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Abstract

With the notable exceptions of the United States of America (US) and Canada in particular,

the global burden of disease in adults due to invasive infection with the dangerous

respiratory, bacterial pathogen, Streptococcus pneumoniae (pneumococcus) remains. This

situation prevails despite the major successes of inclusion of polysaccharide conjugate

vaccines (PCVs) in many national childhood immunization programmes and associated herd

protection in adults, as well as the availability of effective antimicrobial agents. Accurate

assessment of the geographic variations in the prevalence of invasive pneumococcal

disease (IPD) has, however, been somewhat  impeded by the limitations imposed on the

acquisition of reliable epidemiological data due to reliance on often insensitive, laboratory-

based, pathogen identification procedures. This, in turn, may result in underestimation of the

true burden of IPD and represents a primary focus of this review. Other priority topics include

the role of PCVs in the changing epidemiology of IPD in adults worldwide, smoking as a risk

factor not only in respect of increasing susceptibility for development of IPD, but also in

promoting pneumococcal antibiotic resistance. The theme of pneumococcal antibiotic

resistance has been expanded to include mechanisms of resistance to commonly used
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classes of antibiotics, specifically beta-lactams, macrolides and fluoroquinolones, and,

perhaps somewhat contentiously, the impact of resistance on treatment outcome. Finally,

but no less importantly, the role of persistent antigenemia as a driver of a chronic, sub-

clinical, systemic pro-inflammatory/pro-coagulant phenotype that may underpin the long-term

sequelae and premature mortality of those adults who have recovered from an episode of

IPD, is considered.

Key Words: Antibiotic resistance; beta-lactams; cigarette smoking; fluoroquinolones;

inflammation; macrolides; persistent antigenemia; pneumococcal conjugate vaccine; vaping.

Streptococcus pneumoniae as a cause of community-acquired pneumonia

The Global Burden of Disease Study 2016 estimated the global, regional and national

morbidity and mortality, as well as the etiologies of lower respiratory tract infections (LRTIs;

defined as pneumonia or bronchiolitis) in 195 countries between 1990 and 2016.1 The study

also estimated the number of cases attributable to Streptococcus pneumoniae

(pneumococcus), Haemophilus influenzae type b, influenza and respiratory syncytial virus. In

2016, there were 2,377,697 deaths (2,145,584-2,512,809) from LRTIs in people of all ages

in those countries, with the pneumococcus identified as being the most common cause of

LRTI morbidity and mortality, causing more deaths than all the other etiologies combined.

With the introduction of pneumococcal conjugate vaccines (PCVs) in the childhood national

immunization programs (NIPs) of many countries, moderate reductions in the mortality of

LRTIs were seen in children under the age of 5 years, while the burden of LRTIs in adults

>70 years of age remained particularly high.

Nevertheless, it is clear when reviewing data from different parts of the world, that

there are regional differences in the epidemiology (including burden, risk factors, etiology,

prevalence of antimicrobial resistance, and outcome) of patients with community-acquired

pneumonia (CAP) and there have also been global changes in the epidemiology of CAP

over the years.2-5 One recent literature review evaluating the etiology of CAP in adults as
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published in PubMed in English through to December 2015, noted the following trends; i)

there was an unexplained decrease in the prevalence of pneumococcal infections,

particularly in the US/Canada, ii) the pneumococcus, nevertheless, remained the most

common bacterial pathogen identified, especially in critically ill cases, iii) there was a much

greater frequency of pneumococcal infections in Europe compared with the United States,

iv) respiratory viruses were noted to play a greater role than previously documented, v) more

recently, infections with Mycoplasma pneumoniae and Legionella pneumophila were less

frequently reported, and vi) the frequency of pathogen identification remained low, being

undetected in more than 50% of cases.6 The authors indicated that the possible reasons for

differences in prevalence of pneumococcal infections when comparing Europe and the US

may be related to differences in vaccination practices and in the smoking habit.

Differences in the documented etiology of CAP in the various studies may also be

attributed, at least in part, to the laboratory diagnostic techniques used. Standard culture

techniques, with blood cultures considered a “gold standard”, have yielded low rates of

pathogen detection, because of the low sensitivity of blood cultures.7 Furthermore, although

of good specificity and improved sensitivity, urine antigen tests for S. pneumoniae and L.

pneumophila, are still only 70-80% sensitive. Thus because of the limitations of diagnostic

testing for non-bacteremic pneumococcal infections, most studies reporting on the incidence

of pneumococcal infections report on the occurrence of invasive, bacteremic infections and

underestimate the true pneumococcal burden.8 One recent systematic literature review of

studies, which included information on the diagnostic yield of various assays for

pneumococcal infections (urine antigen detection testing, and blood and/or sputum culture),

estimated that for every case of bacteremic pneumococcal pneumonia there were at least

three non-bacteremic cases, thus significantly underestimating the burden of pneumococcal

disease when using the former investigation alone.8 Two recent studies in the US using

standard culture microbiology, urine antigen testing and commercially available polymerase

chain reaction (PCR) techniques identified pneumococcal infections in <10% of cases,

respiratory viruses in 20-27% of cases and no pathogen in approximately 55%-62% of
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cases.9,10 More recently, Gadsby and colleagues evaluated quantitative multi-pathogen

molecular testing of respiratory samples in hospitalized adults with CAP.11 They collected

mucopurulent sputum (96%), and endotracheal aspirates (3%) from 323 patients with

radiologically-confirmed CAP and undertook culture and multiplex real-time PCR analyses of

the samples. Using PCR, they identified a pathogen in 87% of cases compared with 39%

with culture alone, the two most common pathogens being Haemophilus influenzae (40%)

and S. pneumoniae (36%). Viruses were detected in 30% of cases with 82% being co-

infected with bacterial pathogens. The authors concluded that comprehensive molecular

testing significantly increases detection of CAP pathogens from a single lower respiratory

tract specimen.

