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Abstract

Cercospora zeina causes grey leaf spot (GLS), a yield-limiting disease on maize. The main

objective of this study was to exploit maize gene expression data to dissect the quanti-

tative disease response to C. zeina infection. The project addresses the hypothesis that

there is an underlying DNA polymorphism that gives rise to a change in gene expression,

which in turn affects GLS disease severity. Genomic and functional annotation of the

reporters on an Agilent 44K maize microarray was carried out. This microarray was used

for global gene expression profiling of earleaf samples collected from 100 recombinant

inbred sub-tropical maize lines exposed in the field to C. zeina. Gene expression profiles

together with GLS severity scores were used in a weighted gene co-expression network

analysis to identify co-expression modules associated with disease severity. Quantitative

trait locus (QTL) mapping for GLS severity was combined with expression QTL (eQTL)

analyses to investigate the molecular basis of the quantitative response to GLS. An eQTL

data analysis pipeline was developed in Galaxy. The overlap of phenotypic QTLs with

cis- and trans-eQTLs revealed putative causal candidate genes and potential mechanisms

responsible for the QTLs, respectively. Regulatory network models were constructed for

trans-eQTL hotspots coinciding with phenotypic QTLs. A genetic basis for coordinated

expression responses to GLS disease was identified. For the susceptible response, the re-

sults lead to the hypothesis that a calmodulin-related protein with a cis-eQTL acts as a

global regulator of various pathogenesis-related proteins that are activated too late after

infection started. For the resistant response, it is hypothesised that a serine threonine-

protein kinase with a cis-eQTL acts as a post-translational global regulator regulating

phosphatases and kinases involved in activation of defense gene expression. The outcomes

of this study were: i) the development of a systems genetics strategy and ii) several hy-

potheses of maize transcriptional responses to C. zeina which need to be validated with

further studies. These results extend the current knowledge of GLS resistance and could
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aid in the improvement of maize varieties.
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Preface

A major challenge in current biological research is to understand the molecular basis of

quantitative traits. This study is part of a collaborative project investigating the ge-

nomics of the quantitative genetic response to grey leaf spot (GLS), caused by the fungus

Cercospora zeina Crous & U. Braun, in a maize (Zea mays ssp. mays L.) population de-

rived from two subtropical inbred lines that have been bred for maize growing conditions

in southern Africa. The objective was to gain an understanding of the molecular basis

of the quantitative genetic response, by identifying genes and pathways associated with

GLS disease in maize. The project addresses the hypothesis that there is an underlying

DNA polymorphism that gives rise to a change in gene expression, which in turn affects

GLS disease severity.

Chapter 1, entitled “Exploiting gene expression data to dissect quantitative traits in

plants”, provides a comprehensive review of recent literature. It starts with an overview of

quantitative trait locus (QTL) mapping and cloning. It then focuses on expression QTL

(eQTL) mapping (which aims to dissect the molecular basis of gene expression variation)

and associating eQTLs with phenotypic QTLs. Recent global eQTL studies in plants

are compared to reveal common features and limitations of current technologies. An

overview is given on how systems genetics promises to elucidate the complex molecular

networks underlying phenotypic traits. Finally, the host and pathogen are introduced,

and an overview of general plant defense mechanisms is given as a basis for the biological

question under study.

Chapter 2 describes the development of the Maize Microarray Annotation Database.

The aim was the genomic and functional annotation of Agilent 44K microarray reporters,

which were used in Chapter 3 for global gene expression profiling on earleaf samples

collected from 100 maize recombinant inbred lines (RILs). The annotations are available

in the Maize Microarray Annotation Database (http://MaizeArrayAnnot.bi.up.ac.

vi
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za/), as well as through a GBrowse annotation file that can be uploaded to the MaizeGDB

genome browser as a custom track. The content of this chapter has been published in

the Plant Methods journal (Coetzer et al., 2011).

Chapter 3 describes how genome-wide gene expression profiles as well as GLS severity

scores across the individuals in the maize RIL population were used in a weighted gene co-

expression network analysis (WGCNA) to identify gene co-expression modules relating to

C. zeina disease severity. Hypotheses of driver/hub genes as regulators and of biological

processes associated with the GLS disease response are given.

Chapter 4 describes how quantitative trait locus (QTL) mapping for GLS severity

was combined with expression QTL (eQTL) analyses to investigate the molecular basis

of the quantitative disease response to C. zeina infection. It outlines the development

of a Galaxy workflow for global eQTL analysis as well as an overlap analyses between

phenotypic QTLs and eQTLs. Finally, putative regulatory network models are presented

for trans-eQTL hotspots coinciding with phenotypic QTLs. Hypotheses of regulators and

mechanisms that could explain the phenotypic QTLs are given.

Chapter 5 provides a meta-analysis, where results from the previous two chapters

are combined to answer a final question: “What is the nature of the genetic and tran-

scriptional variation affecting responses to grey leaf spot disease in maize?” An overview

of the systems genetics strategy that was developed to incorporate the analysis of gene

co-expression with phenotypic QTL and eQTL mapping are given in this chapter.

Finally, the thesis ends with concluding remarks in Chapter 6. A critical discussion

of the strengths and limitations of this study is given, as well as the importance of the

results and findings in the context of the scientific field.

Publication from this thesis:

Coetzer, N., Myburg, A. A. and Berger, D. K. (2011) Maize microarray annotation

database. Plant Methods 7, 31.

Poster presentations:

2013 Joint Conference of the South African Genetics Society (SAGS) and South African

Society for Bioinformatics and Computational Biology (SASBCB) - Stellenbosch,

Western Cape, South Africa. Title: Expression QTL data analysis pipeline
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2012 South African Association of Botanists (SAAB) - University of Pretoria, Pretoria,

South Africa. Title: Maize Microarray Annotation Database

2011 International Society for Computational Biology (ISCB) Africa African Society for
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Chapter 1

Literature review: Exploiting gene

expression data to dissect quantitative

traits in plants

1.1 Introduction

The official 2013 world population is estimated at 7.1 billion by the United States Census

Bureau (USCB). Approximately 800 million people go hungry per day, underlining the

importance of food security. It is estimated that in the next 50 years, the world needs

to produce more food than that was produced during the past 10,000 years. The current

global food production trend is thus challenged and the need arises for more advanced

methods in crop protection and food production.

Various research fields are addressed to increase crop protection and food production.

These include conventional plant breeding, plant nutrition, horticulture, entomology and

plant pathology. Genetic research has become the backbone to understand the underlying

mechanisms that influence traits in the above-mentioned fields. Once the genetic basis

of a specific phenotypic trait is determined, this could be utilised in various ways, such

as crop improvement through marker-assisted breeding, genetic modification or targeted

pathway expression in plants.

A major challenge in current biological research is to understand the molecular basis

of quantitative traits. This literature review starts with an overview of quantitative

trait locus (QTL) mapping and cloning, where the long-term goal is to identify genes

1
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CHAPTER 1. LITERATURE REVIEW 2

and specifically polymorphisms responsible for phenotypic variation. It then focuses on

expression QTL (eQTL) mapping, which aims to dissect the molecular basis of gene

expression variation. Associating eQTLs with phenotypic QTL, is hoped to provide

a better understanding of the molecular basis of phenotypic traits. A few recent global

eQTL studies in plants are compared to reveal common features and limitations of current

technologies. Finally incorporating gene co-expression networks in a systems genetics

context promises to elucidate the complex molecular networks underlying phenotypic

traits.

1.2 QTL mapping

Genetic variation is important to the process of natural selection. Since gene alleles

determine distinct traits that can be passed on from parents to offspring, favorable traits

are passed on to the population as a whole through natural selection. Genetic variation

can be brought about through polyploidy (changes in number of chromosomes), gene

or point mutations, recombination, changes in chromosome structure or transposition

(mobile genetic elements).

A molecular marker is a heritable and measurable DNA mutation, which may or may

not have an effect on phenotype. Examples of molecular variation that are typically

used as markers are variation at single nucleotides (single-nucleotide polymorphisms, or

SNPs), short di-, tri-, or tetra-nucleotide tandem repeats (microsatellites), longer tandem

repeats (minisatellites), small insertions/deletions, and insertion sites of transposable

elements (Mackay, 2001). In progeny from a segregating population, markers on different

chromosomes are inherited independently. However due to recombination, the closer

markers are located on the same chromosome, the less likely they are to be separated in

the progeny and are therefore said to be genetically linked.

Quantitative traits refer to a phenotype that shows a quantitative distribution in

trait values, for example crop yield or disease resistance. To gain an understanding of the

genetic basis of quantitative traits, QTL mapping was introduced in the 1980s (Lander

and Botstein, 1989). QTLs are loci on the genome with physical boundaries defined by

linked molecular markers that quantitatively affect the phenotype of interest. QTLs are

often found on different chromosomes and the number of QTLs that explain the variation
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CHAPTER 1. LITERATURE REVIEW 3

of a phenotypic trait indicates the complexity of the genetic architecture of the trait. A

trait can for example be controlled by many genes of small effect, or by a few genes of

large effect. Whether these loci interact is also of interest.

QTL mapping approaches can be classified into linkage-based methods and

association-based methods (Figure 1.1). Linkage-based QTL mapping uses related in-

dividuals and aim to identify segregating markers that predict the phenotype. Predictive

markers and causal loci are linked and tend to segregate together, if not disrupted by

recombination. Association mapping uses natural populations or unrelated individuals

with historical recombination. Thus only tightly linked markers will predict the pheno-

type, and the causal locus is mapped with more accuracy. Both approaches require a

mapping population to provide the genotypic and phenotypic variation. Marker geno-

types and organismal phenotypes need to be scored in both cases. For a specific marker,

individuals in a population are partitioned into groups based on genotype. A significant

difference between trait phenotypic means of the genotype groups indicate the markers

that are most likely linked to the trait. Genes located within the boundaries of the

identified QTL, are candidate causal genes that affect phenotypic variation.

1.2.1 Linkage-based QTL mapping

Linkage-based QTL mapping, also called bi-parental QTL mapping, requires a controlled

segregating population of related individuals, phenotypic data describing the trait of

interest and a molecular marker based linkage map. It is often referred to as primary

or coarse QTL mapping, since it only allows for an approximate mapping of QTLs to

genomic regions, each typically containing up to hundreds of candidate genes. The actual

DNA sequences, coding or non-coding, responsible for QTLs can only be detected by

subsequent cloning of QTLs (see the section on QTL cloning on page 9).

When the aim of a QTL study is to find the underlying genetic causes of trait varia-

tion, large phenotypic differences between the parental lines of a population is valuable.

The main types of segregating populations for self-pollinating species include (i) F2 pop-

ulations, which are produced by selfing the F1 individuals in segregating populations

generated by crossing the selected parents, (ii) backcross populations, which are gener-

ated by crossing the F1 with either of the parents, (iii) doubled haploids (DHs), which are

formed when haploid plants from F1 (after wide crossing, chromosome elimination pro-
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duces haploid embryos which are rescued and cultured) undergo chromosome doubling,

and (iv) recombinant inbred lines (RILs), which are developed through single seed de-

scent of an F2 population, repeated for several generations until complete homozygosity

is achieved. RILs and DHs are immortal populations that can be replicated over locations

and years. Each line in a RIL population contains a random mixture of genotypes from

the original parents (Collard et al., 2005).

A genetic linkage map consisting of a set of molecular marker loci that are evenly

spaced and span the genome with average intermarker distances of 5 to 10 centimorgan

(cM) is optimal. A map function, either Haldane or Kosambi, is used to translate from

recombination frequency to distance or vice visa. Computer software for genetic linkage

mapping such as MapMaker (Lander et al., 1987) or JoinMap (van Ooijen, 2006) can be

used to generate a cM-scale map per linkage group.

The most popular methods for QTL detection are single marker analysis (SMA), inter-

val mapping (IM), composite interval mapping (CIM), multiple interval mapping (MIM)

and Bayesian methods. SMA does not require a linkage map and statistical tests for iden-

tifying markers that significantly correlate with trait of interest include t-tests, analysis

of variance (ANOVA) or linear regression. The null hypothesis tested at each molecular

marker is that the mean trait phenotype value does not differ between genotypic classes.

IM uses a linkage map to examine intervals between adjacent pairs of linked markers si-

multaneously. This method compensates for recombination between the markers and the

QTL (Lander and Botstein, 1989). CIM combines interval mapping with linear regres-

sion and includes additional genetic markers in the statistical model, in addition to an

adjacent pair of linked markers for interval mapping. CIM is more precise and effective

at mapping QTLs, particularly when linked QTLs are involved (Zeng, 1993). MIM aims

to analyse multiple QTL together with epistasis, through a model selection procedure to

search for the best genetic model for the specific quantitative trait (Kao et al., 1999).

Bayesian QTL mapping methods take advantage of the uncertainties in QTL number,

location, and effects, by studying their joint distributions (Zou and Zeng, 2008). Current

QTL mapping methods are adapting and improving to take challenges such as QTL by

environment/trait interactions into account. van Eeuwijk et al. (2010) gives an overview

of advanced mixed model and Bayesian QTL approaches that are appropriate for many

types of breeding populations. These approaches also contain features for the detection
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and predictive modeling of the genetic basis of genotype-environment interactions.

A variety of software programs for QTL mapping are available. Some of the most

popular programs are QTL Cartographer, MapMaker/QTL, R/QTL, MapQTL, Qgene

and SAS. Interval mapping methods calculate a likelihood of odds (LOD) score or likeli-

hood ratio (LR) at each interval, which indicates the probability of detecting a QTL at

that position. Finally, a profile of scores are plotted along the genome for each trait, and

whenever the peak exceeds a specified significance level, the presence of a QTL is sug-

gested (Figure 1.1 (e)). Permutation tests are commonly used to determine the empirical

threshold for significance.

QTLs are commonly used for marker-assisted selection (selecting plants on the ba-

sis of their marker genotypes), understanding trait architecture, providing insights into

genetic relationships among traits and for identifying chromosome regions for isolat-

ing and cloning genes (Collard et al., 2005). QTL mapping in crop plants has now

become routine due to the progress made in this area during the last two decades.

In rice and maize respectively, more than 8,500 and 1,700 QTL have been detected

(http://www.gramene.org/qtl).

1.2.2 Association mapping

Association mapping is the study of statistical associations, based on linkage disequi-

librium (LD), between genetic markers and phenotypic traits in natural populations

(see the section on LD on the next page). Association mapping can be split into two

broad categories namely candidate gene association mapping and genome-wide associa-

tion mapping (GWA) studies (Risch and Merikangas, 1996). Candidate-gene association

mapping requires candidate genes to be selected based on prior knowledge, for example

from linkage-based QTL mapping. An independent set of random markers is required to

infer genetic relationships. It is a low-cost, hypothesis driven, and trait-specific approach.

GWA studies on the other hand, is a comprehensive approach to systematically search

the genome for causal genetic variation. A large number of markers are tested for asso-

ciation with various complex traits (Zhu et al., 2008a). The number of markers required

in an association mapping study depends on the scale and pattern of LD (Nordborg and

Tavaré, 2002).

The basic statistical test for association analysis in an ideal situation would be lin-
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ear regression, ANOVA, t-test or chi-square test (Zhu et al., 2008a). However, since

population structure is a confounding factor in association mapping, different statistical

approaches have been designed to incorporate this, in order to avoid spurious geno-

type–phenotype associations. TASSEL (Trait Analysis by aSSociation Evolution and

Linkage) is a popular software package used for association mapping in plants, and is

continually updated as new methods are developed (Bradbury et al., 2007). EMMA

(Efficient Mixed-Model Association) corrects for population structure and genetic relat-

edness, and is often used in model organism association mapping studies (Kang et al.,

2008b). In order to detect genetic effects of moderate size with association mapping,

large numbers of divergent lines are required.

In plant studies to date, most of the successful GWA experiments have uncovered

loci previously known to affect a trait, or when traits were not extensively evaluated

before, associated regions were identified. GWA studies could be useful when inbred

lines are available because they can be grown in replicate under controlled conditions,

and multiple phenotypes can be studied while controlling environmental noise. Also,

once these lines are genotyped, they can be repeatedly phenotyped. However, since

the mapping population is heavily structured, elevated false-positive rates are expected.

Atwell et al. (2010) performed a GWA study of 107 phenotypes in a common set of

Arabidopsis thaliana inbred lines. Many common alleles with major effect were identified.

However, the results were confounded by complex genetics and population structure,

which made it difficult to distinguish true from false associations. Previously identified

candidate loci were significantly overrepresented among the identified associations. These

were at least confirmed to be good candidates for follow-up experiments.

Linkage disequilibrium

LD is the non-random association of alleles at different loci. It is the occurrence of

some combinations of alleles in a population more often or less often than would be

expected from a random formation of haplotypes, based on their frequencies. The differ-

ence between observed and expected haplotype frequencies in a population at two loci,

is considered the deviation D.

To identify SNPs or haplotypes significantly associated with phenotypic trait varia-

tion, the correlation between a pair of loci, called r2 is the most relevant LD measurement.
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A r2 value of 0 indicate that loci are in complete linkage equilibrium and a r2 value of 1

indicate that loci are in complete linkage disequilibrium. The relationship of r2 relative

to either genetic or physical distance between measured loci, gives an indication of, on

average how fast LD decays across the genome, and how many markers are needed for

an association mapping experiment. For example, if LD decays within a short distance,

mapping resolution is expected to be high, but a large number of markers are required.

