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Abstract

Paraganglioma (PGL) are tumours occurring in the head-and-neck -, intra-abdominal
- and thoracic paraganglia. Germ-line mutations in genes encoding the subunits of
mitochondrial succinate dehydrogenase complex II (SDHB, SDHC, SDHD) and the
SDHAF2 gene are involved in hereditary paraganglioma. Our aim was to identify
mutations within these genes in ten South African PGL families. Individuals were
screened for mutations in SDHAF2 using Sanger sequencing and Multiplex Ligation-
dependent Probe Amplification was utilised to investigate large rearrangements in
these genes. A 7905bp SDHB exon 3 deletion [c.201-4429_287-933del], was
identified in all SA families. The same deletion is reported as a founder mutation in
Dutch PGL families. Genotype analysis revealed a common haplotype at the SDHB
locus between SA and Dutch patients, indicating common ancestry. This is the first
Afrikaner SDHB founder mutation. These results now enable predictive testing of
other family members and allow better clinical management of the families.
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I

SUMMARY

Paragangliomas (PGL) are neuro-endocrine tumours occurring in the head-and-
neck -, intra-abdominal - and thoracic paraganglia. These tumours may lead to
significant morbidity due to compromised function of cranial nerves and some may
also be malignant and aggressive. It has been shown that familial paraganglioma
is caused by germline mutations in one of ten susceptibility genes, namely RET ,
VHL,NF1,SDHA, SDHB,SDHC, SDHD, SDHAF2, TMEM127 and MAX genes. The
three most common PGL susceptibility genes are SDHB, SDHC, and SDHD
encoding subunits of the mitochondrial succinate dehydrogenase (SDH) complex
II. Mutations in the SDHAF2 gene encoding the SDH assembly factor 2 are also
involved in paraganglioma formation. Previously, the SDHB, SDHC and SDHD
genes were screened for point mutations in 11 South African paraganglioma
families. Only one family carried a disease-causing SDHB mutation in exon 4.

The aim of this study was to investigate the remaining 10 families for large
rearrangements in the SDHB, -C, -D and SDHAF2 genes using Multiplex Ligation-
dependent Probe Amplification (MLPA) and bi-directional Sanger sequencing.
These families predominantly presented with head-and-neck PGL with three
families presenting with abdominal tumours. Five of the families had malignant
tumours.

A 7905bp deletion [c.201-4429_287-933del.] removing exon 3 of SDHB was
detected in all of the families. A common haplotype was identified between the
South African patients. The SA patients thus share a common ancestor.
Interestingly, this deletion has been shown to be a founder mutation in the Dutch
population. Haplotype analysis of the South African and Dutch patients revealed a
common core haplotype at the SDHB locus. The identical exon 3 deletions and
common haplotype in the Afrikaner patients indicates that this deletion is the first
Afrikaner SDHB founder mutation, possibly introduced into SA by the Dutch.

At least half of the Afrikaner families carrying the SDHB deletion showed non-
penetrance which is also apparent in the Dutch families carrying the same
mutation. Previous studies reported a family history of PGL in only 31% of
mutation-positive cases which is much lower than patients carrying SDHD (61%)
and SDHC (62.5%) mutations. The presence of an SDHB mutation is associated
with an excess mortality and it is thus expected for SDHB mutation carriers to
have a decreased life expectancy in comparison to other SDH gene mutation
carriers. Ultimately, detection of disease-causing mutations will enable predictive
testing of other family members and allow better clinical management of these
families.

KEYWORDS: Familial paraganglioma, pheochromocytoma, South Africa, Dutch, MLPA,
large rearrangements, SDHB, Founder mutation, common haplotype, predictive genetic
testing.
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Chapter 1: Literature Review 

 

1.1 INTRODUCTION 

Paraganglioma are rare tumours of neuroendocrine origin occurring sporadically 

or as part of hereditary tumour syndromes (1).The tumours develop in the 

paraganglia which are organs consisting mainly of neuroendocrine cells and are 

able to synthesise and secrete catecholamines including adrenaline and 

noradrenaline (3). Paraganglioma (PGL) may originate in the neural crest cells 

located in the adrenal medulla or along the sympathetic and parasympathetic 

ganglia. Intra-adrenal PGL are known as pheochromocytomas (PCC) and usually 

secrete catecholamines (4) whereas extra-adrenal PGLs are divided into those 

that develop in the sympathetic ganglia and those developing in the 

parasympathetic ganglia. Sympathetic PGL develop mostly in the abdomen, chest 

and pelvis, as shown below (figure 1.1), and can also be functional catecholamine 

secreting tumours. These tumours are usually more aggressive than 

parasympathetic PGL which are mostly benign and functional in only 1 – 5% of 

cases (5). Parasympathetic PGLs are also known as head-and-neck PGL and 

mostly develop in the vagus nerve, inner ear with the most common location being 

the carotid body (figure 1.2) which functions as an oxygen sensor in peripheral 

blood (6).  

 

  

                                           

 

 

 

 

 

 

 

                                                                                                                                      

                   Figure 1.1: Common sites of sympathetic PGL 

            Image Source:  Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J:  

            Harrison’s Principles of Internal Medicine, 18
th
 Edition: www.accessmedicine.com  
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                           Figure 1.2: Most common sites of parasympathetic PGL 

Image Source - A: Image created by Frank Gaillard-http://radiopaedia.org/images/11077 

 

 

Paragangliomas are thus named according to their origin and classified as 

functional or non-functional depending on whether they produce catecholamines. 

These catecholamines help to regulate the blood stream in the arterioles and will 

cause an increase in blood pressure if in excess. One of the symptoms of active 

paraganglioma is thus hypertension (7). Different symptoms are associated with 

different tumours depending on localisation, although a number of tumours may 

show no symptoms at all. The estimated annual incidence of PGL has been 

reported to be 3-8 cases per million in the general population (8). Although these 

tumours are rare and mostly benign, they may still lead to significant morbidity. 

Approximately 10% of PCC and 20% of abdominal secreting PGLs are malignant 

(9). Patients with malignant PCCs and PGLs have a 5 year mortality rate of 

greater than 50% (10).  Most malignancies are identified in vagal PGLs (16-19%) 

as opposed to carotid body tumours (6%) and jugulotympanic PGLs (2-4%) (11, 

12).  Factors which seem to be associated with an increased risk of malignant 

PGL/PCC include young age at diagnosis, large tumour size as well as a fast 

growing tumour and extra-adrenal abdominal or mediastinal tumours (13-15).  

 

The majority of PGLs are sporadic with ~35% of all paragangliomas predicted to 

be hereditary and caused by germline mutations in several susceptibility genes 

(16). Ten loci are associated with the formation of PGL and PCC.  
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3 

 

A mutation in any of the ten genes coding for these loci will lead to an increased 

susceptibility for the development of hereditary PGL syndromes: Multiple 

endocrine neoplasia type 2 (MEN2), Neurofibromatosis type 1 (NF1), Von Hippel-

Lindau (VHL) and familial paraganglioma. 

 

 

1.2 SUSCEPTIBILITY TO PARAGANGLIOMA AND PHEOCHROMOCYTOMA 

 

Pheochromocytoma and paraganglioma may arise as a result of mutations in the 

following genes: RET (MEN2); VHL (VHL); NF1 (NF1); SDHA, -B -C or -D, 

SDHAF2, TMEM127 and MAX genes in familial PCC/PGL syndrome. All ten loci 

involved in the development of these tumours are inherited in an autosomal 

dominant manner with variable expressivity and reduced penetrance. Three loci 

show an inheritance pattern similar to that of maternal imprinting and thus the 

mutated gene appears to be expressed only when inherited from the father. 

Maternal transmission of these genes rarely, if ever, leads to tumour development 

thus presenting an inheritance pattern seemingly consistent with genomic 

imprinting (17). All ten genes and resulting syndromes are listed and compared to 

one another in table 1.1.  
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Table 1.1: Summary of the ten currently known PGL/PCC susceptibility genes 

Gene Chromosome Syndrome Inheritance Freq. 
Most common tumour 

location 
Imprinting Clinical manifestations 

RET 10q11.2 
MEN2A 

MEN2B 
AD ~5% Intra-adrenal (PCC) No PCC, medullary thyroid carcinoma 

VHL 3p25-26 VHL AD ~9% Intra-adrenal (PCC) No 
Hemangioblastoma,clear- cell renal cell 
carcinoma, endolymphatic sac tumours, 

retinal angiomas, serous cystadenomas, PCC 

NF1 17q11.2 NF1 AD ~2% Intra-adrenal (PCC) No 

Café au lait spots, Lisch nodules of iris, 
gliomas of optic pathway and brainstem, 

neurofibromas, soft-tissue sarcomas, chronic 
myeloid leukemia in children, astrocytomas, 

PGL and PCC 

SDHD 11q23 PGL1 AD + Pi ~5% Head-and-neck Maternal PGL, PCC and GIST 

SDHAF2 11q13.1 PGL2 AD + Pi <1% Head-and-neck Maternal PGL and PCC 

SDHC 1q21 PGL3 AD ~1% Head-and-neck No PGL, PCC and GIST 

SDHB 1p36.1 PGL4 AD ~5% Abdomen No PGL, PCC, renal cell carcinoma and GIST 

SDHA 5p15 - AD <1% Extra-adrenal No PGL, PCC, Leigh syndrome(homozygous) 

TMEM127 2q11 - AD ~2% Intra-adrenal (PCC) No PCC 

Max 14q23.3 - AD + Pi <1% Intra-adrenal (PCC) Maternal PCC 

  AD = Autosomal Dominant; Pi = Parental inheritance; GIST = Gastro-intestinal stromal tumours  Freq.= Frequency of a mutation reported to all patients with PGL or PCC.       

  This table was adapted from  Galan et al., 2013 (2)                                                      
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The transcription profiles of the PCC and PGL tumours can be divided into two 

signalling pathways. The first is a pseudo-hypoxic cluster containing tumours with 

VHL and SDH mutations and is associated with angiogenesis, hypoxia as well as 

reduced oxidative response. The second cluster contains tumours with RET 

(MEN2), NF1, TMEM127 and MAX mutations and is associated with abnormal 

activation of kinase-signalling pathways (2, 18). 

 

 

1.2.1 Multiple endocrine neoplasia type 2 (MEN2) 

 

Multiple endocrine neoplasia (MEN2) is a hereditary syndrome characterised by 

the onset of various tumours in different locations. The prevalence of MEN2 is 

approximately 1/40 000 individuals (19). MEN2 can be divided into three types 

according to clinical manifestation namely, MEN2A, MEN2B and familial medullary 

thyroid cancer (FMTC).  MEN2A occurs most often with a frequency of 55% in 

individuals followed by FMTC (35 – 40%) and lastly MEN2B with a 5 – 10% 

frequency. The most common manifestation of MEN2 is medullary thyroid cancer, 

however, approximately 5 – 10% of patients with PCC can be ascribed to MEN2. 

Individuals with MEN2A or MEN2B have a 40 - 50% chance of developing PCC. 

Patients frequently develop bilateral and recurrent PCCs, but rarely develop 

malignant tumours. Previous studies indicated that approximately 63% of patients 

with MEN2 and PCC displayed bilateral PCC and only 3% were malignant. The 

mean age at presentation of disease was 36 years (4). Presentation of PGLs in 

MEN2 patients is very rare and only few have been reported (5, 20-22). 

 

MEN2 syndromes are inherited in an autosomal dominant manner and mutations 

in the RET proto-oncogene predispose individuals to this syndrome. This gene 

consists of 21 exons and is located on chromosome 10q11.21 (23). The RET 

protein is a tyrosine kinase receptor for members of the glial cell line derived 

neurotropic factor (GDNF) family (24-26) and is activated by binding of one of its 

ligands, inducing dimerization (4, 27). This leads to the activation of multiple 

intracellular pathways involved in cell growth, proliferation and differentiation (28, 

29). 
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The RET protein plays an essential role in kidney development as well as 

development of the sympathetic -, parasympathetic - and enteric nervous system 

(30).  Genetically gain-of-function mutations are the underlying cause of MEN2 

and are mostly missense mutations located in exons 10, 11, 13, 14, 15 and 1 (4, 

19).  

 

 

1.2.2 Von Hippel-Lindau (VHL) 

 

Von Hippel-Lindau is characterised by a range of benign and malignant tumours 

affecting 1 in 36 000 individuals (31). Several different tumours form part of this 

disease namely renal cell carcinomas, PCC’s, PGL’s, pancreatic islet cell tumours, 

lymphatic sac tumours and hemangioblastomas. VHL can be clinically classified 

as individuals with PCC (type 1) and individuals without PCC (type 2). Type 2 

individuals can further be classified as type 2a who have a low risk of developing 

renal cell carcinoma or type 2b with a high risk. Patients who only develop PCC 

without other tumours associated with VHL can be classified as type 2c (2, 32). 

Approximately 10 – 20% of individuals with VHL develop PCC with the mean age 

of presentation at ~30 years. It is estimated that 10-26% of VHL patients develop 

pheochromocytomas or paragangliomas with the risk varying between different 

families (4).  

 

Multiple and bilateral PCCs and even extra-adrenal PGL may arise in individuals 

with VHL. Previous studies investigating patients with VHL associated PCC and 

PGL, showed that 90% of these patients had PCC whereas only 19% had PGL. 

Furthermore 44% of patients presented with bilateral PCCs and 3% with 

malignancies. In 30-50% of all patients with VHL, the first manifestation of this 

disease was the onset of PCC or PGL (4). 

 

The VHL gene is a tumour suppressor gene consisting of three exons, 213 amino 

acids and is located on chromosome 3p25.3 (33). A number of different germ-line 

VHL mutations, inherited in an autosomal dominant manner, have been reported 
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(34, 35). Approximately two thirds of VHL patients carry missense, nonsense and 

splice-site mutations as well as deletions and insertions, whereas the remaining 

one third of VHL families carry large deletions. Missense mutations are more 

frequently identified in VHL families with pheochromocytomas and 

paragangliomas (34). Individuals with VHL develop pheochromocytomas more 

often than sympathetic - or parasympathetic PGL. Missense mutations at codon 

167 are associated with a particularly high risk of PCC (over 80% by age 50) (36). 

Whole deletion or truncating VHL mutations are found quite often in renal 

carcinoma-related disease whereas it is very rare in PCC cases. It seems as if the 

chromaffin cells and their precursors cannot tolerate complete loss of the VHL 

protein in contrast to renal cells (37).  

 

The VHL protein targets a range of proteins involved in tumourigenesis including 

the hypoxia-inducible factor-1 (HIF-1) and regulates the levels of these proteins by 

means of proteasomal degradation (38). The HIF-1 protein induces the 

transcription of mRNA which codes for erythropoietin and regulates vascular 

endothelial growth factor (VEGF), platelet-derived growth factor PDGF-beta and 

transforming growth factor TGF-alpha (39).  

 

An absent or abnormal VHL protein will result in decreased proteasomal 

degradation of these growth factors and decreased erythropoietin mRNA 

transcription. This will result in an increase of angiogenic - and growth factors 

leading to a growth spurt and ultimately tumour formation.  