While earlier studies evaluating the clinical and economic burden of CAP in North

America,12 Latin America,13 the Asia-Pacific region14 and Europe15 all indicated that the

pneumococcus was the most common cause of CAP, that antibiotic resistance was an issue,

and that the morbidity and mortality was high, more recent studies, largely from the US, have

noted a much lower incidence of pneumococcal infections in CAP.9,10 Interestingly, in the

latter study, additional use of a novel serotype-specific urine antigen detection assay, as

opposed to the commercially available urine antigen detection test, increased the detection

rate of pneumococcal cases from 4.4% to 9.7% overall.16 Furthermore, an active

surveillance study for pneumococcal CAP and invasive pneumococcal disease was

undertaken in adults hospitalized across five Canadian provinces from 2010 to 2013.17

Diagnostic testing for pneumococcal CAP was undertaken using sputum and blood culture, a

commercial pneumococcal urine antigen detection test and a serotype specific

pneumococcal urine antigen detection test. Of a total of 4769 patients with all-cause CAP,

testing for S. pneumoniae was undertaken in 3851 of these, identifying 23.2% (144/621) of

cases among CAP patients in whom all four tests were performed. Among these latter

cases, 14.8% were PCV13 type pneumococcal isolates, indicating that 3 years after

introduction of PCV13 immunization programs in Canada, vaccine preventable

pneumococcal CAP was still a significant problem. A matched nested case-control study of
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two prospectively recruited cohorts of hospitalized patients with CAP in Buenos Aires

undertaken during 2001-2002 and 2015-2016, observed a reduction in the number of cases

of CAP due to the pneumococcus (23.4% versus 8.3%; p<0.001) and an increase in

pneumococcal vaccination (polyvalent pneumococcal vaccine; PPV23) before admission

(4.1% versus 22.8%; p<0.001). The authors indicated that routine childhood PCV13

vaccination, which was initiated in 2012, may have also contributed.18 A systematic review of

studies published on CAP etiology in Asia, concluded that while S. pneumoniae was the

most common cause, it was of relatively less importance than that found in western

studies.19

In contrast to this, a literature review evaluating the etiology (and antibiotic

management) of CAP in Europe reported on 33 published studies that recorded pathogens

and noted that the pneumococcus was the most commonly isolated pathogen and was

identified in between 12.0% and 85.0% of patients in the different regions.20 A meta-analysis

of the role of the pneumococcus in adults with CAP in Europe concluded that the observed

prevalence varies in the different European regions, that the probability of detecting S.

pneumoniae was significantly higher if PCR was performed compared to any other

diagnostic test and that S. pneumoniae was more likely to be isolated in studies with ICU

patients, as opposed to those with in-hospital or community-treated patients only.21 A recent

systematic review conducted in the United Kingdom (UK) noted that vaccine-type

pneumococcal disease still has a high burden in the UK despite the impact of PCV13

vaccination in children.22 Furthermore, a prospective study of consecutive hospitalized adults

with CAP in Reykjavik, in Iceland, in which PCR analysis of airway samples was included in

the diagnostic testing, recorded a potential pathogen in 52% (164/310) of admissions and

74% (43/58) in those with complete data sets.23 S. pneumoniae was the most common

pathogen detected (20%; 61/310) and viruses were noted in 15%.

There is no doubt that a significant reason for the changing epidemiology of

pneumococcal disease and the disease burden has been the use of PCVs in children, which,

when included in childhood routine national immunization programs (NIPs), prevents disease
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not only in the targeted group, but also in non-vaccinated children, as well as adults, as a

result of herd protection.24 Recent studies from most regions of the world25 including North

America,26 Europe27 and South Africa,28 have documented the significant direct and indirect

effects of childhood vaccination. Furthermore, two recent systematic reviews and meta-

analyses of the global literature indicated that rates of IPD and pneumonia in adults in most

countries decreased following PCV introduction in the childhood NIPs, that the herd

protection is dependent on the PCV coverage rate and the duration of the implementation of

the NIPS and that substantial protection for the whole population would be evident within a

decade of introduction of childhood PCV programs.29,30 However, it has been noted that the

decline in adult pneumococcal infections in the US was attenuated with increasing age and

also in those with comorbidities26 and that a residual burden of PCV13 vaccine-type CAP still

remains in the US population.31

Risk Factors for Severe Pneumococcal Disease

These are well recognized and are often associated with immunosuppression, mostly

acquired and secondary, as well as with certain types of primary immunodeficiency disorder,

particularly antibody and complement deficiency disorders32 and are summarized in Table 1.

Given the increasing realization of the multifactorial involvement of smoking in promoting

pneumococcal infection, including antibiotic resistance, this risk factor represents the primary

focus of this section of the review.

Table 1: Risk factors for invasive pneumococcal infections

Age

 <2 or 65 y

Ethnic groups

 African descent

 Alaskan native
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 American Indians

Underlying clinical pulmonary diseases

 Chronic obstructive pulmonary disease

 Asthma

Other chronic clinical conditions

 Chronic liver disease

 Chronic renal failure

 Nephrotic syndrome

 Diabetes mellitus

Functional or anatomic asplenia

 Sickle cell disease

 Splenectomy

Substance abuse

 Alcohol abuse

 Smoking habit

 Crack use

 Cocaine use

Immunosuppressive conditions

 HIV infection

 Congenital immunodeficiency

 Malignancy

 B-cell defects

 Multiple myeloma

Patients undergoing treatment

 Alkylating agents

 Antimetabolites

 Systemic glucocorticoids

Patients with cerebrospinal fluid leaks

Cochlear implant recipients

Solid-organ or hematopoietic cell transplant recipients

Patients with influenza
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Source: Reproduced with permission from Wolters Kluwer (Aspa and Rajas).32

Smoking

Nuorti et al. in their seminal report published in the “New England Journal of Medicine” in

2000, identified active cigarette smoking as being “the strongest independent risk factor for

invasive pneumococcal disease (IPD) among immunocompetent, nonelderly adults” (odds

ratio [OR] 4.1; 95% confidence interval [CI], 2.4–7.3).33 In addition to these findings, current

smokers who develop pneumococcal CAP have been reported to have a striking 5-fold

increase in the risk of 30-day mortality, irrespective of age, co-morbidities and early

implementation of guideline-concordant antibiotic therapy.34 In the case of all-cause CAP, a

recent systematic review and meta-analysis, encompassing 27 studies and 460,592

participants, revealed that current smokers have a significantly increased risk for

development of CAP relative to never-smokers (OR 2.17; 95% CI, 1.70–2.76, n=13

studies).35 Passive smoking is associated with a 64% increase in the risk for development of

CAP, but only for those aged >65 years (OR 1.64; 95% CI, 1.17–2.30, n=2 studies).35