Generally, LD extends to a much longer distance in self-pollinated crops, such as wheat

and Arabidopsis, than in cross-pollinated species, such as maize. A r2 cut-off value of

0.1 or 0.2 is typically used to describe the LD decay (Zhu et al., 2008a). Factors that

can strongly influence patterns of LD, include recombination, genetic drift, inbreeding,

mutation and gene flow.

It is important to distinguish between LD and linkage. LD refers to the correlation

between polymorphisms that is caused by their shared history of mutation and recombi-

nation, and linkage to the correlated inheritance of loci through the physical connection

on a chromosome (Flint-Garcia et al., 2003). Tight linkage may result in high levels of

LD.

Compared to animals, LD has not been studied extensively in plants. A few studies

investigated LD in maize and Arabidopsis across various population and marker types.

In maize, the patterns of LD (measured as r2) vary substantially. Tenaillon et al. (2001)

used a diverse set of maize germplasm to examine sequence diversity at 21 loci on chro-

mosome 1. They showed that interlocus LD decreased to less than 0.25 within 200 bp

on average. Remington et al. (2001) investigated six candidate genes in a diverse set of

102 inbred lines. They reported that intragenic LD decayed to less than 0.1 within 1,500

bp. Conversely, Rafalski (2002) showed that in elite maize populations, LD extends to

greater than 100 kb for the adh1 and y1 loci. Lu et al. (2011) genotyped 287 tropical

and 160 temperate inbred lines with 1,943 SNP markers. They found that the LD decay

distances across the genome, chromosomal regions and germplasm groups varied signifi-

cantly. Specifically, the LD decay distance was two to ten times larger in the temperate

germplasm (10–100 kb) compared to the tropical germplasm (5–10 kb). Flint-Garcia

et al. (2003) speculates that the different rates of LD decay in maize mainly reflect differ-

ing levels of population bottleneck, for example the progression from diverse landraces to

diverse inbreds to elite inbreds. In contrast, LD in Arabidopsis, a highly selfing species,
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is more constant and extends further in general. In a study of 163 genome-wide SNPs in

76 Arabidopsis accessions showed that LD decayed within approximately 250 kb (Nord-

borg et al., 2002). Hagenblad and Nordborg (2002) reported the same result after they

sequenced 14 short fragments from a 400 kb region of the flowering time locus FRIGIDA.

Later, Kim et al. (2007) studied genome wide LD in 19 Arabidopsis accessions using

341,602 non-singleton SNPs. They established that LD decays within 10 kb on average,

which is significantly faster than previously estimated. This result is currently used as

the standard.

1.2.3 Advantages and disadvantages of the two approaches

The main drawbacks of bi-parental QTL mapping are that a QTL mapping population

(i) usually has a small number of recombination events per chromosome, which results in

limited mapping resolution, (ii) is initiated by only two parents, which results in a limited

allele number, and (iii) is time-consuming to generate (or not possible to generate), which

results in increased research time or restricted utility. Association mapping overcomes

these drawbacks, mainly because it is based on natural populations with recombination

events that occurred throughout the entire evolutionary history of the mapping popula-

tion. Thus it also searches for functional variation in a much broader germplasm context

(Ingvarsson and Street, 2011). The major goal of association mapping is to discover the

causative SNP itself, in contrast to bi-parental mapping where additional steps are re-

quired to narrow down the QTL region. Two drawbacks of association mapping are that

larger populations are required and population structure becomes important.

Association mapping is useful for discovering common variants with an effect through-

out the species, thus discovering associations of broad application. Such a locus may

account for only a small amount of the variation, but enough of the alleles are present to

affect the mean of a specific genotypic class. Bi-parental mapping on the other hand is

useful for discovering rare alleles that control a phenotype, since the population has many

copies of the rare allele, which typically has a major effect. The goal of an experiment

will thus determine the approach. Association mapping of an appropriate population is

the best approach to dissect the more general factors controlling a phenotype. Whereas

the best approach to discover, analyse, and test genes of major effect is to use bi-parental

populations of divergent parents and CIM (Flint-Garcia et al., 2003).
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With the rapid decrease in sequencing and genotyping costs, GWA studies in plants

are expected to increase. It also proves to be an excellent complement to bi-parental

QTL mapping. In several plant species, diverse germplasm panels are being established

for whole-genome association analysis (Zhu et al., 2008a). For example, the maize nested

association mapping (NAM) population, is a collection of 5,000 RILs made by crossing 25

diverse bi-parental inbred lines with the reference line B73 (www.panzea.org) (Yu et al.,

2008). NAM captures the advantages of both linkage mapping and association mapping.

Joint linkage mapping takes advantage of the shared B73 line in all 25 subfamilies to

identify QTLs for specific traits, at an improved resolution (Li et al., 2011), and GWA

uses deep genotyping results from the 25 founder lines in a projection onto the progeny

for improved resolution. Kump et al. (2011) evaluated the NAM population for resistance

to southern leaf blight (SLB) disease in the maize. Thirty-two QTLs, with mostly small,

additive effects on SLB resistance were identified using joint-linkage analysis. GWA tests

of maize HapMap SNPs revealed SLB resistance associated SNPs within and outside of

QTL intervals, many of which were within genes that were previously shown to be involved

in plant disease resistance. Tian et al. (2011) used a GWA study of the maize NAM panel

to investigate the genetic basis of important leaf architecture traits. They deduced that

such traits are dominated by small effects with little epistasis, environmental interaction

or pleiotropy. Specifically, they identified that variations at the liguleless genes contribute

to more upright leaves.

1.3 QTL cloning

QTL cloning is a major objective of QTL mapping. It is the identification of the DNA

sequences responsible for QTLs and thus for variation in the trait of interest. These causal

DNA sequences represent polymorphisms between the parental lines of the segregating

population, and can be in coding regions (within genes) or in non-coding regions such

as promoters (regions responsible for regulation of gene expression) or regulatory RNAs

(non-coding RNAs responsible for post-transcriptional regulation of gene expression).

Depending on the number of recombination events and thus the number of individuals

in the segregating population, QTLs span large genomic regions including hundreds of

genes and significant effort is required for the identification of the causal polymorphism.
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1.3.1 Positional cloning

For plant QTLs, positional cloning is currently the most successful QTL cloning approach.

It involves QTL Mendelisation, which is best accomplished by the construction of a new

experimental population of near-isogenic lines (NILs). NILs differ only at the alleles of

the target QTL segment (Alonso-Blanco and Koornneef, 2000). After recruitment of

polymorphic markers for that region, QTL fine mapping allows a more precise estimate

of the cM region spanned by the QTL. Subsequent physical mapping of this interval on

the DNA sequence will reveal the candidate genes to be selected for evaluation (Salvi and

Tuberosa, 2005).

Functional testing of candidate genes can be carried out by over-expressing or down-

regulating the target gene through genetic engineering or RNA interference (RNAi) (Wa-

terhouse and Helliwell, 2003), genetic complementation of a known mutant (Doebley

et al., 1997), reverse genetics tools such as transferred DNA (T-DNA) or transposon-

tagged populations (Maes et al., 1999), TILLING (Targeting Induced Local Lesions IN

Genomes) (Mccallum et al., 2000) or gene replacement (Iida and Terada, 2004). However,

validation of the causative polymorphism can be a major challenge, especially when the

polymorphism responsible for the QTL effect reside in non-coding regions, for example in

regulatory regions (promoters, enhancers or silencers), microRNA loci, transposon inser-

tions or at regions controlling chromatin methylation or organisation (Salvi and Tuberosa,

2005).

Wang et al. (2005) used positional cloning in maize to identify the molecular basis of

a teosinte glume architecture QTL, called tga1, of large effect. They investigated the fact

that teosinte kernels are tightly encased in structures called cupulate fruitcases, whereas

maize kernels are borne uncovered on the surface of the ear, so that humans can easily use

it as a food source. Wang et al. (2005) developed a set of molecular markers near tga1 and

screened 3,106 F2 plants segregating for tga1. The locus was eventually mapped to a 1

kb segment with homology to SBP (squamosa-promoter binding protein) transcriptional

regulators. DNA sequence analysis of the SPB gene in maize and teosinte showed seven

fixed DNA differences. One of these differences encodes a non-conservative amino acid

substitution that may affect protein function, and the other six differences potentially

affect gene regulation. Mutant recovery was performed as a functional proof that this

gene can be used to distinguish the above-mentioned maize and teosinte phenotypes,
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however exactly how tga1 regulates ear development remains to be determined.

1.3.2 Association mapping with candidate genes

Association mapping with candidate genes (see section on page 5) is a QTL cloning

method that does not require detailed linkage information. It specifically targets genes

with known functions in the trait of interest. In apple for example, a key gene belonging

to the polygalacturonase gene family called Md-PG1, was identified as a candidate gene

because it co-localised with the statistical interval of a major hotspot QTL associated

to several fruit texture sub-phenotypes. To investigate a region of approximately 16 kb

containing the Md-PG1 gene, Longhi et al. (2013) used a candidate gene based association

mapping approach. A collection of 77 apple cultivars was analysed using 40 markers, and

an average LD extent of 2 kb was defined for this region. This rapid LD decay confirmed

the suitability of the candidate gene based approach. Md-PG1 was validated as the main

locus responsible for a QTL impacting fruit texture in apple, and new functional alleles

associated to the fruit texture properties were discovered.

1.3.3 QTL tagging

Soller and Beckmann (1987) described the theoretical potential of insertional mutagenesis

or QTL tagging as a means of cloning QTL. It entails mutagenesis as a result of integration

of novel DNA sequences into the germ line. This process requires the phenotypic screening

of an insertionally mutagenised population for the target trait, in order to identify lines

with an altered phenotype compared to what is expected. However, since a very large

number of potential insertion sites exist in the genome, but only a limited number of target

sites that can affect any particular trait, a complete screening experiment would involve

up to 20,000 plants. Also, effects of allelic variants (at any single QTL) on phenotype

value are expected to be small, thus a few stages of replicate testing are required per insert

for accurate conclusions. The functionally modified or inactivated gene could be rescued

using standard molecular procedures. In plants, QTL tagging could be based on transfer

DNA (T-DNA), RNA interference (RNAi), DNA-transposons or retrotransposons (Salvi

and Tuberosa, 2005).

Singh et al. (2012) investigated 2 major barley QTLs located on chromosome 4H, af-

fecting malting quality traits, using mutagenesis via the Activator (Ac)/Dissociation (Ds)
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transposon tagging system. Ds transposon lines were created with stable transformation

methods and transient Ac expression was used to transpose Ds elements. Since the Ds

transposons tend to re-insert into genic regions that are close to the site of excision, lines

with Ds loci in the region of the two above-mentioned QTLs were used as a launch pad for

its reactivation. Reactivation was accomplished through hybridisation with the AcTPase-

expressing line and via the transient expression of AcTPase in immature embryos using

Agrobacterium tumefaciens. BLAST was used to analyse the Ds flanking sequences from

a subset of new lines, and most of these were predicted to affect malting quality traits. A

few important genes that were tagged by Ds include the b-GAL1, the b-amylase-like gene

and the ATP-binding cassette (ABC) transporter. The resulting new source population

provides new transposon mutants for functional genomic studies.

1.3.4 Functional genomics

Functional genomics can benefit QTL cloning by reducing the number of candidate genes

in a QTL interval. Apart from identifying genes that are functionally related to the trait

of interest and physically located in the QTL interval, transcriptional profiling can be

an important indicator of candidates, since gene transcription is a primary intermediate

between the information encoded in the genome and the final phenotype (Cubillos et al.,

2012). Specifically, gene expression profiling of lines with contrasting QTL genotypes,

for example the parental lines, can be used to generate lists of differentially expressed

genes. An even better approach would be to exploit the genetic variation in the entire

segregating population by identifying expression QTLs (eQTL), loci controlling the level

of gene expression, for each gene in the genome. Candidate genes may be revealed by

an agreement analysis between loci controlling expression variation and loci controlling

phenotypic variation. This will be discussed in the next section.

1.4 Genetical genomics

1.4.1 Expression QTL mapping

The concept of “genetical genomics” or eQTL mapping, was introduced by Jansen and Nap

(2001). Genetic and gene expression approaches have been brought together to study the
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genetic basis of gene expression. eQTL mapping involves treating the level of expression

of single genes individually as quantitative traits. Similar to QTL mapping, statistical

tests are performed between the markers and each gene expression trait respectively,

which makes it possible to dissect the genetic loci explaining gene expression variation.

The molecular basis of an eQTL is a DNA polymorphism that gives rise to differ-

ential gene expression. Since gene regulation operates to produce differential amounts

of messenger RNAs (mRNAs) and in turn proteins, polymorphisms affecting the various

stages of gene regulation, including transcription but also RNA splicing, RNA transport,

RNA stability and translation into protein, are good candidate causal polymorphisms

(Latchman, 2005). In summary, genes could be differentially expressed in genotypically

diverse individuals due to (i) cis-elemental variation in promoter sequences affecting tran-

scription initiation, (ii) polymorphisms in the intronic regions effecting splicing, or (iii)

changes in untranslated regions (UTRs) affecting mRNA stability and potentially dif-

ferential RNA degradation (Holloway and Li, 2010). Furthermore, (iv) polymorphisms

in the coding regions of genes (such as transcription factors) creating dysfunctional or

hyperactive proteins, (v) copy number variation or (vi) genomic rearrangements (such as

translocations, insertions and deletions) can also cause eQTLs.

All large eQTL studies distinguish between two groups of eQTLs namely cis (local)

and trans (distant), based on the distance between the eQTL and the gene encoding

the transcript being measured. A cis-eQTL represents a polymorphism located within

the region of the target gene. A typical example is a promoter polymorphism, causing

differential expression of the target gene between groups of individuals with different

promoter alleles (Figure 1.2). This can happen for example if the polymorphism in one

group prevents effective binding of a regulatory gene, and thus decreases transcription

of that gene. In principle, a cis-eQTL could affect transcription initiation, the rate of

transcription, or transcript stability in an allele-specific manner (Joosen et al., 2009).

Conversely, a trans-eQTL represents a polymorphism at a different location than the

position of the gene encoding the transcript being measured (Figure 1.2). For example,

a trans-eQTL could represent the location of a regulator that controls the expression of

the target gene, where this gene is potentially located on a different chromosome. A the

trans-eQTL could be a polymorphism (i) located in the coding region of the regulator, not

necessarily giving rise to a cis-eQTL, or (ii) in a motif integral for transcription factor
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binding, causing a cis-eQTL at the regulator. Nevertheless, this potentially sets up a

network where cis variation in regulatory factors, effect the expression of downstream

target genes in trans (Hansen et al., 2008).

Cis-eQTLs were found to have an additive influence on gene expression levels, meaning

that the expression level in a hybrid will normally be intermediate between those of the

two parents. This is thought to contribute to positive selection on cis-regulatory elements

over long evolutionary time (Lemos et al., 2008). Trans-eQTLs on the other hand show a

tendency towards dominant regulation of their target genes, meaning that the expression

level of the hybrid is similar to the one of the parental lines and significantly different

from the other. Zhang et al. (2011) found that dominant trans-eQTLs are more likely

to regulate multiple expression traits, and could be regulatory hotspots (see the next

section).

1.4.2 Trans-eQTL hotspots

Numerous trans-eQTLs often cluster in hotspots, causing the genome-wide distribution

of trans-eQTLs to significantly differ from that of gene density. A genomic locus is called

a hotspot when more eQTLs map to the locus than expected by chance. A biologically

meaningful trans-eQTL hotspot is assumed to contain a master transcriptional regulator

controlling the expression of a group of genes that act in the same biological process or

pathway (Druka et al., 2010). To predict the biological relevance of hotspots and some-

times to predict the causal regulator, additional sources of information are often used.

Such information sources include gene ontology (GO), gene co-expression, transcription

factor binding sites (TFBS), transcription factor targets, ChIP-Seq and protein-protein

interactions (Zhu et al., 2008b). Trans-eQTL hotspots often have a directional bias,

meaning that the same parental allele increases expression for most of the transcripts

associated with a hotspot.

Trans-eQTL hotspots can contain up to thousands of genes. In such hotspots, gene

expression can be affected by pleiotropic regulators in the hotspot locus, affecting many

often unrelated phenotypes. When a mutation like this affect the expression of many

genes in trans, large-effect trans-eQTL might be deleterious. In general trans-eQTLs are

expected to have smaller effects on single transcripts than cis-eQTLs, possibly due to

indirect regulatory mechanisms (Hansen et al., 2008). An an example, in a genome-wide
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eQTL analysis of an Arabidopsis RIL population derived from the parental accessions

Landsberg erecta (Ler) and Cape Verde Islands (Cvi), Keurentjes et al. (2007) identified

several regulatory trans-eQTL hotspots. The ERECTA locus was the most prominent

hotspot, consisting of 176 trans-eQTLs. In Ler, this locus contains the mutated ERECTA

gene (At2g26330) with a strong pleiotropic effect on the Ler phenotype. However, in

Cvi a functional copy of the gene is present. The ERECTA protein is a membrane-

bound leucine-rich repeat receptor-like serine (Ser)/threonine (Thr) kinase (LRR-RLK)

(Torii et al., 1996), known to regulate developmental processes, hormone signalling, and

defense. Terpstra et al. (2010) combined monogenic mutant analysis with eQTL mapping

in the Ler⇥Cvi RIL population to analyse the effect of ERECTA on down-stream gene

expression. They linked mitogen-activated protein kinase (MAPK) signalling components

and downstream WRKY transcription factors between ERECTA and the differentially

expressed target genes.

