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Summary 

 

In Chapter 1, we give a brief introduction to statistical process control (SPC) and provide definitions 

as well as background information regarding the research conducted in this mini-dissertation. This will 

aid in familiarizing the reader with concepts and terminology that are helpful to the following chapters. 

The Phase II Shewhart ( )RX ,  charting scheme for jointly monitoring the process mean and standard 

deviation is usually implemented using 3-sigma limits for the individual component charts. There are 

three major issues with this: (i) It is assumed that the charting statistics are normally distributed; (ii) 

Multiple testing (or the multiplicity issue), since two charts are used at the same time to make decisions 

about the in-control (IC) state of the process, thus the false alarm rate (FAR) is inflated; (iii) The effect 

of parameter estimation, which is known to degrade chart performance. Hence, in Chapter 2 and 

Chapter 3, we illustrate the severity of these three issues on the IC properties of the ( )RX ,  charting 

scheme when parameters are known (i.e. Case K) and when parameters are unknown (i.e. Case U), 

respectively. For both Case K and Case U, a method is presented for deriving the new charting 

constants taking proper account of the three issues listed above. Furthermore tables of the new charting 

constants are provided for both Case K and Case U, for some specified nominal IC average run-length 

(ARL) and sample sizes to aid in implementing the ( )RX ,  chart in practice. 

Previous applications of the ( )RX ,  chart to survey data ignore the non-normality of the survey scales, 

ignore the multiplicity issue, ignore the effects of parameter estimation and do not take advantage of 

the correlation structure inherent in survey scales (see applications in Marks and O’Connell (2003), 

Maguad (2005, 2007)), as a result the FAR is inflated. In Chapter 5, we provide a case study where we 

apply the ( )RX ,  charting scheme to student evaluation of teaching (SET) survey data. In our case 

study, factor analysis is used to reduce the dimension of the data and to take account of correlation. 

Then the data is transformed to near normality using the square root transformation. The transformed 

data is then subjected to Phase I and Phase II analysis using ( )RX ,  charting scheme. Our Phase II 

analysis uses the new charting constants in Chapter 3, which we derived to mitigate the effects of 

multiplicity, the standard use of 3-sigma limits, and parameter estimation. As a result, we strongly 

believe that our method in this case study keeps the FAR at the nominally expected level compared to 

the methods used in previous applications. 
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Furthermore, as a prelude to our case study in Chapter 5; in Chapter 4 we review the non-standard 

applications of SPC charts reported in literature from 2000 to 2012, inclusive. We classify them into six 

groups according to the application domain. For each domain, the nature of the application is described 

and analysed with respect to the control chart technique used, the purpose to which the control chart 

has been applied, the performance measures used, the units of analysis and the data sources. We 

summarise some findings of our preliminary analysis. In particular, we uncovered two additional 

application domains that were missing in the review of MacCarthy and Wasusri (2001). The two 

additional application domains are animal production and personal everyday situations. 

 

Finally, Chapter 6 wraps up this mini-dissertation with a summary of the research carried out and 

offers concluding remarks concerning unanswered questions and / or future research ideas. 
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Chapter 1 
 

Introduction 
 

In this chapter, we establish the importance of Statistical Process Control (SPC). We provide some 

notation and definitions. Specifically, we distinguish between (i) common cause and assignable cause 

variation (ii) various types of data (iii) Phase I and Phase II analysis (iv) various types of control charts. 

Finally in Section 1.11, Section 1.12 and Section 1.13, we present our research focus and objectives. 

 

1.1. Notation 

 

The table below lists some of the abbreviations and notation that will be used throughout the 

dissertation. 

Table 1.1. Abbreviations and notation 
 

SPC Statistical process control 
QC Quality control 
pmf Probability mass function 
cdf Cumulative distribution function 
n Sample size / rational subgroup size 

 Random variables in a sample 
 Observations in a sample 

IC In-control 
OOC Out-of-control 
ARL Average run-length 
ARL0 Nominal average run-length 

ICARL In-control average run-length 
AICARL Attained in-control average run-length 
SDRL Standard deviation of the run-length 
MRL Median run-length 
FAR False alarm rate 
FAR0 Nominal false alarm rate 
AFAR Attained false alarm rate 
FAP False alarm probability 
UCL Upper control limit 
CL Center line 

LCL Lower control limit 
SET Student evaluation of teaching 

CUSUM Cumulative sum 
EWMA Exponentially weighted moving average 
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1.2 Statistical process control 

 

All work done in order to turn an input into an output for a customer is a process (Stapenhurst (2005)). 

Process outputs may be manufactured goods such as automobiles, computers, clothing, as well as 

services such as the generation and distribution of electrical energy, public transportation, banking, 

retailing and healthcare. It is always important to keep the customer happy and satisfied; and this can 

be done by controlling and improving the quality of manufactured goods and services. Quality 

improvement is the reduction of the variability in processes and products (outputs) (Montgomery 

(2013), Chapter 1, page 7). Quality control (QC) refers to the control of quality by any means. 

Statistical process / quality control (SPC/SQC) refers to the use of statistically based tools and 

techniques principally for the improvement of quality and productivity (Stapenhurst (2005)). SPC 

techniques have been applied primarily in manufacturing processes. However, with the availability of 

commercial software, SPC applications have moved far beyond manufacturing into biology, medicine, 

athletics, finance, legal services and other areas.  

 

1.3 Common and assignable cause variation 

 

Every process, whether manufacturing or non-manufacturing, shows some variation in its output. There 

are two types of variation, namely:  

 

i. common cause (chance cause) variation and 

ii. special cause (assignable cause) variation.  

 

Common cause variation is the natural or inherent variation that occurs in any process, whereas 

assignable cause variation is not inherent to the process. Assignable cause variation can be a result of 

factors (assignable causes of variation) which can be identified and eliminated, such as operator fatigue 

or defective raw materials. The assignable cause variation needs to be reduced so that the quality of the 

output of a process may be improved (see Montgomery (2013), Chapter 5, page 189).  
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1.4 Types of data 

 

In this section we distinguish between the various types and classes of data prevalent in SPC. 

 

1.4.1 Attributes and variables data 

 

To understand variability and thus improve quality, a suitable process or product quality characteristic 

must be measured. In other words data must be collected from the process. In a process, data can be 

continuous or discrete (see Montgomery (2013), Chapters 6 & 7). 

 

Variables data usually result from measurements where you can choose the precision, such as cost, 

weight, length, time, volume, porosity and chemical concentration, which are expressed in a numerical 

measurement. In view of that, variables data is used to refer to continuous measurements. Attributes 

data are so-called because they are based on whether an item has an attribute or not. Attribute data are 

usually counts, for example, the number of flaws or errors on a piece of paper. In view of that, 

attributes data is used to refer to discrete measurements. 

 

1.4.2 Independent and autocorrelated data 

 

The majority of research on SPC control charting techniques has considered the case where the process 

data is independently distributed, i.e. uncorrelated. In the presence of autocorrelated data the control 

charting technique becomes more involved. A standard approach to dealing with autocorrelated data is 

to use residual control charts. The residual control charts were first introduced in Alwan and Roberts 

(1988). To implement residual charts, an appropriate time series model is fitted to the autocorrelated 

observations and the residuals are then used in the construction of the chart. Although autoregressive 

moving average (ARMA) models are popular in SPC techniques, any suitable time series model can be 

used such as an autoregressive (AR) model, a moving average (MA) model or an autoregressive 

integrated moving average (ARIMA) model. An interested reader is referred to Psarakis and 

Papaleonida (2007) for a detailed discussion on SPC procedures for monitoring autocorrelated 

processes. 

 

 

3 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1.5 In-control and out-of-control  

 

A process is said to be in-control (IC) when only natural variation (i.e. common causes variation) is 

present and a process is declared to be out-of-control (OOC) when unusual variation (i.e. special causes 

variation) is present. A timely identification of the sources of special cause variation is very important 

to maintain the quality of the output. 

 

1.6 Control chart 

 

Control charts are an effective tool in SPC for detecting changes in processes that may affect the 

quality of the products. Three horizontal lines plus the charting statistic constitute a control chart. The 

three lines are a center line (CL), an upper control limit (UCL) and a lower control limit (LCL). One of 

the control limits may be omitted if there is no interest in it, which would be the case when an upward 

(or downward) shift is less (or more) likely than a downward (upward) shift. The CL is typically taken 

to be the average of the statistic being plotted and the control limits are typically at distances of 3 

standard deviations (of the plotting / charting statistic) above and below the CL. The use of control 

limits other than 3-sigma limits have been advocated in the literature; see, for example, Nelson (2003). 

The charting statistics which are calculated from individual or subgroups of observations are plotted in 

the time order in which they are sampled from the process so that the time behavior of the process can 

be observed visually. If a charting statistic plots within the control limits, then there is no signal and the 

process is deemed stable or IC. On the contrary, if a charting statistics plots on or above the UCL; or, 

on or below the LCL then there is a signal and a search for assignable or special causes can be initiated. 

Once the special cause is detected it must be rectified. A typical two-sided Shewhart-type control chart 

is illustrated in Figure 1.1. 
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Figure 1.1. A typical two-sided Shewhart-type control chart 

 

1.7 Rational subgrouping 

 

In SPC applications subgroups should be selected such that if there is an assignable cause leading to an 

OOC signal, the chance of differences between the subgroups should be greater than the chance of 

differences within the subgroups. Stated differently, the variation among the readings within a 

subgroup should be due to the natural process variation only and there should be no opportunity for 

assignable causes to add to this variation (Montgomery (2013), Chapter 5). An example of rational 

subgrouping would be to sample from each machine if several machines are being used to produce an 

output. In other words, the output from each machine should be monitored separately instead of 

sampling from the items after the outputs of the machines have been pooled together. If the outputs of 

the machines have been combined before sampling, such subgroups will not be able to detect machine-

to-machine differences. This is referred to as a masking effect, since the machine-to-machine 

differences will effectively be masked. In some cases it is not possible to form rational subgroups and 

in these cases it is appropriate to take individual observations (n = 1). 
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1.8 Phase I and Phase II  

 

Unlike when the parameters are known (denoted by Case K), when process parameters are unknown 

(denoted by Case U), control charts can be applied in a two phase procedure: Phase I (the retrospective 

phase) and Phase II (the prospective phase). Phase I is an exploratory phase and some of the main aims 

include: 

 

i. doing some preliminary (statistical) analyses, planning, administration, design of the study, data 

collection and other exploratory work such as goodness of fit analysis, factor analysis etc.,  

ii. assessing the stability of the process, 

iii. understanding the process variability, and 

iv. providing estimates of any unknown process parameters once all the observations associated 

with assignable causes have been removed from the Phase I sample.  

 

The reader is referred to the detailed literature review by Chakraborti et al. (2009) for the technical 

details regarding performance measures and other issues related to Phase I control charting. Once an IC 

reference sample is established, Phase II analysis can start. In Phase II, future samples are monitored 

for departures from the IC state.   

 

It is well-known that the use of estimated parameters significantly affects the statistical performance of 

Phase II charts (see Jensen et al. (2006)), making Phase I analysis, a phase of great importance. Even 

though this is the case, the majority of research on SPC control charting techniques has considered the 

development of Phase II charts only. In this dissertation, our focus is primarily on Phase II charts which 

are used for future process monitoring, however, Phase I will be briefly considered in Chapters 5. 

 

It should be noted that some authors have advocated the use of self-starting charts (see, for example, 

Hawkins (1987)) in order to avoid the need for Phase I. However studies on self-starting charts have 

shown that they do not perform well if the process is initially unstable. This being said, it is important 

to note that self-starting charts can be useful in some cases such as low-volume, short-run processes 

and in start-up situations. 
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1.9 Control chart performance measures 

 

Performance measures are used to study and compare the performance of various control charts. The 

run-length (denoted by N) of a control chart is a random variable that represents the number of plotted 

statistics until the control chart signals an OOC event for the first time. The average run-length (ARL) is 

the expected number of subgroups to be plotted until the chart signals for the first time (see Human and 

Graham (2007)). In Phase II effective charts should have a small out-of-control average run-length 

(OOCARL) while maintaining a large in-control average run-length (ICARL). Phase II charts are 

usually designed to have a pre-specified or nominal ICARL value 3700 =ICARL .   

 

The false alarm rate (FAR) is the probability that a single charting statistic plots on or outside the 

control limits when the process is actually IC. When the IC run-length distribution is geometric, then 

the  FAR can be expressed as  

 

ICARL
FAR 1

=  (1.1) 

 

Hence, if the nominal FAR value is 0027.00 =FAR , then the nominal ICARL is equal to 

370.4  0.0027 / 1 0 ==ICARL , which is the case for the typical Shewhart X chart with 3-sigma limits 

with known parameters. This means that, even if the process remains IC, an OOC signal will be 

generated once every 370 samples, on average. 

 

There are other measures of Phase II chart performance such as the standard deviation of the run-length 

(SDRL) and percentiles of the run-length such as the median run-length (MRL). The idea of looking at 

percentiles, in SPC, goes back to Barnard (1959) and more recently researchers such Khoo et al. (2011) 

have advocated the use of percentiles in SPC applications. 

 

In Phase I, the run-length distribution and its properties are not the recommended design and evaluation 

measures, because in Phase I the signaling and non-signalling events are not independent. Furthermore, 

the plotting statistics are plotted and compared simultaneously with the same control limits (i.e. 

multiple testing). Hence, the false alarm probability (FAP), which is the probability that one or more 
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plotting statistics plot outside the control limits, is the recommended control chart design and 

evaluation metric in Phase I  (see Chakraborti et al. (2009)).   

 

1.10 Types of control charts 

 

In this section we distinguish between the different types and classes of SPC charts. We give some of 

their relative advantages and mention situations where each could be used. 

 

1.10.1 Shewhart, CUSUM and EWMA control charts 

 

There are three main classes of control charts: the Shewhart chart, the cumulative sum (CUSUM) chart 

and the exponentially weighted moving average (EWMA) chart. Shewhart-type charts (see Shewhart 

(1926)) make the decision of whether the process is IC based on only the most recent information. In 

contrast CUSUM-type charts (see Page (1954)) and EWMA-type charts (see Roberts (1959)) are based 

(in different) ways on past information along with current information. Owing to this feature, these 

charts are more efficient to detect small and moderate shifts. In this dissertation, we will be focusing 

mostly on Shewhart-type charts. Since we focus mainly on Shewhart-type control charts, some 

background is given here.  

 

Assume that  denote a random sample of size 1≥n   from the process at time  1,2,3,…. 

Let T be a sample statistic that measures some quality characteristic of interest and suppose that the 

mean and standard deviation of T are given by Tu and Tσ , respectively. Then the control limits and CL 

are given by 

TT kUCL σµ +=  

                TCL µ=   (1.2) 

TT kLCL σµ −=  

 

where  > 0 is the charting constant which is a design parameter that represents the distance of the 

control limits from the CL, expressed in standard deviation units. As mentioned in Section 1.6, k is 

typically taken to be 3, however the use of control limits other than 3-sigma limits have been advocated 

in the literature; see, for example, Nelson (2003). 
8 
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1.10.2 Parametric and nonparametric control charts 

 

Parametric control charts are based on some particular distributional assumption for the underlying 

process distribution, such as normality. However, in many applications there is not enough information 

to justify such an assumption and control charts that do not depend on a particular distributional 

assumption are desirable. Nonparametric or distribution-free control charts can serve this broader 

purpose. For detailed overviews on nonparametric control chart literature, the reader is referred to 

Chakraborti et al. (2001), Chakraborti and Graham (2007) and Chakraborti et al. (2011). 

 

1.10.3 Variables and attributes control charts 

 

There are a variety of different types of control charts. Selecting the appropriate chart for any particular 

set of data is very important. Control charts used to analyze variables data can be based on the sample 

mean ( X ) or the sample median (
~
X ) when monitoring location and the sample range ( R ), the sample 

standard deviation ( S ) or the sample variance ( 2S ) when monitoring spread. 

 

Attributes charts include the p (fraction nonconforming) chart, the np (number nonconforming) chart, 

the c (number of nonconformities) chart and the u (average number of nonconformities per unit) chart 

and they are used for monitoring data that are counted. The p and np charts are used when the counts 

are assumed to have a binomial distribution. However, the c and u charts are used when the counts are 

assumed to have a Poisson distribution.  

 

1.10.4 Univariate and multivariate control charts 

 

The majority of research on SPC control charting techniques has considered the development of 

univariate charts where only one process characteristic is monitored at a time. Multivariate control 

charts are appropriate when two or more correlated process characteristics have been measured and 

there is a need to monitor them simultaneously, because monitoring these quality characteristics 

independently would be misleading. See Bersimis et al. (2007) for a detailed overview on multivariate 

control charts up to the year 2007. 
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1.11 Non-standard applications of SPC charts to customer satisfaction survey data 

 

The primary application domain for SPC charts has been in process control and process improvement 

in manufacturing business. Recently, applications of control charts have been reported in domains 

outside of conventional production systems. These applications that cannot be considered as 

conventional applications in manufacturing processes or production systems, although there might be 

similarities in some cases, are defined as non-standard applications (MacCarthy and Wasusri (2001)). 

 

MacCarthy and Wasusri (2001) reviewed non-standard applications of SPC charts reported in literature 

from the period 1989 to 2000, inclusive. In their review, they identified the types of non-standard 

problems to which SPC charts have been applied. They highlighted the issues that arise in non-standard 

application domains and provided some guidance to practitioners who want to implement SPC charts 

more generally. One important group of applications they mentioned is the application of SPC charts to 

monitor the level of customer satisfaction, typically from a service operation. The source of data for 

this application is typically from a survey. Thus, as expressed by MacCarthy and Wasusri (2001) “…it 

may be difficult to use the raw data from surveys, which are likely to be ordinal, with SPC charts that 

are designed for ratio scale data. The nature of data obtained from surveys may not be normally 

distributed and the correlation between the questions potentially complicates the problem.” Therefore, 

more advanced techniques and statistical expertise may need to be applied to prevent high false alarm 

rates.  

 

Wardell and Candia (1996) showed that the effects of using the classical X  chart based on sample 

ranges to ordinal survey data are to increase the false alarms rate. They also showed that an X  chart 

with limits based on subgroup standard deviations is much more robust to the effects of the non-

normality of survey data. However, they argued that the implementation of the X chart might be 

complicated by the large, variable subgroup sizes typical of survey data. They then proposed two 

alternative charts, the 2χ control chart and the extension of the p chart (called the modified p chart). 

Both the 2χ chart and the modified p chart can easily handle variable sample sizes, and are based on 

the actual distribution of survey data. However, as noted by Ding et al. (2006), these charts are 

complex and are not well established in literature. Another alternative method of dealing with moderate 

to severe non-normality, as noted by (Montgomery (2013), Chapter 5), is to “…transform the original 

data (say by taking logarithms) to produce a new set of data whose distribution is closer to normal”. 
10 
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To reiterate Wardell and Candia (1996) only isolated the effects of non-normality of survey data on the 

X  chart. They ignored the correlation issue, the multiplicity issue (combined use of the X  and R 

chart, see Section 1.12) and parameter estimation; which is known to degrade chart performance, see 

for example Jensen et al. (2006).  

 

As mentioned before survey questions are usually correlated. Monitoring correlated quality 

characteristics independently can be very misleading (see Montgomery (2013), Chapter 11). This 

suggests the use of multivariate charts (see Section 1.10.4). However, it is known that as the number of 

variables grows, the traditional multivariate control charts lose efficiency with regard to shift detection 

(Montgomery (2013), Chapter 11). An accepted approach in these situations is to reduce the 

dimensionality of the data by using principal components or factor analysis. Montgomery (2013), 

Chapter 11, page 533 shows how this can be done. Jensen and Markland (1996) used factor analysis to 

reduce a 22 items of a service quality survey questionnaire to 4 factors. Using these 4 factors, they 

constructed a multivariate 2T control chart to detect highly satisfactory and unsatisfactory perceptions 

of overall service for individual customers. For customers found to be out of control on the 2T control 

chart, a set of control charts, relating to the 4 factors were constructed to find out the origin of the 

problem.  

 

Next we briefly describe the issue of multiplicity. 

 

1.12 Two chart joint monitoring of mean and variance of a normal population  

 

Usually the X  chart is used together with the R (or S) chart to monitor the process mean and standard 

deviation of a normally distributed process, respectively. The reason for this is that the control limits 

for an X  chart are functions of the IC standard deviation, hence an increase in the variability may lead 

to a false signal on the X chart, and likewise, a decrease in variability may cause the X  chart to fail to 

signal even though a shift in the mean has also occurred (Hawkins and Deng (2009)). In spite of this, in 

practice, the mean and variance charts are constructed and evaluated completely independently. As 

noted by Gan (1997), doing so is “basically looking at a bivariate problem using two univariate 

procedures.”, and may give misleading results. Furthermore, as expressed by McCracken and 

Chakraborti (2013) “schemes consisting of two independent charts can be affected by the classical 

‘multiple testing’ problem, and if adjustments are not made to these charts control limits to account for 
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this fact, the false alarm rate (FAR) is inflated, since the process is deemed to be OOC whenever a 

signal occurs on either chart. For example, if each chart is set at a nominal FAR of 0.0027 and the 

charts operate independently, the overall FAR (the probability of a false alarm on at least one chart) is 

1 – (1 – 0.0027)2 = 0.0054, a 100% increase from the nominal 0.0027. This FAR inflation can ruin the 

efficacy of the resulting monitoring procedure. Therefore, practitioners using a two-chart scheme 

should select control limits for each chart such that the overall FAR is a specified value.” 

 

Note that Wardell and Candia (1996) evaluated only the X  chart, thus they ignored the multiplicity 

issue. Fortunately, however, the modified p chart (just as with the classical p chart), which they 

proposed as a remedy to the issue of the non-normality of survey data does not need to be used together 

with a variability chart, since the variability chart is correlated to the mean chart (the modified p chart) 

and thus may not add important new information (Wardell and Candia (1996)).  

 

To summarize, we have seen that there is a need to examine the FAR or the ICARL of the X  and R 

charts when they are applied in tandem, as a combination of two charts (i.e. a combo scheme). There is 

a need for new control limits for the ( )RX ,  charting scheme; which account for the effects of 

multiplicity and parameter estimation. Furthermore, we have seen that an application of the  ( )RX ,  

charting scheme to customer satisfaction survey data may require some statistical expertise in data 

transformation and data reduction methods to deal with the non-normality and correlation issues, 

respectively.  

