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Abstract
For the large family Curculionidae, the number of species considered pests is expected to

increase due to global movement of plant and soil material, as well as climate change.

Pheromones are increasingly popular for use in pest management programmes, either as stand-

alone tactics or with other management tactics. Biological differences between Curculionidae

species often require species-specific optimization of methodologies to successfully collect,

identify and integrate pheromones into management programmes. This review aims to provide

an overview of current knowledge on non-Scolytinae Curculionidae pheromones and their use

in strategies to manage these insects where they are pests. Throughout, we highlight the

importance of understanding the chemical ecology of target pests and related species to direct

pheromone sampling and the development of pheromone-based management tactics.
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Introduction

Species in the family Curculionidae are phytophagous as adults or larvae or both. Their

feeding on plants, predominately fruits, inner phloem and roots, can result in economic damage

(Tewari et al. 2014; Garnas et al. 2016). Species that attack woody plants include South African

pests like Gonipterus sp. 2 (Schröder et al. 2019), Rhynchophorus phoenicis (Prinsloo and Uys

2015), Phlyctinus callosus (Barnes and Capatos 1989; Bredenhand et al. 2010) and Pissodes

nemorensis (Gebeyehu and Wingfield 2003; Wondafrash et al. 2018). Integrated Pest

Management (IPM) programmes for weevils, and insects in general, often incorporate or rely

exclusively on behaviour-modifying semiochemicals (Pickett et al. 1997). These programmes

often target pheromone communication because the high level of specificity minimizes non-

target impacts (Nadel et al. 2012; Larsson 2016). Successful implementation of such

pheromone-based management tactics, however, relies on a thorough understanding of the

biology and chemical ecology of target pests. We exclude the Scolytinae subfamily (bark

beetles), as their biology and pheromone functionality forms part of a specialized group which

have been reviewed elsewhere (Wood 1982; Gitau et al. 2013). We included species in the

subfamily Dryophthorinae that have recently been elevated to the family level, Dryophthoridae,

in some (Dosunmu et al. 2014; Köhler et al. 2020; Malo et al. 2020), but not all literature

(Hazzouri et al. 2020).

The first pheromone from species of non-Scolytinae Curculionidae was isolated and

identified for the boll weevil, Anthonomus grandis Boheman, a serious pest  of cotton in the

USA (Tumlinson et al. 1969). The isolation process required solvent extraction and distillation

of 54.7 kg of frass obtained from 4.5 million weevils of mixed sex. The discovery of the boll

weevil pheromone stimulated studies into the pheromones of many other economically

important species in the Curculionidae family (Hardie and Minks 1999; Ambrogi et al. 2009;

Tewari et al. 2014). To date, pheromones have been identified from 45 species of non-

Scolytinae Curculionidae and some of these pheromones are being used in management

programmes. However, successful elucidation of new effective pheromone formulations for

species where pheromone blends are unknown, remains a major challenge.



Studies of non-Scolytinae Curculionidae beetle pheromones are usually initiated in

response to economic loss (Szmedra et al. 1991; Palacio-Cortés et al. 2015; Drmi  et al. 2017).

For example, the boll weevil caused severe crop damage for years in the USA, despite

considerable effort to control population levels including the application of systemic

insecticides that were subsequently banned (Szmedra et al. 1991; Haney et al. 2009).

Tumlinson et al. (1969) identified the boll weevil pheromone and a pheromone trapping and

monitoring system was subsequently developed (Hardee et al. 1974; Hedin et al. 1979). An

IPM programme with systemic and conventional insecticides combined with pheromone-based

trapping was implemented during 1987-1990 in Georgia (Haney et al. 2009). In short,

insecticides were used to kill most of the boll weevil population in one season, and surviving

weevils in diapause were captured with a single pheromone trap per acre in the following

season. The effect of this programme was quickly evident as yield increased from $482 per

acre (average between 1971-1986) to $733 per acre (average between 1991-1995) and acreage

increased from 228 000 to 770 000. In addition, the number of costly insecticide applications

could be reduced by 60% (Szmedra et al. 1991; Haney et al. 2009). Reduction of insecticide

applications also resulted in resumed biological control of other pests (Haney et al. 2009). Even

though the current dominant control strategy of the boll weevil is the use of transgenic cotton

(Ribeiro et al. 2017), existing boll weevil pheromone-based applications include lure-and-kill,

mass-trapping and monitoring which continues to inform decisions on insecticide application

(Hardee et al. 1974; Hedin et al. 1979; Ambrogi et al. 2009; Haney et al. 2009).

Pheromones identified from species in the non-Scolytinae Curculionidae that are used in

pest management have been primarily identified from adults (Ambrogi et al. 2009; Tewari et

al. 2014). Male-produced pheromones are generally aggregation pheromones (Ambrogi et al.

2009; Tewari et al. 2014), whereas female-produced pheromones are usually short-range sex

pheromones (Heath et al. 1986; Ravi and Palaniswami 2002; Cork and Lobos 2003). Non-

volatile contact pheromones have also been identified from both adults and larvae (Mody et al.

1975; Mutis et al. 2009). There have been few studies of larval pheromones, most likely

because of their limited application in pest management.

In the light of the expected increase of Curculionidae pests worldwide (Wingfield et al.

