair of functions uP and vP from p0,8q ˆ R to C2 by

vP pt, xq “ r sQP ptqϕspx, xq, uP pt, xq “ r sRP ptqϕspx, xq. (50)

Thus vP pt, xq “ pvpt, xq, 0q, where vpt, xq “ r sQtpXqf spxq.

The analysis of the convolution semigroup X in the framework of admissible
homomorphisms on a product test space is standard. By eq. (48), vP satisfies
the Fokker-Planck equation

BvP
Bt

“ sAP vP , (51)

i.e., v satisfies the scalar Fokker-Planck equation

Bv

Bt
“

1

2

B2v

Bx2
´ cv (52)

in p0,8q ˆ RX . In terms of the original homomorphisms sQ1tpXq, the second
component of eq. (51) is simply 0

sY “ 0
sY and the first component is

B

Bt

ż

RX

sQttdyufpx` yq “
1

2

ż

RX

sQttdyu
´

B2

Bx2
´ 2c

¯

fpx` yq. (53)

In terms of the associated probability density function

qcpt, yq “
1

?
2πt

exp
´

´
y2

2t
´ ct

¯

,
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equation (53) is

B

Bt

ż

RX
qcpt, yqfpx` yqdy “

1

2

ż

RX
qcpt, yq

´

B2

Bx2
´ 2c

¯

fpx` yqdy. (54)

In contrast, the analysis of the second family Y, which is not a semigroup,
is non-standard. We will now use intertwined Laplace transforms to show that
uP pt, xq satisfies a Fokker-Planck equation in the form of an implicit evolu-
tion equation formulated in terms of admissible homomorphisms on a product
test space. We do not derive the star implicit evolution equation directly from
the intertwined pseudo-resolvent pq̄1P pλq, r̄

1
P pλqqλą0. Instead, we follow the ap-

proach of [11, §12]. By applying the dualism mapping Γ to the fundamental
star-empathy identities (45)–(47), we obtain the analogous classical empathy
pseudo-resolvent equations [14, Lem. 2.3] for the operator-valued dualisms
pQ̄P pλq, R̄P pλqqλą 0:

#

sQP pλq ´ sQP pµq “ pµ´ λq sQP pλq sQP pµq “ pµ´ λq sQP pµq sQP pλq;

sRP pλq ´ sRP pµq “ pµ´ λq sRP pλq sQP pµq “ pµ´ λq sRP pµq sQP pλq

(55a)

(55b)

and

sQP pλq ˝ sQP ptq “ sQP ptq ˝ sQP pλq; (56)

sRP pλq ˝ sQP ptq “ sRP ptq ˝ sQP pλq. (57)

Remark 4 Without assuming d-measurability, the dualisms cannot be con-
sidered as Laplace transforms. We say that q̄1P is dualism-measurable (d-
measurable) if for every ϕ P ΦP the mapping t ÞÑ sQP ptqϕ is measurable
in ΦP . However, the dualisms satisfy the analogous classical empathy pseudo-
resolvent equations [14, Lem. 2.3] by the dualism mapping Γ .

We now assume the invertibility assumption of the classical implicit evolution
equation (1). In our setting the invertibility assumption is of the form

sRP pξq is invertible for some ξ ą 0. (58)

We use the invertibility assumption (58) to define the domains

∆X :“ sQP pλqrΦP s, ∆
sY :“ sRP pλqrΦP s

for λ ą 0. These subspaces of ΦP are independent of the choice of λ since
pq̄1P , r̄

1
P q is a star-empathy by Theorem 6. Indeed, by [14, Cor. 2.5], sRP pλq is

invertible for all λ ą 0.
The pair of generators A and B of (1) from ∆

sY to ΦP are defined by

B “ sQP pλqr sRP pλqs
´1
, A “ λB ´ r sRP pλqs

´1
.