 

1.13 Research objectives 

 

In this dissertation, we focus on the combined use of the Phase II Shewhart X  and R chart for 

monitoring the process mean and standard deviation of a normally distributed process, respectively.  As 

noted by McCracken and Chakraborti (2013) “such charts (for both Phase I and II) have not yet been 

studied in literature.” We show that the currently used control limits of the ( )RX ,  charting scheme (as 

shown in Montgomery (2013, Chapter 6)) are incorrect because they cause more false alarms. Hence, 

we illustrate a technique for obtaining the correct control limits and then afterwards we provide a table 

of charting constants to aid implementation. We examine both the Case K and Case U in Chapters 2 

and 3, respectively. 
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Woodall and Montgomery (1993) noted that there is a continuing need for publications of case studies 

showing the benefits of SQC in general. Thus, this motivated us to provide a case study in Chapter 5 

that applies the ( )RX ,  charting scheme (which we develop in Chapter 3) to students’ evaluation of 

teaching (SET) survey data. We hope that our case study will provide some guidance to practitioners 

who want to use the ( )RX ,  charting scheme to survey data in general and more in-particular to SET 

survey data. 

 

There is also a continuing need for review papers that examine the nature and types of approaches used 

in different SPC charts applications (MacCarthy and Wasusri (2001)). In this regard and as a prelude to 

our case study, we give an overview of the literature on non-standard applications of SPC charts from 

2000 to 2012, inclusive. 

 

The rest of the dissertation is organized as follows: In Chapters 2 and 3 we address the problem of joint 

monitoring of the mean and the variance of a normally distributed process. Since it is easier to discuss 

the main ideas in the situation where the process mean and standard deviation are known (i.e. Case K) 

we first focus on this situation in Chapter 2. In practice, of course, there will be situations where the 

process parameters are unknown and need to be estimated from a set of Phase I or reference data,  (i.e. 

Case U) and will be discussed in Chapter 3. In Chapter 4, we give an overview of the literature on non-

standard applications of SPC. In Chapter 5, we present a case study that applies the ( )RX ,  charting 

scheme to SET survey data. Finally, Chapter 6 provides a summary and offers some ideas for future 

research. Note that most of our results throughout this dissertation were evaluated using the software R 

version 3.0.1, the corresponding R codes are all given in the Appendix, at the end of each chapter. 
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Chapter 2  

 

The ( RX , ) charting scheme when standards are known (Case K) 

 
2.1 Introduction 

 

While, a lot of work has been done in monitoring the mean and the standard deviation of a normally 

distributed process using Shewhart or Shewhart-type charts (Quesenberry (1993), Chen (1997, 1998), 

Chakraborti (2000, 2006)), few studies have considered the performance of these charts as they are 

applied in tandem (i.e. as a combination of two charts), which is how they are used in practice (see 

Montgomery (2013), Chapter 6). Multiple charts used in this manner are often called combination 

charting schemes (or combo schemes). For example, when the process mean is monitored with the 

Shewhart X  chart, practitioners are advised to also monitor the standard deviation with an R (or an S) 

chart. Thus, two charts are used together in a combo scheme to make a decision about the IC or the 

OOC state of the process. The process is declared IC when both charts plot within their respective 

control limits and display random patterns.  By contrast, the process is declared OOC when at least one 

of the charts shows an out-of-control situation, such as a non-random pattern or a point plotting outside 

the control limits. These two chart combo monitoring schemes can also consist of a pair of CUSUM, or 

EWMA charts. One for the mean and one for the variance, or even a combination of one CUSUM and 

one EWMA chart (see McCracken and Chakraborti (2013a, b), for a comprehensive review of all 

publications on joint monitoring of mean and variance up to the year 2012).  

 

We use the ( , )X R  combo charting scheme in the discussion that follows even though there are recent 

books that suggest using a different spread chart, such as the S chart, see for instance Montgomery 

(2013, Chapter 6).  We do this because the R chart is simple and continues to be used industry. It is 

easier to discuss the main ideas in case the process mean and standard deviation are known or specified 

(the so-called standards known case or Case K) and so we focus our attention to this case in this 

chapter. We begin with an example. We then show that the combination scheme, as applied now, 

results in highly inflated false alarm rates relative to what is nominally expected. Finally we present the 
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corrected or adjusted ( , )X R  charting scheme which involves finding the correct charting constants 

accounting for multiple (joint) charting.  

 

Example 2.1 

 

As an illustration, suppose that we interested in monitoring the mean of a normally distributed process. 

Suppose also that the IC mean and standard deviation of the process are known to be 8.53 and 3.36, 

respectively. Assuming that samples of size n = 5 are taken periodically from the process, the Shewhart 

control limits for the X  chart (see Montgomery (2013), Chapter 6) are given by 

 

0
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0
0
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5

3.363 8.53 3 4.02
5

xbar
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Similarly, the Shewhart control limits for the R  chart (see Montgomery (2013), Chapter 6) are given 

by 
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In Figures 2.1, 2.2, 2.3 and 2.4 (the corresponding R codes are given in Appendix 2), we show an 

application of these control limits to a set of simulated data. Note that it is standard practise to draw the 

X  chart above the R chart (Stapenhurst (2005)). The recipe given in Montgomery (2013, Chapter 6) is 

to examine the R chart first. That is, if the R chart signals then the standard deviation must be brought 

under control, before considering the X  chart, whether it signals or not (see Figure 2.1 and Figure 2.2). 

On the other hand, if the R chart does not signal but the X  chart does (see Figure 2.3), then there is 

possibly a shift in the mean and a search for assignable causes may be undertaken. In Figure 2.4, both 

charts plot within their respective control limits and show a random pattern, so there is no signal and 

the process is said to be IC.  
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Figure 2.1. The Shewhart X  and R charts with 3-sigma limits for n = 5 when both charts signal 
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Figure 2.2. The Shewhart X  and R charts with 3 sigma limits for n = 5 when only the R chart signals 
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Figure 2.3. The Shewhart X  and R charts with 3-sigma limits for n = 5 when only the X chart signals  

 

 

 
 

18 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2 4 6 8 10 12 14

5
10

15

Shewhart Xbar Chart

Time / Sample number

Pl
ot

tin
g 

St
at

is
tic

LCL = 4.02

CL = 8.53

UCL = 13.04

Sample mean
3-Sigma limits

2 4 6 8 10 12 14

0
5

10
15

20

Shewhart R Chart

Time / Sample number

Pl
ot

tin
g 

St
at

is
tic

LCL = 0.00

CL = 7.82

UCL = 16.53

Sample Range
3-Sigma limits

 

Figure 2.4. The Shewhart X  and R charts with 3-sigma limits for n = 5 when neither chart signals 

 

We demonstrate in the next section that there are major issues with this standard charting approach. 

The main problem with using this combo scheme is that the overall performance of the scheme is not 

what is nominally expected. In fact, the attained false alarm rate (AFAR) is much higher (or the 

attained in-control average run-length (AICARL) is much shorter) than the nominally expected false 

alarm rate ( )0FAR  or the nominally expected in-control average run-length ( )0ICARL , see for example 

Table 2.1. This must be of real concern to all, since no matter which chart is used to monitor the mean 

and the standard deviation, the IC chart performance will degrade significantly and this can lead to a 

general loss of confidence in the control charting scheme. 
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The false alarm rate inflation happens due to two main reasons:  

 

The first one is multiple testing, as two charts are used simultaneously in the decision making process, 

the combo chart or scheme does not deliver a 0027.00 =FAR . In fact, the AFAR of the combo scheme 

is far higher than 0.0027, as shown in Table 2.1. This means that a lot more false alarms are issued, 

leading to faulty decisions, possible work stoppages and reducing the value of the control charting 

scheme. Note that the fact that the two component charts are independent does not solve the problem of 

multiple testing but it does play a role in finding a correction.  

 

The second one relates to the standard practice of using 3-sigma control limits in the individual charts. 

This is a common practice and is recommended in most textbooks, including Montgomery (2013, 

Chapter 6). However, note that even though the process is assumed to be normal, the plotting statistics 

X  and R, each has a different sampling distribution, hence each component chart with a 3-sigma limit, 

has a different AFAR or AICARL. This, in turn, is shown in Table 2.1 to yield a completely different 

AFAR or AICARL for the combo chart. Likewise, each component chart has its own AFAR which can 

differ from the 0FAR  and 0ICARL  of the combo scheme, see for example Table 2.1.  

 

2.2 Correcting the control limits 

 

In order to correct these problems so that the overall (combo) scheme has the correct 0FAR , the control 

limits of the individual charts must be properly adjusted. To account for the multiplicity issue, the 

limits need to be adjusted so that the combo scheme has a specified 0ICARL . For the second issue, it 

will be seen that using 3-sigma limits on both charts does not work and one needs to use probability 

limits for each of the individual control charts.   

 

We now review the conventional ( , )X R  scheme showing that the application of the scheme results in 

highly inflated FAR relative to what is nominally expected. However, since the properties of the combo 

scheme are a function of the properties of its component charts, we start by describing the individual 

component charts first.  
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2.2.1 The Shewhart X  control chart 

  

Let ,ijX  1,2,...,j n=  and 1,2,...i =  denote samples of size n from a normal distribution with a known 

IC mean 0µµ =  and a standard deviation 0σσ = , respectively. The plotting statistic of the Shewhart 

X  chart for the ith sample is the sample mean iX . Recall that under the normality assumption, iX  

follows a normal distribution with mean and variance of 0µ  and 2
0 / ,nσ  respectively. This result 

together with the FAR0 (or equivalently, the ICARL0), are used to construct the Shewhart X  chart. For 

example, for a nominal 0027.00 =FAR  (or equivalently, for a nominal 40.3700 =ICARL ) and IC 

values ( )00 , σσµµ == , the lower and upper control limits of the 3-sigma X  chart are given in 

Montgomery (2013), Chapter 6, as 

 

( )10 0
0 03 1 0.0027 / 2xbarLCL

n n
σ σµ µ −= − = −Φ −  

and (2.1) 

( )10 0
0 03 1 0.0027 / 2xbarUCL

n n
σ σµ µ −= + = +Φ −  

 

respectively, where Φ  denotes the cdf of the standard normal distribution and 1−Φ  denotes its quantile 

function.  These control limits yield an AFAR of   

 

( | )

( | ) ( | )
1 (3) ( 3)
0.0027

xbar

i xbar i xbar

AFAR P Signal IC

P X UCL IC P X LCL IC

=

= > + <
= −Φ +Φ −
=

 

 

and hence the AICARL of  

 

40.3700027.0 11 === −−
xbarxbar AFARAICARL . 

 

Table 2.1 (see the corresponding R code in Appendix 2) shows the IC performance of the X  chart in 

terms of the AFAR, AICARL and the percentage difference (% diff) between the AFAR and 0FAR . 
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From Table 2.1, it can be seen that both the xbarAFAR and the xbarAICARL  do not depend on the sample 

size and their values are equal to the nominal 0027.00 =FAR  and 40.3700 =ICARL , respectively. 

However, this is not the case for the R and the ( , )X R  combo charts.  We discuss these next. 

 

2.2.2 The Shewhart R control chart   

  

The 3-sigma Shewhart X  control chart limits given in (2.1) depend on σ . Thus, one must ensure that 

σ  is IC, that is 0σσ = , and that it stays IC. This is why it is recommended to run a control chart, 

either the R chart or the S chart for the standard deviation, simultaneously, with the X  chart. 

  

The plotting statistic for the R chart is the sample range iR  and the IC distribution of iR  is 

approximated by the normal distribution: ( )3020 ,~ ddNRi σσ  where 2 3,d d  are constants defined later, 

this approximation and a given 0FAR  value are used to construct the R chart. Thus, for an 

0027.00 =FAR  (or 40.3700 =ICARL ), the control limits of the Shewhart 3-sigma R chart are given in 

Montgomery (2013), Chapter 6, as 

 

02

01

σ
σ

DUCL
DLCL

R

R

=
=

 (2.2) 

 

where ( ) 3
1

2321 20027.013 ddddD −Φ−=−= −  and ( ) 3
1

2322 20027.013 ddddD −Φ+=+= − . 

 

The constants 2 3,d d  depend on n and are tabulated in, for example, Montgomery (2013), page 720. The 

AFAR for the 3-sigma R chart is 

 

( ) ( ) ( ) ( )121| DFDFICSignalPnAFAR WWR +−==  (2.3) 
 

where ( )WF w  denotes the IC cdf of the relative range 0σRW = .  Thus, the AICARL is given by 

 

( )[ ] 1)( −= nAFARnAICARL RR  (2.4) 
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where ( ) ( )( ) ( )∫
∞

∞−
=−== nddwwFWEd W 22 1  and ( ) ( ) ( )2

2
2

3 ndWEWVard −==  are the mean and 

the standard deviation of W , respectively, and   

 
( ) ( )[ ]∫

∞

∞−

−Φ−+Φ= dxxxwxnwF n
W )()( 1φ  

 
(2.5) 

 

denotes the IC cdf of W, see Barbossa et al. (2011). 

 
Table 2.1. The AFAR and AICARL values for the ( , )X R  combo chart and its component charts for 

different sample sizes 
 

 
n 

X  chart R  chart ( )RX ,  combo scheme 

AFAR AICARL AFAR % diff AICARL AFAR % diff AICARL 

3 0.00270 370 0.00584 116.41% 171 0.00853 215.81% 117 

4 0.00270 370 0.00495 83.33% 202 0.00764 182.83% 131 

5 0.00270 370 0.00460 70.48% 217 0.00729 170.02% 137 

6 0.00270 370 0.00445 64.73% 225 0.00714 164.28% 140 

7 0.00270 370 0.00438 62.11% 228 0.00706 161.66% 142 

8 0.00270 370 0.00435 61.19% 230 0.00704 160.75% 142 

9 0.00270 370 0.00435 61.22% 230 0.00704 160.78% 142 

10 0.00270 370 0.00437 61.76% 229 0.00706 161.31% 142 

15 0.00270 370 0.00449 66.44% 223 0.00718 165.98% 139 

50 0.00270 370 0.00506 87.24% 198 0.00774 186.73% 129 

100 0.00270 370 0.00538 99.19% 186 0.00806 198.65% 124 

  

 

Figure 2.5 (see the R code in Appendix 2) compares the IC run-length cdf of the R chart for n = 5, 10, 

100 with the cdf of the geometric distribution with parameter 0027.00 =FAR . It can be seen that the IC 

run-length cdf’s of the R chart are much steeper compared to the nominally expected geometric cdf 

with parameter FAR0 = 0.0027. This means that the 3-sigma limits R chart gives more false alarms on 

 
 

23 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



average than what is expected nominally. Note that, when n is increased to 100, the IC run-length cdf is 

expected to approach that of the nominal geometric distribution. However, as seen in Figure 2.5, this is 

not true for the 3-sigma R chart. This undesirable phenomenon can be attributed to the fact that the 

sample range is a less efficient estimator of the population standard deviation and the efficiency of the 

sample range deteriorates for larger values of n (Stapenhurst (2005)). 
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Figure 2.5. Comparison of the IC run-length cdf’s of the Shewhart 3-sigma R chart for different 

sample sizes against the geometric cdf with parameter  0027.00 =FAR  
 

Furthermore, from Table 2.1 it can be seen that for the R chart and sample sizes 1004 ≤≤ n  the 

percentage difference % diff ranges from 70.48% to 99.19% of the 0027.00 =FAR  (equivalently, the 

AICARL of this chart is reduced by 70.48% to 99.19% from its nominal value of 370.40). Therefore, 

using the 3-sigma limits on the R chart highly inflates the FAR (and reduces the AICARL) by up to two 

times their nominal values. This should be a cause for real concern. 

 

These results are not surprising and somewhat known in the literature. For example, recently Barbosa 

et al. (2011) showed that the normal distribution is not a good approximation for the sample relative 

range (or the sample range) distribution. They pointed out that the upper quantiles of the distribution of 

W, which are required to calculate the UCL of the R chart are under approximated, causing frequent 

occurrences of false alarms. Furthermore the lower order quantiles of the distribution of W, which are 

needed for calculating the LCL in the R control chart, are not only quite different, but “the normal 
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approximation is totally inconsistent with the positive domain of the range statistic, causing obvious 

drawbacks, among others, the impossibility to detect a decrease in variability (eventually process 

improvement).” The latter can be seen in Example 2.1, where the 895.0−=RLCL . For this reason, it is 

standard practise to round up the RLCL  to 0. 

 

In summary, using the normal approximation and the usual 3-sigma limits on the R chart is highly 

problematic, because the normal distribution is not a good approximation for W (or R) distribution. 

Next we discuss the effects of multiple testing. 

 

2.2.3 Effects of multiple testing 

  

As noted before, in practice, the Shewhart 3-sigma X  chart and a spread chart such as the R chart are 

used together to make decisions about the status (IC or OOC) of a process. This combo charting 

scheme gives a signal when at least one of the two component charts, the X  or the R chart, signals. 

The AFAR of this combo ( , )X R  charting scheme can be calculated as follows 

 

( )
( )

( )

( )
( ) ( )( )
( ) ( )( )1 1

at least one chart signals|

1 no signal on chart|

1 , |

1 1 1

1 1 1

combo

xbar i xbar R i R

xbar R

xbar R

AFAR n

P IC

P either IC

P LCL X UCL LCL R UCL IC

AFAR AFAR n

ICARL ICARL n− −

=

= −

 = − < < < < 
= − − −

= − − −

 (2.6) 

 

where we utilize the independence of iX  and iR  for the normal distribution. Hence the AICARL of the 

( , )X R  combo scheme in Case K is  

 

( ) ( ) 11 11 1 1combo xbar RAICARL AICARL AICARL
−

− − = − − −   (2.7) 

 

and the IC run-length cdf of the ( , )X R  combo scheme is given by 
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( ) ( ) ( )( )[ ]tRxbar nAFARAFARtNP −−−=≤ 111 . (2.8) 
 

Using the IC run-length cdf, the performance of the 3-sigma limits combo ( , )X R charting scheme is 

shown in Figure 2.6 (see the corresponding R code in Appendix 2) and compared to the nominal 

geometric cdf with parameter FAR0 = 0.0027. It can be seen that the IC run-length cdf’s for the combo 

scheme are much more steeper than the cdf of the geometric distribution with parameter 

0027.00 =FAR . This means that the combo scheme issues more false alarms than what is nominally 

expected. Thus, the effect of using two charts, the X  and the R chart together inflates the false alarm 

rate by a substantially high amount. This can be attributed to the simple reason that these charts were 

not designed to be used together and also that the approximate but not the exact sampling distribution 

of iR  was used to construct the R chart. Note that, increasing n to 10 somewhat improves the normal 

approximation to the distribution of iR  a little bit and hence reduce the effects of using 3-sigma limits 

on the R chart, however, it does nothing to reduce the more serious effects of multiple testing.  
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Figure 2.6.  Comparison of the IC run-length cdf’s of the combo ( , )X R  charting scheme for 
different sample sizes against the geometric cdf with parameter 0027.00 =FAR  

   

Further, in Table 2.1, for n = 3, the FAR inflation is more than 200%, roughly three times higher than 

the 0027.00 =FAR . Even for a sample size of 100, the AFAR for the ( , )X R  combo chart is about 

200% higher than the nominal value. Thus the current practice of using two charts together, roughly 
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doubles or triples the FAR. This needs to be seriously taken into consideration when designing the 

combo charting scheme.  

 

2.2.4 New control limits adjusted for 3-sigma and multiplicity effects   

 

We have shown in the above sections that if the 3-sigma and the multiplicity effects are not properly  

addressed when designing the ( , )X R  combo charting scheme, the whole control charting process runs 

the risk of becoming useless in practice. We now present a method for finding the charting constants 

and control limits of the ( , )X R  chart scheme taking proper account of both the multiplicity and 3-

sigma limits effects.  

 

We have seen that in Section 2.2.3, the FAR of the combo chart is given by 

 

( ) 1 (1 ( ))(1 ( ))combo xbar RFAR n FAR n FAR n= − − − . 

  

It seems reasonable to assume that each of the component charts should play an equal role in the combo 

charting scheme. From this point of view, if we let the FAR for each of the component charts to be the 

same, say ( )xbar RFAR FAR n D= = , then the false alarm rate of the ( , )X R  combo scheme equals 

 

( ) ( ) .11 2DnFARcombo −−=  

 

Solving this expression for D we get 

 

( ) ( )11 1 1 1combo comboD FAR n ICARL n−= − − = − −  (2.9) 
 

Thus, if we wish to have a nominal ( )comboICARL n A=  or a ( ) 1
comboFAR n A−= , the FAR0 or the ICARL0 

for the individual component charts would be 

 

1
0 11 −−−== ADFAR  or 1 1

0 (1 1 )ICARL A− −= − −  
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respectively. Once D is found, it should be used to find the control limits (charting constants) in each of 

the component charts. 

  

Thus, for the X  chart, the correct charting constant should be the ( )100 1 2D− th quantile of the 

standard normal distribution and so the X  chart limits corrected for multiple testing are given by 

 

( )
n

DLCLxbar
01

0 21
σ

µ −Φ−= −  

and (2.10) 

( )
n

DUCLxbar
01

0 21
σ

µ −Φ+= −  

  

respectively. Similarly, for the R chart, the probability limits that are corrected for multiple testing are 

given by 

 

01σDLCLR =  
02σDUCLR =  (2.11) 

                                                                                             

where  

( ) 3
1

21 2 dDdD −Φ−=  

( ) 3
1

22 21 dDdD −Φ+= − . 

 

One point to note here is that the R chart shown in (2.11) corrects for multiplicity but is based on the 

approximate normality (as reflected in the calculation of D1 and D2), which is problematic as discussed 

earlier in Section 2.2.2. Therefore, we recommend that the exact IC sampling distribution of iR  be used 

to find the charting constants and construct the exact probability limits for the Shewhart R chart. The 

exact charting constants in this case are thus given by the ( )100 2D th and the 100(1 2)D− th quantiles 

of the IC distribution of W,  

 

( ) 0
1 2 σDFLCL WR
−=  
( ) 0

1 21 σDFUCL WR −= −  
(2.12) 
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where WF  is the IC cdf of W .   