2008), the need for fast development of pest management tools is higher than ever. Here we

review the literature on weevil pheromones and identify several lessons learned. Our hope is

that this will facilitate future weevil pheromone identifications. We also review the methods

used for pheromone identification and consider reasons that may explain why these procedures



were successful. Finally, a concise overview of successfully implemented IPM strategies is

provided.

Weevils are important pests globally

An extensive range of commodities suffer economic loss due to damage caused by non-

Scolytinae Curculionidae including orchard crops, forestry and grain and stored products

(Supplementary Table 1). The way in which weevils cause damage varies among species. For

example, adults may damage hosts directly by feeding on phloem or bark (i.e. Pissodes spp.)

(Booth et al. 1983), plant roots (i.e. Sphenophorus spp.) or foliage (i.e. Gonipterus spp.)

(Lapointe et al. 2012). Direct damage caused by different life stages of the same species may

also vary. For example, adult weevils may defoliate while larvae feed on roots (i.e. Phlyctinus

sulcatus) (Kamiya et al. 2015; Bredenhand et al. 2010) or other internal parts of the same host

(Zarbin et al. 2003; Silva et al. 2018).

Indirect damage may also occur due to weevils that vector important plant pathogens

(Supplementary Table 1). These include palm weevils which vector the nematode,

Bursaphelenchus cocophilis Cobb., which causes red ring disease in palm trees (Giblin-Davis

et al. 1997; Alpizar et al. 2002; Oehlschlager et al. 2002) and palm weevils which vector the

fungus, Fusarium circinatum, the causal agent of pitch canker disease (Gebeheyu and

Wingfield 2003). Agave weevils vector a gram positive bacterium, Pseudomonas fluorescens,

that causes petrification of the agave plant (Ruiz-Montiel et al. 2003, 2008), and citrus root

weevil larvae create galleries which increases host susceptibility to Phytophthora infections

(Graham et al. 1996). In these scenarios it is more cost-effective to control the weevil vectors

with the objective of preventing, rather than controlling, the diseases that they transfer to their

hosts.

More than three-quarters of the weevils for which pheromones have been described are

borers (35 out of 43 species). As a group the borers are diverse and include fruit-borers (13 out

of 43 species), stem-borers (12 out of 43 species), pseudostem-borers (7 out of 43 species), two

‘borers’, and one legume-borer species. Pheromones are also known for one defoliator species,

stored products weevils (n = 3) and root-feeders (n = 4) (Figure 1, Supplementary Table 1).

Weevil biology: impact on identification and implementation of pheromones into IPM
programmes

The process of identifying pheromones and implementing them in weevil management

programmes is complex and requires a good understanding of the biology and chemical
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•Figure 1: The types of host damage caused by non-Scolytinae Curculionidae for which pheromones have been described (n = 43, Supplementary Table 1). Borers represent 81% of all the species with known pheromone, and are subdivided into groups including fruit-, stem-, pseudostem and legume borers and a catch-all term of ‘borers’ for weevils that feed on miscellaneous host tissues.



ecology of the target species. In general, the life cycle of most Curculionidae involves female

oviposition on the host plant or in the soil. Eggs then develop into larvae and these larvae go

through a number of instars before they are ready to pupate. Pupation occurs either in or on the

host, or in the soil. In some species, adult weevils have a maturation feeding period before

mating (Ruiz-Montiel et al. 2009) and in others this does not occur (Giblin-Davis et al. 2000;

Kamiya et al. 2015).

Variations of the life cycle exist (Supplementary Table 2). For example, the time required

for larval development can range from as little as five months for the citrus root weevil,

Diaprepes abbreviatus Linnaeus (Wolcott 1936), to up to five years for the large pine weevil,

Hylobius abietis Linnaeus (Langstrom 1982). The number of larval instars may also differ

between species. For example, the Eucalyptus snout beetle, Gonipterus sp. complex has four

larval instars (Tooke 1953), while the citrus root weevil has sixteen (Wolcott 1936).

Developmental  time of  different  life  stages  varies  among species  and  this  impacts  how

control measures should be implemented (Supplementary Table 2). For instance, the larvae of

the pecan weevil may enter a diapause period that lasts up to two years before they develop

into pupae (Tedders and Wood 1994). Adults of this species often emerge synchronously and,

within a relatively short time frame of four to six days, mate and lay eggs (Hall 2018). This

results in huge larval populations approximately one month later when eggs hatch. Control

measures can be difficult to implement for univoltine weevil species such as these (Simpson et

al. 1996), because they emerge in short time windows, which are often difficult to predict.

Sensitive pheromone-based population monitoring strategies have been implemented for

species like this to aid with timing of control activities, and these have had variable success

(Tedders and Wood 1994).

Polyphagous species can be more difficult and expensive to control than monophagous

species. The citrus root weevil, D. abbreviatus, the plum curculio, Conotrachelus nenuphar,

the palm weevil, Rhynchophorus spp. (Hallett et al. 1993) and the maize weevil, Sitophilus

zeamais (Walgenbach et al. 1983; Hallett et al. 1993) (Supplementary Table 2) are all

polyphagous. Control of these weevils is difficult because they have multiple hosts that can

serve as population reservoirs in the vegetation surrounding the commodity of interest

(Simpson et al. 1996). Area-wide applications of pheromone-based control measures are

usually advised in such circumstances (Haney et al. 2009; Reddy et al. 2012; Drmi  et al. 2017).

In contrast, weevils that feed on a single host plant species, like the banana weevil,



Cosmopolites sordidus, can be simpler to control because the area treated can be restricted to

the planted area (Budenberg et al. 1993; Rannestad et al. 2011) (Supplementary Table 2).