The generators A and B are independent of λ (see [14, §5]). Note that Br∆
sY s “

∆X .
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It now follows from [14, Thm. 2.8(a), Thm. 5.2] that A “ sA1PB, where sA1P
is the Feller generator of sQP “ t sQP ptqutą 0, and that for each ϕ “

`

f, 0
sY

˘

P

∆X X∆P ,
$

’

&

’

%

B

Bt
pBuP q “ AuP ;

lim
tÑ0`

BuP pt, xq “ ϕpx, xq, x P R.

(59a)

(59b)

The implicit evolution equation (59) can be expressed in terms of the admis-
sible homomorphisms A1 “ θ10pXq ˝A and B1 “ θ10pXq ˝B:

$

’

&

’

%

d

dt
xB1 ˚ sR1P ptq, ϕy “ xA

1 ˚ sR1P ptq, ϕy for a.e. t ą 0;

lim
tÑ0`

xB1 ˚ sR1P ptq, ϕy “ xθ
1
0pXq, ϕy.

(60a)

(60b)

In terms of the original homomorphisms sR1tpXq, the second component of
eq. (60a) is simply 0

sY “ 0
sY and the first component is

B

Bt
xB1 ˚ sR1tpXq, f´x y “ xB

1 ˚ sR1tpXq,
1

2

´

B2

Bx2
´ 2c

¯

f´x y for a.e. t ą 0. (61)

Note that sQ1tpXq “ B1 ˚ sR1tpXq on ∆X X∆P .

Theorem 13 Let pX,Y q be a pair of homogeneous Markov processes with
distribution transition functions pQ,Rq intertwined by the backward extended
Chapman-Kolmogorov equation (19). If the invertibility assumption (58) holds,
Q is an analytic Feller convolution semigroup and the transition functions Q
and R have probability density functions, then the Fokker-Planck equation is
a star-implicit evolution equation (60) in the conjugate extended Riesz repre-
sentation of pQ,Rq. In fact, r̄1P pλq “ pλB

1 ´A1q´1 for λ ą 0.

12 Solvability criterion for implicit star Cauchy equation

In the setting of C2-admissible homomorphisms on a product test space ΦP ,
the implicit evolution equation (1) takes the more general form

d

dt
xb1 ˚ r1ptq, ϕy “ xa1 ˚ r1ptq, ϕy, lim

tÑ0`
xb1 ˚ r1ptq, ϕy “ xθ1p0,0q, ϕy, (62)

where θ1
p0,0q is the unit of pAP , ˚q; xθ

1
p0,0q, ϕy “ ϕp0q. For the purpose of making

the paper self-contained and reducing the level of abstraction of the general
setting of an arbitrary Banach space Z-valued admissible homomorphism, we
shall tailor the material presented in [11, §12-§14] for the present setting.

Let lower case letters such as r1 denote ΦP -admissible homomorphisms.
We indicate the correspondence between homomorphisms r1 and dualisms R
by changing from upper to lower-case symbols. We call (62) the implicit star-
Cauchy equation.
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Let q1λ :“ tq1pλq P AP uλą0 and r1λ :“ tr1pλq P AP uλą0. Then the pair
xq1λ, r

1
λ y is a star-empathy pseudo-resolvent if the pair is intertwined by the

star empathy pseudo-resolvent equation

#

q1pλq ´ q1pµq “ pµ´ λqq1pλq ˚ q1pµq;

r1pλq ´ r1pµq “ pµ´ λqr1pλq ˚ q1pµq

(63a)

(63b)

for all λ, µ ą 0. The problem at hand is: Given a star-empathy pseudo-resolvent
xq1pλq, r1pλqy, construct a star-empathy xq1, r1 y such that q1 :“ tq1ptq P AP utą0

and r1 :“ tr1ptq P AP u satisfy the implicit star-Cauchy equation (62) with
r1pλq “ pλb1 ´ a1q´1.

