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Abstract

Hypolithic microbial communities (hypolithons) are complex assemblages of phototrophic and

heterotrophic organisms associated with the ventral surfaces of translucent minerals embedded in

soil surfaces.  Past studies on the assembly, structure and function of hypolithic communities have

tended to use composite samples (i.e., bulked hypolithic biomass) with the underlying assumption

that samples collected from within a ‘homogeneous’ locality are phylogenetically homogeneous. In

this study, we question this assumption by analysing the prokaryote phylogenetic diversity of

multiple individual hypolithons: i.e., asking the seemingly simple question of ‘Are all hypolithons the

same’? Using 16S rRNA gene-based phylogenetic analysis of hypolithons recovered for a localised

moraine region in the Taylor Valley, McMurdo Dry Valleys, Antarctica, we demonstrate that these

communities are heterogeneous at very small spatial scales (<5 m). Using null models of

phylogenetic turnover, we showed that this heterogeneity between hypolithons is probably due to

stochastic effects such as dispersal limitations, which is entirely consistent with the physically

isolated nature of the hypolithic communities (‘islands in the sand’) and the almost complete

absence of a liquid continuum as a mode of microbial transport between communities.
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Introduction

Hypolithons are edaphic microbial-dominated communities found adhering to the undersides of

translucent minerals, most typically quartz and marble, embedded in the soil surface.  Such

communities are a prominent feature of hot and cold deserts where quartz pebbles and rocks are

common constituents of desert pavements (Cockell and Stokes, 2004; Chan et al. 2012). These

cryptic niches provide micro-environmental conditions that favour microbial community

development in ‘extreme’ edaphic habitats (Chan et al. 2012, Lebre et al. 2017).   Such favourable

parameters include protection from incident short-wavelength solar radiation and against

desiccation, and the provision of thermal buffering and physical stability (Lebre et al. 2017).

The composition of hypolithic communities has been extensively studied, most intensively in the

Antarctic McMurdo Dry Valleys (Wei et al. 2016; Cowan et al. 2010; Khan et al. 2011, Chan et al.

2013) and the Namib (Namibia) and Atacama (Chile) deserts (Warren-Rhodes et al. 2006, Van

Goethem et al. 2017). Recent deep sequencing of prokaryote (16S rRNA gene) and lower eukaryote

(18S rRNA and ITS genes) phylogenetic markers has shown that hypoliths form distinct communities

depending on the dominant taxa (Cowan et al. 2011). ‘Type I’ hypolithons, the most common, are

morphologically dominated by free-living photoautotrophic cyanobacteria (most commonly

Chroococcidiopsis and Phormidium), but harbour complex heterotrophic microbial assemblages

dominated by members of the phyla Actinobacteria, Proteobacteria, Bacteroidetes and

Acidobacteria (Wei et al. 2016; Pointing 2016).

In desert soil ecosystems, where higher plants are largely or totally absent, hypolithons represent

biological ‘hotspots’ which may make a substantial contribution to key ecosystem services,

particularly carbon and nitrogen cycling. 14C-radiolabelling experiments have suggested that

hypolithic biomass may make a very significant contribution to C sequestration in Canadian High

Arctic deserts (Cockell and Stokes, 2004), while studies have suggested that hypolithons in Antarctic

and Namibian deserts may be the dominant source of nitrogen input in these ecosystems (Cowan et

al 2011b, Ramond et al. 2018).

Little is known of either the rates or pathways of development of hypolithic communities.  Studies

have suggested that hypolithons recruit taxa from the surrounding soil (Makhalanyane et al, 2013),

and that different types of hypolithons represent different steps in hypolith development, with

cyanobacterial dominated hypolithons being the basal developmental stage  (Makhalanyane et al,

2014). However, the kinetics of hypolithic community development is largely unquantified, with

suggestions that the ages of hypolithons in cold slow-growth environments such as the Antarctic Dry

Valleys to be decades or even centuries (Cowan 2014). In turn, a study of the processes driving
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hypolith community development at a global scale using null probabilistic models (Caruso et al.