For many weevils, the majority of the life cycle (i.e. pupae and/or larvae and/or adult) is

spent concealed within host tissues and consequently it is protected from most control tactics

(Supplementary  Table  2).  Adults  of  some species  have  periods  where  they  are  exposed  and

periods where they are concealed, primarily in host tissues (Booth et al. 1983; Phillips et al.

1984; Giblin-Davis et al. 1996; Illescas-Riquelme et al. 2016; Reis et al. 2018). Approximately

half of the species of non-Scolytinae Curculionidae for which pheromones have been

described, are inconspicuous as adults (21 out of 43 species) and another nine species are

hidden to some extent as adults (Supplementary Table 2). These are adults like the sugar beet

weevil, Bothynoderes punctiventris, that are hidden in the soil during overwintering, and

exposed during defoliation (Drmi  et al. 2017), or cactus weevil adults, Metamasius spinolae,

that feed on young stems internally or externally (Tafoya et al. 2003).

Implementation of pheromone-based management tactics that target adults rely on time

periods where weevils are exposed and vulnerable to intervention. This period may be a short

interval during a weevil’s adult life stage. For example, adult grain-, maize-, bearded- and

corkwood weevils typically move around outside their host plant in search of mates and are

easiest to target and capture with pheromones at this developmental stage (Faustini et al. 1982;

Walgenbach et al. 1983; Kamiya et al. 2015; Reis et al. 2018). Despite the reasoning that

pheromones might only be useful for weevils that are exposed throughout the adult life stage,

pheromones have been identified and incorporated into IPM programmes for several species

that are mostly concealed as adults. In fact, less than a quarter (12 out of 43 species) of the

Curculionidae for which pheromones have been described are exposed and vulnerable to

control measures throughout the adult life stage (Supplementary Table 2). This finding

illustrates the potential for pheromone identification and use for any weevil species in IPM.

Pests that develop concealed within host tissues are often not detected until high levels of

damage occur (Chambers et al. 1996). For example, the banana pseudostem weevil adults may

live up to 200 days concealed in fallen or rotten banana stems and infestations are only noticed

from the damage they cause (Ravi and Palaniswami 2002) (Supplementary Table 2).

Conversely, larvae of the citrus root weevil also feed concealed in host tissue but can cause

severe root damage in as little as five weeks (CABI 2019). Sensitive pheromone-based

monitoring strategies that detect adults may aid in these cases, as surveillance or detection of



hidden larvae typically require manual inspection which is time-consuming and expensive

(Chambers et al. 1996; Ravi and Palaniswami 2002; Lapointe et al. 2012).

The biology of the weevil being targeted can affect trapping success rates. For example,

adults of some weevil species require a period of maturation feeding to become sexually mature

and responsive to pheromone signals (Booth et al. 1983). Ideally, pheromone-induced

behaviours are confirmed in the field, because behaviours observed in situ are  not  always

observed in field conditions (Hedin et al. 1979). In addition, correct placement of traps along

environmental gradients and the timing of trapping interventions is crucial (Tooke 1953;

Hallett et al. 1993; Piñero and Prokopy 2003; Reddy et al. 2012; Drmi  et al. 2017). In some

cases, the efficacy of pheromone-based pest management can also depend on the population

density of the pest (Alpizar et al. 2002; Oehlschlager et al. 2002; Drmi  et al. 2017).

Knowledge  of  the  biology  of  a  novel  pest  may  not  be  available,  which  complicates

predicting when, where and how to sample for pheromones. Researchers thus depend on

knowledge from other, often related, systems that may not be applicable (Giblin-Davis et al.

1996; Ramirez-Lucas et al. 1996; Unelius et al. 2013). After the initial pheromone

identification, the next challenge is the correct formulation and presentation of synthetic

pheromone to achieve the desired release rate and ratio of components from the lure matrix.

Lures have to release pheromones in blend ratios (Phillips et al. 1989; Hibbard and Webster

1993; Zarbin et al. 2003; Unelius et al. 2013) and at rates (Hardee et al. 1974; Hallett et al.

1993; Piñero and Prokopy 2003) that are biologically active for their target species.

The Pheromone identification process

Behaviour guides sampling

Most successful pheromone studies are preceded by behavioural studies that confirm or

suggest the existence of pheromone-mediated behaviours. Some of these behavioural studies

observe and describe mating behaviour in controlled laboratory assays [e.g., Sitophilus

granarius (Faustini et al. 1982), Cyrtomon luridus (Kamiya et al. 2015) and Odoiporus

longicollis (Ravi and Palaniswami 2002)]. Others use bioassays to provide evidence for

pheromone-mediated reproduction. Female O. longicollis have been observed to expose their

ovipositor,  rub  them  on  a  surface  and  knock  on  the  substrate  with  their  rostrum  (Ravi  and

Palaniswami 2002).  In response,  conspecific males were observed to lift  their  heads,  extend

their antennae and move rapidly towards the calling female; probe females with their antennae

and mount them (Ravi and Palaniswami 2002). This sexual interaction implies the existence of



a female-produced sex pheromone. Pheromone-mediated mate location has also been

demonstrated with field trapping tests. For example, traps baited with males or females can be

used to demonstrate pheromone-mediated mate location and which sex is responsible for

pheromone production.