Smoking-related increased susceptibility for development of severe pneumococcal

disease has generally been attributed to cigarette smoke-mediated suppression of innate

and adaptive pulmonary host defenses.36 Our research findings, some very recent, have,

however, revealed additional pathogen-targeted mechanisms that are likely to contribute to

smoking-related susceptibility for development of severe pneumococcal disease. In this

context, exposure of an antibiotic-susceptible strain of the pneumococcus (strain 172,

serotype 23F) to cigarette smoke in vitro was found to trigger events at the level of gene

expression, which may promote antibiotic resistance. The first of these events involves

initiation of biofilm formation, a strategy utilized by microbial pathogens to confer broad

protection against penetration of antibiotics.37 Biofilm is an extensively-hydrated, visco-

elastic, extracellular matrix comprised of various types of bacterium-derived polymeric

materials, such as cell-wall components and deoxyribonucleic acid (DNA), in which
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pathogens are insulated against antibiotics, as well as host defenses.38 Smoke-mediated

enhancement of biofilm formation by the pneumococcus is preceded, within 15–60 minutes

of exposure, by increased expression of a number of stress response-related genes.39

These include the genes encoding a sensor kinase, known as hk11, and its cognate

response regulator, rr11, which, together, comprise the two-component regulatory system

11, TCS11,39,40 implicated in streptococcal biofilm formation41,42 and resistance to

vancomycin.43 Other genes upregulated following exposure of the pneumococcus to

cigarette smoke include the SP1857 cat eff (cation efflux system protein) and SP2003 abc

(ATP-binding component of an ATP-binding cassette transporter) genes.39 These are likely

to be involved in the expulsion of heavy metal and pro-oxidative, organic chemical toxicants

present in cigarette smoke. Interestingly, the SP 2003 abc gene, has also been reported to

be induced following exposure of the pneumococcus to vancomycin, suggestive of a role for

its encoded ABC transporter in promoting antibiotic multidrug resistance.44

More recently, we have described a second mechanism by which exposure of the

pneumococcus to cigarette smoke promotes antibiotic resistance. This mechanism relates

specifically to macrolide/macrolide-like antibiotics, and involves smoke-mediated

augmentation of expression of the inducible erm(B) macrolide resistance gene.45 This gene

encodes a ribosomal dimethyl transferase enzyme, which abrogates macrolide-mediated

inhibition of bacterial protein synthesis. This results from dimethylation of a critical adenine

nucleotide (A2058) located in the peptidyl transferase region of domain V of the 23S rRNA

component of the 50S subunit of the bacterial ribosome, thereby interfering with the affinity

of members of this class of antibiotics for their microbial target.46,47 Antibiotic resistance

mediated by the erm(B) gene encompasses all types of macrolides (14-,15- and 16-

membered), lincosamides (clindamycin, lincomycin) and streptogramins B.47

In this context, our recent studies have revealed that exposure of an erm(B)-

expressing, macrolide-resistant strain of the pneumococcus (strain 2507, serotype 23F) to

cigarette smoke condensate (CSC) in vitro in the presence of the macrolide antibiotic,



10

clarithromycin, resulted in significant upregulation of expression of the erm(B) gene relative

to that observed in the presence of the antibiotic alone.45 Unexpectedly, exposure of this

strain of the pneumococcus to CSC in the absence of the antibiotic also resulted in

significant upregulation of expression of erm(B), albeit to a lesser extent than that observed

in the presence of clarithromycin alone.45 These findings raise the possibility that CSC-

mediated, spontaneous induction of erm(B) by CSC (in the absence of clarithromycin), as

well as augmentation of clarithromycin-mediated induction of this macrolide resistance gene,

result from a common mechanism activated in response to smoke-related stress.

In this context, it is noteworthy that like strain 172, exposure of strain 2507 of the

pneumococcus to CSC also resulted in upregulated expression of the genes encoding

TCS11.48 Although unproven, it is plausible that induction of both ribosomal methylation and

biofilm formation by CSC may converge on TCS11 as a coordinated stress response to

smoke exposure. This contention is supported by the findings, albeit in bacterial pathogens

other than the pneumococcus, that methylation of ribosomal RNA, like biofilm formation, is

associated with protection against environmental/oxidative stressors in Escherichia coli and

Staphylococcus aureus.49,50  In addition, it is also noteworthy that ribosomal methylation as a

mechanism of antibiotic resistance is not restricted to macrolides, lincosamides and

streptogramins B. This type of mechanism is broadly operative in mediating resistance to

other categories of ribosome-targeted antibiotics, implying that induction of ribosomal

methyltransferases by cigarette smoke exposure may pose the threat of multidrug

resistance.51

The pneumococcus possesses a second major gene-based mechanism of macrolide

resistance, which is mediated via induction of the macrolide efflux protein A-encoding gene,

mef(A).47 However, unlike its erm(B)-expressing counterpart, exposure of a mef(A)-

expressing strain (strain 521, serotype 23F) of the pneumococcus to CSC failed to cause

either spontaneous induction or augmentative induction of the mef(A) gene in the absence or

presence of clarithromycin respectively.45
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In addition to induction of biofilm formation and expression of the erm(B) gene, the

SP2003 abc gene, which is significantly upregulated following exposure of the

pneumococcus to CSC, has also been implicated in antibiotic resistance as alluded to

above. Although the role, if any, of the ABC transporter encoded by this gene in mediating

macrolide resistance remains to be established, its potential involvement in promoting

resistance to vancomycin has been implied in an earlier study.43 The authors of this study

reported that exposure of two different strains of the pneumococcus, one vancomycin-

susceptible (T4, serotype 4) and the other–resistant (Tupelo, serotype 14) to vancomycin (5

µg/ml) for 10 and 20 minutes resulted in altered expression (up- or down-regulated) of 175

genes.43 Of these genes, 19 encoded ABC transporters (of which more than 60 are encoded

by the genome of the pneumococcus).52 However, only two of the ABC transporter-encoding

genes, viz. SP1715 and SP2003, demonstrated prominent upregulation of expression

following exposure to vancomycin in both strains of the pneumococcus at both time intervals

tested.43

Not surprisingly, the aforementioned putative mechanisms of smoke-mediated

antibiotic resistance described for the pneumococcus may be of broader relevance,

encompassing various types of respiratory bacterial pathogens. This contention is supported

by reports that exposure of S. aureus to cigarette smoke is also associated with increased

biofilm formation and virulence, as well as antibiotic resistance.53-55



12

Exposure of both antibiotic-susceptible (A) and erm(B) macrolide resistance gene-

expressing (B) strains of the pneumococcus (depicted as ) to cigarette smoke results in

induction of genes which trigger biofilm formation and expression of an ABC transporter,

seemingly involved in efflux of antibiotics. These mechanisms may attenuate the therapeutic

efficacy of a broad range of antibiotics. In addition, exposure to cigarette smoke also results

in spontaneous induction of the erm(B) gene, as well as augmentation of expression of this

gene following exposure of the macrolide-resistant strain of the pneumococcus to macrolides

and macrolide-like antibiotics, conferring high-level resistance to these agents.

