

Vervaardiging van Fluoorgas vir Laboratoriumgebruik: Proses-ontwerp, -bedryf en Numeriese Modellering

Eduan Oosthuizen

11 Januarie 2020

Vervaardiging van Fluoorgas vir Laboratoriumgebruik: Proses-ontwerp, -bedryf en Numeriese Modellering

Eduan Oosthuizen 130 191 05

Ter voltooiing van die graad MIng Meestersgraad in Ingenieurswese (Chemiese Ingenieurswese)

> Departement Chemiese Ingenieurswese Universiteit van Pretoria

> > Promotor: Prof PL Crouse Mede-promotor: Dr GJ Puts

> > > 11 Januarie 2020

Opsomming

n Laboratoriumsisteem vir die vervaardiging van fluoorgas is suksesvol ontwerp, vervaardig, in bedryf gestel, en getoets. Die sisteem bestaan uit n HF-lotreaktor, oordragsvat en Pauling-tipe fluoorsel. Die HF-lotreaktor word gebruik vir die omskakeling van CaF_2 na anhidriese HF. n Numeriese model vir die elektoliese sel is suksesvol geskep na die voorbeeld van modelle in die oop literatuur. COMSOL Multiphysics[®] is hiervoor gebruik. Die model se doel is om herkombinasie van produkgasse te voorspel gedurende die ontwerp-fase.

Die HF-lotreaktor toon 'n omskakelingsrendement van 70 % vir die beperkende reagens. Anhidriese HF(g) is suksesvol vervaardig, gestoor en na n Pauling-tipe fluoorsel oorgedra.

Die fluoorsel is suksesvol bedryf en toon n oorpotensiaal van 2.7 V. Herkombinasie van die produkgasse het plaasgevind en die elektrodes moet verder van mekaar monteer word. Die verstopping van die gasvloeilyn uit die fluoorsel dui daarop dan die vrybreukhoogte vir die produkgasse vergroot moet word. Hierdie kan bereik word deur die sel óf ligter te laai, óf die reaksiebuise van die sel te verleng.

Die model kan toegepas word as 'n eenrigting-gekoppelde of ten volle gekoppelde sisteem. In die eerste geval word die betrokke vergelykings vir hitte-oordrag, elektrochemiese verhitting en elektriese stroomverspreiding ter selfde tyd opgelos as 'n tydonafhanklike gestadigde toestand. Die resultaat van hierdie oplossing word dan as invoer gebruik vir die oplossing van die momentum-oordrag vergelykings wat harde, sferiese en konstantevolume-borrels se vloei in die elektroliet-fase insluit. Die vloed van produkgasse op die elektrodes word met behulp van 'n elektron-balans bepaal. Wanneer die sisteem ten volle gekoppeld toegepas word, word al die vergelykings ter selfde tyd opgelos. Die model is suksesvol toegepas 2D ten volle gekoppeld, en 3D eenrigting-gekoppeld.

Die numeriese model is die eerste wat toelaat vir die teenwoordigheid van beide gas-fasige produkte in die sel se elektroliet-fase. Kwalitatief is die model akkuraat en voorspel die waargenome herkombinasie van produkgasse in die eksperimentele opstel.

Bedankings

Prof PL Crouse aan die Universiteit van Pretoria: vir sy vertroue in my vermoë, geduld en ondersteuning. Die vryheid wat Prof Crouse my gegun het gedurende hierdie navorsing het 'n onskatbare groeigeleentheid vir my gebied. Dr Gerard Puts aan die Universiteit van Pretoria: vir sy kennis in die fluoorstudieveld wat hy altyd vrygewig deel en vir oneindige praktiese planne in die laboratorium. Sonder Dr Puts se humor en leiding sou my werk aansienlik langer geneem het.

Marno Grobler, my kantoormaat: hy het saam met my die onbekende veld van numeriese termovloei betree en vele ure in die kantoor spandeer. Sy positiewe houding het altyd die stemming van ons werk saam bewaar. Ivan en Elizka Fick; Ruan en Tienie van Loggerenberg; Du Toit Genis; Henk Boshoff; Jan Niemand; Francois le Roux en sy gesin; Bianca Gevers; David Viljoen; en Keagan Bester: vir vriendskap en lekkerkry wat om nagraads te studeer 'n fees gemaak het!

Etienne en Ansa Oosthuizen, my ouers: my verstand is deur Tukkies ontwikkel, maar my karakter deur julle. Dit sal altyd swaarder weeg. Dankie.

Geen navorsing is moontlik sonder die nodige finansiële steun nie. Hierdie werk is voltooi met finansiële bydraes van die *Fluoro Expansion Initiative* van Suid-Afrika, die Suid-Afrikaanse Akademie vir Wetenskap en Kuns en Sasol.

Inhoud

	Ops	omming	ğ	iii
N	omer	ıklatuı	ır	xv
1	Inle	eiding		1
2	Pro	ses-on	twerp en -bedryf	3
	2.1	Inleidi	ng en prosesoorsig	3
	2.2	HF-lot	treaktor: literatuur	5
	2.3	Fluoo	rsel: literatuur	9
		2.3.1	Geskiedenis en algemene gebruike van fluoor	9
		2.3.2	Industriële selle	11
		2.3.3	Laboratoriumselle	13
		2.3.4	Elektroliet	13
		2.3.5	Elektrodes	18
		2.3.6	Anodiese kinetika	21
	2.4	HF-lot	treaktor: ontwerp en bedryf	23
		2.4.1	Weergawes 1 en 2	23
		2.4.2	Weergawe 3	26

		2.4.3	HF-oordragsvat	27
		2.4.4	Temperatuurbeheer-ontwerp	28
		2.4.5	Bedryfsmetode	29
	2.5	Fluooi	rsel: ontwerp en bedryf	37
		2.5.1	Ontwerpvereistes	37
		2.5.2	Materiale en toebehoorsels	37
		2.5.3	Temperatuurbeheer-ontwerp	38
		2.5.4	Reaksievolume-ontwerp, Weergawe 1	38
		2.5.5	Eksperimentele lopies van Weergawe 1	40
		2.5.6	Ontwerp van Weergawe 2	41
		2.5.7	Bedryfsmetode	44
	2.6	Ekspe	rimentele beplanning	55
		2.6.1	Chemikalieë	55
		2.6.2	Inbedryfstelling-eksperimente gedurende ontwerp	55
		2.6.3	Apparaat en instrumente	55
		2.6.4	Eksperimentele beplanning om toerustinggedrag vas te vang $\ . \ .$	55
	2.7	Result	ate en bespreking	57
	2.8	Gevolg	gtrekking	60
3	Nur	neries	e modellering	61
0	ivui	neries	modenering	01
	3.1	Inleidi	ng	61
	3.2	Elektr	ochemiese literatuur	63
		3.2.1	Elektriese-stroomvloei	63
		3.2.2	Elektrochemie: oorsig	64

	3.2.3	Inleidende termodinamika	64
	3.2.4	Die elektro de/elektroliet tussenfasige gebied en grensla e $.$. $.$. $.$	66
	3.2.5	Die elektrodefase	68
	3.2.6	Die elektrolietfase	69
	3.2.7	Reaksietempo van elektrochemiese reaksies	70
	3.2.8	Verwantskap tussen suiwer elektronoordrag en stroomdig theid $\ .$.	73
	3.2.9	Verwantskap tussen suiwer massa-oordrag en stroomdig theid $\ .$.	76
3.3	Model	le in die oop literatuur	79
	3.3.1	Modelling coupled transfers in an industrial fluorine electrolyser (Roustan et al., 1998)	79
	3.3.2	Modelling of the trajectories of the hydrogen bubbles in a fluorine production cell (Hur et al., 2003)	84
	3.3.3	Effect of hydrodynamics on Faradaic current efficiency in a fluorine electrolyser (Espinasse et al., 2006)	88
	3.3.4	Electrochemical engineering modelling of the electrodes kinetic pro- perties during two-phase sustainable electrolysis (Mandin, Wtrich & Roustan, 2009)	92
	3.3.5	Vegelyking van bespreekde modelle	94
3.4	Model	beskrywing	95
	3.4.1	Momentum-oordrag	95
	3.4.2	Hitte-oordrag	96
	3.4.3	Elektron-oordrag	97
	3.4.4	Grensvoorwaardes	98
	3.4.5	Beginwaardes	102
	3.4.6	Konstantes en wiskundige uitdrukkings	102

A	Meg	ganiese	e sketse	124
	3.6	Gevolg	gtrekking	119
		3.5.2	3D Pauling-sel	115
		3.5.1	2D parallelle-plaat fluoorsel	111
	3.5	Result	ate	111
		3.4.9	3D Pauling-sel: oplossing, maasinvloed	107
		3.4.8	2D parallelle-plaatsel: oplossing, maasinvloed	106
		3.4.7	Modeltoepassing tot geometrieë	102

Figure

2.1	Vereenvoudigde prosesvloeidiagram vir die ontwerpde laboratoriumsisteem	4
2.2	Korrosietempo van aluminium in die teenwoordigheid van verskillende konsentrasies swawelsuur, $H_2SO_4(aq)$	6
2.3	Moissan se lae temperatuur sel	9
2.4	Union Carbide Nuclear tipe E fluoorsel: basiese ontwerp	12
2.5	Oorspronklike Pauling-sel	13
2.6	$\mathrm{KF}\cdot\mathrm{HF}\text{-}\mathrm{sout}$ smeltpunt teen oor samestelling	15
2.7	$\mathrm{KF}\cdot\mathrm{HF}\text{-}\mathrm{sout}\;\mathrm{HF}$ dampdruk teenoor same stelling $\hfill\h$	16
2.8	Soortlike digtheid van KF \cdot HF teenoor same stelling $\ . \ . \ . \ . \ . \ .$	17
2.9	Soortlike geleidingsvermoë van KF $\cdot \mathrm{HF}$ teenoor same stelling $\ .\ .\ .\ .$.	18
2.10	HF-lotreaktor, Weergawe 1 3D-skets	23
2.11	HF-lotreaktor, Weergawe 1 mislukde bedryf	24
2.12	HF-lotreaktor, Weergawe 2 3D-skets	25
2.13	HF-lotreaktor, Weergawe 2: 3D skets van opstelling	26
2.14	HF-lotreaktor Weergawe 3	27
2.15	HF-oordragsvat, 3D-ontwerp	28
2.16	HF-oordragsvat, foto	29
2.17	Elektriese bedradingsdiagram vir temperatuurbeheer	30

2.18	HF-lotreaktor P&ID	31
2.19	Foto van die HF-lotreaktor se opstelling	33
2.20	Skets vir minimering van onnodige massaoordragsvolume	39
2.21	Fluoorsel 3D-skets, Weergawe 1	40
2.22	Fluoorselstaander, 3D-skets	41
2.23	Fluoorsel, Weergawe 2: ontwerp	42
2.24	Fluoorsel, Weergawe 2: foto	43
2.25	Fluoorsel P&ID: bedryf	45
2.26	Fluoorsel P&ID: laai van HF	46
2.27	Foto van die fluoorsel se opstelling	47
2.28	Foto van die fluoorsel se ysbad-opstelling	48
2.29	Laai van die KF \cdot HF-sout tot die fluoorsel $\ .$	51
2.30	Fluoorsel voltammetriese data	58
2.31	Fluoorsel, lang lopie, voltammetriese data	58
3.1	Elektrochemiese ingenieurswese: betrokke studievelde	62
3.2	Stapsgewyse illustrasie van oppervlak reaksie by 'n katode	65
3.3	Elektriese dubbellaag vir 'n waterige elektroliet	67
3.4	Elektriese dubbellaag potensiaalveld vir 'n waterige elektroliet $\ .\ .\ .$	68
3.5	Nernst-diffusielaag	77
3.6	Roustan et al., (1998) fluoorselgeometrie	80
3.7	Fluoorsel, ekwipotensiaalkrommes verkry deur Roustan et al., (1998), primiêre stroomverspreiding	e 81
3.8	Fluoorsel, snelheidsvektore verkry deur Roustan et al., (1998)	82

3.9	Fluoorsel, isoterme verkry deur Roustan et al., (1998)	83
3.10	Hur et al., (2003) fluoorselgeometrie	84
3.11	Hur et al., (2003) resultate	86
3.12	Hur et al., (2003) borreldiameter-effekte	87
3.13	Espinasse et al., (2006) fluoorselgeometrie	88
3.14	Espinasse et al., (2006) werwelvloei-postulaat	89
3.15	Espinasse et al., (2006) grensvoorwaardes	90
3.16	Espinasse et al., (2006) resultate vir $H_{2(g)}$ gasfraksie	91
3.17	Laboratorium- en modelgeometrie aangewend deur Mandin, Wtrich & Roustan, (2009)	92
3.18	Mandin, W trich & Roustan, (2009) foto van elektroliese borrel s $\ \ldots\ \ldots$	93
3.19	Grensvoorwaardes van die 2D parallelle-plaatsel	105
3.20	Grensvoorwaarde- en fasetoekenning: 3D Pauling-sel	105
3.21	Maas-invloed studie vir die 2D parallelle-plaatsel, fluoorgas vloed $\ \ldots \ \ldots$	106
3.22	Maas-invloedstudie vir die 2D parallelle-plaatsel, snelheid	107
3.23	Die toegepasde maas vir die 2D parallelle-plaatsel	107
3.24	Die toegepasde maas vir die 2D parallelle-plaatsel: skeefheid $\ \ldots\ \ldots\ \ldots$	108
3.25	Die toegepasde maas vir die 2D parallelle-plaatsel: groeitempo	108
3.26	Maas-invloedstudie vir die 3D Pauling-sel	109
3.27	2D parallelle-plaat fluoorsel, temperatuur	111
3.28	2D parallelle-plaat fluoorsel, stroomdigtheid	112
3.29	2D parallelle-plaat fluoorsel, vloeisnelheid	113
3.30	2D parallelle-plaat fluoorsel, gasfraksie	114
3.31	3D Pauling-sel, potensiaal	115

3.32	3D Pauling-sel, temperatuur	115
3.33	3D Pauling-sel, stroomdigtheid	116
3.34	3D Pauling-sel, vloeisnelheid	117
3.35	3D Pauling-sel, gasfraksie	118

Tabelle

2.1	Reaksiefaseverandering gedurende reaksie van ${\rm CaF}_2$ met ${\rm H}_2{\rm SO}_4$	5
2.2	Termodinamiese data vir HF vervaardiging	7
2.3	Algemene bedryfstemperature vir fluoorselle	10
2.4	Chemikalieë wat met behulp van fluoorgas berei word tesame met gebruike	10
2.5	Union Carbide Nuclear-tipe E fluoorsel: bedryfstoestande	11
2.6	Verbindings en eutektika in die KF \cdot HF-sisteem $\ . \ . \ . \ . \ . \ .$	14
2.7	Suiwerheidsvereistes vir KF \cdot HF-elektroliet \hdots	19
2.8	Bydraende komponente van hoë oorpotensiaal	20
2.9	Anodiese Tafel-kintika	22
2.10	Ontwerpaanpassings vir die HF-lotreaktor	24
2.11	HF-lotreaktor en oordragsvat kleppelys	30
2.12	Fluoorsel ontwerpsparameters, Weergawe 1	42
2.13	Fluoorsel ontwerpsparameters, Weergawe 2	43
2.14	Fluoorsel kleppelys	44
2.15	HF-lotreaktor: eksperimentele beplanning	56
2.16	Fluoorsel: eksperimentele beplanning	56
2.17	HF-lotreaktor: eksperimentele resultate	57
2.18	Fluoorsel: voltammetriese regressielyne	59

3.1	Grenslae by elektrodes	66
3.2	Elektrode: gewensde materiaaleienskappe	69
3.3	Verwantskap tussen oorpotensiaal en rigting van elektronoord rag	74
3.4	Algemene massa-oordragverskynsels	76
3.5	Potensiaalverliese wat bydra tot selverhitting in die model deur Hur et al., (2003)	84
3.6	Espinasse et al., (2006) fisiese eienskappe	90
3.7	Vergelyking van beskikbare fluoorselmodelle in die oop literatuur	94
3.8	Anodiese oppervlak: grensvoorwaardes	98
3.9	Katodiese oppervlak: grensvoorwaardes	99
3.10	Reaktorwand: grensvoorwaardes	100
3.11	Elektrolietoppervlak: grensvoorwaardes	101
3.12	Beginvoorwaardes van die model	102
3.13	Materiaaleienskappe: elektroliet-fase	103
3.14	Materiaaleienskappe: anode	103
3.15	Materiaaleienskappe: katode	103
3.16	Materiaaleienskappe: gas-fase	103
3.17	Uitdrukkings	104
3.18	Modelkonstantes	104
3.19	Grensvoorwaarde- en fasetoekenning: 2D parallelle-plaatsel	104
3.20	Grensvoorwaarde en fase toekenning: 3D Pauling-sel	109
3.21	Oplossing van die ten volle gekoppelde model vir 2D parallelle-plaatsel .	109
3.22	Maaseienskappe vir die 2D parallelle-plaatsel	110

Nomenklatuur

- α_0 Dighteidtoename koefissiënt $(7.11 \times 10^{-4} \,^{\circ}\mathrm{C}^{-1})$
- α_A Anodiese oordragskoefissiënt
- α_C Katodiese oordragskoefissiënt
- ΔG_r Verandering in Gibbs vry energie van reaksie $r (\mathrm{J} \,\mathrm{mol}^{-1})$
- ΔH_f^o Standaard vormingseltapie (J mol⁻¹)
- ΔH_r Verandering in eltalpie van reaksie $r (\mathrm{J} \,\mathrm{mol}^{-1})$
- ϵ Uitstraalvermoë
- η Toegepasde oorpotensiaal (V)
- $\eta_{r,tot}$ Totale bo-potensiaal van reaksie r (V)
- \mathbf{F} Volume-kragvektor (N m⁻³)
- **g** Gravitasieversnelling-vektor $(m s^{-2})$
- \mathbf{j}_m Elektrode stroomdigtheidvektor (A m⁻²)
- \mathbf{j}_s Elektroliet stroomdigtheidvektor (A m⁻²)
- n Die normaalvektor
- ${\bf Q}$ Hitte-bronne buiten viskose dissipasie ${\rm W\,m^{-3}}$
- \mathbf{u}_l Snelheidsvektor, vloeistof-fase (m s⁻¹)
- μ Dinamiese viskositeit (kg m⁻¹ s⁻¹)
- $\stackrel{\leftarrow}{j}$ Parisiële anodiese stroomdigtheid (A m⁻²)
- \overleftarrow{k} Reaksiekonstante vir die anodiese reaksie (m s⁻¹)

- \overrightarrow{j} Parsiële katodiese stroomdigtheid (A m⁻²)
- \vec{k} Reaksiekonstante vir die katodiese reaksie (m s⁻¹)
- ϕ Stroom rendement as 'n fraksie
- ϕ_g Volumefraksie, gas-fase
- ϕ_l Volumefraksie, vloeistof-fase
- ϕ_M Absolute elektriese potensiaal by elektrode-oppervlak (V)
- ϕ_S Absolute elektriese potensiaal van die oorhoofse elektroliet (V)
- ϕ_S Absolute elektriese potensiaal van die oorhoofse elektroliet (V)

$$\rho$$
 Digtheid (kg m⁻³)

- ρ_g Digtheid, gas-fase (kg m⁻³)
- ρ_l Digtheid, vloeistof-fase (kg m⁻³)
- ρ_e Elektriese resistiwiteit (Ωm)
- σ Elektriese geleidingsvermoë(S m⁻¹)
- σ_b Stefan Boltzmann se konstante (5.670 367 × 10⁻⁸ W m⁻² K⁻⁴)
- σ_m Elektriese geleidingsvermoë, elektrode (S m⁻¹)
- σ_s Elektriese geleidingsvermoë, elektroliet (Sm⁻¹)
- \underline{v} Snelheidsvektor (m s⁻¹)
- A Elektrode area (m²)
- A_a Anodiese Tafel-helling (V)
- c Konsentrasie van 'n chemiese spesie (mol m⁻³)
- C_p Soortlike warmtekapasiteit (J kg⁻¹ K⁻¹)

 $C_{p,298.15}$ Hittekapasiteit $(J \mod^{-1} K^{-1})$

- D Diffusie koefissiënt van chemiese spesie (m² s⁻¹)
- d_b Borreldiameter (m)
- d_z Dikte van die 2D modelleringsdomain (m)

- E Relatiewe elektriese potensiaal van 'n elektrode relatief tot 'n verwysingselektrode (V)
- E Toegepasde elektriese potensiaal (V)
- E_{sel}^0 Standaard selpotensiaal (V)
- E_{sel}^e Selpotensiaal by ewewig (V)
- E_e Elektrodepotensiaal by ewewig (V)
- E_A Anode potensiaal (V)
- E_A^e Anode potensiaal by ewewig (V)
- E_K Katode potensiaal (V)
- E_K^e Katode potensiaal by ewewig (V)

 E_{sel} Selpotensiaal (V)

- E_{tn} Termoneutrale potensiaal (V)
- F Faraday se konstante (96485 C mol⁻¹)
- G Gibbs vry energie (J mol⁻¹)
- g Gravitasieversnelling (m s⁻²)
- H Entalpie (J mol⁻¹)
- I Elektriese stroom (A)
- I_L Beperkde stroomvloei as gevolg van konvektiewe diffusie massa-oordrag (A)
- I_1 Elektriese stroom oorgedra tot primêre selreaksie (A)
- j Stroomdigtheid vir primêre reaksie (A m⁻²)
- j_0 Uitruilstroomdigheid (A m⁻²)
- j_r Stroomdigtheid van as gevolg van reaksie $r (A m^{-2})$
- j_{gb} Stroomdigtheid by anodiese oppervlak sonder om I_L in ag te neem (A m⁻²)
- j_{Tot} Totale waargenome stroomdigheid (A m⁻²)
- k Termiese geleidingsvermoë (W m⁻¹ K⁻¹)
- k_m Massa-oordragkoefissiënt (m s⁻¹)

- L Length of the planar electrode (m)
- m Aantal mol chemiese spesie (mol)
- MM Molekulêre massa (g mol⁻¹)
- N Vloed van ioonspesies (mol m⁻² s⁻¹)
- n Aantal elektrone betrokke in die elektrode reaksie
- N_A Anodiese gasvloed (kg m⁻² s⁻¹)
- N_A Avogadro se getal $(6.022 \times 10^{23} \text{ mol}^{-1})$
- N_K Katodiese gasvloed (kg m⁻² s⁻¹)
- n_r Aantal elektrone wat deelneem aan reaksi
er

P Pressure (Pa)

- Q Elektriese lading (C)
- q Hittevloed as gevolg van konduksie (W m⁻²)
- Q_1 Elektriese lading oorgedra tot primêre selreaksie (C)
- Q_b Hitte-vloed oor grens (W m⁻²)
- Q_e Lading van 'n enkele elektron $(1.60 \times 10^{-19} \text{ C})$
- Q_m Elektriese stroom bronvektor, elektrode (A m⁻³)
- Q_r Hittebron as gevolg van chemiese reaksie (W m⁻²)
- Q_s Elektriese stroom bronvektor, elektroliet (A m⁻³)
- Q_{JH} Volumetriese Joule-verhitting (W m⁻³)
- Q_{th} Volumetriese hittevloei (W m⁻³)
- R Elektriese weerstand(Ω)
- R_{gas} Ideale gas konstante $(8.3145\,{\rm J\,K^{-1}\,mol^{-1}})$
- S Entropie (J K⁻¹ mol⁻¹)
- S^o Standaard entropie $(J \operatorname{mol}^{-1} \mathrm{K}^{-1})$
- T Temperatuur (K)

- t Tyd (s)
- t_+ Vervoergetal vir 'n kationiese spesie
- t_{-} Vervoergetal vir 'n anioniese spesie
- T_w Temperatuur van die reaktorwand (K)
- V_r Reaktorvolume (m³)

Hoofstuk 1

Inleiding

Die vervaardiging van fluoorgas is 'n bekende proses in Suid-Afrika en is geskiedkundig gebruik vir die verryking van uraan in die kernindustrie. Die kommersiële proses behels die omskakeling van vloeispaat na anhidriese waterstoffluoried (HF) waarna suiwer waterstofgas (H₂(g)) en fluoorgas (F₂(g)) vervaardig word. Die proses is steeds van groot ekonomiese waarde aangesien Suid-Afrika een van die grootste vloeispaat-reserwes ter wêreld het.

Tot skade van die Suid-Afrikaanse ekonomie word hierdie mineraal egter uitgevoer en in die buiteland veredel. Die kommersiële fluooraanleg by Necsa is tans die enigste bron van fluoorgas in Suid-Afrika. Die Fluooruitbreidingsinisiatief (*Fluorochemical Expansion Initiative*, oftewel FEI) beoog om die fluoorbedryf in Suid-Afrika aan te wakker deur die daarstelling van primêre vervaardigingsondernemings wat die vloeispaat-reserwes omskakel na tussenprodukte vir die uitvoermark.

Toename in fluoorgasverbruik vir oppervlaksfluoreering van polimeerprodukte en die direkte fluorering van organiese verbindings word verwag. Realistiese marksvoorspelling dui daarop dat die industrie toekomstig sal neig na kleinskaalse vervaardiging van fluoorgas by die onderskeie verbruikspunte as gevolg van die gevaar verbonde aan die vervoer van die gas. Die ontwerp van bekostigbare, veilige lotreaktors vir laboratorium- en kleinsakegebruik is dus die langtermyndoelwit van hierdie navorsing. Hierdie navorsingsdoelwit ondersteun die doel van FEI en word gevolglik deur hierdie inisiatief befonds.

Die gevaarlike aard van al die betrokke chemiese spesies is die grootste uitdaging met fluoornavorsing. Navorsingsapparaat is gevaarlik om te toets en buite die bereik van 'n instansie met gebrekkige ervaring. Die bemagtiging van navorsingsinstansies om hierdie klein ontwerpe te bestudeer en te toets is 'n eerste tot fluoorkundigheid in Suid-Afrika.

