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Abstract: Reliable condition indicators are necessary to perform effective diagnosis and prognosis.
However, the vibration signals are often corrupted with non-Gaussian noise and rotating machines
may operate under time-varying operating conditions. This impedes the application of conventional
condition indicators. The synchronous average of the squared envelope is a relatively simple yet
effective method to perform fault detection, fault identification and fault trending under constant
and time-varying operating conditions. However, its performance is impeded by the presence of
impulsive signal components attributed to impulsive noise or the presence of other damage modes in
the machine. In this work, it is proposed that the synchronous median of the squared envelope should
be used instead of the synchronous average of the squared envelope for gearbox fault diagnosis. It is
shown on numerical and experimental datasets that the synchronous median is more robust to the
presence of impulsive signal components and is therefore more reliable for estimating the condition
of specific machine components.

Keywords: gearbox diagnostics; synchronous median of the squared envelope; time-varying
operating conditions

1. Introduction

Condition-Based Maintenance (CBM) is needed to ensure that expensive assets such as wind
turbines can perform reliably and cost-effectively. In CBM, the condition of the machine is estimated
with fault diagnosis techniques from the available condition monitoring data, whereafter prognosis
techniques are applied to estimate the remaining useful life of the machine [1]. The estimated
condition of the machine is used as a basis for maintenance decisions, which can make CBM more
cost-effective than conventional time-based preventative maintenance approaches [1,2]. However, the
performance of CBM depends on the ability of the fault diagnosis techniques to accurately identify the
condition of the different mechanical components while the machine is operating under its normal
operating conditions. Many machines found in the power generation and mining industries operate
inherently under time-varying operating conditions, which impede the performance of conventional
fault diagnosis techniques and therefore reliable techniques are required to perform fault diagnosis,
i.e., fault detection, fault localisation and fault trending [3,4].

Gearboxes are critical components in many industries and are subjected to harsh operating
conditions which make them susceptible to damage and failure, with long downtimes associated with
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each replacement [5,6]. Localised gear damage and distributed gear damage modes are frequently
encountered in gearboxes and therefore need to be detected and characterised early to ensure that the
appropriate maintenance decisions can be made [7]. It is important to determine the damage mode,
e.g., localised or distributed gear damage, because this influences the remaining useful life of the
machine component, e.g., localised gear damage is expected to deteriorate fast due to the localised
increase in stress [8].

Gear damage such as fatigue cracks can excite resonance bands and result in the cyclostationary
content of the vibration signals to increase. Any phase shifts during the measurement period can also
impede the application of the conventional synchronous average [9] and therefore the Synchronous
Average of the Squared Envelope (SASE) is better suited. The SASE has been used for gear and bearing
diagnostics [10–13]. Schmidt and Heyns [14] developed a localised anomaly detection methodology
by comparing the probability density functions of the synchronous statistics of different gear teeth
with the Kullback–Leibler divergence.

The excitation of structural resonances by the impacts of damage components manifest in
time-invariant frequency bands [15], with frequency band identification techniques such as the
kurtogram [16] and the IFBIαgram [12] making it possible to automatically determine the frequency
bands that are rich with impulsive information [17,18]. Schmidt et al. [13] combined frequency band
identification methods with healthy historical data to identify frequency bands with novel information,
i.e., due to damage, whereafter the SA and SASE of the filtered signal are calculated for detecting and
visualising the gear damage. The SASE performed better than the SA for incipient fault detection.

The SASE has also been used in the derivation of condition indicators that can be used for
hypothesis testing when performing condition inference [19]. If the hypothesis of a cyclostationary
signal buried in Gaussian stationary noise is tested against the presence of only Gaussian stationary
noise, the test statistic is a function of the SASE [19]. This has significant benefits due to the simplicity
of the indicator and the possibility to design condition indicators for detecting the damage of specific
mechanical components.

Bartelmus and Zimroz [4] and Zimroz et al. [3] developed methods to obtain robust
condition indicators under time-varying operating conditions by conditioning indicators such as
the root-mean-square on the operating conditions. The method is simple to implement and has
performed well under time-varying operating conditions [3,4]. However, those methods do not allow
the changes to be ascribed to a specific mechanical component. Extracting features from the SASE
would theoretically make it possible to determine which component is damaged. However, it is shown
in this work that the

• SASE is sensitive to non-Gaussian noise.
• SASE is not capable of separating the synchronous and non-synchronous damaged components.