 

One comment is in order here: A popular approach to correcting for multiple testing is using the so-

called Bonferroni adjustment (Ryan (2000)). For k component tests, the Bonferroni adjusted charting 

constants are given by the 100( 2 )comboFAR k th and the ( )100[1 2 ]comboFAR k− th percentiles of the 

marginal IC distribution of the standardised charting statistics of both the X  and R charts.  Using 

(2.10) and a Taylor’s expansion, it can be shown that in this case D  is approximately equal to 

2comboFAR . Thus, the multiple testing corrected limits are also approximately equal to the Bonferroni 

adjusted limits. 

 

Table 2.2 presents the new charting constants corrected for multiplicity and the exact distribution issues 

for the ( , )X R  charting scheme for n=3(1)10 and an ( )comboICARL n =370 and 500, see R code in 

Appendix. 

 

Table 2.2.  New charting constants for the Shewhart ( ,X R ) combo charting scheme with ICARL0 = A 
= 370, 500 and n = 3(1)10 

 

 

n 

ICARL0=A=370 ICARL0=A=500 

D X  chart R chart D X  chart R chart 

3 0.00135 3.205 0.050 5.208 0.0010 3.290 0.043 5.316 

4 0.00135 3.205 0.175 5.448 0.0010 3.290 0.158 5.553 

5 0.00135 3.205 0.333 5.619 0.0010 3.290 0.308 5.722 

6 0.00135 3.205 0.493 5.752 0.0010 3.290 0.464 5.853 

7 0.00135 3.205 0.646 5.861 0.0010 3.290 0.613 5.960 

8 0.00135 3.205 0.786 5.952 0.0010 3.290 0.751 6.050 

9 0.00135 3.205 0.915 6.031 0.0010 3.290 0.878 6.127 

10 0.00135 3.205 1.033 6.100 0.0010 3.290 0.995 6.196 

Note that ( ) ( )11 1 1 1combo comboD FAR n ICARL n−= − − = − −  

 

We illustrate the application of Table 2.2 with Example 2.2.  
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Example 2.2 

 

Again as in Example 2.1, suppose we are interested in monitoring the average and the standard 

deviation of the continuous process variable X with a Shewhart X  and an R chart, respectively. 

Samples of size n = 5 are taken periodically from the process. Suppose that the IC process mean and 

standard deviation are known to be 8.53 and 3.36, respectively. Using Table 2.2, the modified ( , )X R  

chart limits can be calculated as follows 

 

( )
( ) 12.136.3333.02

88.1836.3619.521

71.3
5
36.3205.353.8205.3

35.13
5
36.3205.353.8205.3

0
1

0
1

0
0

0
0

=×==

=×=−=

=×−=−=

=×+=+=

−

−

σ

σ

σ
µ

σ
µ

DFLCL
DFUCL

n
LCL

n
UCL

WR

WR

xbar

xbar

                                

 

Notice that for n = 5 and ICARL = 370 the corrected charting constants for the X  chart are 3.205± . 

The value k = 3.205 is 6.8% larger than the traditionally used constant of k = 3 in a conventional 

Shewhart chart. In Figure 2.7 (see R code in Appendix 2) we compare the traditional 3-sigma limits 

with the new modified limits for the Shewhart X  and R charts respectively. For both cases, it can be 

seen that the corrected limits are wider than the traditional limits and this makes intuitive sense since 

the wider control limits reduce the false alarm rate and hence shorten the AICARL of the scheme, thus 

mitigating the effects of multiple testing. We encourage practitioners to use the new charting constants 

in Table 2.2 when implementing the ( , )X R  charting scheme in Case K. This reduces the rate of false 

alarms, drastically.   
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Figure 2.7 Comparison of the standard and corrected ( , )X R chart limits 
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2.3 Summary and Conclusions 

 

The Phase II Shewhart ( )RX ,  chart scheme for jointly monitoring the process mean and standard 

deviation is usually implemented using 3-sigma limits for the individual charts. There are two major 

issues with this. First, it is assumed that the charting statistics are normally distributed. The second 

issue is multiple testing; since two charts are used at the same time to make decisions about the IC or 

OOC state of the process the FAR of the charting scheme is inflated. We showed the severity of these 

issues on the IC properties of the ( )RX ,  charting scheme by examining the AFAR and the ICARL. We 

found that the current practice of using two charts together roughly doubles or triples the FAR. This 

needs to be seriously taken into consideration when designing the combo scheme. Hence, to account 

for the multiplicity issue, we adjusted the control limits of the individual component charts in such a 

way that the combo scheme has a specified 0ICARL . To correct for the 3-sigma limits issue, we used 

probability limits in each of the individual control charts.  In addition, we provided tables of the 

charting constants for some nominal in-control average run-lengths and sample sizes to aid in 

implementing the ( )RX ,  chart in practice. We saw that control limits based on our charting constants 

are wider than the traditional 3-sigma limits. This reduces the rate of false alarms, drastically. Hence, 

we encourage practitioners to use our charting constants in Table 2.2 and not the 3-sigma limits when 

implementing the ( , )X R  charting scheme in Case K.  
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2.4 Appendix 2: R Codes 

 

 
Code for Figure 2.1 : Example of the Case K 3-sigma limits ( RX , ) scheme with simulated data 
 
set.seed(1442) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,17), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(4.02, 8.53, 13.04), lty = 1, lwd=4) 
text(1.2,4.52,'LCL = 4.02',cex=1.3) 
text(1.1,9.03, 'CL = 8.53',cex=1.3) 
text(1.3,13.54,'UCL = 13.04',cex=1.3) 
legend('top',legend=c("Sample mean","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
 
set.seed(1442) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(-1,22), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(0,7.82,16.53), lty = 1, lwd=4) 
text(1.2,0.50,'LCL = 0.00',cex=1.3) 
text(1.1,8.32, 'CL = 7.82',cex=1.3) 
text(1.3,17.03,'UCL = 16.53',cex=1.3) 
legend('top',legend=c("Sample Range","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
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Code for Figure 2.2 : Example of the Case K 3-sigma limits ( RX , ) scheme with simulated data 
 
 
set.seed(19) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,17), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(4.02, 8.53, 13.04), lty = 1, lwd=4) 
text(1.2,4.52,'LCL = 4.02',cex=1.3) 
text(1.1,9.03, 'CL = 8.53',cex=1.3) 
text(1.3,13.54,'UCL = 13.04',cex=1.3) 
legend('top',legend=c("Sample mean","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
 
set.seed(19) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(-1,22), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(0,7.82,16.53), lty = 1, lwd=4) 
text(1.2,0.50,'LCL = 0.00',cex=1.3) 
text(1.1,8.32, 'CL = 7.82',cex=1.3) 
text(1.3,17.03,'UCL = 16.53',cex=1.3) 
legend('top',legend=c("Sample Range","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
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Code for Figure 2.3 : Example of the Case K 3-sigma limits ( RX , ) scheme with simulated data 
 
 
set.seed(387) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,17), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(4.02, 8.53, 13.04), lty = 1, lwd=4) 
text(1.2,4.52,'LCL = 4.02',cex=1.3) 
text(1.1,9.03, 'CL = 8.53',cex=1.3) 
text(1.3,13.54,'UCL = 13.04',cex=1.3) 
legend('top',legend=c("Sample mean","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
 
set.seed(387) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(-1,22), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(0,7.82,16.53), lty = 1, lwd=4) 
text(1.2,0.50,'LCL = 0.00',cex=1.3) 
text(1.1,8.32, 'CL = 7.82',cex=1.3) 
text(1.3,17.03,'UCL = 16.53',cex=1.3) 
legend('top',legend=c("Sample Range","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
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Code for Figure 2.4 : Example of the Case K 3-sigma limits ( RX , ) scheme with simulated data 
 
set.seed(15) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,17), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(4.02, 8.53, 13.04), lty = 1, lwd=4) 
text(1.2,4.52,'LCL = 4.02',cex=1.3) 
text(1.1,9.03, 'CL = 8.53',cex=1.3) 
text(1.3,13.54,'UCL = 13.04',cex=1.3) 
legend('top',legend=c("Sample mean","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(-1,22), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(0,7.82,16.53), lty = 1, lwd=4) 
text(1.2,0.50,'LCL = 0.00',cex=1.3) 
text(1.1,8.32, 'CL = 7.82',cex=1.3) 
text(1.3,17.03,'UCL = 16.53',cex=1.3) 
legend('top',legend=c("Sample Range","3-Sigma limits"),lty=c(4,1),lwd=4,cex=1.3) 
 

Code for Figure 2.5 : Cumulative run-length probabilities for the 3-sigma R chart 
 
x=1:1000 
y=pgeom(x,0.0027) 
plot(x,y,type = 'l', lwd=3, cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Cumulative Run-length 
probabilities for the 3-Sigma R chart",xlab="Run-Length",ylab="Cumulative Probability",font.lab=2, 
font.axis=2) 
far=c(0.00460,0.00437,0.00538) 
for (i in 1:length(far)){ 
lines(x,pgeom(x,far[i]),lty=i+1,lwd=4,col=i+1,cex=5)} 
legend('right',legend=c("Nominal","n=5","n=10","n=100"),lty=c(1,2,3,4),lwd=3,col=c(1,2,3,4),cex=1.3
) 
 
 
 
 
 
 

 
 

36 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Code for Figure 2.6 : Cumulative run-length probabilities for the ( RX , ) scheme 
 
x=1:1000 
y=pgeom(x,0.0027) 
plot(x,y,type = 'l', lwd=3, cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Cumulative Run-length 
probabilities for the (Xbar,R) scheme",xlab="Run-Length",ylab="Cumulative Probability",font.lab=2, 
font.axis=2) 
far=c(0.00729,0.00706,0.00806) 
for (i in 1:length(far)){ 
lines(x,pgeom(x,far[i]),lty=i+1,lwd=4,col=i+1,cex=5)} 
legend('right',legend=c("Nominal","n=5","n=10","n=100"),lty=c(1,2,3,4),lwd=3,col=c(1,2,3,4),cex=1.3
) 
 
 
Code for Table 2.1 : The AFAR, ICARL and %diff for the 3-sigma R chart 
 
n=c(3,4,5,6,7,8,9,10,15,50,100) 
 
AFAR=function(n){ 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2(n)^2)} 
D4=d2(n)+3*d3(n) 
D3=d2(n)- 3*d3(n) 
DD3=max(c(D3,0)) 
1-ptukey(D4,n,Inf)+ptukey(DD3,n,Inf)} 
 
AFARrchart=numeric(length(n)) 
for (i in 1:length(n)) { 
AFARrchart[i]= AFAR(n[i])} 
 
ICARLrchart=AFARrchart^-1 
Percent_dif=((AFARrchart-0.0027)/0.0027) 
Results=cbind(AFARrchart,Percent_dif,ICARLrchart) 
rownames(Results)=c( 3, 4, 5, 6, 7, 8, 9, 10, 15, 50, 100) 
Results 
write.table(Results, "clipboard",sep="\t",col.names=NA) 
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Code for Table 2.1 : The AFAR, ICARL and %diff for the 3-sigma ( RX , ) scheme 
 
 
n=c(3,4,5,6,7,8,9,10,15,50,100) 
 
AFAR=function(n){ 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2(n)^2)} 
D4=d2(n)+3*d3(n) 
D3=d2(n)- 3*d3(n) 
DD3=max(c(D3,0)) 
1-ptukey(D4,n,Inf)+ptukey(DD3,n,Inf)} 
 
AFARrchart=numeric(length(n)) 
for (i in 1:length(n)) { 
AFARrchart[i]= AFAR(n[i])} 
ICARLrchart=AFARrchart^-1 
AFARxbar=1-pnorm(3,0,1)+pnorm(-3,0,1) 
ICARLxbar=AFARxbar^-1 
AFARxbar_rchart=1-(1-AFARrchart)*(1-AFARxbar) 
ICARLxbar_rchart=AFARxbar_rchart^-1 
Percent_dif=((AFARxbar_rchart-0.0027)/0.0027) 
Results=cbind(AFARxbar_rchart,Percent_dif,ICARLxbar_rchart) 
rownames(Results)=c( 3, 4, 5, 6, 7, 8, 9, 10, 15, 50, 100) 
Results 
write.table(Results, "clipboard",sep="\t",col.names=NA) 
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Code for Table 2.2 : Calculation of the new Case K charting constants 
 
ICARL=c(370,500) 
D=numeric(length(ICARL)) 
D[1]=1-sqrt(1-ICARL[1]^-1) 
D[2]=1-sqrt(1-ICARL[2]^-1) 
n=c(3,4,5,6,7,8,9,10) 
Cons=matrix(nrow=length(n),ncol=8) 
for (i in 1:length(n)){ 
Cons[i,]=c(D[1],qnorm(1-D[1]/2,0,1),qtukey(D[1]/2,n[i],Inf),qtukey(1-D[1]/2,n[i],Inf), D[2],qnorm(1-
D[2]/2,0,1),qtukey(D[2]/2,n[i],Inf),qtukey(1-D[2]/2,n[i],Inf))} 
rownames(Cons)= c(3,4,5,6,7,8,9,10) 
Cons 
write.table(Cons, "clipboard",sep="\t",col.names=NA) 
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Code for Figure 2.7 : Example of the Case modified limits ( RX , ) scheme with simulated data 
 
 
set.seed(15) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,18), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(4.02, 8.53, 13.04), lty = 1, lwd=4) 
text(1.2,4.52,'LCL = 4.02',cex=1.3) 
text(1.1,9.03, 'CL = 8.53',cex=1.3) 
text(1.3,12.54,'UCL = 13.04',cex=1.3) 
abline(h = c(3.71, 13.35), lty = 5, lwd=4) 
text(3,3.31,'LCL = 3.71',cex=1.3) 
text(3.1,13.85,'UCL = 13.35',cex=1.3) 
legend('top',legend=c("Sample mean","3-Sigma limits","Modified limits"),lty=c(4,1,5),lwd=4,cex=1.3) 
 
set.seed(15) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(-1,25), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(0,7.82,16.53), lty = 1, lwd=4) 
text(1.2,-0.50,'LCL=0',cex=1.3) 
text(1.1,8.32, 'CL=7.82',cex=1.3) 
text(1.3,15.95,'UCL=16.53',cex=1.3) 
abline(h = c(1.12, 18.88), lty = 5, lwd=4) 
text(3,1.77,'LCL=1.12',cex=1.3) 
text(3,19.50,'UCL=18.88',cex=1.3) 
legend('top',legend=c("Sample range","3-Sigma limits","Modified limits"),lty=c(4,1,5),lwd=4,cex=1.3) 
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Chapter 3  

 

The ( RX , ) charting scheme when standards are unknown (Case U) 

 
3.1 Introduction 

 

In this chapter, we consider the ( )RX ,  charting scheme when process parameters are unknown 

(Case U) and are to be estimated from reference Phase I data. Most practitioners make use of the 

Case K control limits in Expressions (2.1) and (2.2) when monitoring the process mean and process 

standard deviation, respectively, even though the Phase 1 estimates 0µ̂  and 0σ̂ are used in place of 

0µ  and 0σ  to construct the charts. These control limits are incorrect because their AICARL can be a 

lot much shorter (see Table 3.1) than what is nominally expected due to the effects of multiple 

testing, the standard use of the 3-sigma limits and parameter estimation. Parameter estimation is 

known to degrade control chart performance (see for example Jensen et al. (2006)). This must be 

disturbing to all, since it means a lot more false alarms in Case U than what we have observed in 

Case K (Chapter 2). This, in turn, implies a lot more faulty decisions and possible work stoppages, 

thus rendering the control charting scheme wasteful, costly and useless.  

 

In the sections that follow, we show that the standard Case U ( , )X R  charting scheme results in 

highly inflated false alarm rates relative to what is nominally expected and relative to Case K. We 

then present the corrected or adjusted ( , )X R  charting scheme. This involves finding the correct 

charting constants accounting for the effects of multiple (joint) charting, the use of 3-sigma limits in 

individual component charts along with parameter estimation. 

 

3.2 Correcting the control limits 

 

In order to maintain a specified or nominal IC average run-length ( )0ICARL  or nominal false alarm 

rate ( )0FAR  for the combo ( , )X R chart in Case U, it is necessary to make modifications to the X  

and R charts (control limits) so that the effects of parameter estimation are correctly accounted for 

together with the effects of multiple testing. We accomplish this by first using the conditioning 

technique developed in Chakraborti (2000), then applying the correction due to multiple testing (see 

Chapter 2) and finally using the probability limits. 
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We now review the conventional ( , )X R  scheme in Case U showing that the application of the 

scheme results in much shorter AICARL than what is nominally expected and also relative to what 

we saw in Case K (Chapter 2). However, since the properties of the Case U charting scheme are a 

function of the properties of its individual component charts, we describe the individual component 

charts first and then give the properties of the combo scheme later. 

 

3.2.1 The Shewhart X  control chart   

 

When process parameters are unknown, they must be estimated from Phase I data. Let ,ijX  

i=1,2,…,m and j=1,2,…,n denote IC Phase I data from the normal distribution with unknown mean 

µ  and unknown standard deviation σ , where m is the number of subgroups and n is the subgroup 

size.  

 

The plotting statistic for the X  chart is the sample mean ,...2,1 ++= mmiX i . Recall that the IC 

distribution of the sample mean is normal with mean 0µ̂  and variance n2
0σ̂ . This result together 

with a 0FAR  are used to define the X  chart limits. Thus, for an 0027.00 =FAR  (or, ICARL0 = 

370.40, the control limits of the estimated 3-sigma Shewhart X  chart are given in Montgomery 

(2013), Chapter 6, as 

 

RAXR
nd
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RAXR
nd

XLCL

xbar

xbar

4
2

3
2

3

3

+=+=

−=−=

 (3.1) 

                                               

where X  is the grand average of the Phase I subgroup averages, R  is the average of Phase I 

sample ranges and the charting constant 3 is the 
thFAR




 −

2
1100 0 percentile of the standard normal 

distribution. Note that, the plotting statistic iX can be transformed to 
n

X
Z i

i σ
µ−

= , which can be 

used as a plotting statistic for the following equivalent set of limits 
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where ( )Z mn X µ σ= −  is the standard normal variable, 22
2

2

2

σdc
RvU = is approximately a chi-

squared variable having v degrees of freedom, the constant c depends on v, which is a function of m 

and n.   

 

The AFAR is given by 
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(3.3) 

 

where Φ  denotes the cdf of the standard normal distribution, φ  denotes the density function of the 

standard normal distribution, g represents the density function of the chi-squared distribution and 

( )uzAFARxbar ,  is the conditional attained false alarm rate.  However, when control limits are 

estimated, the attained false alarm rate is a poor measure of control chart performance, see Jensen et 

al. (2006). In this case, the run-length distribution and its properties are the recommended control 

chart performance measures. Hence, the IC run-length cdf for the Shewhart X  chart with 3-sigma 

limits is given by 

 

( ) ( ) ( )[ ] ( ) ( )∫ ∫
∞ ∞

∞−
Φ−Φ−=≤

0
ˆˆ1 dzduugzLCLLCUtNP t

xbarxbar ϕ  
 

(3.4) 

 

and its mean, the AICARL, can be written as 

 

( )[ ] ( ) ( )∫ ∫
∞ ∞

∞−

−=
0

1, dzduugzuzAFARAICARL xbarxbar ϕ  
 

(3.5) 

 

where N denotes the run-length variable and t = 0,1,2,3,… .  Figure 3.1 (see the corresponding R 

code in Appendix 3) shows the IC run-length cdf of the 3-sigma limits X chart for Case U (for m = 

5, 15, 30 and 100) and compares it to the 3-sigma limits X  chart for Case K. It can be seen that, for 

small N and small m, the run-length cdf’s for Case U are steeper than the Case K cdf, particularly 

when m = 5. This means more short runs will be issued in Case U than in Case K and this translates 
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to a lot more false alarms for Case U compared to Case K. Furthermore, for large N but small m, the 

Case U cdf’s are below the Case K cdf. This is caused by a few very large values of N that occur 

with parameter estimation (see Quesenberry (1993)). These very large values of N can be viewed as 

outliers, which pull the AICARL towards them, making it appear very large (see Table 3.1) than it 

really is. This can lead to the misunderstanding of chart properties. In summary, parameter 

estimation causes the Case U X  chart to issue a lot more false alarms relative to Case K. 

 

Table 3.1 (see the corresponding R code in Appendix 3) shows the AICARL of the X  chart for 

different values of m. As mentioned before, it can be seen that for small m, the AICARL’s are much 

larger than the 3700 =ICARL  in Case K. In addition, both Table 3.1 and Figure 3.1 show that when 

m is increased the IC run-length distribution of the Case U X  chart approaches the Case K 

geometric distribution with parameter 0027.00 =FAR . However, as seen in Table 3.1, this is not 

the case for the R chart and the ( , )X R  combo charting scheme. We discuss these next. 
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Figure 3.1. Comparison of the run-length cdf’s of the Case U and Case K Shewhart 3-sigma X  
chart when n = 5 
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Table 3.1. The AICARL values for the ( , )X R  combo chart and its component charts when n = 5 

m X  chart R chart ( RX , ) chart 

10 624 1000 349 

20 453 422 211 

30 417 332 182 

50 395 278 162 

100 381 245 149 

500 372 222 139 

Case K 370 217 137 

 

 

3.2.2  The Shewhart R control chart   

 

The estimated 3-sigma Shewhart X  control chart limits given in Expressions 3.1 and 3.6 depend on 

the unknown standard deviation parameter σ . Thus, one must ensure that σ  is IC and that it stays 

IC before estimating it and using it to construct the X  control chart.  This is why it is recommended 

to run the R chart for the standard deviation, simultaneously, with the X  chart.  

             

The plotting statistic for the R chart is the sample range iR .  The IC distribution of iR  is 

approximated by the normal distribution: ( )3020 ˆ,ˆ~ ddNRi σσ  where 2 3,d d  are constants that we 

defined in Chapter 2 page 23. Using this approximation along with 0027.00 =FAR  (or 

40.3700 =ICARL ), the lower and upper control limits of the Shewhart 3-sigma R chart are given in 

Montgomery (2013), Chapter 6, as 

 

3
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and (3.6) 
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respectively. These control limits can be equivalently written as 
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the plotting statistic, in this case,  is the sample relative range 
0σ̂
i

i
R

W = .  