Aangesien navorsingsapparaat 'n beter fundamentele verstaan van die elektrolitiese vervaardiging van fluoorgas toelaat, word hierdie werk tesame die ontwikkeling van 'n numeriese model van die elektrolitiese-sel gedoen. Die doelwit van hierdie verhandeling is tweeledig: eendersyds word 'n getoetsde laboratoriumproses en andersyds 'n verbeterde numeriese model om die gedrag van fluoorselle te voorspel, ontwikkel.

Die toerusting wat hierdie doel ondersteun, is suksesvol ontwerp en getoets by die Universiteit van Pretoria. 'n Nuwe numeriese model met die vermoë om twee gasfases se eienskappe in die vloeistoffase in ag te neem, is geskep. Hierdie is die eerste model in die oop literatuur wat van hierdie vermoë beskik. Hierdie model is ge-yk deur vergelyking met gepubliseerde modelle sowel as beskikbare resultate in die ope literatuur.

Aangesien $KF \cdot 2.2HF$, die elektroliet in 'n fluoorsel, nie maklik bekombaar is nie, is die nodige lotreaktor vir die vervaardig van anhidriese waterstoffluoried (AHF), ook ingesluit. Beide reaktore en 'n oordragsvat vir die AHF is ontwerp, vervaardig, in bedryf gestel, en getoets. Die numeriese model vir fluoorselle is geskep met behulp van COM-SOL Multiphysics[®], 'n eindige-elementmodelleringspaket. Die model neem hitte-oordrag, elektriese verhitting, elektriese stroomverspreiding sowel as borrelrige gasvloei in die elektrolietfase in ag. 2D modelle is met volledig gekoppelde differensiaalvergelykings opgelos terwyl 3D modelle ter wille van konvergensie slegs in een rigting gekoppel is. Vloeivergelykings is dus opgelos met die resultate van al die ander fisiese verskynsels (wat volledig gekoppel is) as beginwaardes.

Die inhoud van hierdie verhandeling word in twee hoofstukke verdeel: proses-ontwerp en -bedryf; proses-modellering. Hierdie struktuur ondersteun 'n sinvolle logiese vloei aangesien die model gebruik maak van die eksperimentele fluoorsel se geometrie en in werklikheid steeds tot hierdie geometrie ge-yk moet word.

Hoofstuk 2

Proses-ontwerp en -bedryf

2.1 Inleiding en prosesoorsig

Die ontwerp van 'n HF-lotreaktor tesame met 'n fluoorsel vereis 'n volledige ondersoek van die beskikbare literatuur wat veilige en effektiewe ontwerp ondersteun. Hierdie hoofstuk sluit dus eers die nodige literatuur vir 'n sinvolle ontwerp in waarna die iteratiewe ontwerpproses en eksperimentele resultate voorgehou word. Gevolgtrekkings gemaak van waarnemings gedurende die bedryf van die apparaat, word laastens ingesluit.

Figuur 2.1 toon 'n vereenvoudigde prosesvloeidiagram vir die laboratoriumsisteem. Die eerste stap maak gebruik van 'n lotreaktor om kalsiumdifluoried (CaF_2) na AHF om te skakel deur reaksie met swawelsuur (H_2SO_4) . Die vervaardigde AHF word gestoor in 'n oordragsvat en dan na die fluoorsel oorgedra.

Figuur 2.1: Vereenvoudigde prosesvloeidiagram vir die ontwerpde laboratoriumsisteem.

Literatuur relevant tot die HF-lotreaktor en fluoorsel se ontwerp word in Afdelings 2.2 en 2.3 ingesluit. Die ontwerp en bedryfsmetode van elk van hierdie reaktors word in Afdelings 2.4 en 2.5 gerapporteer. Die gebruik van die oordragsvat met elke reaktor word ook volledig hier bespreek. Eksperimentele beplanning vir die toets van die proses en die resultate is in Afdelings 2.6 en 2.7 beskikbaar. Die gevolgtrekkings van hierdie deel van die verhandelinginhoud word in Afdeling 2.8 saamgevat.

2.2 HF-lotreaktor: literatuur

Reaksie en reagense

Die reaksie tussen swawelsuur en kalsiumdifluoried, Reaksie C 1 hieronder, word gebruik om HF te vervaardig (Aigueperse et al., 2000: 400-401). Dit is van groot belang dat suiwer CaF₂ gebruik word in hierdie reaksie aangesien algemene onsuiwerhede in hierdie miniraal soos SiO₂, CaCO₃, Al₂O₃ en Fe₂O₃ maklik met HF en H₂SO₄ reageer om gasfasige kontaminante te vorm. Kontaminante wat as gevolg van hierdie syreaksies gevorm word, sluit SiF₄(g), H₂O(g), CO₂(g) en H₂S(g) in. Ander metodes vir vervaardiging van HF sluit die afbreek en distillasie van KF · HF of hoë temperatuur reduksie van PbF₂ met waterstofgas in. Hierdie metodes het 'n suiwer anhidriese HF produk tot gevolg, maar aangesien HF benodig word om KF · HF te berei en hierdie metodes slegs geskik is vir kleinskaalse toepassing, is hulle nie hier gebruik nie (von Wartenberg, 1963: 145-149). 98 % H₂SO₄ word kommersieel in die reaksie gebruik aangesien laer konsentrasies versnelde korrosie van die reaktormateriaal tot gevolg het. Hoër konsentrasies lei tot vorming van HSO₃F as 'n byproduk. Figuur 2.2 toon die korrosietempo van aluminium in die teenwoordigheid van verskillende konsentrasies H₂SO₄(aq) (Craig & Anderson, 1995: 921).

$$H_2SO_4(l) + CaF_2(s) \rightarrow CaSO_4(s) + 2 HF(g)$$
(C1)

Wanneer 'n oormaat van H_2SO_4 gebruik word, is daar 'n aantal verskillende reaksiefases wat teenwoordig is soos gelys in Tabel 2.1 (Aigueperse et al., 2000: 401). Hierdie waarneming is van belang aangesien hierdie fases opborrel met die gasvorming en kan die gasfasige produk kontamineer. Dit is dus nodig dat daar genoegsame volume in die reaktor teenwoordig is vir die verwagte toename in die reaksievolume.

Tabel 2.1: Reaksiefaseverandering gedurende reaksie van CaF_2 met H_2SO_4 (Aigueperse et al., 2000: 401).

Reaksievordering (%)	Reaksiefase
0-40	Viskose vloeistof
40-70	Poeier
70-80	Viskose vloeistof
80-100	Poeier

Reaksietermodinamika en -kinetika

Die reaksiewarmte vir Reaksie C1 kan bepaal word as $30.45 \text{ kJ} \text{ mol}^{-1}$ op 'n HF basis met gebruik van standaard vormingsentalpieë vanuit Tabel 2.2. Om die temperatuur

Figuur 2.2: Korrosietempo van aluminium in die teenwoordigheid van verskillende konsentrasies swawelsuur, $H_2SO_4(aq)$ (Craig & Anderson, 1995: 921).

waarby die reaksie spontaan plaasvind te skat is die hittekapasiteit as onafhanklik van temperatuur aanvaar en Vergelyking 3.1 is toegepas vir Reaksie C1 (Kotz, Treichel & Townsend, 2012: 875) met die waardes in Tabel 2.2. Die data vir HF is uit Chase, (1998) se versameling geneem. Vir die ander drie chemiese spesies is die data uit die handboek deur Haynes, (2016: 5-9 - 5-36) verkry. Die verwagte minimum temperatuur vir spontane reaksie is -9.6 °C. Die belangrike gevolgtrekking is dat met die meng van reagense voor verhitting ter wille van reaksiekinetika sal daar reeds HF (g) vrygestel word. Dit is belangrik om so gou moontlik die reaktor te seël.

Spesie	$\frac{\Delta H_f^o}{(\rm kJmol^{-1})}$	$\frac{S^o}{(\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1})}$	$C_{p,298.15}$ (J mol ⁻¹ K ⁻¹)
HF _(g)	-273.3	173.8	29.14
$CaSO_{4(s)}$	-1434.5	106.5	99.7
$CaF_{2(s)}$	-1228	68.5	67
$H_2SO_{4(l)}$	-814	156.9	138.9

Tabel 2.2: Termodinamiese data vir HF vervaardiging.

Die reaksiekinetika vir die lotreaksie is deur Candido & Mathur, (1974) bepaal met die molare fraksie omskakeling van CaF_2 as die basis van die vergelykings ingesluit as Vergelykings 2.1 en 2.2. Hierdie vergelykings kan toegepas word om 'n toepaslike beheerskema om die endotermiese reaksie te onderhou, te vind.

$$\frac{dx_B}{dt} = k_B \frac{X_{B0^2} (A - x_B)^2 (1 - x_B)^{\frac{2}{3}}}{1 - (1 - x_B)^{\frac{1}{3}}}$$
(2.1)

$$k_B = 0.247 e^{\frac{-16.45 \times 10^3}{R}} \left(\frac{1}{T_B} - \frac{1}{810}\right)$$
(2.2)

Materiale

Die materiale wat gebruik word vir die lotreaktor moet voldoende chemiese weerstand teen aanval deur $H_2SO_4(aq)$ en HF bied. Materiale wat ongeskik is vir gebruik in die teenwoordigheid van HF word deur Craig & Anderson, (1995: 437) gelys. Materiaalgeskiktheid vir gebruik saam gekonsentreerde swawelsuur word deur Craig & Anderson, (1995: 848-852) bespreek. Die gebruik van vlekvrye-staal-legerings word in diepte deur Francis, (2009) en Craig & Anderson, (1995: 437) gerapporteer.

Vanuit die geskikde materiale wat by die Universiteit van Pretoria masjineer kan word, is die goedkoopste metale lood en aluminium. Dit is noemenswaardig dat nikkellegerings wel die mees algemeen gebruik word in die fluoorindustrie. Ter wille van vergemaklikde vervaardiging (Macur, 2016), is aluminium die geskikde materiaal. Sou daar egter van

standaardkomponente gebruik gemaak word, is vlekvrye staal die geskikde materiaal.

'n AlF₃ pasiveringslaag word gevorm wanneer aluminium aan HF blootgestel word (Ritala, Kiihamki & Heikkil, 2010). Hierdie laag beskerm die aluminium se opppervlak van verdere aanval deur HF en reageer ook nie met swawelsuur by temperature laer as $360 \,^{\circ}$ C nie.

2.3 Fluoorsel: literatuur

2.3.1 Geskiedenis en algemene gebruike van fluoor

Fluoorgas, F_2 , is die eerste keer met gebruik van elektroliese deur die Franse chemikus Henri Moissan in die jaar 1886 berei. Moissan het 'n elektroliet wat hoofsaaklik uit HF bestaan het, gebruik. 'n Klein hoeveelheid KF is bygevoeg aangesien die HF nie 'n goeie geleidingsvermoë het nie (Groult, Simon, et al., 2005). Hierdie toevoeging van 'n ondersteuningspesie in die elektroliet is 'n algemene verskynsel in elektrochemiese selle (Newman, 1973: 21). Moissan se fluoorsel word in Figuur 2.3 getoon (Cady, Rogers & Carlson, 1942).

Figuur 2.3: Moissan se lae temperatuur sel (Cady, Rogers & Carlson, 1942).

Die enigste kommersieel lewensvatbare metode om fluoorgas te berei is die elektroliese van gesmelte fluoorbevattende soute (Shia, 2003). Die grootskaalse vervaardiging van fluoorgas is eers gedurende die tweede wêreldoorlog gedoen met die doel om uraan vir kernwapens te verryk. Hierdie ontwikkeling het plaasgevind in die Vereenigde State, Vereenigde Koninkryk en Duitsland. 50 % van die F_2 wat vervaardig word, word gebruik vir uraanverryking in die kernkragindustrie (Shia, 2003).

Fluoorselle word geklassifiseer volgens die temperatuur waarby hulle bedryf word. Tabel 2.3 toon die algemene bedryfstemperature. Die mediumtemperatuursel word tans vir industriële toepassings gebruik. Die voorloper van die mediumtemperatuursel is die eerste maal deur Lebeau en Damiens in 1925 gebruik met 'n elektrolietsamestelling van $KF \cdot 3HF$ wat 'n smeltpunt van 65.8 °C het (Rudge, 1971: 2-3). Hierdie toepassing het ook die eerste keer nikkel as die anode gebruik en daar is bevind dat nikkel nie soos koolstofanodes polariseer nie.

 Tabel 2.3:
 Algemene bedryfstemperature vir fluoorselle.

Fluoorselbenaming	Bedryfstemperature (°C)
lae temperatuur	-80-20
medium temperatuur	60-110
hoë temperatuur	220-300

Cady het die laaste werk om die mediumtemperatuursel daar te stel voltooi deur die gunstige eienskappe van 'n elektrolietsamestelling van rondom KF \cdot 2HF te identifiseer en daarna 'n fluoorsel met hierdie elektroliet te bedryf (Cady, 1934; Cady et al., 1942). Die sel het gebruik gemaak van 'n nikkel- of nie-grafitiese-koolstofanode. Die werk deur Cady het daartoe gelei dat die ander bedryfstemperature vir fluoorselle nie meer in die industrie voorkom nie, maar wel sy mediumtemperatuur-elektrolietsamestelling (Rudge, 1971: 3).

Die gebruike van F_2 strek verder as die verryking van uraan en word in verskeie hedendaagse toepassings gebruik. Die chemikalieë wat met gebruik van F_2 berei word, word tesame hul toepassings in Tabel 2.4 weergegee (Groult, Simon, et al., 2005).

Tabel 2.4: Chemikalieë wat met behulp van fluoorgas berei word tesame met gebruike (Groult,
Simon, et al., 2005).

Chemiese spesie	Gebruike
WF_6	Chemiesedamp-deponering van wolfram
NF_3	Ets van half-geleiers
CF_x	Grafitiese fluoriede vir gebruik as katodes in litium-batterye
	$(0.5 \le x \le 1.24)$
SF_6	Insolasiegas in elektriese toebehore
ClF_3	Die skoonmaak van halfgeleier vervaardigingsreaktore in die reke-
	naarbedryf
F_2 - N_2	Hierdie mengsels word gebruik om plastieke se eienskappe te veran-
	der

Die mees algemene fluoorbevattende mineraal wat gebruik word vir die vervaardiging van F_2 is vloeispaat, Ca F_2 (Shia, 2003). Suid-Afrika het dieselfde reserve as Sjina. Hierdie is die grootste reserves Ca F_2 ter wêreld (U.S. Geological Survey, 2018). Ca F_2 kan tot HF (g) verwerk word soos bespreek in Afdeling 2.2.

2.3.2 Industriële selle

Kommersiële fluoorselle gebruik tipies 'n stroom van ongeveer 6 kA en is *mediumtempe*ratuurselle (Groult, 2003). Daar is in een sel rondom 24 nie-grafitiese koolstofplate wat as anodes dien saam met staal- of ysterkatodes. Koolstof-elektrodes word verkies omdat die besoedeling van die elektroliet met metaalsout sodoende vermy word. Monel-skerms word gebruik om die gasprodukte van mekaar te skei aangesien die herkombinasie geweldig eksotermies en plofbaar is (Roustan et al., 1998). Verkoeling van die selle is nodig as gevolg van die lae energie-rendement van die proses wat ongeveer 30 % is. Die proses het egter 'n hoë Coulombiese rendement van 95 %. Beweging van die elektroliet vir hitte- en massa-oordrag word uitsluitlik deur gasborrelbeweging teweeg gebring. Die rendemente van die elektrolise is baie afhanklik van die borrels se beweging as gevolg van die borrels se effek op elektrolietvloei en die borrels se hoë elektriese weerstand (Mandin, Wtrich & Roustan, 2009).

Aldus Shia, (2003) is die mees algemene ontwerp in die Vereenigde State van Amerika (VSA) en Kanada die tipe E sel wat deur Union Carbide Nuclear in samewerking met die VSA se Atomic Energy Commission (AEC) ontwikkel is. Die bedryfstoestande van hierdie sel word in Tabel 2.5 ingesluit. 'n Skets van hierdie sel se basiese ontwerp word in Figuur 2.4 vertoon.

Stroom (A)	6000
Elektriese potensiaal (V)	9-12
Temperatuur (°C)	90-105
HF-massapersentasie in eletroliet $(\%)$	40-42
Aktiewe-anode-area (m^2)	3.9
Anode-stroomdigtheid $(A m^{-2})$	1500
Aantal anodiese elektrodes	32
Anode-leeftyd (A h)	$40 - 80 \times 10^{6}$

Tabel 2.5: Union Carbide Nuclear tipe E fluoorsel: bedryfstoestande (Shia, 2003).

Figuur 2.4: Union Carbide Nuclear tipe E fluoorsel: basiese ontwerp (Shia, 2003).

Figuur 2.5: Die oorspronklike Pauling-sel (Pauling, 1957: 277).

Elektrochemiese reaksie

Die halfselreaksies wat by die katode en anode gedurende die elektroliese van HF plaasvind, word deur Reaksies C 2 en C 3 beskryf (Groult, 2003). Die omkeerbare selpotensiaal van HF se ontbindingsreaksie is ongeveer 2.9 V. Dit is duidelik dat beide produkte gasfasig is en dat daar geen byprodukte is wat in die elektroliet akkumuleer nie.

$$2 \operatorname{HF} + e^{-} \rightarrow \frac{1}{2} \operatorname{H}_{2} + \operatorname{HF}_{2}^{-}$$
 (C 2)

$$\mathrm{HF_2}^- \to \frac{1}{2}\mathrm{F_2} + \mathrm{HF} + \mathrm{e}^- \tag{C3}$$

2.3.3 Laboratoriumselle

Die Pauling-sel is 'n welbekende fluoorsel vir laboratoriumgebruik omdat hierdie sel intrensiek veilig en maklik om te vervaardig is. Hierdie geometrie is deur Pauling, (1957: 277) gerapporteer en is veilig van aard aangesien dit die herkombinasie van die produkgasse voorkom. Figuur 2.5 toon Pauling, (1957: 277) se ontwerp. Dit is duidelik sigbaar dat die katode in Pauling se skets aan die linkerkant vertoon word met die anode aan die regterkant.

2.3.4 Elektroliet

Samestelling en belangrike eienskappe

Die elektroliet wat in industriële fluoorselle gebruik word, is ideaal 'n gesmelte-soutmengsel

met 'n samestelling van ongeveer KF $\cdot 2$ HF (40.8 % HF)(Rudge, 1971: 7-14). Die kommersiële bedryfstoestande van fluoorselle, ten opsigte van die elektroliet, is 'n HF massainhoud van 38 tot 42 % met die elektroliet se temperatuur tussen 80 en 110 °C (Rudge, 1971: 7–9). Hoe laer die fraksie HF in die elektroliet, hoe minder reaktant gaan verlore saam die produkgasse vanweë dampdruk. 'n Laer HF-inhoud vereis egter 'n hoër toegepaste elektriese potensiaal en lei tot 'n hoër bedryfskoste. Dit is belangrik dat die elektroliet nie saam die gasprodukte meegesleur word en dan in die gasuitlate vries nie. Dit kan daartoe lei dat die gasse akkumuleer en plofagtig herkombineer in die sel (Shia, 2003).

Geskiedkundig het die samestelling van die elektroliet aansienlik gewissel. Rudge, (1971: 7-14) fokus op die mediumtemperatuursel wat mees algemeen gebruik word met 'n elektrolietsamestelling van $KF \cdot 2.2 HF$. Die gebruik van hierdie spesifieke samestelling vir kommersiële toepassings hou die volgende voordele in (Greenwood & Earnshaw, 1998: 797):

- lae dampdruk vir HF bo die elektroliet
- verminderde korrosie van die reaktor
- verlengde diensleeftyd vir die anode
- groter toelaatbare verandering in die samestelling gedurende bedryf

Die smeltpunt en dampdruk van die elektroliet teenoor molfraksie HF word in Figure 2.6 en 2.7 weergegee (Cady, 1934). Tabel 2.6 sluit die smeltpunte en massapersentasie HF vir die verbindings in sowel as eutektika wat in hierdie sisteem voorkom.

Tabel 2.6: Verbindings en eutektika in die KF · HF-sisteem (Cady, 1934).

Vaststestof	% HF	Smeltpunt (°C)	Vaststestof	% HF	Smeltpunt (°C)
HF	100	-83.7	$\mathrm{KF}\cdot 2.5\mathrm{HF}$	46.2	64.3
Eutektikum	88.3	-97	Eutektikum	44.2	61.8
$\mathrm{KF}\cdot 4\mathrm{HF}$	57.9	72	$\mathrm{KF}\cdot 2\mathrm{HF}$	40.8	71.7.
Eutektikum	53.7	63.6	Eutektikum	38.5	68.3
$\mathrm{KF}\cdot \mathrm{3HF}$	50.8	65.8	$\mathrm{KF} \cdot \mathrm{HF}$	25.6	239.0
Eutektikum	47.9	62.4	Eutektikum	24.6	229.5

Die HF se dampdrukdata wat versamel is (Cady, 1934), is wiskundig gepas om Vergelyking 2.3 te verkry (Baines & Davies, 1955). Vergelyking 2.3 gee resultate wat minimum 5 % akkuraat is vir die temperature van belang (Rudge, 1971: 7). Let daarop dat daar

Figuur 2.6: KF · HF-sout smeltpunt teenoor samestelling (Cady, 1934).

'n verwagte dampdruk by die bedryfstemperatuur is en daar sal dus 'n verlies van HF wees wat nie reageer tot F_2 en H_2 nie. Die HF-inhoud van die produkgasse stem gewoonlik ooreen met die verwagte ewewigdampdruk van die HF (Rudge, 1971: 10). Die temperatuur van die sel word dus geminimeer om reaktantverlies en gepaardgaande produkkontaminasie te minimeer. Die koste verbonde aan hierdie voordeel is die toegepasde oorpotensiaal wat toeneem met 'n afname in temperatuur.

$$log(p_{HF}) = \frac{101.325}{760} (2.0733 - \frac{4244}{T} + 0.2975C + \frac{47.94C}{T} - 0.003785C^2)$$
(2.3)

Die soortlike digtheid en geleidingsvermo van $KF \cdot HF$ mengsels is bepaal en word in Figure 2.8 en 2.9 ingesluit (Schumb, Young & Radimer, 1947). Die ekstrapolasie van die geleidingsvermoë data is deur Rudge, (1971: 11) ingesluit aangesien Britse fluoorselle naby aan hierdie temperature bedryf is gedurende die periode van sy werk.

Vervaardiging en suiwerheid

In kommersiële toepassings word die elektroliet vervaardig deur HF(l) by KF(s) te voeg. Die reaktor is 'n staal vat met 'n klos om die eksotermiese reaksie se temperatuur te beheer. Die reaktor het ook 'n vermenger, verhitte vloeistoflyn aan die onderent, gasafvoer en 'n dompelbuis. Die HF word met behulp van die dompelbuis in die reaktor ingevoer

Figuur 2.7: KF · HF-sout HF dampdruk teenoor samestelling (Cady, 1934).

Figuur 2.8: Soortlike digtheid van $KF \cdot HF$ teenoor samestelling.

Figuur 2.9: Soortlike geleidingsvermoë van KF · HF teenoor samestelling.

tot en met die elektroliet die dompelbuis bedek. Hierna word die vat met stoom in die klos verhit en HF(l) toegevoeg tot en met die nodige verhouding $KF \cdot HF$ verkry word (Rudge, 1971: 13). 'n Gebrek aan HF na elektroliese word met hierdie metode aangevul. Oortollige HF word afgekook in die elektrolietreaktor.

Met betrekking tot die suiwerheid van die elektroliet word 'n lae water- en swawelinhoud verkies. Die teenwoordigheid van hierdie twee kontaminante lei tot verergerde disintegrasie van koolstofanodes. Rudge, (1971: 13) doen verslag oor aanvaarbare kontaminasie in die KF(s) bron vir Britse selle tesame twee Amerikaanse vervaardigers se vereistes. Hierdie vereistes word in Tabel 2.7 ingesluit. Union Carbide borrel fluoorgas deur die elektroliet tot en met die waterinhoud tussen 0.001 en 0.003 % is. Sommige elektrolietverbruikers voeg metaalfluoriede by om die sel se energierendement te verhoog. Metale soos Al en Mg verbeter elektronoordrag vir koolstofanodes. Nikkel kontaminasie as gevolg van nikkel anode korrosie of Monel korrosie het negatiewe effekte op die sel rendement soos bespreek in Afdeling 2.3.5.

2.3.5 Elektrodes

Die aanbevole stroomdigtheid by bedryftoestande vir fluoorselle is tussen $80 \text{ en } 150 \text{ mA cm}^{-2}$ (Leech, 1949). Platinum, grafitiese koolstof, nikkel, en ander metaallegerings is geskied-

Spesifikasie	$\begin{array}{l} Maksimum \ inhoud \ (\%) \\ K_2 SiF_6 \end{array}$	H_2O	KCl	SO_4	Fe	Swaar metale
Britse selle	2.5	0.5				
Allied Chemical	0.5	0.1	0.02	0.01	0.02	0.005
Union Carbide				0.01		

Tabel 2.7: Suiwerheidsvereistes vir KF · HF-elektroliet (Rudge, 1971: 13). Die maksima word gerapporteer.

kundig as die anodiese materiaal in fluoorselle gebruik (Gmelin, 1969: 66-70). Vir die medium temperatuur se elektrolietsamestelling word nie-grafitiese koolstof en nikkel algemeen gebruik. Korrosie van nikkel anodes het veroorsaak dat hulle met nie-grafitiese koolstof vervang is in meeste kommersiële fluoorselle ten spyte van die koolstof se polarisasie (Ring & Royston, 1973).

Vir die katode en reaktor se romp word koolstofstaal of Monel aangewend. Ter wille van kostebesparing is koolstofstaal baie meer gewild vir hierdie toepassing, veral vir die katode.

Koolstofanode

Nie-grafitiese koolstof word in fluoorselle gebruik aangesien grafitiese koolstof disintegreer met die vasvang van ioniese spesies en F_2 tussen die grafietlae (Groult, Simon, et al., 2005). Hierdie elektrodes word vervaardig deur petroleumkooks en pik by lae temperatuur se kalsineer (Shia, 2003). Koolstof het 'n hoë elektriese-geleidingsvermoë en chemiese weerstand tot die $F_2(g)$ -produk.