 

 

1.2.3 Neurofibromatosis 1 (NF1) 

 

Neurofibromatosis type 1 is the onset of a range of tumours that may develop 

throughout a patient’s lifetime including gliomas, astrocytomas, soft-tissue 

sarcomas, chronic myeloid leukemias of childhood as well as PCC (2).Symptoms 

of this disease include, neurofibromas, cafe´ au lait patches, skinfold freckling, iris 

Lisch nodules, optic pathway gliomas, and bone dysplasia (40).  
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Patients with NF1 do not develop PCCs or PGLs very often with the incidence 

being roughly 0.1-5.7% in patients (4). The risk of NF1 patients developing only 

PCC is between 1 and 5% (1). In previous studies, 95% of all the patients with 

NF1 and PCC or PGL had PCC and 6% had sympathetic PGL (4).  Fourteen 

percent of the patients displayed bilateral PCC and 9% malignant tumours. The 

mean age at diagnosis was 42 years of age. Malignant tumours are slightly more 

frequent in NF1 than in VHL or MEN2. 

 

Mutations in the NF1 gene, located on chromosome 17q11.2, lead to the onset of 

NF1. The discovery of this gene was made in 1990 (41).The NF1 gene is a large 

gene consisting of 60 exons and encodes the protein neurofibromin, expressed 

mainly in the nervous system (40). Cell proliferation is suppressed by 

Neurofibromin through the activation of RAS which in turn inhibits the oncogenic 

signalling cascade RAS/RAF/MAPK (42, 43). NF1 is inherited in an autosomal 

dominant manner although 30-50% of all mutations occur sporadically (44). The 

mutations identified in this gene include missense, nonsense and splice-site 

mutations as well as insertions, deletions and chromosomal rearrangements.  

 

New NF1 mutations also occur quite often with the rate being approximately 50%. 

All individuals with NF1 are heterozygous for the NF1 mutation due to the fact that 

homozygosity is lethal to embryos (45). Mutation positive patients normally display 

one germline mutation and one acquired mutation thus altering both alleles which 

implies that NF1 is a tumour suppressor gene (40, 46). The majority of NF1 gene 

mutations result in neurofibromin truncation leading to decreased levels of this 

protein, increased cell proliferation and inhibition of apoptosis (2, 47). Specific NF1 

mutations causing an increased risk of PCC have not yet been identified due to 

the fact that patients are diagnosed based on clinical parameters. 
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1.2.4 Familial paraganglioma and pheochromocytoma  

 

It is estimated that up to 24% of patients with apparent sporadic presentation of 

PCC actually have familial PCC (48). Four loci have originally been implicated in 

the pathogenesis of hereditary paraganglioma, namely PGL1, PGL2, PGL3 and 

PGL4.  The SDHD (PGL1), SDHC (PGL3), and SDHB (PGL4) genes encode 

subunits of the mitochondrial succinate-dehydrogenase (SDH) complex II, 

involved in the respiratory chain as well as the tricarboxylic acid cycle. The more 

recently identified SDHAF2 (PGL2) gene is responsible for the flavination of the 

SDHA subunit. Previously no genetic link between SDHA and paraganglioma 

could be established, but the first germline SDHA mutation associated with 

paraganglioma was identified in 2010 (49). An additional four genes have also 

been linked to PCC susceptibility, namely TMEM127, MAX, KIF1B and PHD2. 

Paraganglioma is inherited in an autosomal dominant manner, although the 

inheritance pattern of the SDHD and SDHAF2 genes is suggestive of maternal 

imprinting (50).  

 

An inherited predisposition to PGL/PCC should be suspected if the patient has a 

family history of the disease, tumours develop at a young age or multiple tumours 

are present. Another syndrome associated with SDHB, SDHC and SDHD mutation 

carriers is the Carney-Stratakis dyad in which patients develop PGLs/PCCs as 

well as gastrointestinal stromal tumours (GISTs) (51). This syndrome is inherited 

in an autosomal dominant manner with incomplete penetrance and a mean age of 

onset between 28 and 33 years (51, 52). A family history of GISTs should be 

recorded and regarded in patients with germline mutations in the succinate 

dehydrogenase (SDH) genes. It has also been shown that patients with mutations 

in the SDHB gene have an increased risk of developing renal cell carcinoma 

(RCC). Multiple genes are thus associated with hereditary paraganglioma and 

pheochromocytoma. The SDHD gene was first to be identified as a PGL 

susceptibility gene which established the link between neuroendocrine tumours 

and succinate dehydrogenase (SDH) (53). 
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1.2.4.1 The SDHD gene 

 

The SDHD (PGL1) gene is located on chromosome 11q23 (53, 54), contains four 

exons extending over 19kb (55) and encodes 160 amino acids. It plays a role in 

anchoring the SDH complex and helps with ubiquinone binding. The inheritance 

pattern of SDHD is autosomal dominant, but also indicative of maternal imprinting.  

The first evidence of imprinted transmission of SDHD mutations was described in 

1989 (56).This means that patients are only at risk of the disease if the mutation 

was inherited from the father. These individuals, however, still have a 50% chance 

of passing the mutation on to their children.  Several studies have argued that 

SDHD cannot show maternal imprinting as it does not belong to a chromosomal 

region known to be involved in genomic imprinting (57). Although SDHD is not 

imprinted, the main cluster of imprinted genes of the human genome is located on 

the short arm of chromosome 11 at 11p15.5. There were two isolated cases in 

which PGL developed after maternal transmission of SDHD mutations.  

 

A previous study (57) has reported the first occurrence of paraganglioma in which 

the SDHD mutated alleles were maternally transmitted.  This led to speculation 

that the parent-of-origin effect might be caused by another mechanism than 

genomic imprinting.  In a previous study, SDHD showed bi-allelic expression in 

brain -, kidney - and lymphoid tissues (53).  The wild-type maternal allele is also 

lost in SDHD-linked tumours suggesting that the maternal SDHD allele is 

expressed in normal paraganglioma (58). Evidence thus suggests that an 

alternative mechanism than imprinting seems to be responsible for the parent-of-

origin effect. Another study hypothesised that a somatic genetic mechanism 

(figure 1.3) in which the SDHD gene (11q23) and a hypothetical paternally 

imprinted tumour suppressor gene located within the region of 11p15.5 are 

targeted, is responsible for the exclusive paternal transmission of the disease (58). 

Only the combined loss of the wild-type SDHD allele and the maternal tumour 

suppressor allele located within the 11p15.5 region will initiate tumour formation. 

The hypothetical tumour suppressor gene would thus be active if the mutation is 

derived from the mother, but inactive if derived paternally. Loss of the entire 

maternal chromosome 11 in tumours will cause the non-imprinted SDHD allele 
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and the active tumour suppressor to be lost. This will lead to tumour formation. No 

tumour will be initiated if the mutation is transmitted maternally, leading to the loss 

of the paternal chromosome 11 and thus the tumour suppressor will stay active.It 

seems as though it is not imprinting of SDHD responsible for the exclusive 

paternal transmission of the disease but rather a somatic genetic mechanism 

which targets the SDHD gene and the paternally imprinted gene on 11p15.5 (58). 

 

 

                              Figure 1.3: PGL1 tumour formation 

                   Maternally derived chromosome is red and paternally derived is blue.                                                    

                         (a) Paternal transmission of SDHD results in tumour formation due to loss  

                         of maternal copy. (b) Maternal transmission does not lead to tumour formation  

     due to the active tumour suppressor gene. (c) Maternal transmission will only  

     lead to tumour formation if a number of events occur including recombination  

     between the homologous arms of chromosome 11. Figure from Müller et al,(59). 
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Two events will have to occur in order for a maternally inherited mutation to lead to 

tumour formation. Recombination between the long arms of maternal and paternal 

chromosome 11 has to occur and non-disjunction of the recombinant chromosome 

11 should occur.  

 

This will result in an allele with the inactivated hypothetical tumour suppressor 

gene and the maternally derived mutation in 11q. This model, however, 

inadequately explains why PGL develops frequently after transmission of a single 

mutation in the SDHB and SDHC genes which are located on chromosome 1. 

Mutations of SDHB and SDHC should thus also be practically non-penetrant due 

to the requirement for a third hit that targets the presumed imprinted gene on 

chromosome 11 (17).  

 

Another model was proposed, assuming the partial inactivation of the maternally 

derived SDHD gene (59). In this model, residual SDH activity is present in cells 

with a paternally derived mutation due to the partial inactivation of the SDHD 

gene. Normal function of paraganglia cells is possible for a considerable length of 

time before the cells become hypoxic due to accumulation of reactive oxygen 

species (ROS) and succinate. Non-disjunction is favoured and the maternal 

chromosome 11 or parts of it gets lost leading to insufficient amounts of SDH and 

ultimately tumour formation. A maternally derived mutation will not lead to tumour 

formation because of sufficient SDH activity in the cells which ensures normal 

functioning. The level of SDH activity is very similar to the wild-type and thus non-

disjunction as well as loss of the wild-type allele is not favoured. This model also 

allows for exceptions to the rule as it is possible that on rare occasions maternal 

inheritance of the mutation might lead to tumour formation. In this case, loss of 

heterozygosity is most probably a random event not favoured by hypoxia.  

 

Although it is still unknown what exactly causes the seemingly imprinted 

transmission of SDHD, data suggests that maternal and paternal copies of SDHD 

are functionally unequal and thus indicative of a genomic imprinting inheritance 

pattern.  
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It is still suggested that individuals with the mutation, even if transmitted 

maternally, are at risk of paraganglioma and should be monitored in order to 

identify any possible tumours. 

 

A database specifically for the purpose of reporting variations in the SDH-genes 

has been created (60, 61). The total number of SDHD unique variants reported on 

the database is 131 (figure 1.4). The mutations identified include Missense, 

frameshift, nonsense and splicing variants as well as large deletions. Most of the 

mutations are frameshift mutations followed by missense - and nonsense 

mutations and only a small proportion of the mutations are accounted for by large 

deletions. No large duplications have been identified to date. A summary of all the 

unique variations reported in SDHD is shown in the pie chart below. 

 

 

 

            Figure 1.4: Distribution of unique variants reported in SDHD 

     Adapted from Pasini & Stratakis 2009 (50) 

 

 

Tumours usually present in the head and neck but may also arise in the abdomen 

or thorax as PGL or PCC.  These individuals should also be evaluated for 

multifocal tumours, malignancies, and extra-adrenal paraganglioma (62).  
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The PCC/PGL penetrance for SDHD mutation carriers is 90% or even higher by 

the age of 70 years (63, 64). The risk of developing a head-and-neck tumour by 

age 60 is 71% and the mean age is 40 years.  

Furthermore, the risk of developing an extra-adrenal PGL by age 60 is 29% with 

the mean age of onset 21 years (64). Pheochromocytomas may develop but is 

mostly one of multiple tumours throughout the body. The risk of malignancy for 

SDHD mutation carriers is <5% (65).  

 

 

1.2.4.2 The SDHAF2 gene 

 

The SDHAF2 gene (succinate dehydrogenase assembly factor II), formerly known 

as SDH5, was shown to be associated with the PGL2 locus on chromosome 

11q13.1(66).  

This gene contains 4 exons and is a cofactor of flavin adenine dinucleotide (FAD) 

which plays a role in the flavination of SDHA and is crucial for the succinate 

dehydrogenase complex to function correctly (66). A mutation of SDHAF2 will lead 

to decreased SDH activity and stability of the enzyme complex (67).The disease 

phenotype expressed in SDHAF2-linked families is consistent with maternal 

imprinting (66-68).   

 

Even before the SDHAF2 gene was linked to the PGL2 locus, a study showed that 

the inheritance pattern of PGL2 is similar to that of the SDHD gene (68).  The 

same mechanism is most probably involved in the inheritance of the SDHD and 

SDHAF2 genes. Mutations of SDHAF2 appear to be very rare and cause mainly 

head and neck PGL (67). Development of pheochromocytoma or sympathetic 

PGL of the abdomen and thorax have not yet been linked to mutations in this 

gene. Only missense and nonsense point mutations were identified in the 

SDHAF2 gene and no large rearrangements have been identified to date (figure 

1.5). Most of the mutations reported in SDHAF2 were identified in the Dutch and 

were predicted to be founder mutations, but variants have also been reported in 

the Spanish and Italian populations. Only four unique variants have been reported 
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in this gene of which three are missense mutations and one is a nonsense 

mutation.  

 

 

 

 

                Figure 1.5: Distribution of unique variants reported in SDHAF2 

 Adapted from Pasini & Stratakis 2009 (50) 

 

 

 

 

1.2.4.3 The SDHC gene 

 

Mutations in the SDHC gene are the underlying cause of PGL 3. The SDHC gene 

is located on chromosome 1q21, spans 50.3kb and contains 6 exons (69, 70). It 

plays an important role in ubiquinone binding and anchoring the SDH complex in 

the mitochondrial membrane (70). This gene follows an autosomal dominant 

inheritance pattern and is not associated with imprinting. Mutations of SDHC are 

less common than SDHB and SDHD gene mutations. There are 47 unique 

variants reported on the database of which most are point mutations as shown on 

the pie chart in figure 1.6 (60, 61). 
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           Figure 1.6: Distribution of unique variants reported in SDHC 

           Adapted from Pasini & Stratakis 2009 (50) 

 

 

Large deletions account for only 12.77% of all the mutations reported on the 

database and no large duplications were reported in this gene. 

 

Mutations of SDHC were exclusively associated with head and neck tumours up 

until 2007. The first case of a patient who developed pheochromocytoma and 

carried an SDHC mutation was reported (71). Another report of an SDHC mutation 

identified in a patient presenting with PCC followed (72). These findings 

demonstrate that SDHC mutation carriers may have a more diverse clinical 

presentation than previously expected. Non-secreting head-and-neck tumours 

may arise more often than PCC or functional extra-adrenal PGL, but tumours may 

still develop in other areas such as the adrenal medulla. One case of malignancy 

associated with an SDHC mutation have been reported (73).  

 

1.2.4.4 The SDHB gene 

 

The SDHB gene (PGL4) spans 35.4kb, contains 8 exons (74) and is located on       

chromosome 1p36.1-p35 (75).  This gene encodes the iron sulphur protein of the 

succinate dehydrogenase enzyme complex II of the respiratory chain.  Mutations 

of SDHB are inherited in an autosomal dominant manner with no imprinting 
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involved. Mutations of SDHB are very common (50) and a total of 218 unique 

variants have been reported on the SDH database (60, 61) (figure 1.7). 

 

  

                          Figure 1.7: Distribution of unique variants reported in SDHB 

        Adapted from Pasini & Stratakis 2009 (50) 

 

The most predominant phenotypes associated with mutations of SDHB are 

abdominal, pelvic and thoracic secreting PGL (63). It was reported that patients 

with SDHB gene mutations are expected to have a decreased life expectancy in 

comparison to other mutation carriers (62). Studies show that malignant tumours 

are more often associated with patients carrying SDHB mutations than patients 

carrying mutations in any of the other SDH genes (50).  It is estimated that half of 

the patients presenting with malignant PGL are carriers of an SDHB mutation with 

a penetrance of 45% by the age of 40 (76). Malignant PGL tumours were 

identified in 41% of SDHB mutation carriers in previous studies (50). These 

patients also have an increased risk of developing kidney cancers.  

In a previous study the risk of developing kidney cancer was estimated to be as 

high as 14% by the age of 70 (64). It is thus advised that patients presenting with 

an SDHB mutation undergo a full-body screening to identify any tumours.  

 

Age related penetrance for SDHB mutation carriers is predicted to be 29% by age 

30 rising to 45% by age 40 and 80% - 100% penetrance by age 70 (62). The risk 

for malignancy range between 31% and 71% although it is difficult to determine 
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the absolute risk of malignancy due to the fact that metastasis can occur up to 20 

years after diagnosis of the primary tumour (65).  