 

The AFAR can be expressed as 

 

( ) ( ) ( ) ( )[ ] ( )∫∫
∞∞

+−==
00

ˆˆ1 duugLCLFLCUFduuguAFARAFAR RWRWRR  (3.8) 
 

where ( )uAFARR  is the conditional attained false alarm rate. The IC run-length cdf and the 

AICARL for these limits can be written as 

 

( ) ( ) ( )[ ] ( )duugLCLFLCUFtNP
t

RWRW∫
∞

−−=≤
0

ˆˆ1  (3.9) 

 

and  

      

( )[ ] ( ) .
0

1 duuguAFARICARL RR ∫
∞ −=  (3.10) 

 

 

Figure 3.2 (see the corresponding R code in Appendix 3) shows the IC run-length cdf of the Case U 

3-sigma Shewhart R chart (for m = 5, 15, 30 and 100) and compares it to that of the Case K 3-sigma 

Shewhart R chart as well as the nominally expected results.  It can be seen that the IC run-length cdf 

for Case K is much steeper than the geometric distribution with parameter 0027.00 =FAR  

(nominal). This discrepancy is due to the common practice of approximating the distribution of the 

plotting statistic by the normal distribution along with using the 3-sigma limits. It can also be seen 

that for small N and m, short runs appear much more frequently for the Case U R charts than the 

Case K R chart. Further, both the Case K and Case U results are far different to the nominally 

expected results. Furthermore, it can be observed that when the number of subgroups m is 

increased, the Case U IC run-length performance approaches that of Case K. However, note that the 

Case K results are themselves unacceptable, due to the effects of using the normal approximation 

and the usual 3-sigma R chart limits.  
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Moreover, it can be seen from Table 3.1 that when m is increased and n is kept constant (say, n = 5) 

the AICARL performance in Case U approaches the AICARL = 217 value of Case K, which in turn 

is far shorter than the nominally expected 370 value. Thus, for fixed n, increasing m corrects for 

parameter estimation but does not correct for the effects of using the normal approximation and the 

3-sigma limits.     
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Figure 3.2. Comparison of the IC run-length cdf for the Case U and Case K Shewhart 3-sigma R 

chart when n = 5 
 

In summary, the effect of parameter estimation and using the normal approximation along with 3-

sigma limits is highly problematic, particularly when the number of subgroups m is small. Next we 

discuss the effects of multiple testing. 

 

3.2.3 Effects of multiple testing   

 

As noted before, in practice, the Shewhart 3-sigma X  chart and a spread chart such as the R chart 

are used together to make decisions about the status (IC or OOC) of a process. This combo charting 

scheme gives a signal when at least one of the two component charts, the X  or the R chart, signals. 

The AFAR for this combo ( , )X R  scheme, in Case U, can be calculated as follows 
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where ( )uzAFARcombo ,  is the conditional attained false alarm rate. Using the independence of iY  

and iR , this conditional false alarm rate can be written as 
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(3.12) 

                                                                            

However, as mentioned earlier, the false alarm rate is not a recommended control chart performance 

or design measure in Case U (see Quesenberry (1993) and Jensen et al. (2006)).  Therefore, to study 

the properties of the conventional Case U ( , )X R charting scheme, we evaluate the run-length 

distribution. 

 

Thus, the IC run-length cdf of the estimated 3-sigma ( , )X R   scheme can be expressed as  
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(3.13) 

 

and its mean is 

 

( )[ ] ( ) ( )dzduugzuzAFARICARL combocombo ∫ ∫
∞ ∞

∞−

−=
0

1, φ  
 

(3.14) 

 

Figure 3.3 (see the corresponding R code in Appendix 3) shows the IC run-length cdf’s for the 3-

sigma ( , )X R  scheme in Case U and compares it with the Case K cdf and the cdf of the geometric 

distribution with parameter 0027.00 =FAR . It can be seen that for small m, there are more short 

runs for the Case U chart than for the Case K chart. Both the Case K and Case U results are 

different from the geometric distribution with parameter 0027.00 =FAR . Therefore, parameter 

estimation exacerbates the effects of multiple testing and the effects of using 3-sigma limits, 

particularly for small m.  This means a lot more false alarms for the estimated limits charts, unless 

m is very large.   

 

In addition, Table 3.1 shows the AICARL for the Case U and Case K 3-sigma ( , )X R  combo chart 

scheme. It can be seen that when m is increased and n kept constant (say, n = 5), the AICARL 

performance for Case U approaches the AICARL = 137 value for Case K, which in turn is roughly 3 

times lower than the nominally expected 370.4 value. Thus, for a fixed value of n, increasing m to a 
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larger value corrects for parameter estimation but does nothing to correct the serious effects of 

multiple testing and those of using the normal approximation along with the 3-sigma limits. In short 

the current practice of using two charts together in Case U is to roughly reduce the ICARL by 3 

times from its nominally expected value, thus tripling the number of false alarms. Obviously, this 

needs to be seriously taken into consideration when designing and applying the two chart scheme. 
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Figure 3.3. Comparison of the IC run-length cdf of the Case U and Case K Shewhart 3-sigma 

( )RX ,  charting scheme when n =  5 
 

3.2.4 New control limits adjusted for 3-sigma and multiplicity effects   

 

We understand the need to select the control limits on the individual charts in a way which accounts 

for the additional variability caused by parameter estimation and also corrects for multiple testing as 

a function of the available data. We accomplish this by first using the conditioning technique 

developed in Chakraborti (2000), then applying the correction due to multiple testing (as in the 

parameters known case, see Chapter 2) and finally using the probability limits. This is described 

next. 

 

Recall that the IC average run-length of the estimated limits ( )RX ,  scheme is  
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Note that, by averaging the [ ] 1),( −szAFARcombo over the distributions of the parameter estimates, the 

effects of parameter estimation are accounted for. Further, by using the joint distribution of iY  and 

iR  in the following expression, 

 

( ) ( )[ ]ICLCURLCLLCUYLCLPuzAFAR RiRxbarixbarcombo |ˆˆ,ˆˆ1, <<<<−=  
 

the multiplicity issue is also accounted for. But, the R chart limits RLCL ˆ  and RLCU ˆ  are still 

inappropriate because they are based on an incorrect assumption that ( )3020 ˆ,ˆ~ ddNRi σσ .  Thus, 

we replace them with the following probability limits 
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where 0FARp = . As a result the conditional attained false alarm rate for the combo scheme is now  
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To emphasize the dependence of ),( uzAFARcombo  and therefore the dependence of the comboICARL  

on 0FARp = of the component charts, we write ),,( puzAFARcombo  and ( )pICARLcombo , respectively.  

 

Noting that ( )pICARLcombo  is a function of p , we find the value of p  that corresponds to the 

specified ( ) ApICARLcombo =  for some given values of m and n. We do this by evaluating the 

integrals below using R coding given in Appendix 3, 
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Once p  is found, the correct probability control limits for the X  and R charts are found from the 

corresponding percentiles of the standard normal distribution and the distribution of the relative 

range, respectively. Some results are shown in Table 3.2. 

 
Table 3.2.  New chart constants for the Case U Shewhart ( )RX ,  combo scheme for an 

ICARL = A = 370, 500 and n = 5, 10; m = 5, 10, 20, 30, 50, 75, 100 
 

 
n 

 

 
m 

ICARL=A=370 ICARL=A=500 

p X  chart R chart p X  chart R chart 

5 5 0.001025 3.284 0.310 5.713 0.000758 3.368 0.287 5.814 

 10 0.001164 3.248 0.320 5.670 0.000862 3.332 0.297 5.772 

 20 0.001256 3.226 0.327 5.645 0.000929 3.311 0.303 5.747 

 30 0.001290 3.218 0.329 5.636 0.000955 3.303 0.305 5.737 

 50 0.001318 3.212 0.331 5.628 0.000975 3.298 0.306 5.73 

 75 0.001331 3.209 0.331 5.625 0.000985 3.295 0.307 5.727 

 100 0.001337 3.208 0.332 5.623 0.00099 3.293 0.307 5.725 

Case K 0.00135 3.205 0.333 5.619 0.0010 3.290 0.308 5.722 

10 5 0.000855 3.334 0.976 6.245 0.000627 3.420 0.940 6.341 

 10 0.00103 3.282 0.999 6.186 0.000758 3.368 0.962 6.282 

 20 0.001163 3.248 1.014 6.148 0.000857 3.334 0.977 6.244 

 30 0.001217 3.235 1.020 6.134 0.000899 3.32 0.982 6.229 

 50 0.001267 3.223 1.025 6.121 0.000936 3.309 0.987 6.217 

 75 0.001294 3.217 1.027 6.114 0.000957 3.303 0.99 6.21 

 100 0.001308 3.214 1.029 6.111 0.000967 3.3 0.991 6.206 

Case K 0.001350 3.205 1.033 6.100 0.0010 3.290 0.995 6.196 

 

 

 
 

51 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Notice that when m is increased, the values of p in Table 3.2 approach the Case K value (shown on 

the last row in Table 3.2).  This implies that when m is large say m = 500, one can use the corrected 

Case K chart constants in Table 2.2 to construct the estimated limits ( )RX ,  combo chart scheme.   

 

Finally, we illustrate how Table 3.2 can be used to implement the Case U ( )RX ,  combo scheme. 

We then compare these modified Case U ( )RX ,  limits to the conventional Case U 3-sigma ( )RX ,  

limits and the modified Case K ( )RX ,  limits. Recall that, the conventional Case U 3-sigma ( )RX ,  

limits have not been corrected for parameter estimation, poor normal approximation and multiple 

testing; whereas the modified Case K ( )RX ,  limits have been corrected for the effect of multiple 

testing and using 3-sigma limits (since there is no parameter estimation in Case K).  

 

Example 3.1 
 

Again, suppose we are interested in monitoring the average and standard deviation of the normally 

distributed characteristic X with a Shewhart X  and R chart, respectively. Suppose m = 5 subgroups 

of size n = 5 are used to estimate the unknown process parameters. Suppose the parameter estimates 

are 8.53 and 3.36 for the mean and standard deviation, respectively. Using Table 3.2, the control 

limits of the modified Case U ( , )X R charting scheme are given by 
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Notice that for n = 5, m = 5 and ICARL = 370 the charting constant for the X chart is k = 3.284. 

This value is 2.5% larger than the charting constant k = 3.204 for the modified Case K limits, and 

9.3% larger than the conventional charting constant k = 3.  

 

In Figure 3.4, we compare the modified Case K limits to the modified Case U limits for the 

Shewhart X  and R charts respectively. From both charts, it can be seen that, for small m, the 
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modified Case U limits are slightly wider than the modified Case K limits. This mitigates the effects 

of parameter estimation. It can be shown that when m is increased the modified Case U limits 

approach the modified Case K limits. Hence for large m the corrected Case K charting constants in 

Table 2.2 can be used to construct the modified Case U control limits.  
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Figure 3.4.  Comparison of the standard and modified Shewhart X  and R chart limits in Case K 

and Case U 
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3.3 Summary and Conclusions 

 

The Phase II Shewhart ( )RX ,  chart scheme for jointly monitoring the process mean and standard 

deviation is usually implemented using 3-sigma limits for the individual charts. There are three 

major issues with this. First, it is assumed that the charting statistics are normally distributed. The 

second is multiple testing; since two charts are used at the same time to make decisions about the 

in-control state of the process the FAR of the scheme is inflated. The last issue is the effect of 

parameter estimation which is known to degrade chart performance. We showed the severity of 

these issues on the IC properties of the ( )RX ,  charting scheme by examining the AFAR and the 

ICARL. We found that the current practice of using the two chart ( )RX ,  charting scheme in Case U 

roughly reduces the ICARL by 3 times from its nominally expected value, thus tripling the number 

of false alarms. This needs to be seriously taken into consideration when designing the combo 

scheme. Thus, we derived the new charting constants taking proper account of all these three issues. 

We accomplished this by first using the conditioning technique developed in Chakraborti (2000), 

then we applied the correction due to multiple testing and finally we used the probability limits. In 

addition, we provided tables of the charting constants for some nominal in-control average run-

lengths and sample sizes to aid in the implementing the ( )RX ,  chart in practice. The control limits 

based on our charting constants are wider than those of the traditional 3-sigma limits and the 

modified Case K limits in Table 2.2. This reduces the rate of false alarms, drastically. Hence, we 

encourage practitioners to use our charting constants in Table 3.2 instead of the standard 3-sigma 

limits when implementing the ( , )X R  charting scheme in Case U.  
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3.4 Appendix 3: R Code 

Code for Figure 3.1 : Cumulative run-length probabilities for the estimated limits 3-sigma X  
chart 
 
n=5 
m=c(5,15,30) 
q=seq(1,1000,40) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
CRL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
MPNS=numeric(length(q)) 
for (i in 1:length(q)){ 
PNS=function(x){(pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1))^q[i]} 
CPNS=function(x){ PNS(x)*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
MPNS[i]=adaptIntegrate(CPNS,c(-100,0),c(100,b),tol=1e-10)[[1]]} 
MPNS} 
 
y=pgeom(q,0.0027) 
plot(q,y,type = 'l', lwd=3, cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Cumulative Run-length 
probabilities for the estimated limits 3-Sigma Xbar chart",xlab="Run-Length",ylab="Cumulative 
Probability",font.lab=2, font.axis=2) 
 
for (j in 1:length(m)){  
lines(q, (1-CRL(m[j],0.0027)),lty=j+1,lwd=4,col=j+1,cex=5)} 
legend('right',legend=c("Nominal/Inf","m=5","m=15","m=30"), 
lty=c(1,2,3,4),lwd=3,col=c(1,2,3,4),cex=1.3) 
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Code for Table 3.1 : ICARL’s for the Case U 3-sigma X  chart  
 
n=5 
m=c(10,20,30,50,100,500) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
AFAR=function(x){1-pnorm(uclxbar(x),0,1)+pnorm(lclxbar(x),0,1)} 
CFAR=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(-100,0),c(100,b),tol=1e-10)} 
 
ICARLxbar=numeric(length(m)) 
for (i in 1:length(m)) { 
ICARLxbar[i]= ICARL(m[i],0.0027)[[1]]} 
Percent_dif=((ICARLxbar-370.40)/370.40) 
Results=cbind(ICARLxbar,Percent_dif) 
rownames(Results)= c(10,20,30,50,100,500) 
Results 
write.table(Results, "clipboard",sep="\t",col.names=NA) 
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Code for Table 3.1 : ICARL’s for Case U 3-sigma R chart  
 
n=5 
m=c(10,20,30,50,100,500) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclrchart=function(x){(d2+qnorm(1-a/2)*d3)*cc(m)*sqrt(x)/sqrt(v(m))} 
lclrchart=function(x){(d2- qnorm(1-a/2)*d3)*cc(m)*sqrt(x)/sqrt(v(m))} 
DD3=max(c(lclrchart(x),0)) 
AFAR=function(x){1-ptukey(uclrchart(x),n,Inf)+ptukey(DD3,n,Inf)} 
CFAR=function(x){ AFAR(x)^-1*dchisq(x,v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(0),c(b),tol=1e-10)} 
 
ICARLrchart=numeric(length(m)) 
for (i in 1:length(m)) { 
ICARLrchart[i]= ICARL(m[i],0.0027)[[1]]} 
Percent_dif=((ICARLrchart-370.40)/370.40) 
Results=cbind(ICARLrchart,Percent_dif) 
rownames(Results)= c(10,20,30,50,100,500) 
Results 
write.table(Results, "clipboard",sep="\t",col.names=NA) 
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Code for Table 3.1 : ICARL’s for Case U 3-sigma ( RX , ) chart scheme in Table 3.1 
 
n=5 
m=c(10,20,30,50,100,500) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} 
uclrchart=function(x){(d2+qnorm(1-a/2,0,1)*d3)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclrchart=function(x){(d2-qnorm(1-a/2,0,1)*d3)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-ptukey(max(c(lclrchart(x),0)),n,Inf)} 
AFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} 
CFAR=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(-100,0),c(100,b),tol=1e-10)} 
 
ICARLxbarrchart=numeric(length(m)) 
for (i in 1:length(m)) { 
ICARLxbarrchart[i]= ICARL(m[i],0.0027)[[1]]} 
Percent_dif=((ICARLxbarrchart-370.40)/370.40) 
Results=cbind(ICARLxbarrchart,Percent_dif) 
rownames(Results)= c(10,20,30,50,100,500) 
Results 
write.table(Results, "clipboard",sep="\t",col.names=NA) 
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Code for Figure 3.2 :  Cumulative run-length probabilities for the estimated 3-sigma R chart 
 
n=5 
m=c(5,15,30,100) 
q=seq(1,1000,40) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
CRL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclrchart=function(x){(d2+qnorm(1-a/2)*d3)*cc(m)*sqrt(x)/sqrt(v(m))} 
lclrchart=function(x){(d2- qnorm(1-a/2)*d3)*cc(m)*sqrt(x)/sqrt(v(m))} 
MPNS=numeric(length(q)) 
for (i in 1:length(q)){ 
PNS=function(x){ 
(ptukey(uclrchart(x),n,Inf)-ptukey(max(c(lclrchart(x),0)),n,Inf))^q[i]} 
CPNS=function(x){ PNS(x)*dchisq(x,v(m))} 
b=qchisq(0.99999,v(m)) 
MPNS[i]=adaptIntegrate(CPNS,c(0),c(b),tol=1e-10)[[1]]} 
MPNS} 
 
y=pgeom(q,0.0027) 
plot(q,y,type = 'l', lwd=3, cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Cumulative Run-length 
probabilities for the estimated 3-Sigma R chart",xlab="Run-Length",ylab="Cumulative 
Probability",font.lab=2, font.axis=2) 
 
for (j in 1:length(m)){  
lines(q, (1-CRL(m[j],0.0027)),lty=j+1,lwd=4,col=j+1,cex=5)} 
legend('right',legend=c("Nominal","m=5","m=15","m=30","m=100"), 
lty=c(1,2,3,4,5),lwd=3,col=c(1,2,3,4,5),cex=1.3) 
legend('right',legend=c("Nominal","m=5","m=15","m=30","m=100"), 
lty=c(1,2,3,4,5),lwd=3,col=c(1,2,3,4,5),cex=1.3) 
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Code for Figure 3.3 : Cumulative run-length probabilities for the estimated 3-sigma ( RX , ) 
scheme 
n=5 
m=c(5,15,30,100) 
q=seq(1,1000,40) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
CRL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} 
uclrchart=function(x){(d2+qnorm(1-a/2,0,1)*d3)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclrchart=function(x){(d2-qnorm(1-a/2,0,1)*d3)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-ptukey(max(c(lclrchart(x),0)),n,Inf)} 
MPNS=numeric(length(q)) 
for (i in 1:length(q)){ 
JPNS=function(x){(PNSxbar(x)*PNSrchart(x))^q[i]} 
CJPNS=function(x){ JPNS(x)*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
MPNS[i]=adaptIntegrate(CJPNS,c(-100,0),c(100,b),tol=1e-10)[[1]]} 
MPNS} 
 
y=pgeom(q,0.0027) 
plot(q,y,type = 'l', lwd=3, cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Cumulative Run-length 
probabilities for the estimated 3-Sigma (Xbar,R) scheme",xlab="Run-Length",ylab="Cumulative 
Probability",font.lab=2, font.axis=2) 
m=c(5,15,30,100) 
for (j in 1:length(m)){  
lines(q, (1-CRL(m[j],0.0027)),lty=j+1,lwd=4,col=j+1,cex=5)} 
legend('right',legend=c("Nominal","m=5","m=15","m=30","m=100"), 
lty=c(1,2,3,4,5),lwd=3,col=c(1,2,3,4,5),cex=1.3) 
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Code for Table 3.2 : Calculation of Case U charting constants (A=370) 
 
n=10 
m=37 
aa=seq(from=0.001238,to=0.001240,length.out=3) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} 
uclrchart=function(x){qtukey(1-a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclrchart=function(x){qtukey(a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-ptukey(lclrchart(x),n,Inf)} 
AFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} 
CFAR=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(-100,0),c(100,b),tol=1e-10)[[1]]} 
 
 
ICARLxbar_rchart=numeric(length(aa)) 
Const=matrix(nrow=length(aa),ncol=3) 
for (j in 1:length(aa)){  
Const[j,]=c(qnorm(1-aa[j]/2),qtukey(aa[j]/2,n,Inf),qtukey(1-aa[j]/2,n,Inf)) 
ICARLxbar_rchart[j]=ICARL(m,aa[j])} 
ICARL370=ICARLxbar_rchart-370 
Results1=cbind(ICARL370,rep(m,length(aa)),aa,Const) 
colnames(Results1)=c("ICARL370","m","p","Xbar","SprL","SprU") 
Results1 
write.table(Results1, "clipboard",sep="\t",col.names=NA) 
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Code for Table 3.2 : Calculation of Case U charting constants (A=500) in Table 3.2 
 
n=5 
m=5 
aa=seq(from=0.000758,to=0.000760,length.out=3) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} 
uclrchart=function(x){qtukey(1-a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclrchart=function(x){qtukey(a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-ptukey(lclrchart(x),n,Inf)} 
AFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} 
CFAR=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(-100,0),c(100,b),tol=1e-10)[[1]]} 
 
ICARLxbar_rchart=numeric(length(aa)) 
Const2=matrix(nrow=length(aa),ncol=3) 
for (j in 1:length(aa)){  
Const2[j,]=c(qnorm(1-aa[j]/2),qtukey(aa[j]/2,n,Inf),qtukey(1-aa[j]/2,n,Inf)) 
ICARLxbar_rchart[j]=ICARL(m,aa[j])} 
ICARL500=ICARLxbar_rchart-500 
Results2=cbind(ICARL500,rep(m,length(aa)),aa,Const2) 
colnames(Results2)=c("ICARL-500","m","p","Xbar","SprL","SprU") 
Results2 
write.table(Results2, "clipboard",sep="\t",col.names=NA) 
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Code for Figure 3.4 : The ( RX , ) scheme’s with simulated data  
 
set.seed(15) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y=colMeans(data) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(1,15), ylim = c(2,18), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7, main="Shewhart Xbar Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(8.53), lty = 1, lwd=4) 
text(1.1,9.03, 'CL=8.53',cex=1.3) 
abline(h = c(3.71, 13.35), lty = 5, lwd=4) 
text(1.1,4.21,'LCL=3.71',cex=1.3) 
text(1.2,12.85,'UCL=13.35',cex=1.3) 
abline(h = c(3.60, 13.47), lty = 3, lwd=4) 
text(3,3.10,'LCL=3.60',cex=1.3) 
text(3,13.97,'UCL=13.47',cex=1.3) 
legend('top',legend=c("Sample mean","Case K Modified limits","Case U Modified 
limits"),lty=c(4,5,3),lwd=4,cex=1.3) 
 
set.seed(15) 
data=replicate(15,expr={ 
rnorm(5,8.53,3.36)}) 
y= apply(data,2,Range) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, xlim = c(1,16), ylim = c(-1,27), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7, main="Shewhart R Chart",xlab="Time / Sample 
number",ylab="Plotting Statistic",font.lab=2, font.axis=2) 
abline(h = c(7.82), lty = 1, lwd=4) 
text(1,8.45, 'CL=7.82',cex=1.3) 
abline(h = c(1.12, 18.88), lty = 5, lwd=4) 
text(1.2,1.81,'LCL=1.12',cex=1.3) 
text(1.3,18.38,'UCL=18.88',cex=1.3) 
abline(h = c(1.04, 19.20), lty = 3, lwd=4) 
text(3,0.60,'LCL=1.04',cex=1.3) 
text(3,19.84,'UCL=19.20',cex=1.3) 
legend('top',legend=c("Sample range","Case K Modified limits","Case U Modified 
limits"),lty=c(4,5,3),lwd=4,cex=1.3) 
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Chapter 4  

 

Literature review: Non-standard applications of SPC 

 
4.1 Introduction 

 

Traditionally SPC charts have been used for process monitoring and improvement in 

manufacturing, for example, Qiu (2014) discuss a number of examples. However, recently 

applications of control charts have been reported outside manufacturing in biology (see, e.g., 

Pazhayamadom et al. (2013)), medicine (see, e.g., Chen and Huang (2014)), athletics (see, e.g., Cox 

and Dunn (2002)), finance (see, e.g., Yi et al. (2006)) and other areas. In this chapter, we review 

some reported non-standard applications of SPC charts from 2001 to 2012 and highlight the 

reported benefits and problems associated with these applications. Moreover, this chapter serves as 

a prelude to the case study presented in Chapter 5. The case study presented in Chapter 5 can be 

seen as a non-standard application of SPC, since it applies the ( )RX , charting scheme we developed 

in Chapter 3 to student evaluation of teaching (SET) survey data.  