Koolstofanodes ondergaan polarisasie waartydens die stroomvloei deur die sel geleidelik of skielik afneem na 'n baie klein vloei met 'n konstante oorpotensiaal wat op die sel toegepas word (Rudge, 1971: 14). Hierdie verskynsel is as gevolg van 'n dun laag koolstofmonofluoried, (CF)_n, wat op die anode se oppervlak form (Palin & Wadsworth, 1948; Rdorff et al., 1948). KF · HF vertoon baie swak benatting van die koolstofmonofluoried (Rudge, 1971: 16). Vir 'n ongebruikde koolstofelektrode is die raakhoek 0°. Sodra die elektrode aangewend is as 'n anode en die (CF)_n laag teenwoordig is, is die raakhoek ongeveer 150°.

Die fluoorgas wat gedurende reaksie geproduseer word kom as 'n lensievormige borrel voor aangesien dit op die koolstofanode adsorbeer met die raakhoek van 150° (Groult, Simon, et al., 2005: 15). Die chemiese meganisme wat polarisasie veroorsaak as gevolg van die fluoorgas se gedrag word verder deur Rudge, (1971: 18–26) bespreek.

Die anode-effek vind plaas wanneer die elektriese spanning oor gepolariseerde elektrodes verhoog word. Die toename in spanning bring 'n hoër stroomdigtheid teweeg op die elektrode-oppervlak wat nie met fluoorgas bedek is nie. Die hoër stroomdigtheid veroorsaak lokale toenames in temperatuur en klein elektriese vonke. Die vonkies wat teen 'n hoë frekwensie vorm, veroorsaak dat die teenwoordige fluoorgas met die koolstofoppervlak reageer om die anode-oppervlak skoon te maak met koolstoftetrafluoried (CF_4) as produk (Shia, 2003). Elektroliese kan dan normaal voortgaan met die benatting van die skoon koolstofoppervlak. Oortollige water in die elektroliet dra by tot die vorming van die laag (Rudge, 1971: 19–20).

'n Bykomende uitdaging met die gebruik van koolstof is die korrosie van die metaalkoppeling tot die anode. Die afname in kontakarea tussen die koppeling en die anode veroorsaak verhoogde stroomdigtheid en gevolglike verhitting wat lei tot faling van die anode (Rudge, 1971: 44).

Daar is 'n aansienlike toegepasde oorpotensiaal in fluoorselle wat gebruik maak van koolstofanodes. Die omkeerbare potensiaal vir die ontbinding van HF is ongeveer 2.9 V. Om 'n kommersiële sel te bedryf met 'n stroomdigtheid van ongeveer 10 tot 12 A m⁻² is 'n toegepasde potensiaal van 8 tot 10 V nodig. Die bydraes tot hierdie toegepasde potensiaal word in Tabel 2.8 weergegee (Groult, 2003).

Komponent	Elektriese potensiaal (V)
Omkeerbare ontbindingspotensiaal	≈ 2.9
Ohmiese verliese aan elektroliet	≈ 3.0
Ohmiese verliese aan elektrodes	≈ 0.5
Katodiese oorpotensiaal	≈ 0.2
Anodiese oorpotensiaal	≈ 2.5

Tabel 2.8: Bydraende komponente van hoë oorpotensiaal (Groult, 2003).

Die hoë potensiaalverlies aan die anodiese oorpotensiaal is as gevolg van die laag $(CF)_{(n)}$ op die anode oppervlak. Hierdie film lei nie net tot die verlaging in kontakarea vanweë die gevolglike swak benatting nie, maar bestaan op plekke uit grafiet fluoriede wat as elektriese isoleerders optree (Groult, 2003). Hierdie laag tree op as 'n tempobepalende weerstand teen elektronoordrag. 'n Bykomende effek is die lensievormige borrels wat aan die anode klou en ook bydra tot die oppervlakskerming.

Die meganisme wat teenwoordig is by elektrode/elektroliet fasegrens, is bestudeer en daar is gevind dat die kinetika van die reaksie beheer word deur massa- en elektronoordrag (Groult & Lantelme, 2001). Massa-oordrag speel 'n rol ten spyte van die hoë konsentrasie reagens in die elektroliet as gevolg van 'n tussenfasige laag om die elektrode waar die

elektroliet superversadig met fluoorgas is. 'n Model om die reaksie te beskryf is voorgestel wat die vaste CF-oppervlak, 'n tussenfasige gefluidiseerde laag en die gasfasige produk in ag neem (Groult, Devilliers, et al., 2002).

Die besonderse hoë toegepasde oorpotensiaal lei daartoe dat baie elektriese energie verlore gaan as hitte. Hierdie verskynsel vereis dat die elektriese en termiese oordragsverskynsels in die sel gekoppel moet word in 'n numeriese model (Roustan et al., 1998).

Nikkelanode

Nikkelanodes word nie deur polarisasie beïnvloed nie, maar word agressief gekorrodeer deur die KF · HF elektroliet (Cady et al., 1942). Hierdie korrosie het tot gevolg dat die elektroliet gekontamineer word met nikkelsoute soos NiF₂ en NiF₃ wat die elektroliesereaksie belemmer (Ring & Royston, 1973). NiF₂ vorm 'n laag bo-op die anode wat F₂ teen die elektrode vasvang en die korrosie daarvan te versnel (Hackerman, Snavely & Fiel, 1967). Die elektrode moet daarom gereeld vervang en die nikkelsoute uit die reaktor verwyder word wat lei tot hoër bedryfskoste. Hierdie nikkelsoute is duidelik sigbaar as 'n slik onder in die sel.

Die korrosie van nikkel in die elektroliet dra by tot die lae stroomrendement wat vir hierdie materiaal waargeneem word. Nikkelanodes in fluoorselle vertoon 'n tipiese Coulombiese rendement van 60 tot 70 % (Rudge, 1971: 4). Dit is op grond van die lae Coulombiese rendement, slikformasie en gevolglike hoë bedryfskoste dat nikkelanodes met koolstofanodes vervang is.

2.3.6 Anodiese kinetika

Anodiese kintetika vir fluoorselle word deur Rudge, (1971: 27-29) saamgevat. Die kinetika van KF · HF elektroliet is deur Arvia, AJ & de Cuminsky, JB in 1962 vir temperature tussen 251 °C en 256 °C gepubliseer. 'n Studie by temperature tussen 80 °C en 100 °C is in 1963 deur Watanabe, N, Inoue, M & Yoshizawa, S vir KF · 2.2HF gepubliseer. Hierdie verwysings is nie maklik bekombaar nie en die leser word na Rudge, (1971: 27-29) verwys.

Die Tafel-kinetika wat deur beide publikasies gevind is, word in Tabel 2.9 ingesluit. Rudge, (1971: 28) stel dat daar, volgens hierdie resultate, geen merkwaardige verskil in die kinetiese gedrag is nie. Die reaksie by temperature tussen 80 °C en 260 °C vir 'n elektrolietsamestelling tussen KF · HF en KF · 2.2HF gebruik dus dieselfde oordragskoeffisiënt en Tafel-helling.

Tabel 2.9: Die anodiese Tafel-kinetika wat deur Rudge, (1971: 28) rapporteer word.

Konstante	Watanabe <i>et al.</i>	Arvia <i>et al.</i>
j_0 , grafiet (A cm ⁻²) j_0 , koolstof (A cm ⁻²) j_0 , platinum (A cm ⁻²)	3×10^{-6} 9×10^{-5} 2×10^{-5}	10×10^{-3} 10×10^{-6}
Oordragkoeffisiënt Tafel-helling Dubbellaag kapasitansie (µF cm ⁻²)	0.8 2.303 <i>RT/aF</i> 30	0.82 2.303 <i>RT/aF</i> 50

2.4 HF-lotreaktor: ontwerp en bedryf

Al die weergawes van die lotreaktor wat gedurende die iteratiewe ontwerpproses getoets is, word eers bespreek. Die finale weergawe word in Afdeling 2.4.2 bespreek. Die temperatuurbeheer en pyp- en instrumentasiediagram (PI&D) vir die reaktor word ook in hierdie afdeling ingesluit.

2.4.1 Weergawes 1 en 2

'n Eenvoudige silindriese lotreaktor is uit aluminium vervaardig. Aluminium is gekies omdat die outeur aanvanklik geglo het dat maklike masjinering van die materiaal tot die verbruiker se voordeel sou wees. Die meganiese ontwerp van Weergawe 2 van die reaktor word ingesluit in Bylaag A.

Die eerste ontwerp het 'n binnevolume van 500 mm³. Die reaktor se binnevolume is as 'n silinder uit 'n silindriese aluminiumknuppel gemasjineer om die romp te gee. Skroefdraad is in hierdie romp gesny om die silindriese deksel aan vas te skroef. 'n FKM-o-ring is tussen die romp en deksel as geskikde seëlvlak gebruik. Die reaktor word op 'n magnetiese roerder geplaas om met behulp van 'n roerstafie die reaktorinhoud gedurende eksperimente te vermeng.

Die skroefdraad het 'n diepte en steek van 1 mm en is 50 mm lank. Hierdie diepte en steek is gekies om maksimum weerstand tot 'n chemiese vrystelling te bied indien die FKM-seëlvklak sou meegee. In die midelpunt van die deksel is 'n $\frac{1}{4}$ "NPT skroefgat getap. 'n Vlekvryestaal J-tipe termokoppel word in die reaksiemengsel geplaas deur hierdie gat deur 'n T-stuk aan die deksel vas te skroef. Die produkgasse kan gevolglik deur die middelste been van die T-stuk afgevoer word. 'n Klep word hier gekoppel om die gasvloei te beheer. Beide die romp en deksel is uit dieselfde aluminiumknuppel met 'n lengte van 250 mm gesny. Figuur 2.10 toon 'n 3D-skets van die eerste weergawe.

Die inbedryfstelling van hierdie reaktor was onsuksesvol. Vastestowwe is met die produkgas meegesleur en het die oordragsvat gekontamineer. Die reaksievolume (vrybreekhoogte vir die gas) moes dus vergroot word. Na die onsuksesvolle eksperiment is daar ook waargeneem dat dit besonders moeilik was om die deksel los te skroef. Hierdie waarneming mag toegeskryf word aan die baie fyn skroefdraad wat óf deur termiese uitsetting beïnvloed is, óf aan 'n chemiese vrystelling blootgestel is vanweë die o-ring wat gefaal het. Die romp is beskadig met die agressiewe losdraai van die deksel. Daar is bevind dat die termokoppel ook onherroeplik beskadig is. Figuur 2.11 toon foto's van die skade. Hierdie mislukde poging het gelei tot Weergawe 2 van die lotreaktor. Die nuwe weergawe van die reaktor spreek hierdie tekortkominge aan soos in Tabel 2.10 getoon.

(a) beskadigde lotreaktor

(b) beskadigde termokoppel

Figuur 2.11: Die beskadigde skroefdraad en termokoppel van die gefaalde weergawe van die lotreaktor.

Tabel 2.10: Ontwerpaanp	assings vir	$^{\circ}$ die HF-lotreaktor.
-------------------------	-------------	-------------------------------

Tekortkoming	Aanpassing
Kontaminasie van die produk Skade tot die skroefdraad Rompwand te dun vir dieper skroefdraad Losmaak van die deksel	Binne-volume vergroot na 730 mm ³ Diepte en steek is na 2.5 mm aangepas Wanddukte is van 3 mm na 6 mm aangepas Klampgroewe en spygate is tot die romp en deksel bygevoeg

Aangesien 'n Monel termokoppel te duur sou wees, word die termokoppel nou bloot tussen die reaktor se wand en die verhittingsklos geplaas om temperatuur van die wand

te beheer. Aangesien die reaksie endotermies is, ondersteun hierdie metingspunt konserwatiewe temperatuurbeheer. Die meganiese ontwerp van die tweede weergawe van die lotreaktor se romp en deksel word ingesluit in Bylaag A. Figuur 2.12 toon 'n 3D-skets van die volledige opstelling met die nodige toebehoorsels om aan die oordragsvat gekoppel te word.

Figuur 2.12: 3D-skets van die tweede weergawe van die HF-lotreaktor.

Let daarop dat die toebehoorsels soos getoon toegepas is vir die inbedryfstelling van die reaktor. Alle toebehoorsels is standaard Swagelok komponente met $\frac{1}{4}$ "buisdiameter. Die deursigtige oordragsbuis is ingevoeg om visuele inspeksie vir vastestofsamesleuring toe te laat. Indien die oordragsbuis gebuig word, soos in Figuur 2.12 getoon, kan enige vastestowwe deur die boog vertraag en die klep na die oordragsvat gesluit word. Hierdie buis hoort voor elke gebruik inspeksie te ondergaan om te verseker dat fisiese integriteit behoue bly.

Na die eerste gebruike van die reaktor is daar gemerk dat die FKM-seëls in die Swagelok *female quick connect* koppeling na een of twee lopies meegee. Hierdie koppeling laat dan deurlekking van HF(g) toe en is dus vanuit die opstelling verwyder. Die kleppe wat gebruik is, laat steeds toe vir effektiewe gebruik met die kompressie-seël koppelings. Die 316 vlekvrye staal buis wat aan die PFA oordragsbuis gekoppel is in Figuur 2.12 is met latere gebruik weggelaat.

Hierdie weergawe van die lotreaktor is suksesvol toegepas vir verskeie toetslopies met die opstelling getoon in Figuur 2.13. Gedurende een van die toetslopies het die o-ring egter weer gefaal en die korrosieskade tot die skroefdraad was van so aard dat die deksel nie

van die romp losgeskroef kon word nie. Daar is gevolglik besluit om weg te doen met die gebruik van skroefdraad en 'n o-ring om die reaktor te seël. Daar is ook waargeneem dat die roerstafie nie binne die reaktor roteer nie. Die reaksiemengsel bied te veel weerstand vir hierdie vermeningsmetode en die roerder en stafie is gevolglik verwyder.

Figuur 2.13: 3D-skets van die tweede weergawe van die HF-lotreaktor se eksperimentele opstelling met die magnetiese roerplaat, verhittingsklos, temperatuurbeheerder en vloeibarestikstofhouer in geel, oranje, siaan en groen aangedui. Die staander is swart gekleur met die HF-lotreaktor en -ordragsvat aan die regter- en linkerkant gemonteer.

2.4.2 Weergawe 3

Die finale weergawe van die HF-lotreaktor maak slegs van standaardkomponente gebruik wat uit 316 velvrye staal vervaardig is. Om 'n soortgelyke binnevolume as Weergawe 2 te gee is 'n 248 mm lengte DN 65 $2\frac{1}{2}$ "skedule 40, 316 vlekvrye staal pyp as die reaktorromp gekies. Die pyp se onderkant is met 'n standaard prop en swyslas geseël. Die bo-kant van die lotreaktor is met n DN 65 SANS 1123 tabel 1600 blinde flens geseël. Hierdie flens dien ook as die toegangspunt om reaktante tot die reaktor te voeg. n Klep is met behulp van $\frac{1}{4}$ "NPT skroefdraad aan die reaktor se blinde flens gekoppel. Die pyp is van 'n DN 65 SANS 1123 tabel 1600/3 opglipflens voorsien. Die flense het verhewe seëlvlakke. Viton met 'n dikte van 1 mm is as seëlmateriaal gebruik. Hierdie materiaal het 'n maksimum dienstemperatuur van 205 °C.

Alle toebehoorsels in die ontwerp is steeds Swagelok komponente wat uit 316 vlekvrye staal vervaardig is. Figuur 2.14 toon 'n foto van die reaktorromp en deksel. Dieselfde opstelling as wat in Figuur 2.12 getoon word, is met hierdie weergawe toegepas.

Figuur 2.14: Foto van die HF-lotreaktor, Weergawe 3.

Om die temperatuur van die lotreaktor te beheer is 'n Shinko PID-beheerder tesame 'n J-tipe termokoppel aangewend. Die beheereenheid word in die aan-af-modus tesame 'n 400 W verhittingsklos gebruik om die temperatuur van die reaktorwand te beheer. Hierdie beheerskema is maklik om te implementeer en is konserwatief van aard aangesien die wand altyd warmer as die reaksiemengsel is. Gevaarlike reaksietempo's of uitermatige hoë produktemperature van die endotermiese proses word sodoende vermy.

2.4.3 HF-oordragsvat

AHF van die HF-lotreaktor kan óf dadelik na die verbruikspunt gelei word óf in 'n stoorapparaat geberg word. Om die verbruiker in staat te stel om die vervaardiging van AHF en F_2 (g) afsonderlik te doen, is 'n oordragsvat vir die stoor van AHF ontwerp. Figuur 2.15 toon die 3D-ontwerp van die oordragsvat.

Die oordragsvat bestaan uit 'n 316 vlekvrye staal stoorvatjie en die nodige toebehoorsels om die sinvolle hantering van die AHF inhoud te ondersteun. Alle toebehoorsels is standaard $\frac{1}{4}$ "Swagelok komponente met die dompelbuis as uitsondering. Vir hierdie buis is 'n $\frac{1}{8}$ "diameter gebruik.

'n Bourdon-drukmeter is aan die oordragsvat gekoppel om die druk in die stoorapparaat te moniteer gedurende eksperimente sowel as bergingstydperke. In die vloeilyn wat die drukmeter dien is daar ook 'n ontlasklep ingesluit wat by 'n druk van 12 bar ontsluit. Hierdie klep verseker dat geen meganiese faling van die toerusting onder hoë HF (g)

Figuur 2.15: 3D-ontwerp van die HF-oordragsvat.

druk plaasvind nie. Ewewigsdata toon dat hierdie druk slegs bereik kan word indien die stoorvatjie bo $100\,^{\circ}\mathrm{C}$ verhit word (CTEF, 2016).

Die vertikale vloeilyn uit die stoorvatjie bevat 'n terugvloeiklep wat slegs vloei in die rigting van die stoorvatjie toelaat. Hierdie vloeilyn se buis strek tot onder in die stoorvatjie en dien as 'n dompelbuis om N_2 (g) deur die AHF te borrel en mee te sleur wanneer 'n AHF ryke gas in enige ander eksperiment benodig word. Let daarop dat die dompelbuis binne die $\frac{1}{4}$ "toebehoorsels na die twee $\frac{1}{8}$ "vernouers afbeweeg. Die horisontale vloeilyn na regs word dus gebruik om AHF na die stoorvatjie te voer sowel as verwyder. Die ontwerp is vervaardig en het 'n druktoets van bo 10 bar geslaag.

Hierdie oordragsvat is herhaaldelik suksesvol gebruik vir die opvang en stoor sowel as verskaf van AHF. Die enigste verandering wat aangebring is tot die ontwerp in Figuur 2.15 is die weglating van die Swagelok *quick connect* toebehoorsel in die horisontale AHF vloeilyn. Daar is gevind dat die o-ring in hierdie toebehoorsel herhaaldelik gefaal het en is dus van die oordragsvat verwyder. Figuur 2.16 toon 'n foto van die oordragsvat in sy gepaardgaande staander wat as 'n plastiek 3D-drukstuk vervaardig is. Hierdie staander laat die gerieflike stoor van die oordragsvat binne 'n dampkas toe.

2.4.4 Temperatuurbeheer-ontwerp

'n Eenvoudige stroombaan is vir temperatuurbeheer ontwerp en word in Figuur 2.17 ingesluit. Die PID is 'n standaard Shinko beheerder en die element in die diagram verwys na die 400 W verhittingsklos.

Figuur 2.16: Foto van die HF-oordragsvat in sy gepaardgaande staander. Die staander is as 'n 3D drukstuk vervaardig.

2.4.5 Bedryfsmetode

Die P&ID van die laboratorium-opstelling is ingesluit as Figuur 2.18. Tabel 2.11 sluit die beskrywing van relevante kleppe in. Hierna word die standaardbedryfsmetode (SBM) vir die gebruik van die reaktor weergegee. Hierdie prosedure is geskryf om die verbruiker toe te laat om dit net so oor te dra na 'n wetlike SBM-dokument. Daar is gevolglik 'n mate van herhaling in sommige paragrawe van hierdie afdeling. Die enigste beperking tot die reaktor se bedryfstemperatuur is die termiese ontbinding van H_2SO_4 (aq) en die 205 °C dienstemperatuur van die Viton seël. Dit is nodig om te verseker dat P9 'n deursigtige PFA buis is. Hierdie buis laat toe vir die inspeksie van gasvloei.

Figuur 2.17: Die temperatuurbeheerder se elektriese bedrading. S1 en R1 dui op 'n skakelaar en relê.

Tabel 2.11: HF-lotreaktor en oordragsvat kleppelys. Alle kleppe is standaard $\frac{1}{4}$ "Swagelok produkte.

Klepnommer	Beskrywing
K1	Oordragsvat ontlasklep, 12 bar(m) ontlasdruk
K2	Terugvloeiklep
K3 - K6	Korrosiebestande naaldklep

Figuur 2.18: HF-lotreaktor en oordragsvat P&ID. Elke element is benoem met 'n letter en nommer. Die letters DM dui op 'n drukmeter, K dui op 'n klep, P dui op 'n vloeilyn, QC dui op 'n Swagelok *quick connect*, S dui op 'n elektroniese sein en TB en TT dui op 'n temperatuur beheerder en termokoppel.

$Persoon like\ veiligheids to erusting$

Wanneer hierdie opstelling gebruik word, is dit van belang dat enige persoon in die laboratorium die volgende persoonlike veiligheidstoerusting (PVT) dra:

- 'n langmou suurweerstandige laboratoriumjas;
- toe skoene;
- twee lae chemiese weerstandige handskoene met 'n butiel-buitelaag
- kalsiumglukonaat jellie op die hande (onder die eerste handskoen), bo-oor die eerste handskoen en ook oor die polse en voorarm waar die jas mag wegtrek;
- 'n volgrootte gesigskerm;
- indien die eksperiment nie in 'n dampkas uitgevoer word nie: 'n onafhanklike asemhalingsapparaat tesame met 'n gasdigte gesigmasker.

Algemene beskrywing van die proses

 CaF_2 reageer met 98 % H_2SO_4 by 'n maksimum temperatuur van 170 °C. Die produk, AHF, word in 'n oordragsvat wat met vloeibare stikstof verkoel word, vasgevang.

Toerusting beskrywing

Verwys na die foto in Figuur 2.19 om toerusting te herken. Die vloeiskakelings tussen eenhede is sigbaar in Figuur 2.18. Alle verwysings na links of regs word gemaak vanuit die leser se oogpunt. Dit wil sê links verwys dus na die leser se linkerkant.

HF-lotreaktor. Hierdie reaktor bestaan uit die reaktor-romp en -deksel en is sigbaar binne die verhittingsklos aan die regterkant in Figuur 2.19. Die deksel is in werklikheid 'n blinde flens wat aan die reaktor vasgemaak word met die klep na buite. 'n Viton seël met dikte 1 mm word tussen die flense geplaas. Die reaktor moet gereeld nagegaan word vir korrosieskade of skade tot die seël om veilige gebruik te verseker.

Oordragsvat. Die oordragsvat is sigbaar aan die linkerkant van Figuur 2.19. Die stoorvatjie van hierdie oordragsvat moet ten alle tye met vloeibare stikstof bedek wees om te verseker dat die produkgas in die vatjie uitvries.

Verhittingsklos en temperatuurbeheerder. Hierdie klos en beheereenheid is sigbaar aan die regterkant en in die middel van Figuur 2.19. Beide die klos en die beheereenheid moet droog gehou word. Die beheereenheid word gebruik om die temperatuur-setpunt van die reaktor se buitewand te verstel. 'n J-tipe termokoppel word gebruik.

Figuur 2.19: Foto van die HF-lotreaktor se opstelling buite 'n dampkas vir beter sigbaarheid. Let daarop dat die vakuumpomp en kouval nie hier sigbaar is nie. Die HF-lotreaktor is aan die regterkant in die verhittingsklos gemonteer. Die temperatuurbeheerder is in die middel van die staander en die HF-oordragsvat aan die linkerkant gemonteer. Die liggroen vloeibarestikstofhouer staan onder die HF-oordragsvat.

Vloeibarestikstofhouer. Die groen bakkie aan die linkerkant van Figuur 2.19 word met vloeibare stikstof gevul om die stoorvatjie te verkoel.

Opstellingstaander. Die opstellingstaander is die swart geverfde raam in Figuur 2.19. Hierdie staander word binne 'n dampkas geplaas en stel die verbruiker in staat om die eksperimentele werk uit te voer sonder om enige toerusting te moet ondersteun.

Vakuumpomp en koueval Die vakuumpomp en koueval wat in Figuur 2.18 aangedui word is nie in Figuur 2.19 sigbaar nie. Die koueval, soos aangedui, word gebruik om die vakuumpomp van enige AHF-dampe te beskerm. Enige eenvoudige ontwerp mag gebruik word met vloeibare stikstof as verkoelingsmedium. Inhoud moet na 'n geskikde skroppereenheid gevoer word.

Pre-proses takelys

- 1. Verseker dat die oordragsvat geen ongewone korrosie by laspunte toon nie. Sulke korrosie dui op 'n AHF lek. Indien daar wel korrosie sigbaar is: STOP.
- 2. Verseker dat alle dele van die HF-lotreaktor-sisteem, insluitend toebehoorsels, in 'n veilige toestand is. Daar moet geen water in die sisteem teenwoordig wees nie.

3. Gebruik toerusting slegs met 'n geskikde staander.

Pre-proses vakuumtoets

Hierdie metode neem aan dat die proses voorheen al bedryf is. Vir die inbedryfstelling gaan daar nie 'n nuldruk op die drukmeter vertoon word nie. Kleppe K3 en K4 gaan ook nie reeds gesluit wees nie en moet gesluit word. Voer instruksies hieronder steeds uit:

- 1. Rangskik al die apparaat soos in Figuur 2.18. Die reaktor is geseël, dog leeg. Die oordragsvat is verkoel en lees 'n nul druk.
- 2. Kleppe K3 en K4 is geslote. Sluit kleppe K5 en K6.
- 3. Aktiveer die vakuumpomp.
- 4. Ontsluit kleppe K5 en K6. Die atmosferiese gasse in die reaktor tesame met enige oorblywende waterdamp word nou verwyder.
- 5. Na ongeveer 30 sekondes, ontsluit klep K4. Enige atmosferiese gasse in die oordragsvat word nou verwyder.
- 6. Beskou drukmeter DM01 en wag tot 'n volledige vakuum, ten minste -0.5 bar(m), teenwoordig is. Indien hierdie vakuum nie bereik word nie: STOP.
- 7. Sluit klep K5 en deaktiveer die vakuumpomp. Beskou drukmeter DM01. Geen drukverhoging binne 30 minute dui op die suksesvolle seël van die reaktor: SUKSES. In die geval van druk toename: STOP.
- 8. Sluit klep K4. Ontkoppel die vakuumpomp en ontsluit kleppe K5 en K6. Die reaktor kan nou met reagens gevul word.