It is thus important to realise master regulators do not necessarily have to be tran-

scription factors. They could just as well be indirect transcript level regulators for genes

within the same pathway (Brem et al., 2002). Furthermore, identified master regula-

tors might alternatively point toward ubiquitous trans-regulators that either controls the

degradation process of unrelated transcripts or other processes affecting transcription in

general (Holloway and Li, 2010).

To date only a few reported hotspots have been verified. Since trans-eQTLs gener-

ally show smaller effect sizes than cis-eQTLs, they are identified at a lower statistical

power. It thus difficult to reliably detect trans-eQTL hotspots, which are as a result less

consistent between studies than cis-eQTLs (Breitling et al., 2008). It should be noted

that not all trans-eQTL hotspots are master regulators. In order to truly define a regu-

lator in quantitative genetics, more work on network-specific trans-eQTLs, the existence

of potential feedback regulatory mechanisms, and the linking of cis-eQTLs via trans-

regulatory connections (epistatic interactions between the loci), is needed (Kliebenstein,

2009). Breitling et al. (2008) speculates that the scarcity of plausible hotspots might

indicate that most of heritable gene expression variation is effectively “buffered”. Because

it could result in systems failure, gene expression variation does not necessarily lead to

downstream effects on other genes.

Instead of explaining trans-eQTL hotspots by master regulators, hotspots can also be
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due to clusters of genes with highly correlated expression (Wang et al., 2007; Breitling

et al., 2008). This is particularly possible if the false discovery rate (FDR) for individual

eQTLs is very high. The joint response to an uncontrolled environmental factor is an

example of a non-genetic mechanism that can produce strongly correlated clusters of

functionally related genes.

1.4.3 Associating eQTLs with phenotypic QTLs

eQTLs can be used to search for associations between gene expression polymorphisms and

phenotypic QTLs. Identification of all large-effect cis-eQTLs that underlie a phenotypic

QTL, will provide a list of candidate genes that can be tested for causal linkage with the

phenotype of interest (Kliebenstein, 2009). The number of such candidates in a QTL

region will be influenced by the resolution of the genetic map.

Many of the QTL cloned in plants, before genome-wide eQTL analysis, were actu-

ally cis-eQTL. Salvi et al. (2007), through positional cloning and association mapping,

identified the molecular basis of the major flowering-time QTL, Vegetative to generative

transition 1 (Vgt1 ), in maize. The QTL was narrowed down to a 2 kb non-coding region

positioned 70 kb upstream of an AP2-like transcription factor, that have been shown to

be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element,

which would show up as a cis-eQTL in a genetical genomics study, since expression lev-

els of the downstream gene was significantly different in lines carrying the two different

alleles.

Correlation analysis between gene expression profiles and the phenotype values across

the individuals of a population, can be used to identify genes with high absolute corre-

lation coefficients. A gene with a good correlation and with an eQTL overlapping the

phenotypic QTL, is a strong candidate for causing the trait. As an indirect example,

positional cloning was previously used to identify Rpg1, a gene that confers resistance in

barley to the wheat stem rust pathogen Puccinia graminis f. sp. Tritici (Pgt). Druka

et al. (2008) re-analysed the quantitative resistance phenotype data using 139 DH lines of

the Steptoe⇥Morex reference barley mapping population. One of six identified QTL loci

coincided with the major stem rust resistance locus Rpg1. Correlation analysis between

phenotype values for rust infection and genome-wide gene expression values revealed that

Rpg1 was in the top five best correlating candidate genes. When candidate genes are in-
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ferred based on correlation, directionality of the observed associations has to be taken

into account such that gene expression data are interpreted in the context of the under-

lying trait biology (Druka et al., 2010). In the Rpg1 example above, Druka et al. (2008)

selected genes with positively correlated profiles as candidates. This however is based on

the assumption that increased resistance should positively correlate with the amount of

mRNA from the resistance gene.

Additional analyses could involve investigating the functions of correlated genes over-

lapping the phenotypic QTL, and also assessing whether the QTL have multiple coincid-

ing trans-eQTLs. This may predict that the causal gene could be a trans-acting master

regulator, especially if the coinciding eQTLs are mainly trans acting and functionally

related. Such a master regulatory gene may or may not be represented on the array, but

should be detected when RNA-based sequencing (RNA-seq) is used for gene expression

profiling. The possibility that chance co-segregation is responsible for the correlation,

rather common transcriptional regulation by a master regulator, is an important aspect

that should be investigated with care (Druka et al., 2010). The sub1 locus in rice is

an example of a true master regulatory locus. It controls the activity of an ethylene

response factor with significant trans effects that confers submergence tolerance to rice

(Fukao et al., 2006; Xu et al., 2006).

When eQTLs are used to filter candidate genes in a trait QTL interval, it is important

to keep in mind that the polymorphism responsible for a phenotypic QTL will not nec-

essarily change the expression level of a gene and thus will not be detected as an eQTL.

For example, when the polymorphism is in the coding region of a gene, leading to varia-

tions in protein stability, enzymatic activity or post-translational modification, or when

the polymorphism in the methylation level of the DNA, differential expression will not

be evident. Also, when post-translational modifications are the predominant regulatory

mechanisms for variation in a trait, using eQTLs to identify candidate genes will not be

useful (Hansen et al., 2008).

Harjes et al. (2008) and Balint-Kurti et al. (2010) are examples of two studies where

maize microarrays were used to identify genes with cis-eQTLs as candidates for phe-

notypic QTL. In both studies, a subset of lines from the intermated B73⇥Mo17 (IBM)

RIL population was used to perform gene expression profiling on 53K spotted-oligo mi-

croarrays. To help breeders produce maize grain with higher provitamin A levels, Harjes
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et al. (2008) sudied the variation at the lycopene epsilon cyclase (lcyE ) locus, known to

alter flux down a-carotene versus b-carotene branches of the carotenoid pathway. Asso-

ciation analysis, linkage mapping, expression analysis, and transposon tagging was used

to dissect the molecular basis of lcyE. Five polymorphisms were identified to be signif-

icantly associated with changes in flux between the lutein and zeaxanthin branches of

the pathway. Using the eQTL data mentioned above, Harjes et al. (2008) concluded that

besides for cis-regulation, several other regions (in trans) also contribute to expression

level control of lcyE. Using low-cost markers, favorable lcyE alleles can now be selected

by breeders to produce maize grain with higher provitamin A levels. Balint-Kurti et al.

(2010) studied the connections between plant bacterial diversity and disease resistance

in maize leaves. Six genomic loci were found to control epiphytic diversity. Interestingly,

the identified loci significantly overlapped with loci controlling resistance to southern leaf

blight (SLB). Using the eQTL data mentioned above, lists of candidate cis-eQTL genes

were generated for each genome region identified as a QTL.

In the same way that mRNA abundance data is used across individuals in a population

to map eQTLs, the parallel measurement of the abundance of thousands of proteins and

metabolites similarly leads to the mapping of protein QTLs and metabolite QTLs. Such

QTLs can also provide insight as to specific candidate genes controlling phenotypic vari-

ation. Keurentjes et al. (2008) used the Arabidopsis Ler⇥Cvi RIL population to perform

a parallel genetic analysis between gene expression, enzyme activity and metabolite ac-

cumulation in primary carbohydrate metabolism. Correlation and QTL overlap analyses

revealed connectivity between the three levels, as well as independent regulation at each

level. An example of independent regulation at each level, is that post-transcriptional

regulation of enzyme levels will not be detected when gene expression levels are mea-

sured. How transcript variation relates to other genomic or physiological levels is still

largely unknown, and cross-phenotypic comparison studies need to take into account that

the levels of heritability and epistasis underlying their genetic architecture may be very

different (Kliebenstein, 2009). Furthermore, even though the combination of different

types of genomic QTL could add value to studies like these, the technology required for

proteomic and metabolomic approaches is currently not as advanced and accessible as for

high-throughput whole genome transcriptional profiling (Delker and Quint, 2011).
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1.5 Genome-wide eQTL mapping studies in plants

Large-scale global eQTL mapping studies on a variety of plants have been published

over the past decade. These studies revealed that (i) the expression of large numbers

of transcripts are genetically controlled, (ii) cis-eQTLs tend to have larger effects than

trans-eQTLs, (iii) there tend to be more trans-acting than cis-acting polymorphisms, (iv)

some genomic regions are called hotspots, which explain the expression variation of many

transcripts and (v) sample sizes are usually much smaller than the number of expression

traits (e-traits) tested (Mackay et al., 2009). Tables 1.1 and 1.2 give an overview and

a comparison of 16 genome-wide eQTL mapping studies. Crops and plants on which

these studies were conducted are maize (Schadt et al., 2003; Shi et al., 2007; Swanson-

Wagner et al., 2009; Holloway et al., 2011; Li et al., 2013), eucalyptus (Kirst et al., 2005),

Arabidopsis (West et al., 2007; Keurentjes et al., 2007), wheat (Jordan et al., 2007),

barley (Potokina et al., 2008; Chen et al., 2010b; Moscou et al., 2011), rice (Wang et al.,

2010b), cotton (Claverie et al., 2012) and potato (Kloosterman et al., 2012).

1.5.1 Expression traits, cis- vs trans-eQTLs and population size

To date whole genome microarrays for expression profiling were mostly used in global

eQTL mapping studies, since already established protocols and data analysis methods

can be used. RNA-seq as a large-scale gene expression platform will become more popular

as analysis techniques advance and sequencing costs decrease. The average number of

e-traits analysed per study in Tables 1.1 and 1.2, was 15, 636 and an average of 74%

of these e-traits were associated with at least one eQTL. This demonstrates that most

transcripts seem to be under genetic control.

An annotated genome sequence is a valuable resource for accurate classification of

eQTL as cis or trans, but this was not feasible for most crop species analysed (Tables 1.1

and 1.2). Various different ways of determining whether a gene is locally regulated were

reported. In most cases, physical positions of the markers were used to anchor the genetic

map to the best available physical map. West et al. (2007) classified an eQTL less than 3.5

cM from its target gene as cis-acting, and reported that using a 5 cM distance instead

had minimal effect on the number of cis-eQTLs identified. Considering their current

genetic resolution, Potokina et al. (2008) and Swanson-Wagner et al. (2009) considered
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a 5 cM distance between an eQTL and the target gene as sufficiently close. Holloway

et al. (2011) used a 10 cM distance, but mentioned that a 5 or 10 cM boundary would

be appropriate for maize eQTL studies. Kloosterman et al. (2012) used the same linkage

group as a criterion for identifying cis-eQTL. Keurentjes et al. (2008) and Wang et al.

(2010b) calculated support intervals per eQTL and when the gene’s position coincided

with the support interval, classified it as cis-acting. Shi et al. (2007) and Drost et al.

(2010) used the co-localisation of each eQTL peak with the genetic map marker bin

containing the gene model. Lastly, Jordan et al. (2007) roughly compared gene locations

that were determined from wheat–rice synteny, to corresponding eQTL locations in order

to estimate whether eQTLs were cis- or trans-acting.

Cis-eQTLs generally explain a larger part of the expression level variation of their

target genes than trans-eQTLs. Wang et al. (2010b) and Li et al. (2013) in their studies of

110 rice RILs and 105 maize RILs respectively, showed that 96% and 87% of the detected

trans-eQTL explained < 20% of the variation, whereas 37% and 16% of the detected cis-

eQTLs explained < 20% of the variation. Furthermore, West et al. (2007) when analysing

211 Arabidopsis RILs, found that 75% of the detected trans-eQTLs explained < 10% of

the variation in e-traits. This indicates that cis-eQTLs tend to have larger effects than

trans-eQTLs, and could be due to cis polymorphisms having a direct influence on the

expression of a gene, contrary to trans polymorphisms. Also, a polymorphism in one

of multiple trans-factors regulating a gene, is likely to result in only a small change in

expression of the gene being regulated in trans.

Large differences between the cis- and trans-eQTL ratios are evident in genome-wide

studies. The average ratio detected across the studies in Tables 1.1 and 1.2 was 40%

cis-eQTL and 60% trans-eQTL. It remains to be tested whether the cis/trans ratio fluc-

tuates due to differences in statistical power, or whether it is perhaps a true reflection

of the genetic polymorphism present in the population (Kliebenstein, 2009). It is spec-

ulated that low-powered QTL mapping experiments will detect most of the larger-effect

cis-eQTL. Thus increasing the number of individuals in the population (and degrees of

replication), may lead to the detection of new smaller-effect trans-eQTLs. Figure 1.3

shows that the number of eQTLs differ considerably between studies. The correlation

between population size and the number of eQTLs detected was 0.35 (p-value = 0.18).

Even though this is not significant, the positive correlation may support the hypothesis
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that low-powered QTL mapping experiments detect most of the larger-effect eQTL, and

that increasing the number of individuals in the population may lead to the detection of

new smaller-effect eQTLs.

It is important to note that increasing the number of individuals in a population will

lead to a higher levels of recombination and thus to increased genetic resolution. This

will reduce the size of detected eQTL regions. On the other hand, increasing the number

of molecular markers might also reduce the size of detected eQTL regions since more

statistical tests will be performed across the genome. However if the genetic resolution is

not good enough, adding more markers will not add additional value.

Swanson-Wagner et al. (2009) were interested in the mechanisms responsible for het-

erosis, the superior performance of hybrid progeny relative to their inbred parents. They

used hybrids between the maize inbred lines B73 and Mo17, which exhibited hetero-

sis regardless of cross direction. Reciprocal hybrids were generated by crossing each

B73⇥Mo17 RIL onto B73 (B73⇥RIL) and Mo17 (Mo17⇥RIL). Separate eQTL analyses

were conducted within each cross type. More than 75% of the detected eQTL were trans-

eQTLs and instead of showing additive gene action, 86% of these trans-eQTLs showed

paternal dominance. Thus for the alleles at a specific marker, expression values in those

heterozygotes with, say B73, as the paternal parental allele matched expression values in

lines that were homozygous for the B73 allele. This result is consistent with imprinting,

an epigenetic event by which certain genes can be expressed in a parent-specific fash-

ion. Swanson-Wagner et al. (2009) hypothesise that at least some paternally dominant

trans-eQTLs are small RNAs.

1.5.2 Trans-eQTL hotspots, enrichment analyses and networks

Twelve out of the 16 studies in Tables 1.1 and 1.2 used the frequency distribution of

trans-eQTLs across the genome to identify hotspots. The majority of these studies per-

muted the eQTLs across bins (typically 2 cM intervals) of the genome 1,000 times, in

order to capture the maximum number of eQTLs per genetic position per permutation.

Subsequently, the 95th percentile of the obtained distributions was then used as a con-

fidence threshold for the occurrence of a hotspot. Potokina et al. (2008), Drost et al.

(2010) and Li et al. (2013) also took gene density into account by further comparing the

number of eQTLs linked to each bin with the number of genes identified in the same bin,
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using a chi-squared test. At least seven studies used GO over-representation in order to

show that the genes in some of the detected hotspots act in the same biological process

or pathway. More detail on the functional enrichment strategies of five selected studies

are given in the paragraph below.

West et al. (2007) obtained GO information from TAIR and used chi-squared tests (p-

value < 0.001) to identify enriched GO-terms from the 17 identified Arabidopsis hotspots,

with no success. Wang et al. (2010b) used TopGO, based on TIGR 5.0, for enrichment

analysis of the 171 potential hotspots identified in rice. With a 0.01 p-value cut-off,

they determined 21 functional terms enriched in 37 (22%) of the hotspots. Drost et al.

(2010) identified Arabidopsis putative homologs using BLASTX (e-value < 1e−5) for the

populus target genes in the 7 leaf, 16 xylem and 11 root hotspots, and corresponding

GO-terms were assigned. Most of the Fisher’s exact tests (with Bonferroni correction)

were successful and transcriptional networks were built on the basis of these hotspots. Li

et al. (2013) used the Biological Networks Gene Ontology (BiNGO) plugin in Cytoscape

based on the annotation information from AgriGO and MaizeCyc database, respectively,

to identify GO and pathway enrichments of the target genes regulated by each of the 96

hotspots identified in maize. For 43% of these hotspots, enrichment for at least one GO

term was evident. Thus, apart from some success stories, there also seems to be many

false positive hotspots, with no biologically enriched function.

