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Abstract  

Genomic selection (GS) can substantially reduce breeding cycle times in forest trees compared 

to traditional breeding cycles. Practical implementation of GS in tree breeding requires an 

assessment of significant drivers of genetic gains over time, which may differ among species 

and breeding objectives. We present results of a GS study of growth and wood quality traits in 

an operational Eucalyptus grandis breeding program in South Africa. The training population 

consisted of 1,575 full and half-sib individuals, genotyped with the Eucalyptus (EUChip60K) 

SNP chip resulting in 15,040 informative SNP markers. The accuracy of the GS models ranged 

from 0.47 (diameter) to 0.67 (fibre width). We compared a four-year GS breeding cycle 

equivalent to half of a traditional eight-year E. grandis breeding cycle and obtained GS 

efficiencies ranging from 1.20 (wood density) to 1.62 (fibre length). Simulated over 17 years, 

the ratio of the accumulated genetic gains between three GS cycles and two traditional breeding 

cycles ranged from 1.53 (diameter) to 3.35 (wood density). To realise these genetic gains per 

unit time in E. grandis breeding, we show that significant adjustments have to be made to 

integrate GS into operational breeding steps.  

 

 

Keywords: Eucalyptus grandis, molecular breeding, genomic selection, selection efficiency, 

genetic gains 
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Introduction  

Eucalyptus species constitute about 14 million of 261 million hectares of plantation forestry 

(Carle and Holmgren 2008). The genus Eucalyptus has more than 800 different species of 

which “the Big Nine” species E. urophylla, E. tereticornis, E. camaldulensis, E. saligna, E. 

dunnii, E. grandis, E. pellita, E. nitens, E. globulus, and their hybrids support the bioenergy, 

biochemical and biomaterials industries (Shepherd et al. 2011; Stanturf et al. 2013). The 

sustainability of these industries relies on the high adaptability, fast growth and superior wood 

quality of Eucalyptus species in forestry plantations. Climate change is affecting traditionally 

productive forestry plantation areas (Booth 2013; Irland et al. 2001), as are pests and pathogens, 

aggravated by global trade (Wingfield et al. 2008; Wingfield et al. 2015). Faster and more agile 

breeding approaches are therefore needed to ensure the future sustainability of eucalypt forestry 

plantations.  

Traditional forestry tree breeding systems still face challenges, mainly due to the long rotation 

cycles associated with reproductive maturity and the time-to-maturity of commercially 

important traits such as wood quality. Selection of superior families and individuals in these 

tree breeding system primarily relies on the empirical breeding values of valuable traits such 

as tree growth, wood quality and tolerance to biotic and abiotic stresses (Namkoong et al. 1980; 

White et al. 1988). Genetic relatedness is a critical consideration in determining genetic merit.  

Pedigree information in BLUP analysis uses the additive relationships among individuals to 

derive the variance-covariance relationships among all observations when making genetic 

value predictions (Piepho et al. 2008). However, pedigree relationships represent the average 

proportion of shared alleles (at infinite loci) that are identical by descent (IBD), often ignoring 

Mendelian sampling effects among segregating individuals in families. This average 
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proportion leads to an overestimation of genetic parameters, thereby affecting the correlated 

response of the variables (Veerkamp et al. 2011).  

The inclusion of single nucleotide polymorphism (SNP) markers, the most abundant form of 

DNA polymorphism in plant genomes (Agarwal et al. 2008; Mammadov et al. 2012), makes 

tracking of the Mendelian sampling effects of individuals in families possible (Hill and Weir 

2010). Genomic relationship matrices derived from SNP markers accurately estimates the 

genomic proportions that are IBD to capture Mendelian segregation (within families) and 

allows detection of cryptic relationships (between families) and the correction of erroneous 

pedigree records (Hayes et al. 2009). Moreover, the genomic relationship matrix can be 

blended with the pedigree matrices of a much broader set of non-genotyped individuals to 

adjust the pedigree relationship coefficients of the non-genotyped individuals to predict genetic 

merit better, an approach called single-step genomic BLUP (Christensen and Lund 2010; Isik 

et al. 2017; Legarra et al. 2009; Misztal et al. 2013), with applications in tree breeding (Cappa 

et al. 2019; Klapste et al. 2018; Ratcliffe et al. 2017). The blending of pedigree and genome 

markers-derived matrices is a cost-effective approach to maximise the accuracy of breeding 

value predictions in the normally largely un-genotyped tree breeding populations with shallow 

open-pollinated pedigree structures.  

Genomic selection (GS), as a breeding tool, is the prediction of the genetic merit of genotyped 

individuals without phenotypes (defined as genomic estimated breeding values, GEBVs). The 

prediction is based on the aggregate modeling of the genomic and phenotypic information of 

the training population (Meuwissen et al. 2001). In practice, GS approaches maximise genetic 

gain per unit time and cost by predicting breeding values early in the breeding cycle, 

eliminating field testing. GS studies have demonstrated encouraging results in its application 

in many genetic improvement systems, such as livestock (Bouquet and Juag 2013; Garcia-Ruiz 

et al. 2016; Hayes et al. 2008; Luan et al. 2009; Schaeffer et al. 2006; Wiggans et al. 2017; 
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Wolc et al. 2016) and crops (Bassi et al. 2016; Crain et al. 2018; Cros et al. 2019; Haile et al. 

2018; Voss-Fels et al. 2019). GS continues to revolutionise breeding approaches, by not just 

enabling accurate prediction of related individuals, but by allowing complex interrogation of 

genetic and environmental interactions and identifying genomic regions that are stable or 

responsive to specific environments (Crossa et al. 2017).  