Gewone bedryfsmetode

Hierdie instruksies mag slegs uitgevoer word na suksesvolle pre-proses take en vakuumtoets:

- 1. Verseker dat kleppe K3, K4 en K5 gesluit is.
- 2. Verseker dat die verhittingsklos afgeskakel en by kamertemperatuur is.
- 3. Weeg die oordragsvat voor samestelling van die opstelling. Noteer hierdie massa noukeurig.
- 4. Die volledige opstelling soos in Figuur 2.18 moet gereed wees met die verbinding tussen klep K6 en lyn P12 as enigste uitsondering. Die oordragsvat moet verkoel wees.

- 5. Ontseël die reaktor en voeg geweegde massas reagense tot die reaktor.
- 6. Seël die reaktordeksel en sluit klep K6.
- 7. Plaas die reaktor in die verhittingsklos tesame met termokoppel TT01 (indien verwyder om reagens toe te voeg) tussen die reaktorwand en verhittingsklos.
- 8. Herstel die verbinding tussen klep K6 en lyn P12.
- 9. Verkoel die koueval indien dit gebruik word.
- 10. Aktiveer die vakuumpomp en ontsluit kleppe K4, K5 en K6. Alle atmosferiese gasse en waterdamp word nou verwyder.
- 11. Wanneer drukmeter DM01 vakuum toon, ten minste -0.5 bar(m), sluit klep K5 en deaktiveer die vakuumpomp.
- 12. Vir die duur van die lopie sal die sisteem onder vakuum wees.
- 13. Om die endotermiese reaksie te laat plaasvind, skakel die temperatuurbeheersisteem aan en verstel die temperatuursetpunt na 80 °C. Wag 30 minute.
- 14. Verstel temperatuurset
punt na 150 °C. Gasvloei hoort (binnekort) sigbaar te wees. Wag 40 minute.
- 15. Verstel temperatuursetpunt na 180 °C. Laat reaksie verloop vir ongeveer 80 minute of tot geen gasvloei waarneembaar is nie.
- 16. Om bedryf af te sluit: sluit klep K4 en skakel die temperatuurbeheersisteem af sodat die reaktor tot kamertemperatuur kan verkoel.
- 17. Sluit klep K6 en ontkoppel lyn P12 van lyne P9 en P11.
- 18. Ontsluit klep K6 sodat die oorblywende produkgasse na 'n geskikde skropper deur die dampkas geneem mag word.
- 19. Ontkoppel klep K4 van lyn P9. Sodra AHF dampe nie meer sigbaar is nie, kan die oordragsvat geweeg word om die massa AHF wat suksesvol geproduseer is, te bepaal.

 $Gewone\ reinigings metode$

- 1. Verseker dat die reaktor by kamertemperatuur is. Indien nie: STOP.
- 2. Bevestig dat klep K6 ontsluit is.

- 3. Ontseël die reaktor en verwyder die deksel. Indien daar AHF dampe uit die reaktor ontsnap, laat die reaktor in die dampkas staan tot en met die dampe nie meer sigbaar is nie.
- 4. Gooi die inhoud van die reaktor in 'n plastiekfles.
- 5. Tap die inhoud van die fles in 'n chemiese afvalhouer geskik vir HF-bevattende afval.
- 6. Spoel die reaktor met water en gooi reaktorinhoud in die plastiekfles.
- 7. Gooi die inhoud van die plastiekfles in die afvalhouer.
- 8. Was die reaktor in 'n wasbak met baie water om enige oorblywende AHF wat nou fluoorsuur word, goed te verdun en weg te spoel.
- 9. Indien enige aanpaksel aan die reaktorwand sigbaar is, voeg 'n 10 % sitroensuur oplossing tot die reaktor sodat die aanpaksel bedek is.
- 10. Laat die reaktor oornag staan en was dan die aanpaksel van die reaktorwand af.
- 11. Spoel die reaktor met 'n oormaat water af, voor droging.

2.5 Fluoorsel: ontwerp en bedryf

2.5.1 Ontwerpvereistes

Die aanvanklike ontwerpsvereiste vir die fluoorsel was om $6 \text{ g h}^{-1} \text{ F}_2(\text{g})$ te produseer. Tesame met hierdie vereiste moet daar ongeveer 50 g produkgas vervaardig word voor dit nodig is om die sel se elektroliet met HF te herlaai. Hierdie ontwerpvereistes spruit vanuit die tweeledige doel van die sel. Eendersyds moet die sel gebruik kan word vir navorsing aangaande die ontwerp van fluoorselle vir kleinsake gebruik en andersyds moet die sel ook sinvolle laboratoriumeksperimente wat $\text{F}_2(\text{g})$ benodig ondersteun. Die sel moet vir veiligheidsonthalwe ook gebruik maak van die Pauling-sel se geometrie. As 'n bykomende vereiste moet die reaktor maklik hanteerbaar wees om tussen laboratoria of analitiese instrumente geskuif te word.

2.5.2 Materiale en toebehoorsels

Die konstruksiemateriaal wat die beste geskik is vir gebruik in 'n fluoorsel is Monel. Gegewe die duur materiaalkoste wat daaraan verbonde is, is daar besluit om gebruik te maak van 304 en 316 vlekvrye staal vir die sel se reaksiebuise en toebehoorsels. Hierdie materiaal hoort 'n aanvaarbare leeftyd in die teenwoordigheid van HF fases te toon soos deur Francis, (2009) en Craig & Anderson, (1995: 437) bespreek. Aangaande die chemiese aanval deur $F_2(g)$ by die bedryfstemperatuur en druk is die materiaal geskik (Rudge, 1971: 60). Die anode is as nikkel gekies en die katode as sagte staal. Nikkel is gekies omdat hierdie materiaal nie die produkstroom met $CF_4(g)$ kontamineer nie. Daar word massaoordrageffekte verwag met die gebruik van nie-grafitiese koolstof en nikkel sal gebruik word in toekomstige studies van numeriese modellering van die sisteem.

Aangesien daar HF(g) en $F_2(g)$ in die sisteem teenwoordig is, het die Bourdon-drukmeters Monel onderdele. Aangesien die elektrodes in kompressie-seëls monteer is, is die gepasde materiaal vir hierdie krimphulse perfluoro-alkoksie (PFA) om die elektrodes en die sel se romp elektries van mekaar te isoleer.

Dit is nuttig om kennis te neem dat alle NTP-skroefdraad met behulp van PTFE-band beskerm is.

2.5.3 Temperatuurbeheer-ontwerp

Die beheerstroombaan wat in Afdeling 2.4.4 ingesluit is, is ook vir hierdie opstel toegepas. 'n Verhittingsband wat om die reaksiebuise gedraai is, word as element in hierdie opstelling gebruik. Koolstofwol word om die reaksiebuise met hul verhittingsband gedraai om energieverliese gedurende eksperimente te beperk.

2.5.4 Reaksievolume-ontwerp, Weergawe 1

Wanneer Reaksies C 2 en C 3 met die vereisde produksietempo versoen word, toon die elektronbalans dat 'n elektriese stroom van 8.46 A benodig word. Ter wille van 'n konserwatiewe ontwerp is daar aangeneem dat die Coulomb-rendement 60 % is en die ontwerp-stroom is dus as 14.1 A geneem. Hierdie aanname verseker dat die minimum vereistes vir laboratoriumgebruik behaal word sou daar onverwagte herkombinasie van die produk-gasse plaasvind.

Na gelang van literatuur is die anode se stroomdigtheid as 100 mA cm^{-2} gespesifiseer. Die anodiese oppervlakarea wat benodig word is gevolglik $1.41 \times 10^{-2} \text{ m}^2$. Hierdie oppervlakarea word gebruik om die lengte van die elektrodes te bepaal sodra die elektrode deursnee gekies is. Vanuit die standaard deursnee vir stawe is $\frac{1}{4}$ " gekies aangesien daar 'n nikkelstaaf met hierdie deursnee beskikbaar was. 'n Enkele elektrode sou 1496 mm lank moes wees. Hierdie lengte toegepas op die reaktorbuise van die Pauling-sel sou 'n moeilik hanteerbare sel tot gevolg hê. Daar is dus besluit om vir laboratoriumgebruik ses selle in parallel te bedryf met 'n stroom van 3.6 A wat deur elke sel vloei. In hierdie geval produseer elke sel 16.67 g F₂(g) voor daar HF in die selle gelaai moet word. Die lengte van 'n enkele elektrode wat met elektroliet bedek is, is in hierdie geval 250 mm.

'n Arbitrêre lengte elektrode moet tot die aktiewe lengte elektrode gevoeg word sodat die eksterne stroombaan oor die sel verbind kan word. Om die minimum massa produkgas voor herlading te bevredig, moet die reaksievolume van die sel groot genoeg wees. Die reaksievolume word bepaal deur die deursnee van die sel se buise. Aangesien 1"skedule 40 304 vlekvrye staal buise algemeen bekombaar is, is hierdie deursnee ondersoek.

Die volume wat beskikbaar is vir die elektroliet as 'n reagensstoor van HF(l) is die volume in die buise rondom die elektrodes sowel as die volume onder in die sel. Die volume onder in die sel is geminimeer om die massa-oordragpadlengte van ioniese spesies deur hierdie volume na die reaksiebuise te beperk. Figuur 2.20 toon die skets wat gebruik is vir die minimering. Die trigonometriese bewys word nie ingesluit nie, maar die resultaat is dat 'n binnehoek van 45° die massaoordragsvolume tussen die twee elektrodes minimeer.

Figuur 2.20: Skets vir minimering van onnodige massaoordragsvolume.

Die minimum en maksimum HF-inhoud van die elektroliet is as $KF \cdot 1.8HF$ en $KF \cdot 2.2HF$ gekies. Hierdie limiete vereis dat 96.5 g HF en 127 g KF aanvanklik tot die sel gelaai word. Elke keer wanneer die sel herlaai word, sal 17.6 g HF tot die sel gelaai word. Volgens Figuur 2.8 sou die volume van die elektroliet 119 mL wees. Hierdie volume bedek nie genoegsame oppervlakarea van die elektroles nie.

Om die sel se reaksievolume te vul, is 'n aanvanklike lading van 237 g HF en 313 g KF nodig. Hierdie lading van reagens gee die korrekte elektrolietsamestelling van KF · 2.2HF. Nadat 16.67 g fluoorgas vervaardig is, is die elektroliet se samestelling KF · 2.05HF.

Om suksesvolle bedryf te verseker moet die stroomdigtheid op die elektrodeoppervlak nie bo $100 \,\mathrm{mA} \,\mathrm{cm}^{-2}$ wees nie. Met 'n vol lading HF en wanneer die reaktor herlaai moet word, is hierdie waarde $100 \,\mathrm{mA} \,\mathrm{cm}^{-2}$ en 94.8 mA cm⁻². Om die suksesvolle eerste lading van die sel te verseker, is die digtheid van KF · HF gebruik tesame 'n minimum digtheid vir HF(l) wat as 796 kg m⁻³ aanvaar is. Daar is 54 mm geskatte leë hoogte wanneer die HF tot die reaktor gelaai is.

Meganiese ontwerp, Weergawe 1

'n 3D-skets van die ontwerpde fluoorsel word in Figuur 2.21 getoon. Die reaksievolume van die fluoorsel, soos in Afdeling 2.5.4 bespreek, is geseël met vasgesweisde koppelstukke. Hierdie koppelstukke het manlike $\frac{1}{2}$ "NPT-skroefdraad om aan die T-stukke vas te skroef. Let daarop dat die las tussen die twee reaksiebuise ook 'n sweislas is. Die elektrodes word vasgehou deur 'n kompressieseël met 'n nie-geleidende PFA-krimphuls. Die Bourdon-

drukmeters is tot die ontwerp toegevoeg as veiligheidstoestelle. Die kleppe wat aangedui word, is $\frac{1}{4}$ "Swagelok kompressie-seël naaldkleppe vir gebruik met korrosiewe vloeiers.

Figuur 2.21: 3D-skets van die fluoorsel, Weergawe 1 met kleppe en drukmeters ingesluit.

'n Staander is ontwerp om die sel gedurende bedryf te ondersteun en 'n 3D-skets van die staander word in Figuur 2.22 getoon. Om die vervaardiging van die staander so eenvoudig moontlik te maak, is die ontwerp so gedoen om van hoekysters gebruik te maak. Die opsomming van belangrike ontwerpsparameters word in Tabel 2.12 weergegee.

2.5.5 Eksperimentele lopies van Weergawe 1

Die eerste weergawe van die fluoorsel is suksesvol in bedryf gestel om fluoorgas te produseer. Gedurende hierdie eerste lopie is daar geen voltametriese data vasgevang nie aangesien slegs die werking van die sel bewys moes word. Gedurende hierdie eerste lopie is die kleppe van die sel gesluit en toe weer oopgemaak, maar nie gelyktydig nie. Hierdie het tot gevolg gehad dat die gesmolte elektroliet deur die klep aan die katodekant van die sel stoot as gevolg van die druk in die anode-selbuis. Die sel is onmiddelik geseël en die verhittingsklos afgeskakel. Die vrybreekhoogte bo die elektroliet is as gevolg van die deurstoot van elektroliet in Weergawe 2 van die sel vergroot om verstopde gaslyne te voorkom.

Nadat die elektroliet volledig gestol het, is die fluoorsel weer verhit vir 'n tweede eksperimentele lopie. Na 3 dae by die bedryfstemperatuur is daar steeds geen stroomvloei waargeneem wanneer 'n elektriese potensiaal oor die sel gekoppel is nie. Gedurende konsultasie het kundiges die waarneming gemaak dat daar in die verlede al fluoorselle só

Figuur 2.22: 3D-skets van die fluoorselstaander. Let daarop dat die staander wel geverf is en dat hierdie skets nie die oppervlakbehandeling toon nie.

ontklaar gemaak is. Hierdie waarnemings het gelei tot smeltingstoetse wat bevestig het dat die eutektika wat gevorm word, nie onverwagte termiese gedrag toon nie.

Weergawe 1 van die fluoorsel is skoongemaak en gestoor vir toekomstige gebruik as 'n fluoorgas bron in die laboratorium, mits die inhoud elektroliet aansienlik verminder word om verstopde gaslyne te voorkom.

2.5.6 Ontwerp van Weergawe 2

In die lig van die moeilike skoonmaak van die eerste weergawe van die fluoorsel is 'n tweede weergawe op Weergawe 1 se ontwerp baseer wat makliker is om te bedryf en toelaat vir bykomende toetse met deursigtige selbuise. Borrelgedrag binne die elektroliet sowel as meesluering van die elektroliet deur die produkgasse kan met hierdie deursigtige buise ondersoek word. 'n Gedetaileerde meganiese ontwerp van Weergawe 2 word weggelaat aangesien die hele sel slegs uit toebehoorsels en die twee reaktorbuise bestaan. Die belangrike afmetings vir hierdie ontwerp word in Figuur 2.23 ingesluit. Figuur 2.24 toon 'n foto van die sel voor hy inbedryfgestel is. Die ontwerpsparameters van Weergawe 2 word weggelaat on Tabel 2.13 opgesom.

Parameter	Waarde
Temperatuur	90 °C
Druk	$1 \operatorname{bar}(a)$
Elektroliet-samestelling: vol lading Elektroliet-samestelling: uitgeput	KF · 2.2HF KF · 2.05HF
Produksie-stroom	$3.6\mathrm{A}$
Aktiewe anode oppervlak	$1.41 \times 10^{-2} \mathrm{m}^2$
Aktiewe enkel elektrode lengte	$250\mathrm{mm}$
F_2 produksie voor herlaai	$16.67\mathrm{g}$
Aanvanklike lading $\mathrm{KF}\cdot\mathrm{HF}$ sout	$421.38\mathrm{g}$
Aanvanklike lading HF	$129.52\mathrm{g}$
Herlaai lading HF	$17.55\mathrm{g}$
Stroomdigtheid: vol lading	$94.8 \mathrm{mA} \mathrm{cm}^{-2}$
Stroomdigtheid: uitgeput	$100 \mathrm{mA}\mathrm{cm}^{-2}$

Tabel 2.12: Ontwerpsparameters van Weergawe 1 van die fluoorsel.

Figuur 2.23: Die tweede weergawe van die fluoorsel met belangrike afmetings (mm).

Figuur 2.24: Die tweede weergawe van die fluoorsel.

 Tabel 2.13:
 Ontwerpsparameters van Weergawe 2 van die fluoorsel.

rde
)°C
r(a)
HF
HF
6 A
m^2
mm
$10\mathrm{g}$
$.4\mathrm{g}$
21 g
$53\mathrm{g}$
m^{-2}
n^{-2}

2.5.7 Bedryfsmetode

Die P&ID van die laboratorium-opstelling word as Figure 2.25 en 2.26 ingesluit. Tabel 2.14 sluit die beskrywing van relevante kleppe in. Hierna word die standaardbedryfsmetode (SBM) vir die gebruik van die reaktor weergegee. Hierdie prosedure is geskryf om die verbruiker toe te laat om dit net so oor te dra na 'n wetlike SBM-dokument. Daar is gevolglik 'n mate van herhaling in sommige paragrawe van hierdie afdeling.

Tabel 2.14: Fluorsel Weergawe 2 kleppelys. Alle kleppe is standaard $\frac{1}{4}$ "Swagelok produkte.

Klepnommer	Beskrywing
K1 - K2	Korrosiebestande naaldklep

Figuur 2.25: Fluoorsel P&ID vir die bedryf van die sel. Elke element is benoem met 'n simbool en nommer. P, K en S dui 'n buis, klep en elektroniese syn aan. DM dui op 'n Bourdon-drukmeter; TT en TB 'n J-tipe termokoppel en PID-beheerder aan. GS dui 'n gelykstroomkragbron aan.

Figuur 2.26: Fluoorsel P&ID vir die laai van HF tot die sel. P en K dui 'n buis en klep aan. DM dui op 'n Bourdon-drukmeter; QC dui 'n Swagelok *Quick Connect* toebehoorsel aan.

Persoonlike veiligheidstoerusting

Wanneer hierdie opstelling gebruik word is dit van belang dat enige persoon in die laboratorium die nodige persoonlike veiligheidstoerusting soos gelys in Afdeling 2.4.5 dra.

Algemene beskrywing van die proses

Fluoorgas, $F_2(g)$ word elektrolities vervaardig. Die anodiese en katodiese produkte is $F_2(g)$ en $H_2(g)$. Die fluoorsel word bedryf by 'n temperatuur van 90 °C en 'n stroomvloei van ongeveer 3.6 A.

Toerusting beskrywing

Verwys asseblief na die foto in Figuur 2.27 om toerusting te herken. Die vloeiskakelings vir die reaktor is sigbaar in Figuur 2.25. Alle verwysings na links of regs word gemaak vanuit die leser se oogpunt van die foto, d.w.s. links verwys na die leser se linkerkant.

Figuur 2.27: Foto van die fluoorsel se opstelling buite 'n dampkas vir beter sigbaarheid. Let daarop dat die grafietwol nie om die reaksiebuise en verhittingsband gedraai is nie. Die buise om die produkgasse weg te voer is ook weggelaat. Weergawe 1 van die fluoorsel word vertoon.

Fluoorsel

'n Pauling-tipe fluoorsel word vir die elektrolitiese reaksie gebruik en word in Figuur 2.27 vertoon. Die fluoorsel moet gereeld nagegaan word om te verseker dat daar geen korrosie rondom enige kompressieseëls is nie. Korrosie dui op die uitlek van óf die elektroliet óf die produkgasse. Let daarop dat die elektrodes in $\frac{1}{4}$ "kompressieseëls monteer is m.b.v. PFA krimphulse om elektriese kortsluiting te voorkom.

Gelykstroomkragbron

Enige gelykstroom-kragbron wat 'n minimum spanning van $12\,\mathrm{V}$ en stroom van $4\,\mathrm{A}$ kan lewer, kan aangewend word.

$Verhittings band\ en\ temperatuur beheerder$

Hierdie band is sigbaar om die fluoorsel se reaksiebuise in Figuur 2.27. Die beheereenheid is identies aan die beheereenheid sigbaar in die middel van Figuur 2.19. Beide die verhittingsband en die beheereenheid moet droog gehou word. Die beheereenheid word gebruik om die temperatuur-setpunt van die reaksiebuise se buitewand te verstel. 'n J-tipe termokoppel word gebruik.

Metanolysbad

'n Sterk plastieksak word gebruik om 'n metanolysbad om die reaksiebuise koud te hou wanneer HF tot die fluoorsel gelaai word. Hierdie opstelling word in Figuur 2.28 getoon. Die temperatuur word laag genoeg gehou om die HF-oordrag te ondersteun deur HF wat na die fluoorsel oorgedra is te kondenseer en die dampdruk daarvan laag te hou. Die maksimum oordragstempo word bereik indien die buise na 'n temperatuur onder die smeltpunt van HF verkoel word. HF smelt by -83.2 °C.

Figuur 2.28: Foto van 'n plastieksak wat aangewend word om 'n metanolysbad om die reaksiebuise te onderhou. Let daarop dat alle elektriese toerusting en verbindings ontkoppel is.

Vakuumpomp

'n Vakuumpomp word gebruik om enige atmosferiese gasse wat in die koue sel teenwoordig is, te verwyder.

Opstellingstaander

Die fluoorsel in Figuur 2.27 word deur die opstellingstaander ondersteun. Hierdie staander verseker dat die sel in die regte oriëntasie gehou word gedurende eksperimentele lopies om te verhoed dat die gesmelte elektroliet deur die gasvloeibuise vloei.

Pre-proses takelys

- 1. By AHF-toevoeging tot die fluoorsel, maak seker dat die HF-oordragsvat geen ongewone korrosie by laspunte toon nie. Sulke korrosie dui op 'n AHF lek. Indien daar wel korrosie sigbaar is: STOP.
- Verseker dat alle dele van die fluoorsel, insluitend toebehoorsels, in 'n veilige toestand is. Daar moet geen water in/op die sisteem teenwoordig wees nie.
- 3. Gebruik toerusting slegs met 'n geskikde staander.

Laai van $KF \cdot HF$ tot die fluoorsel: pre-proses druktoets

Hierdie metode is slegs van toepassing op 'n skoon sel wat nog geen sout bevat. Alhoewel nog 'n druktoets uitgevoer word nadat die sel gelaai is, is enige lekplekke makliker om te herstel wanneer die sout nog nie gelaai is nie.

- 1. Verwyder die grafietwol en verhittingsband om die reaksiebuise.
- 2. Verseker dat die binne-volume van die sel droog en skoon is.
- 3. Verekser dat al die kompressieseëls op die fluoorsel behoorlik vas is en dat vloeilyne.
- 4. Sluit kleppe K1 en K2.
- 5. Koppel lyn P2 tot stikstofgastoevoer by 3 barg en ontsluit klep K1.
- 6. Verseker dat beide drukmeters DM01 en DM02 'n druk van 3 bar(m) uitlees. Indien nie is 'n drukmeter beskadig: STOP.
- 7. Sluit klep K1 en die stikstoftoevoer.
- 8. Moniteer die druk na 3 ure. Indien die druk nie sedert die lading met stikstofgas gedaal het nie, is die fluoorsel gasdig en die sout kan gelaai word. In die geval van drukverlies: STOP.
- 9. Ontkoppel lyn P2 van die stikstoftoevoer.
- 10. Ontsluit klep K1 om die druk in die sel na atmosfeer te herstel.

Laai van $KF \cdot HF$ tot die fluoorsel

Hierdie metode aanvaar dat die fluoorsel nog nie van tevore in bedryf gestel is nie.

- 1. Plaas die fluoorsel in die opstellingstaander of ander geskikde ondersteuning.
- 2. Ontseël die 1"kompressieseëls aan die bo-ente van die reaksiebuise soos in Figuur 2.29 getoon.
- 3. Voeg gelyke massas van die reeds geweegde sout in elke buis.
- 4. Voeg die nodige PTFE-band om die bo-kant van die elektrodes en maak die vernoustukke met hul PFA-krimphulse op die korrekte lengte van die elektrode vas.
- 5. Tik liggies aan die elektrode se bo-kant om die elektrode deur die sout na onder te dryf.
- 6. Wanneer die vernoustuk vasgetrek kan word met gebruik van die 1"moere, hou op tik en seël die 1"kompressieseëls.
- 7. Toets vir elektriese kortsluiting tussen elke elektrode en die sel se romp. Indien ja: vervang die PTFE band van die betrokke elektrode en herhaal hierdie stap.
- 8. Sluit kleppe K1 en K2.
- 9. Koppel lyne P2 en P4 aan kleppe K1 en K2.
- 10. Koppel lyn P2 tot stikstofgastoevoer by 3 barg en ontsluit klep K1.
- 11. Verseker dat beide drukmeters DM01 en DM02 'n druk van 3 barg uitlees. Indien nie is 'n drukmeter beskadig: STOP.
- 12. Sluit K1 en die stikstoftoevoer.
- 13. Moniteer die druk na 3 ure. Indien die druk nie sedert die lading met stikstofgas gedaal het nie, is die fluoorsel gasdig en kan AHF tot die sel gelaai word. In die geval van drukverlies: STOP.
- 14. Ontkoppel lyn P2 van die stikstoftoevoer.
- 15. Ontsluit klep K1 om die druk in die sel na atmosfeer te herstel.

Laai van HF tot die fluoorsel: HF-oordrag

Hierdie metode word gebruik vir die eerste lading van HF tot die KF · HF-sout sowel as daaropvolgende ladings. Verwys na Figuur 2.26 vir die relevante P&ID. P2 en P4 is deursigte PFA buise en laat toe dat die oordrag van die HF met die oog waargeneem word.