Hence, in this paper, we propose that the Synchronous Median of the Squared Envelope (SMSE)
should be used instead of the SASE for inferring the condition of rotating machine components.
This subtle change (i.e., using the median statistic as opposed to the mean statistic) has significant
benefits when performing condition monitoring on rotating machines. This is because even
if the rotating machine under consideration does not operate in impulsive noise environments,
non-synchronous damaged components (e.g., a damaged bearing when the pinion is interrogated)
impede the performance of the SASE, but not the performance of the SMSE. This is attributed to the fact
that the median is a more robust measure of the central tendency of a random variable than the mean.

The layout of this paper is as follows: In Section 2, an overview of the SASE and SMSE are
given for fault diagnosis and using it for performing fault diagnosis under time-varying operating
conditions. In Section 3, the SASE and SMSE are compared on numerical data, whereafter the two
statistics are compared in Section 4 on experimental data. The work is finally concluded in Section 5.
In Appendix A, supporting information is provided for the motivation of the SMSE in Section 2.
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2. Gearbox Diagnostics

The acquired vibration data contain information related to the machine and its operating
environment. This can typically include the interaction of healthy machine components, e.g., excitations
during gear meshing; the influence of damage on the component-of-interest, e.g., impulses of a
damaged bearing; the potential presence of other damaged components or other damage modes; and
the influence of time-varying operating conditions. Since, the mechanical components have fixed
kinematics that govern their movement, the vibration signals are cyclostationary in the angle domain,
with the cyclostationarity in the time domain being a special case [20]. Hence, the time domain signal
is transformed to an angle domain representation using order tracking to ensure that the impulses are
periodic [21,22].

The SA and the SASE have been successfully used for gear and bearing diagnostics [10,11,13].
This is because the damaged components are periodic with some period Φi and would therefore be
retained when calculating the SA and/or the SASE. The SA is shown in Figure 1 for two components
being monitored.

Figure 1. A vibration signal is shown with impulses that have a cyclic period of Φi, i.e., a cyclic order
of Φ−1

i , and a synchronous representation is shown for two cyclic periods Φi and Φj. The rotation
number is denoted k.

If sufficient rotations are considered then the non-synchronous impulses manifesting in the SA
associated with Φj will be attenuated, while the synchronous impulses in SA associated with Φi will be
retained. However, the phase-shifts encountered under time-varying operating conditions can impede
the performance of the SA with some of the diagnostic information attenuated [9] and therefore the
SASE is considered instead.

The SASE is better suited than the SA for incipient fault detection [13], because small phase
changes do not lead to the diagnostic information to be attenuated and impulses typically manifest
as second-order cyclostationary components. However, by using the SASE, it also makes the related
diagnostic metrics more sensitive to impulsive non-synchronous components. It is desired to exploit
the sensitivity of the SASE to incipient damage, without it being so sensitive to non-synchronous
components. This is investigated by firstly understanding the statistical properties of the synchronous
data of the squared envelope, referred to only as synchronous data throughout the rest of the paper.
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2.1. Synchronous Data Modelling

We assume that the squared envelope |x(ϕ + k · Φi)|2 at an angular position ϕ + k · Φi is
generated by

|x(ϕ + k ·Φi)|2 ∼ p
(
|x (ϕ) |2; ϕ, Φi

)
, for k ∈ Z, (1)

where p
(
|x (ϕ) |2; ϕ, Φi

)
is a distribution that is dependent on the angular position ϕ ∈ [0, Φi) and

the cyclic period under consideration Φi. This assumption is appropriate for stationary operating
conditions or time-varying operating conditions that result in small changes in the amplitude of the
signals. This approximation can be extended to general time-varying operating conditions when
a normalised signal, obtained with a Normalisation of the Amplitude Modulation due to Varying
Operating Conditions (NAMVOC) method [23], is considered instead of the raw signal.

The signal x (ϕ) is typically non-Gaussian, because it can contain impulses of multiple damage
modes and impulsive noise. These characteristics need to be considered when selecting a statistic that
is used for fault detection. The mixture model

p
(
|x(ϕ)|2; ϕ, Φi

)
= w · p

(
|x(ϕ)|2; θ1, ϕ, Φi

)
+ (1− w) · p

(
|x(ϕ)|2; θ2, ϕ, Φi

)
, (2)

is used to investigate the robustness of the estimators in this work. For the purposes of the
subsequent investigations, it is assumed that in Equation (2), the component-of-interest is healthy,
where w is its weight and p

(
|x(ϕ)|2; θ1, ϕ, Φi

)
is the probability density function of its generated

data with parameters θ1. The parameters θ1 can, for example, contain the mean µ1 of the probability
density function.