In forest trees, GS is of particular benefit due to the extended breeding cycles because of 

delayed reproductive maturity and the need for early selection of late expressing (mature) 

growth and wood quality traits. Grattapaglia et al. (2011) performed the first simulation study 

to demonstrate the potential of GS in tree breeding and highlighted crucial factors to consider. 

Since then, numerous studies have demonstrated GS as a tool for accelerated tree improvement 

(Grattapaglia et al. 2018). GS studies in forest species have shown acceptable prediction 

accuracies for adoption in conifers such as Pinus taeda (Resende Jr et al. 2012b; Zapata-

Valenzuela et al. 2013), Picea glauca (Beaulieu et al. 2014) and Pinus pinaster (Batholome et 

al. 2016; Isik et al. 2015). The reference genome sequence of E. grandis (Myburg et al. 2014) 

and the development of a robust genome-wide SNP genotyping (EUChip60K) chip platform 

(Silva-Junior et al. 2015) have created opportunities to study and apply GS in Eucalyptus 

species and their hybrids. Prediction of genetic merit using GS has performed well in 

interspecific Eucalyptus hybrids (Resende et al. 2012; Tan et al. 2017) where linkage 

disequilibrium (LD) is high, as well as in open-pollinated pure-species breeding populations of 

E. pellita and E. benthamii (Müller et al. 2017). Suontama et al. (2019) was able to demonstrate 

improved breeding value accuracy as well as increased genetic gains in E. nitens solid wood 

breeding population. Whereas, in an elite clonal population of E. globulus Duran et al. (2017), 

was able to demonstrate encouraging predictive ability estimates for wood density and stem 

volume. Predicting genetic merit of individuals earlier in the breeding cycle has the potential 

to increased gains per unit time in trees (Batholome et al. 2016; Li and Dungey 2018; Resende 

5



 

et al. 2017). Adopting GS as an alternative or a complementary tree breeding strategy for  

growth and wood quality traits requires a practical demonstration of its benefits concerning  

traditional tree breeding (TB) approaches.   

In this study, we interrogate the benefits of implementing GS for growth and wood quality  

traits in the context of an established E. grandis breeding programme. First, we evaluated the  

predictive ability of GS based on genome-wide SNP markers. We then analysed the efficiency  

of an accelerated GS breeding strategy compared to the conventional approach. Finally, we  

investigated the genetic gains that can be achieved by GS for growth and wood quality traits in  

E. grandis.   
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Materials and Methods 

Training population and phenotype assessment  

The training population was derived from a series of E. grandis (Hill ex Maiden) breeding trials 

provided by the Mondi South Africa tree breeding programme. The training population is 

composed of 1,548 trees, genotyped and phenotyped from four trials. The genotyped and 

phenotyped individuals per family were selected from Tygerskloof (eight per family), 

Montigny (seven per family) and Port Durnfort (nine per family) trials to span the phenotypic 

range relative to the diameter plot average, whereas, for the Ncalu trial, all available standing 

trees were sampled. The Ncalu trials is a full-sib progeny trial, whereas the Montigny, 

Tygerskloof and Port Durnfort trails are half-sib progeny age-age correlation trials. An 

additional 27 parental selections were also genotyped. The number of related parents between 

the trials ranged from 5 to 40, all progeny were from the same breeding generation. Table S1 

presents the information of the trial designs, environmental conditions, the family relatedness 

as well as summary statistics of the measured growth and wood quality traits. Growth and wood 

quality traits, such as diameter at breast height and tree height were measured at age seven 

using a diameter tape and a Vertex Hypsometer (Haglof, Sweden), respectively. Non-

destructive wood sampling was performed at breast height from bark-to-bark by extracting 22 

mm increment cores and wood shavings. Extractives were removed from the increment cores 

by overnight soaking in acetone after which basic wood density was determined using the water 

displacement method (Tappi methods 258 om-02). Weighted fibre length and fibre width were 

measured using the MorFi Compact Fibre and Shive Analyzer (TachPap, France) from wood 

shavings macerated with a 1:1 solution of acetic acid and 50% hydrogen peroxide for four 

hours at 90°C. Percentage α-cellulose, as well as the syringyl to guaiacyl (S/G) lignin monomer 

ratio, were estimated using near-infrared (NIR) spectroscopy models with the OPUS/QUANT 
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Spectroscopy Software Version 6 (Bruker, Massachusetts) calibrated from E. grandis breeding 

material partially related to the training population (Table S2). The raw phenotypic data was 

used directly in downstream analyses. Pedigree records showed that nine of the seed parents 

were shared between the full-sib and half-sib families as both seed and pollen contributors 

(Table S3). The full-sib progeny in the training population were confirmed with microsatellite 

DNA fingerprinting (Brondani et al. 1998) as presented in Table S3. 

Genotyping 

DNA was extracted from immature xylem and cambium tissue scrapings of mature trees using 

the NucleoSpin DNA extraction kit (Machery-Nagel, Germany). The Eucalyptus 

(EUChip60K) SNP chip as described by (Silva-Junior et al. 2015) available from GeneSeek 

(Neogen, Lansing, MI, USA) was used for genotyping the 1,575 E. grandis trees. Informative 

SNP markers were retained with a call rate over 90% and a minor allele frequency above 0.05 

using the SVS software v8.4.3 (Golden Helix, Inc. Bozeman, MT). The genotype information 

was coded based on the additive gene content model to zero, one, and two representing major 

homozygous (0.48), heterozygous (0.33) and homozygous minor (0.19) alleles, respectively 

(frequencies given in bracket). Missing allele data were imputed based on allelic distribution, 

assuming Hardy–Weinberg equilibrium using the synbreed R package (Wimmer et al. 2012).  
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Statistical analysis  

Linear mixed models analysis  

Due to the differences in progeny types and the trials design of single tree plots in Ncalu with 

15 replication versus multiple plots at single replication in Montigny, Tygerskloof and Port 

Durnfort, we could only consider the site of the trials as our fixed model term in the analysis. 