We do not directly solve the problem from the perspective of the given star-
empathy pseudo-resolvent xq1λ, r

1
λ y. Instead, we approach the problem from the

perspective of their dualisms xQ1λ,R
1
λ y, where Q1λ :“ tQpλq “ Γq1pλquλą0, and

R1λ :“ tRpλq “ Γr1pλquλą0. Then we backtrack these dualisms as homomor-
phisms by Theorem 4. We do not assume d-measurabilty. Instead we apply
the dualism mapping Γ to the star empathy pseudo-resolvent equations (63)
to transfer to the operator-valued empathy pseudo-resolvent equations

"Qpλq ´Qpµq “ pµ´ λqQpλqQpµq,
Rpλq ´Rpµq “ pµ´ λqRpλqQpµq.

(64a)

(64b)

We shall follow the approach of [10], which is based upon Kisyński’s ap-
proach [2] to the Hille-Yosida theorem.

For the first evolution family q1 that is associated with the generator a1

in (62), we adopt Kisyński’s approach to the Hille-Yosida theorem. Here, the
well-known Banach convolution algebra L “ L

1

0pR
`
, ‚q of integrable scalar

functions defined on the real line with support in r0,8q plays a central role;
here R` :“ p0,8q and ‚ denotes the classical convolution. The negative ex-
ponentials eλpxq “ expt´λxu, x ą 0, λ ą 0, the characteristic functions χp0,tq
and the translation operators are fundamental to this approach. It is important
to note that the negative exponentials is a fundamental set of L and a canon-
ical pseudo-resolvent of the convolution algebra L: eλ ´ eµ “ pµ ´ λqeλ ‚ eµ
for λ, µ ą 0.

Let Y be any Banach space. From an arbitrary pseudoresolvent Qλ :“
tQpλq : Y Ñ Y ;λ ą 0} that satisfies the strong Widder growth condition [18]

supt}rλQpλqs
k
} : λ ą 0; k P Nu ă 8, (65)

a continuous Banach algebra representation T on L generates the C0-semigroup
pEptqqtě0 satisfying the abstract Cauchy problem. We establish this over three
steps. We define subspaces of Y by (i) ∆E :“ QpλqrY s and (ii) ∆K :“ ty P
Y : limλÑ8 }λQpλqy ´ y} “ 0u. Then the following hold:

1. The regularity space, ∆K , is closed: ∆K “ ∆E .
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2. The map T : eλ ÞÑ Qpλq is a unique (bounded) Banach algebra represen-
tation T : L Ñ BpY q such that (a) T peλq “ Qpλq and (b) T reconstructs
the space ∆K in the following algebraic way:

∆K “
ď

φPL
T pφqrY s. (66)

We shall refer to ∆K as the T -regularity space.
3. With this reconstructed ∆K and map T , a semigroup Eptq on ∆K is con-

structed from the right-shift operation Rtfpxq “ fpx´tq defined for f P L.
The unique C0-semigroup E :“ tEptqq : t ě 0u on ∆K (see [2]) is defined
as follows: for y “ T pφqyφ P ∆K ,

Eptqy :“ rT pRtpφqqsyφ. (67)

We let AE denote the generator of E . Furthermore, the pseudo-resolvent Qλ

becomes a resolvent: Qpλq “ Qpλ,AEq “ pλ´AEq
´1

on ∆K .

Next, for the construction of the admissible homomorphism a1, we lift
Kisyński’s construction into the framework of admissible homomorphisms where
the subspaces need to be translation invariant. First note that by (64a), the
dualism family Q1λ is a pseudo-resolvent on the translation invariant Banach
space ΦP . If we impose the strong Widder condition (65) on Q1λ and define
the spaces ∆1K and ∆1X analogously to ∆K and ∆E by

∆1K :“ tϕ P ΦP : lim
λÑ8

}λQpλqϕ´ ϕ} “ 0u, (68)

∆1X :“ QpλqrΦP s, (69)

then we have the following lifting of the Kisyński construction.

Theorem 14 Suppose that Qλ satisfies the Widder growth condition (65).
Then the following hold:
(i) The T-regularity space ∆1K is a translation-invariant closed subspace of
ΦP .
(ii) For each λ ą 0, Qpλqr∆1Ks Ă ∆1K and Qpλq “ pλ´AQq

´1
.