 

MacCarthy and Wasusri (2001) gave a detailed overview of the literature on non-standard 

applications of SPC up to the year 2000. In their paper they identified four application domains, 

namely: 

 

i. engineering, industrial and environmental applications (43%), 

ii. healthcare applications (31%), 

iii. general service sector applications (17%), 

iv. statistical applications / forecasting (9%). 

 

After conducting our own overview of the literature on non-standard applications of SPC from the 

year 2000 to 2012 we identified six application domains, namely: 

 
i. engineering, industrial and environmental applications (20%), 

ii. healthcare applications (31%), 

iii. general service sector applications (17%), 

iv. statistical applications / forecasting (2%), 
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v. animal production (28%), 

vi. everyday situations (2%). 

 

Thus, we have identified two additional domains over and above those identified by MacCarthy and 

Wasusri (2001), namely animal production and everyday situations. Firstly, we will focus on the 

two additional domains that we have identified. It should be noted that our overview included the 

years 2000 to 2012, since in the year 2013 the focus of this dissertation shifted to the joint 

monitoring scheme presented in Chapters 2 and 3. 

 

4.1.1 Animal production applications  

 

The primary objective of animal production SPC applications has been to monitor, control and 

improve animal production processes with examples found in poultry, swine, dairy and others. 

Examples include monitoring disease incidence, milk production, reproductive performance and 

water intake. For instance, the outbreak of a disease can spread fast within a group of animals and if 

it is not detected and treated immediately the outcome might include losses such as increased 

mortality and economic losses. Data is usually ratio scaled, non-normally distributed with 

correlation and is gathered from the process itself (i.e. it is usually not simulated data). The types of 

control charts used are mostly the more advanced charts such as residuals-based Shewhart, 

CUSUM, EWMA and multivariate charts.  A major problem in animal production SPC applications 

is data correlation. De Vries and Reneau (2010) gave a detailed systematic review of the application 

of SPC in animal production applications to the year 2009. Here, we give some examples and we 

briefly mention some of the key contributions and ideas and a few of the more recent developments 

in the area; the literature on SPC methods applied to animal production applications continues to 

grow at a rapid pace. 

 

Quimby et al. (2001) used a two-sided parametric CUSUM chart for monitoring the feeding 

behaviour of steers in order to minimize economic loss by predicting morbidity. Individual animals 

were considered as the experimental units and an animal was recorded as either absent or present at 

the feed bunk every 5.25 seconds. Although a two-sided chart was used in this study, a one-sided 

approach was used since a signal (that is, an animal being categorized as morbid) is given when a 

charting statistic plots on or below the LCL. This is due to the fact that appetite typically decreases 

with the onset of disease. Current methods of detecting disease include visual appraisal by feedlot 

pen riders, however, the authors concluded that only using visual appraisal is not effective. This was 

proven by doing two trials at a commercial feedlot and finding that the CUSUM chart detected 
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animal morbidity on approximately 4.5 days and 3.7 days earlier than pen riders, for the first and 

second trial, respectively, which will allow for medical intervention approximately 4.1 days earlier.  

 

De Vries and Conlin (2003) considered the timely signalling of changes in estrous detection ratio 

(EDR) and, accordingly, applied control charting techniques to animal fertility. Since control charts 

for EDR can be based on the normal or binomial distribution, the authors considered the individuals 

chart (X chart) based on the normal distribution and the fraction nonconforming chart (p chart) 

based on the binomial distribution for the Shewhart-type chart (for the detection of larger shifts) and 

the CUSUM-type chart (for the detection of smaller shifts), respectively. They found that CUSUM-

type charts detected changes in estrous detection ratio faster than Shewhart-type charts; which is to 

be expected. Following their 2003 paper, De Vries and Conlin (2005) stated that the performance of 

control charts in dairy production systems is largely unknown and, to gain some more insight, they 

used a Monte Carlo simulation model of a dairy production system. The main objective was to 

compare the performance of a wide variety of plausible control chart designs that are applied to 

dairy production systems. Again it was found that CUSUM-type charts detected changes faster than 

Shewhart-type charts; which is not surprising. The ideal would of course be to use a combination of 

a Shewhart chart and a CUSUM chart for good detection of both large and small changes. 

 

When considering the monitoring of animal health problems, Lukas et al. (2005) used two 

Shewhart-type charts, namely the individuals chart and the moving range chart, and ran them 

separately to monitor subclinical mastitis incidence (i.e. the inflammation of breast tissue incidence) 

in a dairy herd. More specifically, the objective of their study was to examine the relationship 

between monthly Dairy Herd Improvement (DHI) subclinical mastitis, new infection rate estimates 

and daily bulk tank somatic cell count (BTSCC). They concluded that control charting techniques 

detected a change in BTSCC (as a result of subclinical mastitis) earlier than the official control 

authority that did tests on a monthly basis. More recently Lukas et al. (2009) used a CUSUM chart 

to monitor disease onset. Daily milk yield (MY) and milk electrical conductivity (MEC) were 

monitored. The authors used two autoregressive models based on a subset of healthy cow records to 

address the problem of autocorrelation between individuals cow MY and MEC readings. It was 

noted that although a signalling event can’t indicate the type of disease that is emerging, the charts 

were shown to be effective in early detection of disease onset giving the herd manager an advantage 

in terms of time to fight off the emerging disease. It should be noted, at this point, that although the 

reader may not be familiar with all the terminology used in the animal health discipline, the point 

we are trying to get across is that SPC techniques have moved far beyond manufacturing into other 

areas, such as animal health problems, and that the literature continues to grow at a rapid pace. An 
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example of (perhaps) a more well-known health problem (specifically, a bacterium) that causes 

fever and food poisoning is Salmonella.  

 

Baum et al. (2005) used the parametric Shewhart X  chart to evaluate the serological responses of 

three groups of pigs infected with three Salmonella serovars (one serovar per group). For more 

applications of SPC techniques to animal health problems the reader is referred to Reneau and 

Kinsel (2001), Grennstam (2005), Pastell and Madsen (2008) and the references therein.  

 

Mertens et al. (2008) used a CUSUM chart based on residuals to monitor egg weight in order to 

minimize economic loss. A non-linear model was developed to detect the natural increasing trend of 

the egg weight with the increasing hen age. This trend was then subtracted from the measured egg 

weight and the residual values were inserted into the CUSUM statistic. The results showed that 

utilizing a CUSUM chart enables us to quickly detect a decrease in the average egg weight. The 

Mertens et al. (2008) paper ushered in a succession of papers on the use of control charts in 

monitoring livestock production. Following the 2008 paper, Mertens et al. (2009) cautioned that the 

well-known parametric CUSUM chart is based on certain assumptions such as the underlying 

process distribution being normal and the observations being independent and identically 

distributed. The problem is that statistical properties of livestock production processes often do not 

comply with the basic assumptions of control charts. For example, data originating from livestock 

production processes typically display autocorrelation between successive observations, for 

instance, the age of an animal can have an effect. Mertens et al. (2009) used Engineering Process 

Control (EPC) strategies as a possible solution. Without going into too much detail here, EPC is 

basically a model based process adjustment. The reader is referred to Del Castillo (2002) for more 

information, however, for our purposes it is only important to note that by the use of EPC a control 

chart can be constructed based on corrected data (where corrected data refers to the data after 

autocorrelation has been removed by means of modelling). In conclusion, the combination of the 

principles of EPC and SPC, referred to as synergistic control, can be used to monitor livestock 

production processes. More recently, following the 2009 paper, Mertens et al. (2011) gave a review 

on the most important aspects, recommendations, drawbacks and opportunities for the development 

and performance of control charts use for monitoring livestock production processes. In Table 1 of 

their paper they provided a list of all the publications where control charting techniques have been 

used up to the year 2009. 
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St-Pierre and Cobanov (2007a, b) used the parametric Shewhart X  chart for monitoring the 

nutritional composition of forage. Different designs were used by varying the sample size, sampling 

frequency and the width of the control limits. The authors observed that there is some association 

between nutrients. Thus, there is a need to expand the method from a univariate approach, in which 

each composition element is monitored separately, to a multivariate approach in which relationships 

between composition elements are factored in the monitoring process. 

 

Davis et al. (2008) used a Shewhart X  chart to monitor the effects of a Bacillus-based direct-fed 

microbial feed supplement on growth performance of pigs. Average daily gain (ADG) and gain to 

feed ratio (G:F) were monitored under experimental conditions. Their study demonstrated that SPC 

can be used to measure the outcome of implementing new technologies in a commercial swine 

production facility. However, the potential effect of seasonality on measurements still needs to be 

addressed when using SPC in a swine production facility. 

 

Cornou et al. (2008) used a CUSUM chart based on residuals to monitor estrous and health 

disorders of group housed sows fed by electronic sow feeders. A dynamic linear model of water 

intake and a dynamic linear model of eating rank were created and used to predict estrous, lameness 

and other health disorders. Differences between the predicted values of the model and the 

observations were monitored. The chart signals when residuals exceed some defined parameters. It 

was concluded that the CUSUM chart is more sensitive than trained expert personnel in the 

detection of estrous, lameness and other health disorders. 

 

Krieter et al. (2008) applied parametric CUSUM and EWMA charts to quickly detect process 

changes in swine production. The authors concluded that these control charting procedures are 

useful tools to trace deviations in commercial swine farming. Madsen and Kristensen (2005) used a 

parametric CUSUM chart to monitor the condition of piglets by monitoring their water 

consumption and studying the drinking behaviour, since changes in drinking patterns are usually the 

first visual signs that pigs are experiencing some kind of stress. 

 

SPC techniques have been used in the past as a way to monitor milk quality (see, for example, 

Reneau (2000) and Fuhrman (2002)). More recently, Wallace (2009) used the Shewhart individuals 

chart with probability limits for monitoring dairy milking management systems. Parlor indicators 

(milk production, flow rate, milking duration) were monitored. SPC is ideally suited to monitor 

milk quality, since milk-related data are not only easy to collect but it is also collected on a daily 
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basis (frequently collected). Wallace (2009) concluded that SPC can be used to signal emerging 

problems, evaluate the positive or negative impact of change in management practise or 

implementation of a new product. The only disadvantage noted by the author was that collecting 

suitable data for SPC control charting techniques was problematic since most computerised milking 

systems provide “snap shots” of the most recent data. Furthermore it was noted that if SPC is to be 

useful as a part of any production system the idea of continuous improvement must be embraced. 

 

Fraile et al. (2009) used the Shewhart individuals chart to monitor the effect of treatment with 

phytosterols in three herds of pigs with porcine respiratory disease complex. The performance 

measures were culls (%), feed efficiency, mortality (%) and average daily gain (ADG). The study 

showed that the use of SPC techniques is viable in pig production when formal studies are not 

feasible. For instance, it is possible to compare the performance of a process by using SPC 

techniques to examine data collected before and after a change has been introduced. 

 

Clearly, from all the examples / publications above and the references therein it is clear that the 

literature on SPC methods applied to animal production applications continues to grow at a rapid 

pace. 

 

4.1.2 Everyday situations  

 

Bamford and Greatbanks (2005) applied Shewhart individuals charts to monitor everyday personal 

processes. Processes monitored included (i) a shopping activity, (ii) washing dishes, (iii) swimming, 

(iv) commuting to and from university and (v) visiting a doctor. The performance measures for each 

of the activities were (i) time taken to complete a shopping spree, (ii) time taken to wash dishes, (iii) 

the time taken to swim 250m, (iv) time taken to commute to and from university and (v) patients’ 

waiting time. The charts gave a better understanding of the process monitored. For example, for the 

shopping activity it was found that it is best to shop on a Monday before late afternoon, using a 

basket not a trolley, with a list of items to buy and shopping alone or with no more than one friend. 

The authors remarked that other tools like flow charts, pie charts, Pareto charts, cause and effect 

diagrams, scatter graphs and histograms could be used together with the control charts to optimise 

the analyses. Each of these methods highlights data in its own way, and together they give the best 

analyses and process understanding. 
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4.1.3 Healthcare applications  

 

“This group covers three types of applications: monitoring the performance of a healthcare process 

such as asthma in a patient, the performance of a healthcare unit such as a pneumonia clinic, and 

monitoring patient/user satisfaction levels with a particular healthcare unit such as an outpatient 

clinic” MacCarthy and Wasusri, 2001. Many of the studies use attributes data gathered directly 

from the process, so predominantly Shewhart attribute charts are used. Major problem with this 

application type is that data might be cross-correlated and this suggests the use of the more 

advanced multivariate charts in addition to the univariate charts. Thor et al. (2007) gave a detailed 

systematic review of the application of SPC in healthcare improvement up to the year 2007. Here, 

we briefly mention some of the key contributions and ideas and a few of the more recent 

developments in the area; the literature on healthcare improvement continues to grow at a rapid 

pace. 

 

Curran et al. (2008) showed the use of Shewhart charts to monitor and reduce the number of ward-

acquired methicillin-resistant staphylococcus aureus (WA-MRSA). The chart helped to indicate 

when and where incident control teams should focus their efforts to investigate causes of WA-

MRSA increases. Charts assisted in determining the hospital epidemiology of antimicrobial-

resistant alert organisms. They improved communication between incident control teams and ward 

managers regarding infection prevention and control performance. All participants valued using 

SPC techniques as a feedback system and many stated that they would continue using it after this 

study for future infection control quality improvement. 

 

Dzik et al. (2008) used a Shewhart p chart to monitor errors in patient specimen collection. The 

performance measures used were the proportion of mislabelled samples and the proportion of 

miscollected samples. The authors created a template in Microsoft Excel where the practitioner 

simply has to input the number of mislabelled samples, the number of miscollected samples, the 

sample size and the date and at that point the Shewhart p chart for the proportion of errors is 

constructed. They refer to this as an SPC spreadsheet (see Appendix 4 below). They reported that 

the SPC tool can be a practical means to establish a regional or national performance standard and 

that the participating hospitals found the SPC spreadsheet easy to implement and an appropriate tool 

to monitor the performance of the sample labelling and collection process. 

 

Canel et al. (2010) used the Shewhart c chart to monitor patient record assembly times. They 

reported that the implementation of SPC charts reduced the amount of time a record stayed in the 
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health information management department from 9 to 7.6 days and decreased the average time 

taken to file a patient’s completed record in permanent file from 6.1 to 3.3 days. In addition, they 

reported that everyone accepted then implementation of SPC techniques in their department, except 

for one employee who was hostile to change.   

 

Wirtschafter et al. (2010) used a Shewhart u chart to monitor central line-associated bloodstream 

infection (CLABSI) among new born babies and to test the effect of the collaborative to reduce 

neonatal central line-associated blood stream infections. They concluded, based on the SPC 

methodology, that their collaborative was associated with special cause variation. However, they 

did not have a randomized control group and hence could not rule out other explanations for the 

CLABSI rate change. In addition, their baseline (Phase I) and follow up periods were shorter than 

desirable for SPC purposes. They only had eight points in the Phase I which is much smaller than 

what is recommended in the literature (see, for example, Chakraborti et al. (2009)). 

 

Pujar et al. (2010) used a Shewhart individuals chart with runs-rules to monitor weekly seizure 

frequency due to epilepsy and also to evaluate the effectiveness of drug interventions. According to 

the study, SPC techniques helped assess seizure fluctuations in individuals with epilepsy and 

objectively assessed whether a drug intervention has led to a change in seizure frequency. However, 

SPC charts are generated using expensive statistical packages like SPSS and Minitab and may not 

be easily available especially in resource poor countries. A limitation of this study was that it did 

not have enough data to analyze seizure types separately. An idea for future research could be to 

apply a moving range chart to the data to get the variance IC before running the individuals control 

chart for monitoring location. It is highly recommended in the literature to have two control charts, 

one for monitoring the location and one for monitoring the spread. 

 

Correia and Oliveira (2010) used univariate and multivariate charts (see Section 1.10.4) with 

variable control limits to monitor chronic respiratory patients. The measures used were oxygen 

partial pressure and carbon dioxide partial pressure. The authors observed that the control chart with 

varying limits explicitly showed the tendency for worsening or improving of the patient’s health 

status, throughout time. Furthermore, the charts permitted the identification of abnormal values for 

the corresponding phase in the patient’s health status, at each time instant. 

 

Weib and Atzmüller (2010) applied an EWMA chart using attributes data to monitor medical 

diagnosis by medical examiners. The proportion of cases where an examiner has given correct 

diagnosis was used in the EWMA statistic. The implementation of the SPC approach provided an 
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easy and intuitive overview on the documentation behaviour of different examiners. For more 

information of EWMA charts using attributes data the reader is referred to Trevanich and Bourke 

(1993). 

 

Kottner and Halfens (2010) used the Shewhart p chart to monitor the prevalence of hospital 

acquired pressure ulcers in the Netherlands. The charting statistic was the proportion of patients 

with pressure ulcers. Chi-square trend tests were also done and conflicting outcomes resulted, for 

instance, the chi-square trend tests indicated downward trends (i.e. prevalence rates decreased) in 

four hospitals, whereas the Shewhart p charts indicated the presence of common causes of variation 

only for these four hospitals. Although the uses of SPC control charting techniques have many 

advantages, there are some limitations, for example, even if processes are under statistical control, 

the values of the measured indicators are not automatically clinically acceptable or desired.  

 

Duclos and Voirin (2010) monitored the observed proportion of postoperative complications per 

month in a healthcare unit using a Shewhart p chart. The chart enabled practitioners to continuously 

undertake a critical examination of the care delivered. Control charts could also work 

complementary to randomized controlled trials in providing evidence on the impact of safety 

improvement interventions. However, they warned that although the Shewhart p chart was 

conceived to be user friendly for non-experts, previous knowledge is still required for design. They 

listed the rarity of events and confounding factors such as patient case-mix as some of the 

fundamental differences between monitoring a healthcare process and monitoring a manufacturing 

process. 

 

Perla et al. (2011) used a Shewhart individuals chart to monitor the percentage of unreconciled 

medication in a health facility. They concluded that Shewhart charts have many advantages such as 

(i) the display data in such a manner as to make process improvement visible, (ii) they determine 

whether changes resulted in improvement, (iii) they determine if gains made by the improvement 

are still holding, and (iv) they allow for a sequential view of data versus a stagnant view. 

 

Correia et al. (2011) used both univariate and multivariate charts (see Section 1.10.4) to monitor 

chronic respiratory patients. In this case, oxygen and carbon dioxide partial pressure were used 

together with the body mass index as performance indicators. Multivariate charts were used since 

there is some cross-correlation between performance measures. The reason for the inclusion of 

univariate charts is that it is highly recommended in the literature to use univariate charts along with 
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multivariate charts, since one of the disadvantages to using the latter is the fact that there is some 

difficulty in identifying when an OOC state has occurred. 

 

4.1.4 Engineering, industrial and environmental applications  

 

“Many of the studies in this group focus on monitoring the performance of a critical piece of 

equipment or machinery or a complex piece of instrumentation, either through variables or 

attributes data that is generated directly from the process or indirectly through a measure that is 

associated with the process in some way. Some of the studies focus on the use of SPC for optimal 

maintenance planning in industry. Some of the studies are concerned with monitoring the level of 

environmental variables such as the concentration of pollutants in industrial processes or in 

physical environment. Typically the emphasis is on hazardous or safety critical variables but 

applications also extend to monitoring concentrations of mineral deposits.” MacCarthy and 

Wasusri (2001). Major issues here are the definition of IC and OOC, and data is usually correlated, 

so the more advanced residual-based Shewhart, CUSUM, EWMA and multivariate charts are 

predominantly used. 