Behaviours that potentially suggest the utilization of pheromones can be observed in the

field without trapping trials. For example, it was observed that male red sunflower seed

weevils, Smicronyx fulvus LeConte, were always present on sunflowers before females. This

suggested that males may use volatile chemicals to attract females to sunflowers for mating

(Roseland et al. 1990). Rhyncophorus cruentatus was observed to aggregate on newly painted

cars (Bare, 1929, as cited in Giblin-Davis et al. 1996). One potential explanation for this

behavior was that R. cruentatus has pheromone-mediated aggregation and the paint contained

volatile constituents that mimicked the aggregation pheromone. This hypothesis was later

confirmed when the aggregation pheromone was identified and aggregations induced with

synthetic pheromone and host volatiles (Weissling et al. 1994; Giblin-Davis et al. 1996).

If behaviours are reproducibly associated with pheromone production, this can facilitate

sampling (Patrock 1986; Roseland et al. 1990). For example, timing of collection of pheromone

from guava weevil males was facilitated through observation that mounting behaviour only

occurs at night (Zarbin et al. 2007; Palacio-Cortés et al. 2015). Similarly, pheromone

production periodicity was identified for red pine weevils, which were investigated for

pheromone presence multiple times throughout the year. Pheromone production was shown to

be seasonal and pheromone was only isolated during spring and summer when females were

sexually mature (Booth et al. 1983).

In addition to providing evidence for pheromone-mediated behaviours, preliminary

bioassays can elucidate functionality (sex, aggregation). For example, the angle of approach

toward an odour source has been used to discriminate between sex (approach from the back

leading to mounting and copulation) and aggregation (approach from the side, no mounting

and copulation) functions (Collins 1996; Ravi and Palaniswami 2002; Zarbin et al. 2007;

Kayima et al. 2015). They can also facilitate the development of bioassays critical to

demonstrating activity of identified putative pheromones (Palacio-Cortés et al. 2015).

In some species, adult weevils must feed to become sexually mature and produce

pheromone. One such example is the agave weevil, Scyphophorus acupunctatus (Smith et al.

2012), which starts producing pheromone when they are a month old. When a study is initiated,



it is not always known if maturation feeding is required for pheromone production.

Investigations may need to systematically explore which factors are necessary for pheromone

production if pheromones are not identified in the initial sampling endeavours (Appendix 1)

(Ruiz-Montiel et al. 2009).

In some species mating status can influence production and response to pheromone

(Dickens and Wiygul 1987; Piñero et al. 2001) and both mated and unmated weevils can be

used for pheromone sampling. For example, red pine- (Booth et al. 1983), plum- (Eller and

Bartelt 1996) and New Guinea sugarcane weevils (Giblin-Davis et al. 2000) were sampled for

pheromone as virgins (Supplementary Table 3). Virgin male pecan weevils, Curculio caryae,

were found to produce pheromone when they mount virgin females (Hedin et al. 1997). In

contrast, boll weevil, A. grandis pheromone production was diminished when females were

present in a sampling chamber (Dickens and Wiygul 1987). In other studies, both mated and

virgin male maize weevils were determined to produce the same amount of pheromone

(Walgenbach et al. 1983).

Pheromone production may occur only under specific conditions, and these can vary

among species (Supplementary Table 3). For example, pheromone production may be

dependent on the presence of appropriate host plant material, as in the case of guava- (Zarbin

et al. 2007) and agave weevils (Ruiz-Montiel et al. 2003; Smith et al. 2012). In these species,

host-derived precursors may be necessary for pheromone biosynthesis, as previously observed

in other Curculionidae (Hughes 1974; Byers 1981; Jurenka 2004). Male pheromone production

often coincides with sexual maturity of responding conspecifics, as for pine weevils Pissodes

strobi and P. approximatus (Booth et al. 1983).

Although knowledge of beetle age and mating status can be critical to successful

pheromone sampling in some species (Giblin-Davis et al. 2000; Azuara-Domínguez et al.

2013), field-collected weevils of unknown physiological state and age are often used for

sampling (Oehlschlager et al. 1995) (Supplementary Table 3). This was done for weevils

including banana- (Budenberg et al. 1993); cactus- (Tafoya et al. 2004); and cranberry weevils

(Szendrei et al. 2011). Sampling beetles from different developmental stages or in large cohorts

may improve the likelihood of having some individuals of the correct physiological state to

produce pheromone during the sampling process. Alternatively, beetles can be reared in

captivity in order to know their exact age and mating status (Ehounou and Ouali-N’goran

2018). However, development of laboratory rearing techniques can be time-consuming and is

not always successful (Ambrogi et al. 2012).



Like in bark beetles (Borden et al. 1969; Vanderwel 1994), weevil pheromone production

is suspected to be hormone regulated. The regulation of pheromone biosynthesis is not fully

understood, as only a few studies have been conducted on pheromone biosynthesis in non-

Scolytinae Curculionidae. Increased production of pheromone constituents has been shown in

S. humeralis (Imrei et al. 2017) and A. grandis (Hedin et al. 1982) upon topical treatment with

juvenile hormone III (JHIII), with 20 and threefold increases, respectively.

Weevils do not always produce pheromones during sampling, and it is not always clear

why. For example, a comprehensive study of variation among agave weevil males manipulated

photoperiod, male age, the presence of host material and starvation to test the hypotheses that

these were factors affecting pheromone release by males (Ruiz-Montiel et al. 2009). These

factors could not explain why there were always some males that did not produce pheromone.