The G×E random model term was not included because of the low connectedness of the trials. 

Linear mixed models were fitted to estimate variance components and solve for fixed and 

random effects. The matrix notation for the linear mixed models used was as follows: 

𝒚 = 𝐗𝜷 + 𝐙𝒖 + 𝒆 (1) 

where 𝒚 is a vector of measured phenotypes, 𝐗 and 𝐙 are the incidence matrix for the fixed and 

random effects, respectively. The 𝜷 and 𝒖 are the vectors of fixed and random effect 

coefficients, respectively; 𝒆  is the vector of residual effects. The site effect was considered as 

a fixed factor, while tree effect was treated as random. The expectations of 𝒚, 𝐮 and 𝒆 are 

𝑬(𝒚) = 𝐗𝛃, 𝑬(𝐮) = 𝟎 and 𝑬(𝐞) = 𝟎 and the variances are 𝑽𝒂𝒓(𝒚) = 𝐕 = 𝐙𝐆𝐙′ + 𝐑, 

𝐕𝐚𝐫(𝐞) = 𝐑 =  𝐈𝝈𝒆
𝟐, and 𝐕𝐚𝐫(𝐮) =  𝐈𝝈𝒖

𝟐 , respectively, where 𝐈 is the identity matrix, 𝝈𝒆
𝟐 is the 

variance associated with the residuals, and 𝝈𝒖
𝟐  is the variance associated with the random effect. 

The 𝑽𝒂𝒓(𝐮) was scaled by the numerator relationship matrix 𝐀 derived from the pedigree or 

by the matrix 𝐆 derived from the SNP markers. Restricted maximum likelihood approach was 

used to estimated variance components with the ASReml-R 3.0 R package (Butler et al. 2009) 

in the R environment (R_Core 2016).   

The Henderson (1975) mixed model equations were solved based on pedigree (ABLUP) to 

predict the empirical breeding values (EBV) of individuals:  
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[
𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + 𝐀−𝟏𝛌

] [
𝜷
𝒖

] = [
𝐗′𝒚

𝐙′𝒚
]  (2) 

where 𝐀−𝟏 is the inverted additive genetic relationship matrix derived from the pedigree, 𝛌 =

𝝈𝒆
𝟐/𝝈𝒖

𝟐   is the shrinkage factor. The direct genetic value (DGV) of individuals were predicted 

by solving the mixed model equations by substituting the 𝐀−1 matrix with the inverted realised 

genomic relationship matrix 𝐆−𝟏. The genomic relationship was computed as described in 

VanRaden et al. (2008): 

𝑮 =
(𝐙−𝐏)(𝐙−𝐏)′

𝟐 ∑ 𝒑𝒊(𝟏−𝒑𝒊)
  (3) 

where 𝒁 and 𝑷 are two matrices of dimension 𝒏 (individuals) × 𝒑 (markers). The gene content 

values in matrix 𝒁 are −1 (homozygote major allele), 0 (heterozygote), and 1 (homozygote 

minor allele). The allele frequencies in matrix 𝑷 are presented as 𝟐(𝒑𝒊 − 𝟎. 𝟓), where 𝒑𝒊 is the 

allele frequency observed at the marker 𝒊 for all individuals. The variance of alleles summed 

across all loci is  𝟐 ∑ 𝒑𝒊 (𝟏 − 𝒑𝒊).  

The prediction accuracy of empirical breeding values (EBV) from the ABLUP models and 

direct genetic values (DGV) from the GBLUP models were estimated as 

𝒓 =  √𝟏 − (𝑺𝑬𝟐 (𝟏 + 𝑭)𝝈𝒖
𝟐⁄ )      (4) 

where 𝑺𝑬𝟐 is squared standard error of the predictions, 𝝈𝒖
𝟐  is the genetic variance component, 

and 𝑭 is the inbreeding coefficient of the individuals (Gilmour et al. 2015), which is assumed 

to be zero for non-inbred individuals.  

Genomic selection validation  

A condition-free cross-validation approach was implemented to investigate the predictive 

ability of GBLUP models based on the above linear mixed model approaches. The cross-
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validation sampling strategy involved 50 replications of random re-sampling of the whole  

population split into 90% training set (𝑻𝑺, 𝑛 = 1425) and 10% validation set (𝑽𝑺, 𝑛 = 150).  

This sampling mimics the situation in which 90% of the population is phenotyped and  

genotyped, and 10% is genotyped but without phenotypes. Genomic estimated breeding values  

(GEBV) of individuals in the validation set (genotyped individuals without phenotypes) were  

predicted by solving Henderson’s linear mixed model equations in GBLUP. The variance  

components were fixed in the cross-validation analysis. The accuracy of the genomic selection  

models was determined as the correlation (𝒓𝑮𝑬𝑩𝑽:𝑬𝑩𝑽) between EBV and the GEBV. The  

prediction accuracy of the training set was determined as the correlation (𝒓𝑮𝑬𝑩𝑽:𝑫𝑮𝑽) of the  

GBLUP model predictions (DGV) with the GEBV.    

