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Highlights

•We use a four-state HSMM to study market conditions in the US stock over a century.
•The four hidden states represent bear-, bull-, sidewalk-, and crash-markets.
•The decoded hidden states capture the various historical events since 1885.

Abstract

In this paper, we employ a four-state hidden semi-Markov model, which outperforms a hidden
Markov model, to identify market conditions of the US stock market over the daily period from
16th of February, 1885 to 4th of  June,  2020.  Our  results  indicate  that  the  four  hidden  states
represent bear-, bull-, sidewalk-, and crash-markets, which in turn appropriately capture the
various major historical events during the period of study.
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1. Introduction

Historically, the stock market of the United States (US) has been identified as a leading
indicator for major macroeconomic variables, like metrics of economic activity, inflation and
interest rates (Stock and Watson, 2003; Simo-Kengne et al., 2016; Plakandaras, 2017;
Pierdzioch and Gupta, 2020). Naturally, appropriate modeling of the states of the equity market
is of paramount importance for policymakers, as well as investors, especially at high-frequency.
This is because, one can then use this information in mixed frequency data sampling (MIDAS)
models to produce nowcasts and real-time predictions of the variables that are sampled at lower
(monthly or quarterly) frequencies, such as output growth and inflation (Andreou et al., 2013;
Breitung and Roling, 2015). Against this backdrop, we aim to identify the evolution of the
market conditions of the daily returns of Dow Jones Industrial Average (DJIA) over its entire
available history covering the period from 16th of February, 1885 to 4th of June, 2020.

Market conditions have been studied mostly with Markov-switching techniques (e.g. see,
Babalos et al., 2015, Zhang and Zhang, 2018). One interesting insight from the Markov-
switching models is the number of time-periods that a market condition can last before it transits
to another, with this time interval typically referred to as sojourn time.1 However, one limitation
of Markov-switching models is that the distribution of sojourn time can only implicitly follow
a geometric distribution, which sometimes may not fit financial returns well (Bulla and
Bulla, 2006). As an extension of the classical Hidden Markov model (HMM), the hidden semi-
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Markov model (HSMM) can arbitrarily specify the sojourn time distribution. Given this,
Bulla and Bulla (2006) show that the HSMM outperforms the HMM in the reproduction of the
stylized facts of daily financial returns. Since then, the HSMM has been a prevailing tool to
quantitively identify the market conditions based on the distributional properties of the hidden
states (Lau et al., 2017; Liu and Wang, 2017a; Liu and Wang, 2017b; Apergis et al., 2019). We
refer the reader to Yu (2010) for detailed literature reviews on the HSMM and alternative
applications in this regard. In light of this, we also employ the HSMM model, for the first time
in the literature, to analyze and identify hidden states of the DJIA returns, since its inception
spanning 136 years of daily data. The remainder of the paper is organized as follows: Section
2 outlines the methodology, while Section 3 discusses the data and the empirical results, with
Section 4 concluding the paper.

2. Methodology

The HSMM is based on two coupled processes, the state process { , = 1, 2, … , } and the
observation process { , = 1, 2, … , } .  The  state  process  follows  a  semi-Markov  chain1 ,
which is constructed by an embedded first-order Markov chain with sojourn time distribution.
{ , = 1, 2, … , } is hidden and unobservable, and can only take finite state space, i.e.
{1, 2, … , }. The time series dependence of  is characterized by the transition probabilities
defined as:

, = ( = | , = ) with , = 1 , = 0. (1)

Arranging all possible transition probabilities together into a matrix produces the transition
probability matrix (TPM) with ×  dimension. It should be noted that the diagonal entries in
the TPM of HSMM are all zero. The hidden Markov model (HMM) has the geometric
distribution for the sojourn time. Unlike HMM, the sojourn time in HSMM,

( ) = ( , = , = 0, … , 2| = , ), (2)

can be controlled by any arbitrary distribution.

The observation process { , = 1, 2, … , } is observable, and is generated based on the
state process { , = 1, 2, … , }. Importantly, the observation at time  only depends on the
state at time  via the component distribution,

( ) = ( = | = ). (3)

Bulla and Bulla (2006) provides the likelihood function for the observations modelled by
HSMM. Then the expectation-maximization (EM) algorithm (Baum et al., 1970) is used to
estimate the model parameters in HSMM. Based on the estimated parameters, the unobservable
state process can be globally decoded by the Viterbi algorithm (Viterbi, 1967), which enable
us to reveal the timing and the evolvement of the states over the sample period. For practical
settings, we follow Liu and Wang (2017a) in using the logarithmic distribution for the sojourn
time and the normal distribution for the component distribution, since they are straightforward
to interpret, and the fact that convergence in the EM algorithm can be generally reached. Our
implementation is based on the R package “HSMM” (Bulla and Bulla, 2013).