The second component in Equation (2) is attributed to damage that is non-synchronous with the
period under consideration. It is weighted by (1− w) and is described by the probability density
function p

(
|x(ϕ)|2; θ2, ϕ, Φi

)
with parameters θ2. A mixture model is very useful to investigate the

robustness of estimators when a small fraction of the data is contaminated [24,25]. The fraction of
contamination is given by (1− w) and is used to represent the impulses generated by the damaged
non-synchronous components. This mixture model is reasonable as shown in Figure A1 in Appendix A.
The non-synchronous impulses lead to the synchronous data to display multimodal characteristics.

2.2. Estimating the Central Tendency of the Synchronous Data

The central tendency of the squared envelope provides an estimate of the instantaneous power
that is generated by the damaged component. If a robust estimate of the central tendency is obtained,
it can be used to estimate the strength of the impulses in the vibration signal, which can subsequently
be used to infer the condition of the machine. However, care should be taken to directly correlate the
magnitude of the amplitude with the severity of the fault, because some fluctuations in the impulse
magnitude are expected as the component degrades. El-Thalji and Jantunen [26] provided a good
explanation on why this phenomenon occurs during the life of bearings.

The expected value of |x (ϕ) |2 for a specific angular period Φi

E
{
|x (ϕ) |2; Φi

}
=
∫
|x (ϕ) |2 · p(|x (ϕ) |2; Φi)d|x (ϕ) |2, (3)

can be used as a measure of the central tendency of |x (ϕ) |2, which can also be calculated with

E
{
|x (ϕ) |2; Φi

}
= lim

NΦi→∞

1
NΦi

NΦi−1

∑
k=0
|x(ϕ + k ·Φi)|2, (4)
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where |x(ϕ + k ·Φi)|2 is generated with Equation (1) and k is shown in Figure 1. The expected value of
the mixture model in Equation (2),

E
{
|x (ϕ) |2; Φi

}
= w · µ1 + (1− w) · µ2, (5)

is a function of both the mean of the component-of-interest µ1 and the mean of the non-synchronous
data µ2. If the non-synchronous component is attributed to another damage component, µ2 will
change over time as the component deteriorates. This means that the average, i.e., E

{
|x (ϕ) |2

}
, cannot

be used to distinguish between changes in the component-of-interest, i.e., µ1, and changes in the
non-synchronous component, i.e., µ2.

This is a well known result when considering robust estimators; the average is only a very efficient
estimator if the data are generated by a Gaussian distribution [24,25]. If the data are contaminated,
more robust estimators such as the median need to be used. The median of the synchronous data at an
angle ϕ, denoted med

{
|x (ϕ) |2; Φi

}
, can be obtained by solving

0.5 = Fcd f

(
med

{
|x (ϕ) |2; Φi

})
, (6)

where Fcd f is the cumulative distribution corresponding to the probability density function
p
(
|x (ϕ) |2; ϕ, Φi

)
. The median of the mixture model considered in Equation (2) can be written to be

dependent on only the first mode

med
{
|x (ϕ) |2

}
= F

(
w, p

(
|x(ϕ)|2; θ1, ϕ, Φi

))
, (7)

for some functional F , if the following assumptions are made:

• w > 0.5. This is a reasonable assumption because it is expected that the synchronous characteristics
would be more representative than the non-synchronous data at a specific angular position.

• The distributions are non-overlapping. This assumption is made for mathematical convenience,
but is also the most difficult case to consider. This is because the damage of the non-synchronous
component is then very prominent in the data and would likely affect the estimated statistics.

Equation (7) indicates that if the aforementioned assumptions are valid, then the median is only
a function of the probability density function of the component-of-interest and not dependent on
the magnitude of the non-synchronous component, i.e., it is not sensitive to any changes in µ2 and
therefore provides a more reliable estimate of the component-of-interest than the average.

2.3. Synchronous Statistics

If the synchronous data over a period of Φi, associated with angular position ϕ, are written in
vector form,

|x(ϕ; Φi)|2 =
[
|x(ϕ)|2, |x(ϕ + 1 ·Φi)|2, . . . , |x(ϕ + NΦi ·Φi)|2

]
, (8)

where NΦi = bmax{ϕ}/Φic, then the SASE is defined as

s2(ϕ; Φi) = average
(
|x(ϕ; Φi)|2

)
, (9)

and the SMSE is defined as
m2(ϕ; Φi) = median

(
|x(ϕ; Φi)|2

)
. (10)

The SASE in Equation (9) can also be calculated by setting the NΦi → ∞ in Equation (4) to a finite
value, i.e., NΦi = bmax{ϕ}/Φic. This corresponds then to the well-known form of the SASE.
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2.4. Condition Indicators