Figuur 2.29: Laai van die KF \cdot HF-sout tot die fluoorsel met gebruik van 'n bankskroef.

- 1. Verseker dat die fluoorsel by kamertemperatuur is en dat kleppe K1 en K2 gesluit is.
- 2. Verwyder die grafietwol en verhittingsband rondom die reaksiebuise.
- 3. Plaas 'n geskikde plastieksak in die opstellingstaander en knoop die punte rondom die 1"T-stukke soos in Figuur 2.28 getoon.
- 4. Berei 'n metanol ysbad in die plastieksak sodat die ysbad beide reaksiebuise bedek. Hierdie ysbad se lae temperatuur moet vir die duur van hierdie proses onderhou word.
- 5. Wag 'n minimum 15 minute sodat die reaktorwand en -inhoud mag verkoel.
- 6. Koppel lyn P2 tot 'n koueval-vakuumpomp opstelling of direk tot 'n vakuumpomp.
- 7. Aktiveer die vakuumpomp en ontluit klep K1. Beskou drukmeter DM01 om vakuum te bevestig.
- 8. Sluit klep K1 en ontkoppel lyn P2 van die vakuum-opstelling.
- 9. Indien drukmeter DM02 nie ook vakuum toon nie: koppel lyn P4 tot die vakuumpompopstelling, aktiveer die vakuumpomp en ontsluit klep K2. Bevestig vakuum deur die

lesing op drukmeter DM02. Sluit klep K2 wanner vakuum bereik word en deaktiveer die vakuumpomp.

- 10. Koppel lyn P2 tot klep K4.
- 11. Ontsluit klep K4.
- 12. Plaas die oordragsvat in warm water tot 'n maksimum van 100 °C om 'n drukverskil as oordragsmeganisme te onderhou.
- 13. Laai ongeveer helfte van die beoogde lading met gebruik van lyn P2.
- 14. Sluit klep K4 van die oordragsvat.
- 15. Ontkoppel lyn P2 van klep K4 en koppel lyn P4 tot klep K4.
- 16. Ontl
suit klep K4 en dan klep K2.
- 17. Voltooi lading van HF.
- 18. Sluit kleppe K2 en K4.
- 19. Ontkoppel lyn P4 van klep K4.
- 20. Tap die metanol ysbad uit.
- 21. Droog die fluoorsel en staander af.
- 22. Laat die fluoorsel stadig tot kamertemperatuur verhit.

Laai van HF tot die fluoorsel: kombinasie van HF met fluoorsel-inhoud

Hierdie metode word gebruik om te verseker dat enige HF wat tot die fluoorsel gevoeg is met die KF \cdot HF-sout of elektroliet in die fluoorsel kombineer. Verwys na Figuur 2.25 vir die relevante P&ID.

- 1. Verseker dat die fluoorsel se reaksiebuise van verhittingsband en grafietwol voorsien is en dat die verhittingsband aan die kragbron gekoppel is.
- 2. Skakel die temperatuur
beheersisteem aan en stel die setpunt vir temperatuur na 20 °C bo kamer
temperatuur.
- 3. Verhit die fluoorsel stapsgewys tot 'n temperatuur van 100 °C sodat die druklesings op beide drukmeters DM01 en DM02 nie bo 3 bar(m) styg nie.
- 4. Wanneer 'n setpunt van 100 °C verstel word, toets die sel vir elektriese geleiding om smelting van die elektroliet te bevestig. Smelting kan tot en met 5 dae neem om volledig plaas te vind.

- 5. Wanneer die inhoud van die sel gesmelt is, los die sel by temperatuur vir 3 dae om verspreiding van die toegevoegde HF toe te laat.
- 6. Die sel kan nou óf voorberei word om fluoorgas te vervaardig, óf die temperatuurbeheersisteem kan afgeskakel word om die sel te stoor.

Vervaardiging van fluoorgas

Hierdie metode word gebruik om fluoorgas te vervaardig. Die laboratoriumopstelling moet volledig saamgestel word soos aangedui in Figuur 2.25. Bedryf mag slegs binne 'n dampkas plaasvind.

- 1. Verseker dat lyne P2 en P4 gekoppel is tot die korrekte apparaat vir die gekose gebruike van die produkgasse.
- 2. Indien die reaktor-inhoud nie reeds gesmelt is nie: skakel die temperatuursisteem aan en verstel die setpunt na 100 °C. Die setpunt kan na 90 °C verstel word nadat die inhoud gesmelt is.
- 3. Toets die sel vir geleiding deur die interne stroombaan.
- 4. Indien die inhoud gesmelt is, kan kleppe K1 en K2 oopgemaak word.
- 5. Skakel die gelykstroom kragbron aan en maak gebruik van die toestel as 'n spanningsbron. Verhoog die spanning tot 3 V waar die eerste stroomvloei sigbaar hoort wees.
- 6. Verhoog die spanning van die bron tot en met die gekose spanning of stroomvloei waargeneem word.
- 7. Noteer die tyd wat die stroom toegelaat word om te vloei tesame die waarde van die stroom.
- 8. Wanneer die lopie voltooi is, word die kragbron eerste afgeskakel.
- 9. Sluit kleppe K1 en K2.
- 10. Indien die sel gestoor word en nie binnekort weer gedryf word nie, word die temperatuurbeheersisteem ook afgeskakel.

Reinigingsmetode

Die reiniging van die fluoorsel is 'n besonderse gevaarlik proses. Die verbuiker moet baie versigtig wees om nie enige van die selinhoud op sy/haar liggaam te laat spat nie. Geen standaardmetode word hier ingesluit nie.

Die beste praktyk wat deur die outeur ontwikkel is, is om warm water te gebruik om die gekonsentreerde reaktorinhoud op te los en hierdie oplossing weer uit die sel te verwyder voor vars water toegevoeg word. Die sel moet ongetwyfeld in 'n dampkas gehou word. Die vernoustukke waarin die elektrodes monteer is kan verwyder word om toevoeging van water te vergemaklik. Die temperatuurbeheersisteem kan gebruik word om die selinhoud met die reinigingswater by ongeveeer 40 °C te hou. Die versadigde reinigingswater moet nie te warm wees om in 'n geskikde afvalhouer geberg te word nie.

Enige selonderdele of toebehoorsels kan ook maklik met groot hoeveelhede water gewas word en dan gedroog word. Indien enige klep of toebehoorsel korrodeer is, werk 'n 10 % oplossing sitroensuur besonder goed om die korrosie te verwyder.

2.6 Eksperimentele beplanning

2.6.1 Chemikalieë

Merck 97 % suiwer CaF_2 (s) poeier is gebruik tesame ACE Chemicals 98 % H_2SO_4 (aq) vir die vervaardiging van AHF. As beginstof vir die elektroliet is Sigma Aldrich 99.99 % suiwer KF · HF gebruik.

2.6.2 Inbedryfstelling-eksperimente gedurende ontwerp

Soos bespreek in Afdelings 2.4 en 2.5 is daar 3 weergawes van die HF-lotreaktor en 2 weergawes van die fluoorsel vervaardig en getoets.

Die eksperimentele waarnemings vir hierdie eksperimente is reeds as deel van die ontwerpproses gerapporteeer en word nie hier herhaal nie. Hierdie eksperimente was van kritieke belang en het bygedra tot verbeterde ontwerpe, bedryfsmetodes en verstaan van die sisteem.

2.6.3 Apparaat en instrumente

Die ontwerpde apparaat van Afdelings 2.4 en 2.5 is vir hierdie eksperimentele werk gebruik. Afgesien van hierdie apparaat is 'n standaard chemiese balans gebruik vir alle massametings van reagense en die HF-oordragsvat. 'n PicoTech PicoScope ossilloskoop is gebruik om die fluoorsel se elektriese gedrag vas te vang. Standaard passiewe toetsnaalde is vir spanninglesings gebruik. 'n PicoTech ring-ammeter is gebruik om die stroomvloei deur die sel se eksterne stroombaan te meet.

2.6.4 Eksperimentele beplanning om toerustinggedrag vas te vang

66.2 g HF is benodig om die $215 \text{ g KF} \cdot \text{HF}$ (s) tot 'n samestelling van KF · 2.2HF te verryk. Om meesleuring van die reaksiemengsel te voorkom word twee vervaardigingslopies met die HF-lotreaktor uitgevoer om die benodigde HF te vervaardig. Hierdie eksperimentele beplanning word in Tabel 2.15 gelys.

Eksperiment	Massa CaF_2	Massa H_2SO_4	Verwagte massa HF produk
	(g)	(g)	(g)
HF1	64.6	406	33.1
HF2	64.6	406	33.1

Table 2.10. Employment of planning vir all the first of the second sec	Tabel 2.15:	Eksperimentele	beplanning vir	die HF-lotreaktor.
---	-------------	----------------	----------------	--------------------

Die HF wat in eksperimente HF1 en HF2 vervaardig word, word na die fluoorsel oorgedra om fluoorgas te vervaardig. Die beplande eksperimente met die fluoorsel na hierdie oordrag word in Tabel 2.16 gelys.

 Tabel 2.16:
 Eksperimentele beplanning vir die fluoorsel

Eksperiment	Beskrywing
F1	Toegepasde elektriese spanning word met 1 V inkremente ver- hoog tot waar die stroomlesing afplat en stabiel is. Spanning en stroomgedrag word vasgevang.
F2	Toegepasde elektriese spanning word met 1 V inkremente verhoog tot by 'n verwagte bedryfspanning van 12 V. Die sel word by elke waarde van elektriese spanning vir ongeveer 5 minute bedryf.

2.7 Resultate en bespreking

Die omskakelingrendemente vir eksperimente HF1 en HF2 word in Tabel 2.17 ingesluit. Die anhidriese aard van die produk is bevestig deur die wit dampe wat vorm wanneer die produkgas aan atmosfeer blootgestel word. Die reaktor is die maklikste om skoon te maak kort na afloop van die eksperimentele lopie sodra die reaktor koud genoeg is om maklik te hanteer. Indien die reaktor oornag gelos word om af te koel vorm die reaksiemengsel 'n harde koek wat moeilik van die wand van die reaktor afgeskraap word. Dit is ongewensd om die reaktor aggressief te skrop aangesien dit die waarskynlikheid dat van die inhoud op die verbruiker spat verhoog.

Met eksperiment HF1 is die reaktor se deksel nie styf genoeg geseël nie en atmosferiese gasse het in die sisteem ingelek gedurende die eksperiment. Hierdie atmosferiese gas belemmer die oordrag van die produk na die oordragsvat deur die drukverskil tussen hierdie twee punte naastenby tot niet te maak. Die reaktordeksel is gedurende die lopie stywer vasgemaak, klep K6 (Figuur 2.18) is gesluit en vakuum in die oordragsvat is herstel deur die vakuumpomp te aktiveer en klep K5 te ontsluit. Klep K5 is weer gesluit en die vakuumpomp deaktiveer voor klep K6 ontsluit is om produk van die reaktor na die oordragsvat vry te laat. Die twee eksperimente toon vergelykbare resultate.

Eksperiment	Massa HF	Omskakelingsrendement
	(g)	(%)
HF1	25.4	77
HF2	23.5	70

 Tabel 2.17: Die HF-lotreaktor eksperimentele resultate. Reagensomskakeling is bepaal deur die HF-lotreaktor voor en na reaksie te weeg.

Die inhoud van die HF-oordragsvat is oorgedra na die fluoorsel. Daar is ongelukkig nie rekening gehou van voorheen geproduseerde HF wat nog in die vat teenwoordig was nie. 97.4 g HF is na die fluoorsel oorgedra. Hierdie massa HF het 'n elektrolietsamestelling van KF \cdot 2.77HF tot gevolg gehad. Die sel se inhoud is suksesvol gesmelt en toegelaat om te meng.

Voltammetriese data vir eksperiment F1 word in Figuur 2.30 weergegee. Die eerste stroom is by 'n spanning van 5.6 V waargeneem. Gegewe die verwagte 2.9 V omkeerbare potensiaal vir die sel, is die seloorpotensiaal dus 2.7 V wat goed ooreenstem met die waardes in die literatuur. Die teenwoordigheid van die fluoorgas produk is bevestig deur papier wat met KI (aq) benat is by die gasuitlaat te hou. Die oplossing kleur onmiddelik swart en bevestig suksesvolle reaksie.

Figuur 2.30: Die fluoorsel se voltammetriese gedrag met die sel se eerste lopie. Hierdie data is eksperiment F1 se resultaat.

Die sel se gedrag gedurende eksperiment F2 is elke 1 sekonde gestoor en word in Figuur 2.31 getoon. Die datapunte word met 'n deursigtigheid van 80 % gestip om die groepering van die lesings duidelik waar te neem gegewe die groot hoeveelheid data wat gegenereer is. Die regressielyne tesame met korrelasiekoefissiënte vir beide F1 en F2 word in Tabel 2.18 weergegee.

Figuur 2.31: Die fluoorsel se voltammetriese gedrag met die sel se tweede lopie waar die metode van eksperiment F2 toegepas is.

Vanuit Figuur 2.31 kan daar gesien word dat die sel heelwat van die verwagte lineêre gedrag afgewyk het. Die voorkoms van hierdie breë verspreiding van stroomwaardes by ongeveer 7.6 V, 12 V en 15.2 V word toegeskryf aan die teenwoordigheid van produkgasse

Eksperiment	Regressielyn	Korrelasiekoeffisiënt
F1 F2	I = 0.259V - 1.46 I = 0.255V - 1.41	$0.920 \\ 0.890$

Tabel 2.18:	Die fluoorsel	se voltammetriese	regressielvne 1	tesame korre	lasiekoeffisiënte.
TUDOI T ITOI	Dio macononi		10510bbi019110	coounc none	100101000110101001

in die sel wat akkumuleer en herkombineer het. Die breë verspreiding dui dus op die tyd waarbinne gas die elektrodes geskerm het en dus 'n groter weerstand tot elektronvloei veroorsaak en dan weer herkombineer het. Hierdie herkombinasie is nie verwag met gebruik van die Pauling-sel nie, maar die plofreaksies in die sel was hoorbaar gedurende eksperimente F1 en F2. Die elektrodes kan hoër monteer word om hierdie herkombinasie te verhoed. Die sel sou dan al meer na Moissan se ontwerp soos in Figuur 2.3 getoon, lyk.

Daar was een harde slag hoorbaar gedurende eksperiment F2. Daar is na afloop van hierdie plofklank getoets vir F_2 (g) en die papier het nie verkleur nie. Gedurende hierdie oomblik was die gasvloeilyn verstop met vloeibare elektroliet wat deur die produkgas meegesleur is. Dit is dus van kritiese belang dat die vrybreekhoogte vir die produkgasse vergroot word. Die vrybreekhoogte kan gunsitg aangepas word deur óf die sel se reaksiebuise te verleng, óf die sel ligter te laai. Sou die gasvloeilyn vroeër in die vloeipad na $\frac{1}{4}$ " vernou word, mag dit dalk na permanente blokkasie lei. Die gebruik van die 1"T-stukke het na alle waarskynlikheid permanente blokkasie voorkom.

2.8 Gevolgtrekking

Die ontwerpde laboratoriumproses is suksesvol bedryf om fluoorgas vir laboratoriumgebruik te vervaardig. Die HF-lotreaktor toon 'n omskakelingsrendement van 70 % vir die beperkende reagens. AHF is suksesvol vervaardig, gestoor en na die fluoorsel oorgedra.

Die fluoorsel is suksesvol bedryf en toon 'n oorpotensiaal van 2.7 V. Herkombinasie van die produkgasse het plaasgevind en die elektrodes moet verder van mekaar monteer word. Die verstopping van die gasvloeilyn uit die fluoorsel dui daarop dan die vrybreukhoogte vir die produkgasse vergroot moet word. Hierdie kan bereik word deur die sel óf ligter te laai, óf die reaksiebuise van die sel te verleng.

Hoofstuk 3

Numeriese modellering

3.1 Inleiding

Die numeriese modellering van 'n elektrochemiese sisteem soos 'n fluoorsel vereis eerstens 'n begrip van elektrochemiese ingenieurswese. Hierdie verstaan stel die modelleerder in staat om die prosesverskynsels numeries te beskryf en kan gevolglik met 'n spesifieke proses se gedrag versoen word. Die inligting wat in Afdeling 2.3 vervat word, moet dus versoen word met die beskikbare kwantitatiewe beskrywing van sulke verskynsels. Die integrasie van hierdie inligting om numeries van waarde te wees word deur Walsh, (1993: 2) uitgebeeld soos in Figuur 3.1.

Alle toepaslike verskynsels wat in die elektrochemiese ingenieurswese in ag geneem word, word as die eerste afdeling in hierdie hoofstuk ingesluit. Nadat hierdie verskynsels in breë trekke beskryf word, word die bestaande modelle in die oop literatuur beskou in Afdeling 3.3. Hierdie modelle help enersyds om die beginsels in Afdeling 3.2 met Afdeling 2.3 te versoen en dien andersyds as die basis vir die model wat in Afdeling 3.4 saamgestel word.

'n Modelleringsingenieur moet elkeen van hierdie verskynsels ondersoek en bepaal tot watter mate hul in 'n numeriese model verteenwoordig word.

Figuur 3.1: Die integrasie van verskillende studievelde in elektrochemiese ingenieurswese Walsh, (1993: 3).

3.2 Elektrochemiese literatuur

3.2.1 Elektriese-stroomvloei

'n Elektrochemiese sel, hetsy elektrolities of galvanies, is 'n geslote elektriese stroombaan. Die minimum aantal komponente in hierdie stroombaan sluit die volgende in (Walsh, 1993: 13):

- anode;
- katode;
- interne ioniese kontak tussen die elektrodes;
- eksterne elektriese kontak tussen die elektrodes.

Die elektriese stroombaan word verdeel in 'n interne en eksterne stroombaan. Die termodinamika wat hierdie stroomvloei teweeg bring word later bespreek. In die eksterne stroombaan vloei elektrone vanaf die anodekoppeling na die katodekoppeling deur middel van normale elektriese geleiding wat vry elektronvloei toelaat.

Die interne stroombaan sluit elektronvloei in die elektrodes en deur die elektroliet in. Elektrodes is gewoonlik goeie elektriese geleiers en bied min weerstand tot elektronvloei (Walsh, 1993: 13). Algemene materiale is grafitiese koolstof en metale, maar ander materiale soos polimere en keramiek wat geleidend is, kan ook gebruik word. Die oordrag van elektrone vanaf die katode- na die anode-oppervlak vind deur middel van ioniese geleiding plaas. Ioniese geleiding verwys uitsluitlik na die migrasie van katione en anione na onderskeidelik die katode en anode.

By die elektronryke katode word die kationiese spesies gereduseer deur die opname van elektrone. Anione ondergaan oksidasie by die anode deur elektrone af te gee (Walsh, 1993: 13). Aangesien daar geen akkumulasie van elektrone teenwoordig is as gevolg van reaksie nie (Walsh, 1993: 14), is daar 'n elektronbalans wat bevredig moet word. Die elektriese stroom beskikbaar vir reduksie is dus gelyk aan die stroom beskikbaar gestel deur oksidasie. Massa-oordrag effekte wat die beskikbaarheid van ione by die reaksieoppervlak beïnvloed, en dus die ioniese elektronvloei, bepaal die stroom wat deur die elektrochemiese sel vloei (Walsh, 1993: 22).

3.2.2 Elektrochemie: oorsig

Elektrochemie is meerfasig van aard aangesien reaksies plaasvind naby genoeg aan, of soms chemies gebind aan, die elektrode-oppervlak vir elektronoordrag om plaas te vind. Die produkte van elektrochemiese reaksies is dikwels 'n mengsel van vastestowwe, vloeistowwe en gasse (Walsh, 1993: 17). Voorbeelde van die verskillende faseveranderings wat deur elektronoordrag by elektrodes plaasvind sluit die volgende in:

- gasvorming;
- metaalneerslag;
- metaaloplossing;
- omskakeling van bestaande vastestof se toestand;
- oksidasie van 'n brandstof;
- oksidasietoestandsverandering van 'n metaal in oplossing.

Bespreking van elk van hierdie voorbeelde word nagelaat aangesien slegs gasvorming in 'n fluoorsel teenwoordig is.

Die vereenvoudigde reaksie wat by 'n elektrode oppervlak plaasvind kan as 'n eenvoudige chemiese vergelyking soos in Vergelyking C4 geskryf word. Vergelyking C4 verteenwoordig die reduksie van spesie O na R by die katode deur die opname van n aantal elektrone e⁻. Hierdie chemiese reaksie moet egter in 'n aantal stappe plaasvind soos in Vergelykings C5 tot C7 getoon word. Die reaksiestappe word in Figuur 3.2 geïllustreer (Walsh, 1993: 23). Elkeen van die oordragstappe kan wiskundig beskryf word.

$$O + ne^- \rightarrow R$$
 (C4)

$$O_{\text{volume}} \rightarrow O_{\text{elektrode}}$$
 (C5)

$$O_{elektrode} + ne^- \rightarrow R_{electrode}$$
 (C6)

$$R_{elektrode} \rightarrow R_{volume}$$
 (C7)

3.2.3 Inleidende termodinamika

Elektrochemiese reaksies kan óf spontaan óf nie-spontaan plaasvind. In spontane elektrochemiese selle, bekend as galvaniese selle, vind die reaksies by die elektrodes plaas

Figuur 3.2: Stapsgewyse illustrasie van oppervlakreaksie by 'n katode (Walsh, 1993: 23).

sodra die eksterne stroombaan van die sel gesluit word. Chemiese energie word dus omgeskakel na elektriese energie as gevolg van die redoksreaksie. Elektrolitiese selle, niespontane selle, bring chemiese verandering teweeg deur gebruik te maak van geforseerde elektronvloei vanaf die eksterne stroombaan. Die termodinamiese voorwaarde vir spontane reaksie is 'n negatiewe verandering in die Gibbs vry energie van die sel (Walsh, 1993: 33). Vergelyking 3.1 toon hoe die verandering in Gibbs vry energie vir die sel bereken word. Die $T\Delta S_{sel}^0$ term se waarde moet dus groter as die entalpieverandering ΔH_{sel}^0 term se waarde wees vir die reaksie om spontaan plaas te vind.

$$\Delta G_{sel}^0 = \Delta H_{sel}^0 - T \Delta S_{sel}^0 \tag{3.1}$$

Die verandering in Gibbs vry energie kan bereken word met behulp van Vergelyking 3.2 en is direk gekoppel aan die omkeerbare (ewewig) selpotensiaal soos in Vergelyking 3.3 (Walsh, 1993: 34).

$$\Delta G_{sel}^0 = \Delta G_{produkte}^0 - \Delta G_{reaktante}^0 \tag{3.2}$$

$$\Delta G_{sel}^0 = -nFE_{sel}^e \tag{3.3}$$

Vanuit Vergelyking 3.3 is dit duidelik dat 'n galvaniese sel altyd 'n positiewe selpotensiaal by ewewig het. Selpotensiaal kan bepaal word deur gebruik te maak van Vergelyking 3.4.

Vergelyking 3.4 word toegepas met die elektrodepotensiale by ewewig, E^e , om selpotensiaal by ewewig te verkry. Die standaard-selpotensiaal, E_{sel}^0 , mag ook met Vergelyking 3.4 bepaal word. Die literatuur-waardes vir standaard-selpotensiale aanvaar egter suiwer materiale en 'n chemiese aktiwiteit a = 1 vir al die betrokke ioniese spesies. Die Nernstvergelyking in Vergelyking 3.5 kan toegepas word om die selpotensiaal by verskillende konsentrasies te bepaal (Ciobanu et al., 2007: 4).

$$E_{sel} = E_K - E_A \tag{3.4}$$

$$E_{sel} = E_{sel}^e + \frac{RT}{nF} ln \frac{[O]}{[R]}$$
(3.5)

3.2.4 Die elektrode/elektroliet tussenfasige gebied en grenslae

Elektrochemiese reaksies is heterogeen van aard aangesien hulle op die grens tussen 'n elektrode- en elektroliet-fase plaasvind (Walsh, 1993: 45). Soos genoem in Afdeling 3.2.1 is die elektrode-fase 'n vastestof en die elektroliet-fase 'n vloeistof. Die tussenfasige gebied is op die grens van beide fases en elektroliet-eienskappe verander oor hierdie gebied as funksie van afstand vanaf die vastestof. Hierdie verskille in toestand met afstand van die elektrode lei tot die bestaan van 'n aantal grenslae wat in Tabel 3.1 gelys word (Walsh, 1993: 45). Hierdie grenslae verteenwoordig 'n gradiënt waaroor die genome eienskappe verander en gevolglik oordragsprosesse teweeg bring.

Tabel 3.1: Grenslae by 'n elektrochemise sel se elektrodes (Walsh, 1993: 45).

Grenslaag	Veranderlike	Oordragsproses	Verwagte grenslaagdikte
Elektriese dubbellaag	Elektriese potensiaal	Elektronoordrag	$<5 \times 10^{-9} { m m}$
Konsentrasie grenslaag	Konsentrasie	Diffusie	$<1 \times 10^{-4} { m m}$
Hidrodinamiese grenslaag	Elektrolietsnelheid	Konveksie	$<1 \times 10^{-3} { m m}$

As gevolg van die gradiënt in elektriese potensiaal ontstaan die elektriese dubbellaag naby aan die oppervlak van die elektrodes. Walsh, (1993: 47) gee 'n hoogs vereenvoudigde skets van die dubbellaagstruktuur teenwoordig op 'n negatief gelaaide elektrode vir 'n sisteem met 'n waterige elektroliet-fase. Hierdie skets word ingesluit in Figuur 3.3. Figuur 3.4 toon 'n kwalitatiewe voorstelling van die verandering in absolute potensiaal soos daar

van die elektrode-oppervlak weg beweeg word. Daar is drie omgewings teenwoordig soos daar van die elektrode af weg beweeg word:

- kompakte laag;
- diffusie-laag;
- die volume elektroliet.

Figuur 3.3: Vereenvoudigde skets van die struktuur van 'n elektriese dubbellaag (Walsh, 1993: 47). Die elektrode is negatief gelaai met elektrone en 'n waterige elektroliet word voorgestel.