The proposed mechanisms of antibiotic resistance associated with exposure of the

pneumococcus to cigarette smoke are summarized in Figure 1. These are, distinct from the

point mutations described in the genes encoding DNA-gyrase and RNA polymerase
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following exposure of Pseudomonas aeruginosa to mutagens found in cigarette smoke,

conferring resistance to ciprofloxacin and rifampicin, respectively.56

E-cigarettes/vaping and pneumococcal infection

Studies focused on the direct effects of e-cigarette vapors on the pneumococcus are sparse.

However, two studies have reported that exposure of airway alveolar macrophages and

epithelial cells to nicotine-containing vapors promotes changes in these cells, which increase

susceptibility to pneumococcal infection. In the case of alveolar macrophages, exposure to

these vapors results in cytotoxicity,57 while exposure of airway epithelial cells facilitates

attachment of the pneumococcus via upregulation of the platelet-activating factor (PAF)

receptor, the receptor for pneumococcal surface phosphorylcholine.58 In addition, and of

possible relevance to the pneumococcus, exposure of methicillin-resistant S. aureus (MRSA)

to nicotine per se, as well as to e-cigarette vapors, has been reported to augment biofilm

formation and resistance to host-derived antimicrobial peptides such as cathelicidin LL-37.59

Causes and Mechanisms of Antibiotic Resistance

Factors such as immunosuppression, clonal spread of resistant strains of bacterial

pathogens due to excessive use of antibiotics, as well as smoking in the case of the

pneumococcus and possibly other respiratory bacterial pathogens, represent major

contributors to the development of antibiotic resistance. On the other hand, and as

mentioned above, the widespread practice of immunization of the very young in particular,

as well as the elderly, with serotype-restricted pneumococcal polysaccharide conjugate

vaccines, most commonly PCV13 and its predecessor,PCV7, has been associated with

substantial reductions in both the use of antibiotics and development of resistance in some

settings.60,61 These benefits of PCV-based immunization strategies are, however, threatened

by the emergence of antibiotic resistance among non-vaccine serotypes of the

pneumococcus.61 Although incompletely understood, the association of serotype
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replacement with antibiotic resistance has been attributed to elimination of competition by

antibiotic-susceptible vaccine serotypes in the nasopharynx, enabling emergence of

previously suppressed, resistant non-vaccine serotypes.62 In this setting, antibiotic resistance

comes at the expense of reduced fitness of these non-vaccine serotypes.63  This may be

overcome, however, via genetic transfer of metabolic and virulence components from

vaccine to non-vaccine serotypes of the pathogen, conferring both fitness and persistence

on the latter serotypes.63

As recently reported in a study originating from Canada, other potential mechanisms

of PCV vaccine-related antibiotic resistance include differential induction of herd protection

by vaccine serotypes.64 In this context, herd protection conferred by the highly-invasive

serotype 3 of the pneumococcus (represented in PCV13, but not PCV7) has been

disappointing, possibly due to poor, post-immunization opsonophagocytic activity of

antibodies produced in response to the capsular polysaccharides of this strain.65 Poor

immunogenicity appears to be associated with the emergence of the predominant global

clonal complex of serotype 3 of the pneumococcus, CC180, within which the emerging

Clade II exhibits increased virulence and possibly antibiotic resistance.65

Irrespective of the mechanisms that may be operative in the setting of

pneumococcal, non-vaccine serotype antibiotic resistance in particular, the findings of a very

recently reported international whole-genome sequencing study are noteworthy.66 This study

was focused on pneumococcal lineages associated with serotype replacement and antibiotic

resistance based on whole genome sequencing of strains of the pathogen isolated from

children aged <3 years hospitalized with IPD in the pre- and post-immunization periods.66

The authors reported a significant increase in the prevalence of resistance to penicillin in

non-vaccine serotypes in the post-PCV period relative to the pre-PCV13 period (29% vs

21%, P = 0.0016), as well as a corresponding increase in erythromycin resistance (11% vs

1%, P = 0.0031).66  Although indicative of an emerging threat, these findings should,

however, be viewed in the context of a recently reported point-of-prevalence study, which
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reported low, global rates of antibiotic resistance in adult patients with proven pneumococcal

pneumonia, diagnosed within 24 hours of admission to 222 hospitals spanning 54

countries.67 Continental prevalence rates of S. pneumoniae drug resistance were 7.0% and

1.2% for Africa and Asia, respectively, with a corresponding rate of 1% for Europe, South

America and North America, most commonly macrolide (0.6%) and penicillin resistance

(0.5%).67

Genetic Determinants of Pneumococcal Antibiotic Resistance

Genetically determined antibiotic resistance of the pneumococcus, as well as other types of

respiratory bacterial pathogens, is mediated by various mechanisms, most commonly altered

target binding and accelerated efflux in the case of the pneumococcus. Exploitation of these

mechanisms by the pneumococcus results predominantly from horizontal transfer of

antibiotic resistance genes. In this context, bacterial horizontal gene transfer is achieved via

several mechanisms, these being conjugation, transduction and transformation, with the

pneumococcus being particularly adept at acquiring antibiotic resistance genes via

transformation. This may occur either by unidirectional transfer between viable organisms, or

by uptake of naked, fragmented DNA released by disintegrating bacteria, most commonly of

the same strain and species. During the course of transformation, it has been estimated that

fragments of DNA comprising up to ten genes attach to DNA-binding proteins expressed by

competent, recipient bacterial cells, enabling entry of genetic material and integration into

the bacterial genome via homologous recombination.68 Efficient transformation is dependent

on the recipient microorganisms being primed for both competence and expression of

essential DNA-binding proteins.68

Competence has been described as a “transient state marked by a shift in both

transcriptomic and proteomic profiles”.69 In the pneumococcus, acquisition of competence is

under the control of a transcriptomic initiation complex consisting of:  i) the alternative sigma
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specificity factor protein, SigX, known as the master regulator of competence; ii) a

competence co-regulator (activator of SigX) known as ComW, which is responsive to

quorum sensing mechanisms; and iii) RNA polymerase.69-73 Resultant formation of the RNA

polymerase holoenzyme, consisting of the core enzyme and SigX, enables correct

transcription by directing the enzyme to specific sites in the promotor regions of target

genes.69 These cooperative interactions between bacterial RNA polymerase and sigma

bacterial transcription initiation factors have been identified as attractive targets for

development of novel antimicrobial agents, including those with anti-pneumococcal activity.74