There are examples where pheromones of non-Scolytinae Curculionidae were successfully

isolated and identified without knowledge of mating behaviour (Oehlschlager et al. 1995;

Palacio-Cortés et al. 2015). In these studies, GC-EAD analyses of dynamic headspace extracts

of field collected Rhynchophorus bilineatus (Oehlschlager et al. 1995) and Conotrachelus

psidii weevils (Palacio-Cortés et al. 2015) showed responses to single chromatographic peaks.

These peaks were identified as 4-methyl-5-nonanol and papayanol and behavioural assays

confirmed activity in each species. Such cases are the exception rather than the rule.

Pheromone identification

Various methods of pheromone sampling have been used for species of non-Scolytinae

Curculionidae. Samples are generally screened with electrophysiological (e.g., GC-EAD)

assays to identify putative pheromone components, the activity of which must subsequently be

confirmed behaviorally. Most pheromone identification methods are general for insects

(Appendix 1), but some aspects of the pheromone identification process are specific to non-

Scolytinae Curculionidae.

Antennal preparations from species in the Curculionidae often give noisy signals (Branco

et al. 2019). Therefore, true responses are difficult to detect. Different antennal preparation

methods have been explored to reduce noise in signals. The recording electrode is generally

attached to the club-shaped terminal tip of the antenna, and a grounding electrode is attached

to the base of the antenna. In some studies, authors pierce the antennal tip with the recording

electrode (Chambers et al. 1996; Giblin-Davis et al. 1997) and in others they simply touch the

recording electrode to the tip of the antenna (Van Tol and Visser 2002). Sometimes it is



necessary to remove the distal part of the flagellum to expose the neurons in the antenna to

improve the signal to noise ratio (Unelius et al. 2013). The antennae can be cut near the scape

(Giblin-Davis et al. 1997) or pedicel (Budenberg et al. 1993) or the grounding electrode can be

coupled by inserting it through the ventral surface of the insect head (Chambers et al. 1996;

Unelius et al. 2013). At the processing level, the signal-to-noise ratios can be enhanced with

analysis algorithms (Slone and Sullivan 2007).

Once putative pheromone structures have been identified, behavioural activity must be

demonstrated with laboratory and/or field bioassays (Supplementary Table 4). In addition to

confirming behavioural activity these trials are designed to determine the impact of component

ratios (Supplementary Table 4). These bioassays can also demonstrate the biological function

of the identified pheromone (Supplementary Table 4), although this might already be known if

behavioural studies preceded pheromone identification.

Laboratory bioassays have the advantage of being easier to implement and are generally

less expensive than field bioassays (Hedin et al. 1979). However, results may depend on the

ability to mimic natural conditions in laboratory. Despite the increased logistical challenges

and expense, field-based pheromone trials have been more common than laboratory-based

assays for species of non-Scolytinae Curculionidae. Some of the challenges associated with

field bioassays include weather and variation in population densities. Like all insects, weevils

are exotherms and rainy or cold weather usually leads to decreased activity, which may result

in low captures in pheromone-baited traps (Eller et al. 1994). In addition, weevil population

densities fluctuate from one year to the next. Even though the same fraction of a population

may be captured in different seasons, the number of weevils captured may differ due to

differences in population densities (Alpizar et al. 2002; Walgenbach and Burkholder 1986).

These  fluctuations  can  be  confounded  by  the  effect  of  trap  colour,  design  or  placement  on

weevil behaviour, and together may lead to incorrect conclusions (Heuskin et al. 2011).

In addition to abiotic factors that challenge the success of field bioassays, several

programmatic considerations can have significant impacts on field studies. For example, the

absence of an effective trap design can result in field bioassays providing false negatives (i.e.,

no attraction to correctly identified pheromone compounds). The optimal trap design depends

on the target species and how they interact with the trap (Laurent and Frérot 2007; Piñero et al.

2011; Silva et al. 2018). Knowing the behaviour of the target pest can therefore help with the

selection and development of trap designs. For example, the trap developed for the rice weevil,

Sitophilus oryzae, exploits its tendency to hide or crawl into enclosed spaces (Trematerra and



Girgenti 1989). A floor trap was developed from corrugated cardboard with a center hole from

which pheromones and host volatiles are released and beetles can crawl into (Trematerra and

Girgenti 1989). An added advantage of this trap design is that captured weevils are not killed

and also release pheromone, which enhances trap performance (Trematerra and Girgenti 1989).

Trap design and use optimization

Various elements of trap design can influence captures of target insects. Black and green

pyramidal traps consistently captured more plum curculio weevils than white, yellow or clear

traps of the same shape (Leskey 2006). Similarly, pecan weevils, C. caryae,  were  more

attracted to brown than white pyramidal traps (Tedders and Wood 1994), and yellow sticky

traps were consistently more attractive to cranberry weevils, A. musculus, than white sticky

traps (Silva et al. 2018). In terms of trap shape, pyramid-shaped traps were superior for plum

curculio weevil capture compared to cylindrical traps (Leskey 2006), and sticky traps were best

for cranberry weevils, A. musculus (Silva et al. 2018). How weevils interact with the trap can

also be important. Some species prefer to enter traps through holes at the top (El-Shafie and

Faleiro 2017), and others through holes in the bottom (Van Tol et al. 2012; Silva et al. 2018).