Genomic selection efficiency  

Genomic selection efficiency determines the effectiveness of the selection response achieved  

by the adoption of a GS breeding strategy versus the TB strategy. The selection response for  

GS was presented as the ratio between the selection accuracy (𝒓𝑮𝑬𝑩𝑽:𝑬𝑩𝑽) of the GS strategy  

and its breeding cycle time (𝒕𝑮𝑺), whereas the selection response for TB is obtained as the ratio  

between the breeding value prediction accuracy and its breeding cycle time (𝒕𝑻𝑩). The relative  

GS efficiency, in turn, was calculated as the ratio between GS and TB selection responses  

(Grattapaglia et al. 2011).   

𝑮𝑺𝑬 = (
𝒓𝑮𝑬𝑩𝑽:𝑬𝑩𝑽 𝒕𝑮𝑺⁄

√𝟏−(𝑺𝑬𝟐 (𝟏+𝑭)𝝈𝒖
𝟐⁄ ) 𝒕𝑻𝑩⁄

)  (5)  
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A sliding scale of GS breeding cycle times from three to nine years was used to simulate and 

compare the relative GS efficiency to that of TB cycle, which takes eight years to complete for 

E. grandis.  

    

Genetic gains 

Variance components were fixed when solving the linear mixed models to estimate EBV, DGV 

and GEBV for genetic gain calculations on the same scale. The expected genetic gain (%) for 

each of the traits was estimated by selecting the top 10% of individuals from the population 

expected to contribute to the next generation.  

%𝑮 = (
𝟏

𝒏
∑ 𝑩𝑽𝒏

𝒋=𝟏
𝒊𝒋

𝝁𝒊⁄ ) ∗ 𝟏𝟎𝟎  (6) 

where 𝝁𝒊 is the population mean for trait 𝒊 and 𝑩𝑽𝒊𝒋 is the breeding value for individual 𝒋 for 

trait 𝒊. The genetic gains for GS and TB were simulated over 17 years, accounting for all 

breeding operations, including nursery activities (Fig. 3). We assumed that the genetic gain is 

fixed at 10%, and the performance of GS is the same in every breeding cycle. The proposed 

10% increase in genetic gains every breeding cycle corresponded with reported generational 

gains of E. pellita (Leksono et al. 2008) and E. grandis (Verryn et al. 2009). The ratio of the 

expected genetic gains accumulated over the 17 years for GS versus for TB should indicate the 

genetic gains benefit per unit time of GS over TB. 
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Results  

Genetic parameters and relationship 

A total of about 15,040 informative SNP markers were retained with 0.7% of the SNP marker 

alleles missing and imputed. The genomic relationship matrix was able to identify 63 selfed 

individuals from half-sib families with a coefficient of relationship greater than 0.75. The 

correction of these individuals in the pedigree resulted in a mean inbreeding coefficient 

increase from 1.0000 to 1.0041 (Table 1). We observed lower than expected heritability 

estimates for growth and wood quality traits such as diameter (0.06), height (0.05) and cellulose 

(0.05) with the ABLUP models, with higher heritability estimates for wood quality traits such 

as S/G ratio (0.44) and fibre width (0.67) (Table 2). The GBLUP models resulted in increased 

heritability estimates for both growth and wood quality traits with the highest increase for wood 

density (0.18 to 0.33) and the lowest for S/G ratio (0.44 to 0.45) (Table 2). However, the 

heritability for fibre width decreased from 0.67 to 0.58. Pairwise Pearson correlations of the 

EBV of the growth and wood quality, as well as their distributions, are presented in Fig S1. 
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Table 1 Summary statistics of the pedigree and realised genetic relationship matrices. The  

corrected pedigree includes a revision of 63 (7%) individuals identified as selfs in the half-sib  

families (coefficient of relationship > 0.75) based on the genomic relationship matrix.   

  Minimum Maximum Mean 

Uncorrected Pedigree    

Coefficient of relationship  0.0000 0.5000 0.0202 

Inbreeding coefficient  1.0000 1.0000 1.0000 

Corrected Pedigree    

Coefficient of relationship  0.000 1.0000 0.0199 

Inbreeding coefficient  1.000 1.5000 1.0041 

Genomic Relationship    

Coefficient of relationship  -0.2631 1.2085 -0.0008 

Inbreeding coefficient  1.0884 1.6258 1.2324 

  

  

Table 2. Genetic variance components. The additive genetic (𝜎𝑢
2), and residual (𝜎𝑒

2) variance  

components and narrow-sense heritability (ℎ2) estimates and their standard errors (𝑠𝑒) for the  

growth and wood quality traits from the ABLUP and GBLUP models.  

  ABLUP  GBLUP  
 

𝝈𝒖
𝟐  𝝈𝒆

𝟐 𝒉𝟐(𝒔𝒆) 𝝈𝒖
𝟐  𝝈𝒆

𝟐 𝒉𝟐(𝒔𝒆) 

Fibre length 0.001 0.003 0.17 (0.055) 0.001 0.003 0.22 (0.035) 

Fibre width 0.774 0.382 0.67 (0.093) 0.652 0.465 0.58 (0.036) 

Cellulose 0.190 3.362 0.05 (0.026) 0.481 3.084 0.13 (0.031) 

S/G ratio 0.020 0.020 0.44 (0.085) 0.020 0.024 0.45 (0.039) 

Density 249.283 1101.067 0.18 (0.075) 440.855 903.703 0.33 (0.040) 

Diameter 1.048 16.520 0.06 (0.032) 1.597 16.037 0.09 (0.030) 