Mechanisms involved in promoting resistance of the pneumococcus to various

classes of antibiotics have been covered extensively in several recent reviews.11,47,75-77

Accordingly, only those which mediate resistance to classes of antibiotic commonly used in

the treatment of pneumococcal infection, specifically -lactams, macrolides and respiratory

fluoroquinolones (levofloxacin, moxifloxacin), are covered here.

Resistance of the pneumococcus to -lactam antibiotics

The anti-bacterial action of -lactam antibiotics results predominantly from the irreversible

binding of these agents to one or more of six enzymes involved in the synthesis of the

peptidoglycan backbone of the cell-wall of Gram-positive bacteria.11,75 Inhibition of these

enzymes, known collectively as penicillin-binding proteins (PBPs), results in weakening of

the cell-wall and eventual bacteriolysis. Acquisition of resistance results from horizontal

transfer of genes encoding PBPs which have reduced affinity for -lactams. The resultant

“mosaic” genes generated via homologous recombination confer mostly low-level -lactam

resistance, which, with the exception of central nervous system infections, may be overcome

by administration of high doses of these antibiotics.11,75 In the pneumococcus, resistance to

-lactams is associated most commonly with structural alterations to three PBPs, viz.
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PBP1a, 2x and 2b, occurring predominantly in clinical isolates of the pneumococcus, which

harbour mosaic genes. 11,47,78

Although not recognized as a -lactamase-producing pathogen,79 one study has,

however, described the apparent involvement of a novel metallo- -lactamase in mediating

resistance of strain ATC 49136 of the pneumococcus to ampicillin.80

Resistance of the pneumococcus to macrolide antibiotics

As described above, development of genetically determined resistance of the

pneumococcus to macrolide and macrolide-like antibiotics occurs via transformation. This, in

turn, results in the acquisition of genes, which confer resistance either by enzymatic

modification of target ribosomal antibiotic-binding sites, or by driving antibiotic efflux. In the

case of the former mechanism, expression of the ribosomal, dimethylase-expressing erm(B)

gene results in dimethylation of A2058 situated in domain V of the 23S component of the

large (50S) ribosomal subunit. The consequence is interference with the binding of

macrolides to the inner wall of the lumen peptide exit tunnel, thereby attenuating the

inhibitory effects of these antimicrobial agents on peptide chain elongation.47,77,81 This type of

erm(B) gene-mediated mechanism results in high-level resistance, which is unlikely to be

overcome by high-dose administration of macrolides,77 despite the propensity of these

agents to concentrate intracellularly in eukaryotic cells.82

Two macrolide efflux pumps, macrolide efflux protein A and macrolide efflux protein

E, encoded by the mef(A) and mef(E) genes, respectively, are utilized by the pneumococcus

to expel these antibiotics.76,83 However, unlike resistance mediated via the erm(B) gene,

acquisition of the mef genes only confers resistance to 14- and 15-membered macrolides,

but not to 16-membered macrolides, lincosamides or streptogramins B.47 In addition, the

level of resistance resulting from macrolide efflux is lower than that conferred by the erm(B)

gene.77
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Resistance of the pneumococcus to fluoroquinolone antibiotics

Fluoroquinolones are the only class of antibiotics which target bacterial DNA synthesis, most

importantly, moxifloxacin and levofloxacin, which are known as the “respiratory

fluoroquinolones” due to their potency against bacterial respiratory pathogens, including the

pneumococcus.11,47,76 With respect to their mechanism of antimicrobial action,

fluoroquinolones target the type II class topoisomerase enzymes, DNA gyrase and

topoisomerase IV. These enzymes, each of which is comprised of two subunits (gyrA and

gyrB; parC and parE), promote unravelling of the coiled structure, as well as breakage and

re-ligation, of DNA, which are critical events in bacterial DNA synthesis.84 However, as

mentioned below, acquisition of resistance necessitates stepwise, progressive accumulation

of point mutations in the subunits of DNA gyrase and topoisomerase IV, with those in gyrA

alone or gyrA/parC, conferring high-level  resistance.47,76 Resistance is also associated with

horizontal transfer of the mutated genes.85

Acquisition of resistance to fluoroquinolone antibiotics also results from over-

expression of genes encoding drug efflux pumps, specifically the PatAB ABC drug

transporter,86,87 as well as the Pmra transporter,11 most likely achieved via horizontal gene

transfer.

Non-Antibiotic Strategies to Overcome Antibiotic Resistance

Notwithstanding implementation of strategies targeted at overcoming risk factors for

development of antibiotic resistance such as undiscerning use of antibiotics, smoking,

immunosuppression and under-utilization of vaccines, pharmacological targeting of biofilm

formation remains an attractive strategy to counter this ominous threat. In the case of the

pneumococcus, encasement of this, as well as other types of respiratory pathogen, in biofilm

promotes antibiotic resistance by several mechanisms. These include decreased bacterial

metabolism and growth in the setting of exposure of pathogens to low concentrations of
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antibiotics due to restricted permeation of these agents, a combination of circumstances

which is highly conducive to development of resistance.88 In addition, close proximity of

antibiotic-susceptible organisms to resistant strains facilitates antibiotic resistance via

horizontal gene transfer, while exposure of the pneumococcus to -lactamase-producing

organisms in polymicrobial biofilms may induce passive antibiotic resistance.88

As mentioned in detail in one of our earlier reviews on this topic,88 pharmacological

targeting of bacterial biofilm formation via development of inhibitors of quorum sensing