(iii) There exists a unique bounded Banach algebra representation T of a com-
mutative algebra of linear operators on ΦP such that T peλq “ Qpλq, which
algebraically reconstructs the regularity space ∆1K “ ∆1X analogous to (66).
(iv) A strongly continuous semigroup of translatable operators Qptq : ∆1K Ñ

∆1K is constructed by right shift maps on L analogous to (67): for t ě 0 and
φ P L,

QptqrT pφqs “ rT pRt
φqs. (70)

The generator AQ is closed and translatable. Moreover, DpAQq is dense in
∆1K .

We can backtrack the operator valued semigroup pQptqqtě0 into the star-
semigroup q1 :“ tq1ptq P AP utě0 by setting

q1ptq “ θ10Qptq. (71)
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The homomorphism q1ptq is admissible since Qptq is translatable. Similarly,
the homomorphism a1Q :“ θ10AQ is admissible. We define the first generator a1

by

a1 :“ a1Q ˚ b
1. (72)

Since the dualism mapping is an isometry (Theorem 7), the Widder growth
condition (65) can be translated back to the original homomorphisms q1pλq if

the notation (borrowed from Feller [6]) x1
n˚

:“ x1 ˚ ¨ ¨ ¨ ˚ x1 pn-timesq is used.
The condition then becomes the strong star-Widder growth condition,

sup
λą0;kPN

t}rλq1pλqs
k˚
}u ă 8. (73)

We next construct the appropriate second evolution family r1 that sat-
isfies the implicit star-Cauchy equation (62). Once again we transfer to the
corresponding operator-valued dualisms xQpλq,Rpλqy that satisfy the empa-
thy pseudo-resolvent equations (64). The invertibility of Qpλq when restricted
to ∆1K (Theorem 14(ii)) plays a central role in the construction of r1. This
inverse will be denoted by Q´1pλq.

We now proceed along the lines of the adaptation of Kisyński’s version of
the Hille-Yosida theorem to empathy theory. Let X and Y denote two Banach
spaces. From an empathy pseudo-resolvent xR,P y :“ xtRλ : Y Ñ Y u, tPλ : Y Ñ Xuy,
where R satisfies the strong Widder growth condition (65), a homomorphism
T 2 on the same algebra L generates an empathy xSptq, Eptqytą0 satisfying the
implicit evolution (1). We establish this in three steps. We begin by defining
the subspaces (i) ∆

2

K “ Rpλqr∆Ks and (ii) ∆S :“ P pλqrY s and the opera-
tor C “ P pλqR

´1
pλq.

1. The T 2-regularity space ∆
2

K is an isomorphic dense subspace of ∆K .
2. The map

T 2 :“ CT (74)

is a representation of bounded linear operators from ∆
2

K to X by elements
of L. However, T 2 is not necessarily an algebra representation or even
closed. However the representation map T

2
has algebraic properties in

harmony with empathy theory such as T
2
peλq “ Pλ and T

2
peλ ˚ eµq “

PλRµ, the latter expression being a special case of the identity

T
2
peλ ˚ φq “ PλT pφq. (75)

3. From ∆2
K and the map T 2, a family of operators tSptq : ∆2

K Ñ ∆Sutą0 is
constructed by

SptqrRλT pφqs “ T 2peλ ˚R
tφq, (76)

where we use the representation RλT pφq to generate ∆
2

K .

The pair xSptq, Eptqytą0 is an empathy defined on ∆K . It suffices to define each
bounded operator Sptq on the dense space ∆2

K since there is a unique extension
to its closure that is a Banach space. The boundedness of Sptq then follows
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from the boundedness of each P pλq. For full details of the above construction,
see [10, §4].

Next, for the construction of the admissible homomorphism b1, we lift the
above adaptation of Kisyński’s construction into the framework of admissible
homomorphisms where the subspaces need to be translation invariant. We
begin by defining the analogous translation-invariant subspaces ∆1

2

K Ă ∆1K ,

∆1
Ȳ
Ă ΦP and the operator C : ∆1

2

K Ñ ∆1
Ȳ

by

∆1
2

K “ Qpλqr∆1Ks, (77)

∆1Ȳ “ Rpλqr∆1Ks, (78)

C “ RpλqQ´1
pλq. (79)

The definitions (77), (78) and (79) are independent of the choice of λ.