2011) postulated that hypolith structure at the global scale is dependent on a balance between

deterministic and stochastic forces, which affect different functional taxa in distinct ways. Pointing

and colleagues have suggested a hypolithic community development model (Pointing et al. 2007),

where water availability is a critical driver of community establishment and growth. The implication

for the development of hypolithic communities in desert soil ecosystems is that they will follow a

‘static-step-static’ growth profile, driven by the intermittent nature of rain events in such water-

limited ecosystems.

Here, we have asked a basic, but largely unanswered question: are all hypolith prokaryote

communities the same? Previous studies (Becker et al. 2006; Štursová et al. 2016, Franklin and Mills,

2003) showed that microbial communities can vary at very small scales in temperate soils, but no

such study has been conducted with hypolithons. To this end, we sampled multiple individual

hypolithic communities from localised moraine deposits in the Taylor Valley, Antarctic McMurdo Dry

Valleys. The origins of the moraines in the Lower Taylor Valley are thought to be linked to the last

glacial maximum (approx. 10ky; Vucetich and Robinson 1978). With subsequent slow soil turnover

processes, driven by frost-heave (Bockheim, 2014), that may bring quartz pebbles to the surface for

subsequent hypolithic colonization, it is reasonable to assume that the surface quartz minerals

which are substrates for extant hypolithic communities have been exposed for very long periods

(i.e., multiple decades or even centuries). Using 16S rRNA gene sequencing data from a collection of

30 independent and isolated hypolithons, we demonstrate that hypolithic communities form

taxonomically distinct units at the local scale., In addition, we apply network analysis of taxonomical

and predicted functional interactions, as well as ecological null models, to investigate the ecological

processes driving the observed variation of individual hypolith communities at the small spatial

scale.

Methods

Site description and sample acquisition: Fifteen quartz hypolithon samples were recovered from

each of two sites, approximately 300m apart, during the January 2018 K080 field expedition to the

lower Taylor Valley (New Harbour area), South Victoria Land, Antarctica (Table S1). The two sampling

locations comprised areas of low-lying (3-10m asl) moraine deposits, where the morainal surface

pavements, in which the hypolithons were embedded, consisted of pebbles and coarse sands of very

mixed mineralogy typical of Taylor Valley moraines (principally granite, sandstone, gneiss and

dolerite: Bockheim, 2002; Bockheim & McLeod, 2008; Bockheim et al., 2008 ) (Figure S1).
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Within each site, all hypolithons were recovered within a radius of approximately 500 metres. The

quartz pebbles with the attached hypolithic biomass were transferred into individual sterile Whirl-

Pak bags, stored below 0oC in the field and during transport to South Africa, and at -80oC at the

Centre for Microbial Ecology and Genomics (CMEG), Pretoria South Africa.

DNA extraction and sequencing: DNA from the hypolithon samples was extracted using the DNeasy

PowerSoil Kit (QIAGEN, Germany) with 0.5 g of initial sample material. Extracted DNA was quantified

using the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA), and its quality was checked

by PCR –amplification with 16S rRNA gene specific primers 341F (5’- CCTACGGGAGGCAGCAG-3’) and

908R (5’-CGTCAATTCMTTTGAGTT-3’). Thermocycling was conducted with a 25 l reaction volume

following the protocol recommended by the polymerase provider (New England Biolabs, USA) (initial

denaturation 95°C, 30 sec; 30 X (denaturation 95 °C, 15 sec; annealing 55 °C, 30 sec; elongation 68

°C, 60 sec); final extension 68 °C, 5 min; hold 4 °C). To check for contamination during DNA

extraction, a blank negative control PCR reaction was performed using the kit elution buffer.

Additionally, three samples that did not generate positive PCR signals were discarded. Extracted DNA

from the remaining 27 samples was sent to the MRDNA Lab (Texas, USA) for 16S rRNA v3-v4

hypervariable region sequencing using 2x300 bps PE Illumina MiSeq technology with a read coverage

of 20 000 reads per sample.