 

Shehab and Schlegel (2000) used several control charts to monitor the performance of workers on 

various human performance tasks. They considered Shewhart-type charts for detection of larger 

changes (threshold control) and CUSUM-type and EWMA-type charts for detection of smaller 

changes (deviation control). They considered both attributes and variables charts for discrete and 

continuous performance measures, respectively. They considered charts for monitoring location, 

e.g. the Shewhart X  chart, and they also considered charts for monitoring spread, e.g. the Shewhart 

R and S charts. Specifically, the following control charts were considered: (i) Shewhart p chart for 

fraction nonconforming, (ii) the Shewhart X  chart, (iii) the Shewhart R chart, (iv) the Shewhart S 

chart, (v) the CUSUM X  chart and (vi) the EWMA X  chart. The performance measures 

monitored included reaction time (RT), root mean square error (RMS), lambda (LM), percentage 

incorrect (PI) and control losses (CL). These are called readiness to perform indicators (RTP). RTP 

testing is undertaken to identify changes in an individual’s performance that may be due to 

exposure to risk factors such as the use of alcohol and / or drugs, fatigue and sleep loss. To give an 

illustration of why the use of SPC techniques is feasible in these situations, let us consider the case 

where there is a noticeable deterioration in an individual’s performance because of drug use. 

Traditional methods of testing for drug use include drug screenings, however, a lot of controversy 

surround drug screenings since they are deemed to be an invasion of privacy and intrusive. In order 
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to avoid such difficulties, efforts have turned towards the use of SPC techniques. A major challenge 

posed by the use of computer based RTP testing is identifying an effective method of analysing and 

interpreting performance data in order to make individualized judgements. The authors concluded 

that by adapting SPC control charting techniques to the monitoring of human performance in 

industry it will make the process of screening workers, for the presence of risk factors, more readily 

implemented. As a result, the health and safety of the workforce will be improved. Furthermore, 

they advocated the use of SPC techniques over that of traditional statistical analyses since the latter 

is typically based on pooling observations across participants creating a masking effect (the reader 

is referred to the discussion on rational subgrouping and masking effects in Section 1.7).  

 

MacCarthy and Wasusri (2002) applied the Shewhart chart based on residuals, the traditional 

EWMA individuals chart and the EWMA chart based on residuals to detect disturbances in 

production planning and scheduling. When monitoring time-related measures, in operational 

systems, problems arise such as autocorrelated data (see Section 1.4.2). The Shewhart and EWMA 

charts based on residuals were used to address the problem of autocorrelation since residuals are 

assumed to be iid normal. The authors stated that the traditional EWMA individuals chart was used 

since it has been shown to be robust to autocorrelated data (see Borror et al. (1999)). However, on 

the contrary, Human et al. (2011) recently showed that the traditional EWMA chart can lack in-

control robustness and their findings call into question routine applications of the traditional 

EWMA chart in practice. However, these finding were only published in 2011 and, consequently, 

this information was not known to MacCarthy and Wasusri in 2002. Using these three control 

charts, MacCarthy and Wasusri (2002) monitored differences between planned flow time per job 

and actual flow time per job; the difference between target output per day and actual output per day. 

They concluded that control charting techniques provide visibility which helps to control production 

planning and scheduling. In addition, it assists management to prioritize and decide on the 

disturbances to be eliminated. However, they acknowledged that it will take practitioners some time 

to understand, construct and interpret control charts correctly as SPC techniques are not well-known 

in all operational systems. In addition, control charts cannot guarantee that the organization is 

operating efficiently. It can only show how the organization is and has been operating. Another 

drawback is that performance measures used to construct control charts in production planning and 

scheduling, can only be obtained after the job has been done. Therefore, investigation and 

corrective action cannot be taken at the time the job is being produced and there may be longer time 

lags. 
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Corbett and Pan (2002) used the CUSUM chart to evaluate environmental performance. 

Specifically, they monitored emissions data since pollution is well-known to have a huge economic 

impact as well as an environmental impact. The chart was used to monitor nitrate concentration 

levels. They found the chart to be a useful risk management tool and recommended it to other 

practitioners who may want to identify processes that are at risk of provoking compliance problems. 

They also recommended it to regulators, since it contains useful information for enforcement. They 

mentioned that there are new and detailed environmental performance data being gathered because 

of the trend towards adopting environmental management systems standards. Therefore applying 

quantitative methods like SPC is becoming easier than before. However, environmental control is 

based on upper one-sided specification limits e.g. nitrate concentrations may not exceed a certain 

upper specification limit. This calls for more research on the problem of lower and upper one-sided 

specification limits. Furthermore, the design of the control chart is complicated by the dependence 

of specification limits on legislation. For example, one could be monitoring the process using daily 

emissions data with no specification limits on daily emissions themselves by having only an upper 

limit on total monthly emissions. In addition, data used in environmental monitoring are likely to be 

multivariate (see Section 1.10.4) and correlated (see Section 1.4.2) which is problematic since 

multivariate control charting techniques are not well-known amongst practitioners and it is difficult 

to implement and having autocorrelated data brings its own problems since the use of standard 

control charting techniques (based on independent observations) become questionable. 

 

Masson et al. (2005) used Shewhart charts to monitor the performance of the ion chromatography 

method. Chloride and nitrate concentrations were monitored. The charts allowed evaluation of 

quality performance during a time period that can lead to immediate changes in the procedure. 

Masson et al. (2005) concluded that the charts were a way to demonstrate accuracy and precision of 

the instrument method and that the charts could be used to verify the performance of the laboratory 

at any desired moment. 

 

Masson (2007) used a Shewhart X  chart with warning limits to monitor the performance of the 

liquid chromatography method. Phosphate concentration was monitored. In Shewhart-type charts 

the control limits are typically placed at distances of 3 standard deviations (of the charting statistic) 

above and below the CL. Since it is well-known that Shewhart-type charts are relatively insensitive 

in the detection of small shifts, warning limits can be added to the chart which are typically placed 

at distances of 2 standard deviations (of the charting statistic) above and below the CL. A signal is 

then given if two consecutive points plot between the warning and control limits or if one point 

plots on or beyond the control limits. These control charting techniques were used to check whether 
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the performance of the analytical procedure was maintained or, rather, how well it was maintained, 

when it is used in routine analysis. Masson (2007) warned that statistical control does not imply that 

the system is performing within the analytical quality required, but only that it is stabilized. This 

implies that if the analytical procedure is based on mistaken assumptions, the analytical results will 

be wrong even if no statistical variations are reported by the SPC chart. 

 

Bateman et al. (2009) used two Shewhart-type charts, namely the individuals chart and the moving 

range chart, and ran them separately to monitor camera image variation. Pixel values were used to 

construct these control charts. The chart acted as a tool for yielding anomalies in image data. It 

made it possible to pinpoint inconsistent images such that it is potentially possible to establish a 

stochastic feature from the image data that acts as a fingerprint for that device. This can benefit 

camera identification research. One year later a similar study was done by these authors (see 

Bateman et al. (2010)), with the difference being that in their 2010 paper they implemented the 

Western Electric Rules (1956) into the Shewhart individuals chart to increase the sensitivity of 

detecting small shifts and they also applied the parametric EWMA chart to the data. 

 

Nakahati et al. (2010) made use of the multivariate Shewhart Hotelling’s T2 and Runger’s U2 charts 

together with univariate Shewhart charts for health monitoring of aircraft horizontal stabilizer 

systems. The reader is referred to Section 1.10.4 for a discussion on univariate and multivariate 

control charts. The system temperature and the average value of motor current were used as 

performance measures. They concluded that using univariate SPC charts alone can lead to mistaken 

detection of emerging failures since the monitored variables vary as a function of other variables 

such as operational and environmental conditions. Therefore the use of multivariate SPC charts was 

deemed more appropriate. 

 

Tasdemir (2012) used two Shewhart-type charts, namely the individuals chart and the moving range 

chart, and ran them separately to monitor a coal washing plant. Moisture content and ash content 

were used as performance measures. The author noted that most data in the mineral and mining 

industries are correlated. In the case of autocorrelation, when traditional charts are applied, a very 

high false alarm rate will probably cause process personnel to waste effort in unproductive searches 

for special causes. This can lead to a loss of confidence in the control chart, and even to the process 

monitoring being discontinued. In order to prevent this Tasdemir (2012) adjusted the data before 

using it to construct the charts. The reader is referred to Section 1.4.2 to see how to deal with 

autocorrelated data. Basically, an appropriate time series model is fitted to the autocorrelated 
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observations and Tasdemir (2012) identified the ARIMA (1,0,1) model for moisture content and the 

ARIMA (0,1,2) model for ash content to be the best for removing autocorrelation.  

 

4.1.5     Statistical applications 

 

The objective in this application is to give accurate forecasts by detecting non-random points using 

control charts. The data (residuals/ forecast errors) is usually ratio scale data, normal and 

independently distributed. The data is gathered from process of fitting the forecasting model. 

Usually traditional Shewhart mean and range charts are used. CUSUM and EWMA charts are also 

used. 

 

Lotze and Shmueli (2009) compared the forecasting accuracy of three forecasting models using the 

traditional Shewhart mean and range charts.  

 

4.1.6    General service applications  

 

The main objective of applying SPC charts in this domain is to evaluate customer satisfaction and 

expectations and to help detect the root cause of extraordinary levels of satisfaction and 

dissatisfaction for individual customers. Data are typically gathered from surveys and are mostly 

ordinal. Problems include skewed data, time between surveys (time may be too long), correlation 

between questions and variable large sample size. However, even though the data are ordinal and 

skewed, many studies in this group still use the traditional Shewhart X  and R charts regardless. 

Our case study in the next chapter (Chapter 5) explores this problem and offers some suggestions. 

  

Marks and O’Connell (2003) used two Shewhart-type charts to analyse data from student 

evaluations of teaching. This was in response to the dangerous practise of relying on a single 

number to evaluate a teacher’s performance or to allege that one individual’s performance is 

superior to the other. They plotted the average of the students’ responses to the statement: “The 

instructor was excellent (independent of how you feel about the course)” on the first chart. Using 

the other chart, they monitored the residuals from a regression model relating the average instructor 

rating to the expected grade. The purpose of pre-adjusting data through a regression model and 

plotting the residuals was to remove, from the average ratings, the bias due to the expected grade. 

Consequently, the performance of an individual whose scores are OOC on both charts cannot be 

explained by expected grade and therefore is worthy of note. The authors mentioned that SPC charts 

might provide an antidote for much of the tension and anxiety surrounding teaching evaluations, 
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misuse of the ratings by administrators and the pressure to rely on manipulative practices in pursuit 

of higher scores. However, Ding et al. (2006) observed that their charts did not include any time 

element; their approach was just a series of hypothesis tests shown graphically over instructors 

instead of over time. Therefore, their results conveyed no information regarding how well each 

instructor performs. Note that in their application Marks and O’Connell (2003) did not keep the 

spread chart, as recommended in literature, when they monitored the process mean.  

 

Pettersson (2004) used the Shewhart chart for binomial data to monitor churn rate. Churn is a 

process of a customer replacing one provider of a service or merchandise for another. The chart 

displayed the proportion of churners in a group of at risk customers. They concluded that statistical 

methods (including control charting techniques) can increase detection power by decreasing the 

number of false alarms. In a nutshell, statistical methods will save time and money in the churn 

management area. However, their major concern was that the stakeholders were likely to be limited 

in their ability to apply and interpret control charts effectively. SPC charts were compared with data 

mining techniques for understanding churn. The main difference found was the lack of timeliness in 

data mining. Data mining results are only valid at one specific time point, and neither comparisons 

over time nor the repeated decisions, that are key in SPC, are possible in the data mining paradigm. 

Another criticism levelled against data mining techniques was the lack of information about 

significance level and the power of the results generated by the analysis. 

 

Scordaki and Psarakis (2005) proposed that the multivariate Shewhart Hotelling’s T2 chart be used 

as an alternative to using several univariate Shewhart individuals charts in monitoring the 

performance of salesmen. One reason being that sales of a salesman are cross correlated with sales 

from other salesmen, since the sales of each one are influenced by the state of the market. 

Furthermore, sales data are autocorrelated since they are influenced by seasonality market patterns. 

Therefore making use of the traditional Shewhart individuals chart is inappropriate. Monitoring the 

ratio of the weekly total sales of a salesman to the total sales of the week instead of the raw sales on 

a multivariate Shewhart Hotelling’s T2 chart takes account of both issues. The authors believe that 

the use of SPC procedures in commercial companies may be a valuable tool in the machinery of the 

managers in evaluating employees, departments and services.  

 

Maguad (2005, 2006) used a Shewhart X  chart for monitoring a teacher’s performance. The 

charting statistic was the average of the students’ responses to the following question (which was 

presented in the format of a five point strongly agree to strongly disagree Likert scale): 

“Independent of the course, what is your overall rating of this instructor’s performance?” The 
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author’s proposal was motivated by a number of limitations in the conventional analysis of 

responses to such questions. Conventionally, such responses have been analysed by comparing the 

class average for the question to the group average (the group may be a department or an entire 

institution). But what does it really mean when an instructor’s performance is below or above the 

group average? In other words, is this difference due to common cause variation or assignable cause 

variation? Conventional analysis methods fail to distinguish between these types of variation. 

Hence, conventional performance evaluations fail to discriminate between factors that are within 

the instructor’s control and system determined factors. Consequently, conventional performance 

evaluations create a shortage of winners within the educational institution and do little to motivate 

teachers or enhance their satisfaction. It was concluded that using SPC charts to monitor teachers’ 

performance will help the academic institution to understand which problems are attributable to the 

system and which ones are attributable to special causes. It will also help to assess classroom 

processes to determine whether or not the system needs intervention. Furthermore, it will help the 

administration to discover which teachers are performing outside the limits of variation of the 

system on either the good side or poor side and which ones are performing within the calculated 

limits of differences attributable to the system so that appropriate responses can be crafted to 

address the needs of different groups of teachers. Note that in their application of the ( )RX ,  

charting scheme Maguad (2005, 2006) ignored the multiplicity issue and the non-normality of their 

survey scales.  

 

Ding et al. (2006) compared the Shewhart individuals chart, the modified p chart and the z-score 

chart to analyse student evaluation of teaching data. The overall teaching effectiveness variable, on 

the five point strongly agree to strongly disagree Likert scale, was used in all three cases. For both 

the Shewhart individuals chart and the z-score chart, overall teaching effectiveness was treated as a 

continuous variable and an average instructor teaching effectiveness was computed, standardized 

(in the case of the z-score chart) and plotted. For the modified p chart, the proportion that strongly 

agreed or agreed was monitored. The authors advocated the use of the modified p chart because it 

utilized distributions that were appropriate for categorical data and was relatively easy to program. 

In addition, its control limits varied with the sample size. The only drawback of the modified p 

chart is the fact that, since it is not well established in literature, it is unknown to most practitioners. 

 

Morgan and Dewhurst (2007) used a Shewhart X  chart to monitor the performance of supermarket 

chain’s problem suppliers. Their application was motivated by (i) the need for a performance 

analysis tool that will be effective in enhancing buyer/supplier relationships in the food retailing 
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environment, and (ii) the fact that huge economic losses can be incurred if, for example, the 

delivery is not on time or the product is damaged. Current tools based on descriptive statistics do 

not add much management value in understanding the time relatedness of the data analysed. 

However, they are useful in exploring performance targets and understanding the scope of 

performance variations. The performance measures monitored in this study were Supplier Service 

(SS) and On Shelf Availability (OSA) which were calculated as follows:  

(i) SS (%) = (Received volume) / (Total order volume)  100, and  

(ii) OSA (%) = (Products in store stock) / (Products required in store stock)  100.  

Phrased simply SS is a measure of the efficiency of supply operations from the supplier to the 

supermarket and OSA is a measure of the efficiency of ‘back-of-shop’ to ‘front-of-shop’ operations. 

Morgan and Dewhurst (2007) concluded that the application of control charting techniques is 

valuable in managing supplier relationships and that they enabled meaningful problem solving 

dialogues to be established. However, by only focussing on poorly performing suppliers the lack of 

balance in the sample limited the extent of their generalizations from the analysis. An idea for 

future research could be to look at the performance of suppliers that perform poorly, adequately and 

exceptionally. 

 

Cadden et al. (2008) used the Shewhart X  chart to monitor and improve teacher effectiveness. 

They also investigated what measure should be used as a standard by which an instructor’s 

performance should be evaluated. This was a response to the lack of clear guidance on how to 

interpret SET results in order to make comparative evaluations of the instructor’s performance. The 

authors believe that SPC charts offer a new method for a comprehensive evaluation of teaching 

effectiveness. In addition, they can allow for the consideration of possible additional explanatory 

variables such as the course taught, course and student status, expected grade and class size. 

However, the scores of teaching ability and other items in their assessment instrument are not 

normally distributed and, accordingly, an idea for future research could include considering some 

sort of transformation of the data or the use of nonparametric control chart techniques (see Section 

1.10.2). Note that in their application of the ( )RX ,  charting scheme Cadden et al. (2008) ignored 

the multiplicity issue and the non-normality of their survey scales.  

 

Hanna (2009) used a Shewhart X  chart in monitoring the management of education department 

resources. Hanna (2009) monitored the number of lost Basic Life Support: Health Care Provider 

(BLS HCP) training slots. The author concluded by stating that unlike column and line charts, SPC 

charts have interpretation guidelines that may be used to determine whether processes and outcomes 
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should be investigated. Also, SPC charts were effective presentation tools that enabled them to 

graphically display information for audiences. They were instrumental in reducing the number of 

lost BLS HCP slots, and therefore reduced costs. 

 

The underlying process distributions of service processes are usually non-normal or unknown and, 

consequently, control charts that do not depend on a particular distributional assumption are 

desirable (see Section 1.10.2). Accordingly, Yang et al. (2012) used a nonparametric Shewhart-type 

mean chart and an arcsine transformed nonparametric EWMA-type chart for monitoring service 

processes with unknown distributions. The performances of these charts were compared to the 

traditional EWMA X  chart, the traditional Shewhart X  chart and a modification of the latter 

called the transformed X  chart. Service quality was monitored by considering service time. Yang 

et al. (2012) concluded that the arcsine transformed nonparametric EWMA-type chart outperformed 

all the other charts and should therefore be used in practice. 

 

4.2 Summary and Conclusion 

 

We reviewed non-standard applications of SPC charts reported in the literature from the year 2001 

to 2012, inclusive. We classified these applications into six groups according to the domain to 

which control chart techniques have been applied (see Table 4.1 below). For each group we 

described the nature of the application along with the objectives, data characteristics, data sources 

and control charts used (see Table 4.2 below). Further, we have highlighted the benefits and 

problems associated with the non-standard applications. Some of the benefit mentioned are that 

SPC charts can (i) help distinguish special from common cause variation, saving time and costs 

associated with process monitoring. (ii) help distinguish whether process interventions led to 

anticipated improvements (iii) help determine if gains made by improvement are still holding (iv) 

provide a common language for process improvement (v) help stakeholders learn about their 

process, enabling them to make informed decisions based on facts (vi) enable valuable prediction of 

future process performance. A major concern about the non-standard applications was that common 

SPC charts are not well suited to non-normal or correlated cases that exist with the type of data. It is 

clear that there is a great opportunity to make significant research contributions to these application 

areas. Thus, in Chapter 5 we present a case study that applies the Phase II  ( )RX ,  charting scheme, 

we developed in Chapter 3, to SET survey data. 

 
 
Our findings are summarized in Tables 4.1 and 4.2. 
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Domain Specific application 
Health care 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Animal 
production 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Engineering 
industrial and 
environmental 
applications 
 
 
 
 
 
 
 

Dzik et al. (2008): Monitoring errors in patient specimen collection 
Curran et al. (2008): Monitoring and reducing the number of ward-acquired 
methicillin-resistant staphylococcus aureus (WA-MRSA)) 
Canel et al. (2010): Monitoring patient record assembly times 
Wirtschafter et al. (2010): Monitoring central line-associated bloodstream 
infection (CLABSI) among new born babies to reducing neonatal central line 
associated blood stream infections.  
Pujar et al. (2010): Monitoring seizure frequency and evaluating drug 
interventions 
Correia and Oliveira (2010): Monitoring chronic respiratory patients 
Weib and Atzmüller (2010): Monitor medical diagnosis by medical examiners  
Kottner and Halfens (2010): Monitoring the prevalence of hospital acquired 
pressure ulcers 
Duclos and Voirin (2010): Monitoring postoperative complications  
Perla et al. (2011): Monitoring  unreconciled medication  
Correia et al. (2011): Monitoring chronic respiratory patients 
 
 
Quimby et al. (2001): Monitoring the feeding behaviour of steers 
De Vries and Conlin (2003): Monitoring estrous of a dairy herd 
Lukas et al. (2005): Monitoring subclinical mastitis incidence 
Baum et al. (2005): Evaluating the serological responses of pigs infected with 
Salmonella serovas 
Madsen and Kristensen (2005): Monitoring and modelling drinking patterns of 
pigs 
St-Pierre and Cobanov (2007a, b): Monitoring the nutritional composition of 
forage 
Pastell and Madsen (2008): Detecting lameness in a milking robot 
Mertens et al. (2008, 2009): Monitoring of the average egg weight 
Krieter et al. (2008): Detecting process changes in swine production  
Cornou et al. (2008): Monitoring health disorders of a group of sows 
Lukas et al. (2009): Monitoring disease onset 
Wallace (2009): Monitoring milking management systems 
Fraile et al. (2009): Studying the effect of phytosterols in three herds with 
porcine respiratory disease complex 
 
 
 
Cassady et al. (2000): Setting up a preventive maintenance plan  
Shehab and Schlegel (2000): Monitoring human performance on various 
performance tasks 
Wasusri and MacCarthy (2001): Production planning and scheduling 
Corbett and Pan (2002): Evaluating environmental performance 
Masson et al. (2005): Monitoring performance of the ion chromatography 
method  
Masson (2007): Monitoring the liquid chromatography method performance 
Bateman et al. (2009): Analysing camera image variations 
Nakahati et al. (2010): Monitoring an aircraft horizontal stabilizer system 
Tasdemir (2012): Monitoring a coal washing plant 
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General  
Service Sector 
 
 
 
 
 
 
 
 
Statistics 
(forecasting) 
 
Everyday 
situations 

 
 
Pettersson (2004): Monitoring churn rate 
Maguad (2006): Assessing the performance in a graduate course  
Maguad (2007): Monitoring teachers performance 
Morgan and Dewhurst (2007): Monitoring the performance of supermarket 
chain’s problem suppliers 
Cadden et al. (2008):  Improving teaching effectiveness 
Hanna (2009): Monitoring the management of education resources 
Yang et al. (2012): Monitoring service processes 
Scordaki and Psarakis (2005): Monitoring the performance of a salesman 
 