Proposition 8 Let the semigroup tQptqutě0 on ∆1K Ă ΦP be defined as

in (70). Then Qptq : ∆1
2

K Ñ ∆1
2

K . Furthermore, for arbitrary φ P L, T pφq :

∆1
2

K Ñ ∆1
2

K .

Analogous to (76), by the representation T
2

we may now define a time depen-
dent family Rptq : ∆

2

K Ñ ∆1
Ȳ

by

RptqrQpλqT pφqs :“ T
2
peλ ˚R

t
φq, (80)

Since Qptq and Qpλq commute, the construct (80) can be re-phrased as

Rptqϕ “ CQptqϕ on ∆
2

K . (81)

This leads to the following result.

Theorem 15 On ∆
2

K the pair of evolution operators xQptq,Rptqy is a strongly
continuous empathy that satisfies the initial condition

lim
tÑ0`

Rptqϕ “ Cϕ (82)

for ϕ P ∆
2

K .

If more structure is added to the empathy pseudo-resolvent xQpλq,Rpλqy in
the form of a dualism B : D Ą ∆1

Ȳ
Ñ ∆1K such that

Qpλq “ BRpλq for all λ ą 0, (83)

then we use the empathy xQptq,Rpty to solve the operator-valued implicit

evolution equation (1) on ∆1
2

K . For ϕ P ∆1
2

K , uptq “ Rptqϕ satisfies the implicit
evolution problem

d
dt rBuptqs “ AQBuptq; lim

tÑ0`
Buptq “ ϕ, (84)

since Qptq “ BRptq on ∆1
2

K by (81). For this reason, we call the operator pair
xA,B y where A “ AQB, the generator of the empathy xQptq,Rptqy.
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Similarly, we now backtrack the operator-valued family pRptqqtě0 into the
family r1 :“ tr1ptq P AP utě0 by setting r1ptq “ θ10Rptq where xq1, r1 y is a
strongly continuous star-empathy. The second family r1 evolves in empathy
with the first family q1 constructed in (71). The second generator is the ad-
missible homomorphism b1 :“ θ10B. With this choice of generators xa1, b1 y, the
family r1 solves the star-implicit Cauchy problem (62).

Theorem 16 Consider the star-empathy pseudo-resolvent xq1λ, r
1
λ y, where q1λ

satisfies the strong star-Widder growth condition (73). Let xQλ,Rλ y denote
the operator-valued dualisms. Let B be a dualism defined on D Ă ΦP such that
the operators Qpλq :“ BRpλq are bounded.

Then we can construct an empathy xq1, r1 y and a pair of generators xa1, b1 y

such that for ϕ P ∆1
2
K , the star implicit evolution equation (62) is satisfied

when one sets the generators b1 :“ θ10B and a1 :“ θ10A, where A “ AQB.

For the final requirement of r1pλq “ pλb1 ´ a1q´1, more structure is added to
the empathy pseudo-resolvent xQpλq,Rpλqy in the form of the invertibility
assumption on Rλ analogous to eq. (58):

Rpξq is invertible for some ξ ą 0. (85)

Corollary 2 Let xq1λ, r
1
λ y be a star-empathy pseudo-resolvent as in the hy-

pothesis of Theorem 16. Under the additional assumption that Rλ satisfies
the invertibility assumption (85), we can construct an empathy xq1, r1 y and a

pair of generators xa1, b1 y such that for ϕ P ∆1
2
K , the star implicit evolution

equation (62) is satisfied, where r1pλq “ pλb1 ´ a1q´1.