Binne die kompakte laag word katione elektrostaties aan die elektrode gebind saam met oplosmiddel wat op die elektrode-oppervlak geadsorbeer is (Walsh, 1993: 46). Die diffusie-laag ervaar steeds die effek van die elektrode se elektriese potensiaal en is effe meer gestruktueerd as die oorhoofse elektroliet. Die absolute potensiaal verminder lineêr binne die kompakte laag en eksponensiëel in die diffusie-laag. Die verskil in elektriese potensiaal by die elektrode oppervlak, ϕ_M , en in die oorhoofse elektroliet, ϕ_S , is die dryfkrag vir elektronoordrag en mag streng beïnvloed word deur die adsorbsie van chemiese spesies op die elektrode-oppervlak. Aangesien die verskil in elektriese potensiaal oor die oppervlak van die elektrode mag verskil, is dit belangrik om te besef dat daar gelokaliseerde effekte is wat 'n sel se rendement en selektiwiteit mag beïnvloed.

Figuur 3.4: Kwalitatiewe voorstelling van 'n elektriese dubbellaag potensiaalveld vir 'n waterige elektroliet (Walsh, 1993: 47).

Walsh, (1993: 46) maak 'n belangrike waarneming: alhoewel die verlaging in elektriese potensiaalverskil $\phi_M - \phi_S$ ordegrootliks, byvoorbeeld, slegs 2 V mag wees, is die afstand waaroor dit plaasvind, ongeveer 2 nm, so klein dat 'n gradiënt van 10^{10} V m⁻¹ die elektronoordrag dryf. Kinetiese uitdrukkings vir elektrochemie maak gebruik van die relatiewe elektriese potensiaal van 'n elektrode, E. Hierdie potensiaal word gedefinieer as die potensiaal van die elektrode relatief tot 'n verwysingselektrode naby aan die elektrode oppervlak. Dit is dus maklik om te sien dat Vergelyking 3.6 geld.

$$\Delta E = \Delta(\phi_M - \phi_S) \tag{3.6}$$

3.2.5 Die elektrodefase

Wanneer materiale vir elektrodes gekies word is dit naastenby onmoontlik om 'n optimum materiaal vir komplekse reaksies sonder laboratoriumtoetse te kies (Walsh, 1993: 48). Die eienskappe van goeie materiale word in Tabel 3.2 gelys (Walsh, 1993: 49).

Elektrodes moet meganies sterk genoeg wees vir hul toepassing en moet errosie-effekte as gevolg van die elektroliet, reaktante en produkte kan weerstaan. 'n Vereiste vir elektrodes is maklike verwydering uit die reaktor vir inspeksie of vervanging. Hierdie vereiste het 'n direkte invloed op die geometriese ontwerp van elektrodes en gevolglik is redelike meganiese integriteit 'n noodsaaklikheid. Hiermee saam is weerstand teen chemiese aanval deur spesies in die reaksieomgewing ook belangrik; veral in korrosiewe reaksie-omgewings.

Tabel 3.2: Die gewensde materiaaleienskappe vir gebruik as 'n elektrode (Walsh, 1993: 49).

Fisiese stabiliteit Chemiese stabiliteit Hoë elektriese geleidingsvermoë Eenvoudige vervaardiging Geskikte elektrokatalitiese vermoë Lang lewensduur Geen kontaminasie-effekte op die elektroliet met korrosie nie Omgewingsvriendelike materiaal as skroot Lae materiaalkoste Maklik bekombaar

Elektrodes se geometriese ontwerp en oppervlakbehandeling moet 'n aantal moontlike verskynsels in ag neem. Onder andere moet die elektrode toelaat vir (Walsh, 1993: 48):

- skeiding van produkte,
- de-adsorbsie van gasborrels.

Die elektrodemateriaal mag 'n laag bo-op 'n ander materiaal wees wat meganiese integriteit bied of goedkoper is as die elektrode materiaal. Die materiaal se geleidingsvermoë moet hoog wees om onnodige potensiaalverliese, hittevorming, en oneweredige stroomvloei oor die oppervlak te voorkom (Walsh, 1993: 48). Die geleidingsvermoë van 'n elektrode kan gekwantifiseer word met gebruik van Vergelyking 3.7 om die elektriese resistiwiteit, ρ_e , te bepaal. Resistiwiteit bepaal die potensiaalverlies oor die elektrode en kan dus gebruik word om kwantitatief potensiaalverliese, hittevorming, en oneweredige stroomvloei te ondersoek. Vergelyking 3.7 is slegs geldig vir geometrieë met 'n konstante deursnitarea.

$$\rho_e = \frac{RA}{L} \tag{3.7}$$

3.2.6 Die elektrolietfase

Net soos die ontwerpsbesluite aangaande die materiaal waarvan die elektrode-fase gemaak word verskeie effekte in gedagte moet neem, vervul die elektroliet-fase ook 'n aantal moontlike rolle om die selreaksie moontlik te maak. 'n Versameling van hierdie rolle deur Walsh, (1993: 56) sluit die volgende in:

- voorsien 'n medium vir ioonmigrasie;
- voorsien 'n lae-weerstand medium tussen selelektrodes;
- 'n oormaat inerte elektroliet verseker dat die aktiwiteitskoefissiënte van die reaktant en produk naastenby gelyk is sodat hulle mekaar uitkanseller in die Nernstvergelyking (Vergelyking 3.29);
- stabiliseer die elektriesedubbellaag en die effekte daarvan op reaksiekinetika;
- voorsien 'n stabiele matriks vir die elektro-aktiewe chemiese spesies as 'n oplossing of dispersie;
- dra by tot stabiliteit van reaktortemperatuur;
- dra by tot pH- en konsentrasie-stabiliteit;
- elektrolietbeweging mag bydra tot die verbetering van massa-oordrag na en weg van die elektrode-oppervlak.

Die elektroliet-fase sluit gewoonlik drie komponente in: 'n oplosmiddel; 'n hoë konsentrasie van inerte elektroliet; en die opgelosde reaktante. Die eienskappe van die $KF \cdot 2 HF$ elektroliet wat in fluoorselle gebruik word word breedvoerig in Afdeling 2.3 bespreek.

3.2.7 Reaksietempo van elektrochemiese reaksies

Vir die bespreking van die reaksietempo-vergelykings word die algemene reduksiereaksie in Vergelyking C 4 gebruik. Die reaksietempo van hierdie reaksie kan uitgedruk word met behulp van Faraday se wet van elektroliese soos weergegee in Vergelyking 3.8 (Walsh, 1993: 77).

$$m = \frac{Q}{nF} \tag{3.8}$$

Faraday se konstante, F, het 'n waarde van 96485 C mol⁻¹. Hierdie konstante word bereken as die produk van die standaardlading van 'n enkele elektron, Q_e , en Avogadro se getal, N_A , soos weergegee in Vergelyking 3.9.

$$F = N_A Q_e \tag{3.9}$$

Die elektriese lading wat oorgedra is in 'n reaksie kan gedefinieer word as die integraal van die elektriese stroom oor die tyd wat die stroom gevloei het. Hierdie stelling gee aanleiding tot Vergelykings 3.10 en 3.11.

$$Q = \int I dt \tag{3.10}$$

$$Q = It \tag{3.11}$$

Die gebruik van Vergelyking 3.11 in Vergelyking 3.8 en die differensiasie van die gevolglike vergelyking gee die reaksietempovergelyking in Vergelyking 3.12 (Walsh, 1993: 78). Die reaksietempovergelyking verteenwoordig die tempo van reaktantgebruik van O in die algemene reduksiereaksie in Vergelyking C4. Fogler, (2014: 7) maak melding van die feit dat hierdie definisie van chemiese reaksietempo slegs geldig is vir konstante volume lotprosesse en dus nie meer as die algemene definiese vir reaksietempo aanvaar word nie. Vergelyking 3.12 word in moderne literatuur na verwys as die vormingstempo van 'n chemiese spesie. Aangesien die proses wat deur die outeur beskou word 'n konstante volume lotproses is, word daar nie onderskeid tussen hierdie definisies getref nie.

$$\frac{dm}{dt} = \frac{I}{nF} \tag{3.12}$$

'n Belangrike kwantiteit in elektrolitiese reaksies is die stroomdigtheid op die oppervlak van die elektrode soos gedefinieer in Vergelyking 3.13. Vergelyking 3.12 kan in terme van stroomdigtheid herskryf word om 'n balans van vloed mol chemiese spesie en mol elektrone te verteenwoordig in Vergelyking 3.14 (Walsh, 1993: 78). Vloed word in Vergelyking 3.15 eksplisiet gedefinieer.

$$j = \frac{I}{A} \tag{3.13}$$

$$\frac{dm}{dt} = A \frac{j}{nF} \tag{3.14}$$

$$N = \frac{j}{nF} \tag{3.15}$$

Die reaksietempovergelykings geld nie net vir die primêre selreaksie nie, maar kan ook toegepas word op ongewensde reaksies wat in die sel plaasvind. Dit is nuttig om die

hoeveelheid elektriese stroom wat die primêre reaksie eerder as ongewensde reaksies dryf te definieer(Walsh, 1993: 78-79). Vergelyking 3.16 toon die stroomrendement vergelyking. In die geval van konstante stroom na die reaksiesisteem kan hierdie vergelyking herskryf word as Vergelyking 3.17. Die waarde van Q word gewoonlik bepaal deur Vergelyking 3.8 toe te pas.

$$\phi = \frac{Q}{Q_{Tot}} \tag{3.16}$$

$$\phi = \frac{I}{I_{Tot}} \tag{3.17}$$

Met die definisie van 'n rendement bygewerk en die gebruik van reaktant konsentrasie, c, eerder as hoeveelheid in mol kan Vergelyking 3.14 herskryf word as Vergelyking 3.18 wat van meer praktiese waarde vir ingenieurstoepassing is.

$$\frac{dc}{dt} = \frac{\phi A j_{Tot}}{nFV_r} \tag{3.18}$$

Aangesien elektrochemiese reaksies op die oppervlak van die elektrode plaasvind, is dit nodig om die konsentrasie van die reaktant by die oppervlak te gebruik. Walsh, (1993: 80) stel dat vir elektron-oordrag beheerde reaksies die tempo van reduksie en oksidasie gegee deur Vergelykings 3.19 en 3.20 gebruik mag word. Die reaksiekonstantes se vorme is empiries bepaal as Vergelykings 3.21 en 3.22.

$$\frac{dm}{dt} = \vec{k}(c_O)_{x=0} \tag{3.19}$$

$$\frac{dm}{dt} = \overleftarrow{k}(c_R)_{x=0} \tag{3.20}$$

$$\vec{k} = \vec{k_o} \cdot exp\left(\frac{-\alpha_C nFE}{RT}\right) \tag{3.21}$$

$$\overleftarrow{k} = \overleftarrow{k_o} \cdot exp\left(\frac{\alpha_A nFE}{RT}\right) \tag{3.22}$$

 $\vec{k_o}$ en $\vec{k_o}$ verteenwoordig die katodiese en anodiese reaksiekonstantes by E = 0 rela-

tief tot 'n gemeenskaplike verwysingselektrode. α_C en α_A is die katodiese en anodiese oordragskoefissiënte. Hierdie koefissiënte sommeer tot 'n waarde van 1 vir eenvoudige reaksies op elektrode-oppervlaktes.

Wanneer die massa-oordrag van reaktante tot die elektrode-oppervlak die tempobepalende stap is, verander Vergelyking 3.12 soos getoon in Vergelyking 3.23 vir die reduksiereaksie. Walsh, (1993: 80) lei die massa-oordragkoefissiënt af deur dit te beskou as tempobepalende massavloed wat tot die reaktantkonsentrasie genormaliseer is. Hierdie afleiding word wiskundig in Vergelykings 3.24 en 3.25 getoon.

$$\frac{dm}{dt} = k_m c_O \tag{3.23}$$

$$\frac{N}{c} = \frac{I}{nFAc} \tag{3.24}$$

$$k_m = \frac{I_L}{nFAc} \tag{3.25}$$

Die reaksietempo van 'n realistiese sisteem word selde deur slegs elektron- of massaoordrag bepaal. Gemengde beheer, waar beide verskynsels die reaksietempo vertraag, word beskryf deur Vergelyking 3.26 (Walsh, 1993: 81). Wanneer Vergelykings 3.19 en 3.26 versoen word, word Vergelyking 3.27 verkry. Vegelyking 3.26 kan nou in die bruikbare vorm van Vergelyking 3.28 geskryf word.

$$\frac{dm}{dt} = k_m [c_O - (c_O)_{x=0}] \tag{3.26}$$

$$(c_O)_{x=0} = \frac{c_O}{\frac{\vec{k}}{1+\vec{k}/k_m}}$$
(3.27)

$$\frac{dm}{dt} = \frac{\vec{k} \cdot c_O}{1 + \vec{k}/k_m} \tag{3.28}$$

3.2.8 Verwantskap tussen suiwer elektronoordrag en stroomdigtheid

Die belangrikste kwantitatiewe waarde wat gedrag in elektrochemiese selle bepaal is die stroomdigtheid j. Die verwantskap tussen elektronoordrag en stroomdigtheid word streng

beïnvloed deur die toegepasde oorpotensiaal, η (Walsh, 1993: 88). Oorpotensiaal word gedefinieer as die verskil tussen die toegepasde elektriese potensiaal en die ewewigpotensiaal van die redokspaar in 'n elektrochemiese sisteem. Hierdie definisie word wiskundig beskryf soos in Vergelyking 3.29 weergegee. Die waarde van die oorpotensiaal word gebruik om die rigting van elektronoordrag vir die reaksie by die werkingselektrode te bepaal soos in Tabel 3.3 getoon (Walsh, 1993: 91).Dit beïnvloed ook die waargenome stroomdigtheid soos gedefinieer in Vergelyking 3.30.

$$\eta = E - E_e \tag{3.29}$$

$$j = \vec{j} + \vec{j} \tag{3.30}$$

Tabel 3.3: Die verwantskap tussen die waarde van die oorpotensiaal en die waargenome
stroomdigtheid (Walsh, 1993: 91).

Oorpotensiaal	Parsiële stroomdigthede	Reaksie stroomdigthedi
$\eta < 0$	$ \overrightarrow{j} > \overleftarrow{j} $	j < 0
$\eta = 0$	$ \overrightarrow{j} = \overleftarrow{j} $	j = 0
$\eta > 0$	$\mid \stackrel{\rightarrow}{j}\mid <\mid \stackrel{\leftarrow}{j}\mid$	j > 0

Aangesien die rigting van elektronvloei vir katodiese en anodiese reaksie verskil, het \vec{j} en \overleftarrow{j} teenoorgestelde wiskundige tekens. Walsh, (1993: 88) gebruik die konvensie dat reduksiestroom negatief en oksidasiestroom positief is. By dinamiese ewewig ($\eta = 0$) is die som van hierdie strome gelyk aan nul en geld Vergelyking 3.31. Die uitruilstroomdigtheid by ewewig, j_0 , is 'n kinetiese parameter wat dui op die elektrokatalitiese eienskappe van die elektrode-fase en is bekend vir 'n aantal verskillende materiale vir spesifieke reaksies.

$$j_0 = -\vec{j} = \overleftarrow{j} \tag{3.31}$$

Die Nernst-vergelyking geld streng gesproke slegs by ewewig en bied daarom 'n termodinamiese waarde sonder om die kinetika van die reaksie by te bring. Wanneer die reaksietempo deur elektronoordrag beheer word kan die Butler-Volmer-vergelyking, Vergelyking 3.34, gebruik word om stroomdigtheid relatief to die oorpotensiaal te beskryf (Walsh, 1993: 92). Vergelyking 3.34 word verkry deur Vergelykings 3.19 tot 3.22 saam te voeg om Vergelykings 3.32 en 3.33 te verkry. Let daarop dat daar in hierdie vergelykings die

aanname gemaak is dat massa-oordrag vinnig plaasvind en konsentrasies konstant is deur die hele elektroliet-fase. Wanneer Vergelykings 3.32 en 3.33 gesommeer word om j te gee en die definisies van oorpotensiaal (Vergelyking 3.29) en uitruilstroomdigtheid (Vergelyking 3.31) in ag geneem word, is die Butler-Volmer-vergelyking in Vergelyking 3.34 die gevolg (Walsh, 1993: 92). Let daarop dat hierdie nie die algemene vorm van die Butler-Volmer-vergelyking is nie, maar slegs vir reaksie waarvan die tempo deur elektronoordrag bepaal word met die gegewe aannames in ag geneem.

$$\vec{j} = nF\vec{k_o}c_Oexp\left(\frac{-\alpha_C nFE}{RT}\right)$$
(3.32)

$$\overleftarrow{j} = nF\overleftarrow{k_o}c_O exp\left(\frac{\alpha_A nFE}{RT}\right)$$
(3.33)

$$j = j_0 \left[exp\left(\frac{\alpha_A n F \eta}{RT}\right) - exp\left(\frac{-\alpha_C n F \eta}{RT}\right) \right]$$
(3.34)

Walsh, (1993: 94) maak die waarneming dat s-vorm van Vergelyking 3.34 as gevolg van beide eksponensiële terme slegs van groot waarde is by klein waardes vir die oorpotensiaal, η . Wanneer daar na geval (a) in Figuur ?? gekyk word is dit duidelik dat vir groot *negatiewe* waardes van η slegs die tweede term van Vergelyking 3.34 van belang is. Vergelyking 3.35 volg en word beskou as 'n genoegsame benadering van die werklikheid indien Vergelyking 3.36 bevredig word. Hierdie vergelyking gee aanleiding na 'n stel vergelykings bekend as die Tafel-vergelykings.

$$j \simeq \vec{j} = -j_0 exp\left(\frac{-\alpha_C n F \eta}{RT}\right)$$
 (3.35)

$$\mid \eta \mid < \frac{RT}{\alpha_C nF} \tag{3.36}$$

Die katodiese Tafel-vergelyking word verkry deur die logaritme van Vergelyking 3.35 te neem en word weergegee in Vergelyking 3.37. 'n Verder vereenvoudigde weergawe vir die katodiese reaksie word deur Walsh, (1993: 95) gegee soos in Vergelykings 3.38 en 3.39 getoon. Dieselfde vergelykings kan afgelei word vir die anodiese reaksie en is beskikbaar as Vergelykings 3.40 en 3.41. Vir 'n gegewe reaksie is j_0 , α_C en α_A konstantes.

$$log - j = log j_0 - \frac{a_C n F \eta}{2.3 R T}$$

$$(3.37)$$

Tabel 3.4: Algemene massa-oordragverskynsels in elektrochemiese selle (Walsh, 1993: 99).

Verskynsel	Grandiënt verantwoordelik vir verandering	Aard van die gradiënt
Diffusie	$\frac{dc}{dx}$	Fisies
Konveksie	$\frac{dv}{dx}$	Digtheidsverskil (natuurlike konveksie) Meganiese kragte (dwangkonveksie)
Migrasie	$rac{dE}{dx}$	Elektrostaties

$$logj = -logj_0 + \frac{1}{b_C}\eta \tag{3.38}$$

$$b_C = -\frac{2.3RT}{\alpha_C nF} \tag{3.39}$$

$$logj = logj_0 + \frac{1}{b_A}\eta \tag{3.40}$$

$$b_A = \frac{2.3RT}{\alpha_A nF} \tag{3.41}$$

3.2.9 Verwantskap tussen suiwer massa-oordrag en stroomdigtheid

Daar is oor die algemeen drie verskynsels wat bydra tot massa-oordrag soos gelys in Tabel 3.4 (Walsh, 1993). Hierdie verskynsels word almal gedryf deur 'n gradiënt wat verander as 'n funksie van afstand weg van die elektrode-oppervlak.

Diffusie is die beweging van 'n chemiese spesie wat veroorsaak word deur 'n gradiënt in die spesie se konsentrasie (Walsh, 1993: 99). Indien die katode beskou word (Reaksie C 2), is dit duidelik dat die konsentrasie van spesie O by die reaksie-oppervlak laer sal wees as die konsentrasie van die spesie verder van die oppervlak.

Indien diffusie die enigste meganisme van massa-oordrag is, kan Fick se wet, Vergelyking 3.42 gebruik word om die loodregte vloed van reagens te beskryf (Walsh, 1993: 100). Hierdie vergelyking geld in werklikheid net vir 'n plaatvormige elektrode met lineêre diffusie loodreg tot die plaat. In Vergelyking 3.43 word die vloedbalans van die suiwer diffusie sisteem vir reduksie weergegee. In woorde lees Vergelyking 3.43 dat die vloed van reagens verlies gelyk is aan elektron vloed opgeneem in die reaksie wat gelyk moet wees aan die gevolglike vloed van gevormde produk.

$$\frac{j}{nF} = -D\frac{dc}{dx} \tag{3.42}$$

$$-D_O\left(\frac{dc_O}{dx}\right)_{x=0} = \frac{j}{nF} = D_R\left(\frac{dc_R}{dx}\right)_{x=0}$$
(3.43)

Konveksie is die beweging van 'n chemiese spesie binne 'n snelheidsgradiënt as gevolg van meganiese kragte (Walsh, 1993: 99). Daar is twee verskillende konveksie tipes: natuurlike- en dwangkonveksie. Natuurlike konveksie is die gevolg van klein digtheidsverskille in 'n vloeier wat spruit vanuit chemiese reaksie (verskil in chemiese samestelling) of temperatuurverskil. Dwangkonveksie is die gevolg van makroskopiese beweging van, binne hierdie konteks, die elektrode- of elektroliet-fase. Hierdie beweging kan teweeg gebring word deur meganiese vermenging van die elektroliet sowel as die resiprokasie of rotasie van die elektrode (Walsh, 1993: 102).

Konveksie en diffusie gebeur selde in isolasie in werklike sisteme. Die ingewikkelde konsentrasie en snelheidsgradiënte wat teenwoordig is in sulke sisteme kan eenvoudig beskryf word deur die Nernst-diffusielaag-model. Die aanname word gemaak dat daar 'n laag naby aan die elektrode bestaan waar daar slegs diffusie plaasvind en buite hierdie laag is sterk konveksie teenwoordig. Die Nernst-diffusielaag se dikte word voorgestel met die simbool δ_N . Figuur 3.5 toon 'n grafiese verteenwoordiging van die model (Walsh, 1993: 103).

Figuur 3.5: Uitbeelding van die Nernst-diffusielaag (Walsh, 1993: 103).

Migrasie dui op die beweging van 'n elektrostaties gelaaide spesie as gevolg van 'n gradiënt in elektriese potensiaal. Hierdie verskynsel is verantwoordelik vir die ioniese stroom binne

'n elektrolitiese sel. Hierdie oordragmeganisme tref nie onderskeid tussen verskillende ione nie, maar slegs die teken en grootte van 'n ioon se lading. Die mate waartoe 'n ioon bydra tot migrasie in 'n elektriese veld word kwantitatief beskryf deur die ioon se vervoergetal: t_+ vir die katioon en t_- vir die anioon (Walsh, 1993: 99). Dit gebeur algemeen in elektrochemiese stelsels dat die elektro-aktiewe ione lae vervoergetalle het, maar gemeng is met 'n inerte elektroliet waarvan die ione hoë vervoergetalle het en dus die interne stroombaan van die sisteem ondersteun. In sulke gevalle is die oordrag van die elektro-aktiewe spesies uitgelewer aan konveksie en diffusie.

3.3 Modelle in die oop literatuur

Modelle beskikbaar in die literatuur word kronologies gelys om 'n akkurate beeld van die ontwikkeling van fluoorselmodelle te skep.

3.3.1 Modelling coupled transfers in an industrial fluorine electrolyser (Roustan et al., 1998)

Roustan et al., (1998) het die fluoorselgeometrie vertoon in Figuur 3.6 numeries gemodelleer met gebruik van Astek Flux-Expert. Die model is geyk teen die werklike fluoorsel en insiggewende resultate is bekom. Let daarop dat die geometrie wat gemodelleer word aansienlik vereenvoudig is as gevolg van die reaktor se simmetrie. Simmetrie in die vlak van die geometrie laat toe vir 2D-modellering eerder as 3D en slegs een helfte van die sel word gemodelleer

Die uiteindelike model, na gefaalde pogings, het sekondêre stroomverspreiding, termiese gedrag van al die selkomponente en enkelfasige, nie-saampersbare vloei vir 'n Newtonvloeistof ingelsuit. Momentum-, elektron- en hitte-oordrag is dus gekoppeld opgelos. Die stel Navier-Stokes-vergelykings word ingesluit as Vergelyking 3.44.

$$\nabla(-\sigma\nabla\phi_S) = 0 \tag{3.44a}$$

$$\rho C_p(\underline{v}\nabla T) + \nabla (-k\nabla T) = Q_{th}$$
(3.44b)

$$\rho \left[v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} \right] = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left[\mu \left(2 \frac{\partial v_x}{\partial x} - \frac{2}{3} \nabla \underline{v} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) \right] \quad (3.44c)$$

$$\rho \left[v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} \right] = -\frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(2 \frac{\partial v_y}{\partial y} - \frac{2}{3} \nabla \underline{v} \right) \right] + \rho g \quad (3.44d)$$

$$\nabla(\rho \underline{v}) = 0 \tag{3.44e}$$

Sekondêre stroomverspreiding veronderstel 'n diskontiniuteit in elektriese potensiaal tussen die elektrode en volume elektroliet. Roustan et al., (1998) het dus 'n spesiale iteratiewe metode gebruik om 'n konvergerende numeriese oplossing moontlik te maak met die gebruik van die eindige element metode. Primêre stroomverspreiding is aanvanklik gemodelleer, maar voorspelde elektriese veld het nie die werklikheid weerspieël nie. Met sekondêre stroomverspreiding wat gebruik maak van die Butler-Volmer- of Tafelvergelyking (Vergelykings 3.34 of 3.35) om lokale stroomdigtheid te bepaal, is resultate bekom wat 95 % realisties is. Tersiêre stroomverspreiding is nie ondersoek nie. Figuur 3.7

Figuur 3.6: Die geometrie van die industriële fluoorsel wat deur Roustan et al., (1998) ondersoek is.

toon die ekwipotensiaalkrommes wat verkry is met primêre stroomverspreiding. Die finale kurwes met die sekondêre stroomverspreiding is ongelukkig nie gerapporteer nie.