 

 

1.2.4.5 The SDHA gene 

This gene is located on chromosome 5p15 and consists of 15 exons. It encodes 

the flavoprotein subunit of the SDH complex II and contains a covalently attached 

flavine adenine dinucleotide (FAD) cofactor. Although the SDHA gene was never 

shown to be involved in the formation of paraganglioma, the first SDHA germline 

mutation associated with PGL have been identified (49). This gene was identified 

as a tumour suppressor gene associated with paraganglioma after a heterozygous 

germline mutation was identified in a patient who suffered from abdominal 

catecholamine-secreting paraganglioma (49). This mutation, leading to structural 

alteration of the protein, was not identified in any of the control samples tested. 

Individuals with homozygote germline mutations of SDHA develop Leigh 

syndrome which is an early onset encephalopathy (77).  Two more SDHA 

mutations were identified in SDHA-negative tumours and germline DNA of patients 

which also show loss of the wild-type allele (78). These mutations leading to a 

protein truncation was also identified in healthy control individuals at a very low 

frequency. This suggests low penetrance of PGL in patients with SDHA mutations 

and most healthy individuals with SDHA mutations will thus most likely not develop 

the disease (78).  

 

All of the SDHA mutation carriers in this study lacked a family history of PGL. 

Considering current results there also seems to be no specific phenotype 

associated with SDHA mutation carriers. Mutations in the SDHA gene are not 

common, however, they can occur and patients with mutations in this gene may 

develop PGL. Mutations in the susceptibility genes, MAX, TMEM127 as well as 

KIF1B/PHD, are also very rare, but should not be ruled out as mutations in these 

genes might also lead to tumour formation. 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



19 

 

1.2.4.6  The MAX gene 

 

Germline mutations of MAX were identified and segregate with the disease in 

families with pheochromocytoma. This led to the identification of MAX (MYC-

associated factor X) as a pheochromocytoma susceptibility gene (79). It is still 

unclear exactly how MAX mutations contribute to the formation of 

pheochromocytoma. This gene consists of five exons and is located on 

chromosome 14q23.3. It encodes the transcription factor MAX which belongs to 

the helix-loop-helix family and plays an important role in the regulation of cell 

proliferation, - differentiation and - death (80). 

 

A recent study concluded that mutations in MAX are responsible for 1.12% of PCC 

in patients with no mutations in other susceptibility genes (81). All patients 

identified with a mutation in the MAX gene presented with pheochromocytomas. 

The inheritance pattern of MAX gene mutations seem to be similar to that of 

SDHD and SDHAF2. This is due to the paternal origin of the mutated allele in 

investigated cases as well as the fact that individuals who inherited the mutant 

allele from their mother did not develop pheochromocytoma (79).  

 

In a previous study 12 patients with PCC were identified with MAX mutations of 

whom eight presented with bilateral PCC with the mean age at presentation being 

32 years (79).  The mutations identified were distributed along the gene but 

especially prevalent in exons 3 and 4.  Most of the mutations lead to protein 

truncation and one mutation (c.97C>T) was identified as the first hot spot mutation 

of MAX (79, 81). It was also suggested that MAX mutations are associated with a 

higher risk of malignancy due to the fact that 25% of the patients showed 

metastasis at diagnosis (82). 

 

 

1.2.4.7 TheTMEM127 gene 

 

The TMEM127 gene, located on chromosome 2q11, was identified as a 

pheochromocytoma susceptibility gene (83) and functions as a tumour suppressor 

gene.  This gene encodes a 238 amino acid transmembrane protein associated 
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with kinase receptor signals and is a negative regulator of mTOR which promotes 

cell growth and protein translation. A very critical cell proliferation and cell death 

signalling pathway is thus linked to the development of pheochromocytoma. 

Mutations of TMEM127 were identified in 30% of familial tumours and 3% sporadic 

PCCs in a cohort of 103 samples (83).  

 

The only phenotype previously associated with mutations in this gene was 

pheochromocytoma, however, germline mutations in TMEM127 were identified in 

patients with paraganglioma of the head and neck and extra-adrenal abdominal 

sites (84).  Only a fourth of the patients with TMEM127 mutations presented with a 

clear family history of PCC/PGL thus suggesting incomplete penetrance. The 

penetrance in one family was 64% by the age of 55 (85). In total, 23 patients were 

reported and all but one (96%) had PCC including 39% who had bilateral PCC. 

Two patients presented with PGLs of which one also had bilateral PCC. The mean 

age of presentation is 43 years of age (86). 

Mutations were detected in all three of the coding exons of this gene but no large 

gene deletions or duplications have been identified. Malignancy is very rare in 

patients with TMEM127 mutations and unilateral as well as bilateral tumours may 

arise (2). 

 

1.2.4.8 The KIF1B and PHD2/EGLN1 genes 

 

Mutations in two genes, KIF1B and PHD2, have been identified and seem to be 

associated with the development of PGL and PCC. The KIF1B gene is very large 

with approximately 50 exons and is located on chromosome 1p36.22 (87). Two 

splice variants are involved namely, KIF1Bα and KIF1Bβ. The KIF1B gene 

functions as a tumour suppressor necessary for neuronal apoptosis. Two different 

KIF1Bβ mutations were identified in patients presenting with PCC and no 

mutations in any of the other PGL/PCC susceptibility genes. Three other 

mutations were also identified in patients with neuroblastoma (87). No other cases 

of patients with PCC and KIF1B mutations have been reported and no patients 

with PGL have been identified who carry mutations in this gene.  
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The PHD2 gene, also known as EGLN1, contains 5 exons, is located on 

chromosome 1q42.1 and encodes the Prolyl hydroxylase domain protein 2 (88). 

There are 3 PHD proteins (PHD1, PHD2, PHD3) encoded by three different genes 

that play a role in the regulation of hypoxia inducible factor (HIF) which is involved 

in angiogenesis, erythropoiesis, cell metabolism and proliferation. This gene 

seems to function as an oxygen sensor.  

 

Mutations in PHD2 have previously been reported in patients with erythrocytosis, 

but were not associated with tumours. A germline mutation was identified in a 

patient with isolated erythrocytosis and recurrent para-aortic PGL (88). No 

tumours have been identified in any of the relatives of this patient and there has 

not been a description of any syndrome yet. Very stringent follow-up of PHD2 

mutation carriers is recommended as they may have an abnormally elevated risk 

of PGL (88).  

 

Mutations in the KIF1B and PHD genes may lead to the development of PGL and 

PCC, but are not a frequent cause of familial PGL. Although mutations in the MAX, 

TMEM127 and KIF1B/PHD genes may lead to the onset of PGL and PCC, 

mutations in the SDHA, SDHB, SDHC and SDHD genes are the most frequent 

cause of familial paraganglioma. These four genes are also the only susceptibility 

genes encoding subunits of the mitochondrial succinate-dehydrogenase (SDH) 

complex II of the electron transport chain.  

 
 
 
1.3   ELECTRON TRANSPORT CHAIN 
 
Five protein complexes together form the electron transport chain responsible for 

electron transport along the affinity gravity chain (figure 1.8). This assists in 

transferring hydrogen ions from the mitochondrial matrix to the intermembrane 

space.  

 

The first complex (NADH dehydrogenase) donates electrons to the chain after 

NADH was accepted by the citric acid cycle. The second complex (Succinate 
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Dehydrogenase) accepts electrons from FADH2 and transports them to complex 

III (cytochrome c reductase) via ubiquinone.  

Electrons are then transported to complex IV (cytochrome-c oxidase) via 

cytochrome c. Lastly Adenosine diphosphate (ADP) is converted to Adenosine 

triphosphate (ATP) by complex V (ATP synthase) (89).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

    Figure 1.8: Five complexes (I,II,III,IV,V) of the ATP producing Electron Transport chain        

           ANT = Adenine nucleotide translocator. Image redrawn and adapted (89). 

 

SDH is the only complex that cannot transfer hydrogen ions through the inner 

membrane into the intermembrane space and is the only non-transmembrane 

complex.  It is, however, the only member of the chain that participates actively in 

the tricarboxylic acid cycle (8).  Electrons are transferred from the tricarboxylic 

acid cycle to the terminal acceptor ubiquinone which plays a role in the prevention 

of reactive oxygen species (90). 

 

The tricarboxylic acid cycle together with the electron transport chain thus 

produces ATP which is the source of energy for most biological processes. 

Inactivation of any of the SDH-proteins will lead to insufficient production of ATP 

and thus loss of energy production (91).  
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1.3.1 Normal physiology of the SDH complex II 

 

SDHA, -B, -C and -D genes encode subunits of the heterotetrameric succinate 

dehydrogenase (SDH) mitochondrial complex II, a component of the respiratory 

chain and the tricarboxylic acid cycle illustrated below (figure 1.9). The SDH 

enzyme is responsible for the oxidation of succinate to fumarate in the tricarboxylic 

acid cycle and transfers electrons to coenzyme Q in the electron transport chain 

(90). The four subunits that form the SDH complex (SDHA, SDHB, SDHC and 

SDHD) are encoded by nuclear genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           
         Figure 1.9: Subunits of the SDH complex II 
         The four subunits together form the SDH complex II and SDHAF2 interacts in order for   
         the flavination of SDHA to occur. Image redrawn and adapted (92). 

 

 

Subunits SDHC and SDHD are hydrophobic and serve as membrane anchors and 

a ubiquinone binding site. The catalytic domains of the complex are formed by the 

hydrophilic SDHA and SDHB subunits (8). The SDHA unit is a flavoprotein serving 

as a substrate binding site and the SDHB subunit is an iron-sulphur protein of 

complex II.  
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The SDHAF2 subunit is required for the flavination of SDHA and the stabilisation 

of the entire succinate dehydrogenase (SDH) complex II (67).  All of the subunits 

are thus needed to ensure correct functioning of the complex and also in return 

the electron transport chain. A mutation in any of the SDH genes will lead to the 

inactivation of the SDH-proteins. 

 

 

1.3.2 Biological effect of mutations 

 

A mutation in any of the susceptibility genes leading to protein truncation will 

impair succinate-ubiquinone activity (figure 1.10). This will cause accumulation of 

succinate as the oxidation reaction of succinate to fumarate cannot occur. The 

increased succinate levels will inhibit the prolyl hydroxylase (PHD) from 

hydroxylating HIF1 which will lead to the stabilisation of Hypoxia inducible factors 

(HIFs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       
             Figure 1.10: Effect of a mutation in any of the subunit genes on the complex 
                  Image redrawn and adapted (92). 
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Hypoxia inducible factors are transcription factors which bind to specific DNA 

sequences and activate a number of genes which in turn promote adaptation and 

survival under conditions where oxygen is limited (4). Stabilisation of HIFs will thus 

lead to an up-regulation of factors responsible for angiogenesis, growth and cell 

division which may cause tumour formation.  These factors include vasoactive 

endothelial growth factor (VEGF) and reactive oxygen species (ROS) responsible 

for cell division. Mutations in the SDH susceptibility genes can thus cause the 

onset of fatal tumours depending on the localization. These tumours may be fatal 

due to the impairment of cranial nerves and they may also become malignant. 

Identification of mutations in patients with PGL/PCC is thus very important for 

early diagnosis and treatment of patients and predictive screening of their family 

members.  

 

1.4  MOLECULAR GENETIC SCREENING 

 

Routine genetic tests were developed after the identification of susceptibility 

genes for paraganglioma/pheochromocytoma. Approximately 24-32% of patients 

with apparent sporadic PGL/PCC have, in fact, inherited a mutation in either of the 

susceptibility genes (93). Certain clinical predictors are associated with a higher 

probability of mutations. Patients with multiple or malignant tumours, 

pheochromocytoma, presenting with tumours at a young age or with a family 

history of the disease may be given priority for genetic screening (93). Mutation 

screening of all the PGL/PCC susceptibility genes are strongly advised especially 

in patients with the above-mentioned clinical predictors of the disease. 

 
It is very important to identify any genetic predisposition to PCC/PGL in order to 

recognise at risk individuals before the onset of clinical manifestations which may 

prevent morbidity and mortality (82, 93). It has been shown that there is a 

correlation between genotype and phenotype due to extensive genetic screening 

in PGLs and thus a genetic testing algorithm was developed, based on clinical 

features of PGL/PCCs (figure 1.11). This allows for rapid and more cost-effective 

genetic screening (9). Algorithms are used in order to identify potential mutation 
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carriers and prioritize the order of genes to be screened based on clinical features 

(94). The algorithm shown here also illustrates how one should go about the 

genetic screening of patients with PGL and PCC according to clinical features and 

predictors. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Genetic testing is recommended for patients with early onset of disease (age <45), 

but should not be restricted to them only. NF1 is usually diagnosed on the basis of 

clinical features and genetic testing is only done in rare cases due to the large size 

of the NF1 gene. Mutations in SDHA, TMEM127 and MAX genes are still very rare 

and should only be analyzed if no mutations were identified in the other 

susceptibility genes. 

 
Most mutations identified thus far in the PGL/PCC susceptibility genes are point 

mutations such as missense and nonsense mutations. It is thus advised to screen 

for point mutations in the susceptibility genes first, although newer technology has 

allowed the identification of large rearrangements in these genes.  

Figure 1.11: Algorithm for genetic testing for pheochromocytoma and paraganglioma 
susceptibility genes Figure sourced from Galan et al. (2) 
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Multiplex ligation-dependent probe amplification (MLPA) kits were developed by 

MRC Holland specifically for the identification of large rearrangements in the SDH 

and VHL genes.  

The discovery of new PCC/PGL susceptibility genes and the improvement of 

molecular biology tools specifically for the identification of large genomic 

rearrangements led to the implementation of routine genetic tests for PGL/PCC 

patients. These tests should be accompanied by genetic counselling for PGL/PCC 

patients as well as familial genetic counselling specifically adjusted to their genetic 

risk (94).  

Identification of genetic mutations in patients with PCC or PGL is crucial for early 

diagnosis and treatment, regular surveillance and thus a better prognosis for 

patients as well as their family members. 

 

1.5  FAMILIAL PARAGANGLIOMA IN SOUTH AFRICA 

 

DNA from eleven South African Afrikaner PGL families have been collected 

previously and were investigated for disease-causing point mutations in the 

SDHB, SDHC and SDHD genes. Only one family carried a pathogenic SDHB 

mutation in exon 4 namely, p.Ile127Ser. No other mutations were identified in any 

of the other individuals. These individuals presented predominantly with head-and-

neck tumours with three families presenting with abdominal PGL. Five of the 

families had malignant tumours. 

No other methods have been carried out to possibly identify large rearrangements 

in these genes or point mutations in the SDHAF2 gene. Large rearrangements 

attribute ~10% of all disease-causing PGL/PCC mutations, but as the screening 

methods to identify large deletions and duplications are improving, this figure may 

increase in the future.  

It is thus feasible in this case to screen for large rearrangements in the SDH genes 

after point mutations in all SDH genes have been ruled out.  
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Ultimately, detection of disease-causing mutations will enable predictive testing of 

other family members and allow better clinical management of these families. 

To date no study has been carried out to identify possible disease-causing 

mutations in South African individuals with PGL. 

 

1.6 AFRIKANER ANCESTRY 

The Afrikaners are mainly descendants of Dutch, German and to a lesser extent, 

French immigrants to the Cape colony during the 17th century. By 1701 the 

population numbered 1265 (95).  The offspring of these settlers remained 

genetically isolated due to very little further immigration and underwent rapid 

population increase. Thus the Afrikaner is prone to show founder effects for a 

number of genetic disorders (96). 