Horizontal and vertical orientation of traps has also been shown to affect capture rates of the

strawberry blossom weevil, A. rubi (Innocenzi et al. 2001).

Trap placement both relative to other traps (i.e., intertrap distance) and along

environmental gradients can influence field bioassays. The odour plumes of traps that are too

close together will coalesce downwind and consequently adjacent traps may interfere with each

other. For example, plum curculio weevils, C. nenuphar, seemed to avoid each other due to

confusion in high pheromone concentrations when traps were placed 1 m apart, but not when

traps were 10 meters apart (Piñero and Prokopy 2003).

Trap location along both horizontal and vertical gradients can also influence trap captures.

The underlying mechanisms for these gradient effects include resource availability,

microclimate and interspecific interactions. If the effects of horizontal and vertical gradients

on weevil distribution are unknown, randomization of traps along gradients can avoid biased

results (Piñero et al. 2001, 2003). Effects of gradients on weevil distribution can be exploited

in IPM programmes. For example, traps can be concentrated in areas along gradients with high

weevil activity to optimize the sensitivity of monitoring programmes (Trematerra and Girgenti

1989).



Timing of trap deployment may depend on seasonal progression that may change how

weevils respond to pheromone signals. For instance, mated female maize weevils, S. zeamais,

are less responsive to pheromone. This could result in decreased trapping efficiency when more

mated females are in the environment later in the season (Walgenbach et al. 1983; Walgenbach

and Burkholder 1986). The sex ratio of captured strawberry blossom weevil, A. musculus,

varies seasonally (Innocenzi et al. 2001). In contrast, activity of plum curculio (C. nenuphar)

pheromone lures were independent of host fruit development, mating status, and density of

mated females in the vicinity (Piñero et al. 2001, 2003). Consideration of the impact of these

factors on trap capture can facilitate programme optimization and interpretation of results.

Pheromone deployment optimization

The amount and ratio of components released from lures can affect weevil captures in field

bioassays (Hardee et al. 1974). The natural release rate of pheromone from an adult weevil

ranges among species, from as low as 2.8 ng/male/day for A. musculus (Szendrei et al. 2011)

to as high as 6 µg/male/day for A. rubi (Innocenzi et al. 2001). It may be necessary to adjust

release rates of synthetic pheromone from traps, either to make pheromone release last longer

between lure replacements (Hardee et al. 1974), or to enhance capture efficiency. To reduce

the release rate, pheromones have been diluted with mineral oil (Eller et al. 1994; Piñero et al.

2001), and higher release rates can be created by using more than one dispenser on a trap.

However, trap captures can be reduced if release rates become too high (Ravi and Palaniswami

2002; Piñero and Prokopy 2003). Often the most effective lures release pheromone consistently

and at low rates [<10 mg/day] (Hardee et al. 1974; Heuskin et al. 2011) even though these rates

may be orders of magnitude higher than natural release rates from weevils. For example,

Giblin-Davis et al. (2000) used high density polyethylene in black buckets that released 3 mg

of pheromone per day. Ruiz-Montiel et al. (2008) used polypropylene microcentrifuge tubes

with two or three pinholes in the caps and they released pheromone at a rate of 2.6 to 3 mg/day.

When the ratios of pheromone components are similar between closely-related species of

non-Scolytinae Curculionidae (i.e., major pheromone components do not differ), inter-specific

attraction can occur. For example, even though the amount of pheromone released by pepper

weevil males, A. eugenii, is approximately three times greater than that released by boll weevil

males, A. grandis (Tumlinson et al. 1969), their similar blend compositions causes interspecific

attraction to the same pheromone blend (Eller et al. 1994). In this case, both species are

considered pests, making the interspecific capture a welcome occurrence. A similar trend was



also seen in Sitophilus species, where rice and maize weevils, S. oryzae and S. zeamais, are

attracted to the same pheromone components in very similar blend ratios (Walgenbach et al.

1983). Because high release rates often increase trap captures, pheromone dispensers usually

have higher release rates than calling insects (Allison and Cardé 2016).

Release  of  component  ratios  from  lures  that  differ  from  those  released  by  weevils  can

result in skewed sex ratios or failure of trapping programmes (Ramirez-Lucas et al. 1996). For

example pure 2S,3R-sitophilate is less attractive to the grain weevil, S. granarius than natural

extracts from conspecifics (Faustini et al. 1982). This was due to the absence of another

pheromone component that was yet to be identified (Phillips et al., 1989; Chambers et al.,

1996). The inclusion of a positive control (i.e., live weevils) can facilitate quantification of how

much the sex ratio is skewed with synthetic attractants (Mitchell and Hardee 1974; Hallett et

al. 1993).

Some compounds are sensitive to environmental conditions and may degrade during trials.

Researchers have developed several strategies to prevent this from happening. For example,

inverted green plastic cups were used to protect grandisoic acid in plum curculio, C. nenuphar,

pheromone lures from UV radiation and rain (Piñero and Prokopy 2003). Similarly, the use of

white, rather than non-attractive low density polyethylene vials as lure dispensers for trapping

of plum curculios, C. nenuphar, have  been  reported  to  minimize  the  UV  radiation  and

polymerization of benzaldehyde (Piñero et al. 2001, 2003). Ultra violet absorbers like

TinuvinTM and SongsorbTM are also used in commercial insect traps to protect pheromones

from degradation, although we are not aware of examples where these or similar products have

been used in research or operational trials targeting non-Scolytinae Curculionidae. Pheromone

components within a blend may also interfere with the stability of other components.