Statistical and signal processing methods [19,27], statistical learning methods [28] and machine
and deep learning methods [29,30] have been used to obtain condition indicators for rotating
machines. Simple condition indicators such as the RMS are frequently used in diagnosis and prognosis
applications, with the RMS being one of the most popular condition indicators for prognosis [1].
However, many of the simple one-dimensional metrics can only indicate if the condition of the machine
changes, and cannot be used to infer the condition of the individual components that make up the
machine. The synchronous representations of the condition of the machines (e.g., SASE, SMSE) could
however be processed into one-dimensional metrics to not only detect the presence of damage, but
also to detect changes in the condition of specific components of the machine. Different statistics of the
SASE and SMSE could be extracted such as the mean and kurtosis [11,13]. Antoni and Borghesani [19]
developed a methodology to derive condition indicators for condition monitoring based on the
statistical properties of the vibration signals and derived

ISASE (Φi) = −
〈

log
(

s2(ϕ; Φi)

〈s2(ϕ; Φi)〉

)〉
, (11)

to test the Gaussian cyclostationary hypothesis against a Gaussian stationary hypothesis, with < · >
denoting the time-average operator and s2(ϕ; Φi) the SASE. This metric can be used for trending
the components associated with a period of Φi radians, which is very important when the damaged
component needs to be identified.

Since, we propose that the SMSE should be used instead of the SASE, we replace the SASE in
Equation (11) with the SMSE to obtain

ISMSE (Φi) = −
〈

log
(

m2(ϕ; Φi)

〈m2(ϕ; Φi)〉

)〉
. (12)

In contrast to the work in Ref. [19], we are not using our indicators in any statistical tests and therefore
we did not derive the statistical properties of the estimator given by Equation (12). Since the SMSE
is better suited for impulsive noise and non-synchronous damaged components, it means that the
condition indicator using the SMSE (i.e., Equation (12)) would be better suited for damage detection
when compared to the SASE.

However, many rotating machines operate under time-varying operating conditions, which could
impede the performance of the aforementioned condition indicators to deal with this. Bartelmus and
Zimroz [4] and Zimroz et al. [3] proposed that the metric should be compared against the operating
conditions of the machine. Hence, the conditional condition indicator ISMSE (Φi) |ω would be more
robust to time-varying operating conditions than the unconditional condition indicator ISMSE (Φi).
We therefore propose that the conditional condition indicator, i.e., ISMSE (Φi) |ω should be used if the
operating conditions are different for each measurement. This is illustrated in Section 4.3.

The suitability of the SMSE and SASE is investigated on numerical data in the next section.

3. Numerical Investigation

In this section, it is desired to compare the suitability of the SASE and SMSE for fault diagnosis
in the presence of impulsive noise. This is performed by comparing the robustness of the average
and the median on noise with different levels of impulsiveness. Thereafter, the SMSE and SASE are
compared on a synthesised signal to determine whether they can distinguish between completely
random and periodic impulses. In the next section, modelling impulsive noise with an α-stable
distribution is discussed.
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3.1. Modelling Impulsive Noise: α-Stable Processes

Impulsive noise, which can, for example, manifest due to the presence of electromagnetic
interference [31], other damage modes [32], or due to the crushing process in a copper-ore crusher [33],
needs to be considered when investigating the robustness of the SASE and SMSE for fault diagnosis.
Alpha-stable distributions have been used in Refs. [34–36] to model stochastic impulsive noise signals
in gearboxes and can also be used to investigate the robustness of different metrics for different levels
of impulsiveness.

The probability density function of an α-stable distribution is given by

p(r) =
1

2π

∫ ∞

−∞
ψ(y)e−irydy, (13)

where the characteristic function ψ(y) is given by [34]

ψ(y; α, β, σ, µ) = exp (−σα · |y|α · (1 + i · β · sgn(y) · B(y, α)) + i · µ · y) , (14)

with i2 = −1, α describes the impulsiveness of the generated data, β describes its skewness, σ is a
dispersion parameter and µ is the mean of the data. The function B(y, α) is given by

B(y, α) =

{
2
π ln |y| if α = 1,

− tan (πα/2) if α 6= 1.
(15)

The most important parameter of the α-stable distribution is the α parameter, which describes the
impulsiveness of the signal. If α = 2, the generated samples follow a Gaussian distribution and as α

decreases, the impulsiveness of the signal increases. The performance of the average and the median
are compared for different impulsiveness levels, i.e., different α. The data are generated by a zero-mean,
symmetric distribution, which is obtained by setting β = 0, σ = 1, and µ = 0, and denoted by ASN(α)

throughout the rest of the paper.