mechanisms was then, and remains,37,89,90 an attractive strategy to overcome biofilm

formation. More recent strategies, include pharmacological targeting of two-component

regulatory systems involved in initiation of biofilm formation.91 To date, however, the only

clinically available, biofilm-targeted strategy involves administration of nebulized, human

recombinant DNAse1 to patients with cystic fibrosis infected with P. aeruginosa.92 This

enzyme, which targets both bacterial and human DNA, reduces sputum viscosity via

dismantling of both biofilm and neutrophil extracellular traps (NETs).92

Impact of Antibiotic resistance in S. pneumoniae

A number of review articles published over several years has highlighted the emergence of

antibiotic resistance among S. pneumoniae isolates worldwide, describing not only the

epidemiology, mechanisms of resistance and risk factors, but also the clinical relevance and

appropriate approach to antibiotic management.93-98 Emerging resistance has been

documented to all the major classes of antibiotics including -lactams, macrolides and even

fluoroquinolones. Data from the SENTRY Antimicrobial Surveillance Program, a

continuously active global antibiotic resistance surveillance network, describes very

succinctly the changes in antimicrobial resistance that have occurred among S. pneumoniae

isolates between 1997 and 2016,99-101 highlighting the impact of the introduction of PCV

immunization of children on resistance evolution. Initially, between 1998 and 2001 among

US isolates there was a decrease in susceptibility among pneumococcal isolates to
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amoxicillin/clavulanate, penicillin and ceftriaxone (and other antibiotics), followed by

improved susceptibility to beta-lactams during 2002 and 2003, attributed to introduction of

PCV 7.99 However, between 2004 to 2009 antimicrobial resistance among these beta-lactam

antibiotics increased99 and continued to increase further through to 2011.100 The subsequent

increase in antibiotic resistance that occurred a few years after introduction of PCV 7 was

attributed to the emergence of serotype 19A, a serotype not covered by PCV 7, which

expressed antimicrobial resistance.102 However, in more recent years through to 2016,

susceptibility of S. pneumoniae isolates from North America, Europe, the Asia Pacific region

and Latin America has increased for many antibiotics and in all regions, attributable to the

introduction of PCV 13 immunization in 2010.101 However, there has been some debate as

to whether antibiotic resistance is clinically relevant or whether there is a paradox between

the reported in vitro sensitivity and clinical outcomes, with many studies failing to show a

clear impact of antibiotic resistance on outcome, possibly as a consequence of

methodological limitations.93

-lactam resistance

A number of studies over several years has attested to the fact that the levels of penicillin

and cephalosporin resistance in S. pneumoniae are such  that they are unlikely to impact on

beta-lactam resistance and on the outcome of patients with pneumococcal pneumonia.103-110

On the other hand, a few studies have suggested that resistance to beta-lactam agents is

indeed associated with worse outcomes in invasive pneumococcal pneumonia.111-113 Turett

and colleagues showed an independent association between pneumococci with an MIC to

penicillin of > 2µg/ml and mortality; however, 50% of the patients in that study were HIV-

infected and the authors did not adjust for severity of illness.111 Furthermore, only two

patients in that study had actually received penicillin therapy (see discordant therapy below).

Feikin and colleagues documented that when deaths in the first four days were excluded,

mortality was significantly higher in isolates with a penicillin MIC > 4 µg/ml (high level

penicillin resistance) and cefotaxime MIC > 2 µg/ml.113 At least partly because of these
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inconsistencies and the demonstration, using appropriate PK/PD principles, that adequate

serum and tissue levels of parental -lactams and oral amoxicillin could be achieved with

appropriate dosing, the Clinical Laboratory Standards Institute (CLSI) increased the

breakpoints for cefotaxime, ceftriaxone and amoxicillin for non-meningeal pneumococcal

infections initially and subsequently for penicillin.114,115 Yleyjeh and colleagues116 evaluated

10 studies that examined the association between penicillin-non-susceptible pneumococci

and outcome in pneumococcal pneumonia and found a significant difference in the mortality

rate of 19.4% in the penicillin non-susceptible group and 15.7% in the in the penicillin-

susceptible group. The authors indicated that despite these findings, they will not

significantly affect our empiric treatment for CAP as current guidelines recommend using

antibiotics effective against penicillin-resistant pneumococci.114,116

Other studies have suggested that patient-related factors such as older age and

underlying comorbid illnesses,113,117 severity of infection and do-not-resuscitate orders,118

and clinical condition on presentation (shock and multilobar consolidation119) may be more

important in  predicting outcome than antimicrobial resistance.

Clearly antibiotic resistance can only be implicated as a cause of treatment failure if

patients are treated with discordant therapy (therapy with an agent to which the

pneumococcus is resistant). A prospective, international, observational study of 844

hospitalized patients with pneumococcal bacteremia, in which 15% of isolates had

intermediate susceptibility to penicillin (MIC 0.12-1 µg/ml) and 9.6% were fully resistant

(defined as an MIC > 2µg/ml), documented that discordant therapy (defined as receipt for

the first 2 days after the blood sample was obtained for culture of a single antibiotic that was

inactive in vitro against the S. pneumoniae isolated) with the penicillins (penicillin, ampicillin,

amoxicillin-clavulanate), cefotaxime and ceftriaxone was not associated with a higher

mortality.106 However, 11 patients were infected with what was considered to be cefuroxime-

resistant pneumococci and eight of these cases, including all four cases that died, had been

treated with cefuroxime at a dose of 750 mg 8 hourly. (p=0.0175).  It has been indicated that

clinical outcome is worse when in vitro testing suggests that the antimicrobial therapy would
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be ineffective.120 In this respect, an additional study suggested that intravenous cefuroxime

given at a dose of 1500 mg every 8 hours would be effective therapy for bacteremic

pneumococcal pneumonia with penicillin and cephalosporin-resistant isolates, at least for

strains with a cefuroxime MIC of up to 4µg/ml, suggesting that the definition of cefuroxime

resistance was of uncertain clinical relevance (1993 criteria; cefuroxime sodium MIC > 2