Lotze and Shmueli (2009): Monitoring forecasts 
 
 
Bamford and Greatbanks (2005): Monitoring personal everyday activities 
 
 

Table 4.1. Non-standard SPC applications: Publications from 2000 to 2012 divided into six 
application domains 
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Control chart 
technique 

Article and variable plotted 

Shewhart  
control  
charts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
More  
advanced  
charts 
 
 
 
 
 
 
 
 
 
 
 

Jatla and Enzenauer (2007): Phacoemulcification time, phacoemulcification 
power, surgical time 
Canel et al. (2010):  Time to completion 
Curran et al. (2008): Number of ward-acquired methicillin-resistant 
staphylococcus aureus (WA-MRSA)) 
Dzik et al. (2008): proportion of mislabelled samples, proportion of miscollected 
samples 
Wirtschafter et al. (2010): Central line associated blood stream infections 
(CLABSI) rate among new born babies 
Pujar et al. (2010):Total weekly seizure frequency 
Correia and Oliveira (2010): Oxygen and carbon dioxide partial pressures 
Kottner and Halfens (2010): Proportion of patients with pressure ulcers 
Duclos and Voirin (2010): Proportion of postoperative complications 
Perla et al. (2011): Proportion of unreconciled medications 
Pettersson (2004): Proportion of churners in a group of at risk customers  
Maguad (2006): Overall rating of course 
Maguad (2007): Overall rating of teacher performance 
Morgan and Dewhurst (2007): % supplier service, % on shelf availability  
Cadden et al. (2008):  Teaching ability score 
Hanna (2009): The number of lost training slots 
Masson et al. (2005): Chloride and nitrate concentrations 
Masson (2007): Phosphate concentration 
Bateman et al. (2009): Image mean pixel value 
Bamford and Greatbanks (2005): Time taken to complete shopping, time taken to 
swim 250 meters, waiting time at a GP practise, time taken to wash dishes  
Lukas et al. (2005): Daily bulk tank somatic cell count 
Baum et al. (2005): Serologic responses 
St-Pierre and Cobanov (2007a,b): Forage quality 
Wallace (2009): Parlor data (milk production, flow rate, milking duration)  
Fraile et al. (2009):  % culls, % mortality, feed efficiency, average daily gain   
Lotze and Shmueli (2009): One-sided Shewhart chart of forecast errors 
Tasdemir (2012): Shewhart chart of residuals moisture and ash content data 
  
 
Hardoon et al. (2006): CUSUM chart for the prostheses revision rate 
Coory et al. (2008): CUSUM chart for mortality rates 
Weib and Atzmüller (2010): EWMA chart for the proportion of times an examiner 
has given correct diagnosis 
Correia et al. (2011): Multivariate T2 chart for oxygen partial pressure, carbon 
dioxide partial pressure and body mass index (BMI) 
Yang et al. (2012): Arcsine transformed nonparametric EWMA-type chart for 
monitoring service processes 
Wasusri and MacCarthy (2001): EWMA chart for differences between planned 
and flow time per job, differences between planned and actual output per day 
Corbett and Pan (2002): CUSUM chart for nitrate concentration level 
Nakahati et al. (2010):  Multivariate Shewhart Hotelling’s T2 and Runger’s U2 
charts of the system temperature and the average value of motor current 
Quimby et al. (2001): CUSUM chart to monitor feeding time 
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Both  
Shewhart  
and  
advanced 
control  
charts 

Madsen and Kristensen (2005): CUSUM chart to monitor a linear model of water 
intake 
Pastell and Madsen (2008): CUSUM chart was used on exponentially smoothed 
leg weight data 
Mertens et al. (2008): CUSUM chart was used on continuously updated 
mathematical model of egg weight by age 
Cornou et al. (2008): CUSUM chart used on health disorders data adjusted for 
eating rank in sows 
Krieter et al. (2008): EWMA and CUSUM charts used on number of piglets born 
and estrous rate 
 
 
De Vries and Conlin (2003): Shewhart and CUSUM charts used to monitor 
estrous detection ratio 
Lukas et al. (2009): A time series model was used to adjust data before Shewhart 
and CUSUM charts were applied 
Scordaki and Psarakis (2005): Multivariate Shewhart Hotelling’s T2 chart and 
univariate Shewhart chart to monitor the weekly sales of the salesman 
Shehab and Schlegel (2000): Univariate Shewhart, CUSUM and EWMA charts 
applied on reaction time (RT), root mean square error (RMS), lambda (LM), 
percentage incorrect (PI) and control losses (CL). 

Table 4.2. Non-standard SPC applications: Publications from 2000 to 2012 divided by the type of 
control chart applied 
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4.3 Appendix 4: SPC spreadsheet 

 

The template of the SPC spreadsheet created by Dzik et al. (2008). 
 

PROCESS RUN CHART - MULTIPLE CHARACTERISTICS 
Errors in sample collection and labelling  

                            

No. Labelling defect Class / Characteristic frequency row total freq. % 
1 Mislabelled                                         0 ##### #DIV/0! 

2 Miscollected                                         0 ##### #DIV/0! 

Date                                         0 ##### #DIV/0! 

Sample size                                         Sample total: 0 
Column totals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Year:  

Proportion (p) #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### Hospital:  

Moving Range   #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### Ward/Dept: 

Mean proportion *  = #DIV/0! Mean range = #DIV/0! UCL * = #DIV/0!   

              ( * Value of Centre line [mean p], UCL to use for next chart) 
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An example of the SPC spreadsheet created by Dzik et al. (2008). 
 

PROCESS RUN CHART - MULTIPLE CHARACTERISTICS 
Errors in sample collection and labelling  

                            

No. Labelling defect Class / Characteristic frequency row total fre   
1 Mislabelled 1 4 3 1 0 3 1 1 0 1 1 1 1 1 1 3 0 1 2 0 26 0.   

2 Miscollected 3 0 1 1 1 2 1 2 4 2 1 2 3 1 3 1 3 2 0 1 34 0.   

Date 01/12 02/12 03/12 04/12 05/12 06/12 07/12 08/12 09/12 10/12 11/12 12/12 01/13 02/13 03/13 04/13 05/13 06/13 07/13 08/13  60 1  

Sample size 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Sample total:  
Column totals 4 4 4 2 1 5 2 3 4 3 2 3 4 2 4 4 3 3 2 1 Year:  

Proportion (p) 0.040 0.040 0.040 0.020 0.010 0.050 0.020 0.030 0.040 0.030 0.020 0.030 0.040 0.020 0.040 0.040 0.030 0.030 0.020 0.010 Hospital:  

Moving Range   0.000 0.000 0.020 0.010 0.040 0.030 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.000 0.010 0.000 0.010 0.010 Ward/Dept: 

Mean proportion *  = 0.03000 Mean range = 0.01211 UCL * = 0.06220   

              ( * Value of Centre line [mean p], UCL to use for next chart) 
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Control chart from an example by Dzik et al. (2008) 
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Chapter 5 

 

Case study: Application of the ( )RX ,  charting scheme to student 

evaluation of teaching (SET) survey data 

 
5.1 Introduction 

 

There is a continuing need for publications of case studies showing the benefits of SQC outside the 

conventional manufacturing domain (Woodall and Montgomery (1993)). In keeping with their 

spirit, this chapter applies the ( )RX ,  charting scheme which we developed in Chapter 3 to student 

evaluation of teaching (SET) survey data. SET data are used to evaluate, monitor and improve 

teacher performance as well as student satisfaction levels. Note, SET data can be classified as 

customer satisfaction survey data and thus this case study can be categorized as a general service 

sector application, see Section 4.1.6.  

 

Wardell and Candia (1996) showed that applying the standard ( )RX ,  charting scheme to customer 

satisfaction survey data gives too many false alarms. The false alarm inflation was attributed to the 

non-normality of survey scales. It is known that the control chart constants of the standard Shewhart  

X  chart assume that the underlying distribution of the data being measured is normal. Survey 

scales are at best ordinal and hence observations are not normally distributed. However, this lack of 

normality can often be redressed by taking large samples and relying on the results of the central 

limit theorem. Since sample sizes from surveys are usually large, a normal distribution may 

adequately describe the distribution of the averages of survey responses. This could be the reason 

why some practitioners (e.g. Marks and O’Connell (2003), Maguad (2005, 2006), Cadden et al. 

(2008)) continue to use the standard X  chart even though the survey scales are known to be ordinal 

and skewed. However, these practitioners overlooked a very important fact, which is, to find the 

appropriate limits for the X  chart, a good estimate of the standard deviation must be found. In the 

case of the ( )RX ,  charting scheme this entails finding the value of 
2d

R . As stated in Wardell and 

Candia (1996), the problem is that the unbiased constant d2 assumes that the individual 

observations are normally distributed (see the definition of d2 in Chapter 2 page 23). Since the 
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normality assumption is inappropriate for survey data, 
2d

R  may consistently underestimate the 

population standard deviation and thus cause the limits of the X  chart to be narrow and the FAR to 

rise. 

 

Further, there are three more issues that might have caused the false alarm inflation and whose 

effects might not have been known to Wardell and Candia (1996). These issues are (i) the issue of 

the combined use of the X  and R charts (multiplicity) and (ii) the issue of using k = 3 for the k-

sigma limits on the R chart and (iii) the issue of parameter estimation. In Chapters 2 and 3 of this 

dissertation we have shown analytically how severe these two issues could be on the IC 

performance of the ( )RX ,  charting scheme. We showed that their effect usually doubles or triples 

the number of false alarms. This is cause for serious concern.   

 

Furthermore, the application of the ( )RX ,  charting scheme to SET survey data is more cumbersome 

and complicated than a typical standard application. Wardell and Candia (1996) cited two reasons 

for this; (i) the fact that subgroup sizes are very large and (ii) the subgroup sizes are rarely equal 

(usually because response rates vary in surveys). In the literature, control chart constants are usually 

tabulated for small subgroup sizes and not for large subgroups (say greater than 50). In addition, 

more work is involved in creating and maintaining control charts when the sample size varies from 

time to time than when the sample size is constant. In passing, we note that there are two commonly 

used methods of dealing with variable sample size (see Stapenhurst (2005)). The first method uses 

only the first n observations of each subgroup to construct a chart, where n is the smallest subgroup 

size. This is the simplest method, but throws away valuable data. The second method keeps all the 

data in each subgroup, ignores the fact that n varies and it uses the average value of n in all the 

calculations. The second method is a little more complex than the previous one; however, it is 

reasonable when n does not vary too much. Maguad (2005) used the second method. Usually there 

are many operational variables (items) in a survey dataset and these variables are correlated. In 

practice, a single operational variable is often studied overtime using SPC charts. However, the 

multivariate construct complexity of customer satisfaction survey data makes it very dangerous to 

use individual univariate charts on each individual quality measure (Jensen and Markland (1996)). 

For example, if we collect and plot three uncorrelated variables, each on a separate univariate 

control chart (where 0027.00 =FAR ), the overall AFAR would be 3×0.0027 = 0.0081, clearly this 

is not acceptable. It is even worse if the items are correlated, because the correlation pattern must be 

investigated before the overall AFAR may be assessed.  
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In summary, current and past applications of the ( )RX ,  chart to survey data ignore the non-

normality of the survey scales, ignore the multiplicity issue, ignore the effects of parameter 

estimation and do not take advantage of the correlation structure inherent in survey scales (see 

applications in Marks and O’Connell (2003), Maguad (2005, 2006)); as a result the FAR is inflated. 

In this case study, we take advantage of the correlation structure by using factor analysis to reduce 

our original 12 survey scales to a single interval scaled factor. We deal with the non-normality by 

using data transformation. We deal with the multiplicity and parameter estimation issues (in Phase 

II) by using our own charting constants in Table 3.2. It is because of these reasons that we strongly 

believe that our application method should lessen the FAR inflation and thus should be better than 

the application methods in Wardell and Candia (1996), Marks and O’Connell (2003) and also 

Maguad (2005, 2006). Finally we evaluate a single lecturer using the resulting Phase II ( )RX ,  
charting scheme.  

 

We hope that our case study will provide some guidance to practitioners who want to apply the 

( )RX ,  charting scheme to survey data in general and more in particular to SET survey data. Next 

we briefly describe the data that will be used in the case study. 

 

5.2 Description of the data 

 

Table 5.1 Sample of data from the faculty SET database 

Lecturer Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 
1 5 5 5 5 4 4 5 5 5 5 5 5 
1 4 5 4 4 4 4 5 4 4 4 4 4 
1 5 5 5 5 5 4 5 5 4 4 5 5 
1 5 5 4 5 5 5 5 4 2 4 5 4 
1 5 5 5 5 5 5 4 5 4 5 4 4 
1 5 5 5 4 5 4 5 4 4 2 5 5 
1 5 5 5 5 5 4 5 5 5 5 4 4 
1 5 5 4 5 5 5 5 5 5 5 4 4 
1 5 5 5 5 5 5 5 5 5 5 5 5 
1 5 4 4 5 4 4 5 5 4 4 4 5 

 

Table 5.1 shows a subset of 10 observations from the SET data set. The first column indicates the 

evaluated lecturer. In this case lecturer 1 was evaluated. The remaining columns are the 

questionnaire items that were used in the evaluation process. These items are: 

 

Q1 : the lecture made the purpose of learning clear 
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Q2 : the lecturer prepared well for the learning and teaching activities 

Q3 : teaching and learning material supported learning 

Q4 : the lecturer communicated effectively 

Q5 : the lecturer encouraged student involvement 

Q6 : the lecturer encouraged critical thinking 

Q7 : the lecturer gave prompt feedback on assessments 

Q8 : the lecturer gave appropriate feedback which supports learning 

Q9 : the lecturer responded to learning needs 

Q10 : the lecturer explained concepts clearly 

Q11 : learning activities stimulated my interest in the module 

Q12 : the lecturer was available for consultation outside class 

 

Each row in Table 5.1 corresponds to one student who evaluated the lecturer. The students recorded 

their responses using the following response categories: 

 

1. Strongly Disagree 

2. Disagree 

3. Neutral 

4. Agree 

5. Strongly Agree 

 

The number of students evaluating a lecturer varied with the lecturer, the minimum number was 10, 

the maximum number was 398 and the average was 65.  

 

5.3               Data preparation 

 

In this section, data is prepared for Phase II analysis using the ( )RX ,  charting scheme. This 

involves factor analysis, calculation of factor scores, transformation of the factor scores to improve 

their normality and conducting a Phase II analysis on the factor scores to remove outliers – thus 

ensuring that a set of clean IC data is obtained. 
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5.3.1            Factor analysis 

 

Factor analysis has been used as an analytic tool in educational research. Practitioners use factor 

analysis for a variety of reasons, such as reducing a large number of items from a questionnaire or 

survey instrument to a smaller number of components, uncovering latent dimensions underlying the 

data set, or examining which items have the strongest association with a given factor, etc., see 

DiStefano et al. (2009). 

 

We subjected our 12 SET data scales to factor analysis using SPSS. The aim was to assess the 

correlation among them and to reduce them to a manageable set suitable for our control charting 

purpose. As already mentioned, Jensen and Markland (1996) also used factor analysis to reduce 

their 22 service quality questionnaire items to 4 factors. Table 5.2 and Figure 5.1 give a summary of 

our factor analysis. As can be seen in Table 5.1, factor analysis revealed only 1 factor with an 

eigenvalue exceeding 1, explaining 54% of the variance in the original data. The explained variance 

of 54% is quite high compared to that given in the study by Jensen and Markland (2006), who 

extracted and charted 4 factors that explained less than 50% of the original data’s variability. 

Furthermore, an inspection of the scree plot in Figure 5.1 showed a clear break after component 1. 

Thus we decided to retain only one factor for further analysis even though 46% of the original 

information will be lost.  

 
Figure 5.1 The scree plot of the SET data 
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Table 5.2 Total variance of the SET data explained by the components 

 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 6.488 54.069 54.069 6.488 54.069 54.069 
2 .790 6.584 60.653    
3 .682 5.684 66.337    
4 .666 5.549 71.886    
5 .581 4.843 76.730    
6 .511 4.260 80.990    
7 .433 3.608 84.598    
8 .407 3.389 87.987    
9 .390 3.253 91.241    

10 .370 3.081 94.321    
11 .353 2.938 97.260    
12 .329 2.740 100.000    

Extraction Method: Principal Component Analysis. 

 
5.3.2          Factor scores and data transformation 
 
Factor scores are composite variables which provide information about an individual’s placement 

on the factor (DiStefano et al. (2009)). Once a researcher has used factor analysis and has identified 

the number of factors or components underlying the data set, he/she may wish to use the 

information about the factors in subsequent analysis (Gorsuch (1983)). Here, in this dissertation, 

factor scores are used for control charting purposes. However, we need to calculate them first. 

 
Table 5.3  SET Questionnaire items and their factor loadings  

 

Questionnaire items Factor loadings 

  

Made purpose of learning clear .806 

Prepared well for the teaching and learning activities .779 

Teaching and supporting material supported learning .740 

Communicated effectively .762 

Encouraged student involvement .721 

Encouraged critical thinking .716 

Gave prompt feedback on assessments .657 

Gave appropriate feedback which supports learning .752 

Responded to learning needs .768 

Explained concepts clearly .779 

Learning activities stimulated my interest in the module .702 

Available for consultation in scheduled hours outside the classroom .620 
Extraction Method: Principal Component Analysis. 
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1 components extracted. 

 

There are various methods of scoring a factor, some of these are the (i) regression technique, (ii) 

sum technique, (iii) weighted sum technique, (iv) Bartlett technique and (v) Andersin-Rubin 

technique (see DiStefano et al. (2009)). We opted for the weighted sum technique because its 

advantage is that the items with the highest factor loading on the factor have the largest influence on 

the factor score (see DiStefano et al. (2009)). The weighted sum technique multiplies the raw item 

score by its factor loading and then sums the resulting values across items. Table 5.3 shows the 

items and their factor loading. It can be seen that the item “made the purpose of learning clear” has 

the highest loading and thus has the largest impact on the calculated factor scores. 

 
Figure 5.2 Histogram of the SET data factor scores  

 
 
Since our calculated factor will be analysed using the ( )RX ,  charting scheme, we need to ensure 

that the factor scores have an approximate normal distribution. Figure 5.2 shows the distribution of 

the factor scores. It can be seen that the distribution is skewed to the left. Thus we need to improve 

it to approximate normality. To do this, we employed the square root transformation, which is given 

by 

 

scorefactorK −  
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 where K is the maximum value of the weighted factor scores plus 1.   

 

Note that “K – factor score” reverses the scale of the factor scores from positive to negative. This 

has important implications on interpretation, a small value of scorefactorK −  actually means 

that the person has scored highly on the untransformed factor score. In other words, the student is 

more satisfied with the classroom performance of the lecturer, the lecturer has responded to the 

needs of the student, the lecturer is doing well and should possibly get rewarded.  

 

 
Figure 5.3 Histogram of transformed factor scores of the SET data 
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Figure 5.4 The QQ-plot of the transformed factor scores of the SET data 

 
Figure 5.3 shows the distribution of the transformed factor scores and Figure 5.4 is their 

corresponding QQ-plot. It can be seen from both these figures that the transformed factor scores are 

reasonably normal. Thus, the assumption of normality, which is the main condition required to 

apply the ( )RX ,  charting scheme, has been reasonably met. Next, we subject the transformed factor 

scores with Phase I analysis techniques to remove outliers and get a clean set of IC data to estimate 

the process parameters. 

 

5.3.3 Phase I analysis 

 

The goal of conducting this analysis is to establish the level at which the process is currently 

performing. Once this level is found and the process is deemed IC, the resulting data can be used to 

estimate the unknown parameters of the process and estimate the Phase II control limits for lecturer 

evaluation. 

 

Unfortunately, control charts for joint monitoring in Phase I are absent from the literature so far. 

Thus we will have to use the currently available charts. For the R chart, we use the control limits 

and charting constants given in Human et al. (2010) whereas, for the X chart, we use those given in 

Champ and Jones (2004). We do this because although their tables do not take into account the joint 

charting problem (which we discussed in Chapters 2 and 3), these are based on the FAP. Human et 

al. (2010) defined the control limits for the R chart as 
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and provided the tables for 3D  and 4D  values for FAP = 0.01, 0.05; m = 3(1)10, 15, 20, 25, 30, 50 

and n = 3(1)10. Champ and Jones (2004) defined the X  chart limits as  
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and showed that when m > 20, the charting constant k can be found by  

 

m
m

c
lk 1−

=
 

 

where l is the ( )[ ] 2111 1 mFAP−−−  quantile of the univariate t-distribution with v degrees of 

freedom and c is a constant multiplier for the chi-squared approximation of the sampling 

distribution of 2dR . 
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Figure 5.5 Phase I ( )RX ,  scheme of the SET data for m = 66, n = 10 and a nominal FAP = 0.05 

 

An initial Phase I analysis was conducted on the transformed factor scores using 66 lecturers 

(subgroups). For each lecturer, ten observations were taken and used to calculate the sample range 

and sample mean. The sample ranges and sample means were used to calculate the mean range and 

the grand mean as 25816.2=R  and ,05185.3=X  respectively. Figure 5.5 shows the initial results 

for a nominal FAP = 0.05, m = 66 and n = 10. The associated constants and control limits values are 

given in Table 5.4. Note that the table provided by Human et al. (2010) was not created for 
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subgroup numbers greater than 50, so we used m = 50 to get approximate values of 3D  and 4D . 

Note, this confirms the concern raised in Wardell and Candia (1996) that common tables of charting 

constants available in literature do not accommodate for large subgroup numbers and subgroup 

sizes. 