3.2. Convergence of the Average and Median Estimators

The samples generated by the α-stable distribution

r ∼ ASN(α), (16)

for a specific α is identically and independently distributed, and because it is purely random, i.e., it is
not periodic, it should not affect the performance of a robust estimator of the central tendency. Hence,
the convergence of the mean and the median is investigated for the squared α-stable noise |r|2 as a
function of different α values by presenting the statistics as a function of number of samples that are
used to calculate the statistics in Figure 2.

The average or mean is severely affected by impulses as seen in Figure 2a–c, which either results
in a diverging metric (Figure 2a,b) or a very slow convergence (Figure 2c). The average only converges
fast if the noise r is Gaussian, i.e., α = 2.0. This is attributed to the fractional lower order statistical
property of α-stable distributions, where the expected value of |r|p [34]

E{|r|p} → ∞, for α < p, (17)

if 0 < α < 2. This indicates that the average is ill-suited for estimating the characteristics of squared
non-Gaussian noise and therefore indicates that the SASE is ill-suited for fault diagnosis in impulsive
environments. In contrast, the median is significantly robust to the impulsive behaviour of r with very
similar convergence characteristics seen for all the considered α values.
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Figure 2. The mean and median of |r|2 are shown as functions of sample number. The variable r is
sampled from an α-stable distribution with α shown in the titles of the figures. If the sample number
is n, it means that the first n samples are used to either calculate the mean or the median. (a) α = 1.2;
(b) α = 1.4; (c) α = 1.6; (d) α = 2.0.

3.3. Performance of SMSE and SASE in Impulsive Noise

In this section, it is assumed that the vibration generated by a damaged gear is generated by a
second-order cyclostationary component with a cyclic period of Φi = 2π rad, while a healthy gear
with a cyclic period of Φ1 = 40π/37 shaft rotations is also present. The cyclic periods correspond to a
cyclic frequency of 1.0 and 1.85 shaft orders, which are selected the same as the cyclic periods of the
gear and pinion in the experimental setup presented in Section 4.1. The purpose of this investigation is
to see whether it is possible to detect the damage gear component and to infer that the second gear is
healthy in the presence of different noise distributions.

The acquired vibration signal is generated by

x(ϕ) = y(ϕ) + r(ϕ), (18)

where y(ϕ) is a second-order cyclostationary signal in the form

y(ϕ) = V1 ·
N−1

∑
k=0

exp (−V2 · (ϕ− k ·Φ0)) · ε(ϕ), (19)

where ε(ϕ) is a sample from a zero-mean Gaussian distribution with unit variance and r(ϕ) is sampled
from an α-stable distribution with Equation (16). The cyclic period of the signal is denoted by Φ0.
The parameter V1 scales the amplitude of the signal component and is set to 10 and the parameter V2

scales the duration of the impulse (i.e., how long the impulse lasts) and is set to 40.
The acquired vibration signal is generated for a fixed damaged component y(ϕ), but with noise

generated from α-stable distributions that have different αs. The SASE and SMSE are presented in
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Figure 3 for the investigated cases, with the damage impulse located at 180 degrees for the first gear,
i.e., gear 1.

Figure 3. The SASE and the SMSE of the synthetic signal generated with Equation (18). Three levels of
impulsiveness and two gears are considered, with gear 1 being damaged and gear 2 being healthy. The
typically amplitudes of the squared noise data of different αs are shown in Figure 2. (a) Gear 1: α = 1.2;
(b) Gear 2: α = 1.2; (c) Gear 1: α = 1.6; (d) Gear 2: α = 1.6; (e) Gear 1: α = 2.0; (f) Gear 2: α = 2.0

The SASE is adversely affected by the impulsive noise for α < 2; the component attributed to the
gear damage cannot be seen in Figure 3a,c, while it is also not possible to determine the condition
of the second gear in Figure 3b,d. This is attributed to the sensitivity of the SASE to impulsive noise.
However, if α = 2, Gaussian noise is present and then it is possible to determine the condition of the
gear with the SASE as seen in Figure 3e. However, when investigating the SASE of the second gear in
Figure 3f, ripples can be seen. These ripples are attributed to the damage component associated with
the first gear that manifest in the SASE of the second gear. This indicates that the SASE of the gear and
the pinion are not independent from one another as indicated by Equation (5).

The SMSE performs much better than the SASE, because the gear damage can be detected for
each considered α as seen in Figure 3a,c,e. In Figure 3b,d,f, it is also seen that the second gear does
not contain any indication of being damaged and is clearly not influenced by the noise and the
non-synchronous damaged component. Hence, the SMSE provides a more reliable estimate of the
condition of the components despite the presence of very impulsive noise.