Proof From Rpλq “ pλB´Aq´1, that is, RpλqpλB´Aq “ pλB´AqRpλq “ 1,
it follows that r1pλq “ pλb1 ´ a1q´1 since θ10pX

1Y 1qpϕq “ xϕ, x1 ˚ y1 y.
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A Dynamic boundary condition for heat equation

A dynamic boundary condition for a partial differential equation is a boundary condition in
which the time derivative of the unknown appears. For example, such a boundary condition
for the heat equation arises if the boundary of the body is considered as a thin conducting
film. With its own thermal property, the boundary thermally interacts with the body in a
one-way manner like an absorbing-barrier: the body is an external source for the boundary
but the boundary is not an external source for the body (see Section A.1).

In this appendix, we give a physical motivation of how the implicit evolution equation (1)
originates from such a two-space approach to the heat equation. Full details are in [7]. In
particular, we give a heuristic formulation of how non-perfect thermal contact between the
body and its boundary results in a pair of coupled heat equations that can be formulated as
an implicit evolution equation of the form (1). For a mathematically exact treatment please
see [5].
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A.1 Dynamic boundary condition

For the body material Ω, let upx, tq,ÝÑϕ px, tq and fpx, tq denote the temperature field, the
ambient flux and the source at the internal point x of the body Ω at time t, respectively.
For the boundary Γ :“ BΩ, the corresponding thermal properties at X P Γ at time t are
denoted by UpX, tq,

ÝÑ
Φ pX, tq and F pX, tq.

If Ω is three dimensional, then the boundary Γ is a two-dimensional manifold. Then
the traditional choice for the ambient flux ÝÑϕ px, tq “ ´k

ÝÑ∇upx, tq is a three-vector, whereas
ÝÑ
Φ pX, tq “ ´K

ÝÑ∇S UpX, tq is a two-vector which lives in the tangent plane of Γ at point X;

here
ÝÑ∇S denotes the surface gradient.

Applying the law of conservation of energy to the body Γ ,

Q d
dt

ż

B
UpX, tqdX “ ´

ż

BB

ÝÑ
Φ pX, tq ¨ pNpXqds`

ż

B
F pX, tq ` ÝÑϕ pX, tq ¨ pnpXqdX (86)

where B denotes the ‘volume’ patch of the boundary Γ taken as a body and Q “ 1 without
loss of generality. Since B is a surface patch, the integral on the left hand side of eq. (86) is
a surface integral which we denote by

ş

B dX.

Unlike F pX, tq, which is a per-volume per-time quantity,
ÝÑ
Φ pX, tq is a per-surface per-

time quantity. Thus the first integral on the right hand side of (86) is a surface integral of
(the surface) Γ which we denote by

ş

BB ds. Assuming sufficient smoothness on B, with the
traditional choices of flux, we have

´

ż

BB

ÝÑ
Φ pX, tq ¨ pNpXqds “

ż

B
K∆S UpX, tqdX, (87)

where pNpXq is the unit exterior of the body Γ “ BΩ; pnpXq denotes the ambient unit exterior
of the original body Ω; ∆S is the surface Laplacian or the Laplace-Beltrami operator. Thus,

B
Bt
UpX, tq “ K∆S UpX, tq ` F pX, tq ` kDpnupX, tq (88)

where D
pnupX, tq is the directional derivative of upX, tq in the direction of the ambient unit

exterior pnpXq.
Similarly applying the law of conservation of energy to the body Ω,

q d
dt

ż

G
Upx, tqdx “

ż

G
k∆upx, tqdx`

ż

G
fpx, tqdx (89)

where G denotes the volume patch of the body Ω and q “ 1 without loss of generality. The
last integral in eq. (89), in contradistinction to the corresponding last integral of eq. (86),
lacks an analogous term to the term ÝÑϕ pX, tq ¨ pnpXq, which captures the body Ω acting as a
source internal to Γ . The surface flux

ÝÑ
Φ pX, tq lies in the tangent plane at X of the boundary

surface Γ and therefore has no internal impact on the body Ω. Therefore Γ is an absorbing
barrier in the sense that Γ is not a source for Ω, whereas Ω is a source of Γ . The dynamic
boundary condition (88) can then be viewed as one-way or one-term coupled.