 

Table 5.4 Constants and control limits of the Phase I  ( )RX ,  charting scheme for a nominal FAP = 
0.05 and n = 10 

 
 R chart X  chart 
 D3 D4 LCL UCL v l c k LCL UCL 
           
m = 66 0.325 1.995 0.7339 4.50503 492.2209 3.38202 1.00051 3.35461 2.27346 3.83024 
           
m = 39 0.348 1.932 0.88014 4.88632 290.9596 3.24436 1.00086 3.19975 2.07972 3.74284 
           
m = 38 0.348 1.932 0.88454 4.91074 283.5055 3.23752 1.00088 3.19182 2.05363 3.72091 

 

 

The 66 sample ranges and sample means were plotted simultaneously on the ( )RX ,  chart in Figure 

5.5. About 27 samples plotted outside the control limits of the X  chart, meaning that the process 

was not stable yet. All the subgroups outside the control limits were discarded and the remaining m 

= 39 samples were used to estimate R and X ; then the  charting process was done again. 
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Figure 5.6 Phase I ( )RX ,  scheme of the SET data for m = 39, n = 10 and a nominal FAP = 0.05 

 

Figure 5.6 shows the Phase I ( )RX ,  scheme reconstructed for a nominal FAP = 0.05, m = 39 and n 

= 10 with 2.52915=R  and 2.91128=X . The R chart was constructed using the approximate 

charting constants 3D  and 4D  that correspond to m = 30 (see Table 5.4).  Only 1 sample was OOC, 

as shown by the X  chart in Figure 5.6. The OOC sample was discarded and the charting procedure 

was repeated using the remaining m = 38 subgroups. 
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Figure 5.7 Phase I ( )RX ,  scheme of the SET data for m = 38, n = 10 and a nominal FAP = 0.05 

 

Figure 5.7 shows the Phase I ( )RX ,  scheme reconstructed for the third time for a nominal FAP = 

0.05, m =38 and n = 10 with 2.54179=R  and 2.88727=X . The associated charting constants and 

control limits are given in Table 5.4. It can be seen in Figure 5.7 that all the charting statistics plot 

between the most recent control limits, leading to a decision that the process is IC. This means that 

the level at which the faculty lecturers are currently performing has been found and the estimates 

2.54179=R  and  2.88727=X can be used to construct the Phase II ( )RX ,  charting scheme for 

evaluating future performance of the lecturers of the faculty. 

 

5.4 Phase II analysis 

 

For an IC ARL = 370, m = 38, n = 10, 2.54179=R  and 2.88727=X ; the charting constants for the 

Phase II ( )RX ,  are not available in Table 3.2. Using the R programmes given in Appendix 5, the 

constants were found to be k = 3.22929 for the X  chart, D3 = 1.02206 and D4 = 6.12738 for the 

lower and upper limits of the R chart, respectively. Thus, the control limits of the Phase II ( )RX ,  

charting scheme were calculated as follows  
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Future lecturer performance can be evaluated by plotting the lecturer’s data on the above ( )RX ,  

scheme and to illustrate this, a single lecturer was selected. This lecturer has been evaluated 

continuously by students for 15 consecutive time points. At each time point a sample of 10 students 

was taken. Factor scores were calculated and transformed (see Section 5.3.2). Sample ranges and 

sample means for the transformed factor scores were calculated and plotted on the ( )RX ,  chart 

scheme shown in Figure 5.8. The reader should note that our transformed factor scores are on a 

negative scale. This means that higher values of the transformed factor scale corresponds to low 

student satisfaction levels or poor lecturer performance, whereas the lower values correspond to 

high student satisfaction levels or good lecturer performance.  
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Figure 5.8  The Phase II ( )RX ,  scheme of the SET data evaluated for a specific lecturer 

 

Furthermore, it must be remembered that the R chart is plotted and examined first; any point outside 

the control limits is checked for assignable causes and rejected if one is found. The X  chart is 

examined only when the variability of the data is under control. In Figure 5.8, the R chart showed 

no signal at all the time points. The points on the X  chart are also within the control limits. This 

means that the lecture’s data is consistent with common causes of variation in the system, thus the 

differences seen in Figure 5.8 between plotted values are not meaningful. They are not due to some 

special cause or causes. The lecturer is performing within process specifications. Note that without 

a control chart it would be difficult to tell this. For example, a typical administrator would think that 

the lectures performance at the first time point on the X  chart was above average and consequently 

reward this lecturer, which would be ill-advised and misguided. According to Maguad (2007), a 

lecturer whose data fall within the control limits of the X  chart should not be ranked or compared 

with other faculty lecturers whose data also fall within the same control limits. Their differences 

arise almost entirely from the actions of the system and are not due to individual performance 

differences. However lecturers whose data point plots below the LCL (which would be above the 

UCL in our X  chart in Figure 5.8) require individualised help. For example, they could be sent for 

a training course or a counselling session to help restore their confidence (Maguad (2007)). For 

others, it may be an offer to move to a more suitable position within the organisation. Faculty 

members whose data point plots above the UCL (below the LCL in our X  chart in Figure 5.8) 
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deserve recognition. They could be models and mentors for other faculty members and 

consequently, help raise the process average for continual improvement (Maguad (2007)). 

 

5.5         Summary and conclusion 

 

In this chapter, factor analysis was used to reduce 12 ordinal scaled SET items to a single interval 

scaled factor. Then, factor scores were calculated and their normality improved by the square root 

transformation. The transformed normal factor scores were subjected to Phase I and Phase II 

analyses using the ( )RX ,  charting scheme. For the Phase II analysis, we used the new charting 

constants we developed in Chapter 3 to account for the effects of multiplicity, 3-sigma limits and 

parameter estimation. We strongly believe that the method we have outlined above, which involves 

condensing the data, forcing normality on the data and using the charting constants in Chapter 3 

should lessen the FAR inflation. However, as can be seen in Section 5.4, our chart is not that easy to 

interpret. Research still needs to be done to sort out the joint charting issue in Phase I.    
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5.6 Appendix 5: R Code 

 

Code for Figure 5.5  
 
y=c(1.89240,2.76205,0.93294,3.44207,1.85517,0.95097,1.19174,2.99700,2.13081,3.27504,2.76165
,1.56524,1.82951,1.49734,1.34360,1.80844,2.79736,2.39696,2.44960,2.36541,2.08998,3.57165, 
3.89780,1.92775,2.12398,2.25013,2.31659,2.13081,2.39677,2.13081,1.20262,2.17088,1.14797, 
2.20366,2.33437,4.33057,3.04157,2.73395,3.93295,2.31104,2.08004,3.00230,1.99933,1.33117, 
2.16363,2.09515,2.00692,2.39677,1.66716,2.04886,2.36236,2.90260,2.58664,2.17816,2.41541, 
2.09419,1.14004,1.32121,2.83810,3.04438,1.20144,1.93044,3.03009,2.17695,1.89413,2.63968) 
x=1:66 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,66), ylim = c(0,5.2), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I R chart",xlab="Sample 
number",ylab="Sample Range",font.lab=2, font.axis=2) 
abline(h = c(0.73390, 2.25816, 4.50503), lty = 1, lwd=4) 
text(-0.3,0.88,'LCL',cex=1.3) 
text(-0.25,2.40, 'CL',cex=1.3) 
text(-0.3,4.65,'UCL',cex=1.3) 
legend('top',legend=c("Sample Range"),lty=c(4),lwd=4,cex=1.3) 
 
 
y=c(2.01853,2.91920,4.45021,2.95736,1.51506,2.81029,4.93736,2.37804,1.77614,3.02742, 
2.57546,2.75977,2.79944,2.80652,3.42199,1.84617,3.40668,2.56580,4.36928,2.31233,2.25909, 
2.96867,3.26754,2.47950,3.07547,2.22639,3.16200,1.95783,3.04362,2.08667,5.01360,4.39698, 
3.45749,2.74148,2.23044,2.50751,2.74355,3.05065,3.07448,1.79586,4.69931,3.42567,1.91733, 
4.56313,2.56539,2.73652,3.49720,3.04362,4.57635,3.82346,4.44667,2.87577,2.55697,2.47826, 
2.04839,2.55445,4.71983,4.90245,2.54594,2.84231,5.03199,4.47194,3.15656,1.96238,1.66278, 
3.12534) 
x=1:66 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,66), ylim = c(1.50,5.00), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I Xbar chart",xlab="Sample 
number",ylab="Sample Mean",font.lab=2, font.axis=2) 
abline(h = c(2.27346, 3.05185, 3.83024), lty = 1, lwd=4) 
text(-0.5,2.42,'LCL',cex=1.3) 
text(-0.45,3.20, 'CL',cex=1.3) 
text(-0.5,3.98,'UCL',cex=1.3) 
legend('top',legend=c("Sample Mean"),lty=c(4),lwd=4,cex=1.3) 
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Code for Table 5.3 :    Calculation of c, v and l  
 
n=10 
m=38 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
v(m) 
cc(m) 
l=qt(1-(1-(1-0.05)^(1/m))/2,v(m)) 
(l/cc(m))*(sqrt((m-1)/m)) 
l 
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Code for Figure 5.6  
 
y=c(2.76205,3.44207,0.95097,2.99700,3.27504,2.76165,1.56524,1.82951,1.49734,1.34360, 
2.79736,2.39696,2.36541,3.57165,3.89780,1.92775,2.12398,2.31659,2.39677,1.14797,2.20366, 
4.33057,3.04157,2.73395,3.93295,3.00230,2.16363,2.09515,2.00692,2.39677,2.04886,2.90260, 
2.58664,2.17816,2.09419,2.83810,3.04438,3.03009,2.63968) 
x=1:39 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,39), ylim = c(0,5.8), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I R chart",xlab="Sample 
number",ylab="Sample Range",font.lab=2, font.axis=2) 
abline(h = c(0.88014, 2.52915, 4.88632), lty = 1, lwd=4) 
text(-0.3,1.03,'LCL',cex=1.3) 
text(-0.25,2.68, 'CL',cex=1.3) 
text(-0.3,5.03,'UCL',cex=1.3) 
legend('top',legend=c("Sample Range"),lty=c(4),lwd=4,cex=1.3) 
 
y=c(2.91920,2.95736,2.81029,2.37804,3.02742,2.57546,2.75977,2.79944,2.80652,3.42199, 
3.40668,2.56580,2.31233,2.96867,3.26754,2.47950,3.07547,3.16200,3.04362,3.45749,2.74148, 
2.50751,2.74355,3.05065,3.07448,3.42567,2.56539,2.73652,3.49720,3.04362,3.82346,2.87577, 
2.55697,2.47826,2.55445,2.54594,2.84231,3.15656,3.12534) 
x=1:39 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,39), ylim = c(1.50,5.00), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I Xbar chart",xlab="Sample 
number",ylab="Sample Mean",font.lab=2, font.axis=2) 
abline(h = c(2.07972, 2.91128, 3.74284), lty = 1, lwd=4) 
text(-0.5,2.23,'LCL',cex=1.3) 
text(-0.45,3.06, 'CL',cex=1.3) 
text(-0.5,3.89,'UCL',cex=1.3) 
legend('top',legend=c("Sample Mean"),lty=c(4),lwd=4,cex=1.3) 
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Code for Figure 5.7 
 
y=c(2.76205,3.44207,0.95097,2.99700,3.27504,2.76165,1.56524,1.82951,1.49734,1.34360, 
2.79736,2.39696,2.36541,3.57165,3.89780,1.92775,2.12398,2.31659,2.39677,1.14797, 
2.20366,4.33057,3.04157,2.73395,3.93295,3.00230,2.16363,2.09515,2.00692,2.39677, 
2.90260,2.58664,2.17816,2.09419,2.83810,3.04438, 
3.03009,2.63968) 
x=1:38 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,39), ylim = c(0,6.5), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I R chart",xlab="Sample 
number",ylab="Sample Range",font.lab=2, font.axis=2) 
abline(h = c(0.88454, 2.54179, 4.91074), lty = 1, lwd=4) 
text(-0.3,1.03,'LCL',cex=1.3) 
text(-0.25,2.69, 'CL',cex=1.3) 
text(-0.3,5.06,'UCL',cex=1.3) 
legend('top',legend=c("Sample Range"),lty=c(4),lwd=4,cex=1.3) 
 
 
y=c(2.91920,2.95736,2.81029,2.37804,3.02742,2.57546,2.75977,2.79944,2.80652,3.42199, 
3.40668,2.56580,2.31233,2.96867,3.26754,2.47950,3.07547,3.16200,3.04362,3.45749, 
2.74148,2.50751,2.74355,3.05065,3.07448,3.42567,2.56539,2.73652,3.49720,3.04362, 
2.87577,2.55697,2.47826,2.55445,2.54594,2.84231,3.15656,3.12534) 
x=1:38 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,39), ylim = c(1.50,5.00), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase I Xbar chart",xlab="Sample 
number",ylab="Sample Mean",font.lab=2, font.axis=2) 
abline(h = c(2.05363, 2.88727, 3.72091), lty = 1, lwd=4) 
text(-0.5,2.20,'LCL',cex=1.3) 
text(-0.45,3.04, 'CL',cex=1.3) 
text(-0.5,3.87,'UCL',cex=1.3) 
legend('top',legend=c("Sample Mean"),lty=c(4),lwd=4,cex=1.3) 
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Code for Figure 5.8  
 
y=c(2.84461,2.30022,4.90008,1.70379,3.60782,2.51310,4.14968,2.39677,2.84461,2.30022, 
4.90008,1.70379,3.60782,2.51310,4.14968) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,15), ylim = c(0,6.5), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase II R chart",xlab="Time",ylab="Sample 
Range",font.lab=2, font.axis=2) 
abline(h = c(0.84414, 2.54179, 5.06075), lty = 1, lwd=4) 
text(-0.3,0.99,'LCL',cex=1.3) 
text(-0.25,2.70, 'CL',cex=1.3) 
text(-0.3,5.21,'UCL',cex=1.3) 
legend('top',legend=c("Sample Range"),lty=c(4),lwd=4,cex=1.3) 
 
y=c(2.69522,3.10191,2.60799,2.66396,2.77041,2.86722,3.12495,3.04362, 
2.69522,3.10191,2.60799,2.66396,2.77041,2.86722,3.12495) 
x=1:15 
plot(x,y,type = 'b', lwd=4, pch = 16, axes = TRUE, xlim = c(0,15), ylim = c(1.30,4.50), 
cex.axis=1.7,cex.lab=1.7,cex.main=1.7,main="Phase II Xbar chart",xlab="Time",ylab="Sample 
Mean",font.lab=2, font.axis=2) 
abline(h = c(2.04384, 2.88727, 3.73070), lty = 1, lwd=4) 
text(-0.3,2.19,'LCL',cex=1.3) 
text(-0.25,3.04, 'CL',cex=1.3) 
text(-0.3,3.88,'UCL',cex=1.3) 
legend('top',legend=c("Sample Mean"),lty=c(4),lwd=4,cex=1.3) 
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R code for the Phase II charting constants that were used in to construct Figure 5.8 

n=10 
m=38 
aa=seq(from=0.001241,to=0.001244,length.out=3) 
d2=function(n){ 
pt=function(w){1-ptukey(w,n,Inf)} 
integrate(pt,lower=0,upper=Inf)[[1]]} 
d2=d2(n) 
EW2=function(n){ 
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 
integrate(ptt,lower=0,upper=Inf)[[1]]} 
d3=function(n){ 
sqrt(EW2(n)-d2^2)} 
d3=d3(n) 
 
library(cubature) 
ICARL=function(m,a){ 
M=function(m){ 
d3^2/(m*d2^2)} 
r=function(m){  
(-2+2*sqrt(1+2*M(m)))^-1} 
t=function(m){ 
M(m)+1/(16*r(m)^3)} 
v=function(m){ 
(-2+2*sqrt(1+2*t(m)))^-1} 
cc=function(m){ 
1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} 
uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} 
uclrchart=function(x){qtukey(1-a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
lclrchart=function(x){qtukey(a/2,n,Inf)*cc(m)*sqrt(x[2])/sqrt(v(m))} 
PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-ptukey(lclrchart(x),n,Inf)} 
AFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} 
CFAR=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} 
b=qchisq(0.99999,v(m)) 
adaptIntegrate(CFAR,c(-100,0),c(100,b),tol=1e-10)[[1]]} 
 
 
ICARLxbar_rchart=numeric(length(aa)) 
Const=matrix(nrow=length(aa),ncol=3) 
for (j in 1:length(aa)){  
Const[j,]=c(qnorm(1-aa[j]/2),qtukey(aa[j]/2,n,Inf),qtukey(1-aa[j]/2,n,Inf)) 
ICARLxbar_rchart[j]=ICARL(m,aa[j])} 
ICARL370=ICARLxbar_rchart-370 
Results1=cbind(ICARL370,rep(m,length(aa)),aa,Const) 
colnames(Results1)=c("ICARL370","m","p","Xbar","SprL","SprU") 
Results1 
write.table(Results1, "clipboard",sep="\t",col.names=NA) 
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Chapter 6 

 

Concluding Remarks: Summary and Recommendations for Future 

Research 

 
In this final section, we give a brief summary of the research conducted in this dissertation and offer 

concluding remarks concerning unanswered questions and future research opportunities. We also list 

the research outputs associated with this dissertation. 

 

1. Summary 

 

Statistical process control (SPC) is a collection of statistical procedures and problem solving tools that 

are used to control, monitor and improve the quality of the output of a process. In this dissertation, we 

focused on a variety of aspects related to a powerful statistical tool often used in quality improvement 

efforts within the realm of SPC, namely, the control chart. More specifically, we focused the joint 

monitoring of the mean and standard deviation of a normally distributed process using the ( )RX ,  

charting scheme. We showed that the standard or conventional use of the ( )RX ,  scheme is not correct, 

because it results in inflated false alarm rate (FAR). The FAR inflation is caused by multiple testing, 

parameter estimation and the standard use of the 3-sigma limits. Thus, we provided a technique for 

obtaining the correct control limits, which accounts for the effects of these three issues. We also 

provided tables of the correct charting constants to aid practitioners in implementing the ( )RX ,  

charting scheme. Using our new tables of new charting constants together with some data 

transformation and data reduction techniques, we applied the ( )RX ,  charting scheme to student 

evaluation of teaching (SET) survey data. Our application proved that, contrary to popular belief, SPC 

charts can be and are used outside the traditional manufacturing domain. Furthermore as a prelude to 

our case study we reviewed non-standard applications of SPC charts reported in literature from 2000 to 

2012. Our review identified six non-standard application domains. These were healthcare, 

environment, general service sector, statistics, animal production and in personal everyday situations. 

Further, we pointed out the benefits and problems associated with such applications (i.e. non-standard 

applications of SPC charts). 
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2. Recommendations for future research 

  

2.1 Joint monitoring of the mean and standard deviation of a normal process 

 

i. While, a lot of work has been done in monitoring the mean and the standard deviation of a 

normally distributed process using Shewhart or Shewhart-type charts, few studies have 

considered the performance of these charts as they are applied in tandem, as a combination of 

two charts. Multiple charts used in this manner are often called combination charting schemes 

(or combo schemes). From a practical standpoint, these combo scheme procedures must be 

made more accessible to practitioners and, to this end, the ease of implementation is vital. 

Computer programs, add-ons to popular software packages such as Minitab® SAS®, and R® 

and / or websites would greatly help in this effort.  

 

ii. There is a major shortcoming regarding the application of combo schemes in industry. This 

could be due to a number of contributing factors, such as the fact that these methods are not 

well-known, since they are only typically touched on in undergraduate and / or postgraduate 

courses in most programs. Also, in a search of standard SPC books on the market, very little on 

combo schemes were found. For example, in the well-known SPC book by Montgomery (2013) 

the combo scheme is not mentioned at all.  

 

iii. Our work can be extended to other types of two chart joint charting schemes for the mean and 

variance of the normal distribution in Phase II. For example the ( )SX , , (Median, Range) 

scheme and the ( )MRX , .charting schemes.  

 

iv. As expressed by McCracken and Chakraborti (2013) “Research in the area of parametric joint 

monitoring has largely overlooked cases in which processes are known to be non-normal. This 

is an important area for further research, since few non-normal parametric joint monitoring 

schemes are currently available in literature.” 

 

v. Only a handful of nonparametric joint monitoring charts are currently available in the literature 

and they are all one-chart schemes (see McCracken and Chakraborti (2013)). Thus there is a 

great opportunity to make significant contributions in this area. 
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vi. As mentioned in Section 5.3.3 of Chapter 5, control charts for joint monitoring in Phase I are 

absent from the literature. The major difficulty in Phase I is designing the scheme so that it has 

a specified overall FAP. Further research is needed to address this difficult issue. 

 

2.2 Non-standard applications of SPC charts 

 

There are a lot of problems that need to be resolved surrounding the non-standard applications of SPC 

charts. They include 

 

i. The nature of data obtained from non-standard application domains may not be normally 

distributed. Furthermore auto-correlation and cross-correlation potentially complicates the 

problem.  

 

ii. Sample sizes may be very large and variable. Recall that common control chart tables in 

literature were not created for very large samples. 

 

iii. Event frequency may be long, particularly in surveys, and common control charts are not well 

suited in analyzing infrequent events. Thus, identification of special causes may be more 

difficult. 

 

iv. Cause and effect relationships may not be obvious. 

 

v. The combined use of mean and variance charts   (i.e.  the joint monitoring question) in relation 

to non-standard applications still needs investigation. 

 

All of these above issues raise important questions for further research. 
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3. Research outputs 

 

Next we list the research outputs associated with this dissertation.  

 

3.1 National conferences and departmental seminars (presentations) 

 

i. Diko, M.D., Chakraborti, S. and Graham, M.A. (2013). “New limits for the Xbar-R chart 

scheme.” The 55th annual conference of the South African Statistical Association (SASA), 

Polokwane, Limpopo Province, 4 – 8 November 2013. 

 

ii. Diko, M.D., Chakraborti, S. and Graham, M.A. (2013). “New limits for the Xbar-R chart 

scheme.” Departmental Seminar, University of Pretoria, Pretoria, South Africa, Nov 2013. 

 

iii. Diko, M.D., Chakraborti, S. and Graham, M.A. (2012). “A review of non-standard applications 

of Statistical Process Control (SPC) charts.” The 54th annual conference of the South African 

Statistical Association (SASA), Nelson Mandela Metropolitan University (NMMU), Port 

Elizabeth, 5 – 9 November 2012. 

 

iv. Diko, M.D., Chakraborti, S. and Graham, M.A. (2012). “A review of non-standard applications 

of Statistical Process Control (SPC) charts.” Departmental Seminar, University of Pretoria, 

Pretoria, South Africa, Nov 2012. 

 

3.2 Papers in progress 

 

i. Diko, M.D., Chakraborti, S. and Graham, M.A. (2014). “Monitoring the process mean: an old 

problem revisited”  

ii. Diko, M.D., Chakraborti, S. and Graham, M.A. (2014). “New control limits for the ( )RX ,  

charting scheme in Case U.”  

 

 

The end. 
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