Phylogenetic Analysis: Sequenced reads were filtered and assembled using the QIIME2 pipeline

(Bolyen et al. 2019), using DADA2 (Callahan et al. 2016) for read filtering and unique sequence

inference, with a trunc-length (3’-terminus truncation length) of 280 bps for forward reads and 250

bps for reverse reads.   Taxonomy of the resulting assembled reads was carried out using the SILVA

ver132 classifier (Quast et al. 2013) for prokaryotic species (with 99% similarity cut-off).  The

Amplicon Single Variants (ASVs)count table generated by the QIIME2 pipeline was manually curated

to remove ASVs with less than 20 reads across all the samples. This step was performed to minimize

the signal from potential false-positives originating from the sequencing platform. To assess if the

sequencing depth for each sample was adequate, rarefaction curves of the sequence pool were

generated using the Vegan (Oksanen, 2019) package in RStudio. After this analysis, sample H17 was

discarded due to lack of sequencing depth.

Community composition Analysis: Alpha-diversity metrics, beta-diversity metrics and ordination for

the remaining 26 samples were calculated using the Phyloseq (McMurdie and Holmes , 2013) and

Vegan packages in R.  The distribution of relative abundances and alpha-diversity indexes was tested

using the Shapiro test (Royston, 1982), and the significance of difference in phylum relative

abundances was calculated using ANOVA (for normally distributed data) (Chambers et al. 1992), and
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the Kruskal-Wallis test (for non-normally distributed data) (McKight and Najab, 2010). To perform

beta-diversity analyses, the ASVs count table was first rarefied using the sample with the lowest ASV

count (53045 counts) as the reference sample, and counts were log(x+1) transformed. Samples were

clustered into separate groups using the ward. D2 hierarchical method (Murtagh and Legendre,

2014). Beta-diversity between groups was then calculated using the weighted Unifrac distance

metric (Lozupone et al. 2011), and visualized in a Principal Coordinates Analysis (PCoA) plot (Jolliffe

and Cadima, 2016). PERMANOVA (Anderson and Walsh, 2013) was used to test for statistical

differences between sample beta-diversity, while the variation within sample groups was tested

using the analysis of multivariate homogeneity of group dispersions ( -disper) (Anderson, 2006). A

significant -disper value represents significantly different within-group variation in beta-diversity

between groups, which might generate bias when analysing differences between groups. Therefore,

for the PERMANOVA to be a reliable measure of significance of variation between groups, -disper

must be non-significant.  The number of shared ASVs as a function of physical distance between

samples was assessed by measuring zeta-diversity (the degree of shared ASVs between samples) to

evaluate decay over distance (Hui and McGeoch, 2014). For analysis of ‘generalists’ and ‘specialists’,

ASVs were clustered into their representative genera. ‘Generalists’ were manually curated as all

genera present in at least 90% of the samples and in all groups defined by the hierarchical clustering

analysis. The community composed of ‘generalist’ taxa was defined as the ‘core’ community, while

the ‘Specialists’, considered as the the biomarkers for any specific group of hypoliths, were

determined by calculating the log2 change of abundance between groups with the DESeq2 pipeline

(Love et al. 2014), using the p-value threshold of 0.01.

Network clustering and function prediction: Interaction networks of taxa at the genus level were

constructed using the CoNet (Faust and Raes, 2016) plugin in Cytoscape (Shannon et al. 2003). Both

Pearson and Spearman correlation measures, as well as the Bray Curtis and Kullback-Leibler

dissimilarity measures were used to infer synergistic and antagonistic relationships between taxa,

with a p-value threshold of 0.05. The final network was generated from 1000 bootstraps, and the

network was visualized in Gephi with a Fruchterman Reingold layout. Gephi was also used to

calculate the network topology, including number of degrees, betweeness centrality and closeness

centrality. Functional predictions of the genera used to generate the network were done by using

the FAPROTAX (Louca et al. 2016) pipeline, the script of which is available at the developer’s website

(http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Instructions).

Null modelling of phylogenetic turnover: A null modelling approach based on calculations of

between-community mean-nearest taxon distance ( -NTI) and a Raup-Crick dissimilarity metric

incorporating species relative abundance (RCbray) was used to evaluate the relative influence of

http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Instructions).
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deterministic and stochastic processes on community assembly, as previously described (Stegen et

al. 2013). Observed -NTI values that significantly deviate from -NTI null distributions represent

signals for variable selection ( -NTI > 2) and homogenous selection ( -NTI < -2), while those that fall

within the null distribution represent compositional differences that arise from stochastic processes.