 

1.7  AIM 

The aim of this study was to identify point mutations in the SDHAF2 gene of South 

African paraganglioma patients without point mutations in the SDHB, -C and –D 

genes. Furthermore to identify large rearrangements in SDHAF2, SDHB, -C and -

D genes of these families without point mutations. 

 

1.8 OBJECTIVES 

• Screen the SDHAF2 gene of 16 South African PGL patients for point    

 mutations using PCR and bi-directional cycle sequencing 

• Screen for large rearrangements in the SDHB, -C, -D and SDHAF2 genes 

using Multiplex Ligation-dependent Probe Amplification (MLPA) 

• Characterise breakpoints of large deletion/duplication if identified by the use 

of long-range PCR and direct cycle sequencing 
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 Chapter 2: Materials and Methods 

 

2.1 PATIENTS 

Ethics approval for the molecular study of familial paraganglioma was obtained in 

2001 (protocol number: 91/2001). Blood samples were subsequently collected 

after informed consent was obtained. The current study protocol was approved by 

the Faculty of Health Sciences, student Research Ethics Committee (protocol 

number: S53/2012). Sixteen patients from 10 families were included in this study. 

Complete pedigrees and clinical information are included in appendix B. These 

patients had previously been investigated for point mutations in the SDHB, SDHC 

and SDHD genes and no mutations were identified. These patients are affected 

with paraganglioma and/or have a family history of the disease. Fifty one sporadic 

PGL patients were also included in this study. Most patients were referred by 

private Otolaryngologist practitioners.   

 

2.2 EXTRACTION OF GENOMIC DNA 

DNA extraction was carried out by Mrs. M de la Rey as previously described (97) 

with  a few modifications. Blood from an EDTA vacutainer was lysed with lysis 

buffer (0.32M sucrose; 10mM Tris-HCl, pH8; 5mM MgCl2; 1% Triton X-100) on ice 

for 10min.The solution was centrifuged at 8 120g for 30min at 40C (Beckman 

model J2-21M centrifuge, JA-17 rotor). The pellet was resuspended in suspension 

buffer (10mM Tris-HCl, pH8; 0.15M NaCl; 5M EDTA) followed by protein 

degradation by addition of 10%SDS and freshly prepared 5M sodium perchlorate 

(NaClO4). An equal volume of chloroform:isoamylalcohol (24:1) was also added 

and mixed on a rotating platform for 30min.  After centrifugation for 15 minutes at 

20oC and 330g, the aqueous phase containing the DNA was removed and 

chloroform:isoamylalcohol (24:1) was added for a second time to remove proteins. 

DNA was precipitated from the aqueous phase with 2 volumes of cold absolute 

ethanol, spooled onto a sterile glass rod, dried under vacuum and resuspended in 

Tris-EDTA buffer (10mM Tris-HCl, pH8; 1mM EDTA). Sample DNA concentrations 

(ng/µl) were obtained by determining the absorbance at 260nm (Nanodrop ND-
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1000 Spectrophotometer). The ratio of absorbance at 260 and 280nm was used to 

assess the purity of the DNA and the ratio of absorbance at 260 and 230nm is a 

secondary measure of nucleic acid purity.  

 

 

2.3 SCREEN FOR POINT MUTATIONS IN THE SDHAF2 GENE 

2.3.1 Polymerase chain reaction (PCR) 

 The entire coding region and exon-intron boundaries of the SDHAF2 gene were 

screened to identify germline point mutations. All four coding exons of the 

SDHAF2 gene were amplified by using 50ng of each patient’s DNA together with 

0.2µM of each primer, 250µM of each dNTP and 0.5 Units Taq polymerase 

(Invitrogen by Life Technologies). The total reaction volume was 20µl. Primers 

used for the PCR are given in table 2.1. The PCR programme was as follows: 

94oC for 3min then 30 cycles of 94oC – 1min, 1 minute at the annealing 

temperature of specific primer pair and 72oC - 1min. This was followed by 72oC for 

7 minutes and lastly 6oC for 10min. The success of amplification was determined 

by gel electrophoresis using a 1.6% (50ml) Agarose gel (Gibco BRL, Life 

Technologies) with SYBR® safe DNA gel stain (Invitrogen by Life Technologies) 

subject to electrophoresis for 30min at 80V. Recipes for TBE Buffer, agarose 

loading buffer and Agarose gel are included in Appendix C. 

 

 

 

 

Primer Sequence (5’-3’) Product Size 
1F 
1R 

ACCTTCCGGCTCAGCTC 
TATCGGGCAGACGAACTC 

242bp 

2F 
2R 

GTTGACCTTCCCAGGCTC 
GAGGTTCAGCTGCTTTTCTG 

786bp 

3F 
3R 

GACACAGCCTTCTCAACCTC 
CTCAAATCAGCCTAAACTGTCC 

215bp 

4AF 
4AR 

CCCTGGTATAGGCTAACATCG 
TGAGTACACTTGGGCTGAGG 

663bp 

4BF 
4BR 

AGCTCTGAGCCTCAAAAGTG 
GAAGACTGTAGGAATGAGGGG 

614bp 

Table 2.1: SDHAF2 primer sequences 
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2.3.2 Nucleic acid purification 

The PCR products were purified using Sureclean (Bioline). An equal amount of 

SureClean and PCR product was added and mixed together, incubated at room 

temperature for 10 minutes and centrifuged at 14 000g for 15 minutes (room 

temperature). The upper phase was removed and discarded before 70% EtOH (2x 

the original sample volume) was added and mixed on a vortex for 10 seconds. 

The centrifugation step was repeated (14 000g for 15 min) and the supernatant 

removed. The pellet was dried in a speed vacuum for 5 minutes, thereafter ddH2O 

was added and the samples were ready for cycle sequencing. 

 

2.3.3 Cycle Sequencing 

Samples were sequenced at a concentration of 20µM each together with BigDye 

v.3.1 dilution. Both forward and reverse primers of each exon were used for 

sequencing and the sequencing temperature of each reaction was determined by 

each primer’s specific annealing temperature.   

A Veriti PCR machine (Applied Biosystems, Life Technologies, Foster city, USA) 

was used for amplification: 96°C-10sec, annealing temperature of each primer - 

5sec and 60°C -5min repeated for 25 cycles and cycle sequencing was ended 

with 4°C for 5min.  Next, the DNA was precipitated by adding precipitation mix to 

the sequenced product. The final concentrations in the mix were 0.09M Sodium 

Acetate and 65% EtOH. Samples were incubated in the dark for 16 minutes and 

centrifuged at 14 000 rpm for 10 minutes, thereafter the supernatant was 

discarded and pellet washed with 70% EtOH.  

This step was repeated twice before the pellet was dried, dissolved in Hi-DiTM 

formamide (Life Technologies, Foster city, USA), heated for 2 minutes at 96°C 

and cooled on ice. Sequencing analysis was performed on an ABI 3130 genetic 

analyser using POP7 polymer (Life Technologies, Foster city, USA). Sequencing 

traces were analysed using SeqScape v2.5 software (Life Technologies, Foster 

City,United States of America).  
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2.4 SCREEN FOR LARGE GENOMIC REARRANGEMENTS IN THE SDHB,-C  

         AND SDHD GENES 

2.4.1 MLPA analysis  

Multiplex ligation-dependent probe amplification (MLPA) is a technique used for 

relative quantification of different DNA sequences in a single reaction. Specific 

SALSA MLPA kits (MRC Holland) are designed to detect deletions/duplications of 

one or more sequence(s) in the specific genes in a DNA sample. Probes added to 

the samples are amplified and quantified and not the nucleic acids itself. Probe 

target sequences must thus be present in the sample to ensure amplification of 

the probes by PCR. If one or more probe target sequence(s) are absent in the 

sample, no PCR amplification will occur. In case of a heterozygous deletion of 

target sequences, a 35 – 50% reduced relative peak area of the amplification 

product of that probe should be seen. The MLPA probes consist of 2 

oligonucleotides (figure 2.1), one short synthetic and one long oligonucleotide, 

each with a primer sequence as well as a sequence complimentary to the target.  

These probes hybridise to adjacent sites of the target sequence and are ligated to 

permit amplification (figure 2.2). Only one primer pair is needed for amplification of 

all ligated probes due to the fact that they all have identical end sequences. The 

amplification product of each probe is of a unique size, varying between 130nt and 

480nt. The effective size separation of products by electrophoresis is due to a 

stuffer sequence on the 3’ end of the long oligonucleotide which differs in length in 

each probe. 

 

 

 
 

Figure 2.1: MLPA Probes. Each oligonucleotide consists of a primer sequence and hybridisation 
sequence complimentary to the target. A stuffer sequence is also present on each long 
oligonucleotide. 
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Figure 2.2: MLPA Reaction. After DNA is denatured, probes are hybridised to target sequences 

and ligated together before amplification with PCR. 

 

 

 

The Salsa P226-B1 SDHB-SDHC-SDHD MLPA kit lot# 1209 (MRC Holland) was 

used to screen for large rearrangements.  This kit contains probes for all exons of 

SDHB,-C and -D as well as probes located in the promoter region of each gene. 

Furthermore one probe for the SDHAF1 gene and 3 probes for the SDHAF2 gene 

are included. In total, there are 37 MLPA probes which include 10 reference 

probes located on different chromosomes. All probe sequences as well as ligation 

sites of the probes included in this kit are given in appendix E. 

In addition, there are nine control fragments generating amplification products 

below 120nt. The control fragments include 4 quantity control fragments (Q-

fragments) at 64-70-76-82nt, three DNA denaturation control fragments (D-

fragments) at 88-92-96nt, one fragment recognising the X-chromosome (100nt) 

and one fragment recognising the Y-chromosome (105nt).  

DNA was first denatured and probes hybridised to the matching sequences before 

the probes were ligated together and finally amplified by PCR. All reagents were 

used according to the manufacturer’s instructions as stated in the MLPA protocol. 

  

 

 

Probe Hybridisation 

Ligation Reaction 

Amplification 
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2.4.1.1 Hybridisation and ligation of oligonucleotides 

 

Genomic DNA (125ng) of the 16 patients together with five unaffected individuals 

(negative controls) was used for MLPA analysis.  The DNA was denatured for 

5min at 95°C followed by oligonucleotide hybridisation. MLPA buffer and SALSA 

probe mix was added to the denatured DNA and heated to 95°C for 1 minute. 

Hybridisation followed at 60°C for 16 hours. Ligation reaction mix was added to 

the hybridised product whilst at 54°C. Probe ligation was allowed for 15 minutes at 

54°C followed by inactivation of the Ligase-65 enzyme for 5 minutes at 98°C. All 

the probe sequences together with a table listing all the MLPA kit components and 

compositions thereof are given in appendix E. 

 

2.4.1.2 Polymerase Chain Reaction (PCR)  

The PCR buffer mix was first added to tubes before ligation mix was added. While 

at 60°C, the polymerase mix was added to tubes. PCR amplification occurred as 

follows: 1 minute at 95°C for denaturation, 32 cycles of 95°C for 30 seconds, 60°C 

for 30 seconds and 1 minute at 72°C. Final extension occurred at 72°C for 20 

minutes. Only one pair of primers is necessary for amplification due to the fact that 

all ligated probes have identical end sequences.  

 

 

2.4.1.3 Fragment Separation 

The PCR reaction of each sample was mixed with GeneScan-600 LIZ size 

standard and Hi-DiTM formamide (Life Technologies, Foster City, USA), heated for 

2min at 94°C and subject to capillary electrophoresis using an ABI-3130 Genetic 

Analyser (Life Technologies, Foster City, USA). Peak patterns were generated 

and analysed using the Gene Mapper v.3.7 software (Life Technologies, Foster 

City, USA).  The difference in relative amount of probe target sequences present 

in each sample results in differences in relative peak heights. These peak patterns 

should be evaluated to ensure that the quality of the results is reliable and 

adequate. 
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2.4.1.4 Peak pattern evaluation 

Following analysis on the ABI 3130 genetic analyser, peak heights were imported 

into GenoTyper v3.7 for fragment analysis. The presence of a large 

rearrangement can be determined by either visual inspection or statistical analysis 

of the data, however, it is not advised to draw conclusions from only the visual 

peak profile inspection. False positives may occur when only visually examining 

the peak profiles and thus it should only be carried out to ensure that sample 

quality and DNA quantity was sufficient and that ligations – as well as PCR 

reactions were successful. Five wild-type controls were included in the MLPA 

reaction in order to evaluate and compare all the patients’ samples. 

The probe amplification products generate peaks between 130-427nt (figure 2.3). 

A total of 37 peaks between 130nt and 427nt should thus be present. The 4 Q-

fragments or quantity fragments are located at 64-70-76-82nt and indicate 

whether DNA quantity was sufficient. These fragments are not ligation-dependent 

and are only present in small quantities. If the reaction was successful and DNA 

quantity sufficient, these fragments should hardly be visible or not visible at all. 

Should these peaks be of the same or similar height to that of the other ligation 

fragments, the DNA quantity is insufficient and the reaction must be repeated.  

 

 

 

 

 

 

 

 

Figure 2.3: Peak profile of a successful MLPA 
D-fragments and Q-fragments are indicated. The X and Y fragments are next to the Q-fragments. 
The remaining peaks are amplified probe ligation products each of a different exon or promoter 
region. 
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The three D-fragments at 88-92-96nt are DNA - and ligation-dependent and are 

visible when ligation and denaturation was successful and the quantity of DNA 

was sufficient (figure 2.3). The D-fragment at 92nt is also ligation dependent and if 

this peak is very low (lower than 1/3rd of the 88nt or 96nt fragments) ligation was 

unsuccessful or incomplete. In case the 88nt or 96nt fragment peak is lower than 

40% the height of the 92nt D-fragment, sample DNA may have been denatured 

unsuccessfully. Fragments representing the X and Y chromosomes are present to 

show whether the sample is male or female and that there was no mix-up of 

samples.  

 

Sloping of the peaks can be seen from left to right (figure 2.3) relative to 

increasing molecular weight of the products. Artefacts have been identified in data 

which causes sloping due to the differences in the electrokinetic injection sample 

loading process used in capillary electrophoresis. In order to correct for sloping, 

ten different reference (control) probes are included in the reaction. These control 

probes range in size and are located in 10 different autosomal chromosomal 

regions, not near the regions amplified by the probe ligation products used in the 

kit. Data is normalised during statistical analysis, using a linear regression model 

based on the degree of sloping of these control ligation products. 

Statistical analysis of MLPA data using previously designed excel spreadsheets, 

was carried out. The input data on the spreadsheets is peak heights of the probe 

ligation products including the ten control ligation products, after the data of the 

nine control mix fragments (figure 2.3) was eliminated. 

 

2.4.1.5 Data analysis  

An Excel MACRO is used for analysis and is available on the National Genetics 

Reference Laboratory (Manchester) webpage (98) created by Andrew Wallace. 

Peak heights were imported into the Excel MACRO spreadsheet. Dosage 

quotients (DQ) or exon copy number changes were calculated in a standard 

manner using the Wallace method. Two additional features of analysis were also 

incorporated to help with the analysis.  
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Firstly, the quality of each individual test was assessed by determining the 

standard deviation (SD) of the DQs for each of the control ligation products. This 

standard deviation should be less than 0.1 otherwise the sample is of poor quality. 

In addition, a likelihood probability of concordance with one of three hypotheses is 

constructed, namely the occurrence of one, two or three copies of a specific site. 