In the next section, the SASE and SMSE are investigated on experimental data.
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4. Experimental Investigation

In this section, the suitability of SMSE and the SASE are compared on experimental data that were
acquired under time-varying operating conditions. In the next section, an overview of the experimental
setup is given, whereafter the results for a gear with localised damage and a gear with distributed
damage are presented in Sections 4.2 and 4.3 respectively.

4.1. Overview of Experimental Setup

The experimental data considered in this section were measured on the experimental setup
shown in Figure 4. This experimental setup is located in the Centre for Asset Integrity Management
laboratory at the University of Pretoria and consists of three helical gearboxes, an electrical motor
and an alternator which are highlighted in Figure 4a. The electrical motor drives the system and the
alternator dissipates the rotational energy from the system and can be used to induce time-varying
speed and load conditions.

Figure 4. The experimental setup that was used to generate the datasets. In (a) the main components
are highlighted and in (b) the sensors located on the back of the monitored gearbox are highlighted.

The vibration of the test gearbox is measured with a tri-axial accelerometer located on the
back of the gearbox as shown in Figure 4b. The axial channel of the tri-axial accelerometer is used
for monitoring the condition of the helical test gearbox. The instantaneous rotational speed of the
input shaft is measured with the optical probe and zebra-tape shaft encoder shown in Figure 4b.
The instantaneous operating conditions that were present during the experiments are shown in
Figure 5.

Figure 5. The load and the speed at the input shaft of the test gearbox. (a) Estimated torque for the
four operating conditions; (b) Rotational speed profile for the four operating conditions.

The gearbox contains helical gears, which mask the impulses generated by damaged gear teeth,
and additionally the vibration signals are inherently impulsive. This impedes detecting damage in
the gearbox.

The suitability of the SASE and the suitability of the proposed SMSE to detect localised damage
are investigated in the next section.

4.2. Localised Gear Damage Investigation

Localised gear damage was induced by seeding a slot in one of the teeth of the gear as shown in
Figure 6a. This gearbox was operated under operating condition one in Figure 5, until the damaged
gear tooth had failed. The gear after the completion of the test is shown in Figure 6b.
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Figure 6. The gear with the seeded localised gear damage before the test is shown in (a) and the gear
after the test was completed is shown in (b).

The raw vibration signal x(t) is order tracked by using the tacho signal generated with the zebra
tape shaft encoder and the optical probe to obtain an angle-domain representation of the signal x(ϕ).
Two-hundred measurements spaced over the life of the gear are investigated in this section.

The SASE and the SMSE are calculated for the damaged gear, by using Equation (9) with Φi = 1
shaft rotation, and for the healthy pinion Equation (9) was used with Φi = 0.54054 shaft rotations, and
presented in Figure 7. Even though two-hundred measurements are considered in this section, only
twenty signals, evenly spaced over the life of the gear, are shown in Figure 7 to ensure that the results
are easy to interpret.

Figure 7. The Synchronous Average of the Squared Envelope (SASE) and the Synchronous Median
of the Squared Envelope (SMSE) are shown for twenty of the two-hundred measurements for the
gearbox that had a gear with localised damage and a healthy pinion. The red circles in (a) highlight
the dominant non-synchronous components.(a) Damaged gear: SASE; (b) Damaged gear: SMSE;
(c) Healthy pinion: SASE; (d) Healthy pinion: SMSE.

The SASE for the gear in Figure 7a contains impulses scattered randomly over the rotation of
the gear and gear damage that is located in the vicinity of 135 degrees. The aforementioned impulses
are not related to the health of the gears and therefore impede the fault detection process. The only
reason why it is possible to identify the gear damage at 135 degrees is because the measurements
are aligned, which ensures that the position of the gear damage is the same between the different



Sensors 2020, 20, 2115 12 of 18

measurements. However, in applications where tacholess order tracking methods are used [37–39],
it is not easy to align the different measurements and therefore the gear damage may be perceived as
part of the random noise.

The SMSE is calculated with Equation (10) and presented in Figure 7b. The SMSE performs
significantly better than the SASE, because the gear damage can clearly be seen at approximately
135 degrees, while the impeding impulses seen in the SASE are completely attenuated. The superiority
of the SMSE over the SASE is further emphasised by the results of the pinion seen in Figure 7c,d; the
impulses seen in SASE are not related to the condition of the pinion and make it difficult to determine
its condition. In contrast, the SMSE of the pinion does not contain any evidence of damage and
therefore provides the correct representation of the condition of both the gear and the pinion.

The metrics using the SASE in Equation (11) and SMSE in Equation (12) are presented in Figure 8
for the gear and the pinion.