Drost et al. (2010) was the only study that attempted the construction of co-expression

networks. Pairwise Pearson correlation coefficients between the genes with eQTLs in

each ⇠ 2 cM hotspot bin were calculated, and cases where at least 10 genes showed a

correlation coefficient of |r| > 0.80 was called a network. Among the 97 leaf eQTL hotspot

bins detected, 51 gene co-expression networks were constructed within 38 bins. The leaf

co-expression networks consisted of a total of 1,678 distinct genes with 11 to 945 genes

per network. Many neighboring bins produced redundant networks, and at least nine

independent leaf co-expression networks were detected. Similar results were obtained for

xylem and root. In addition to GO annotation enrichment per co-regulated network,

transcription factor binding sites (TFBS) enrichment analyses were performed to infer

the potential functional roles of transcriptional networks. Promoter sequences for all

the genes on the microarray were extracted, and presence/absence of motifs in the plant

cis-acting regulatory element sequence database (PLACE) database were determined
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with Patmatch. For each motif, each co-expression network was tested for enrichment

of genes carrying the motif using a Fisher’s exact test. Cis-regulated genes belonging

to a network, were identified as putative network regulators that potentially modifies

downstream network functions. Drost et al. (2010) showed that the identified eQTL

hotspots and the corresponding transcriptional networks were largely tissue-specific.

Further comparing the studies revealed that the number of trans-eQTL hotspots per

study differs considerably, and so also the number of target genes per hotspot. Also,

many hotspots were shown to have a directional bias, meaning that a significantly higher

proportion of eQTLs with either positive or negative effect were observed. Specifically,

Kirst et al. (2005), West et al. (2007), Potokina et al. (2008) and Li et al. (2013) used

chi-squared tests to determine that 40%, 100%, 44%, and 78% of their identified hotspots

respectively showed significant directional bias. This might reflect substantial regulatory

differences between the parental lines.

1.5.3 Correspondence of eQTLs with phenotypic QTLs

Seven of the genome-wide eQTL studies in Tables 1.1 and 1.2 used eQTLs to identify

potential candidate genes for different phenotypic traits. In most cases, new hypotheses

to test in future work were constructed from these results.

Shi et al. (2007) studied the molecular basis for cell-wall digestibility in order to im-

prove the feeding value of forage maize. One out of five eQTL hotspots co-localised

with a cell wall digestibility related QTL cluster, implying that the gene(s) underlying

these QTLs and eQTLs are identical. Jordan et al. (2007) based their eQTL study on

the same population that was previously used for QTL mapping of agronomic and seed

quality traits in wheat. They found that 17 out of 542 detected eQTLs (cis- and trans-

eQTLs) corresponded to intervals that overlapped with QTLs for grain protein content

and yield in wheat. Additionally, 28 eQTLs overlapped with QTLs for grain weight,

maturity and several flour and dough quality traits. Potokina et al. (2008) used tran-

scriptional variation in germinating barley grain to investigate the variation in malting

quality phenotypes. They found that each of the analysed malting phenotypes had at

least one significant QTL associated with at least one identified eQTL hotspot. Wang

et al. (2010b) studied seedling vigor traits in a rice RIL population. They compared the

genome-wide distributions of phenotypic QTLs and eQTLs, and calculated correlations
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between the phenotype values of traits and expression levels of e-traits in the regions

where eQTLs overlapped phenotypic QTLs. All three phenotypic QTLs for shoot dry

weight overlapped with eQTL hotspots. In particular 93 e-traits with trans-eQTLs in the

SDW5-1 phenotypic QTL support interval showed significant correlations (r = 0.3–0.5).

This suggests that genes with cis-eQTLs in the corresponding region, are potentially

associated with early growth characteristics and regulate many genes with trans-eQTLs.

Chen et al. (2010b) performed an eQTL analysis to study the quantitative resistance to

barley leaf rust caused by Puccinia hordei. They identified 128 genes that were correlated

with barley leaf rust resistance, of which 89 had an eQTL co-locating with the phenotypic

QTL. Gene expression in the parental lines and conservation of synteny with rice, allowed

them to prioritise six genes as candidates for leaf rust resistance. No eQTL hotspots co-

located with any of the phenotypic QTL for leaf rust resistance. Moscou et al. (2011)

focused on a new highly virulent race of stem rust in barley, known as TTKSK. In the

example given on page 16, Druka et al. (2008) used a different race of Pgt, with a cloned

resistance gene Rpg1. However, currently the Rpg-TTKSK locus on chromosome 5H is

the only known locus that confers resistance to the aggressive Pgt race. In a comparison

of eQTLs between pathogen-inoculated versus mock-inoculated, Moscou et al. (2011) re-

vealed an inoculation-dependent expression polymorphism, Actin depolymerising factor

3 (within the Rpg-TTKSK locus), as a candidate susceptibility gene based on a strong

cis-eQTL with a magnified effect after inoculation with Pgt race TTKSK. Moreover, they

identified a trans-eQTL hotspot on chromosome 2H that co-segregates with a quantita-

tive resistance factor that acts as an enhancer of Rpg-TTKSK-mediated resistance in

adult plants. Claverie et al. (2012) had access to phenotypic QTL results from a number

of cotton fiber developmental stages. In the absence of a genome sequence for cotton,

it was not possible to classify eQTLs as cis or trans. However, the occurrence of large

hotspots clearly suggested the presence of trans-eQTLs. Although the data could not be

used to identify cis-acting factors potentially causing the variation of fiber traits, eQTL

hotspots overlapping with regions rich in phenotypic fiber QTL (meta-clusters) in at least

15 different cases were identified.

The studies mentioned above mainly used co-localisation of phenotypic QTLs with

eQTLs and eQTL hotspots. Moscou et al. (2011) specifically focused on overlapping

cis-eQTL candidates, and Wang et al. (2010b) and Chen et al. (2010b) combined co-
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localisation of eQTLs with correlation analysis to identify candidate genes influencing

the respective phenotypes.

1.6 Biological, technical and statistical considerations

A number of factors have an impact on the proportion of eQTLs that can be observed in

a global eQTL study. Biological factors such as the assayed tissue, environmental condi-

tions and the genotypic diversity present in the mapping population, have an influence

on which genes are expressed and which have allelic variants. Furthermore, statistical

factors such as population type and size, gene expression measurement accuracy including

array limitations and mapping quality of RNA-seq data, the number of genes analysed

and genetic map quality influence the mapping power and detection thresholds (Joosen

et al., 2009). Other technical limitations that could influence the interpretation of the

results from an eQTL study, include the quality of functional annotations available for

the transcripts being measured and whether the parental lines have genome sequences

available that could reveal candidate causative polymorphisms.

1.6.1 Gene expression platform considerations

Gene expression information can be captured with a variety of techniques ranging from

reverse transcription quantitative polymerase chain reaction (RT-qPCR), to DNA mi-

croarrays and more recently RNA-seq, which employs next-generation sequencing tech-

nologies. When choosing a gene expression platform for an eQTL study, it is important

to consider genome representation, platform performance and the cost to capture the

expression data of many individuals in a population. Fourteen out of the 16 genome-wide

plant eQTL studies in Tables 1.1 and 1.2 used microarrays for population-wide gene ex-

pression profiling, mainly since it is a high-throughput method, an optimal design allows

cost-effective use of the technology (Fu and Jansen, 2006), an annotated genome is not

required, and data analysis approaches for microarrays are standardised.

A major limitation when using microarrays in an eQTL study, is that the analysis

is limited to only the transcripts measured on the array. According to Cubillos et al.

(2012), insufficient sensitivity and a lack of reproducibility are other drawbacks of mi-

croarray technologies. Furthermore, when using microarrays that employ short reporters
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for each transcript, it could be that hybridisation differences are due to sequence polymor-

phisms rather than actual expression differences. For example when there are differences

between the reference genome reporters and the subject genome, this may generate single

feature polymorphisms (SFPs) and result in detection of false eQTLs. However generally

only few genes are impacted, leaving the overall architecture not significantly affected

(Kliebenstein, 2009). In this regard, Kloosterman et al. (2012) speculate that some of

the cis-eQTLs they detected in a potato genome-wide study are likely to be false eQTLs

due to the heterozygous nature of potato. Alberts et al. (2007) applied a novel statisti-

cal approach, which takes the individual reporter signals into account, to short-oligomer

data from human and mouse Affymetrix microarrays that were used for eQTL mapping

studies. They showed that even though many cis-eQTLs are falsely reported, this ap-

proach can successfully identify and eliminate these eQTLs. However, they also stated

that when strong claims about cis-eQTLs are to be made, it is recommended to use ad-

ditional methods to characterise polymorphisms, to re-sequence the reporter regions and

to use alternative ways of gene expression profiling.

Spurious eQTLs can also be caused by technical confounding factors. These factors

include systematic bias, such as technical variation in microarray manufacturing and

variations introduced during sample preparation or expression measurements. Examples

could be the use of a different batch of reagents or different room temperatures during

two hybridisations. Kang et al. (2008a) propose a statistical method for eQTL mapping

that corrects for the spurious associations caused by complex intersample correlation of

expression measurements, provided that independent biological replicates are available.

Using this method, Kang et al. (2008a) identified many more cis associations while

eliminating most of the misleading trans associations.

RNA-seq provides a few advantages to transcriptome research, such as robust expres-

sion detection especially for lowly expressed genes, and the detection of all the transcripts

not depending on whether they have reporters on an array (Li et al., 2013). It is however

important to implement quality control steps, for example the reads with low mapping

quality or mapping ambiguity should be removed. Also, technical confounding factors

could influence the results. Two novel elements that RNA-seq data makes possible are

eQTL mapping using allele-specific expression and isoform-specific eQTL mapping (Sun

and Hu, 2012).
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1.6.2 Experimental design

There are three main categories of factors that influence the design of eQTL experiments:

(i) type of population, (ii) population size and (iii) replication.

Populations of homozygous lines are mostly used in plant eQTL in studies. Two in-

bred lines are typically crossed to form a heterozygous but identical F1 generation. These

F1 individuals are then crossed to form an F2 generation. Homozygosity can be achieved

by inbreeding, often by single seed descent to produce RILs or by production of DH lines

from haploid F1 plants. Eleven out of the 16 global eQTL studies in Tables 1.1 and 1.2

are based on RIL or DH populations. In these populations, only information regarding

the additive effects of QTLs are provided since every genotype is homozygous. Also, the

amount of recombination that has occurred in the production of the inbred lines, directly

influence the accuracy with which eQTLs are located (Druka et al., 2010). Although the

specific parents inherently limit the available genetic variation, the phenotypic variation

can be expanded beyond that of the parents through transgressive segregation. Trans-

gressive segregation results from novel genotypic combinations due to recombination and

independent assortment between genes (Kliebenstein, 2009).

Population sizes should be as large as possible, not only to increase the statistical

power of the analysis, but also to increase the number of recombinants, which allow for

better separation of genetic effects at distinct QTL locations.

In general, it is important to include an appropriate measure of replicate variation.

The replicates of all genotypes should be unbiased, thus incorporating all the non-genetic

factors that could cause lines to differ. These factors are (i) technical variation in sam-

pling, preparing and assaying the samples, (ii) true biological environmental variation,

which is captured by genetically identical full-sib lines, and (iii) environmental or ma-

ternal effects, thus epigenetic effects determining the phenotype of an organism (Druka

et al., 2010). It is generally agreed that the design should include biological rather than

technical variation (Kerr and Churchill, 2001). To avoid unnecessary replication of slides,

Fu and Jansen (2006) proposed a distant-pair design for two-colour microarrays.

There is a trade-off between the population size and the independent replication per

line, and no absolute answer as to which is more important (Kliebenstein, 2009). Since

the average transcript’s heritability (the proportion of transcript abundance variance that

is caused by genetic variation) in plants is roughly 60–65%, at least a two-fold replication
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is necessary to maximise detection power (Keurentjes et al., 2007; West et al., 2007).

Therefore decreasing replication will result in detection of eQTLs for transcripts with

higher heritability (mostly cis-eQTLs). On the other hand, decreasing the population

size will result in less recombination events and a limited ability to detect eQTLs with

small effects since smaller sample sizes generally yield weaker estimates (Gilad et al.,

2008). Thus, decreasing either population size or biological replication will likely result in

a decrease of the total number of eQTLs detected and an increase in the total percentage

of cis-eQTLs versus trans-eQTLs.

Since the number of traits (transcript levels) measured, tend to be much larger than

the number of individuals in an eQTL study, these studies are underpowered to detect

and localise eQTLs (de Koning and Haley, 2005). For example in the 16 eQTL studies

in Tables 1.1 and 1.2, the average number e-traits tested was 15,636 (ranging from 439

to 25,965) and the average number of individuals in a population was 132 (ranging from

39 to 360). In general, higher power allows the robust detection of more small-effect

trans-eQTLs. Moreover, the large number of hypothesis tests required to associate a

dense marker map with thousands of transcripts, makes it very difficult to control the

FDR. As the cost of genome-wide expression profiling decrease, larger eQTL studies will

be possible, which is hoped reduce these concerns (Mackay et al., 2009).

Similar to the mapping approaches for phenotypic QTLs, approaches for eQTL map-

ping can be classified into linkage methods and association methods (Figure 1.1 on

page 46). The main advantage with linkage mapping is that a small number of mark-

ers are sufficient for a genome-wide scan. eQTL-based association mapping is a more

powerful approach for identification of common variants and for detection of eQTLs with

small or medium effect, provided that the causal variants are in strong LD with the

genotyped SNPs and that the genotyping is adequately dense (Gilad et al., 2008). Asso-

ciation mapping also provides a fine-scale resolution contrary to linkage mapping which

depend on the number of recombination events in a segregating population. A potential

disadvantage of eQTL-based association mapping is the possibility of false positives due

to population structure, however this can largely be corrected for by applying recently

developed methods (see the section on page 5).

In contrast to animal studies, eQTL-based association mapping studies have not yet

been applied to plants. In an outbred mouse population, Ghazalpour et al. (2008) applied
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whole-genome association analysis to liver gene expression traits. They compared this

analysis with eQTLs identified in previous studies of F2 intercross mice and found that

the mapping resolution was significantly greater in the outbred population. With high-

density genome-wide genotyping currently available, association mapping will likely be

the method of choice for future eQTL studies (Gilad et al., 2008).

1.7 Network eQTL mapping

For certain biological processes, the contributing genes are well known. However, for

most biological processes little is known about the regulation and interaction of the genes

involved. Exploiting the data from genome-wide eQTL studies could lead to the iden-

tification of groups of genes potentially involved in the same biological processes, and

consequently regulated by the same regulators. “Network eQTL” analysis allows the

identification of genetic variation influencing entire processes, thereby revealing polymor-

phisms upstream in networks (Hansen et al., 2008). Figure 1.4 summarises the two major

approaches, classified as a priori and a posteriori.

In an a priori analysis, previous information such as pre-selected pathways is used

to group genes into “networks”. Thus the group of genes being tested must be known or

at least predicted to be involved in a specific biological process (Hansen et al., 2008). A

network expression value is then calculated for each individual in a mapping population,

usually by averaging across the expression values of the genes grouped as a network. The

resulting network expression values are subsequently used as the trait in QTL analysis.

The result is a single LOD profile per network that was studied (Kliebenstein et al., 2006)

(Figure 1.4).

Kliebenstein et al. (2006) mapped network eQTLs in a RIL population derived from

accessions Bay-0 and Shahdara, for 18 known networks mainly involved in plant defense

including glucosinolate and flavonol biosynthesis. Interestingly, a cis-eQTL for the tran-

scription factor PAP1, known to regulate flavonol biosynthesis was found to co-locate

with a network eQTL for the flavonol biosynthesis pathway. This result suggests that the

cis-variation in the expression of PAP1 is also responsible for the flavonol biosynthesis

network eQTL.

In an a posteriori analysis, eQTL data is typically utilised to generate novel “net-
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works”. Correlation of expression patterns or co-localisation of eQTL positions can be

used to identify clusters of potentially co-regulated genes (Figure 1.4). Lan et al. (2006)

was able to predict regulatory networks by combining the correlation results with eQTL

mapping information. Similar to the a priori analysis, after averaging across the expres-

sion values of the grouped genes, network eQTLs can be mapped. The identified genetic

loci can subsequently be searched for regulatory genes with cis-eQTLs that potentially

regulate these networks (Sun et al., 2007).

Keurentjes et al. (2007), used a hybrid a posteriori approach to an Arabidopsis eQTL

study with a set of 175 flowering time genes. They utilised eQTL information to define

connections and regulatory hubs within the flowering time network. Numerous unknown

regulatory interactions related to flowering time were predicted, and many previously

known regulators were confirmed.

According to Kliebenstein (2009) there are two concerns when using target genes

from a trans-eQTL hotspot in an a posteriori analysis. Firstly, it could be difficult to

interpret the biological meaning of massive hubs with thousands of genes, which is the

case for some hotspots. Secondly, due to limited population sizes there is currently not

sufficient recombination to accurately partition trans-eQTL hotspots, to ensure that all

the transcripts are affected by the same genetic polymorphism.

1.8 Systems genetics of quantitative traits

1.8.1 Regulatory network reconstruction

Genetical genomics data can be used for regulatory network reconstruction. Instead of

grouping genes with trans-eQTLs at an identical position, co-expressed genes across the

individuals in a population can be identified and used as a powerful basis for regulatory

network reconstruction.