Height 0.690 12.049 0.05 (0.026) 1.099 11.646 0.09 (0.027) 
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Genomic selection accuracy and expected genetic gains  

The use of the genomic relationship matrix resulted in an average increase of 7% in the 

breeding value prediction accuracy of DGV (ranging from 0.81 to 0.94) compared to the EBV 

(ranging from 0.76 to 0.87) across all traits (Table 3). This resulted in an average increase of 

24% in the expected genetic gain of the growth and wood quality traits for DGV compared to 

EBV (Fig. 1). This suggested that using genomic realised relationship is efficient to capture 

true genetic relationships. The genetic gains of GEBV are on average 7% lower compared to 

DGV; however, still higher than the EBV across all traits except for cellulose and diameter, 

which were marginally lower (Fig. 1). The accuracy of the GS model (𝒓𝑮𝑬𝑩𝑽:𝑬𝑩𝑽) was 

calculated as an average of the 50 cross-validation folds ranging from 0.54 (density) to 0.67 

(fibre width), whereas the prediction accuracy of the training set of the GS model (𝒓𝑮𝑬𝑩𝑽:𝑫𝑮𝑽) 

ranged from 0.86 (diameter) to 0.98 (S/G ratio) (Fig. 2). 

 

Table 3 The average prediction accuracy (r) of the estimated breeding value (EBV) and 

direct genetic value (DGV) for the growth and wood quality traits. The range of the 

prediction accuracy and the standard deviations are presented.  

  
𝒓𝑬𝑩𝑽 𝒓𝑫𝑮𝑽 

Accuracy Min-Max Std.dev Accuracy Min-Max Std.dev 

Fibre length  0.81 0.71-0.96 0.039 0.87 0.77-0.97 0.030 

Fibre width 0.92 0.71-0.99 0.015 0.94 0.84-0.99 0.016 

Cellulose  0.76 0.71-0.92 0.034 0.84 0.71-0.96 0.034 

S/G ratio 0.87 0.71-0.99 0.024 0.92 0.81-0.98 0.021 

Density 0.81 0.71-0.97 0.038 0.89 0.79-0.98 0.026 

Diameter 0.77 0.71-0.92 0.035 0.82 0.66-0.94 0.037 

Height  0.76 0.71-0.92 0.035 0.81 0.65-0.94 0.037 
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Fig. 1 The genetic gains for growth and wood quality traits. The gains were estimated from 

selecting the top 10% individuals from the EBV (white), DGV (grey) and GEBV (black) 

predictions for the individual traits. The variance components from the models were fixed in 

solving the mixed models 
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  Fig. 2 Genomic selection accuracy (r) scatter plots for growth and wood quality traits for 

E. grandis. Depicted by the grey dots is the relationship between DGV (x-axis) and GEBV (y-

axis) demonstrating the accuracy of the training set, while red dots show the relationship 

between EBV (x-axis) and the GEBV (y-axis) demonstrating the accuracy of the validation set 
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Genomic selection efficiency and genetic gains  

The relative efficiency of GS compared to TB cycles, considered the selection responses of  

both breeding systems in a determined period (17 years), taking into account all operational  

breeding steps in the breeding cycles. We showed that for E. grandis, we could complete two  

8-year conventional breeding cycles over 17 years, and three 4-year GS breeding cycles in the  

same period including a full-sib clonal trial to validate and update the GS model (Fig. 3). For  

E. grandis, a 4-year GS breeding cycle necessitates flower induction treatments in a non-trials  

environment to enable controlled pollination between GEBV selected individuals. With a 4- 

year GS breeding cycle (seed-to-seed), the relative efficiency of the GS strategy was higher  

than an 8-year TB breeding cycle, ranging from 1.20 (wood density) to 1.62 (fibre length) (Fig.  

4). Note that GS predictions did not consider the actual genetic and phenotypic correlations of  

the traits at half-rotation (4 years) versus full-rotation (8 years), because the training and  

updating of the GS model would use full-rotation phenotype data for implementation (Fig. 3).  

However, should the GS strategy take 5 years to complete the breeding cycle, then the relative  

efficiency for traits was lower, ranging from 1.17 (fibre width) to 1.29 (fibre length), with wood  

density not efficient at 0.96 (Fig. 4). The relative efficiency of GS compared to TB diminished  

with increasing GS breeding cycle time, underscoring the significant effect of reproductive  

biology (seed-to-seed) on the feasibility of implementing GS in E. grandis.   

The accumulated genetic gains as a benefit of the TB strategy over the 17 years ranged from  

3.0% (cellulose) to 15.5% (diameter), whereas for the GS strategy it ranged from 4.7%  

(cellulose) to 23.8% (diameter) (Table 4). The genetic gains ratio, which is the benefit of GS  

compared to the TB over the 17 years ranged from 1.53 (diameter) to 3.35 (wood density)  

(Table 4), suggesting that there was an improved benefit in genetic gains over the 17 years  

with GS compared to a TB approach in E. grandis.   
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Table 4 The ratio of the genetic gains of genomic selection (GS) compared to traditional 

breeding (TB) accumulated over 17 years. The conditions of the simulation over the 17 years 

are a constant 10% increase in the percentage of genetic gain every breeding cycle and similar 

performance of GS Model A every breeding cycle.  