Consequently, the law of conservation of energy for the body Ω remains intact as

B
Bt
upx, tq “ k∆upx, tq ` fpx, tq, (90)

so that the pair xu, U y is intertwined by a pair of heat equations:

#

B
Bt
upx, tq “ k∆upx, tq ` fpx, tq;x P Ω

B
Bt
UpX, tq “ K∆S UpX, tq ` F pX, tq ` kDpnupX, tq;X P Γ.

(91)

Now each point X P Γ will be taken as a ‘point of contact’ between the two bodies.
We introduce a pair of trace operators xγ0, γ1 y to measure the quality of thermal contact
between the two bodies

#

γ0upXq :“ lim
xÑX

upxq;x P Ω

γ1upXq :“ D
pnupXq;X P Γ.

(92)
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The pair xγ0, γ1 y expresses perfect thermal contact and non-perfect thermal contact, re-
spectively, as

UpXq “ γ0upXq, (93)

UpXq “ γupXq, (94)

where γ “ γ0 ´ CpXqkγ1 and CpXq is a positive function. Equation (94) is implicit in the
contact constitutive equation kγ1upXq “

1
CpXq

pγ0upXq´UpXqq, where CpXq measures the

quality of thermal contact.

A.2 Trace-induced implicit evolution equation

Consider the first temperature field upx, tq of the pair xu, U y satisfying the intertwined pair
of equations (91). We take upx, tq as a time evolution uptq :“ up¨, tq in an appropriate space,
X, of functions in x P Ω. Likewise, the second dependent temperature field Upx, tq (see
equation (94)) is a time evolution Uptq :“ Up¨, tq in a distinct space of functions in X P Γ .

Although we considered the body and boundary as separate distinct bodies in the dy-
namic boundary formulation, the coupled system of heat equations (91) shows that the
body and boundary are thermally inseparable. Therefore we re-write the system of eq. (91)
in vector format,

B
Bt

ˆ

upx, tq
UpX, tq

˙

“

ˆ

k∆upx, tq
K∆S UpX, tq ` kDpnupX, tq

˙

`

ˆ

fpx, tq
F pX, tq

˙

. (95)

Thus the solution to the coupled heat equations (91) is the time evolution vector

ˆ

up¨, tq
Up¨, tq

˙

P

Y evolving from a pair of initial states y0 :“

ˆ

u0
U0

˙

P Y .

The pair of trace operators xγ0, γ1 y enables joint consideration of u and U : in the case of
perfect thermal contact (see eq. (93)), the trace operator γ0 is a transition map from the first
body Ω into the second body Γ : γ0 transitions up¨, tq PW 1

2 pΩq into Up¨, tq P L2pΓ q; thus, the
trace operator γ0 forces the choice of two distinct spaces W 1

2 pΩq and L2pΓ q corresponding
to the two distinct systems Ω and Γ . We use the same choice of spaces for the case for non-
perfect thermal contact (94) since γ is a function of γ0, γ1 and CpXq. The space W 1

2 pΩq is the
golden mean for the classical heat equation which was preserved in the system (91) by virtue
of the absorbing-barrier boundary assumption. So a possible choice for the Banach space X
is the associated space of definition, L2pΩq. Thus the solution space Y :“ L2pΩq ˆ L2pΓ q.

The vector format of eq. (95) takes the form

d
dt
Bup¨, tq “ Aup¨, tq or more concisely, d

dt
Buptq “ Auptq, (96)

if fpx, tq “ 0 “ F pX, tq. Here B : X Ñ Y denotes the intertwined trace operator

1b γ : up¨, tq P X ÞÑ

ˆ

up¨, tq
Up¨, tq

˙

P Y

and A : X Ñ Y the intertwined Laplacian operator, where B only adds the information
Up¨, tq “ γup¨, tq:

up¨, tq P X ÞÑ

ˆ

k∆up¨, tq
K∆S Up¨, tq ` kDpnup¨, tq

˙

.

Remark 5 The example (see [15, §8]) shows that the intertwined trace operator B is non-
closeable even in an elementary case of perfect thermal contact, γ “ γ0, in a one dimensional
body. Therefore we assume B to be non-closeable and so we study eq. (96) as it stands.
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