Even though thousands of transcripts are genetically variable, they are not indepen-

dent. This means that the expression levels of some transcripts may be correlated, which

may suggest that these genes belong to a common regulatory network. When genes have

higher correlations to each other than to the genes in the rest of the transcriptome, they

can be grouped into co-expression clusters also called “modules”. This can significantly

reduce the dimension of the data, since the statistical information encoded in highly corre-
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lated transcripts is redundant (Mackay et al., 2009). To determine whether co-expression

networks are biologically sound, enrichment analyses are generally performed. Such anal-

yses utilise GO categories, KEGG pathways, protein-protein interactions, tissue-specific

expression patterns or TFBS (Miller et al., 2008; Ayroles et al., 2009). Furthermore,

functions of genes without annotations can be predicted based on “guilt by association”

with well-annotated genes in the network (Tian et al., 2008).

A module can be visualised graphically as a network, with nodes denoting transcripts

and edges connecting nodes that are correlated based on co-expression. In order to build

co-expression gene networks, one needs to calculate a pairwise correlation matrix with

the full set of transcripts. From this, an adjacency matrix is constructed, which encodes

whether and how a pair of nodes is connected (Zhang and Horvath, 2005). One option is

to encode gene co-expression using binary information (connected=1, unconnected=0).

In this case, if the correlation in transcript abundance for a pair of transcripts exceeds a

threshold value, 1 is assigned, otherwise 0. Another option to encode gene co-expression

is to use connection weights. These are normally values between 0 and 1, for example the

absolute correlation coefficients between pairs of transcripts. More complicated connec-

tion weights in adjacency matrixes can be defined by adjacency functions. For each node

(transcript), the connectivity (also known as degree) is defined as the sum of connection

strengths with the other network transcripts. Hub nodes are those transcripts in modules

with high connectivity (Langfelder and Horvath, 2008). Importantly, these networks do

not represent direct interactions, but rather indirect statistical relationships. Information

about DNA polymorphisms, such as knowledge about cis and trans-eQTLs can be used

to specify the direction of flow of information in resulting networks (Mackay et al., 2009).

The expression profile of a causal transcript is genetically correlated with the associ-

ated quantitative phenotypic trait. However, often hundreds of transcripts are identified

as being correlated with a single phenotype (Ayroles et al., 2009). Since these transcripts

also correlate with each other, it is possible to identify co-expression modules that cor-

relate with quantitative phenotypic traits. Module-based approaches can thus be used

to uncover pathways and processes associated with phenotypic traits (Miller et al., 2008;

Ayroles et al., 2009). However, causal relationships cannot be identified from a study of

correlated transcripts alone. DNA sequence variation needs to be incorporated (Mackay

et al., 2009).
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1.8.2 Module-based network analysis

Langfelder and Horvath (2008) published an R package for weighted gene co-expression

network analysis (WGCNA) based on the framework proposed by Zhang and Horvath

(2005). Zhang and Horvath (2005) use the scale-free topology criterion to determine

the parameters of the adjacency function in the construction of co-expression networks.

Approximate scale-free topology is a fundamental property of co-expression networks

(Barabási and Bonabeau, 2003). It implies the presence of hub nodes that are connected

to a large number of other nodes. These networks are robust with respect to the random

deletion of nodes, however not to the targeted deletion of hub nodes. In order to detect

gene modules of tightly co-regulated genes, Zhang and Horvath (2005) adopted the defi-

nition of Ravasz et al. (2002). Ravasz et al. (2002) describes modules as groups of nodes

that have high topological overlap and use hierarchical clustering for module detection.

After defining a dissimilarity measure between the genes to be used in clustering, modules

are identified as branches of the hierarchical clustering tree.

Apart from identifying modules of highly correlated genes, each module identified by

WGCNA is summarised with a module eigengene. A module eigengene is defined as the

first principal component of a given module and can be considered a representative of the

gene expression profiles in a module. WGCNA also provides functions that can relate

modules to one another, as well as to external phenotypic traits, using eigengene network

methodology. Lorenz et al. (2011) used microarray analysis to study root complemen-

tary DNA (cDNA) populations obtained from 12 genotype⇥treatment combinations in

drought-stressed roots of loblolly pine (P. taeda L.). WGCNA was used to mine the 2445

differentially expressed genes for candidate regulatory genes. A scale-free network topol-

ogy was predicted and 11 co-expression modules were identified, ranging in size from 34

to 938 genes. Furthermore, a number of central hub nodes were identified, some of which

have previously been associated with osmotic stress. Miller et al. (2008) used WGCNA

to study transcriptional networks in Alzheimer’s disease. Twelve modules of genes with

high topological overlap were identified. The module eigengenes of the 12 modules were

correlated to relevant clinical traits using the Pearson correlation. Miller et al. (2008)

also applied WGCNA to compare functional modules defined in Alzheimer’s disease with

those defined in normal aging. Two biologically relevant modules were conserved between

the two conditions and several hub genes were identified in both aging and Alzheimer’s
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disease.

Modulated modularity clustering (MMC) is an example of another statistical method

that has been developed to group genetically correlated transcripts into modules. This

method, available as a web server, seeks community structure in graphical data. Commu-

nity structure aims to group nodes into (potentially overlapping) sets, such that each set

is densely connected internally. Thus MMC adjusts the connection strengths of edges in

a weighted graph to maximise an objective function that quantifies community structure.

This produces a final clustering with tightly-connected groups of genes (Stone and Ay-

roles, 2009). This approach was validated, by demonstrating that the clusters obtained

through analyses of human and Drosophila melanogaster expression data are biologically

meaningful.

1.8.3 Systems genetics: adding DNA sequence variation

To understand the connections between genotypes and phenotypes, systems genetics em-

ploys large-scale, high-throughput and comprehensive analysis. Instead of examining the

effects of genes one by one, it investigates how gene networks interact to determine the

traits of organisms. It aims to capture the flow of information from DNA to the organ-

ismal phenotype through RNA intermediates, proteins, metabolites and other molecular

endophenotypes (Mackay et al., 2009). Peidis et al. (2010) describes systems genetics

as the analysis of gene co-expression within genetic populations. A systems genetics ap-

proach to dissecting quantitative phenotypic traits merges phenotype, genotype and gene

expression data in order to prioritise mapped genes and identify gene networks associated

with the phenotypic trait (Figure 1.5).

In 40 Drosophila melanogaster wild-derived inbred lines, Ayroles et al. (2009) used

a systems genetics approach to study complex traits. Whole genome variation in tran-

script abundance for young males and females of each line, were assessed using Affymetrix

arrays. In order to study the genetic variation in transcript abundance, analysis of vari-

ance was used to partition variation in expression between sexes, among lines, and the

sex⇥line interaction for each expressed transcript. Several hundred transcripts and SFPs

were identified as being associated with phenotypic variation in each of the quantitative

traits. Phenotypes of P-element insertional mutations in or near candidate genes were

tested and 70% of the mutants tested significantly affected the traits. After the pair-
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wise correlations among the 10,096 variable transcripts were computed, 241 biologically

plausible modules of highly interconnected genes were identified. Finally, 26 modules

of correlated transcripts were identified to be associated with chill coma recovery time,

20 with fitness, 11 with starvation stress resistance, 10 with life span, and 9 each with

locomotor reactivity and copulation latency.

Park et al. (2011) used a systems genetics approach to explore the genetics of con-

ditional fear in mice. A hybrid mouse diversity panel with high mapping resolution was

used to map 27 fear-related behavioral QTLs with a GWA approach. The gene expression

measures of 25,697 transcripts were used to map eQTLs, also using association mapping,

from hippocampus and striatum tissues respectively. WGCNA was used to identify 30

modules in hippocampus and 25 modules in the striatum. By correlating the resulting

module eigengenes to behavioral phenotypes, groups of genes relating to aspects of con-

ditional fear were identified. The context immobility phenotype showed the strongest

correlations with two module eigengenes, r = �0.43 and r = 0.4 respectively, in the

hippocampus. In a subsequent analysis, the module eigengenes were considered as quan-

titative traits and QTLs for groups of co-expressed genes were mapped. Potential key

drivers influencing the expression of gene modules with relationships to fear-related phe-

notypes were identified. The Network Edge Orienting (NEO) software was used to fit a

model that implicates a marker as causal for a phenotypic trait through expression of a

gene (Aten et al., 2008). This analysis revealed five genes with causal relationships for

fear-related phenotypes. This study is an excellent example where the authors surely

succeeded in bringing together all the datasets and analyses in Figure 1.5.

GeneNetwork (http://www.genenetwork.org) is a group of linked data sets and tools

that can be used to explore systems genetics data in humans, mice, rats, Drosophila,

barley and Arabidopsis. These population data sets are mostly linked with dense genetic

maps that can be used to locate the genetic modifiers that cause differences in expression

and phenotypes. Peidis et al. (2010) used GeneNetwork to predict a transcriptional

role for the P2P-R gene in genetic reference panels of recombinant inbred strains of rat

adipocytes and mouse eye, respectively. The results revealed that biological networks

of 75 and 135 transcription-associated gene products for rat adipocytes and mouse eye

respectively, are co-expressed with P2P-R in a genetically-defined way.

Community projects to determine whole-genome sequences, catalogue SNPs and
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structural variants, and provide comprehensive phenotypic descriptions of thousands of

individuals in linkage or association mapping populations are vital for the success of

systems genetics approaches. These datasets in conjunction with sophisticated systems

genetics techniques, available in a similar fashion to GeneNetwork mentioned above, will

speed up the process of effectively linking causal molecular variants with organismal

phenotypes.

1.9 Cercospora zeina-maize plant pathosystem

1.9.1 Maize as an important crop

Maize (Zea mays L.) is a major cereal crop that is grown widely throughout the world in

diverse environments. Maize is an important staple food for southern and eastern Africa,

while it is largely used as livestock feed and as a raw material for industrial products in

developed countries. The 10, 000 years of domestication from its wild relative teosinte,

makes this crop an excellent example of selection of desirable allelic diversity within a

plant species (Buckler et al., 2006). During initial stages of maize breeding, mass selection

played a large role. Currently, structured breeding programmes are in place for F1 hybrid

development. Due to growing demands for food and fuel, global climate change and

the potential for increased disease pressure, breeders are challenged to produce higher

yielding and more resistant maize cultivars (Wei et al., 2009b).

Maize is an important model species for biological research and knowledge gained

from maize research can also be used to genetically improve its grass relatives such as

sorghum, wheat and rice. Maize is diploid and the genome sequence of a public inbred

line B73, which is used extensively in breeding programmes worldwide, was published in

2009 (Schnable et al., 2009). Maize has 10 chromosomes and a genome size of approx-

imately 2,300 Mb. It is thought that more than 80% of the maize genome sequence is

composed of transposable elements (Wei et al., 2009a). Springer et al. (2009) used com-

parative genomic hybridization to compare the genome structures of two maize inbred

lines, B73 and Mo17. Their study confirmed that maize is a highly polymorphic species,

although large genomic regions that have little or no variation were also identified. The

extraordinary phenotypic diversity between maize inbred lines can therefore be ascribed

to genome content variation and consequently large differences in transcript content.
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1.9.2 GLS disease of maize

Grey leaf spot (GLS) is a devastating foliar disease of maize and growers worldwide spend

millions on fungicides annually. GLS is caused by the fungal pathogens Cercospora zeae-

maydis Tehon and E. Y. Daniels and Cercospora zeina Crous & U. Braun. Symptoms are

necrotic lesions on the leaf surface. GLS has been documented in many sub-tropical and

tropical regions of the world (Ward and Nowell, 1998). It is an economically significant

disease to maize production in the eastern United States of America (USA) and one

of the major constraints to maize production in sub-Saharan Africa where up to 70%

yield losses have been reported (Ward et al., 1999). In South Africa, the occurrence

of GLS is most devastating for farmers in the KwaZulu-Natal province (Cedara, 1996).

Resistant commercial hybrids are not readily available in Africa and other developing

countries, especially to small-holder farmers. Even though hybrids with resistance are

available for some areas of the world, other genetic characteristics such as yield or growing

season length are often compromised in more resistant hybrids. Latterell and Rossi (1983)

described GLS as “a disease on the move” and as it continues to expand its geographic

distribution and severity, GLS has lived up to the 1983 prediction.

Two variants of C. zeae-maydis have been recognised as Types I and II, until Crous

et al. (2006) renamed it as C. zeae-maydis and C. zeina. Meisel et al. (2009) later

confirmed C. zeina to be the only causal agent of GLS disease on maize in southern

Africa. C. zeae-maydis differs from C. zeina in that it has faster growth rate, the ability to

produce the toxin cercosporin, longer conidiophores and broadly fusiform conidia (Wang

et al., 1998; Crous et al., 2006). C. zeae-maydis has been documented in North and South

America and China; and C. zeina in Africa, Brazil and the eastern USA.

GLS life cycle, maize symptoms and impact on yield

C. zeina is known to only infect maize. The fungi overwinter as stromata, a mixture of

plant tissues and fungal mycelium, in infected maize residues on the soil surface. During

early spring, the fungi start sporulating and conidia (asexual spores) are dispersed by

wind or rain splash within and among newly planted maize fields. Lower leaves are

usually the sites of primary infection. In humid conditions, hyphae emerge and grow

across the leaf surface and penetrate the leaf mesophyll via stomata (Beckman and Payne,

1983; Lyimo et al., 2013). After growing intercellularly for approximately three weeks
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(Wisser et al., 2011), the growth habit switches to necrotrophy, resulting in necrotic

expanding lesions. Following lesion formation, conidiophores emerge through stomatal

pores. Conidia are dispersed by wind or water to upper leaves or neighboring plants and

secondary infection cycles are initiated (Ward et al., 1999; Kim et al., 2011). During

favorable climatic conditions (moderate to high temperatures and high humidity) disease

progress can be rapid, resulting in increasing lesion numbers on developing leaves higher

in the canopy. In prolonged favorable conditions, developing lesions may coalesce, which

ultimately results in necrosis of leaf tissue. The fungus can stay dormant in unfavorable

climatic conditions and continue its development once conditions are favourable again

(Thorson and Martinson, 1993).

Symptoms are typically first observed on the lower leaves, which gradually spread

upwards on the plant during the season. Initial immature lesions appear as small tan

spots with chlorotic borders, not readily distinguished from other foliar diseases of maize.

However, more mature GLS lesions can be easily identified by characteristic rectangular

shapes running within leaf margins, as the fungi is not able to penetrate sclerenchyma

tissue in the leaf veins. These lesions are grey due to sporulation. Further lesion expan-

sion leads to coalescing, which later result in the blighting of entire leaves. With severe

blighting, stalks deteriorate and severe lodging may occur (Ward et al., 1999). Suscep-

tible genotypes commonly display numerous necrotic lesions, while moderately resistant

genotypes exhibit fewer and smaller lesions as a result of prolonged latent and incubation

periods, as well as reduced infection rates and sporulation capacity (Menkir and Ayodele,

2005). Symptoms of GLS caused by C. zeae-maydis and C. zeina are indistinguishable.

During the grain fill stages in maize, most of the photosynthate produced by the

plant is deposited in the developing kernels and this takes priority over the photosynthate

demands of the rest of the plant. Therefore loss of photosynthetic leaf area, associated

with GLS disease, result in sugars being diverted from the stalks for grain filling, which

predisposes plants to lodging. During severe disease pressure, the blighting and premature

death of leaves, severely limits the production and translocation of photosynthate to

developing kernels, resulting in yield loss (Ward et al., 1999).
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GLS control measures

The most effective control measures depend on understanding the epidemiology of the

pathogen and the factors affecting disease development (Ward and Nowell, 1998). In-

tegrated pest management (IPM) relies on a combination of all practical and environ-

mentally sensitive practices, which may aid in prevention and reduction of the disease

in a specific region. IPM practices for GLS control aimed at reduction of initial inocu-

lum include (i) tillage practices, (ii) crop rotation and (iii) early harvesting, whereas

IPM practices aimed at reducing the rate of disease development include (iv) choice of

shorter-season hybrids, (v) early planting, (vi) chemical control, (vii) optimum plant

density, (viii) irrigation, (ix) soil fertility and (x) host resistance. The use of resistant

or tolerant cultivars is the most cost-effective means of managing GLS (Saghai Maroof

et al., 1996; Ward et al., 1999). However, very few hybrids have adequate resistance to

prevent yield losses due to GLS in commercial maize production.

GLS resistance is thought to be conferred by a small number of quantitative loci with

additive effects (Clements et al., 2000; Menkir and Ayodele, 2005), thus several genes

for resistance need to be included in a hybrid to obtain a high level of resistance. One

way of improving GLS resistance is to follow conventional polygenic breeding programs,

which may take several years especially if other traits, such as yield, are also desirable. An

alternative is to use quantitative trait locus (QTL) mapping, with high-density molecular

marker maps, to identify markers closely related to resistance. These markers can be used

in marker-assisted selection programs to accelerate the development of high-yielding GLS

resistant hybrids (Saghai Maroof et al., 1996). No GLS resistance genes have been cloned

to date. There is an increased reliance on genetic resistance to ensure sustainable disease

management in the long-term (Kim et al., 2011). In order to reach this expectation,

considerably more information is needed about the genetic architecture of GLS disease

in maize.

1.10 Plant defense mechanisms against pathogens

Plants use combinations of structural characteristics and biochemical reactions to resist

pathogen invasion and possess both pre-existing and inducible mechanisms for this pur-

pose. As a result, pathogens initially need to avoid or overcome preformed morphological
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barriers, secondary metabolites and antimicrobial proteins in order to invade a plant.