Strawberry blossom weevil, A. rubi pheromone lures contain aldehyde components which

cause formation of alcohol breakdown products that can alter the pheromone blend (Innocenzi

et al. 2001). These scenarios have to be considered when choosing the appropriate pheromone

release device for field-based pest management applications.

Pheromones in weevil IPM

Several pheromone-based tactics exist and these are integrated into IPM strategies, often

with other non-pheromone tactics. Pheromone-mediated tactics can be grouped based on how

they affect pest populations. Direct pheromone-based management tactics directly affect

weevil population levels. Indirect tactics do not impact population levels, rather they are used
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to inform the timing and/or necessity for other tactics that do impact population levels (e.g.,

insecticide applications). Direct pheromone-based tactics include mass-trapping, mating-

disruption or lure-and-kill/infect. The use of pheromones for survey and detection is an indirect

application.

Mass-trapping and monitoring are the most common applications of pheromones in weevil

IPM programmes. Pheromone monitoring tactics are often used to inform insecticide

applications (Blight and Wadhams 1987; Phillips et al. 1989; Palanichamy et al. 2011) (Figure

2, left). Lure-and-infect applications are more common in recent literature, and involve a

pheromone-baited lure to attract insects to a capture and release trap where they are inoculated

with an infectious biocontrol agent (Padilla-Cubas et al. 2010; Lapointe et al. 2012) (Figure 2,

left).

Mass-trapping, Lure-and-kill, and Lure-and-infect

Pest management tactics such as mass trapping, lure-and-kill, and lure-and-infect use

attractants (often from more than one modality) to increase the density of a target pest in an

area to facilitate control (e.g., in a trap) (Cork 2016). Olfactory attractants are by far the most

commonly used and among these, host volatiles and pheromones are most common.

Pheromones have the advantage of high specificity, low doses are required to attract target

species, and being non-toxic to nontarget organisms (Cork 2016). The main difference between

these three tactics is how the target pest is controlled (killed). Mass trapping kills target insects

by confining them in a trap where they either are exposed to a toxicant (Silva et al. 2018),

drowned or expire from heat exhaustion or dehydration. Lure-and-infect attracts insects to a

location (often a trap) where they are inoculated with a pathogen and subsequently released or

allowed to escape. Ideally after release or escape these insects spread inoculum to conspecifics

and initiate an epizootic. The lure-and-kill tactic differs in that it does not require a trap and

insects are attracted to a substrate that contains a traditional killing agent [e.g., synthetic

insecticide in studies on R. ferrugineus and R. palmarum (Oehlschlager et al. 2002; El-Shafie

and Faleiro 2017)]. As with other tactics, these techniques can be successful without killing

attracted insects if they prevent or delay mating (Cork 2016).

Pheromone-based mass-trapping aims to capture as many individuals as possible to reduce

total pest population levels. Capture of females is preferred because in most insects, males are

able to mate multiple times. When pheromone lures only attract males, trapping efforts may

have no effect on population levels in the next generation despite the capture of large numbers



of males, especially when males mate more than once and fertilize multiple females and

females lay large clutches of eggs (Innocenzi et al. 2001; Kamiya et al. 2015). For example,

the female sex pheromone of the sweet potato weevil, C. formicarius, can attract many males

(Yasuda 1999), but this does not reduce population levels in subsequent generations (Yasuda

1995). In cases like this, pheromone-trapping would be more successful as an indirect

monitoring strategy.

The lure-and-infect tactic was attempted for the banana weevil, C. sordidus (Tinzaara et

al. 2007). For this study, two treatments were compared. The blank treatment involved manual

application of an entomopathogenic fungus, Beauveria bassiana, on field-collected weevils

which were later released in the infested plot. This fungus was previously shown as an effective

killing agent of weevils in a lure-and-kill trial (Tinzaara et al. 2005). For the other treatment,

weevils were lured with pheromone into specialized infection traps, which were laced with the

same fungus. Infected C. sordidus weevils  were  then  allowed to  escape  from these  traps  in

order to spread the entomopathogen among other banana weevils. The number of dead and

living weevils with and without mycosis were counted two weeks later from surrounding areas.

Results showed that manual fungus applications were significantly less effective than

pheromone-baited infection traps to infect, and ultimately kill weevils (Tinzaara et al. 2007).

Similar traps were also developed for sweet potato weevils, C. formicarius (Yasuda 1999) and

citrus root weevils, D. abbreviatus (Rivera et al. 2017).

Mass-trapping has been used in individual weevil infested plots (Alpizar et al. 2002;

Oehlschlager et al. 2002). However, area-wide efforts are preferred for maximal effect because

it minimizes the risk of re-infestation from nearby crops where trapping was not implemented

(Haney et al. 2009; Reddy et al. 2012; Drmi  et al. 2017). As many as 1800 acres of surrounding

crops were identified to be at risk if one plot remained untreated in an area-wide study of the

boll  weevil  (Haney  et  al.  2009).  Mass-trapping  can  be  improved  when  kairomones  that

synergize the response to pheromone are used in conjunction with pheromone traps (Perez et

al. 1997; Marques et al. 2011; Vera et al. 2016).