The observed RCbray values that significantly deviate from null distributions represent signals for

dispersal limitation (2 > -NTI > -2 and RCbray > 0.95) and homogenizing dispersal (2 > -NTI  > -2 and

RCbray < -0.95). Comparisons that fall within the null expectations of both metrics (2 > -NTI  > -2 and

0.95 > RCbray > -0.95) represent processes that are not dominated by selection or dispersal.  A total of

999 randomizations were used for both -NTI and RCbray calculations. Null model assessments were

performed on the complete dataset, and independently on the core and non-core datasets, with

randomization based on full phylogeny for the complete dataset, and based on the separate

phylogeny for each of the separate sets. The R script for null modelling analysis is available at

(https://github.com/stegen/Stegen_etal_ISME_2013).

The R script for all other analyses is available at (https://github.com/PedroHLebre/Hypolith_script).

Results and Discussion

Hypolith communities are different across small spatial scales

A total of 26 Type I hypolithon communities (Type I; Cyanobacteria-dominated; following the

classification set by Cowan et al. (2010)) were analyzed in order to explore the homogeneity of

hypolithic microbial communities across small (<5m) spatial scales. Of the 20 prokaryotic phyla

identified in the dataset, 9 phyla represented 99% of all assigned ASVs and 12 phyla were ubiquitous

across all hypoliths (Figure 1A). Of these, Cyanobacteria were the most dominant (32.9% mean

relative abundance, +/- 13% s.d.), followed by Proteobacteria (23.6 %, +/- 7% s.d.), Bacteroidetes

(13.5%, +/- 7% s.d.) and Actinobacteria (10.2 %, +/- 9.3% s.d.). Analysis of the datasets at the genus

level indicated that the cyanobacterial genus Nostoc, belonging to the Nostocaceae family,

dominated microbial communities across all samples (20.6%, +/- 14% s.d.)(Figure S2). The

dominance of cyanobacterial reads in the dataset was to be expected, as members of the order

Nostocales have been previously reported as the dominant taxa in both Antarctic hypolithons and

the surrounding soils (Pointing et al. 2010, Khan et al. 2011, Wood et al. 2008). It is important to

note that members of other typically prevalent orders in these environments, such as Oscillatoriales

and Chroococcales, were not detected in this particular dataset. This suggests that either these taxa

are either not as widespread as previously observed, or are not represented in the sequenced pool

of DNA due to differences in methodology compared to previous studies (eg. DNA extraction using

https://github.com/stegen/Stegen_etal_ISME_2013).
https://github.com/PedroHLebre/Hypolith_script).
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PowerSoil Kit vs Phenol-Chloroform used in other studies). Despite the presence of half of the phyla

in all hypolithons, the relative abundance of the dominant phyla (defined as phyla accounting for

more than 1% of total ASV abundance) varied between samples (Figure 1B). This result indicates that

hypolith communities can vary over even short (meter) distances.

Figure 1. Prevalence of phyla in hypolithic communities (A) and distribution of dominant phyla across samples

(B). Total abundance of each phylum for the dataset was expressed as mean relative abundance (the mean of

relative abundances across samples), while the relative abundances of dominant phyla per sample were

calculated as a fraction of total ASV counts for each sample. The dashed red line in (A) represents the

threshold for phyla accounting for more than 1% of the mean relative abundance of the dataset, which were

classified as dominant phyla.
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The degree of community heterogeneity was further reflected in the grouping of the phylogenetic

datasets into four distinct clusters (A, B, C, and D) according to microbial composition differences

between samples, as expressed by weighted unifrac beta-dissimilarity scores (Figure 2).

PERMANOVA analysis showed the clustering to be highly significant (R2 = 0.493, p-value < 0.009),

and not an artefact of intra-group variation, as indicated by the non-significant beta-dispersivity

value ( -disper = 0.281).