Furthermore, once contact has been established, further defenses are induced consisting

of the reinforcement of cell walls, the production of secondary metabolites (phytoalexins),

the accumulation of reactive oxygen species (ROS) and the synthesis of defense-related

proteins. The speed and magnitude with which these mechanisms are activated, their

effectiveness against individual pathogens with different modes of attack as well as the

plant’s ability to detect the pathogen early, likely determine the degree to which a plant

is susceptible or resistant (van Loon et al., 2006).

Plant pathogens are often divided into two groups: (i) biotrophs feed on living host

tissue; and (ii) necrotrophs kill host tissue and feed on the remnant. C. zeae-maydis and

C. zeina are not linked to host cell death during early stages of infection when the fungus

multiplies intercellularly, but are in fact associated with host tissue chlorosis and necrosis

during later stages of infection. These fungi are therefore considered hemibiotrophs.

Overview of induced biochemical defenses

Jones and Dangl (2006) summarised the plant immune system as a multi-phase model.

According to this model, the evolutionary arms race between host and pathogen results

in an oscillation between compatible and incompatible states over time (Figure 1.6).

The basal defense system relies on the recognition of pathogen-associated molecular

patterns (PAMPs) by plant pattern recognition receptors (PRRs). PAMPs are features

common to many of pathogens such as lipopolysaccharides, chitins, glucans and flagellins.

This recognition results in PAMP-triggered immunity (PTI), which serves as an early

warning for the activation of defense-related genes. Adapted pathogens produce a suite

of effector proteins, encoded by Avr (avirulence) genes, which are delivered directly into

the plant cells to suppress these defenses. This results in effector-triggered susceptibility

(ETS). As a countermeasure to Avr/effector proteins, plants have evolved to synthesise

resistance (R) proteins. The most prominent class of R proteins is the nucleotide-binding

site plus leucine rich repeat (NBS-LRR) protein, which can interact with Avr/effector

genes to activate effector-triggered immunity (ETI). Both the detection of PAMPs by

PRRs and the interaction of Avr-R, result in the activation of a signalling cascade that

induces defense response genes. Biosynthesis pathways of phytohormones such as salicylic

acid (SA), jasmonic acid (JA) and ethylene (ET) are initially activated. The resulting
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phytohormones further activate the production of pathogenesis-related (PR) proteins and

initiate various processes such as the hypersensitive response (HR), which is a form of

programmed cell death, or systemic acquired resistance (SAR) to limit further invasion

by the pathogen in distal parts of the plant (Ryals et al., 1996; Heath, 2000).

The balance of hormonal crosstalk strongly influences the outcome of plant-pathogen

interactions. Classically, SA signalling triggers resistance against biotrophic and

hemibiotrophic pathogens, whereas a combination of JA and ET signalling activates

resistance against necrotrophic pathogens (Glazebrook, 2005). However, other hormones

such as abscisic acid (ABA), auxin, cytokinins (CKs), gibberellic acid (GA) and brassi-

nosteroids also play a role in molding plant-pathogen interactions. These hormones may

influence disease outcomes through their effect on SA or JA signalling (Robert-seilaniantz

et al., 2011). GA causes degradation of the DELLA protein growth repressors, which re-

sult in induced accumulation of ROS and SA, as well as reduced JA signalling (Navarro

et al., 2008). CKs contribute to resistance against biotrophs by enhancing the SA response

through non-expressor of PR genes 1 (NPR1), a master regulator of SA defense signalling

(Choi et al., 2010). Brassinosteroid treatment enhances biotroph-hemibiotroph resistance

(Nakashita et al., 2003). Auxin signalling initiates the suppression of SA biosynthesis and

signalling (Robert-seilaniantz et al., 2007). ABA biosynthetic and signalling pathways

promote disease susceptibility to several plant pathogens by suppressing SA-dependent

signalling mechanisms (Audenaert et al., 2002). However, plant hormones interact in

complex networks and in many cases there is evidence for both positive and negative

interactions.

PR proteins generally possess antifungal or antimicrobial activity through hydrolytic

activities on cell walls, contact toxicity and an involvement in defense signalling. Most

PR proteins are induced through the action of the signalling compounds SA, JA or ET

(van Loon et al., 2006). Seventeen recognised families of PR proteins exist. Well known

PR protein families include �-1,3-glucanases (PR-2), chitinases (PR-3), thaumatin-like

proteins (PR-5), proteinase inhibitors (PR-6), peroxidases (PR-9), defensins (PR-12)

and thionins (PR-13). Although minor levels of PR proteins may be present in healthy

plants, attack by pathogens, wounding or stress generally induce transcription of genes

that encode PR proteins (Agrios, 2005).

Plants also defend themselves via the production of secondary metabolites such as
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phenolics and phytoalexins that are toxic to pathogens. Plant phenolics include several

structurally diverse classes of natural products from the shikimate-phenylpropanoids-

flavonoids pathways. Plants need phenolic compounds for pigmentation, growth, repro-

duction, pathogen resistance and for many other functions (Lattanzio et al., 2006). Ter-

penoids (terpenes) occur in all plants and represent the largest class of secondary metabo-

lites. Monoterpenoids are the primary components of essential oils, which are highly

volatile compounds with important aromatic qualities (Freeman and Beattie, 2008). Ac-

cording to Cowan (1999), terpenes may have the ability to disrupt microbial membranes,

which may explain their antimicrobial properties.

Qualitative versus quantitative resistance

Two general categories of genetic control of disease resistance in plants are: (i) qualitative

resistance, conditioned by a single gene using gene-for-gene recognition mechanisms and

(ii) quantitative resistance, conditioned by multiple genes of partial effect, i.e. controlled

by multiple genetic factors. Resistance genes (R-genes) normally refer to genes that

confer qualitative effects and QTL refer to loci or genes that confer quantitative disease

resistance. Although qualitative and quantitative resistance can be considered different,

the overlap between the extremes has raised the question of whether the two types of

resistance are conditioned by the same genetic mechanisms (Poland et al., 2009).

Qualitative resistance is usually accompanied by an oxidative burst, taking place in

early plant defense mechanisms. Oxidative burst is the rapid release of reactive oxygen

species (ROS), which is mainly superoxide (O�
2 ) and hydrogen peroxide (H2O2). Accord-

ing to Bolwell (1999), ROS has numerous roles including direct killing of the pathogen,

involvement in structural changes in the cell wall, the induction of defense gene expres-

sion as well as promotion of programmed cell death (PCD) during HR. R-genes often

lack durability, since a single loss-of-function mutation in an Avr/effector protein enable

the pathogen to escape recognition by its corresponding R-protein (van der Biezen and

Jones, 1998). However, R-genes are expected to participate in coevolutionary arms races

where plant specificity and pathogen virulence continually adapt in response to each

other (Bergelson et al., 2001). NBS-LRR proteins, the major class of R-proteins, serve

as complex intracellular receptors that have both perception and signaling roles in acti-

vating defenses (Steinbrenner et al., 2012). NBS domains are involved in signalling, and

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. LITERATURE REVIEW 42

include several highly conserved and strictly ordered motifs (Tan and Wu, 2012). LRRs

are highly adaptable receptor domains and may be involved in direct protein-protein in-

teractions with Avr/effector proteins of the pathogen. The solvent-exposed amino acid

residues of LRRs often evolve at unusually fast rates, suggesting that they have evolved

to detect variation in pathogen-derived ligands (Bergelson et al., 2001). Some R-genes

encode receptor-like protein kinases (RLKs), with an extracellular domain that is involved

in signal recognition, a transmembrane domain and a cytoplasmic serine-theonine kinase

domain for initiating a signal transduction cascade in the cell. Many R-proteins are

activated indirectly by Avr/effectors, and not by direct recognition. This “guard hypoth-

esis” implies that some R-proteins bind to other plant proteins, which are targeted and

modified by the pathogen (de Wit, 2002; Marathe and Dinesh-Kumar, 2003). It appears

that in plant genomes, most R-genes exist as clustered gene families of varying sizes that

are thought to assist in rapid R-gene evolution. An example of this is the tomato Pto

locus, where an NBS-LRR gene Prf lies within the cluster of five kinase genes (Hulbert

et al., 2001). Furthermore, R-gene clusters often reside in mega-clusters where smaller

clusters are localised within a few million base pairs of one another. According to Young

(2000), the organisation of R-gene clusters emphasise a tension between diversifying and

conservative selection. Clustering of R-genes are thought to be due to tandem dupli-

cations (duplicated genes adjacent to the original) or ectopic duplications (duplicated

genes translocated to distal locations in the genome resulting in mixed clusters) followed

by local rearrangements and gene conversion (Marone et al., 2013).

Quantitative resistance is often associated with resistance to necrotrophic pathogens,

whereas qualitative resistance is generally associated with resistance to biotrophic

pathogens (Balint-Kurti and Johal, 2009). The latter corresponds with activation of

SA-dependent signalling pathways and hypersensitive cell death. This is effective, since

HR deprives the pathogens of a food source. In contrast, necrotrophic pathogens benefit

from host cell death and therefore effective defense would rather be to activate a different

set of defense responses by JA and ET signalling (Glazebrook, 2005). Interestingly, Lin-

coln et al. (2002) demonstrated that transgenes encoding anti-apoptotic proteins from

mammals could provide resistance to necrotrophs in plants, since these transgenes ev-

idently interfere with activation of PCD in the host. Quantitative resistance provides

non-race-specific, intermediate levels of resistance and as a result is more durable. The
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mechanisms of quantitative resistance are more difficult to characterise and it may vary

for different plant-pathogen interactions (Balint-Kurti and Johal, 2009). Poland et al.

(2009) stated that it is unlikely that the model proposed by Jones and Dangl (2006)

(Figure 1.6) accounts for all known forms of quantitative resistance and that it has been

primarily constructed based on observations of biotrophic pathogens for which R-gene-

mediated recognition is effective.

Identifying the genes (and ultimately the genetic polymorphisms) underlying QTLs

that confer quantitative disease resistance is currently a major challenge. Since DNA

variations impact complex diseases through the perturbations they cause to transcrip-

tional, protein and metabolite networks, these molecular phenotypes are intermediate to

the phenotypic effect. Therefore, the integration of biological networks (e.g. transcrip-

tional networks) with DNA variation and phenotypic data has the potential to aid in

identification of the associations between DNA variation and quantitative disease resis-

tance, as well as to characterise parts of the molecular networks that drive quantitative

resistance (Sieberts and Schadt, 2007).

1.11 Future perspectives

A general concern with current eQTL studies is that populations are normally sampled

at one developmental stage in a single environment. The broad use of this data as-

sumes stable genetic variation, which is not necessarily the case. Kliebenstein (2009) also

noted that eQTL studies are mostly conducted in the conditions of interest, for exam-

ple pathogen-infected plants are used to provide information about pathogen resistance.

Whether it is necessary to compare an analysis like this with a similar analysis on unin-

fected plants in order to make strong conclusions remain to be seen. Druka et al. (2008)

started showing that genetic variation, specifically cis-variation, in a defined population

allowed the transfer of eQTL information to experiments conducted in different condi-

tions, tissues, and years. Such tests of association to multiple phenotypes for the same

genotypes are necessary in the future, for a clearer understanding of pleiotropy (Mackay

et al., 2009).

Currently genome scans in large populations allow the detection of multiple QTL

regions. However, for each QTL, candidate causal sequences need to be identified and in-
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dependently verified. The promise and expectation offered by next-generation sequencing

technologies in this regard is substantial. Accessibility to full DNA genome sequences,

fine-scale genotyped mapping populations, phenotypic descriptions of thousands of indi-

viduals in these populations and high-throughput RNA sequencing technologies for gene

expression profiling, will speed up the process of identifying causal polymorphisms, po-

tentially to the point of simultaneous detection and localisation of QTLs (Mackay et al.,

2009).

Certainly also in the near future, the combination of GWA studies with classical

linkage and eQTL mapping strategies, studied under different environmental conditions,

is hoped to expand the repertoire of interacting cis-acting and trans-acting variants. This

will improve our understanding of how variation within regulatory elements affects gene

expression, which will allow the prediction of mechanisms by which these elements shape

phenotypic diversity in natural populations (Cubillos et al., 2012).

Interestingly, the focus of general genotype–phenotype association studies is predicted

to shift. Instead of assessing multilocus genotypes, the challenge will become to obtain

multidimensional phenotypes for large numbers of individuals (Mackay et al., 2009). Thus

the development of high-throughput methods for automated phenotyping will be highly

advantageous. Examples of two recent studies in this regard include the development of a

nondestructive imaging and analysis system for automated phenotyping and trait ranking

of root system architecture in rice (Iyer-Pascuzzi et al., 2010), and the development

of a system to automatically measure plant characteristics of tall pepper plants in the

greenhouse (van der Heijden et al., 2012).

Systems genetics integrates the questions and methods of systems biology with those

of genetics, to interrelate genotype and phenotype in quantitative traits (Nadeau and

Dudley, 2011). The incorporation of expression patterns of genes and gene modules,

contributes in this regard to elucidate the complex molecular networks underlying phe-

notypic traits. It is important to note that not all functional molecular polymorphisms

affecting phenotypic traits will result in differential gene expression. With technologies

advancing and costs decreasing, it will be possible to conduct systems genetics analyses

on larger samples, more environmental conditions, more developmental time points and

more tissues. A more complete picture of the effects of genetic perturbations on whole

organisms will be seen once information from various sources, including proteins and
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metabolites, as well as epigenetic modifications, are added. Furthermore, sizable and

interactive databases to manage the different types of data and new statistical method-

ology to infer significant biological networks will be needed. Finally, all organisms will

become model organisms, which will enable us to understand the genetic basis of many

phenotypic traits, including ecological specialisations and adaptations (Mackay et al.,

2009).
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Figure 1.1: QTL mapping. Adapted from Mackay et al. (2009). (a) QTL mapping aims
to discover the genetic basis of an organismal phenotype with a quantitative distribution
in trait values. (b) Linkage-based analyses use related individuals to identify segregating
markers linked to the phenotype. M1, M2, M3 and M4 are markers that distinguish the
two parental lines. The yellow star marks the position of a causal locus. (c) Associa-
tion mapping is based on historical recombination that has effectively shuffled the initial
haplotypes, in order to uncouple all but the most tightly linked markers from the causal
locus. (d) In both approaches, phenotypes and marker genotypes are scored using the
mapping population. (e) A QTL is detected (the marker is linked to the causal locus) if
there is a mean difference in the trait phenotypes between marker genotype classes. (f)
The causal locus is usually mapped to a smaller genomic region, due to smaller haplo-
type blocks, for association mapping compared to linkage-based studies. The QTL region
allow the identification of candidate genes for future study.
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Figure 1.2: An example of cis- versus trans-eQTLs. Adapted from Hansen et al. (2008).
(a) Expression of transcription factor A (TF A) and gene B, a regulatory target of TF
A, in the parental lines of a segregating population. The gene expression values of TF A
and gene B across all individuals in the population were used to map eQTLs for TF A
and gene B, given in (b) and (c). The protein level of TF A is indicated by the number
of green ovals. An expression polymorphism for TF A is observed, which in turn cause
an expression polymorphism of gene B between parental lines X and Y. (b) An eQTL for
TF A is present on chromosome 3. Since the genomic location of the eQTL coincide with
the position of TF A, this is a cis-eQTL. The cis-eQTL is due to a polymorphism in the
promoter of TF A, marked in red in (a), causing the expression polymorphism of TF A
between parental lines X and Y. (c) An eQTL for gene B is also present on chromosome
3. Since the genomic location of the eQTL does not coincide with the position of gene
B, this is a trans-eQTL. However, the eQTL for gene B coincide with the position of TF
A. The trans-eQTL is due to a polymorphism in the promoter of TF A, marked in red
in (a), causing an expression polymorphism of TF A, which in turn cause an expression
polymorphism of gene B between parental lines X and Y.
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Figure 1.4: Network eQTL analysis. Adapted from Kliebenstein et al. (2006). A flow-
chart to distinguish between the a priori and a posteriori network analysis approaches.
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Figure 1.5: Systems genetics approach to dissecting a quantitative phenotypic trait.
Adapted from Park et al. (2011). Data from organismal phenotype analysis can be
integrated with genotype data to map phenotypic QTLs. Organismal phenotypes can
also be compared to gene co-expression modules. Gene expression data and genotype
data can be used together to map eQTLs. All three datasets can be merged to prioritise
mapped genes and identify gene networks associated with organismal phenotypes.
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Figure 1.6: Model depicting plant responses to pathogen infection. Adapted from Dangl
and Jones (2001) and Abramovitch et al. (2006). Plants detect pathogen-associated
molecular patterns (PAMPs) via plasma membrane-localised pattern recognition recep-
tors (PRRs) to trigger PAMP-triggered immunity (PTI). Successful pathogens deliver ef-
fectors that interfere with PTI, resulting in effector-triggered susceptibility (ETS). When
an effector is recognised by an NBS-LRR protein, activation of effector-triggered immu-
nity (ETI) follows. ETI is an amplified version of PTI that triggers specific transcription
factors and consequently various signalling cascades. ETI often leads to the induction of
hypersensitive response (HR). Phenotypes that are associated with HR include cell wall
fortifications and the production of reactive oxygen species (ROS) and nitrogen species
(NO). Natural selection drives pathogens to acquire additional effectors that suppress
ETI. Selection favours new plant NBS-LRR alleles that can recognise one of the newly
acquired effectors, resulting again in ETI.
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2.1 Note

The content of this chapter has been published in the journal Plant Methods. To be

consistent with the thesis layout, the figures and tables are given at the end of the chapter

and the references are included in the Bibliography section at the end of the thesis.