Due to the considerable investment of resources involved in pheromone-based mass

trapping this tactic is not used as a preventative tactic. Rather its use is usually triggered by

monitoring and in conjunction with other tactics. For example, high weevil population densities

indicated by pheromone-baited traps initiated mass-trapping for R. obscurus (Reddy et al. 2011,

2012). Similarly, after treatment of A. grandis infestations with insecticides, pheromone-based

mass trapping has been used to try to remove any remaining females (Haney et al. 2009).



Mating-disruption

Mating-disruption is the most widely used pheromone-based direct control tactic for

insects. In the majority of cases, mating disruption is used in conjunction with other tactics as

part of an IPM programme (Witzgall et al. 2010). The most successful applications of this tactic

typically involve systems where the mechanisms of how mating-disruption occurs (i.e., how

mating is disrupted) have been identified and are then exploited (Miller et al. 2006a; Miller and

Gut 2015). Multiple mechanisms exist and likely act together to disrupt mating (Cardé and

Minks 1995, Cardé 2007). Factors that influence the prevalence of particular mechanisms

include pheromone formulation, the method of pheromone release and the biology and

behavior of the target pest (Evenden 2016).

Mating-disruption can occur through either competitive (false-trail following) or non-

competitive (camouflage or sensory imbalance) mechanisms. Models of mating-disruption

make different predictions depending on the mechanisms involved (Evenden 2016). In general,

models predict that under competitive attraction (false-trail following), mating-disruption will

increase non-linearly with dispenser density and that complete interruption of mate-finding is

not possible (Miller et al. 2006b). They also predict that mating disruption by competitive

attraction is affected by target pest population density, and that the effect is stronger the less

competitive lures are with live insects (Barclay and Judd 1995; Miller et al. 2006b; Byers

2007). Conversely, models of mating-disruption by non-competitive mechanisms predict that

mating-disruption is independent of target pest population density. When camouflage is the

non-competitive mechanism, mating-disruption is hypothesized to be optimized by pheromone

blends that most closely resemble the pheromone blend released by conspecifics (Cardé 1990).

When sensory imbalance is the mechanism, models predict that the efficacy of mating-

disruption will increase with pheromone release rate from dispensers (Barclay and Judd 1995;

Miller et al. 2006a). Miller et al. (2006b) tested model assumptions with available literature

and suggested that competitive attraction is the primary mechanism of mating-disruption for

moths.

The available literature on mating-disruption in weevils is limited. Rhizome weevil males,

O. longicollis, displayed confused behaviour (i.e. males exhibited courtship among themselves,

not toward females) when they were exposed to high doses of the sex pheromone (Ravi and

Palaniswami 2002). This suggests that the sensory imbalance mechanism may contribute to

mating-disruption of rhizome weevils. In contrast, host-synergized pheromone traps for S.



oryzae (Trematerra and Girgenti 1989) and A. eugenii weevils (Eller et al. 1994) showed

superior attractive power compared to wild calling conspecifics. We hypothesize that these

traps may be able to disrupt mating in a competitive mating-disruption mechanism, but this

requires investigation.

Monitoring

The most common application of pheromones in IPM is for survey and detection. These

applications include seasonal phenology and population estimation, decision support and early

detection and delimitation of invasive species (Suckling 2016). Decision support applications

require thresholds for decisions on management interventions and often these are not available.

The plum curculio, C. nenuphar, has been monitored in apple (Piñero and Prokopy 2003), and

peach (Johnson et al. 2002; Leskey and Wright 2004; Akotsen-Mensah et al. 2010) orchards,

where the optimal blend of synergistic host- and pheromone volatiles, best trap type as well as

economic thresholds were investigated. Optimal sensitivity is essential due to the high risk of

large  infestations  resulting  from  even  a  small  number  of  emerged  adults.  For  example,  the

pepper weevil, E. eugenii, can lay up to 300 eggs in their lifetime of up to 3.5 weeks (Capinera

2014), and the citrus root weevil female, D. abbreviatus, that can lay up to 29 000 eggs in its

lifetime of three to four months (Mannion et al. 2003).

As in mass trapping, lure-and-kill, lure-and-infect and mating disruption (depending on

the mechanism), lure efficacy is critical to programme success. Typically, the optimal blend

mirrors the ratio of components released by the insect (Tewari et al. 2014). Due to differences

in  the  molecular  weight  and  polarity  of  pheromone  components,  the  ratio  found  inside  the

insect  does  not  always  reflect  that  released.  Additionally,  some  species  store  compound

precursors in the gland which undergo conversion to bioactive compounds as they are released

(Teal and Tumlinson 1986). As mentioned previously, trap design can also influence the

capture and retention of insects (Allison and Redak 2017) and must also be optimized.

Conclusions

Pheromones have significant potential for use in IPM of weevil pests. When pheromone-

based lures are used correctly, superior pest managment can be achieved, even if adult

weevils are only exposed to the environment during brief intervals in their life cycles. The

process of pheromone development is, however, difficult and requires in-depth knowledge of

the chemical ecology of a target pest. This paper considered the available literature and

identified several factors that can influence the identification and implementation of



pheromones in weevil IPM programmes; including the unique factors that influence

production and responsiveness toward correctly identified pheromone constituents, presented

in the correct ratio to individual weevil species. The outlined procedures in this review could

guide future investigations to facilitate faster identification and development of pheromone

based pest management practices.
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Supplementary Table 2: Differences in life cycles of various species of non-Scolytinae

Curculionidae that have been shown to rely on conspecific chemical communication.
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