Figure 2. Sample clustering according to weighted Unifrac distances (A) and ordination of distances between

samples in a PCoA plot (B).  The four groups resulting from the clustering are labelled as A, B, C and D, and

colored as red, green, blue and purple, respectively. The same color code was used in the PCoA ordination.

Significance between weighted Unifrac distances was calculated using PERMANOVA, and expressed by the

coefficient of determination (R2) and adjusted p-value (p-adj). Intra-group variation in beta-dispersion

(betadisper) was non-significant, which is a requirement for the validity of the PERMANOVA analysis.  Ellipses

on the PCoA plot highlight the clustering of the hypolithon samples into different groups.
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Hypolithon community structure is driven by synergy between different taxa

To explore in more detail the relationships between the hypolithic community sample clusters,

community similarities and differences were assessed by determining “generalists” (i.e., taxa that

present in 90% of samples) and “specialists” (i.e., taxa that were over-represented in a specific

group). This analysis identified 132 genera (of a total of 431) that were present in 22 or more

samples (Figure S3). Functional prediction of this core community based on analysis using the

FAPROTAX database tool (Louca et al. 2016) revealed that, aside from the ubiquitous

photoautotrophic cyanobacteria, several genera predicted to be involved in nitrate reduction and

nitrogen respiration, and ureolyis, were also found to be present (Table S2). The relationships

between these taxa were further inferred by calculating potential interactions between them,

visualized as a network of significant relationships between genera (Figure 3A). Of the 132 core

genera, 105 were found to be significantly correlated (adjusted p-value <0.05), with most

correlations (98%) being classified as synergistic. The network topology was organized around two

principal self-contained clusters dominated by Actinobacteria-Chloroflexi and Verrucomicrobia-

Bacteroidetes-Proteobacteria interactions, respectively. The two principal clusters were only

sparsely connected by both synergistic (n=6) and antagonistic interactions (n=1) between these main

heterotrophic groups.

Surprisingly, cyanobacterial members of the core community were positioned at the periphery of the

network with only a limited number of connections to other taxa, and Nostoc, which accounted for a

fifth of all ASV counts, did not exhibit significant correlations with any other taxa in the core

community. This result suggests that while photoautotrophic cyanobacteria may play an important

role as primary producers and keystone taxa in hypolithic communities, as suggested by several

studies (Lacap-Bugler et al. 2017, Van Goethem et al. 2017, Lebre et al. 2017), they may not be

important determinants of compositional differences in community structure. This is further

emphasized by mapping of the predicted functions of each genus into the network (Figure 3B),

showing that most taxa capable of photoautotrophy were located on the edge of the network, with

low connectivity (average number of interactions = 3.3). One possible explanation for this result

would be the lack of competition between the dominant photosynthetic taxa and the less abundant

portion of the community. By comparison, the functional network suggests that taxa with the

predicted potential for nitrogen acquisition and ureolysis play a prominent role in the trophic

relationships within the core community, as indicated by the high number of connections linking

taxa with these functions within the network. The implication is therefore that N acquisition, rather

than C supply, is the dominant trophic driver of community structuring. Nitrogen metabolism has

been shown to be a key function in hypolithons (Ramond et al. 2018, Cowan et al. 2011b), and it is
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therefore consistent that genera with this metabolic capability would show high connectivity in the

co-occurrence network. However, it is important to note that while they could not be functionally

mapped, four genera in the group of hub taxa (taxa with highest number of connections) belong to

the class Chloroflexia, which is exclusively composed of anoxygenic phototrophic bacteria (Hanada,

2014). This observation suggests that photoautotrophs other than Cyanobacteria may play an

important role in the structuring of the core hypolithic community. Together, the network analysis of

taxonomic and functional interactions within the core community suggests that less abundant taxa

have a disproportionately dominant role in shaping the core hypolithic community structure.

Figure 3. Co-occurrence network of the core hypolithic community, according to the taxonomy (A) and

functional predictions (B) of the genera in the core community.  Co-occurrence analysis was performed using

Pearson. Spearman, and Bray-Curtis correlations, with a p-value threshold of 0.05. The final network was

drawn from a 100 bootstraps using the CoNet plugin in Cytoscape. Genera are represented as nodes, which

are sized proportionally to the number of connections Synergistic and antagonistic connections are coloured as

blue or red, respectively.
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Figure 4. “Specialist” genera in the different hypolithic groups. Log change values were calculated as pair-wise

comparisons between groups, with all values represented in the plot being significant (adjusted p-value <

0.001).