1 Only non-absorbing states are considered in this study. Additionally, we follow Bulla and Bulla (2006)
to consider the right-censored HSMM, which does not require the assumption that last observation
coincide with the exit of a state.
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3. Data and Empirical Results

Our analysis involves the log-returns of the DJIA over the daily period from 16th of February,
1885 to 4th of June, 2020, with the start and end dates being governed by the availability of data
at the time of writing this paper. The data is sourced from MeasuringWorth:
https://www.measuringworth.com/datasets/DJA/index.php. We first present the model
comparison of the HSMM and the HMM with different numbers of hidden states in Table 1.
The four-state HSMM provides the best fit in terms of log likelihood, and is also the best model
according to the principles of Akaike Information Criterion (AIC) and Bayesian Information
Criterion  (BIC).  We  will  proceed  with  this  best  model,  i.e.,  the  four-state  HSMM,  for  the
remainder of our analysis.

Table 1. Model Comparison

Log Likelihood AIC BIC
2-State HSMM -47747.15 95508.30 95567.93
3-State HSMM -46666.82 93361.63 93480.91
4-State HSMM -46356.25 92758.49 92954.44
2-State HMM -47989.73 95993.45 96053.09
3-State HMM -46739.19 93506.39 93625.66
4-State HMM -46388.95 92823.90 93019.85

Note: The red bold number in italics indicates the best metric for the criteria of model comparison.

Next, Table 2 shows the estimation results of the four-state HSMM. State 1 can be interpreted
as the crash-market because it has an extreme negative mean (-0.320) and the largest standard
deviation (3.423), which typically covers the left tail of the return distribution. State 2 is
characterized by a negative mean (-0.069) and second largest standard deviation (1.467), and
thus corresponds to the bear-market. State 3 has a positive mean (0.072) and the lowest standard
deviation (0.489), which meets distributional properties of the bull-market. Lastly, State 4 has
a mean insignificantly different from zero (t-statistic: 1.147) and the second lowest standard
deviation (0.872), thus capturing the sidewalk-market. The information on sojourn time
confirms our interpretation: the crash-market is typically short-lived with average sojourn time
of 31 days, and the bear-market lasts slightly longer with 52 days on average, while the bull
and the sidewalk markets tend to continue for over half a year (125 days). We have four
observations by examining the TPM: 1) the bear-market always follows after the crash-market;
2) the bear-market can transit to the sidewalk-market (68.9%) and to the crash-market (31.1%),
but it never directly evolves into the bull-market; 3) the bull-market is succeeded by the
sidewalk-market with a probability of 99.2%; and 4) the sidewalk-market is more likely to be
followed by the bull-market (81.2%), rather than the bear-market (18.8%).
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Table 2. Estimation of the 4-State HSMM

State 1 State 2 State 3 State 4

Component
 Distribution

Mean -0.320 -0.069 0.072 0.028
S.D. 3.423 1.467 0.489 0.872
t-statistic -3.183 -1.457 2.233 1.147

TPM

From/To State 1 State 2 State 3 State 4
State 1 (Crash) - 100.0% 0.0% 0.0%
State 2 (Bear) 31.1% - 0.0% 68.9%
State 3 (Bull) 0.7% 0.0% - 99.2%
State 4 (Sidewalk) 0.0% 18.8% 81.2% -

Sojourn
Time

p 0.976 0.986 0.983 0.982

No. of Days 1161 5275 11191 19406

No. of Times 38 102 89 153
Average Sojourn Time 30.553 51.716 125.742 126.837

Note:  is the parameter in the logarithmic distribution with the probability mass function ( ) =

( ) .

Comparing with the existing relevant literature, our results in Table 2 provide some new
insights. First, Liu and Wang (2017a, 2017b) only find three market conditions (bear, bull, and
sidewalk), which is mainly due to the relatively shorter length of the sample periods in their
studies. However, by using over a century of daily data, we find an additional market condition,
namely the crash-market, which has extremely negative mean and substantially large standard
deviation. Second, although our estimation results on the bear-, bull-, and sidewalk-markets in
the US are generally consistent with Liu and Wang (2017b), their study shows that the bear
market is almost certain to be move to the sidewalk-market, while we find that the bear-market
can also be transited to the crash-market. Third, the average sojourn time of the bear-, the bull-,
and the sidewalk-markets in our estimation are modestly longer than those in Liu and
Wang (2017b).