Figure 8. The metric calculated with Equation (11) with the SASE and the metric calculated with
Equation (12) with the SMSE are calculated for two Φ cases. (a) SASE of the Gear (Φ = 1.0 shaft
rotation); (b) SMSE of the Gear (Φ = 1.0 shaft rotation); (c) SASE of the Pinion (Φ = 0.54054 shaft
rotations); (d) SMSE of the Pinion (Φ = 0.54054 shaft rotations).

The metrics obtained with the SASE and SMSE of the gear shown in Figure 8a,b allow the
degradation of the gear to be detected over time. The performance of the SASE indicator is attributed
to the fact that the characteristics of the impulsive noise remained the same over measurement number,
i.e., µ2 in Equation (5) was constant. However, it is conceivable that the characteristics of the impulsive
noise could change over measurement number and would therefore lead to confusing metrics that
make the fault diagnosis process more difficult. The pinion was relatively constant for both methods,
which is correct. In the next investigation, it is shown that the condition indicator of the SASE could
change as other mechanical components degrades as well.

4.3. Distributed Gear Damage Investigation

In the second investigation, distributed gear damage was induced on the gear by leaving the gear
in a corrosive environment for approximately 1.5 years, with the result shown in Figure 9.

This gear was operated for approximately 8 days with the operating conditions shown in Figure 5
whereafter the experiment was stopped due to excessive vibration. Three-hundred-and-twenty (320)
measurements were acquired during the test, with the condition of the gear after the test shown in
Figure 10.
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Figure 9. The gear with distributed damage before the test.

Figure 10. The gear with distributed damage after the test was completed.

The excessive vibration was caused by the failure of one gear tooth and the significant damage of
two adjacent gear teeth. The pinion was again in a healthy condition for the duration of the test.

The same procedure is followed as Section 4.2. Firstly, the vibration signals are order tracked,
whereafter the SASE and SMSE are calculated for the gear and the pinion of the test gearbox. The SASE
and SMSE of the gear and the pinion are presented in Figure 11. Only twenty of the 320 measurements
are presented in the figure to ensure that it is easy to interpret.

Figure 11. The Synchronous Average of the Squared Envelope (SASE) and the Synchronous Median
of the Squared Average (SMSE) are presented for the gear and the pinion over twenty measurements
of the distributed gear dataset. The twenty measurements were approximately equally spaced over
the life of the gear. (a) Damaged gear: SASE; (b) Damaged gear: SMSE; (c) Healthy pinion: SASE;
(d) Healthy pinion: SMSE.
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The SASE and SMSE of the gear and the pinion perform very similarly as seen in Figure 11a,b.
Much impulsive components can be seen over the rotation of the gear, e.g., between 45 and 90 degrees.
This is attributed to the fact that distributed gear damage is present. At approximately the 150th
measurement number, i.e., in the middle of the measurement number axis in Figure 11a,b, an event
can be seen at approximately 0 degrees. A very large spike occurs which indicates that a gear tooth
became severely damaged or has failed. This component also becomes more broad over measurement
number which is indicative that adjacent teeth are potentially damaged as well.

The benefits of using the SMSE over the SASE is highlighted when investigating the results of
the pinion in Figure 11c,d. The magnitude of the SASE of the pinion in Figure 11c contains very
impulsive information which increases over measurement number. This is attributed to the SASEs
sensitivity to the gear damage components, i.e., the SASE is not robust to non-synchronous impulsive
components. The implication of this is that the condition of the pinion can be interpreted as becoming
worse over measurement number. The SMSE in Figure 11b delivers completely different results; the
first measurement contains some impulsive information which is attributed to wear in process of the
gears, however, after this it can be seen that the SMSE of the pinion does not contain any impulsive
information and is very uniform over measurement number. This means that the SMSE of the pinion
is unaffected by the severely damaged gear and therefore provides a reliable representation of the
condition of the pinion.

These results are corroborated when investigating the metrics over measurement number in
Figure 12.

Figure 12. The metrics based on the Synchronous Average of the Squared Envelope (SASE) and the
metrics based on the Synchronous Median of the Squared Envelope (SMSE) are presented for the
damaged gear, which transitioned between the conditions shown in Figures 9 and 10, and a healthy
pinion. (a) Damaged gear: SASE; (b) Damaged gear: SMSE; (c) Healthy pinion: SASE; (d) Healthy
pinion: SMSE.