Additional files that are too large to display are available in the electronic Appendix
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as well as from the online version of the manuscript (http://www.plantmethods.com/

content/7/1/31/additional).

2.2 Authors’ contributions

NC built the database, analysed the data, and drafted the manuscript. DKB initiated

the study, contributed to the strategy, database design and analysis, and helped to draft

the manuscript. ZM contributed to the strategy and database design and helped to edit

the manuscript. All authors have read and approved the final manuscript.

2.3 Abstract

2.3.1 Background

Microarray technology has matured over the past fifteen years into a cost-effective so-

lution with established data analysis protocols for global gene expression profiling. The

Agilent-016047 maize 44K microarray was custom-designed from EST sequences, but only

reporter sequences with EST accession numbers are publicly available. The following in-

formation is lacking: (a) reporter - gene model match, (b) number of reporters per gene

model, (c) potential for cross hybridisation, (d) sense/antisense orientation of reporters,

(e) position of reporter on B73 genome sequence (for eQTL studies), and (f) functional

annotations of genes represented by reporters. To address this, we developed a strategy to

annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation

database.

2.3.2 Description

Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was

based on BLASTN results of the 60-mer reporter sequences and their corresponding

ESTs against the maize B73 reference genome (RefGen) v2 “Working Gene Set” (WGS)

predicted transcripts and the genome sequence. The agreement between the EST, WGS

transcript and gDNA BLASTN results were used to assign the reporters into six genomic

annotation groups. These annotation groups were: (i) “annotation by sense gene model”

(23,668 reporters), (ii) “annotation by antisense gene model” (4,330); (iii) “annotation

http://www.plantmethods.com/content/7/1/31/additional
http://www.plantmethods.com/content/7/1/31/additional
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by gDNA” without a WGS transcript hit (1,549); (iv) “annotation by EST”, in which

case the EST from which the reporter was designed, but not the reporter itself, has a

WGS transcript hit (3,390); (v) “ambiguous annotation” (2,608); and (vi) “inconclusive

annotation” (6,489). Functional annotations of reporters were obtained by BLASTX and

Blast2GO analysis of corresponding WGS transcripts against GenBank.

The annotations are available in the Maize Microarray Annotation Database http:

//MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that

can be uploaded to the MaizeGDB genome browser as a custom track.

The database was used to re-annotate lists of differentially expressed genes reported in

case studies of published work using the Agilent-016047 maize microarray. Up to 85% of

reporters in each list could be annotated with confidence by a single gene model, however

up to 10% of reporters had ambiguous annotations. Overall, more than 57% of reporters

gave a measurable signal in tissues as diverse as anthers and leaves.

2.3.3 Conclusions

The Maize Microarray Annotation Database will assist users of the Agilent-016047 maize

microarray in (i) refining gene lists for global expression analysis, and (ii) confirming the

annotation of candidate genes before functional studies.

2.4 Background

Currently, there are several maize microarray platforms available, including an Affymetrix

short oligonucleotide array (Kirst et al., 2006), a Nimblegen 50-mer array (Sekhon et al.,

2011), a 70-mer array from the University of Arizona Maize Oligonucleotide Array project

(Galbraith and Edwards, 2010) and the 60-mer Agilent-016047 Maize 4⇥44K microarray

(Wang et al., 2010a).

The Agilent microarray platform (http://www.agilent.com) is a mature technol-

ogy that yields high quality gene expression data, which can be readily analyzed using

established statistical tools (Coetzer et al., 2010). The Agilent-016047 Maize 4⇥44K mi-

croarray was custom-designed by the Walbot laboratory, with 42,034 in situ synthesised

60-mer oligonucleotide reporters (excluding controls) (Ma et al., 2008). Currently, the

Agilent “e-array” tool (https://earray.chem.agilent.com/earray/) only provides the

http://MaizeArrayAnnot.bi.up.ac.za/
http://MaizeArrayAnnot.bi.up.ac.za/
http://www.agilent.com
https://earray.chem.agilent.com/earray/
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60-mer sequences and expressed sequence tag (EST) accession numbers from which the

reporters were designed, without detailed or up-to-date annotations. There was therefore

a need to develop a strategy for annotation, and thereby build a database of annotations

for this maize microarray, as well as similar custom arrays.

The maize B73 genome sequence was released in November 2009 (Schnable et al.,

2009), and this provided the opportunity to locate the reporters on the genome sequence,

and provide functional annotations. Each reporter is intended to report the expression

of a single gene unambiguously. However, since the reporters were designed from ESTs

from different maize lines before a reference genome sequence was available (Ma et al.,

2008), redundancy on the array, as well as imperfect reporter matches were expected.

Version 1 and Version 2 Agilent 22K arrays (Ma et al., 2006, 2007) were precursors

for the 44K Agilent-016047 array. Version 1 was designed from the December 2003 maize

EST assembly of MaizeGDB and was made up of 21, 782 reporters. More than 80% of

these reporters were also included in Version 2 plus ⇠ 3, 000 new reporters, designed from

maize sequences in GenBank. Of the 20, 963 gene features on Version 2, ⇠ 13, 000 were

sense strand reporters and ⇠ 5, 000 antisense strand reporters.

For the Agilent-016047 44K array, an updated set of 60-mer reporters were designed

using Picky 2.0 (Chou et al., 2004). The reporter set mainly consists of validated reporters

from the two precursor maize arrays described above and validated reporters from anther

expressed genes detected using a spotted 70-mer array format (containing reporters to

about 35, 000 maize genes) (Ma et al., 2006) (http://www.maizearray.org). Additional

gene reporters were based on release 16.0 of the TIGR Maize Gene Index as well as cDNA

or EST sequences from GenBank (that were at the time not yet in the TIGR Maize Gene

Index assembly) (Ma et al., 2008). According to Ma et al. (2008), the 42, 034 maize

gene reporters represent ⇠ 39, 000 sense transcripts including a subset of genes with

multiple reporters, and ⇠ 500 antisense transcripts. In addition to the 42, 034 maize gene

reporters, the array also contains internal quantitative “spike-in” controls of non-maize

sequences, which were not annotated in this study.

The aims of this study were to annotate the reporter set of the Agilent-016047 mi-

croarray by: (i) locating each reporter on the maize B73 genome sequence; (ii) associating

each reporter to the transcript of a single gene, if possible; and (iii) assigning functional

annotations to the gene represented by each reporter. Our results revealed that we

http://www.maizearray.org
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could not associate all of the reporters with a single transcript with high confidence, and

therefore we built a database http://MaizeArrayAnnot.bi.up.ac.za/, which provides

confidence scores of the genomic positions and functional annotations of reporters on the

Agilent-016047 Maize array. Our annotation strategy provides guidelines for annotation

of custom-designed microarray slides where partial EST information is available, and this

resource will therefore be useful to maize researchers, and other researchers using custom

arrays.

2.5 Construction and content

2.5.1 Data sources

The gene list for the Agilent Maize Gene Expression Microarray 4 ⇥ 44K (design ID

016047) was downloaded from Agilent’s eArray tool (https://earray.chem.agilent.

com/earray/) containing a reporter ID, a 60-mer reporter sequence and an EST accession

number for each of the 42, 034 reporters on the microarray. EST sequence information for

34% of the reporters was available on GenBank, and BioPython (Cock et al., 2009) was

used to extract sequence and other relevant information from individual GenBank files.

For an additional 31% of the reporters, EST sequences were obtained from the Walbot

laboratory. For the remaining 35% of the reporters, no EST sequences were available,

since these are likely to be derived from proprietary sources. The cDNA sequences (in

FASTA format), their transcript start and end positions on the B73 RefGen v2 genome

sequence as well as InterPro and GO annotations for genes, were downloaded from the

maizesequence.org file transfer protocol (FTP) site (http://ftp.maizesequence.org/

current/). Only the protein coding transcripts in the B73 RefGen v2 Working Gene

Set (WGS) were used (88, 611 cDNAs representing 63, 331 genes). We chose to use the

WGS and not the Filtered Gene Set (FGS) since it was more inclusive of transcripts that

could have been used in the reporter design. The FGS (63, 540 transcripts; 39, 656 genes)

is a subset of the WGS in which transcripts that are “probable pseudogene”, “possible

transposon”, “contamination” or “low confidence” have been filtered out.

The maize B73 RefGen v2 genome sequence (sequences of all 10 chromosomes, in

FASTA format) was downloaded from the maizesequence.org FTP site (http://ftp.

maizesequence.org/current/). Lastly, the maize core bin markers (Wei et al., 2009b)

http://MaizeArrayAnnot.bi.up.ac.za/
https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/
http://ftp.maizesequence.org/current/
http://ftp.maizesequence.org/current/
http://ftp.maizesequence.org/current/
http://ftp.maizesequence.org/current/
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and corresponding B73 RefGen v2 base pair positions were retrieved from MaizeGDB

(Sen et al., 2009). All sets of data were downloaded in December 2010/January 2011.

2.5.2 Genomic annotation

Figure 2.1 outlines the strategy that was followed to obtain genomic annotations for each

reporter on the Agilent-016047 microarray. All nucleotide sequences were searched against

target datasets using the BLASTN algorithm version 2.2.18 (Altschul et al., 1990). For

BLASTN searches of the 60-mer reporter sequences against ESTs, the WGS transcripts

and genomic DNA (gDNA) (B73 RefGen v2), the word size parameter was set to 23 and

gaps were not allowed. This cut-off was chosen based on a study that showed that matches

of � 23 contiguous nucleotides yielded hybridisation signals under stringent conditions

in more than 90% of a set of Agilent reporters (Poulsen et al., 2008). Thus, the identity

out of 60, rather than the E-value, was used as the measure of similarity for BLASTN

searches with the reporters. We also carried out BLASTN searches with EST sequences,

and in these cases E-values were used. All BLAST results were stored in a relational

database. The parameters used for the BLAST searches are shown in Table 2.1.

Three sets of BLASTN hits were stored for each reporter (Figure 2.1). Firstly,

BLASTN of the reporter was implemented against the genome sequence (B73 RefGen

v2), and the top BLASTN hit (if � 23 contiguous matches), or multiple BLASTN hits (if

� 23 contiguous matches and identity � 55/60) was called the “reporter-gDNA result”.

The reporters were also searched against the genome sequence using “exonerate” (Slater

and Birney, 2005) to detect reporters that spanned introns. The parameters for exonerate

are shown in Table 2.2. In cases where reporters had positive exonerate matches (and 23

contiguous matches) to the genome sequence, this result was recorded as the “reporter-

gDNA result”. Secondly, BLASTN of the reporter was implemented against the WGS

transcripts, and the top BLASTN hit (if � 23 contiguous matches), or multiple BLASTN

hits (if � 23 contiguous matches and identity � 55/60) was called a “reporter-WGS tran-

script result”. Thirdly, after confirming that the reporter matched its corresponding EST

listed in the Agilent eArray database (� 23 contiguous matches), the top BLASTN hit

(if E-value  1e�10), or multiple BLASTN hits (if E-value  1e�10) of the EST against

the WGS transcript dataset was called an “EST-WGS transcript result” (BLASTN pa-

rameters in Table 2.1). These BLASTN cut-offs were selected based on a previous study
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where the same cut-offs were used to align ESTs to predicted maize cDNAs (Emrich et al.,

2007).

The ESTs were also searched against the gDNA using exonerate (parameters in Table

2.2), and matches with a normalised score of at least 3 (calculated by dividing the exon-

erate raw score by the query EST sequence length) (Donmez et al., 2009) were recorded

as the “EST-gDNA result”.

The next step was to determine if there was agreement between the reporter-gDNA

result and the reporter-WGS transcript result, in other words whether the WGS transcript

that the reporter matched was derived from the same gDNA position that the reporter

matched. This was recorded as the reporter-gDNA/WGS agreement result (Figure 2.1).

Similarly, we tested whether the EST-gDNA result and EST-WGS transcript result were

in agreement, and recorded this as the EST-gDNA/WGS agreement result (Figure 2.1).

Finally, the reporters were placed into one of six annotation groups, informed by

sequence matching and agreement results described above and whether the genomic po-

sition of the reporter overlapped with one or more gene models in the sense or antisense

direction (Figure 2.1). The annotation groups were:

(i) Annotated by sense gene model: Reporters that match a WGS transcript and

genomic location of the same gene model (single reporter-gDNA/WGS agreement result);

(ii) Annotation by antisense gene model: Reporters that match a transcript and

genomic location of the same gene model, but align to the antisense direction of the

transcript (single reporter-gDNA/WGS agreement result);

(iii) Annotation by gDNA: Reporters that match a unique location on the maize B73

genome, but this location is not currently annotated as a gene model (single genomic

result);

(iv) Annotation by EST: Reporters that do not match a WGS transcript, but that

are derived from an EST that matches a WGS transcript and its genomic location (single

EST-gDNA/WGS agreement result);

(v) Ambiguous annotation: Reporters with more than one sense gene model, antisense

gene model or EST result (More than one reporter-gDNA/WGS transcript agreement or

EST-gDNA/WGS transcript agreement result);

(vi) Inconclusive annotation: Reporters that match more than one transcript, but not

the genomic location of the corresponding gene models. Reporters that match more than
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one genomic location, but no corresponding transcripts. Reporters with no valid hits.

2.5.3 Functional annotation

The “reporter-WGS transcript result” for each reporter (described above) was used to

assign a functional annotation to each reporter. The functional annotations for each of

the 88, 611 cDNA sequences in the WGS of the B73 RefGen v2 genome sequence were ob-

tained by BLASTX (Altschul et al., 1990) searches (with default parameter settings; Table

2.1) against the National Center for Biotechnology Information (NCBI) non-redundant

peptide database (nr). The top three hits (and corresponding statistics) were stored in

a relational database. Blast2GO (Conesa et al., 2005) was used to associate each WGS

transcript (and therefore the corresponding reporters) with GO terms, using default set-

tings.

2.5.4 Database and web interface

The Maize Microarray Annotation Database interface was written using Turbogears

(Ramm et al., 2006), a Python web application framework. A central MySQL database

is used to store sequence and annotation information. SQLAlchemy (Copeland, 2008),

an object relational mapper for Python and toolkit for SQL, is implemented within the

Maize Microarray Annotation Database when a user queries the database.

2.5.5 Integration with the MaizeGDB genome browser

An annotation file with the genomic positions for each reporter that could be matched to

the genome was generated (Additional file 3 available in the electronic Appendix). This

can be uploaded to the MaizeGDB genome browser (Sen et al., 2010) and viewed as an

annotation track in the context of the B73 RefGen v2 genome sequence.

2.5.6 Reporters with expression in maize leaf material

Reporters “with measurable signal” were identified as those with a signal to noise ratio

(SNR) > 3 in at least one of fifty Agilent-016047 microarrays hybridised with cDNA from

maize leaves of a segregating population (data not shown).
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2.6 Utility and Discussion

2.6.1 Genomic annotation groups

Table 2.3 shows the breakdown of the annotation groups of the 42,034 reporters on

the maize Agilent-016047 microarray, as determined by our strategy outlined in Figure

2.1. Importantly, 27, 998 reporters (67%) were annotated by gene model in the sense

or antisense direction, which means that they correspond to a transcript with a defined

gDNA position. Approximately half of the reporters in this group mapped to UTR

regions, and the rest to coding regions. A number of these reporters (1, 554) were shown

using exonerate software (Slater and Birney, 2005) to span introns.

The reporters annotated by gene model in the sense or antisense direction represent

46.7% of the genes in the B73 maize FGS. Within this group, there were 4,330 reporters

that aligned to the antisense direction of a gene model (Table 2.3). Natural antisense

transcripts (NATs) contain sequences complementary to the sense transcripts of protein-

coding genes (Jin et al., 2008). Between 7 and 30% of genes in animal and plant genomes

encode overlapping cis-NATs (Jin et al., 2008). Many NATs are conserved, implying

regulatory functions for these transcripts in gene expression. According to Ma et al.

(2006), 14.3% of the pollen transcriptome consists of detectable antisense transcripts. It

should be borne in mind that, in some cases, a reporter with an antisense annotation

could in fact correspond to a sense transcript if the EST from which it was designed was

incorrectly oriented or the genomic annotation was in the wrong strand. These errors are

expected to be corrected in future annotation versions of the maize B73 genome sequence.

The 1, 549 reporters “annotated by gDNA” (Table 2.3) represent reporters that had

significant matches to the maize genome sequence but did not match current transcripts

in the WGS of the maize B73 RefGen v2. These reporters will possibly be linked to gene

models in future versions of the B73 genome due to improvements in gene prediction

algorithms or availability of RNA-seq data from different tissues of maize B73 plants.