Four phyla were found to be differentially abundant, at a statistically significant level, between the

four different clusters (A, B, C, and D) previously determined from weighted unifrac beta-

dissimilarity scores (Figure S4): Abditibacteriota, Verrucomicrobia, Deinococcus-Thermus and

Planctomycetes. As the average relative abundance for these phyla was below 10%, this result

suggests that the greatest degree of variation between communities occurs in the lower abundance

taxa. A search for “specialist” taxa, defined as taxa that are over-represented in any specific group of

hypoliths, led to the identification of a small number of genera specific to groups A and C. In

particular, group A was found to be the most distinct group, containing 4 of the 7 identified

“specialist” genera (Figure 4).  The over-representation in group A of the Proteobacterial genus

Rhodomicrobium, which is known to contain species capable of phototrophic metabolism (Miot et al,

2009; Wright and Madigan 1991; Ramana et al. 2013) may be particularly significant. Two other

Cyanobacterial genera, Leptolyngbya and Tychonema, were found to be over-represented in groups

A and C, respectively.  The fact that all these “specialist” genera are potentially involved in

phototrophic metabolism, but represent less than 1% of the total genera across all samples
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(therefore are considered to be ‘rare’ taxa), re-enforces the concept that rare taxa might play

important roles in the structure and evolution of microbial communities (Shade et al. 2014).

Stochastic processes explain differences between hypolith communities

The role that physical distance might play in the variation between hypolithic community

compositions was evaluated by assessing the zeta-diversity, which measures the average number of

species shared between sites across the entire sample set.  If distance were to play a significant role

in the clustering of hypolith communities, zeta-diversity should decay linearly as a function of

distance. No decay was observed in zeta-diversity across the sampled distance (Figure S5), indicating

that differences between hypolithon communities are not linearly correlated to the distance

between the spatially separated communities.

To infer the relative roles of stochastic and deterministic processes in shaping community

composition, deviations in phylogenetic turnover across the sample set were calculated using the

null model methodology developed be Stegen et al. (2013) (Figure S6).  The calculated -Nearest

Taxon Index ( -NTI) quantifies the degree to which observed the -Mean Nearest Taxon Distance

between pairs of communities deviates from values expected when selection does not influence

turnover in community composition. Values of -NTI above or below the expected null model (-2 <

-NTInull <2) can be interpreted as evidence for deterministic processes shaping community

composition. In the sample set used in this study, 56% of community turnover was primarily

attributed to homogenizing selection, with -NTI values being below those expected if turnover was

dominated by stochastic processes (-2 < -NTI); i.e., communities were found to be more similar to

each other than would be expected by chance.  This result is attributed to the existence of shared

selective pressures, such as similar micro-environmental conditions provided by the quartz

substrate, and by similar abiotic stresses (such as low aw). By comparison, 39.1% of community

turnover fell within the expected values under the null model, and therefore was considered to be

governed by stochastic processes such as dispersal limitation, homogenizing dispersal, drift or a

combination of these processes. This result is consistent with a study by Makhalanyane et al. (2014),

whereby deterministic processes were postulated to drive community composition of Type I

hypolithons. In turn, comparison of phylogenetic turnover between the core community and the

non-core community (Figure 5) revealed that most turnover in the core community, which is

dominated by cyanobacteria (80% of the turnover), is driven by homogenizing selection, with a -

NTIcore average of -2.5. Conversely, 70% of the turnover in the non-core community is driven by

stochastic processes, with a -NTINoncore average of -1.2. These data suggest that the deterministic
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processes driving hypolith community turnover mostly affect the core community that is

ubiquotously distributed accross hypoliths, while differences between hypolith communities

(represented by the non-core portion of the communities) is driven by stochastic processes.

Together with the non-significant zeta-diversity, these results suggest that the limitations of

dispersal that lead to the stochastic variability of microbial communities in hypolithons apply even at

very small spatial (meter) scales.