Termiese gedrag is met en sonder die gekoppelde Navier-Stokes-vergelykings in Vergelyking 3.44 gemodelleer. Met gebruik van vloeivergelykings is gevind dat die vloei van die elektroliet as gevolg van natuurlike konveksie in die sel nie die gemete isoterme akkuraat voorspel nie. Roustan et al., (1998) bevind dus dat die effek van die borrels in die fluoorsel nie weglaatbaar is nie. Die snelheidsprofiel wat deur Roustan et al., (1998) verkry is, word in Figuur 3.8 ingesluit. In die gepubliseerde model is die termiese geleidingsvermoë van die elektroliet in die sel kunsmatig aangepas na 20 W m⁻¹ K om akkurate isoterme te bekom. Die resultaat wat vloei sowel as die aangepasde waarde vir die termiese geleidingsvoermoë word in Figuur 3.9 weergegee.

Dit is van nut om hier in te sluit dat Roustan et al., (1998) die hittegenerasie wat as gevolg van oorpotensiale en Ohmiese verliese veroorsaak word met gebruik van Vergelyking 3.45 ingesluit het. Die termoneutrale potensiaal, $E_t n$, verwys na die spanning wat toegepas moet word op die sel sodat die seltemperatuur konstant bly. Hierdie is die spanning waarby die hitte gegenereer gelyk is aan hitteverliese uit die selsisteem.

Figuur 3.7: Ekwipotensiaalkurwes verkry deur Roustan et al., (1998) met primêre stroomverspreiding. Sleutel: (1) 0.0 V; (2) 0.4 V; (3) 0.8 V; (5) 1.2 V; (6) 2.0 V

$$Q_{th} = (E - E_{tn})i \tag{3.45}$$

Figuur 3.8: Snelheidsvektore verkry met gebruik van Vergelyking 3.44 (Roustan et al., 1998). Die maksimum vloeisnelheid is as $0.45 \,\mathrm{m\,s^{-1}}$ bepaal.

3.3.2 Modelling of the trajectories of the hydrogen bubbles in a fluorine production cell (Hur et al., 2003)

'n Model om die vloeitrajek van waterstofborrels in 'n koolstofanode-sel is deur Hur et al., (2003) gepubliseer. Die sel se geometrie word in Figuur 3.10 getoon. Die model bereken nie die elektriese velde in die sel nie, maar gebruik aanvaarbare aannames om die effek van die veld op die sel se termiese gedrag vas te vang. Die potensiaalverliese wat bydra tot die verhitting van die sel in Hur et al., (2003) se model word in Tabel 3.5 gelys. Die oorpotensiale en Ohmiese verliese word ingesluit as grens- en volumetriese hitte-bronne.

Figuur 3.10: Die geometrie van die industriële fluoorsel wat deur Hur et al., (2003) ondersoek is.

Tabel 3.5: Potensiaalverliese wat bydra tot selverhitting in die model deur Hur et al., (2003).Hierdie data is verkry van Hugh, (1997: 113).

Toegepasde selpotensiaal Omkeerbare selpotensiaal	$\begin{array}{c} 10\mathrm{V} \\ 2.9\mathrm{V} \end{array}$
Ohmiese verlies	3.0 V
Anodiese oorpotensiaal	3.0 V
Katodiese oorpotensiaal	1.0 V

Die elektroliet word as 'n onsaampersbare Newton-vloeistof gemodelleer met die Boussinesq vereenvoudiging vir vloeistofeienskappe (Arpaci & Larson, 1984: 51). Die digtheid van die elektrolietfase is bereken deur Vergelyking 3.46 te gebruik. Aangesien koolstof elektrodes modelleer word, is die vloei van $F_2(g)$ nie in die model ingesluit nie. Daar word

dus aangeneem dat die fluoorborrels nie van die anodiese oppervlak vrykom nie, maar teen die annode opbeweeg a.g.v. digtheidsverskil. Die vloei van $H_2(g)$ is wel ondersoek met die aanname dat die gasborrels harde sfere is wat nie saamsmelt of skei nie. Hierdie aanname geld solank as wat Vergelyking 3.47 geld. Die diameter van die borrels, d_b , is as 2.2 mm aangeneem. Die vloei van $H_2(g)$ word deur die elektroliet se vloeipatroon bepaal en oefen geen effek op daardie vloeipatroon uit nie.

$$\rho = \rho_0 [1 - \beta (T - T_0)] \tag{3.46}$$

$$d_b < \sqrt{\frac{\sigma}{g\Delta\rho}} \tag{3.47}$$

Die model bestaan dus uit die behoud van massa, momentum, energie sowel as die vergelykings wat borrelvloei bepaal. Hur et al., (2003) het eerste die temperatuur en vloeipatroon in die sel bepaal en die resultate as inset gebruik om die borrelvloei te bereken. Daar is dus van 'n eenrigtingkoppeling tussen die drie behoudwette en Vergelyking 3.47. Die resultate vir temperatuur en snelheidsprofiel wat deur Hur et al., (2003) bekom is, word in Figuur 3.11 weergegee.

Hur et al., (2003) maak ook 'n waardevolle waarneming aangaande die effek wat die gespesifiseerde borreldiameter op borrelvloei het. Sy vloeitrajek resultate vir borrels van verskillende diameter word in Figuur 3.12 ingelsuit. Wanneer die borrels klein is, word hul beweging hoofsaaklik deur die sleurkrag van die elektroliet bepaal. Hoe groter die borrels word hoe meer word hul beweging deur vlotkragte bepaal. Let op hoe die borrels met 'n diameter van 0.2 mm heeltemal deur die vloeipatroon van die elektroliet meegesleur word sodat die borrels nie uit die elektroliet kan ontsnap nie.

Figuur 3.11: Die temperatuur- en snelheidresultate vir die kommersiële fluoorsel wat deur Hur et al., (2003) gemodelleer is.

Figuur 3.12: Die effek wat borreldiameter op borreltrajek uitoefen in Hur et al., (2003) se model. Sleutel vir borreldiameter: (I) 0.5 mm; (II) 0.37 mm; (III) 0.2 mm.

3.3.3 Effect of hydrodynamics on Faradaic current efficiency in a fluorine electrolyser (Espinasse et al., 2006)

Espinasse et al., (2006) se model is gebruik om die gedrag van 'n loodsfluoorsel wat eksperimenteel bestudeer is, numeries te ondersoek. Die geometrie van hierdie sel word in Figuur 3.13 weergegee. Wanneer Espinasse et al., (2006) die geometrie van die sel bespreek maak hy ook die waarneming wat dat die fyner borrels $H_2(g)$ deur die elektroliet meegesleur sal word om met die $F_2(g)$ te herkombineer (Hur et al., 2003).

Figuur 3.13: Die geometrie van die loodsfluoorsel wat deur Espinasse et al., (2006) ondersoek is.

Espinasse et al., (2006) het voorspel dat indien 10 % van die $H_2(g)$ meegesleur word deur die elektroliet die fluoorsel se Faraday-rendement 'n maksimum van 90 % sal wees. Hierdie H_2 -borrels word voorspel om in werwelvloei vasgevang te wees met 'n naas konstante hoeveelheid $H_2(g)$. 'n Gestadigde vloed van H_2 -borrels vanaf die katodes na die werwelvloei en vanaf die werwelvloei na herkombinasie met $F_2(g)$ word voorspel. Die skets wat ter verduideliking van hierdie postulaat gebruik is, is in Figuur 3.14 ingesluit. Die geskepde model is gebruik om die bestaan van hierdie vloei te ondersoek aangesien dit, volgens Espinasse et al., (2006), onmoontlik was om hierdie vloei in die sel te ondersoek vanweë die aggressiewe aard van die elektroliet. Die gepubliseerde artikel ondersoek die persentasie herkombinasie wat voorspel word vir verskillende borreldiameters.

Gedurende die skep van hierdie model het Espinasse et al., (2006) twee numeriese kode pakette wat toe deur Astek versprei is, gebruik: Flux-Expert en Estet-Astrid. Die eindige

Figuur 3.14: Die werwerlvloei-postulaat wat deur Espinasse et al., (2006) numeries ondersoek is.

element metode wat deur Flux-Expert gebruik word, is aangewend om stroomverspreiding en hitte-oordrag in die sel te modelleer. Estet-Astrid is 'n paket met goeie vermoë om die Euler-vergelykings, wat twee-fase vloei beskryf, op te los. Estet-Astrid is dus gebruik met die resultate van stroomverspreiding en hitte-ordrag as invoerwaardes.

Espinasse et al., (2006) maak dus gebruik van 'n eenrigtingkoppeling tussen hierdie twee stelle vergelykings. Hierdie koppeling word ondersteun deur die eksperimentele waarnemings dat die stroomverspreiding en temperatuur in hul sel naas homogeen is en dus nie die hidrodinamiese gedrag noemenswaardig beïnvloed nie. Die beginwaardes vir hierdie model neem aan dat daar geen gas in die elektroliet teenwoordig is nie en dat die elektroliet staties is. Dit is nodig om te onderskei dat die temperatuur en stroomgedrag in die sel as 'n gestadigde toestand verkry is terwyl die twee-fase vloei resultate as tyd-afhanklik verkry is. Gestadigde toestande se vloeiresultate word geneem as die berekende vloei sodra die gaspluim in die modelresultaat volledig ontwikkel is.

Die teenwoordigheid van $F_2(g)$ in die elektroliet is geïgnoreer soos deur Roustan et al., (1998) en Hur et al., (2003). Die effek van die vloei van $F_2(g)$ op die elektroliet is egter ingesluit deur die anode-oppervlak as 'n bewegende-grens te definieer. 'n Massa- en momentum-oordrag vergelyking is vir beide die elektroliet- en gasfase opgelos en is 'n aangepasde weergawe van die Navier-Stokes vergelykings. Daar word vier kragte op die gasborrels in ag geneem: gravitasie, vlotkragte, elektrolietvloei en toegevoegde massa.

Die dinamiese viskositeit van die elektroliet in Vergelyking 3.48 word deur Espinasse et al., (2006) gebruik. Fisiese eienskappe toegepas in die finale model word weergegee in

Tabel 3.6.

$$\mu = -1.194 \times 10^{-1} + 9.225 \times 10^{-4} \times T - 1.517 \times 10^{-6} \times T^2$$
(3.48)

Tabel 3.6: Die fisiese eienskappe toegepas in Espinasse et al., (2006) se finale model.

Die grensvoorwaardes vir die finale model word in Figuur 3.15 getoon. Die bewegende muur sluit die effek van die $F_2(g)$ wat teen die anode opbeweeg in terwyl die vloed van $H_2(g)$ as uniform aanvaar word gegewe die aanname van uniforme stroomverspreiding. Die elektroliet se oppervlak word as 'n vry-oppervlak wat $H_2(g)$ -deurlaatbaar is.

Figuur 3.15: Die grensvoorwaardes toegepas deur Espinasse et al., (2006).

Die berekende gasfraksie $H_2(g)$ vir borrels met 'n diameter van 1 mm word in Figuur 3.16 getoon. Dit is duidelik sigbaar dat kleiner stroomdigthede tot minder herkombinasie lei vir hierdie geometrie. Die skerm in die ontwerp is dus nie effektief vir hoër toegepasde

© University of Pretoria

stroomdigthede nie. Hierdie resultaat word eksperimenteel waargeneem deur Espinasse et al., (2006).

Figuur 3.16: Die berekende gasfraksie $H_{2(g)}$ vir borrels met 'n diameter van 1 mm (Espinasse et al., 2006).

Figuur 3.17: Skets van die eenvoudige geometrie aangewend deur Mandin, Wtrich & Roustan, (2009) vir sy ondersoek.

3.3.4 Electrochemical engineering modelling of the electrodes kinetic properties during two-phase sustainable electrolysis (Mandin et al., 2009)

Mandin et al., (2009) het die gepasdheid van primêre stroomverspreiding vir twee-fasige elektroliese ondersoek. Die resultate van 'n numeriese model is met laboratoriumdata vergelyk.

Die model veronderstel primêre stroomverspreiding en gasborrels word as sfere van gelyke diameter aanvaar. Die gasvloed blyk om as grenstoestand aan die model verskaf te word en die stroomverspreiding word dan voorspel. Mandin et al., (2009) maak voorsiening in sy model vir die verlaagde elektriese geleidingsvermoë van die elektroliet a.g.v. gasborrels volgens Bruggeman se wet. Figuur 3.17 toon 'n skets van die eenvoudige parallel plaat konfigurasie vir die laboratoriumopstelling en numeriese model. Let daarop dat alkaliwater elektrolise gebruik is vir die ondersoek.

Mandin et al., (2009) kom tot die gevolgtrekking dat primêre stroomverspreiding die stroomverspreiding in die sel nie akkuraat voorspel nie. Die verskil tussen die model en eksperimentele resultate word toegeskryf aan die teenwoordigheid van borrels in die grenslaag teen die werkselektrode. Hierdie borrels het verbeterde massa-oordrag teen die elektrodes tot gevolg. 'n Foto van hierdie borrels word deur Mandin et al., (2009) gerapporteer en word hier ingesluit as Figuur 3.18.

Figuur 3.18: Foto van die borrels teen die werkselektrode van 'n alkali-water elektroliese sel (Mandin, Wtrich & Roustan, 2009).

3.3.5 Vegelyking van bespreekde modelle

Outeur	Stroom-	Vloeistofvloei	Gasvloei	Elektrochemiese verhitting	$F_2(g)$ effek	$H_2(g)$ effek	Borrel-
	verspreiding						diameter
Roustan et al., (1998)	Sekondêr	Nie-saampersbaar	_	Joule-verhitting	_	_	_
		Newtonies		Oorpoteniaalverliese			
Hur et al., (2003)	_	Nie-saampersbaar	Harde sfere	Joule-verhitting	_	Ja	$2.2\mathrm{mm}$
		Newtonies	Nie saamsmelt	Oorpotensiaalverliese			
			Nie skei				
Espinasse et al., (2006)	Homogeen	Sien publikasie	Borrelkragte:	_	_	Ja	$1\mathrm{mm}$
			Gravitasie				
			Vlotkrag				
			Meesleuring				
			Toegevoegde massa				

 Tabel 3.7:
 Vergelyking van beskikbare fluoorsel modelle in die oop literatuur.

3.4 Modelbeskrywing

Die fluoorselontwerp wat in Afdeling 2.5 uiteengesit word, is gemodelleer. Daar is egter gedurende die skryf en toets van die model gevind dat konvergensie van hierdie 3D-geometrie 'n uitdaging is. Die model is gevolglik ook op 'n vorige eksperimentele fluoorsel van die Universiteit van Pretoria toegepas, aangesien hierdie sel tot 'n 2D-geometrie vereenvoudig kan word vir modellering.

Die model word eers volledig bespreek in Afdelings 3.4.1 tot 3.4.6. Dit is maklik om hierdie model dan op die betrokke geometrieë in Afdeling 3.4.7 toe te pas. Die wiskundige oplossing en maasinvloed-studie van elke geometrie word in Afdelings 3.4.8 en 3.4.9 ingesluit.

Die model is ontwikkel m.b.v. COMSOL Multiphysics[®]. Hierdie modelleringspaket maak gebruik van die eindige element metode en is besonders kragtig om hoogs gekoppelde sisteme soos 'n fluoorsel op te los. Die wye verskeidenheid fisika modules laat die verbruiker toe om min oplossingskode self te skryf en kundige ondersteuning gedurende die modelleringsproses is beskikbaar. Binne die COMSOL-omgewing word die woord *koppelvlak* gebruik om na 'n stel vergelykings te verwys wat vooraf saamgestel is om 'n spesifieke fisiese verskynsel te modelleer. Daar word in hierdie hoofstuk deurgaans na spesifieke koppelvlakke verwys. Waar nodig het die outeur sy eie wiskundige uitdrukkings geskryf.

3.4.1 Momentum-oordrag

Deur gebruik te maak van die *Laminar Bubbly Flow* koppelvlak, word Vergelykings 3.49 opgelos (COMSOL Multiphysics, 2017a). Hierdie vergelykings is die momentum-, kontinuïteits- en borrelvloei-vergelyking.

$$\phi_l \rho_l \frac{d\mathbf{u}_l}{dt} + \phi_l \rho_l \mathbf{u}_l \cdot \nabla \mathbf{u}_l = -\nabla P + \nabla \cdot \left[\phi_l (\mu_l + \mu_T) (\nabla \mathbf{u}_l + \nabla \mathbf{u}_l^T) \right] + \phi_l \rho_l \mathbf{g} + \mathbf{F} \quad (3.49a)$$

$$\rho_l \nabla \cdot \mathbf{u}_l = 0 \tag{3.49b}$$

$$\frac{d\rho_g \phi_g}{dt} + \nabla(\phi_g \rho_g \mathbf{u}_g) = 0 \tag{3.49c}$$

Hierdie koppelvlak los die gemiddelde fraksie van elke fase by elke eindige element op en volg dus nie die beweging van elke borrel nie (COMSOL Multiphysics, 2017a). 'n Snelheidsvektor word vir elke fase opgelos. Die koppelvlak se aannames is in ooreenstemming

© University of Pretoria

met die aannames gemaak deur Espinasse et al., (2006) en Pretorius, Crouse & Hattingh, (2015):

- Gas-fase digtheid is weglaatbaar teenoor vloeistof-fase digtheid
- Die relatiewe snelheid van gasborrels word bepaal deur viskose meesleuring sowel as drukgradiënte;
- Die twee fases deel dieselfde drukveld;
- Die gas se volume-fraksie is minder as 0.1.

Laminêre vloei is vir die borrels aanvaar en die geldigheid van hierdie aanname sal in Afdeling 3.5 bevestig word. Na aanleiding van Espinasse et al., (2006) is 'n borreldiameter van 1 mm gekies. Hur et al., (2003) en Espinasse et al., (2006) sluit nie die effek van $F_2(g)$ se borrelvloei in nie. Pretorius et al., (2015) sluit hierdie effek deels in deur 'n $H_2(g)$ -vloed op die anode te defineer wat 'n fraksie 0.1 van die verwagte massavloed is om die gas wat teen die annode opbeweeg uit te sluit (Pretorius, 2011). Pretorius, (2011) maak melding van die feit dat hierdie COMSOL-koppelvlak nie toelaat vir die insluit van beide gasse se eienskappe nie en gebruik dus die eienskappe van $H_2(g)$ in beide van sy publikasies.

In hierdie model word die eienskappe van beide die produkgasse ingesluit deur die digtheid van die gas-fase afhanklik te maak van die eindige element se koördinate. Die digtheid van die gas-fase verander met 'n stap-funksie wat aktiveer by 'n vlak wat tussen die twee elektrodes gedefinieer word. Hierdie is die eerste model wat hierdie toepassing toelaat.

Om natuurlike konveksie by te werk is 'n volumetriese krag op die elektroliet-domain toegepas soos vertoon in Vergelyking 3.50 (Pretorius et al., 2015).

$$\mathbf{F}_y = \mathbf{g}_y \rho_l \alpha_0 (T - 353.15) \tag{3.50}$$

3.4.2 Hitte-oordrag

Hitte-oordrag binne die fluoorsel word gemodelleer deur gebruik te maak van die *Heat Transfer in Fluids*-koppelvlak. Vergelyking 3.51 word deur hierdie koppelvlak aangewend (COMSOL Multiphysics, 2017c).

$$\rho C_p \left(\frac{dT}{dt} + \mathbf{u} \cdot \nabla T\right) + \nabla \cdot (\mathbf{q}) = Q_{th}$$
(3.51)

Die verhitting van die sel as gevolg van Joule-verhitting en bo-potensiaalverliese word ingereken deur die gebruik van die *Electrochemical Heating*-koppelvlak (COMSOL Multiphysics, 2017b). Die vergelykings wat hier van belang is word ingesluit as Vergelykings 3.52

$$Q_{JH} = -(\mathbf{j}_m \cdot \nabla \phi_m + \mathbf{j}_s \cdot \nabla \phi_s) \tag{3.52a}$$

$$Q_r = \left(\frac{\Delta H_r}{n_r F} - \left(\frac{\Delta G_r}{n_r F} - \eta_{r,tot}\right)\right) j_r \tag{3.52b}$$

3.4.3 Elektron-oordrag

Elektron-oordrag in die sel word tot die model gevoeg met gebruik van die Secondary Current Distribution-koppelvlak (COMSOL Multiphysics, 2017b). Hierdie tipe stroomverspreiding neem nie termodinamiese ewewig aan nie, maar neem reaksiekinetika op die oppervlak van die elektrode in ag om stroomdigtheid vanaf oorpotensiale te bepaal. Ohm se wet en 'n elektron-balans beskryf geleiding deur beide die elektrodes en elektroliet. Vir hierdie model is Tafel-tipe kinetika op die anodiese oppervlak toegepas wat in Afdeling 2.3.6 ingesluit is. 'n Waarde van 2×10^{-5} A cm⁻² is vir die uitruilstroomdigtheid, j_0 , gebruik. Aangesien geen kinetiese data vir die katodiese reaksie bekombaar was nie, dien termodinamiese ewewig as die kinetiese voorwaarde.

Die koppelvlak gebruik dus Vergelyking 3.40 om die gedrag van die anode te modelleer. Vergelykings 3.53 word gebruik om stroomdigtheid sowel as geleiding op te los vir die elektroliet- en elektrode-fase.

$$\mathbf{j}_s = -\sigma_s \nabla \phi_s \tag{3.53a}$$

$$\nabla \cdot \mathbf{j}_s = \mathbf{Q}_s \tag{3.53b}$$

$$\mathbf{j}_m = -\sigma_m \nabla \phi_m \tag{3.53c}$$

$$\nabla \cdot \mathbf{j}_m = \mathbf{Q}_\mathbf{m} \tag{3.53d}$$

3.4.4 Grensvoorwaardes

Koppelvlak	Grensvoorwaarde	Beskrwying	Vergelyking
Laminar Bubbly Flow	Vloeistof: geen glip		$\mathbf{u}_l = 0$
	Gas: anodiese vloed	Gas vloed na die sisteem word bepaal deur vloed van elektrone oor hierdie	$\frac{d\mathbf{u}_g}{dt} = N_A$
		grens.	
Heat Transfer in Fluids	Geen hitte-vloed	Wanneer die oppevlak 'n grens is, word dit as nie-geleidend beskou in hierdie stel vergelykings.	$\mathbf{u} \cdot (-k\nabla T) = 0$
Electrochemical Heating	Hitte-vloed na die sisteem	Verhitting as gevolg van elektriese oor- potensiaalverliese.	$Q_b = \left(\phi_m - \phi_s - E^e_{sel}\right)$ $+ T \frac{dE^e_{sel}}{dE^e_{sel}} i$
Sagandary Current Distribution	Bo potenciaal by anoda	Re notongiaal by hierdie group	$+I - \frac{dT}{dT}) J$
Secondary Current Distribution	Stroomditheid: anode	Stroomditheid word deur die reaksieki-	$\eta_e = E_{sel} - \phi_s - E_{anode}$ $j_{gb} = \mathbf{n}j_0 \times 10^{\eta_e/A_a}$
		netika bepaal. Anodiese Tafel-tipe ki-	-
		netika is gedefinieer.	
	Beperkde stroomvloei: anode	Hierdie beperking is ingestel om oorpo-	$j = rac{\jmath_{gb}}{1+ j_{gb}/I_L }$
		tensiale in die model te forseer.	

 Tabel 3.8:
 Grensvoorwaardes van toepassing op die anodiese oppervlak.

Tabel 3.9: Grensvoorwaardes van toepassing op die katodiese oppervlak.

Koppelvlak	Grensvoorwaarde	Beskrwying	Vergelyking
Laminar Bubbly Flow	Vloeistof: geen glip		$\mathbf{u}_l = 0$
	Gas: katodiese vloed	Gas vloed na die sisteem word bepaal deur vloed van elektrone oor hierdie grens.	$\frac{d\mathbf{u}_g}{dt} = N_K$
Heat Transfer in Fluids	Geen hitte-vloed	Wanneer die oppevlak 'n grens is, word dit as nie-geleidend beskou in hierdie stel ver- gelykings.	$\mathbf{u} \cdot (-k\nabla T) = 0$
Electrochemical Heating	Hitte-vloed na die sisteem	Verhitting as gevolg van elektriese oorpoten- siaalverliese.	$Q_b = \left(\phi_m - \phi_s - E_{sel}^e\right)$
			$+T\frac{dE_{sel}^{e}}{dT})\Big)j$
Secondary Current Distribution	Stroomdigtheid: katode	Geen kinetiese waardes is in die literatuur gevind nie. Hierdie grens neem slegs nor- male geleiding tot die grens aan.	$\eta_e = 0$

 Tabel 3.10:
 Grensvoorwaardes van toepassing op die reaktorwand.

Koppelvlak	Grensvoorwaarde	Beskrwying	Vergelyking
Laminar Bubbly Flow	Vloeistof: geen glip		$\mathbf{u}_l = 0$
	Gas: geen vloed		$\frac{d\mathbf{u}_g}{dt} = 0$
Heat Transfer in Fluids	Beheerde temperatuur	Die temperatuur van die reaktor word beheer deur die verhittingsklos.	$T = T_w$
	Straling	Hierdie voorwaarde is slegs van toe- passing op die bodem van die 2D- parallelle-plaat implementasie van die model. Hierdie opstelling sou in 'n dampkas staan sonder temperatuutbe- heer op daardie wand.	$-\mathbf{n} \cdot \mathbf{q} = d_z \epsilon \sigma_b (T_{omgewing}^4 - T^4)$
	Geen hitte-vloed	Hierdie voorwaarde is toegepas op alle ander wandoppervlakte om konserwa- tiewe temperatuur resultate tot gevolg te bring.	$\mathbf{u} \cdot (-k\nabla T) = 0$
Secondary Current Distribution	Isolasie	Daar is geen vloei van lading wat tot hierdie oppervlakte toegelaat word nie.	$-\mathbf{n} \cdot \mathbf{j} = 0$

Tabel 3.11: Grensvoorwaardes van toepassing op die elektrolietoppervlak.