This is determined by comparing the test samples to five unaffected control 

samples. A measure of variability for each ligation product is given by making use 

of the controls and estimating each sample’s probability of deviation from 

expectation using the t-statistic. 

The results are thus displayed in three key ways. (i) as dosage quotients for each 

ligation product versus each control ligation product (ii) as a mean dosage 

quotient for each ligation product, and (iii), as a likelihood probability and odds 

ratio for each ligation product calculated for one of three hypotheses: dosage that 

is normal (2n copies), deleted (n copies) or dosage indicating duplication (3n 

copies).  

As illustrated in table 2.2, the sample information is given below the standard 

deviation in column B. The SD of the sample and control is highlighted in green 

indicating good sample quality (SD<0.1). The dosage quotients are given in 

columns D to V. This is an abbreviated table of the DQ values obtained for ligation 

products. Each ligation product’s DQ is calculated against each control ligation 

product. The control ligation products (D – M on table 2.2) are located in different 

regions of the genome in order to correct for sloping. The mean DQ value for each 

ligation product is given in the last row of each of these columns.  

Normal DQ values range from 0.85 – 1.15, DQ values between 0.35 – 0.65 

indicates a deletion and equivocal DQ values are between 0.65 – 0.85 and >1.15. 

Normal values are given with a white background on the RESULTS sheet, values 

with an aqua background are indicative of a deletion and values with a cream 

background are equivocal. The two odds ratios for the alternative hypotheses are 

given below the mean DQ values. If these cells have a green background, the 

normal hypothesis is favoured.  
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Odds ratios with a magenta background (>1:20 in favour of a deletion or 

duplication) indicates that either the deleted (n) or a duplicated (3n) hypotheses is 

favoured. The absolute probabilities calculated by the t-statistic are given below 

the odds ratios. These probabilities are indicated for the normal, deleted and 

duplicated hypotheses. The variation between the mean DQ of that specific 

ligation product and the expected DQ from 5 unaffected controls is calculated. A 

probability of 60% for the normal hypothesis indicates that any other random wild-

type sample would be expected to deviate by the same amount in 60% of the 

tests. 
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Table 2.2: An abbreviated MLPA RESULTS spreadsheet of a wild-type control sample 
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2.5 BREAKPOINT CHARACTERISATION 

All the samples displaying an aberrant MLPA profile were subsequently amplified 

using primers flanking the deleted region. Following the PCR amplification, the 

samples were subjected to cycle sequencing using BigDye®Terminator v3.1 to 

identify the upstream and downstream breakpoints of the deletion. 

 

2.5.1 Long range PCR analysis 

Primers SDHB 2F and – 4R (Appendix D) were used in order to identify a possible 

deletion product in all patients. These primers are situated in intron 1 (2F) and 

intron 4 (4R) and amplify a region of 16360bp. The PCR was carried out by 

making use of Phusion High Fidelity DNA polymerase (Finnzymes) and High 

fidelity (HF) buffer (New England BioLabs Inc.). A total of 100ng or 150ng DNA 

was used together with 0.2µM of each primer, 250 µM of each dNTP and 0.6 Units 

of DNA polymerase. Reactions were repeated at different temperatures and using 

different PCR programmes including a stepdown PCR method. No clear results 

were obtained with these primers and thus new primers, SDHB 2162F & 2164R 

(99) flanking exon 3 (table 2.3) were subsequently used to amplify the deletion 

fragment (wildtpe = 9523bp). The total DNA concentration used per reaction was 

100ng together with 1.25 Units Failsafe enzyme mix, 0.4µM of each primer and 2x 

premix J. The total reaction volume of each PCR was 20µl. Failsafe enzyme mix 

was used with PCR 2x Buffer J according to manufacturer’s instructions (Epicentre 

Biotechnologies). 

The PCR programme used was as follows: 94°C for 2min followed by 14 cycles of 

98°C-10sec, 55°C-30sec and 68°C-10min. Then 98°C-10sec, 55°C-30sec and 

68°C+ 15 seconds per cycle were repeated for 16 cycles.  

The run was ended with 72°C for 10min. Amplification success was determined by 

gel electrophoresis of each PCR product using a 0.8% Agarose Gel (Gibco BRL, 

Life Technologies) with EtBr run for 2h at 60V. 
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Primer sequences obtained from a Bayley et al., (98) 

The PCR reaction was optimised afterwards with Accuprime Taq (Invitrogen by 

Life Technologies) using 100ng DNA with 0.4µM of each primer and 2.5 Units 

Accuprime Taq together with Accuprime PCR buffer II according to manufacturer’s 

instructions. The same PCR programme as given above was used. 

The total reaction volume was also 20µl and the PCR programme was as follows: 

94oC – 2min then 94oC – 30sec, 55 – 30sec and 68oC – 2min repeated for 30 

cycles. The run was ended with 7min at 72oC and lastly 5min at 4oC. Gel 

electrophoresis was carried out in the same manner as explained above.  This 

was followed by nucleic acid purification of the samples before cycle sequencing 

was carried out (Refer to section 2.3.2). 

 

 

2.5.2 Cycle Sequencing 

Primers SDHB Int2F and Int3R (table 2.3) were used for sequencing at a 

concentration of 20µM each together with BigDye v.3.1 dilution.  The reaction 

containing SDHB Int2F primer was sequenced at 57°C and SDHB Int3R at 50°C. 

Cycle sequencing followed as explained in section 2.3.3. 

 

 

 

 

 

 

 

 

 

 

 

Primer name Sequence (5’-3’) 

SDHB_2162F CCAGTCCATGAAAGGCA 

SDHB_2164R GCTCCATGTGTCACGTGTTT 

SDHB_Int2F GCAGGAGAATTGCTTGAGCC 

SDHB_Int3R CTAACAGACACAATACCCAAAAGT 

Table 2.3: Long-range PCR and cycle sequencing primers for   

                 detection of SDHB exon 3 deletion breakpoints 
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2.6 GENOTYPE ANALYSIS 

 

2.6.1 Polymerase Chain Reaction 

Six microsatellite markers, three on either side of the SDHB gene on chromosome 

1, were amplified in 6 separate fragments. Primers were obtained from 

http://www.ensemble.org and were optimised at specific temperatures and MgCl2 

concentrations. These markers span a region of ~3.2Mb. Seventeen intragenic 

single nucleotide polymorphisms (SNP’s) were also amplified in six fragments in 

order to refine the haplotype. The SNP’s are located in intron 1, 2, 3, 5, 6 and 

intron 7 of SDHB. These primers were designed and optimised for specific 

temperatures and MgCl2 concentrations. The primer sequences and PCR 

conditions are all given (see appendix D). The same SNP’s and microsatellites as 

described by Bayley et al., were used (99).  

All the fragments were amplified using 50ng genomic DNA, 0.5 Units Taq 

polymerase (Invitrogen), 250µM of each dNTP, 1.5mM, 2mM or 2.5mM 

Magnesium Chloride (MgCl2) and 0.2µM of each primer. A Veriti PCR machine 

was used (Life Technologies) with the programme as follows: 94oC – 3min then 

94oC for 1min, annealing temperature of primer pair for 1min and 72oC for 1min 

repeated for 35 cycles. This was followed by 7min at 72oC and ended off at 4oC 

for 5min. Gel electrophoresis was performed in order to determine amplification 

success. A 1.6% Agarose gel with SYBR® Safe was used and subject to 

electrophoresis for 40min at 80V. Nucleic acid purification followed before samples 

were subjected to cycle sequencing (Refer to section 2.3.2).  

 

 

2.6.2 Cycle Sequencing 

Bi-directional cycle sequencing was carried out on the samples for all 6 

microsatellite fragments. The SNP fragments were only sequenced in one 

direction, either forward or reverse primer. Cycle sequencing was carried out as 

explained in section 2.3.3, followed by precipitation of products (section 2.5.3). All 

sequencing reactions were carried out in a 96-well plate. 
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Chapter 3: Results and Discussion 

 

Sixteen samples from ten families were analysed for point mutations in the 

SDHAF2 gene by cycle sequencing. These samples were also analysed for large 

rearrangements in the SDHB, -C, -D and SDHAF2 genes by making use of 

multiplex ligation-dependent probe amplification (MLPA).  

 

3.1 SEQUENCING OF THE SDHAF2 GENE 

All patients were analysed for point mutations in the SDHAF2 gene by means of 

PCR and direct cycle sequencing. No sequence variants were identified in the 

SDHAF2 gene of any of the patients. MLPA was subsequently utilised to identify 

large rearrangements in the SDHB, -C, -D and SDHAF2 genes. 

 

 

3.2 SCREEN FOR LARGE DELETIONS/DUPLICATIONS IN THE SDHB, -C, -D 

AND SDHAF2 GENES 

 

3.2.1 MLPA Data Analysis 

As explained in section 2.4, PGL patients were analysed for large rearrangements 

using the SALSA MLPA kit, P226-B1 SDHB-SDHC-SDHD produced by MRC 

Holland (www.mrc-holland.com). All probe sequences as well as ligation sites of 

the probes included in this kit are given in appendix E. 

Following analysis on the ABI 3130 genetic analyser, peak heights were imported 

into GenoTyper v3.7 for fragment analysis. Visual inspection and peak pattern 

evaluation (section 2.4.1.4) were carried out to analyse the control mix fragments 

and the MLPA peak profile of each sample (figure 3.1). 
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a. Control mix fragment inspection 

A representative example of the MLPA peak profile of a wild-type control is shown 

in figure 3.1A. The control mix fragments (figure 3.1B) of all samples were 

inspected first to ensure that the MLPA reaction was successful. The Q-fragments 

were barely visible on the peak profile thus confirming DNA quantity was sufficient. 

The D-fragments were all visible, confirming ligation and denaturation of DNA was 

successful. The 88nt and the 96nt fragment peaks were not lower than 40% of the 

92nt D-fragment or the MLPA probes, indicating that denaturation was successful. 

All samples were thus of good quality and PCR as well as ligation reactions were 

successfully carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Representative electropherograms illustrating MLPA peak profiles of a wild-type sample 

(A) wild-type control; Peaks represent the amplification products of probes. Peak height is presented on the 

y-axis and probe position (nt) on the x-axis. Orange peaks represent the 600LIZ size standard. (B) Control 

mix fragments of a wild-type control sample. 
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b. Peak pattern evaluation 

All control and probe ligation products have amplified successfully and are 

represented as peaks ranging in size (figure 3.1A). Sloping of the peaks can be 

seen from left to right (figure 3.1A) relative to increasing molecular weight of the 

products. Sloping was corrected for as explained in section 2.4.1.4. Statistical 

analysis of MLPA data using previously designed excel spreadsheets, was carried 

out. The input data on the spreadsheets is peak heights of the probe ligation 

products including the ten control ligation products, after the data of the nine 

control mix fragments (figure 3.1B) was eliminated. 

 

3.2.2 Statistical analysis 

An Excel MACRO was used for analysis and is available on the National Genetics 

Reference Laboratory (Manchester) webpage (98) created by Andrew Wallace. 

Peak heights were imported into the Excel MACRO spreadsheet. Dosage 

quotients (DQ) or exon copy number changes were calculated in a standard 

manner using the Wallace method. The MLPA results showed that all PGL 

patients carry an SDHB exon 3 deletion. A representative example of a deletion 

positive sample is illustrated in table 3.1. The SDHB exon 3 ligation products 

(highlighted in aqua) can be seen in column Q. The DQ values ranging from 0.43- 

0.50 is indicative of a deletion, together with the mean DQ value (0.47). The odds 

of normal:deleted is 1:394 in favour of a deletion and is indicated with a magenta 

background. All samples were of good quality which was confirmed by the 

standard deviation with a value less than 0.1. Equivocal results (cream) can be 

seen in this table. These values are not in the normal range, but are not abnormal 

either. These specific values, although equivocal, were not significant due to the 

fact that all the DQ values for this ligation product and the absolute probabilities 

were normal. Results spreadsheets for all 16 samples are included in appendix F. 
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Table 3.1: An abbreviated MLPA RESULTS spreadsheet of a PGL sample 
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The mean DQ values are used to generate a histogram for each test sample 

(figure 3.2). A histogram depicting the mean DQ values of a deletion positive 

sample and a control sample is given in figure 3.2. The dosage quotient (Y-axis) of 

the SDHB exon 3 probe for this sample (HGT 5.1) is much lower than the rest of 

the DQ values. All the remaining probes for this sample have normal values. 

Probes of the control sample have DQ values in the normal range. Exon 3 of the 

SDHB gene thus appears to be heterozygously deleted in all samples.  

Figure 3.2: Histogram representing mean DQ values of ligation products 

The mean DQ values of an unaffected control sample (top) and a PGL patient (bottom) are 

illustrated above. Different colours represent probes in different genes with control probes in 

blue. The red arrow marks the mean DQ value of the probe for SDHB exon 3 which is 

significantly decreased.  
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Aberrant DQ values may occur as a result of a mutation at either the hybridisation 

site of one of the oligos or at the ligation site. This will thus interfere with 

hybridisation or ligation of the two oligos. The complete probe would not be 

formed and therefore not be amplified, causing  reduced DQ. The partial 

sequence of the exon 3 probe 24nt adjacent to ligation site is as follows: 

ATGCTTTAATCA-AGATTAAGAATG (Appendix E). The region across exon 3 was 

sequenced previously, and the sequences were studied to ensure that no 

sequence variants were present in the probe hybridisation or - ligation sites shown 

above. No mutations were identified in any of the patients and thus the results of 

the MLPA showing a deletion of SDHB exon 3 thus seem to be valid. 

These results were subsequently confirmed and the breakpoints characterised by 

long-range PCR and direct cycle sequencing. 

 

3.3 LONG RANGE PCR ACROSS EXON 3 

Primers, located in intron 1 and intron 4, were used in order to identify the deletion 

product. The wild-type product is 16360bp with a smaller product expected to be 

amplified if the deletion is present. These reactions were repeated at different 

temperatures, using different PCR programmes. The results showed either 

multiple non-specific amplification products (figure 3.3A) or a complete failure to 

amplify any products (figure 3.3B).  
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This led us to identify new primers in order to amplify this whole region 

successfully. The TCA Cycle Gene Mutation Database (formerly SDH complex 

database) (60, 61) was accessed to establish whether large deletions of SDHB 

exon 3 have been reported previously. Six large deletions have been identified to 

date in Spanish, Portuguese and Dutch populations and only the deletion in the 

Dutch population was completely characterised. The same primers (99) were thus 

used to attempt the identification and characterisation of the deletion breakpoints 

in the South African PGL patients. Long-range PCR analysis was carried out using 

primers SDHB_ 2162F (intron 2) and SDHB_2164R (intron 3) which yields a wild-

type product of 9523bp. All the PGL patient samples showed an identical ~1.6kb 

product (indicated with an arrow on figure 3.4). Neither this fragment nor the wild-

type fragment (9523bp) amplified in the control samples. The wild-type product 

can be seen faintly in the lanes containing the amplified products of deletion 

positive samples (Lanes 4 – 20). 

 

Figure 3.3 Gel electrophoreses results of two long range PCR’s across exon 3 

Multiple, non-specific amplification (A) or no amplification occurred and PCR resulted in only light 

smears (B). Fig. A) 0.7%gel at 60V for 2.5h; 1.Control sample; 2-11.PGL patient samples; 12.Blank 

sample containing no DNA 13. Molecular marker Fig. B) 0.8% gel at 60V for 1.5h. 1 and 20. Molecular 

markers; 2.Blank sample-no DNA; 3-4 Control samples; 5-19. PGL patient samples  

B 
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Figure 3.4: Long range PCR across SDHB exon 3  
1% Agarose gel (EtBr) with 1kb+ ladder in lane 1 and 2.5kb ladder in lane 22. Gel electrophoresis 
was carried out for 1.5 hours at 60V. Lane 2 and 3: Wild-type controls; Lane 21: Blank;  
Lanes 4-20: PGL patients. Deletion product indicated with an arrow. 
 