Figure 5. -NTI distribution of the core (striped-grey bars) and non-core (white, black-traced bars)

communities. The -NTI range for stochastic processes (-2 < -NTI < 2) is highlighted by the trace red lines,

while the ranges in which most of the -NTI values for core and non-core communities are distributed are

highlighted by the blue and red arrows, respectivelyTo further clarify the stochastic processes that are

likely to play a dominant role in the phylogenetic turnover of communities, the Raup-Crick

dissimilarity (RCbray) of sample pairs with absolute -NTI values below 2 was calculated. According to

Stegen et al. (2013), values of RCbray > 0.95 and RCbray < -0.95 represent turnovers driven by dispersal

limitation together with drift, and homogenizing dispersal, respectively. This analysis (TableS3)

indicated that the majority of stochastic turnover between hypoliths was driven by dispersal

limitation together with drift (92.2%), while only 8.8% of stochastic turnover was driven by drift

alone.
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Figure 6. Model for the evolutionary development of Antarctic hypolith communities. Variation of

communities at the local scale is driven by stochastic processes, while a core “climax” community is

maintained through the effects of selective abiotic and biotic pressures.

The results from this study have led us to propose a model for the evolutionary development of

Antarctic hypolithic communities at the local scale (Figure 6), whereby common abiotic and biotic

stresses such as desiccation, nutrient limitation and inter-taxon competition are strong primary

drivers for the homogenous selection of dominant taxa, such as Cyanobacteria, which might

constitute the core community. By comparison, dispersal limitation is the main stochastic process

driving the differentiation of less abundant, heterotrophic taxa. In turn, differentiation within the

rare taxon fraction of the community might lead to functional differentiation of hypolithons, as

suggested by the enrichment of different taxa capable of phototrophy.  We postulate that local

physicochemical heterogeneity (Becker et al. 2006; Štursová et al. 2016; Zhou et al. 2002), together
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with the limitations in transport due to the absence of a liquid continuum, leads to the differential

small-scale recruitment of taxa by the hypolith community (Makhalanyane et al. 2013).

Conclusions:

In this study, we addressed the question of whether hypolithons, at local scales, share the same

microbial community compositions. This question is relevant to most of the ecological studies of

hypolithic microbiomics, where the assumption of community homogeneity across multiple samples

is inherent. The results in this study show that rather than being homogenous communities,

hypolithons harbour rich and distinct microbial communities, dominated by a core assemblage of

bacteria. Analysis of the possible interactions between taxa suggests that synergy between less

abundant taxa, particularly those with the capacity to photosynthesize and metabolize nitrogen, is

an important driver in shaping the community. The application of null models of phylogenetic

turnover also led us to infer that the majority of community variation between hypolithons is driven

by stochastic effects, more specifically, dispersal limitation.

We acknowledge that the reliance on sequencing data based on short 16S rRNA gene hyper-variable

regions, which has been shown to have several short-comings including the difficulty of assigning

ASVs to species or genera with high confidence (Poretsky et al. 2014) and the use of incomplete

databases for taxonomic assignment (Edgar, 2018), represent limitations in this study, but do not

affect the central conclusions.

In the absence of data on the micro-environment of each hypolithon, we cannot draw definitive

conclusions on the drivers of hypolithon heterogeneity. In addition to the spatial segregation of the

microbial communities, other drivers could also be involved in the evolution of community

heterogeneity. For example, variations in the physical or chemical properties of the over-lying

hypolithic rock substrate, which has been documented in polar and non-polar deserts (Warren-

Rhodes et al. 2013; Cowan et al. 2011), could lead to differences in light penetration and moisture

retention (Schlesinger et al. 2003), which in turn would result different selective pressures being

exerted on the underlying hypolithic community. Alternatively, divergent successional development

(Makhalanyane et al. 2013) of individual communities, possibly due to variations in the micro-

environment, could lead to the spatial heterogeneity described in this study.  Future studies should

complement these findings with more quantitative methodologies such as sequencing of the total

hypolithon DNA and mRNA, combined with the detailed characterization of the hypolithic micro-

environment.
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