Koppelvlak	Grensvoorwaarde	Beskrwying	Vergelyking
Laminar Bubbly Flow	Vloeistof: drukgrens	Vloei word bepaal deur atmosferiese druk op hierdie vlak aan te neem.	P = 0
	Gas: deurlaatbaar	Gas vloei vrylik deur die grens en geen gasdruk op die grens van buite die elektroliet word aangeneem.	$\rho_g \phi_{g,ekstern} = 0$
Heat Transfer in Fluids	Geen hitte-vloed	Hierdie voorwaarde is toegepas om konserwatiewe tem- peratuur resultate tot gevolg te bring.	$\mathbf{u} \cdot (-k\nabla T) = 0$
Secondary Current Distribution	Isolasie	Daar is geen vloei van lading wat tot hierdie oppervlakte toegelaat word nie.	$-\mathbf{n} \cdot \mathbf{j} = 0$

3.4.5 Beginwaardes

Die oorhoofse beginvoorwaardes vir die model word in Tabel 3.12 weergegee. Die elektrolietsamestelling is konstant $(KF \cdot 2.2HF)$ in die model aangesien 'n baie kort periode van elektroliese modelleer word om die pseudo-gestadigde toestand te ondersoek. Dit is moontlik om konstantes wat van hierdie samestelling afhanklik is aan te pas om gedrag na 'n sekere gebruik van reagens te modelleer.

Tabel 3.12: Beginvoorwaardes wat in die model teogepas is.

Momentum-oordrag	Snelheid = $0 \mathrm{m s^{-1}}$
Hitte-oordrag	Hele domain is by $353.15\mathrm{K}$
Elektron-oordrag	Selspanning is $0 V$

3.4.6 Konstantes en wiskundige uitdrukkings

Die eienskappe van elk van die materiale in die model word weergegee in Tabelle 3.13 tot 3.16. Let wel dat die eienskappe van die gasfase bepaal word deur gebruik te maak van 'n funksie soos in Vergelyking 3.54 vertoon. Die eenheidstrapfunksie word as step(x) aangedui.

$$\rho_g = (1 - step(x))\rho_{F2}(P, T) + step(x)\rho_{H2}(P, T)$$
(3.54)

Daar is 'n aantal wiskundige uitdrukkings wat gebruik is in die grensvoorwaardes van die COMSOL-koppelvlakke. Hierdie uitdrukkings word weergegee in Tabel 3.17. Enige konstantes wat deur die model gebruik is, word in Tabel 3.18 gerapporteer.

3.4.7 Modeltoepassing tot geometrieë

Die eerste geometrie wat m.b.v. die model modelleer is, is 'n 2D parallelle-plaatsel wat by die Universiteit van Pretoria bedryf is. Hierdie sel is deur Pretorius et al., (2015) modelleer. Hierdie toepassing is gemaak om duidelikheid te bekom oor die herhaalde numeriese divergensie van die model wanneer dit gebruik word om die 3D Pauling-sel te ondersoek.

'n 2D-tekening van die geometrie wat deur Pretorius et al., (2015) ondersoek is, word as Figuur 3.19 ingesluit om die grensvoorwaardes van Afdeling 3.4.4 grafies toe te ken aan die toepaslike grense. Tabel 3.19 bevat die toekenning.

102

© University of Pretoria

Simbool	Beskrywing	Waarde	Bron
k	Termiese geleidingsvermoë	$1.25{\rm Wm^{-1}K^{-1}}$	Geskat deur Preto- rius, Crouse & Hat-
ρ	Dig theid by 80° C	$2000 \rm kg m^{-3}$	tingh, (2015) Geskat vanaf Fi-
C_p	Hittekapasiteit	$10.8 + 0.00284T \rm \ kg m^{-3}$	(Pretorius, Crouse & Hattingh 2015)
μ_l	Dinamiese viskositiet	$0.0112784{\rm Pas}$	(Espinasse et al., 2006)
σ_s	Elektriese geleidingsvermoë	$6.67{ m Sm^{-1}}$,

 Tabel 3.13:
 Die materiaaleienskappe wat vir die elektroliet-fase gebruik is.

Tabel 3.14: Die materiaaleienskappe wat vir die anode gebruik is.

Simbool	Beskrywing	Waarde	Bron
k	Termiese geleidingsvermoë	$90{\rm Wm^{-1}K^{-1}}$	COMSOL-eienskappe
ρ	Digtheid	$8908 { m kg} { m m}^{-3}$	COMSOL-eienskappe
C_p	Hittekapasiteit	$475{ m Jkg^{-1}K^{-1}}$	COMSOL-eienskappe
σ_s	Elektriese geleidingsvermoë	$2.088\mathrm{MSm^{-1}}$	

Tabel 3.15: Die materiaaleienskappe wat vir die katode gebruik is.

Simbool	Beskrywing	Waarde	Bron
$k \\ \rho \\ C_p \\ \sigma_s$	Termiese geleidingsvermoë Digtheid Hittekapasiteit Elektriese geleidingsvermoë	$\begin{array}{c} 44.5\mathrm{Wm^{-1}K^{-1}}\\ 7850\mathrm{kgm^{-3}}\\ 475\mathrm{Jkg^{-1}K^{-1}}\\ 4.032\mathrm{MSm^{-1}}\end{array}$	COMSOL-eienskappe COMSOL-eienskappe COMSOL-eienskappe

Tabel 3.16: Die materiaaleienskappe wat vir die gas-fase gebruik is.

Simbool	Beskrywing	Waarde
$ ho_{F2}$	Digtheid, $F_2(g)$, ideale gaswet	$\frac{P*MM_{F2}}{R_{gas}T}$ kg m ⁻³
$ ho_{H2}$	Digtheid, $H_2(g)$, ideale gaswet	$rac{P*MM_{H2}}{R_{gas}T}~\mathrm{kg}\mathrm{m}^{-3}$

Tabel 3.17: Wiskundige uitdrukkings wat in die model aangewend is.

Uitdrukking	Beskrywing
$N_{F2} = \frac{ \mathbf{j} }{F} M M_{F2} \phi_l$ $N_{H2} = \frac{ \mathbf{j} }{F} M M_{H2} \phi_l$	Fluoorvloed by anode Waterstofvloed by katode

 Tabel 3.18:
 Tabel van konstantes soos in die model gebruik.

Simbool	Beskrywing	Waarde	Bron
R_{gas}	Ideale gaskonstante	$8.3145\mathrm{JK^{-1}mol^{-1}}$	(Kotz, Treichel & Town-
MM_{F2}	Molekulêre massa van F_2	$38.00\mathrm{gmol^{-1}}$	send, 2012) (Kotz, Treichel & Town- sond, 2012)
MM_{H2}	Molekulêre massa van H_2	$2.00\mathrm{gmol^{-1}}$	(Kotz, Treichel & Town-
F	Faraday se konstante	$96485{ m Cmol^{-1}}$	(Kotz, Treichel & Town- send, 2012)
d_b	Borreldiameter	$1\mathrm{mm}$	(Espinasse et al., 2006)
g	Gravitasieversnelling	$9.81{ m ms^{-2}}$	
$lpha_0$	Dighteidtoename koefissiënt	$7.11 \times 10^{-4} \ 1/^{\circ} C$	(Pretorius, Crouse & Hattingh, 2015)
E_{sel}	Katodiese potensiaal	$12\mathrm{V}$	Eksperimentele waarde

Tabel 3.19: Fase en grensvoorwaarde toekenning: 2D parallelle-plaatsel.

Fase of grens	Beskrywing
F1	Elektroliet
F2	Anode
F3	Katode
G1	Reaktorwand, beheerde temperatuur
G2	Elektrolietoppervlak
G3	Reaktorwand, termiese isoleerder
G4	Reaktorwand, radiatiewe hitteverlies
G5	Anodiese oppervlak
G6	Katodiese oppervlak

Figuur 3.19: Grensvoorwaardes van die 2D parallelle-plaatsel wat aanvanklik deur Pretorius, Crouse & Hattingh, (2015) ondersoek is.

Die 3D Pauling-sel van Afdeling 2.5 word 2D voorgestel in Figuur 3.20 met die grense benoem. Die fases en grense word toegeken in Tabel 3.20.

Figuur 3.20: Fase en grensvoorwaarde toekenning: 3D Pauling-sel.

3.4.8 2D parallelle-plaatsel: oplossing, maasinvloed

Die opstel van die numeriese oplosmetode het baie bygedra tot die stabiliteit van die model se konvergensie. Eerstens is die sel as 'n gestadigde toestand model vir 'n selspanning van 4 V opgelos. Alle fisika buiten momentum-oordrag is so opgelos. Hierdie waardes was toe as invoerwaardes gebruik vir 'n ten volle gekoppelde, tyd-afhanklike oplossing van die model. Hierdie resultate is weer as invoer gebruik vir 'n ten volle gekoppelde, tyd-afhanklike model wat 'n selspanning van 12 V ondersoek. Sodoende is divergensie van die model vermy.

'n Ander belangrike element van die oplossingsmetode is die opstelling van die volgorde waarin koppelvlakke opgelos word. Die eindelike oplossingsvolgorde word in Tabel 3.21 ingesluit. Daar is nie nog 'n volgorde wat tot konvergensie van die model lei gevind nie.

'n Maas-invloedstudie is voltooi om te verseker dat die maasdigtheid voldoende is om 'n onafhanklike oplossing te bekom. Die resultate van hierdie studie word in Figure 3.21 en 3.22 getoon.

Figuur 3.21: Die maasinvloed-studie van die 2D parallelle-plaatsel. Gasvloed deur die fluoorgasuitlaat is as die aanduidende veranderlike gekies.

Die studie toon dat tussen die eerste twee maasdigthede daar nie 'n baie groot verskil in resultate is nie, maar die kolkingsaksie van die produkgasse word eers waargeneem vanaf die derde maasdigtheid. 'n Laaste verhoging in maasdigtheid is toegepas, maar aangesien daar nie noemenswaardige toename in akkuraatheid was nie, is die derde maas gekies vir alle verder ondersoeke. Die eienskappe van hierdie maas word in Tabel 3.22

© University of Pretoria

Figuur 3.22: Die maasinvloed-studie van die 2D parallelle-plaatsel. Maksimum vloeisnelheid in die elektroliet is as die aanduidende veranderlike gekies.

weergegee. Die maas is geskep met COMSOL se ingeboude maassagteware deur die *physics controlled, finer mesh* opsies te gebruik. Die maas word vertoon in Figuur 3.23

Figuur 3.23: Die maas wat toegepas is om die 2D parallelle-plaatsel te modeller.

Skeefheid en groeitempo van die elemente word gebruik om die kwaliteit van die maas te kontroleer. Figure 3.24 en 3.25 toon grafieke wat hierdie kwaliteit van die maas uitbeeld. Daar is geen kommerwekkende elemente in die geskepde maas nie.

3.4.9 3D Pauling-sel: oplossing, maasinvloed

Die numeriese oplossing van die 3D Pauling-sel geometrie met ten volle gekoppelde fisika was aansienlik meer rekenaar-intensief sowel as geneig om te divergeer. Verskeie oplossingsmetodes is getoets om eindelik die ten volle gekoppelde fisika met 'n eenrigtingkoppeling te vervang. Al die koppelvlakke behalwe momentum-oordrag is eerste as 'n

Figuur 3.24: Element skeefheid van die toegepasde 2D parallelle-plaatsel model.

Figuur 3.25: Element groeitempo van die toegepasde 2D parallelle-plaatsel model.

gestadigde toestand model opgelos. Hierna word hierdie resultaat gebruik as invoerwaardes vir die tyd-afhanklike berekening van die momentum-oordrag vergelykings. Hierdie benadering stem ooreen met die oplossingsmetodes van Hur et al., (2003) en Espinasse et al., (2006).

'n Maas-invloedstudie is voltooi om te verseker dat die digtheid van die maas nie die oplossing van die model beïnvloed nie. Die vloed van fluoorgas by die fluoorgasuitlaat is as die aanduidende veranderlike gekies. Daar is egter nie genoegsame sinvolle resultate om met mekaar te vergelyk vir die studie bekom nie. Die *physics normal, physics finer* lewer resultate wat baie van mekaar verskil soos in Figuur 3.26 getoon. Die maasdigtheid hoër as die *finer* verstelling neem byna 'n dag om klaar te bereken en het gedurende die skryf van hierdie verhandeling nie sinvolle resultate gelewer nie. As gevolg van 'n tekort aan tyd word hierdie ondersoek aan toekomstige navorsers oorgelaat.

Figuur 3.26: Die maasinvloed-studie van die 3D Pauling-sel. Gasvloed deur die fluoorgasuitlaat is as die aanduidende veranderlike gekies.

Fase of grens	Beskrywing
F1	Elektroliet
G1	Reaktorwand, beheerde temperatuur
G2	Elektrolietoppervlak
G3	Anodiese oppervlak
G4	Katodiese oppervlak

Tabel 3.20: Fase en grensvoorwaarde toekenning: 3D Pauling-sel.

 Tabel 3.21: Die volgorde van oplossing vir die ten volle gekoppelde model toegepas op die 2D parallelle-plaatsel.

1. \mathbf{u}_l en P. 2. $rho_g \times \phi_g$ 3. ϕ_s ; \mathbf{j} ; ϕ_m 4. T

Tabel 3.22: Maaseienskappe van die maas wat gebruik is om die model toe te pas op die 2D
parallelle-plaatsel.

Waarde
8878
15033
1198
672
26
16231
0.407
0.839
$0.446 \\ 0.782$

3.5 Resultate

3.5.1 2D parallelle-plaat fluoorsel

Die tempertuurverdeling na 50 sekondes, waar gestadigde toestande aangeneem kan word, word in Figuur 3.27 weergegee met die stroomdigtheid in Figuur 3.28.

Die mees waardevolle resultaat van die model is egter die elektroliet en gasvloei in die sel. Figure 3.29 en 3.30 toon hierdie resultate. Kolking van die elektroliet-fase waarin daar gas-fasige produk teenwoordig is, is sigbaar. Daar word egter geen herkombinasie van die produkgasse voorspel nie. Vanuit Figuur 3.29 is dit duidelik dat die grensvoorwaarde vir die elektroliet-oppervlak tekort skiet. Daar word 'n konstante invloei van elektrolietfase voorspel. Hierdie is egter nie die werklikheid nie. 'n Moontlike gebruik van hierdie resultaat is die sny van die elektrodes om juis sulke vloei toe te laat sodat die sterk vloeipatrone die herkombinasie van die produkte onderdruk.

Figuur 3.27: Temperatuur resultaat van die 2D parallelle-plaat fluoorsel na 50 s bedryfstyd (°C).

Figuur 3.28: Stroomdigtheid van die 2D parallelle-plaat fluoorsel na 50 s bedryfstyd (A m $^{-2}$).

Figuur 3.29: Vloeisnelheid van die 2D parallelle-plaat fluoorsel by elke sekonde tussen 40 s en 50 s bedryfstyd $(m s^{-1})$. Tyd verloop van links na regs in elke ry. Let op die sterk vloei na onder wat aan die kante van die sel voorspel word. In werklikheid is daar nie 'n elektrolietbron aan die bo-kant van die domain wat hierdie vloei ondersteun nie. Kolking is sigbaar teen die anode by 40 s.

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA

Figuur 3.30: Gas-fase volumefraksie resultaat van die 2D parallelle-plaat fluoorsel by elke sekonde tussen 40 s en 50 s bedryfstyd. Tyd verloop van links na regs in elke ry. Dit is duidelik dat geen herkombinasie van die produkgasse voorspel word nie.

3.5.2 3D Pauling-sel

Die elektrolietpotensiaal by gestadigde toestande word in Figuur 3.31 getoon. Figure 3.32 en 3.33 toon die berekende temperatuur en stroomdigtheid vir die sel. Vanuit Figuur 3.31 kan daar gesien word dat die model nie die oorpotensiaal van die eksperimentele sel korrek voorspel nie. Weens tydsbeperking is die verdere ontwikkeling van hierdie model deur die outeur gestaak.

Figuur 3.31: Elektriese potensiaal van die 3D Pauling-sel na 50 s bedryfstyd (V).

Figuur 3.32: Temperatuur van die 3D Pauling-sel na 50 s bedryfstyd (°C).

Die resultaat wat van belang is om te bepaal of daar herkombinasie van die produkgasse is, is die vloei van die gas binne die sel. Die grootte van die x-komponent van die elektroliet-fase snelheid word in Figuur 3.34 getoon. Die volume-fraksie van die gasfase word in Figuur 3.35 getoon. Daar is 'n duidelike diskontinuïteit in die middel van die sel sigbaar. Hierdie diskontinuïteit dui daarop dat daar gas vanaf die anodiese reaksiebuis na die katodiese reaksiebuis beweeg. Hierdie waarneming is eksperimenteel gemaak soos bespreek in Afdeling 2.6. Hierdie waarneming dien as 'n kwalitatiewe bevestiging van die model.

Figuur 3.33: Elektroliet stroomdigtheid resultaat van die 3D Pauling-sel na 50 s bedryfstyd $({\rm A}\,{\rm m}^{-2}).$

Figuur 3.34: Vloeisnelheid van die 3D Pauling-sel by elke sekonde tussen 45 s en 50 s bedryfstyd $(m s^{-1})$. Tyd verloop van links na regs in elke ry. Die positiewe vloeisnelheid onder die anode en in die middel van die sel dui daarop dat herkombinasie moontlik is.

Figuur 3.35: Gas-fase volumefraksie van die 3D Pauling-sel by elke sekonde tussen 45 s en 50 s bedryfstyd. Tyd verloop van links na regs in elke ry. Let op die diskontinuïteit in die middel van die sel wat dui op herkombinasie van die produkgasse.

3.6 Gevolgtrekking

Die model slaag daarin om kwalitatief die herkombinasie van die produkgasse van die eksperimentele opstel te voorspel. Ten spyte van hierdie sukses, voorspel die model geen anodiese of katodies oorpotensiaal nie. Die verbetering van hierdie model se elektronoordragvergelykings word a.g.v. tydsbeperking aan toekomstige navorsers oorgelaat.

Bibliografie

Aigueperse, J, Mollard, P, Devilliers, D, Chemla, M, Faron, R, Romano, R **en** Cuer, JP (2000) ?Fluorine Compounds, Inorganic?, in: *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH, Weinheim, Duitsland.

Arpaci, VS **en** Larson, PS (1984) *Convection Heat Transfer*, Prentice-Hall, Englewood Cliffs, New Jersey, Vereenigde State van Amerika.

Baines, A en Davies, A (1955) ?The partial pressure of hydrofluoric acid over solutions of potassium fluoride in hydrofluoric acid? J Appl Chem (London), 5, 242–244.

Cady, GH (1934) ?Freezing points and vapor pressures of the system potassium fluoridehydrogen fluoride? J Am Chem Soc, 56, 1431–1434.

Cady, GH, Rogers, DA en Carlson, CA (1942) ?Preparation of fluorine? *Ind Eng Chem*, 34, 443–448.

Candido, D en Mathur, GP (1974) ?An investigation into the kinetics of reaction between fluorspar and sulfuric acid? *Ind Eng Chem, Process Des Develop*, 13, (1): 20–26.

Chase, MW (1998) NIST-JANAF Thermochemical Tables, 4th ed. American Chemical Society.

Ciobanu, M, Wilburn, JP, Krim, ML en Cliffel, DE (2007) ?Fundamentals?, in: *Handbook of Electrochemistry*, Zoski, CG (Ed.), Elsevier, Amsterdam, Nederland chap. 1.

COMSOL Multiphysics (2017a) CFD Module User's Guide Stockholm, Swede: COMSOL.

COMSOL Multiphysics (2017b) *Electrochemistry Module User's Guide* Stockholm, Swede: COMSOL.

© University of Pretoria

COMSOL Multiphysics (2017c) *Heat Transfer Module User's Guide* Stockholm, Swede: COMSOL.

Craig, BD **en** Anderson, DS (1995) *Handbook of Corrosion Data*, ASM International, Materials Park, Ohio, Vereenigde State van Amerika.

CTEF (2016) General Properties of Anhydrous Hydrogen Fluoride (AHF) and Hydrofluoric Acid Solutions (HF) tech. rep. Brussels, Belgi: Euroflor.

Espinasse, G, Peyard, M, Nicolas, F **en** Caire, JP (2006) ?Effect of hydrodynamics on the faradaic current efficiency in a fluorine electrolyser? *Journal of Applied Electrochemistry*, 37, (2007): 77–85.

Fogler, HS (2014) *Elements of Chemical Reaction Engineering*, 4th ed. Pearson Education Limited, Essex, Engeland.

Francis, R (2009) ?The performance of stainless steels in concentrated sulphuric acid? *Stainless Steel World*, 1–4.

Gmelin, L (1969) ?Gmelins Handbuch der Anorganischen Chemie?, in: 8th ed. chap. Fluor.

Greenwood, N **en** Earnshaw, A (1998) *Chemistry of the Elements*, 2nd ed. Butterworth Heinemann, Oxford, Vereenigde Koninkryk.

Groult, H (2003) ?Electrochemistry of fluorine production? Journal of Fluorine Chemistry, 119, 173–189.

Groult, H, Devilliers, D, Lantelme, F, Caire, JP, Combel, M en F, N (2002) ?Origin of the anodic overvoltage observed during fluorine evolution in KF-2HF? *Journal of the Electrochemical Society*, 149, (12): E485–E492.

Groult, H en Lantelme, F (2001) ?Study of the mass transfer at fluorine-evolution carbon electrodes? *Journal of the Electrochemical Society*, 148, (1): E13–E18.

Groult, H, Simon, C, Mantoux, F, Lantelme, F **en** Turq, P (2005) ?Experimental and theoretical aspects of the fluorine evolution reaction of carbon anodes in molten KF-2HF?, in: *Fluorinated Materials for Energy Conversion*, Nakajima, T **en** Groult, H (Eds.), Elsevier, Amsterdam, Nederland chap. 1.

Hackerman, N, Snavely, ES en Fiel, LD (1967) ?Anodic passivity of nickel fluoride? *Electrochimica Acta*, 2, 353–551.

Haynes, WM (2016) CRC Handbook of Chemistry and Physics, 97th ed. CRC press, Boca Raton, Florida, United States.

Hugh, PT (1997) ?Electrochemistry in the preparation of Fluorine and its Compounds?, in: *The Electrochemical Society Proceedings Series*, Childs, WV **en** Fuchigami, T (Eds.), Electrochemical Society, Penningtn, New Jersey, Vereenigde State van Amerika.

Hur, JS, Shin, CB, Kim, H en Kwon, SJ (2003) ?Modeling of the trajectories of the hydrogen bubbles in a fluorine production cell? *Journal of the Electrochemical Society*, 150, (3): D70–D78.

Kotz, JC, Treichel, PM **en** Townsend, JR (2012) *Chemistry & Chemical Reactivity*, 8th ed. Brooks/Cole, Cengage Learning, Boston, Massachusetts, Vereenigde State van Amerika.

Leech, HR (1949) ?Laboratory and technical production of fluorine and its compounds? Q Rev Chem Soc, 3(1), 22-35.

Macur, M (2016) ?The complexity of machining lead and lead-based products? URL: http://vulcangms.com/2016/05/31/machining-lead-lead-based-products/ (visited on 10/16/2017).

Mandin, P, Wtrich, R **en** Roustan, H (2009) ?Electrochemical Engineering Modelling of the Electrodes Kinetic Properties during Two-Phase Sustainable Electrolysis? In: 10^{th} International Symposium on Process Systems Engineering Brito Alves, RM de, Nascimento, CAO do **en** Biscaia, EC (Eds.), Elsevier, Amsterdam, Nederland: pp. 435–440.

Newman, JS (1973) *Electrochemical Systems*, 2nd ed. Prentice Hall, Engelwood Cliffs, New Jersey, Vereenigde State van Amerika.

Palin, D **en** Wadsworth, K (1948) ?Structure of carbon monofluoride? *Nature*, 162, 925–926.

Pauling, L (1957) College Chemistry, 2nd ed. W. H. Freeman and Company, San Francisco, California, Vereenigde State van Amerika.

Pretorius, R (2011) A Transient Computational Fluid Dynamic Study of a Laboratoryscale Fluorine Electrolysis Cell, Universiteit van Pretoria, Pretoria, Suid-Afrika.

Pretorius, R, Crouse, PL **en** Hattingh, CJ (2015) ?A multiphysics simulation of a fluorine electrolysis cell? *S Afr J Sci*, 111, 1–5.

Ring, R en Royston, D (1973) A Review of Fluorine Cells and Fluorine Production Facilities Sydney, Australi: Australian Atomic Energy Commission.

Ritala, H, Kiihamki, J en Heikkil, M (2010) ?Studies on aluminium corrosion during and after HF vapour treatment? *Microelectronic Engineering*, 87, (3): 501–504.

Roustan, H, Caire, JP, Nicolas, F en Pham, P (1998) ?Modelling coupled transfers in an industrial fluorine electrolyser? *Journal of Applied Electrochemistry*, 28, (1998): 237–243.

Rudge, A (1971) ?Production of Elemental Fluorine?, in: *Industrial Electrochemical Processes*, Kuhn, A (Ed.), Elsevier, Amsterdam, Nederland.

Rdorff, W, Hofmann, U, Rdorff, G, Endell, J **en** Ruess, G (1948) ?ber die Strungen an Graphitanoden bei der elektrolytischen Fluordarstellung? Z Anorg Allgem Chem, 256, 125–144.

Schumb, W, Young, R en Radimer, K (1947) ?Electrolytic generation of fluorine? Ind Eng Chem, 39, 244–248.

Shia, G (2003) ?Fluorine?, in: *Kirk-Othmer Ecyclopedia of Chemical Technology*, Seidel, A **en** Bickford, M (Eds.), John Wiley and Sons, Hoboken, New Jersey, Verneenigde State van Amerika.

U.S. Geological Survey (2018) *Mineral Commodity summaries 2018*, U.S. Geological Survey, Reston, Virginia, Vereenigde State van Amerika.

von Wartenberg, H (1963) ?Fluorine, Hydrogen Fluoride?, in: *Handbook of Preparative Inorganic Chemistry*, Brauer, G (Ed.), Second Edition Academic Press, Cambridge, Massachusetts, United States: pp. 143–149.

Walsh, F (1993) A First Course in Electrochemical Engineering, 1st ed. The Electrochemical Consultancy, Romsey, Engeland.

Bylaag A

Meganiese sketse