µg/ml considered resistant).121 A very recent study from Spain noted that despite an

increasing prevalence of cefotaxime non-susceptible S. pneumoniae there was no evidence

that patients hospitalized with bacteremic CAP and infected with non-susceptible strains had

a worse outcome than patients infected with susceptible strains.122

Thus while bacteriological failures of less active penicillins (ticarcillin) and

cephalosporins (cefazolin, cefuroxime and ceftazidime) have been documented there are

also case reports of apparent failures of the more active cephalosporins.123 One study

documented the occurrence of pneumococcal meningitis in a child with sickle cell anaemia

treated with vancomycin and cefotaxime.124 However, low-dose cefotaxime was used and

the patient was also immunocompromised. High-dose oral and intravenous amoxicillin, as

well as high dose intravenous penicillin, ceftriaxone and cefotaxime, should achieve

successful treatment of infections caused by pneumococcal isolates with penicillin MICs of <

4µg/ml.123 Another case of breakthrough bacteremia and meningitis was seen in a patient

with pneumococcal pneumonia treated with cefotaxime; however, the antibiotic was changed

to cefuroxime on the second day and immunocompromise was not excluded in the child.125

Lastly, failure of treatment of cephalosporin therapy was noted in a child with pneumonia

infected with a highly resistant pneumococcus.126 However, initial treatment was with

cefuroxime, followed by one dose of ceftriaxone followed by oral ceftibuten, which has poor

activity against pneumococci and the patient developed a pleural effusion.

Macrolide resistance

The occurrence of macrolide resistance in S. pneumoniae isolates has been documented for

many years and has recently been reviewed.127 As opposed to -lactam resistance, the
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situation with macrolide resistance is much less clear. While there are studies demonstrating

benefit of macrolides in the treatment of CAP, including macrolide-resistant S. pneumoniae,

the discrepancy between clinical and bacteriological outcomes despite high MICs and

expression of macrolide resistance genes (referred to as the in-vivo in-vitro paradox),128,129

there are also numerous reports of macrolide failure in CAP, with both emergence of

macrolide resistance ,as well as breakthrough bacteremia, in patients with pneumococcal

pneumonia treated with macrolides.130-139 In many of these studies, failure of macrolide

therapy has occurred in the setting of both low-level (efflux mechanism) and high-level

(ribosomal methylation mechanism) macrolide resistance. Cilloniz and colleagues recently

documented that hospitalized patients with macrolide-resistant pneumococcal pneumonia

were not more severely ill on hospital presentation nor had worse outcomes if treated with

guideline-compliant antibiotic treatment regimens.140 Nevertheless, because of increasing

macrolide resistance and documentation of failure with both low- and high-level resistance, it

has been recommended that macrolide monotherapy should not be used for CAP,141 while

others contend that these agents should still be considered for routine use in CAP, most

commonly as part of combination therapy, together with beta-lactam antibiotics, and

particularly in patients with severe CAP and sepsis, at least partly because of their non-

antibiotic, pleiotropic effects.142

Fluoroquinolone resistance

There is also emerging evidence of fluoroquinolone resistance occurring in pneumococcal

isolates.143-145 Fluoroquinolones target mainly DNA gyrase or topoisomerase IV.143 The main

mechanism of fluoroquinolone resistance is the occurrence of mutations in the quinolone

resistance-determining regions (QRDRs) of parC and gyrA, which encode topisomerase IV

and DNA gyrase, respectively.143,146 Fluoroquinolones, which possess dual activity against S.

pneumoniae, are less likely to select for fluoroquinolone resistance than non-dual activity

agents, since in the former, mutations in both DNA gyrase and topoisomerase IV are

required for clinically relevant resistance.143 In general, parC mutations confer resistance to
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ciprofloxacin, but not to levofloxacin or moxifloxacin, while mutations in gyrA or both parC

and gyrA confer resistance to the latter agents.143 Low-level resistance occurs with one-step

mutation in the target genes, whereas high-level resistance requires a second mutation, in

the other target gene.146 Isolates with a single parC mutation are usually reported as being

susceptible to fluoroquinolones, because the MICS are at, or below, the CLSI breakpoints.

Therefore, there is no test that accurately detects the presence of this resistance.

Nevertheless, this one-step mutation increases the likelihood of the development of a

second gyrA mutation, which is then associated with high-level resistance and therapeutic

failure.146 As such, failures of fluoroquinolone therapy have been regularly documented in

patients with pneumococcal respiratory tract infections associated with fluoroquinolone

resistance, with resistance being present either at the beginning of the infection, or emerging

during treatment; risk factors for these infections have been determined in various studies

and these infections have been noted to have a high mortality.146-150

Most of the reported treatment failures have occurred following administration of

either ciprofloxacin or with levofloxacin at a dose of 500mg daily,146,148  which is

understandable given that the pharmacokinetic/pharmacodynamic parameters that predict

the likely clinical response of an antibiotic.143 Fluoroquinolones display concentration-

dependent killing meaning that as the concentrations of these agents increase, so does their

bactericidal activity.143 The pharmacokinetic parameter that is commonly used as a correlate

to bacteriological and clinical response of fluoroquinolones is the AUIC (area under the curve

over the minimum inhibitory concentration), with a ratio of > 30 traditionally considered as

being predictive of a good outcome in pneumococcal infections.143 Ciprofloxacin does not

achieve this breakpoint value and is, therefore, less likely to eradicate pneumococcal

respiratory tract infections. Furthermore, studies by Schentag and colleagues have

suggested that AUICs of over 125 should be targeted since values below 100 are associated

with resistance development, regardless of whether the organism is Gram-positive or Gram–

negative.143,151 We have previously documented that higher doses of levofloxacin of 500mg
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twice daily or 750mg daily, but not a lower dose of 500mg daily, are able to achieve these

higher AUIC levels recommended (>125).152

In summary, a review of the current literature regarding the likely impact of antibiotic

resistance in S. pneumoniae  leads to the same conclusions that have been espoused in

review articles published over the years.123,153-157 In the case of the penicillins,

aminopenicillins and cephalosporins, failures occur mainly with the use of agents that are

poorly active against the pneumococcus, or with the use of doses of ostensibly efficacious

antibiotics with PK/PD parameters that likely predict treatment failure, the latter being

overcome with the use of more appropriate dosing. In the case of the macrolides, and

despite the suggestion that there may be an in vivo / in vitro paradox, failures have occurred

in patients infected with pneumococcal isolates with both low-level and high-level resistance,

such that macrolide monotherapy is not recommended routinely in patients with CAP;

however, the routine combination of a macrolide with standard beta-lactam therapy is

recommended in sicker hospitalized and critically ill patients with CAP. In the case of the

fluoroquinolones, while high-level resistance is likely to be associated with treatment failure

in fluoroquinolone-resistant pneumococcal infections. However, an additional concern is

being able to document those isolates harbouring a one-step mutation, and which are

currently reported as susceptible on MIC testing, because they are more likely to develop a

second mutation during fluoroquinolone therapy, thereby expressing high-level resistance,

which may then be associated with treatment failure.