Traits 
Traditional breeding (TB) Genomic selection (GS) Genetic gain  

ratio GS/TB   Cycle1 Cycle2 Total Cycle1 Cycle2 Cycle3 Total 

Fibre length 3.6 4.0 7.6 3.7 4.1 4.5 12.4 1.62 

Fibre width 1.7 1.9 3.6 2.7 2.9 3.2 8.8 2.47 

Cellulose  1.5 1.6 3.0 1.4 1.6 1.7 4.7 1.55 

S/G ratio 4.8 5.2 10.0 5.1 5.6 6.2 16.9 1.69 

Density 1.9 2.1 4.0 4.1 4.5 4.9 13.4 3.35 

Diameter 7.4 8.1 15.5 7.2 7.9 8.7 23.8 1.53 

Height 5.3 5.8 11.1 5.3 5.9 6.5 17.7 1.60 
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Fig. 3 Comparison of traditional and genomic selection breeding cycles over a 17 year 

period for E. grandis. (a) Two complete traditional eight-year TB cycles and (b) three 

complete four-year GS breeding cycles with a full rotation full-sib clonal trial to validate and 

update the current GS model. GS model A predictions are performed in year 1, 6, and 12, with 

the updated model (GS model A+B) from the control pollinated clonal progeny field trials used 

for prediction in year 17  
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Fig. 4 The relative efficiency of GS overtime for the growth and wood quality traits  

compared to the eight-year TB cycle. GS efficiency decreases with the increase of its  

breeding cycle times. The grey dotted line indicates the intercept between the earliest time point  

(x-axis) to achieve reproductive maturity with flowering induction treatments under non-trial  

conditions and when the 8-year TB cycle is as efficient as the GS breeding (y-axis). Where the  

relative efficiency of GS is better than the TB, then the y-axis is >1.0, and when GS is less  

efficient than the TB, then the y-axis is <1.0  
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Discussion  

The benefits of genomic selection are well documented foremost the acceleration of breeding 

cycles, and improvement of the accuracy of breeding values. Genome-wide DNA markers have 

also enabled better estimation of genetic parameters compared to pedigree records (Klapste et 

al. 2014). The sustained decrease in genotyping cost means that more innovative and complex 

strategies can be explored with GS approaches pursuing different breeding objectives 

(Grattapaglia et al. 2018). Such strategies may include regular updating of GS models to ensure 

their continued efficacy across generations, improving the accuracy of marker-trait 

associations and developing GS models that perform across multiple and changing 

environments. In this study, we investigated the use and practical implications of implementing 

GS strategies in an operational E. grandis breeding programme under realistic conditions 

including the challenge of using individual trees from unbalanced trials as opposed to a clonally 

replicated training population. The study is unique in that it demonstrates in practice the actual 

operational breeding cycle times required for the implementation of GS strategies compared to 

traditional breeding strategies. For this to happen, vital adjustments to operational breeding 

steps are required to accommodate and realise the benefits of adopting a GS breeding strategy 

for E. grandis.  

In our training population, the heritability estimates of diameter (0.05) and height (0.06) were 

lower than expected for E. grandis. Harrand et al. (2009) previously reported heritability 

estimates of 0.16 and 0.14 for diameter and height, respectively, in E. grandis. The low 

heritability estimates observed in our study could be attributed to experimental design 

inefficiency due to the unbalanced trial design, resulting in the increases of the residual errors. 

Nevertheless, the use of the genomic relationship matrix resulted in higher and more precise 

heritability estimates (Table 2), higher breeding value prediction accuracies (Table 3) and 
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higher genetic gains (Fig. 1) for growth and wood quality traits compared to the pedigree  

relationship matrix.    

The prediction accuracy of the GS models for growth and wood quality traits ranged from 0.47  

to 0.67 (Fig. 2). The accuracies shown in this study are similar to those obtained in GS studies  

of other forest trees, for example, growth and stem-form in maritime pine Pinus pinaster  

ranging from 0.54 to 0.65 (Batholome et al. 2016) and from 0.39 to 0.49 (Isik et al. 2015).  

Similar accuracies were observed in the selection of E. globulus clones for density (0.60) and  

volume (0.73) (Duran et al. 2017). The prediction accuracy of disease, growth and wood quality  

traits of Pinus taeda breeding ranged from 0.20 to 0.46 (Resende Jr et al. 2012a). The genetic  

gains from the GEBV were lower than the DGV but higher than that of the EBV (Fig. 1). The  

genetic gains from GEBV are lower than that from the DGV, because of the lower GS model  

prediction accuracy, but higher than that of the EBV because of the improved average breeding  

value prediction accuracy (ranging 0.81 to 0.87) and heritability estimates associated with the  

genomic relationship matrix. Together, these results suggest that there is sufficient GS  

prediction accuracy as well as improved genetic gains over pedigree to justify the  

implementation of GS strategies in E. grandis breeding.   

Next, we investigated the relative efficiency of adopting the GS breeding strategy in E. grandis  

using simulation. We took into account the operational breeding steps and the respective  

breeding cycle times required for a current TB strategy versus the proposed GS breeding  

strategy (Fig 4). One TB cycle takes eight years (full-rotation) for E. grandis. There is a strong  

correlation between growth and wood quality trait measurements at half-rotation vs full- 

rotation (Luo et al. 2010; Osorio et al. 2003; Rweyongeza 2016; Wu et al. 2007). Age-age  

genetic correlations higher than 0.90 have been reported in E. nitens for growth traits such as  

heights, diameter and volume, as well as basic density (Greaves et al. 1997). Although E.  

grandis can reach reproductive maturity at four years (half-rotation) under experimental (field  
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trials) conditions, the proportion of these individuals is small. Therefore, there is a need to wait 

until year eight to increase the percentage of flowering individuals so that most of the chosen 

selections have seed to turn over the generation. The GS breeding cycle should take four years 

incorporating all the necessary adjustments to advance GEBV selected seedlings into the next 

generation (Fig. 3) because, under non-trial conditions, flowering precocity in Eucalyptus 

species can be enhanced with growth regulators such as paclobutrazol (Griffin et al. 1993; 

Hasan and Reid 1995; Williams et al. 2003). In the case of E. grandis, flowering can be induced 

well within four years. This means that a GS strategy can be implemented with a plausible 

four-year seed-to-seed breeding cycle. Therefore, the GS strategy, together with accelerated 

flowering, can produce seedlings with predicted GEBVs, unlike TB, where seedlings from 

early flowering may not have EBVs. A four year GS breeding cycle would represent a 50% 

reduction compared to the traditional breeding cycle as simulated by (Grattapaglia et al. 2011). 