 

Lane 21 contains a blank control sample to which only water was added and no 

DNA in order to test for possible contamination.  No contamination was thus 

present due to the fact that no amplification was seen in this lane.  

The above PCR reactions were carried out using Failsafe Taq and buffer J as 

discussed in materials and methods (Chapter 2). The PCR reaction was, however, 

optimised and repeated with Accuprime Taq which yielded brighter bands and no 

non-specific amplification. The Accuprime Taq was used for identification of the 

deletion fragment from this point forward and not the Failsafe Taq (Appendix G). 

The amplification products of ~1.6kb were subjected to direct sequencing in order 

to identify the breakpoints of this deletion.  

 

3.4 BREAKPOINT CHARACTERISATION 

Sequence traces of the ~1.6kb product were analysed and revealed identical 

breakpoints in all samples (figure 3.5). The two breakpoints were identified to be in 

intron 2 [4429bp upstream of exon 3] and intron 3 [933bp upstream of exon 4] 

(figure 3.6).   
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In total, 7905bp are deleted and using the HGVS cDNA nomenclature (Reference 

sequence NC_000001.9), this deletion was identified as SDHB c.201-4429_287-

933del, which is the same mutation previously identified in the Dutch population 

as an SDHB founder mutation (99). 

The breakpoint in intron 2 is located in an AluSz, but the downstream breakpoint 

(intron 3) is not located in an Alu repeat nor does it have any matching or 

repeating sequence around the breakpoint. The mechanism of deletion is thus 

unknown. Interestingly, the overlap is only one basepair (Cytosine) (figure 3.7). 

 

Breakpoint 

Intron 2 Intron 3 

Fig 3.5. Representative example of sequence spanning the SDHB exon 3 deletion in a mutation  
             positive sample 
The breakpoint is indicated with a black dashed line. Sequence on the left (intron 2) is upstream of the 

deletion and right (intron 3) located downstream of the deletion 

Figure 3.6: Up- and downstream breakpoints of the SDHB exon 3 deletion 
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Figure 3.7: Surrounding sequence of the 7.9kb deletion breakpoints 
A. Wildtype sequence of intron 2; B. Mutatnt sequence which is a combination 

of intron 2 (blue) and intron 3 (green); C. Wildtype sequence of intron 3. 

 

 

As exon 3 is out of frame with exon 4 this deletion will cause a frameshift and the 

predicted protein truncation will occur 21 codons downstream from codon 68 

(p.Cys68HysfsX21). This will cause a loss of 233 of the 322 amino acids. 

However, it is highly likely that translation of this protein will not occur and be 

destroyed by nonsense mediated mRNA decay (NMD). Nonsense-mediated 

mRNA decay is a mechanism coupled to translation and eliminates mRNAs with 

premature translation-termination codons (100). It was discovered upon the 

realisation that very low concentrations of mRNAs transcribed from alleles carrying 

nonsense mutations, are frequently found in cells. NMD is thought to be an 

mRNA-surveillance mechanism to prevent potentially harmful truncated proteins 

from being synthesised. In mammalian cells a premature stop codon, with 

distances greater than 50-55 nucleotides upsteam of the 3’-most exon-exon 

junction is believed to lead to NMD (101-104). At least one intron should also be 

downstream of the premature stop codon (105). The stop codon in exon 4 of the 

SDHB gene, caused by the deletion of exon 3, meets the above-mentioned criteria 

and thus NMD will most likely take place. 

 

Although this mutation is the same in all of the SA families and the Dutch families, 

it is not known whether the mutations occurred due to independent events or 

whether it has arisen once. Genotype analysis was thus carried out in order to 

answer this question. 
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3.5 GENOTYPE ANALYSIS 

Genotype analysis across the SDHB gene was carried out to determine whether 

the South African Afrikaner PGL patients share a common haplotype and thus 

also a common ancestor from whom the mutation originated. None of the families 

share a surname and they do not appear to share a common geographic location 

in South Africa. Six microsatellites, three on either side of the SDHB gene 

(chromosome 1) together with 17 intragenic SNPs were typed. These markers 

span a region of ~3,2Mb (figure 3.8). Five of the microsatellites are di-nucleotide 

repeats and one (D1S3669) is a tetra-nucleotide repeat. The SNPs cover a region 

of ~26.7 kb, spanning from intron 1 up to intron 7 of the SDHB gene (figure 3.9).  
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  Figure 3.8: Location of microsatellite markers and SNPs spanning the SDHB  
                      gene on the antisense strand  
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The microsatellite regions were amplified and subjected to gel electrophoresis to 

ensure that the correct fragment was amplified (figure 3.10). The products ranged 

from 123bp to 281bp, depending on the number of repeats.  

  

   

    Figure 3.10: Gel electrophoresis of PCR-amplified microsatellite fragments 
    This image represents the amplified products of three different microsatellite marker  fragments. 
    A = D1S2644; B = D1S2826; C = D1S2697; Lane 8 = Blank; Lanes 1-20 = PGL patients       
    MM=Molecular Marker 
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  Figure 3.9: Location of the 17 SNPs in the SDHB gene 
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After cycle sequencing and capillary electrophoresis of the PCR products, the 

sequences were analysed and the number of repeats for each microsatellite were 

scored for all samples. In figures 3.11 A – F, representative examples of the 

scored microsatellite sequences for each marker are shown.  
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Figure 3.11A & B: Microsatellite markers D1S2644 and D1S170 partial sequence  
A) The D1S2644 forward primer was used for sequencing of this dinucleotide marker (CA repeat). The first allele consists of 17 CA repeats which can 
be easily counted and the second allele carries 20 repeats. B) The reverse primer was used for sequencing of the D1S170 marker (TG repeat). The 
first allele consists of 19 repeats counted easily and the second allele carries 20 repeats 
Images viewed and saved from Sequence Scanner v1.0 (Life Technologies) 
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  1     2     3      4      5      6      7      8     9     10    11   12   13    14 

   1             2            3              4              5             6             7             8              9         

Figure 3.11C & D. Microsatellite markers D1S436 and D1S3669 partial sequence 

C) The forward primer was used for sequencing of marker D1S436 (CA repeat). The first allele consists of 14 repeats counted easily and the 

second allele carries 17 repeats. D) Marker D1S3669 (TATC repeat) was sequenced using the forward primer. The first allele consists of 9 repeats 

counted easily and the second allele carries 14 repeats. 
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  1      2      3     4     5      6     7     8      9    10    11   12 

  1      2      3     4     5      6     7     8      9    10    11   12   13   14 

Figure 3.11E & F. Microsatellite markers D1S2697 and D1S2826 partial sequence 

E) The reverse primer was used for sequencing of the D1S2697 marker (TG repeat). The first allele consists of 12 repeats counted easily and the 

second allele carries 14 repeats. F) The reverse primer was used for sequencing of marker D1S2826 (TG repeat). The first allele consists of 14 

repeats counted easily and the second allele carries 15 repeats. 

E 

F  
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In the same way, the SNPs (table 3.3) were amplified, sequenced by direct cycle 

sequencing followed by capillary electrophoresis after which the sequences were 

analysed.  

 

 

 

 
 
                 Figure 3.12:  PCR amplification results of SNPs 
                  These SNPs, rs10887990, rs4920390 and rs11577071 were amplified  
                   in one fragment with primers B_IVS3F&R. This is a representative figure 
                   of one of the six fragments which were all amplified in the same manner. 
 
 
 

Figure 3.13 A/B illustrates the sequence surrounding each SNP for one mutation 

positive sample. Only part of the sequence is shown for one person. The yellow 

highlighted SNPs are homozygous for a specific basepair and red is 

heterozygous. Two base changes are shown for SNP rs11203285, but the one 

change (R) is merely background interference and not a definite base change. 
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rs6690934 rs11582579 rs9435747 

rs11203287 rs11203284 

 

 

rs10887992 rs10887993 rs11577071 

Figure 3.13 A: Representative examples of Single Nucleotide Polymorphism sequence   
traces of a mutation positive sample 

 Sequences of all 17 SNPs are given for one sample. Eight SNPs are homozygous and nine  

 heterozygous. Homozygous alleles = yellow; Heterozygous alleles = red 

 R: A/G; Y: C/T 

rs11203285 
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   Figure 3.13B: Representative example of Single Nucleotide Polymorphism sequence  
   traces of a mutation positive sample 
   Sequences of all 17 SNPs are given for one sample. Eight SNPs are homozygous and nine  
   heterozygous. Homozygous alleles = yellow; Heterozygous alleles = red 
   R: A/G; Y: C/T 
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Haplotypes were constructed for eight families where phase was confirmed. For 

two families, probable haplotypes were constructed (phase not confirmed) that are 

consistent with the observed haplotype in other mutation carriers (appendix H.) A 

common haplotype was identified between the South African patients of nine 

families (figure 3.14).  

 
 

 

 

 

 

 

 

 

 

 

  

 

 

       
 
 
 
 
 
      
 
      
      Figure 3.14: Common haplotype shared between the South African PGL patients 
      The number of microsatellite repeats is given for each microsatellite.  
      Three SNPs are in the deleted region and are thus only present on the wild-type allele.  
      Red brackets indicate the distance between two particular markers or between a marker and a    
      microsatellite. The SDHB gene is on the antisense strand on chromosome 1. 
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Three of the SNPs are located in the deletion region (intron 3) and therefore typed 

as being “homozygous” due to the fact that only the SNPs of the remaining wild-

type alleles were typed. Some of the microsatellite repeats could not be scored 

and this is indicated with a question mark (appendix H). In some cases the 

number of repeats on the first allele could be established but the number of 

repeats linked to the second allele could not be established successfully. In one 

case (HGT 8:7) the sequence was of bad quality even after it was repeated and 

the repeats on both alleles could not be scored accurately. The deletion haplotype 

consists of SNPs located on minor alleles for intron 1 and 2, whereas introns 5 to 

7 are the major allele in the European population (Table 3.2).  

 

 Table 3.2: SNPs typed for genotyping analysis 

SNP 
Nucleotide 
sequence 

(Sense strand) 

Nucleotide 
sequence 
(Antisense 

strand) 

Minor Allele Frequency of 
European population 

(1000 genomes) 

rs12045097 A/G T/C G (0.171) 

rs2871775 G/A C/T A (0.471) 

rs2235930 G/A C/T A (0.417) 

rs2647162 T/C A/G C (0.191) 

rs12142244 A/G T/C G (0.453) 

rs2235929 G/A C/T A (0.227) 

rs11577071 C/G G/C G (no results) 

rs4920390 C/T G/A T (no results) 

rs10887990 C/T G/A T (0.479) 

rs11203284 A/G T/C G (0.479) 

rs11203285 C/T G/A T (0.479) 

rs10887992 G/A C/T A (0.479) 

rs10887993 A/G T/C G (0.479) 

rs11203287 G/A C/T A (0.479) 

rs9435747 T/C A/G C (0.479) 

rs11582579 G/T C/A T (0.479) 

rs6690934 C/T G/A T (0.479) 
Minor allele frequencies obtained from ensemble (http://www.ensembl.org/index.html) Accessed on 
28/02/2014. 

 

One family (HGT 5) shared the core haplotype from marker D1S436 to D1S2826 

covering a region of ~2.56Mb. Microsatellite D1S2644 of family 5 differs from the 

common haplotype shared by the remaining PGL families (Appendix H). 
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There were, however, three families presenting with apparent recombination, 

although mitotic error for these microsatellite markers are also likely. In family 

eight (individual 8:1), a recombination event occurred between the centromeric 

markers D1S2826 and D1S3669, retaining the core linked haplotype of ~1.91Mb 

(Appendix H). A single recombination event also occurred between centromeric 

marker D1S3669 and rs6690934 in family 11 (figure 3.15), retaining the core 

haplotype of ~1.6Mb. This recombination event may have occurred in 11:2 herself 

or in her mother, but due to the fact that her mother is deceased, we were not able 

to obtain DNA for analysis.  

 

Individual 14:8, who does not carry the SDHB exon 3 mutation, also presented 

with recombination between centromeric marker D1S3669 and SNP rs669093 

(Appendix H).  Even though there are three families presenting with apparent 

recombination events, it seems that all the South African patients share a common 

haplotype, with the exception of marker D1S2644 in family 5. The South African 

patients thus also share common ancestry and the SDHB exon 3 deletion is a 

founder mutation in the South African Afrikaner population.  

 

Due to the origins of the Afrikaner population (see section 1.6) it is not surprising 

to find that familial PGL shows a founder effect.  Interestingly, we have also 

identified founder mutations in Afrikaner breast cancer families. Three unique  

mutations were identified in the BRCA1 and BRCA2 genes (106, 107), that 

account for 94% of mutation positive Afrikaner families with three or more affected 

individuals (106).  

A number of founder mutations were also identified in the low density lipoprotein 

(LDL) receptor gene that is responsible for more than 95% of Familial 

Hypercholesterolemia cases among  the South African Afrikaner population (108). 

The frequency of Familial hypercholesterolemia in the Afrikaner population is 

estimated to be roughly five times that of other populations (108). Fanconi Anemia 

is another disease that can be contributed to founder mutations in the FANCA 

gene of Afrikaners (109). 
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Figure 3.15: Haplotypes of family 11  
Grey shaded boxes represent haplotype linked to the disease 
SNPs of individuals 11:5 and 11:6 were not typed 
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DNA was obtained (Dr. JPL Bayley, Department of Human Genetics, Leiden 

University Medical Center, Leiden, The Netherlands) from two unrelated Dutch 

individuals, both carrying the SDHB exon 3 deletion. These two individuals were 

also subjected to genotype analysis (Appendix H) in order to compare the 

common haplotype of the two populations and establish whether this mutation 

occurred only once or multiple times in the different populations. The haplotype 

linked to the disease was already known (91) and could be deduced. The sexes of 

the two individuals are not known.  

Comparing the haplotypes of the Dutch and SA patients (figure 3.16), an identical 

haplotype was observed from marker D1S436 to D1S2826 between the 

populations. Only one microsatellite marker (D1S2644) differs between the two 

populations. Interestingly, this is the same marker that differs from the common 

SA haplotype in family 5. This microsatellite marker is the furthest from the SDHB 

gene of the six markers and thus a recombination event is very likely as it 

occurred between D1S2644 and D1S2826 in the SA patients. The core linked 

haplotype in the Dutch population (~2.56Mb) is still identical to the common linked 

SA haplotype.  

According to these findings It is thus highly likely that the Dutch and SA patients 

share a common ancestor and that this mutation was introduced by the Dutch to 

the South African Afrikaner population, especially since there are a large number 

of Afrikaner families with Dutch ancestry in SA.  
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        Figure 3.16: Comparison of Dutch and South African common haplotypes 
   
 
      
          

3.6  NON – PENETRANCE 

 
 
After the identification of this deletion, mutation analysis was also carried out on 

51 seemingly sporadic cases. One of these patients (SGT 58) was diagnosed at 

the age of 28 years. Upon further testing of other unaffected individuals in this 

family, her father and son were also found to carry the deletion (appendix B). 