Impact of vaccination with PCV on pneumococcal antibiotic resistance

One development that has had a very positive impact on pneumococcal antibiotic resistance

and which should ensure the ongoing efficacy of standard antibiotic therapy in patients with

pneumococcal infections, has been the use of pneumococcal vaccines, particularly PCVs.

Mechanisms by which vaccines may impact on antibiotic resistance include firstly, by

eradicating the organisms, particularly the antibiotic-resistant serotypes, that are targeted by

the vaccine and, secondly, by preventing infections, such as otitis media, for which
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antibiotics would usually be prescribed.158 A number of studies has shown a decrease in the

rate of drug-resistant S. pneumoniae infections, in both younger children and older adults

following introduction of PCVs.159-162 In the case of PCV 7, invasive disease caused by

penicillin non-susceptible strains decreased by 81% (95%CI 80-82%) in children under 2

years of age, and by 49% in adults > 65 years.159 Rates of resistance to many other

antibiotics were also documented to decrease, as were the rates of multidrug- resistant

strains.159,160 There has been, however, an increase in resistant disease caused by non-

vaccine serotypes, and in particular serotype 19A as mentioned above.159 Following

introduction of PCV 13, reductions in the rate of 19A infections, as well as infections with

PCV 13 serotypes, decreased further in most age groups.161,162 Clearly, ongoing surveillance

of serotype frequency and antimicrobial resistance is required to assess the impact of

broader us of PCV 13, as well as the use of any newer pneumococcal vaccines that may be

introduced in the future.161,162

Outcome of pneumococcal pneumonia

Despite advances in medicine, particularly the availability of potent antimicrobial

chemotherapeutic agents and even the establishment of intensive care unit (ICU) facilities,

the mortality due to pneumococcal pneumonia remains high. A recent retrospective

observational study in Barcelona, Spain, of hospitalized patients with pneumococcal

pneumonia, conducted over a period of 20 years between 1997 and 2016, which was

divided into four 5-year periods, noted that the 30-day mortality rate was 8% and did not

change significantly between periods.163 There was an increase in admissions to ICU and

need for mechanical ventilation, and although the ICU mortality decreased between periods

one and two, there was no significant difference with adjustments.  Even in the propensity-

adjusted multivariate analysis, 30-day mortality did not change. Another study of critically ill

immunocompetent patients with pneumococcal pneumonia noted an in-hospital mortality of

18.9%.164 Most studies such as these in pneumococcal CAP, as well as many others in all-
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cause CAP, have arbitrarily examined short-term mortality in those patients, such as hospital

mortality or 30-day mortality.163-165

It is only more recently that long-term mortality rates in patients with CAP have been

investigated. These studies have revealed an unacceptably high long-term mortality, such

that an episode of CAP is associated with a higher risk of long-term adverse events in

comparison with age-matched subjects in the general population who have not suffered an

episode of CAP.165,166 Similar findings have been noted in patients with pneumococcal CAP.

One earlier study of long-term survival in patients who had recovered from pneumococcal

CAP noted that mortality was increased for up to 10 years and that the Pneumonia Severity

Index (PSI) score on admission, and the presence of bacteremia, were risk factors

associated with higher mortality.167 Two more recent studies indicated similar findings.168,169

The former study, in patients with invasive pneumococcal disease (IPD) and bacteremic and

non-bacteremic pneumococcal pneumonia, documented that in patients with both non-

pneumonia IPD and pneumococcal pneumonia who survived 30 days, approximately 40%

died within the following 5 years.168 The study documented that even non-invasive

pneumococcal pneumonia (urine antigen test positive) had an impaired long-term outcome

and that the increased long-term mortality was mainly associated with co-morbid disease.

The latter study documented that adult patients who had survived an episode of invasive

pneumococcal pneumonia died before their life expectancy, with only 9% of patients living

longer than their life expectancy.169

While the causes of premature mortality in those who have recovered from a prior

episode of IPD remain uncertain, the establishment of persistent, residual tissue reservoirs

of pneumococcal antigens, particularly in the heart, lung and spleen, has been implicated in

a number of studies.170-179 Indeed, in the case of pneumococcal endocarditis, leakage of pro-

inflammatory, pneumococcal antigens derived from dead and dying organisms has been

reported to persist for up to seven years.177 In this setting of persistent antigenemia, the

interaction of pneumococcal capsular and cell wall components, as well as  nucleic acids,

with specific antibodies and Toll-like receptors expressed on cells of the innate immune



28

system, as well as structural cells, is likely to trigger or exacerbate chronic, mostly sub-

clinical, systemic inflammation.178,179 These events, in turn, predispose for development of a

labile, pro-inflammatory/pro-coagulant phenotype, which may contribute to the pathogenesis

of long-term cardiovascular events and other non-communicable diseases. 178,179

Conclusions

The prevalence of pneumococcal infections appears to have declined significantly among

adults in the US and is largely attributable to comprehensive childhood immunization with

PCV 13 and its associated herd protection, as well as a decrease in cigarette smoking.

However, in many other regions of the world pneumococcal infections are still highly

prevalent, being associated with significant morbidity and mortality. While exposure to

cigarette smoke is a well-recognized, major risk factor for pneumococcal infection and its

associated antibiotic resistance, it is also concerning that emerging evidence is implicating

vaping as a potential risk factor for pneumococcal infection. Although escalating antibiotic

resistance has been a concern globally, clear evidence of a significant impact of current

resistance rates on patient outcomes has not been forthcoming, largely because antibiotic

guidelines for CAP take into account the possibility of antimicrobial resistance. While it is

clear that the use of PCVs has resulted in a decrease in the prevalence of vaccine serotype-

specific pneumococcal infections and their associated resistance, ongoing surveillance is

essential to monitor for non-serotype disease and the possible emergence of antibiotic

resistance in these serotypes.
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