By employing the Viterbi algorithm (Viterbi, 1967), we can globally decode the timing of the
four  hidden  states  over  the  entire  sample  period,  which  in  turn  is  displayed  in  Figure  1.  To
facilitate studying the evolution of the states of the market, we collect the information of the
four hidden states into different sub-periods based on the well-known historical events, as
shown in Table 3. In the 19th century and before World War I (WWI) period, the market was
mainly in the bull or sidewalk phases, with some occasional crashes. In course of the WWI, the
percentage of periods in the bull-market substantially decreased, while the percentage of other
market conditions increased, and in particular the crash episodes. The economy started to
recover after the WWI, during which period there was no crash. Nevertheless, the market was
in tremendous turmoil during the “Great Depression” with nine episodes of crashes, and no
bull-market at all. Intriguingly, the market experienced a “U-turn” since the start of World War
II (WWII), with 1,263 days in the bull-market (out of 1,782 days in total). This can be intuitively
explained by the fact that, WWII largely helped the US to boost its economy. Over the long-
lasting Cold War, the market had relatively lower percentage of time spent in the bear phase,
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and modestly higher percentage in the bull-market. In the pre-Global Financial Crisis (GFC)
period, the market seemed to be normal with similar pattern as observed in the 19th Century,
pre-WWI, and post-WWI. Since then, the market encountered substantial turmoil during the
GFC in 2008 (and the associated “Great Recession”), and the European sovereign debt crisis
(ESDC) in 2010, featured with 10.2% of total days in the crash- and 32.7% in the bear-markets.
In the recent years, the US stock market had gradual recovery with 51.5% of total days in the
bear phase, until another dramatic shock due to the outbreak of COVID-19.

Fig. 1. Global decoding of the four-State HSMM

Note: Upper panel: DIJA index along with the four decoded states; Lower panel: returns of DIJA along
with the four decoded states.
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Table 3. Information of the Four States in Different Sub-Periods

Label P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Famous Event 19 Century Pre-WWI WWI Post-WWI Great Depression WWII Cold War Pre-GFC GFC and EDC Recent
Start 1885-02-16 1900-01-01 1914-07-28 1918-11-12 1929-09-04 1939-09-01 1945-08-16 1991-12-27 2007-02-01 2012-08-01
End 1899-12-31 1914-07-27 1918-11-11 1929-09-03 1939-08-31 1945-08-15 1991-12-26 2007-01-31 2012-07-31 2020-06-04
Total Days 4488 4358 1176 3229 2981 1782 11878 3804 1386 1910

N
o.

 o
f

 D
ay

s

State 1 37 29 30 0 791 11 29 54 142 36
State 2 512 675 217 563 1045 47 887 640 453 197
State 3 1302 1146 34 515 0 1263 4802 941 205 983
State 4 2637 2508 895 2151 1145 461 6160 2169 586 694

Pe
rc

en
ta

ge
 in

 T
ot

al
D

ay
s

State 1 0.8% 0.7% 2.6% 0.0% 26.5% 0.6% 0.2% 1.4% 10.2% 1.9%
State 2 11.4% 15.5% 18.5% 17.4% 35.1% 2.6% 7.5% 16.8% 32.7% 10.3%
State 3 29.0% 26.3% 2.9% 15.9% 0.0% 70.9% 40.4% 24.7% 14.8% 51.5%
State 4 58.8% 57.5% 76.1% 66.6% 38.4% 25.9% 51.9% 57.0% 42.3% 36.3%

N
o.

 o
f

Ti
m

es

State 1 3 3 4 0 9 2 8 5 2 2
State 2 12 17 8 5 14 4 21 10 5 8
State 3 9 14 1 4 0 8 29 9 5 11
State 4 18 27 6 9 4 10 43 14 8 18

A
ve

ra
ge

So
jo

ur
n 

Ti
m

e State 1 12.3 9.7 7.5 - 87.9 5.5 3.6 10.8 71.0 18.0
State 2 42.7 39.7 27.1 112.6 74.6 11.8 42.2 64.0 90.6 24.6
State 3 144.7 81.9 34.0 128.8 - 157.9 165.6 104.6 41.0 89.4
State 4 146.5 92.9 149.2 239.0 286.3 46.1 143.3 154.9 73.3 38.6

Note: WWI denotes the first World War; WWII represents the second World War; GFC is the global financial crisis in 2008; EDC stands for European debt crisis; State 1 is
the crash market, State 2 is the bear market, State 3 is the bull market, and State 4 is the sidewalk market.
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4. Conclusion

In this paper, we employ a HSMM on the DJIA returns covering the period of 16th of February,
1885 to 4th of June, 2020. We find that a four-state HSMM model, with its hidden states
corresponding to bear, bull, sidewalk, and crash markets, fits the data the best when compared
to the version of the model with two and three hidden states. This model also outperforms the
HMM model estimated with the same number of hidden states. Finally, when we analyze the
evolution of  the returns,  our  model  is  appropriately able to  associate  the four  states  with the
various historical events, such as WWI, the “Great Depression” WWII, the Cold War, global
financial and European sovereign debt crises, and the recent outbreak of COVID-19. Given that,
stock market movements act as the leading indicator for macroeconomic variables measured in
lower frequencies, the high-frequency information contained in the hidden states identified by
the HSMM model could be used by policymakers to nowcast the economy based on the MIDAS
models, and investors to conduct timely portfolio allocations

.
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