The operational adjustments required for GS approaches will differ when considering different 

species, breeding objectives, reproductive biology, propagation requirements and 

performances of seedlings vs clones to realise the expected accelerated gains per unit time (Isik 

2014; Li and Dungey 2018; Resende et al. 2017). In our projection, the four-year GS breeding 

cycle will result in a relative efficiency ranging from 1.20 to 1.62 for growth and wood quality 

traits compared to the eight-year TB breeding cycle of E. grandis (Fig. 3). Thus far, the GS 

breeding study has demonstrated encouraging GS prediction accuracy for growth and wood 

quality traits, higher genetic gains, and higher efficiency compared to a TB strategy.  

Over the full 17-year period, the predicted ratio of the accumulated genetic gains for the GS 

and TB cycles range from 1.53 to 3.35, demonstrating the benefit of GS in terms of increased 

gains per unit time (Table 4). There is a realistic expectation that the cost of DNA isolation 

and operational expenses, including infrastructure maintenance, will increase with inflation 

over time. However, despite the need for repeated genotyping over the generations to update 

24



 

the GS model, the cost of genotyping will reduce as high-throughput technology evolve over 

the 17 years, approaching zero compared to phenotyping cost. Our results suggest that a GS 

breeding strategy can be implemented for E. grandis and is likely to realise the expected genetic 

gains per unit time. However, it will be important to manage the significant adjustments and 

additional cost of operational breeding steps required to accommodate the GS strategy, as these 

may increase the cost per unit genetic gain in the short term, but will be offset in the longer 

term by increased profits at the mill. 

The increased cost per unit genetic gain does come with additional benefits in that the TB and 

GS breeding strategies can advance two separate, but complementary crucial breeding 

objectives, which are to maintain genetic diversity and accelerate genetic gains, respectively. 

Current breeding strategies combine these two breeding objectives, mainly to maximise 

resource allocation. However, when the two objectives are separated, proper attention can be 

given to maximize their respective outputs. For example, the proposed three control-pollinated 

GS breeding cycles compared to the two open-pollinated TB cycles will more rapidly 

accumulate favourable alleles. The control pollination strategy embedded in the GS breeding 

approach should allow mating designs that maximise gains while limiting inbreeding, increase 

population LD, and allow controlled infusion of genotypes from the TB breeding cycle into the 

GS breeding cycle. Controlled pollination is essential for developing desirable training 

populations for GS, in that it confines allelic diversity within the training population (Habier 

et al. 2007; Rutkoski et al. 2015). The rapid development of a deep full-sib pedigree within a 

GS strategy has the potential to surpass the benefit provided by genome-wide markers in 

predicting genetic merit (Batholome et al. 2016). The replicated clonal full-sib progeny field 

trials running concurrently with the GS approach simulated in this study will serve to update 

and validate the GS model for genotype-by-environmental interactions. We have only 

highlighted the breeding implications of GS in E. grandis in this study. However, it is important 
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to note that the GS strategy will realize commercial products at least four years earlier than the 

TB approach offering an opportunity to recoup some of the investments required for the 

practical implementation of GS.  
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Conclusions and future prospects  

The use of genome-wide DNA markers presents multiple advantages over shallow pedigree. 

These benefits include more accurate estimates of genetic relationships among individuals, 

higher and more precise heritability estimates, improved breeding value prediction accuracy 

and increased genetic gains. Significant practical adjustments to the TB cycle are required to 

realise the efficiency of GS in E. grandis. Enhanced benefits in the form of gains per unit time 

are achieved through the shortened operational breeding cycle of GS, mainly by overcoming 

the reproductive limits such as the time from unimproved seed to improved seed.  

Looking forward, GS will become a common practice that will provide breeders with much 

more critical information to achieve breeding goals and produce elite clones for deployment. 

More sophisticated analysis models will be needed to help breeders accurately compute all of 

the information gained from interactions between the genome, phenome and the environment. 

It is important that practical studies like this assess tree breeding programs not only to inform 

the research objectives of tree breeders but also strategic decisions for managers.   
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Supplementary Figures and Tables  

  

  

Fig. S1 Relationship of estimated breeding values (EBV) of the growth and wood quality  

traits. The lower triangle shows the scatter plots between the traits with a fitted linear  

regression (red), the distribution of the traits are shown on the diagonal, and the upper triangle  

provides the Pearson correlations (r) between the traits (H0: r = 0).   
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Table S1 Tabular view of the plant materials and sites for the E. grandis study population.  

Trial design, environmental conditions, overlap in families and summary statistics of measured  

phenotypes are presented.   