These individuals only arrived for genetic testing after this study was almost 

complete and no genotype analysis was carried out on the individuals in this 

family. It is thus not a sporadic case, but a family presenting with non-penetrance.  

 

Reduced penetrance was also seen in 50% of the South African PGL families 

(HGT 3, HGT 9, HGT 11, HGT 13, HGT 14).  
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At least one mutation positive individual, older than the proband or other affected 

individuals, did not present with PGL and/or PCC. The mean age of the individuals 

presenting with non-penetrance is ~70 years with the ages ranging from 63 years 

up to 78 years. SDHB mutation carriers have a family history in only 31% of cases 

which is much lower than patients carrying SDHD (61%) and SDHC (62.5%) 

mutations (50). The Dutch patients carrying the same SDHB deletion also showed 

reduced-penetrance. Only two of the nine cases (22%) presented with a family 

history of PGL and thus 78% did not present with any family history of PGL (91). 

Another forty five family members of the mutation positive individuals from South 

Africa were screened for this mutation. Twenty three of these individuals 

presented with the mutation of whom only two have been diagnosed with PGL. 

One patient was diagnosed at the age of 29 with a carotid body tumour and the 

other patient also presented with a carotid body tumour (Left) at the age of 61 

years. The ages of the mutation positive individuals ranged from 12 years up to 78 

years with a mean age of ~41 years (SD= 18.87). 

 

In general, abdominal tumours are predominantly the phenotype seen in patients 

with mutations in the SDHB gene. However head and neck PGL (HN-PGL) were 

mainly identified in the SA patients (Table 3.4). This may be due to an 

ascertainment bias as patients were mostly referred by otolaryngologists thus 

explaining the higher than expected HN-PGL frequency. The Dutch patients 

identified with the same deletion also showed a high frequency of HN-PGL 

although this might also be due to a referral bias as Leiden is a national referral 

centre for HN-PGL. The mean age at diagnosis of the South African individuals 

was 37 years (SD = 15.53) while malignant tumours were identified in five of the 

families (table 3.3).  
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       Table 3.3: Clinical information of PGL families 

Family number 
Mean Age 

at Dx 
Anatomical site of tumours 

HGT 1 39 yrs Glomus Jugulare and jugulotympanicum 

HGT 2 13 yrs 
Abdominal PGL, Bilateral Jugulare PGL, bilateral 

secreting carotid body, Malignant PGL 

HGT 3 21 yrs 
Left jugulo-tympanicum PGL, Malignant 

abdominal PGL 

HGT 4 54 yrs PGL of carotid body, Glomus Jugulare 

HGT 5 47 yrs 
Carotid body PGL, Jugulotympanicum PGL, 

Malignant PGL, Glomus Jugulare 

HGT 8 30 yrs 
Glomus Jugulare,PGL of Carotid body and - 

Jugulo-tympanicum  

HGT 9 36 yrs 
Carotid body PGL, Malignant PGL, 

pheochromocytoma 

HGT 11 30 yrs Abdominal PGL, Carotid body, Malignant PGL  

HGT 13 72 yrs PGL of jugulo-tympanicum, Vagus nerve 

HGT 14 42 yrs Carotid body PGL, Jugulotympanicum 

SGT 58/HGT 15 28 yrs Jugulare PGL 

 

 

There seems to be a higher incidence of malignancies in patients carrying SDHB 

mutations than patients carrying mutations in the SDHC and SDHD susceptibility 

genes (50). These patients also have an increased risk of developing 

gastrointestinal stromal tumours (GISTs) as well as renal cell carcinoma (110).  

The presence of an SDHB mutation is associated with an excess mortality and it is 

thus expected for SDHB mutation carriers to have a decreased life expectancy in 

comparison to other SDH gene mutation carriers (62, 110). It is advised for 

patients presenting with an SDHB mutation to undergo an annual to bi-annual full-

body computed tomography (CT) scan or magnetic resonance imaging (MRI). MRI 

and CT scans have excellent sensitivity, but lack specificity and thus should be 

followed by Positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] 

fluoro-D-glucose (18F-FDG) where indicated in order to identify any tumours or 

malignancies (110).  
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In conclusion, we have identified an SDHB founder mutation in South African, 

Afrikaner families identical to the previously reported SDHB exon 3 deletion in the 

Dutch. This mutation is the first of its kind to be reported in South Africa. The 

Afrikaner and Dutch deletion-positive individuals seem to share a common 

haplotype, with the exception of a single microsatellite marker. It is very likely that 

this mutation was introduced into South Africa by the Dutch.  

The mutation-positive Dutch and Afrikaner families thus share common ancestry. 

It is possible that large genomic rearrangements might be responsible for a larger 

proportion of disease-causing mutations than is currently listed. Technology to 

identify large rearrangements should be made readily available and results listed 

on mutation databases. Screening for possible large rearrangements in patients 

with PGL is thus validated, especially for the patients without point mutations in 

the SDH susceptibility genes. These results hold great promise for future 

predictive testing of PGL in family members, facilitating early diagnosis of PGL, 

reducing morbidity and mortality. This will ensure better clinical management of 

patients and their families. 
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Chapter 4: Conclusions 

 

Paraganglioma is a very rare disease with only an estimated 3-8 cases per million 

annually, however it may lead to significant morbidity. These tumours grow very 

slowly and are mostly only identified when the tumour has grown substantially, 

they may also become malignant. Early treatment of these tumours may result in a 

significant decrease of morbidity and mortality through the identification of at-risk 

individuals who need proper surveillance and treatment. It is thus very important to 

identify at-risk individuals as it may lead to early detection of the disease as well 

as appropriate clinical intervention for the patient and his/her family members.  

It is believed that SDH-tumourigenesis is associated with the HIF/angiogenesis 

pathway but it is still unclear what exactly the disease-causing mechanism is (8, 

18, 111). The most likely mechanism is that protein truncation causes inhibition of 

succinate-ubiquinone activity leading to accumulation of succinate because the 

oxidation of succinate to fumarate cannot occur (illustrated in section 1.3.2). The 

increased succinate levels block hydroxylation of HIF1 by prolyl hydroxylase which 

stabilises the HIF1α levels before passing through the cell nucleus and combining 

with HIF1β. An active HIF complex is formed which increases the expression of 

factors responsible for angiogenesis, growth and cell division (4). Succinate 

dehydrogenase is part of the Citric acid cycle as well as the electron transport 

chain in which electrons are transferred to ubiquinone and to the other complexes 

in order to produce ATP. This ATP is thus used for energy for most biological 

processes which will then most likely not occur due to the lack of ATP production. 

 

Approximately 35% of all paragangliomas are predicted to be hereditary and 

caused by germline mutations in several susceptibility genes. A large proportion of 

these mutations are frameshift - , missense – and nonsense mutations with large 

rearrangements accounting for only a small proportion of the total mutational 

burden. On average, in the SDHB, SDHC and SDHD genes, large deletions are 

responsible for ~9% of all mutations. This data is based mostly on populations in 

Europe including Dutch, Spanish and French as well as patients from the USA, UK 

and China. No studies on the burden of mutations in the PGL susceptibility genes 

of the South African population have been carried out.  
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Previously, 11 South African families were screened for point mutations in the 

SDHB, -C, and –D genes and only one family carried a disease-causing point 

mutation in the SDHB gene. No other point mutations were identified. 

 

This study aimed to identify disease-causing mutations in 10 South African PGL 

families. At the time SDHAF2 was identified as a PGL susceptibility gene and 

these 10 families were investigated for point mutations in the gene. The exons and 

exon-intron boundaries of SDHAF2 were amplified by PCR, subject to cycle 

sequencing and analysed for mutations. No mutations were identified in any of the 

individuals and thus our focus shifted to the identification of large genomic 

rearrangements in the susceptibility genes. Multiplex ligation-dependent probe 

amplification (MLPA) was used for the identification of large rearrangements in the 

SDHB, -C, -D and SDHAF2 genes. We identified an SDHB exon 3 deletion in all 

10 families. After breakpoint characterisation, the deletion was identified as c.201-

4429_287-933del, a 7905bp deletion in SDHB removing exon 3. This mutation 

causes a truncated protein, p.Cys68HysfsX21. 

 

An identical mutation was also previously identified as a founder mutation in the 

Dutch population. Interestingly, a large number of founder mutations have been 

identified in the SDH genes of the Dutch population. In a previous study it was 

shown that 88.8% of all SDH mutation carriers in the Netherland carry one of six 

Dutch founder mutations of which two were identified in the SDHB gene (112). 

The reason for the prevalence of founder mutations in the Dutch is thought to be 

due to the social segregation of the Dutch society until well into the twentieth 

century. Religious differences mainly caused the segregation of the Dutch society 

creating genetically isolated populations due to the limitation of intermarriage. This 

facilitated the proliferation of Dutch founder mutations.  

 

Haplotype analysis was carried out in order to compare the haplotypes of the 

South African individuals to each other and to the Dutch. The results revealed a 

common haplotype between the South African individuals, although six individuals 

from 3 families seem to have undergone recombination. The South African 

individuals thus share a common ancestor.  
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The haplotype of the South Africans and the Dutch also seem to be identical apart 

from one microsatellite that differs between the two populations. This specific 

microsatellite is the furthest from the gene on the side of the centromere and thus 

the difference in number of repeats is likely due to recombination. This means that 

the SA and Dutch populations share a common haplotype the mutation occurred 

once and was not due to two separate events. The Dutch and SA individuals, 

carrying the identical SDHB deletion, all share common ancestry.  

Mutation analysis was also carried out on 51 seemingly sporadic samples in our 

laboratory and one patient was found to carry the SDHB exon 3 deletion. After 

genetic testing was carried out on other members of her family, the results showed 

that the individual’s father and son carried the SDHB deletion. It is noteworthy that 

at least 50% of the SA families show non-penetrance. Two more families show 

possible non-penetrance although there was not enough information acquired to 

confirm this. The Dutch patients carrying the same mutation also show reduced-

penetrance with only 22% of the patients presenting with a family history of PGL. 

Previous studies show that on average only 31% of SDHB mutation carriers have 

a family history of PGL and/or PCC. This is thus very similar to the SA families of 

whom only 30% seem to show a family history of PGL. The mean age at diagnosis 

of the South African individuals was 37 years. 

 

Abdominal tumours are predominantly the phenotype seen in patients carrying 

mutations in the SDHB gene. The patients carrying the SDHB mutation mostly 

suffered from head-and-neck tumours although 3 families presented with 

abdominal tumours. This might be due to a referral bias due to the fact that all 

patients were referred to us by an otolaryngologist and may possibly explain the 

higher rate of head and neck tumours. Malignant tumours were also identified in 5 

of the 10 families which correlates to previous findings that there seems to be a 

higher incidence of malignancies in patients carrying SDHB mutations than 

patients carrying mutations in any of the other susceptibility genes (50). Individuals 

carrying SDHB mutations thus have a decreased life expectancy in comparison to 

individuals carrying mutations in other SDH genes. An increased risk for the 

development of gastrointestinal stromal tumours (GISTs) as well as renal cell 

carcinoma is also associated with mutations in the SDHB gene (62, 110).  
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It is advisable for patients presenting with an SDHB mutation to undergo a full-

body CT or MRI followed by FDG-PET where indicated to identify any tumours or 

malignancies.  

 

It is apparent in our study that this germline deletion of SDHB exon 3 is linked to 

reduced penetrance with the age of family members presenting with non-

penetrance ranging from 68 years up to 78 years and a mean age of 70 years. 

Patients with SDHB-associated PGL show an increased risk of malignancy when 

compared to patients with mutations in the SDHC, SDHD and SDHAF2 genes. 

Malignancy rates in patients with SDHB mutations reportedly vary from 34 to 70% 

(110). This also seems to be apparent in the SA patients carrying the SDHB 

deletion, due to the fact that five of the ten families (50%) presented with 

malignant tumours. Patients without point mutations in any of the paraganglioma 

susceptibility genes should thus be screened for possible large rearrangements. 

The detection of disease-causing mutations will lead to the identification of 

individuals at-risk of developing PGL, facilitating early diagnosis of PGL and 

reducing morbidity and mortality. This is very important as it may increase a 

patient’s chances of survival and lead to better clinical management of the 

patients as well as their family members. 
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Appendix B 

 

Family Pedigrees and Clinical Information 

 

 

(Pedigrees have been abbreviated, not all spouses and 

unaffected children are indicated) 

 

Key 

 

 

 

   

  

  

        
 

           

 

 

Unaffected Female 

Unaffected Male 

Mutation negative 
- - 

Carotid body PGL 

Glomus Jugulare 

Jugulotympanicum PGL 

Abdominal PGL 

Deceased 

Mutation positive 
+ + 

Proband 

Bil. Bilateral 

Vagus nerve PGL 

Pheochromocytoma 
Dx Age at 

† Deceased 
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Summary of clinical information 
 

 

 

Family 

number 

# Affected 

individuals 

Mean Age 

at Dx 
Anatomical site of tumours 

HGT 1 2 39 yrs Glomus Jugulare and jugulotympanicum 

HGT 2 4 13 yrs 
Abdominal PGL, Bilateral Jugulare PGL, bilateral 

secreting carotid body, Malignant PGL 

HGT 3 2 21 yrs 
Left jugulo-tympanicum PGL, Malignant 

abdominal PGL 

HGT 4 5 54 yrs PGL of carotid body, Glomus Jugulare 

HGT 5 4 47 yrs 
Carotid body PGL, Jugulotympanicum PGL, 

Malignant PGL, Glomus Jugulare 

HGT 8 3 30 yrs 
Glomus Jugulare,PGL of Carotid body and - 

Jugulo-tympanicum 

HGT 9 4 36 yrs 
Carotid body PGL, Malignant PGL, 

pheochromocytoma 

HGT 11 3 30 yrs Abdominal PGL, Carotid body, Malignant PGL 

HGT 13 2 72 yrs PGL of jugulo-tympanicum, Vagus nerve 

HGT 14 5 42 yrs Carotid body PGL, Jugulotympanicum 

HGT 15 1 28 yrs Jugulare PGL 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



88 

 

Family HGT 1 

 

 

 

 

 

 

 

 

 

 

+ 

Dx 

22 yrs 

Dx 

56 yrs 

+ - 
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HGT 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† 47yrs 

Metastatic 

+ 

Secreting 

Bil. 

† 53yrs 

 

Dx 

13 yrs 

Bil. 

+ 
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HGT 3 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dx 

30 yrs 

+ 

+ 

Dx 

13 yrs 

Metastatic 
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HGT 4 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

3 2 

5 3 

Dx 

35 yrs 

38 yrs 

x xx 

xxx 
+ 

Dx 

48 yrs 

Dx 

80 yrs 

† 85yrs
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HGT 5 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

- - - - 

Dx 

38 yrs 

Dx 

61 yrs 

x xx x xx 

Dx 

42 yrs 

metastatic 

† 44yrs 

+

++
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HGT 8 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

_ 

_ 

_ 

Dx 
43 yrs 

_ _ 

+ _ + 

Dx 
18 yrs 
26 yrs 
31 yrs 

+ 
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HGT 9 

 

 

 

 

 

 

 

 

 

                                                 

 

 

 

 

 

 

  

+ 

Dx 
38 yrs 

Metastatic 

+ 

† 41 yrs 

+ 

Dx 
35 yrs 
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HGT 11 

 

 

 

 

 

 

 

  

  

 

 

 

 

  

 

 

 

_ _ 
+ 

_ 

+ 

Dx 
32 yrs 

Bil. 