The metrics of the gears, shown in Figure 12a,b for the SASE and the SMSE respectively, are able
to detect the wear-in that occurred at the first few measurements due to the potential improvement
of the corrosive surface of the gear. At measurement number 148, an event, indicated by Event 1 in
Figure 12, occurred which resulted in a significant discontinuity in the metrics associated with the gear.
When combining this information with the results in Figure 11a,b, this discontinuity is attributed to
the sudden failure of a gear tooth. At measurement number 280, another event, indicated by Event 2
in Figure 12, occurred which is attributed to the failure of the adjacent teeth.

The SASE metric of the pinion in Figure 12c has a very similar behaviour of the gear; it is influenced
by the condition of the gear and therefore is dependent on the measurement number. Hence, the SASE
is unreliable for performing condition monitoring on gearboxes. The SMSE metric of the pinion in
Figure 12d is unaffected by the changes in the condition of the gear and therefore remains relatively
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constant over measurement number. This correctly indicates that the pinion was healthy for the
entire duration of the test and therefore the SMSE provides a more reliable estimate of the individual
mechanical components under consideration. An example of the practical implication of diagnosing
the condition of the gears incorrectly is that the maintenance department may order pinions and gears
from the suppliers, while only gears are necessary. This can have significant financial implications
when large gearboxes found in the power generation and mining industries are monitored.

The benefits of using the SMSE instead of the SASE are highlighted in Figure 13 where the
condition indicators are presented over the rotational speed of the gearbox. The same presentation
could not be performed for the localised gear damage experiment, since the gearbox was operating
under the same time-varying operating conditions (i.e., OC: 1 in Figure 5) for each measurement.

This representation in Figure 13 allows the condition of machines to be inferred under
time-varying operating conditions [4]. The four clusters on the rotational speed axis are attributed to
the four operating conditions of the gearbox (i.e., see Figure 5).

Figure 13. The condition indicator is presented over the average rotational speed for the different
metrics and gears, i.e., it is the conditional condition indicator discussed in Section 2.4. One of the initial
measurements as well as one of the final measurements of the test are highlighted to show how the data
changes as the gear deteriorates. The clusters in (b,d) highlights that the SASE forms two clusters and
the SMSE forms one cluster for a specific speed range. (a) Damaged gear: SASE; (b) Healthy pinion:
SASE; (c) Damaged gear: SMSE; (d) Healthy pinion: SMSE.

Since the SASE does not provide a reliable estimation of the condition of the gearbox, two
distinct clusters are formed when investigating the pinion for a specific operating condition state.
This indicates that as the condition of the gear deteriorates, the condition indicator of the pinion
erroneously indicates that the pinion is deteriorating as well. In contrast, the SMSE makes it possible to
distinguish between the damaged gear and the healthy pinion. The condition indicator in Figure 13d is
sensitive to operating conditions, however, when using the conditional representation in Figure 13, i.e.,
presenting the condition indicators against the operating conditions, the condition indicator becomes
much more robust to changes in the operating conditions of the machine. Hence, the SMSE is a very
simple method improvement to the SASE for performing gearbox fault diagnosis under time-varying
and non-Gaussian noise conditions.
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5. Conclusions

In this work, the synchronous median of the squared envelope is proposed and compared to
the synchronous average of the squared envelope. It is emphasised throughout this paper that even
though the change from the mean statistic to median statistic is subtle, it has significant benefits for
condition monitoring. It is specifically shown that the synchronous median of the squared envelope
can detect the presence of damage and is robust to impulsive noise and the impulses generated by
other damaged components, which will be encountered in typical condition monitoring applications.
As a result, the proposed synchronous median of the squared envelope can be used to reliably estimate
the condition of the components-of-interest and can therefore assist with the maintenance decision
making process. In future investigations, we will consider the suitability of the proposed method on
other faults (e.g., bearing faults) under impulsive and time-varying operating conditions.
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Appendix A. The Multimodality of Synchronous Data

The potential multimodality of the synchronous data is illustrated in Figure A1. The data in
Figure A1 can, for example, simulate the case where a component is damaged with a cyclic period of
Φ = 4 samples.

Figure A1. The potential multimodality of the synchronous data is presented for a synthetic signal and
three cases of Φ. The data are jittered to make it easier to see the multimodal characteristics.
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If the period of the synchronous data is Φ = 3 or Φ = 5, the larger amplitudes due to the
damaged component are non-synchronous and result in the synchronous data to display multimodal
characteristics. This phenomenon can be captured by a mixture model and therefore it is appropriate
to use a mixture model to investigate the robustness of the metrics.
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35. Żak, G.; Teuerle, M.; Wyłomańska, A.; Zimroz, R. Measures of dependence for alpha-stable distributed
processes and its application to diagnostics of local damage in presence of impulsive noise. Shock Vib.
2017, 2017. [CrossRef]
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