 Mistley 

(CSO) 

Ncalu 

(NCA) 

Montigny 

(MNT) 

Tygerskloof 

(TYG) 

Port Durnfort 

(PDF) 

Environment       

Latitude (South) 29⁰ 36' 30⁰ 20' 32⁰ 10' 31⁰ 16' 27⁰ 47' 

Longitude (East) 30⁰ 22' 30⁰ 08' 28⁰ 35' 27⁰ 47' 27⁰ 47' 

Altitude (m) 1023 1134 47 1118 32 

MAP (ml) 832 809 1086 785 1454 

MAT (⁰C) 17 16 21 17 21 

MAT min. (⁰C) 5 4 11 4 11 

MAT max. (⁰C) 25 25 29 26 28 

Trial design       

Plot design Single Single Block Block Block 

Progeny type Parents Full-sib Half-sib Half-sib Half-sib 

Tree per plot design 1 1x1 10x10 10x10 10x10 

Families (Controls) 30 88 (5) 49 40 20 

Replications 10 15 1 1 1 

Number of plots 300 1395 49 40 20 

Genotyped trees 27 709 343 320 176 

Phenotyped trees  709 343 320 176 

Family overlap      

Mistley  27 9 8 6 

Ncalu   8 7 5 

Montigny    40 20 

Tygerskloof     18 

Traits  n Min. Max. Mean Std.dev 

Fibre length (mm) 1528 0.46 0.93 0.73 0.06 

Fibre width (µm) 1528 15.86 23.52 19.70 1.07 

α-Cellulose (%) 1538 36.00 54.10 46.06 2.08 

S/G ratio  1538 1.26 2.77 2.14 0.22 

Basic wood density 

(kg.m-3) 1537 278.41 574.68 391.03 40.07 

Diameter (cm) 1539 4.80 28.30 16.49 4.60 

Height (m) 1539 7.90 30.90 20.74 4.76 
MAP – mean annual precipitation. MAT – mean annual temperature. Footnote: The effective population size is 47.5, 

ranging from 21.9 for the full-sib trial to 46.3 for the half-sib trials. We used the formula described by Kimura, M., and Crow, 

J. F. (1963) for monoecious diploids: 𝑵𝒆 =  
𝑵𝒌−𝟐

𝒌 − 𝟏 + 
𝑽

𝒌

  where 𝒌 is the mean number of progeny per parent, 𝑽 is the variance of 

the number of progeny per parent and 𝑵 is the number of parents. Reference: Kimura, M., and Crow, J. F. (1963). The 

measurement of effective population number. Evolution 17(3): 279-288.  
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Table S2 Near-infrared (NIR) spectroscopy models used to predict cellulose content and S/G lignin monomer ratio in the training  

population. The NIR model was calibration using 200 samples obtained from two E. grandis breeding trials (128 samples) and a subset from the  

Tygerskloof (TYG) trial (72 samples). NIR calibration set (fitted vs true) and the validation set (predicted vs true) parameters are presented. Data  

processing of the NIR scans for model development involved a combination of the first (1st) derivative and vector normalization (SNV)  

computation using OPUS/QUANT Spectroscopy Software Version 6 (Bruker, Massachusetts).  

  

Calibration Method Samples Rank Slopea R2 b RPDc RMSEEd  

α-Cellulose SNV 124 9 0.919 92 3.52 0.661  

S/G ratio 1st derivative + SNV 96 10 0.918 92 3.5 0.0591  

Validation Method Samples Rank Slopea R2 b  RPDc RMSECVe Biasf 

α-Cellulose SNV 67 9 0.907 90 3.08 0.745 0.00353 

S/G ratio 1st derivative + SNV 67 10 0.885 87 2.75 0.0733 -0.00168 

aLinear regression slope of the calibration and validation data  

bCoefficient of determination   

cResidual prediction deviation  

dRoot mean square error of estimation  

eRoot mean square error of cross-validation   

fDeviation from the linear regression slope 
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Table S3 Full and half-sib pedigree information of the training population. The full-sib  

progeny (706) in the Ncalu trial were confirmed with microsatellite DNA fingerprinting. The  

half-sib progeny (203) belong to nine of the seed parents using breeders' pedigree records with  

unknown pollen parents. A large number of trees (639) from half-sib families are not shown in  

the table because their seed and pollen parents are unknown. The total SNP genotyped  

population is 1,575 individuals, including the full-sib and half-sib progeny and the 27 parental  

selections.   

  Pollen parents   

Seed 

parents 

Unkno

wn 

Parent 

03 

Parent 

07 

Parent 

08 

Parent 

15 

Parent 

16 

Parent 

18 

Tot

al 

Parent 01   9     9 

Parent 02  10 7 7  5 2 31 

Parent 03 56  7  5 11 4 83 

Parent 04  8 8 11    27 

Parent 05 24 8 9     41 

Parent 06  10 8  9 5 7 39 

Parent 07 15 12  8  8  43 

Parent 08  10   9 11 9 39 

Parent 09  10   11   21 

Parent 10 1 9 10  7 7 7 41 

Parent 11  6  6    12 

Parent 12   7  10 9 6 32 

Parent 13  8 9  8  8 33 

Parent 14  8 9 13 8   38 

Parent 15 28 7 5 8  4 4 56 

Parent 16  9 9  8  9 35 

Parent 17  11 6 11 3   31 

Parent 19  8  10 11 7 9 45 

Parent 20  2  5 7 4 4 22 

Parent 21  9   13 10  32 

Parent 22 23 8 5 9 10 8  63 

Parent 23 15 6 10 8 12 11 10 72 

Parent 24   9  6 7  22 

Parent 25  1      1 

Parent 26 23       23 

Parent 27  18             18 

Total 203 160 127 96 137 107 79 909 
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