+ 

Dx 
29 yrs 

+ + 

+ 

Metastatic 
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HGT 13 

Dx 
72 yrs 

+ + 

+ 
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HGT 14 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

+ + 

+ 

Dx 
29 yrs 

8 

Dx 
49 yrs 

Dx 
48 yrs 

+ - 

+ 

- + 

+ 

+ 
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HGT 15 (SGT 58) 

 

 

- 

+ 

Dx 

28 yrs 

+ 

+  
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APPENDIX C 

 

 

Detailed recipes of buffers, Agarose Gel and 

DNA extraction solutions 
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Lysis buffer 

0.32M Sucrose 

10mM Tris-Base 

5mM MgCl2 

1% Triton-x-100 

(pH 8) 

 

 

Suspension buffer 

10mM Tris-Base 

0.15M NaCl 

5mM EDTA 

pH8 adjusted with HCL 

 

 

10% SDS 

For 100ml : 10g SDS 

                    100ml sterile H2O 

 

 

Chloroform:Isoamylalcohol (24:1) 

For 1000ml: 960ml Chloroform 

  40ml IsoAmylalcohol 

 

 

Tris-EDTA buffer 

10mM Tris-Base 

1mM EDTA 

pH8.2 adjusted with HCL 

 

 

10x TBE Buffer 

TRIS 216g 

0.5M EDTA (pH8) 80ml 

Boric acid 110g 

Make up to 2l (pH8) 

 

 

1x TBE Buffer 

Make a 10x dilution of the 10x TBE buffer and use for gel electrophoresis 
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Agarose gel (1%) 

1g Agarose (Gibco BRL, Life Technologies) 

100ml 1x TBE buffer 

100µl (1000x) EtBr/Sybr Safe 

 

 

Agarose gel (1.6%) 

1.6g Agarose (Gibco BRL, Life Technologies) 

100ml 1x TBE buffer 

100µl (1000x)EtBr/Sybr Safe 

 

 

10x Agarose loading buffer 

15% Ficoll (Type 400) with ddH2O made up to a volume of 10ml 

0.25% bromophenol blue 
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Appendix D 

 
Primer sequences and optimised PCR 

conditions 
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                   SDHAF2 PCR conditions 

Exon [MgCl2] Tann Product Size 

1 1,5mM 61
o
C 242bp 

2 2,5mM 60
o
C 786bp 

3 1,5mM 57
o
C 215bp 

4A 1,5mM 58
o
C 663bp 

4B 1,5mM 58
o
C 614bp 

 

 

                        Primers used for Long Range PCR across exon 3 

Primer Sequence (5’–3’) 

SDHB 2F TTTTTCCTTTTTGTGAACTTT 

SDHB 4R TGCAAATAAAAACAAAACCA 

SDHB_2162F CCAGTCCATGAAAGGCA 

SDHB_2164R GCTCCATGTGTCACGTGTTT 

 

 

    

Primers Tann 
Product 

Size 

SDHB 2F& 4R 45
o
C 16360bp 

SDHB_2162F& 2164R 55
o
C 9523bp 

 

 

 

 

Primer Sequence (5’-3’) 

1F 
1R 

ACCTTCCGGCTCAGCTC 
TATCGGGCAGACGAACTC 

2F 
2R 

GTTGACCTTCCCAGGCTC 
GAGGTTCAGCTGCTTTTCTG 

3F 
3R 

GACACAGCCTTCTCAACCTC 
CTCAAATCAGCCTAAACTGTCC 

4AF 
4AR 

CCCTGGTATAGGCTAACATCG 
TGAGTACACTTGGGCTGAGG 

4BF 
4BR 

AGCTCTGAGCCTCAAAAGTG 
GAAGACTGTAGGAATGAGGGG 

SDHAF2 PCR primer sequences 

Long Range PCR conditions 
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  Genotype analysis PCR Primer sequences(microsatellites) 

Microsatelite Forward Primer (5’-3’) Reverse Pimer (5’-3’) 

D1S436 TGAATGTGTCTCCAGTGTTAGC CTGTAGAGCAATCTGGCAATATGT 

D1S3669 TTTTGTTTCTTGATCTGGGC TGTTAAACTTTTCACTGAGGTATAA 

D1S2697 GGGCCACAGAGTGAGAC GGCAGAGGTGGTTAAGG 

D1S170 CACTCAGGCAGGTGCATG GAATCTTGTGCATGGTGTGG 

D1S2826 TCCCAGGTCCGAGAAGAACAGG GCCCCTGGTCGTGCTGGTTTT 

D1S2644 TGCAACCCACCTGAATGA TACGTGAAGTGCCAGCACA 

 

 

 

 

Primer Sequence (5’-3’) 

B_IVS1 F TCCTCTCACTTCCTCCCAAATACCAC 

B_IVS1 R TCACTACAGCCTCTGATTCGTCTCG 

B_IVS2 F TGTAAGCTGAGGGCTGTTCCAAGC 

B_IVS2 R TCGGTCCAAAACTGTGGTCTGTGC 

B_IVS3 F AGCTCTCTGCTGGGTGAACTTGC 

B_IVS3 R ACATGCTGAGGGAGACACTGTACC 

B_IVS5 F TTGACCCAGTGTGGCAGGTGTG 

B_IVS5 R CCTGGAATGAGGTCAAGACGGGA 

B_IVS6 F GGGCCTGGTTTCCTTCATTGCC 

B_IVS6 R ACAGCTTCCAATCTCATAGCTGGGC 

B_IVS7 F GAGGGGAACCTTCACTAACGTC 

B_IVS7 R AGGGGTTGGGCTAAGGGCTCTCTTC 

 

 

 

Primer [MgCl2] Tann Product Size 

D1S436 2mM 54
o
C 200-240bp 

D1S2826 2mM 60
o
C 288bp 

D1S170 1,5mM 58
o
C 217bp 

D1S2697 2mM 61
o
C 273-281bp 

D1S2644 1,5mM 58
o
C 215-230bp 

D1S3669 2,5mM 52
o
C 179-211bp 

SDHBGenotype analysis PCR conditions (Microsatelites) 

Genotype analysis PCR Primer sequences(SNPs) 
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Primer [MgCl2] Tann Product Size 

B_IVS1 2mM 56
o
C 372bp 

B_IVS2 1,5mM 58
o
C 517bp 

B_IVS3 1,5mM 58
o
C 365bp 

B_IVS5 1,5mM 59
o
C 372bp 

B_IVS6 3mM 59
o
C 303bp 

B_IVS7 1,5mM 59
o
C 550bp 

Genotype analysis PCR conditions (SNPs) 
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Appendix E 
 

 

MLPA probe ligation sequences and kit 

components 
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SDHB probes according to chromosomal location 

SALSA 

MLPA 

probe 

SDHB 

Exon 

Ligation site 

Nm_003000.2 
Partial Sequence 

7801-L8397 Promotor 
1052 nt before 

exon 1 
CAGGATGATT-GCTTGAGCCC 

7342-L6974 Exon 1 
26 nt after 

exon1 
TCCTGACTTT-TCCCTCTCTG 

7803-L6975 Exon 2 227-228 AGCCCAGACA-GCTGCAGCCA 

7344-L6976 Exon 3 372-373 TGGTATTGGA-TGCTTTAATC 

7345-L8400 Exon 4 461-462 TGTGCAATGA-ACATCAATGG 

7804-L6978 Exon 5 619-620 AGAAGGATGA-ATCTCAGGAA 

7347-L6979 Exon 6 
702-701 

reverse 
ATGCACTCGT-AGAGCCCGTC 

7348-L6980 Exon 7 910-911 AAGGACCTGT-CCTAAGGTAC 

7349-L6981 Exon 8 959-960 AAGAAAATGA-TGGCAACCTA 

 

 

SDHC probes according to chromosomal location 

SALSA MLPA 

probe 

SDHC 

Exon 
Ligation site Partial Sequence 

07350-L16209 Promotor 
429 nt before exon 1 

reverse 

TTGGCCGGTTGA-

GACCCCGAAGAG 

11609-L12369 Exon 1 
62 nt after exon 1 

reverse 

TCAGCAAAACGT-

GAGGGGCCAGTT 

07352-L14876 Exon 2 55-56 
CTTGCAGACACG-

TTGGTCGTCATT 

14642-L16292 Exon 3 117-118 
AGTGCTGTTCCT-

TTGGGAACCACG 

14641-L16291 Exon 3 91 nt after exon 3 
CTTCCCTCACTT-

TTACTCAACCAA 

07354-L06986 Exon 4 219-220 
AGTTGGTCTCTT-

CCCATGGCGATG 

14644-P0226- 

L16294 
Exon 4 

15 and 51 nt after 

exon 4 

TGTATATGTGTT-36nt spanning 

oligo-CTGTTTCATTGG 

07355-L06987 Exon 5 283-284 
GGGTCTCTCTTT-

TTGGCATGTCGG 

07356-L06988 Exon 6 446-447 
GATGTGGGACCT-

AGGAAAAGGCCT 
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SDHD probes according to chromosomal location 

SALSA 

MLPA 

probe 

SDHD 

Exon 
Ligation site Partial Sequence 

07357-

L16211 
Promotor 

375 nt before 

exon 1 

TTCGTGAGGGGA-

ATGGGATGCAGC 

07358-

L14875 
Exon 1 112-113 

CTAGGAGGCCGA-

GGTGAGGGGTCT 

07359-

L06991 
Exon 2 119-120 

CCTCAGCTCTGT-

TGCTTCGAACTC 

07360-

L16212 
Exon 3 

2 nt after exon 

3 

ATGGTCACTGGC-

AAGTATAGCAAT 

07361-

L06993 
Exon 4 862-863 

AAGAGAATCCAA-

CTTTATTACGAT 

 

 

 

SDHAF1 probes according to chromosomal location 

SALSA 

MLPA 

probe 

SDHAF1 

Exon 
Ligation site Partial Sequence 

14638-

L16288 
Exon 1 542-543 

AGCTTGACGAAT-

TGGGGATGTCAG 

 

 

SDHAF2 probes according to chromosomal location 

SALSA 

MLPA 

probe 

SDHAF2 

Exon 
Ligation site Partial Sequence 

14639-

L16289 
Exon 1 47-48 

CAGTGTTCTCGA-

CTTCGTCGCTGG 

14643-

L16293 
Exon 3 328-329 

GAAAAGCAGCTG-

AACCTCTATGAC 

14646-

L16296 
Exon 4 519-520 

TGAAAAGCCACG-

TTGAGCTGTGCT 
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SALSA MLPA kit 

component 
Ingredients 

SALSA MLPA buffer KCl, Tris-HCl, EDTA and PEG-6000.pH 9.5 

SALSA Ligase-65 
Glycerol, BRIJ (0.05%), EDTA, Beta-

Mercaptoethanol (0.1%), KCl, Tris-HCl. pH 7.5 

Ligase-65 buffer A NAD (bacterial origin). pH 3.5 

Ligase-65 buffer B Trizma, Tween-20, Nonidet-P-40, MgCl2. pH 8.5 

SALSA PCR buffer 
Tris, KCl, Tween-20, Nonidet P-40, Trizma, MgCl2. 

pH 8.5 

SALSA PCR primer mix 
FAM, Cy5.0, IRD800 or other fluorescent labelled 

primers, dNTPs, Tris, EDTA,. pH 8 

SALSA polymerase 

Glycerol, BRIJ (0.5%), EDTA, DTT (0.2%), KCl, 

Tris-HCL, Polymerase enzyme (bacterial origin). pH 

7.5 

SALSA Enzyme dilution 

buffer 
Tris-HCl, KCl, EDTA, BRIJ (0.04%). pH 8.5 

Probemix 
Tris, EDTA, synthetic oligonucleotides, 

oligonucleotides from purified bacteria. pH 7.5 
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APPENDIX F

MLPA ResultsSpreadsheets
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HGT 1:1

HGT 1:2
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HGT 2:1

HGT 3:1  
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HGT 4:1

HGT 5:1
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HGT 8:1

HGT 8:2
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HGT 9:1

HGT 9:2
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HGT 11:1

HGT 11:2
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HGT 13:1

HGT 14:1
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HGT 14:2

HGT 14:3
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APPENDIX G 

 

 

Long-range PCR optimisation   
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AccuprimeTaq was used in this reaction which yielded brighter bands and no non-

specific amplification(figure S1B). The wild-type product did not amplify in the 

patient samples neither in the control samples. The AccuprimeTaq was used for 

identification of the deletion fragment from this point forward and not the Failsafe 

Taq. 

 

 

 

  

Figure S1: Comparison of the ~1.6kb pcr product yielded with Failsafe - and Accuprime Taq 

Products obtained with Failsafe Taq (A) are much fainter than products obtained with    

AccuprimeTaq (B). MM = Molecular marker; Lanes 1-2 and 5-7: deletion positive samples;     

Lanes 3-4: Normal controls; Lane 7: Blank sample 
 

MM   1     2      3     4     5      6     7 

1650bp 

1000bp 

 

 

100bp 

1650bp 

1000bp 

 

 

100bp 

MM 1     2      3     4     5     6     7 
A B 
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Appendix H

Haplotype analysis of families carrying the
SDHB exon 3 deletion

(Pedigrees have been abbreviated, not all spouses and unaffected
children are indicated)

Key

Unknown sex, Affected

Mutation positive
+ +Unaffected Male

Unaffected Female

Mutation negative
--

Affected

Unknown sex, Unaffected
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Microsatellite markers and intragenic SNPs used for
haplotype analysis

D1S436
D1S2697
D1S170

rs12045097
rs2871775
rs2235930
rs2647162

rs12142244
rs2235929

rs11577071
rs4920390

rs10887990
rs11203284
rs11203285
rs10887992
rs10887993
rs11203287
rs9435747

rs11582579
rs6690934
D1S3669
D1S2826
D1S2644

Deletion

Grey shaded allele represents the common disease haplotype of the individuals.
Non-shaded allele represents the non-diseased haplotype of individuals
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HGT 1
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HGT 3
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HGT 5
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HGT 8
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HGT 14
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19

11
14
16

14.10 -++-+
14.8

+
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Inferred Haplotypes

HGT 2

HGT 4

14
14
16
T
C
C
A
T
C
-
-
-
C
A
T
C
T
G
A
A
14
15
17

17
12
15
T
C
C
A
T
C
G
G
G
C
A
T
C
C
A
C
G
11
12
14

4.1 +

17
12
15
T
C
C
A
T
C
G
G
G
T
G
C
T
C
A
C
G
10
16
14

2.1

14
14
16
T
C
C
A
T
C
-
-
-
C
A
T
C
T
G
A
A
14
15
17

+
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Dutch Individuals

13
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15
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A
T
C
G
G
G
T
G
C
T
C
A
C
G
11
12
19

14
14
16
T
C
C
A
T
C
-
-
-
C
A
T
C
T
G
A
A
14
15
20

D1

13
13
15
T
C
C
A
T
C
G
G
G
T
G
C
T
C
A
C
G
9

17
13

14
14
16
T
C
C
A
T
C
-
-
-
C
A
T
C
T
G
A
A
14
15
20

D2

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 


	00 Front
	Title page final print.pdf
	Abstract.pdf
	summary final print.pdf

	01 Dissertation
	02 Back
	Appendix A final print.pdf
	Appendix B final print.pdf
	Appendix C final print.pdf
	Appendix D final print.pdf
	Appendix E final print.pdf
	APPENDIX F-newest.pdf
	APPENDIX G final print.pdf
	Appendix H-MSc dissertation.pdf