Although these reporters are not currently associated with functional annotations, their

placement on the B73 genome sequence is useful for eQTL studies in maize. This category

of reporters showed a lower proportion (64%) with measurable expression in maize leaves

compared to reporters annotated by sense gene model (88%; Table 2.3).

The 3,390 reporters “annotated by EST” (Table 2.3) were derived from ESTs that
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showed sequence similarity to a WGS transcript from B73 (E-value  1e�10), however

the reporter itself did not have a significant hit to the WGS transcript. The reporters on

the maize Agilent-016047 microarray were designed from ESTs from various maize lines

(Figure 2.2). Reporters “annotated by EST” are most likely derived from maize lines

other than B73, although the source is not known for all reporters since this information

could be retrieved for only 34% of the reporters (Figure 2.2 (a)). The region of the

transcript that corresponds to the reporter is therefore predicted to be divergent between

B73 and the line from which the reporter was derived.

The 2, 608 “ambiguous” reporters (Table 2.3) each represent more than one gene

model, which are mostly members of the same gene family. Interpretation of expres-

sion data from these reporters should be done with caution, as it is possible that the

signal is due to cross hybridisation from more than one family member. As an example,

reporter A_92_P037799 represents four members of the cytochrome P450 gene family

on chromosomes 2, 3, 6 and 8, as shown in the multiple sequence alignment (Figure 2.3).

There were 6, 489 reporters with “inconclusive annotation” (Table 2.3), and thus in-

terpretation of expression data from these reporters should be made with caution. This

group contained a relatively low proportion of reporters with signal in a maize leaf mi-

croarray experiment conducted in our laboratory, namely 61% compared to 88% of re-

porters “annotated by sense gene model” (Table 2.3). Re-sequencing of six maize lines

from China identified several hundred genes that were not present in B73, but could be

annotated as plant proteins (Lai et al., 2010), and therefore it is possible that reporters

with “inconclusive annotation” may represent transcribed genes from other maize lines. A

subset of the reporters with inconclusive annotation and no hits against the B73 genome

sequence had EST sequences available (1, 727) and these were searched against GenBank

using BLASTX. Only 892 had significant hits (E-value  1e�10) and 553 matched plant

proteins.

Prior to our work, the reporters on the Agilent-016047 maize array could be visu-

alised in the context of the B73 maize genome sequence at MaizeGDB (http://gbrowse.

maizegdb.org/cgi-bin/gbrowse/maize_v2/) based on the Walbot laboratory annota-

tions. However, there are several limitations of this annotation track, namely: (i) the

positions given are based on RefGen v1, whereas the sequence is RefGen v2; (ii) the

positions are based on MegaBLAST hits to the gDNA, but no matches to transcripts



CHAPTER 2. MAIZE MICROARRAY ANNOTATION DATABASE 64

are given; (iii) the reporters are named using a unique identifier (UID) which is differ-

ent from the Agilent e-array ID; and (iv) three confidence categories are given, however

some reporters have up to 500 hits. Therefore we have produced an updated annotation

track that is compatible with MaizeGDB (Additional file 3 available in the electronic

Appendix) that reports the positions of all reporters on the array except those with in-

conclusive annotation or annotation by EST. An example of three reporters that match

one gene model is shown in Figure 2.4.

2.6.2 Maize Microarray Annotation Database

The Maize Microarray Annotation Database has an interactive web interface http:

//MaizeArrayAnnot.bi.up.ac.za/, providing the user with three main functionalities

namely “Search Agilent slide”, “BLAST sequences” and “Get sequences from GenBank”

(Figure 2.5). Most users are likely to use the “search Agilent slide” function, since they

would be interested in downloading annotations for a list of reporters that are differen-

tially expressed in a microarray experiment. In order to search the Agilent slide, the user

can provide Reporter IDs, EST Accession numbers or gene names. The outputs from a

query are reporter information, EST information, gene information, genomic and func-

tional annotation information as well as the evidence for the annotation results. The fol-

lowing can be downloaded: DNA sequences (reporter, EST or WGS transcript sequences

in FASTA format), a table with all annotation information, and/or multiple sequence

alignments. Searching by WGS gene name makes it possible to see whether there is more

than one reporter for a gene. On average, there are ⇠ 1.6 reporters per gene. Users can

also retrieve nucleotide sequences by submitting GenBank accession numbers for ESTs,

or BLAST sequence(s) against the Agilent slide to identify which reporters represent the

query sequence best.

2.6.3 Case studies

Table 2.4 gives a selection of five publications in which the Agilent-016047 array has

been used, with an indication of how many reporters gave a measurable signal according

to the authors. Lack of a signal may be due to tissue specific expression, genotype

differences, or poor reporter design. Ma et al. (2008) used this microarray to study the

expression profiles of maize anther and pollen ontogeny. They found that more than

http://MaizeArrayAnnot.bi.up.ac.za/
http://MaizeArrayAnnot.bi.up.ac.za/
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24, 000 different transcript types were expressed, and that each anther stage expressed

⇠ 10, 000 constitutive and ⇠ 10, 000 or more transcripts restricted to one or a few stages in

anther development. Casati and Walbot (2008) measured transcriptome changes between

RNA interference (RNAi) transgenic maize lines and a ultraviolet B (UV-B) tolerant B73

control line, using this Agilent slide. Approximately 26, 000 reporters showed expression

in adult maize leaves. Skibbe et al. (2009) hypothesised that Mutator transposon activity

reprograms the transcriptomes of developing maize anthers. About 35, 000 reporters had

signals > 2.6 times the standard deviation of the background (i.e. 99.5% confidence

interval), and they concluded that Mu transposition activated by transcriptionally active

MuDR results in a 25% change in the transcriptome. Wang et al. (2010a) hypothesised

that the male sterile 8 mutation (ms8) of maize disrupts the temporal progression of the

transcriptome. They found that fertile anthers exhibit an unexpectedly high transcript

complexity; there were 27, 400 constitutively expressed transcripts, 2, 143 stage-specific

transcripts and 2, 484 transcripts that were expressed at two stages, giving ⇠ 32, 000

transcripts in total that were expressed over a 90-h period. Lastly, Rajhi et al. (2011)

used this array and laser microdissection to identify transcripts expressed in maize root

cortical cells during lysigenous aerenchyma formation.

We analysed expression data from hybridisation of maize leaf cDNA from a segre-

gating population to fifty Agilent-016047 arrays to assess the number of reporters with

measurable signal in our hands. The data showed that ⇠ 32, 000 reporters had a consis-

tent signal to noise ratio (SNR) greater than 3, whereas ⇠ 10, 000 reporters were deemed

non-hybridising to leaf transcripts (Table 2.4). These six studies demonstrate that in all

cases a large proportion of the reporters on the Agilent-016047 arrays give measurable

signals in tissues as diverse as anthers, leaves and roots.

The questions are, however, how many genes are represented by these reporters and

how much confidence is there in their annotations? To address these questions, we ex-

tracted tables of differentially expressed reporters reported in these studies and annotated

the reporters using our Maize Microarray Annotation Database (Table 2.5). Most of the

data tables have the majority of reporters annotated with high confidence by a single

sense or antisense gene model (59�86% of reporters in each data table, Table 2.5). How-

ever, 3�9% of reporters have ambiguous annotations, and thus their hybridization signals

could be due to cross-hybridisation between gene family members (Table 2.5). This is
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of particular relevance in the data table S4 from Ma et al. (2008) which was a selection

of reporters corresponding to Zinc finger-related proteins, where 9% of reporters were

“ambiguous”. Each data table contained reporters with inconclusive annotations. The

data table which appears to be the exception is the study of gene expression in anthers

of the ms8 mutant in which only 38% of reporters were annotated by sense gene model,

and this table had a higher proportion of antisense, EST and inconclusive annotation

reporters (14%, 13% and 25%, respectively). This may reflect a difference in the biology

of this experiment compared to the other experiments.

We suggest that annotation of reporters with the Maize Microarray Annotation

Database can be useful for refining lists of “differentially expressed” reporters for sub-

sequent global analyses (e.g. GO enrichment using tools such as MADIBA (Law et al.,

2008)). In addition, the database is also essential to confirm the annotation of candidate

genes identified from a microarray experiment before detailed functional analyses (e.g.

gene knockouts) are carried out. To this end, we have provided, as Additional files 8, 9,

10, 11, 12, 13, 14 and 15 (available in the electronic Appendix), our annotations of the

data tables from the case studies listed in Table 2.5.

The importance of correct annotation of microarrays is illustrated by the study of

Gertz et al. (2009) who performed a similar analysis on the 44K Agilent human expres-

sion arrays and found that many reporters had inconclusive annotations. Out of 42, 683

reporters, 25, 505 (60%) were considered “fully valid” according to their analyses. In

another study, an Agilent mouse 44K array was re-annotated resulting in improved anno-

tations for more than 10, 000 reporters on the array (Gaj et al., 2007). Furthermore, gene

models are constantly being updated as new experimental and annotation data accumu-

lates. Therefore re-annotation of reporters is required as illustrated by a study in which

a dozen mammalian GeneChip arrays were re-annotated (Dai et al., 2005). This would

be of particular importance in maize where the genome sequence was recently released

(Schnable et al., 2009) and is currently only at version 2 of annotation.

2.7 Conclusions

A reporter-by-reporter validation of the 4 × 44 K Agilent-016047 maize microarray was

performed. In total, 71% of the reporters correspond to a transcript with a defined
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gDNA position and represent 46.7% of the genes in the B73 FGS. All results have been

included in a database http://MaizeArrayAnnot.bi.up.ac.za/, which provides con-

fidence scores of the genomic positions and functional annotations of reporters on the

Agilent-016047 Maize array. The database facilitates interpretation of maize gene ex-

pression data. Scientists embarking on expression profiling in maize are likely to find

this array an attractive option, since the combination of our annotation database with

established analysis methods (Smyth, 2004) facilitates data interpretation. In addition,

our strategy can be applied when annotating any custom-designed array from a species

for which the genome sequence is available.

2.8 Availability and requirements

The Maize Microarray Annotation Database is publicly available at http://

MaizeArrayAnnot.bi.up.ac.za/.
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Figure 2.1: Strategy followed to assign genomic and functional annotations to the re-
porters on the Agilent-016047 maize microarray. Using BLASTN and exonerate software,
the 42,034 60-mer reporters were matched to available EST sequences, the maize B73 Ref-
Gen v2 genome and the WGS predicted transcripts. BLASTN and exonerate results were
filtered and compared to test agreement between EST, WGS transcript and gDNA hits.
Based on the agreement analysis, one of six genomic annotation groups was assigned for
each reporter. Functional annotations of reporters were based on the functional annota-
tions of their corresponding WGS transcripts. The data has been made accessible from
the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/.

http://MaizeArrayAnnot.bi.up.ac.za/
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Figure 2.2: Sources of maize ESTs. (a) ESTs (39, 174) from which reporters on the
Agilent-016047 microarray were designed. (b) Sources of ESTs with GenBank annota-
tions (13, 640).
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A_92_P037799
GRMZM2G022947
GRMZM2G067338
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GRMZM2G118423

A_92_P037799
GRMZM2G022947
GRMZM2G067338
GRMZM2G029948
GRMZM2G118423

Figure 2.3: Example of a reporter in the “ambiguous” annotation group. Multiple
alignment of reporter A_92_P037799 with corresponding parts of four maize cytochrome
P450 cDNAs.

Figure 2.4: Screenshot of the B73 RefGen v2 genome browser at MaizeGDB. Three
Agilent reporters (A_92_P007469, A_92_P025231, A_92_P040586) are linked to gene
model GRMZM2G089944 on chromosome 3.
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Figure 2.5: Screenshot of the Maize Microarray Annotation Database. The Maize
Microarray Annotation Database enables users to retrieve reporter-specific and global
information regarding the reporters on the Agilent-016047 microarray.

Table 2.1: BLAST parameters used for annotation of the Agilent 016047 maize microar-
ray.
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Table 2.2: Parameters used for exonerate analysis of the Agilent 016047 maize microar-
ray reporters and ESTs against the B73 maize genome sequence.

Table 2.3: Number of reporters placed in the genomic annotation groups of the maize
Agilent-016047 microarray.

a The number and percentage of reporters in each annotation group.
b Hybridization to fifty Agilent-016047 arrays by maize leaf cDNA from a segregating
population.
c Percentage calculated from the number of reporters with signal/noise > 3 in maize
leaves divided by the total number of reporters in each annotation group.

Table 2.4: List of studies using the Agilent-016047 maize microarray.
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Chapter 3

Gene co-expression network analysis of

a maize RIL population exposed to

GLS disease

3.1 Introduction

Cercospora zeina Crous & U. Braun causes grey leaf spot (GLS), a yield-limiting disease

on maize in South Africa. C. zeina is considered a hemibiotroph, since it first establishes

a biotrophic interaction with its host and later switches to a destructive necrotrophic

lifestyle.

Wisser et al. (2006) reviewed the genetic architecture of disease resistance in maize

and listed 50 publications on the mapping of maize disease resistance loci. These papers

reported the locations of 437 quantitative trait loci (QTL) for disease, 17 resistance genes

(R-genes), and 25 R-gene analogs. Eight years later, these numbers are expected to be

significantly higher. In maize, the majority of disease resistance deployed in elite varieties

in the field is quantitative in nature.

QTLs for resistance to GLS have been reported from several studies in the USA where

C. zeae-maydis Tehon and E. Y. Daniels is the causal agent (Bubeck et al., 1993; Saghai

Maroof et al., 1996; Clements et al., 2000; Balint-Kurti et al., 2008). Only a few studies

were published in South Africa, China and Brazil where C. zeina and not C. zeae-maydis

was isolated from the locations sampled (Lehmensiek et al., 2001; Juliatti et al., 2009; Liu

and Xu, 2013; Berger et al., 2014). Hotspots of GLS QTLs were identified on chromosomes

74
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one, two, four, five and seven (Berger et al., 2014). Association mapping in a panel of

253 diverse inbred maize lines led to the identification of single-nucleotide polymorphisms

(SNPs) in a glutathione S-transferase gene that were correlated with resistance to GLS

(Wisser et al., 2011).

However, no GLS resistance genes have been cloned to date and this is currently a

major challenge. Since DNA variations impact complex diseases through the perturba-

tions they cause to transcriptional, protein and metabolite networks, these molecular

phenotypes are intermediate to the phenotypic effect. Therefore, studying the coordi-

nated expression of gene expression profiles in a segregating population can shed light on

co-regulation of genes assumed to be part of common pathways. The subsequent iden-

tification of co-expression modules that correlate with GLS disease severity can lead to

the identification of mechanisms or pathways that play a role in the defense response of

maize to C. zeina infection.

The aim of the work reported in this chapter was to combine genome-wide gene ex-

pression profiles as well as GLS severity scores across the individuals in the CML444×SC

Malawi maize recombinant inbred line (RIL) population in a weighted gene co-expression

network analysis (WGCNA) to identify gene co-expression modules relating to C. zeina

disease severity. Hypotheses of driver/hub genes as regulators and of biological processes

associated with the GLS disease response were identified.

3.1.1 Network biology and scale free networks

Network biology deals with networks that summarise complex biological systems as com-

ponents (nodes) and interactions (edges) between them. It thus offers a quantitative

description of complex biological processes. Specifically, gene co-expression networks are

increasingly used to investigate the functionality of genes on the system-level (Zhang

and Horvath, 2005). Nodes and edges of a network can be used to model pairwise in-

teractions. When analysing complex interactions, such as gene co-expression networks,

intuitive network concepts such as modules (sub-networks) and connectivity have proved

useful. Since it is thought that the coordinated co-expression of genes encode inter-

acting proteins, insight into the underlying cellular processes can be gained when gene

co-expression patterns are studied (Eisen et al., 1998). In such networks, nodes represent

gene expression profiles and are connected if the corresponding genes are significantly
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co-expressed across samples.

The degree or connectivity of a node, denoted by k, is the number of links it has

to other nodes (Figure 3.1). In directed networks one can distinguish the in-degree, the

number of directed edges that point toward the node, and the out-degree, the number of

directed edges that start at the node. Node degrees characterise individual nodes, whereas

a degree distribution can be used to quantify the diversity of the whole network. The

degree distribution P (k) gives the fraction of nodes that have degree k and is obtained

by counting the number of nodes that have k = 1, 2, 3. . . edges and dividing it by the

total number of nodes (Figure 3.1).

Based on the degree distribution of all the nodes in a network, it is possible to distin-

guish between different classes of networks. The first class of networks is characterised

by a P (k), that peaks at an average and decays exponentially for large k. An example is

a random network, such as the random graph model of Erdös and Rényi (1960), which

follows a peaked (Poisson) distribution, indicating that most nodes have approximately

the same number of links (Figure 3.2A). By contrast, degree distributions may follow a

well-defined functional form P (k) = k�� called a power law, where the degree exponent

� is usually in the range 2 < � < 3 (Albert and Barabási, 2002). This function indicates

that there is a high diversity of node degrees and no typical node in the network that

could be used to characterise the rest of the nodes. The absence of a typical degree (or

typical scale) is why these networks are described as “scale-free” (Albert, 2005). The

topology of such a network is dominated by a few highly connected hub nodes, holding

together numerous other less connected nodes in the network (Barabási and Bonabeau,

2003) (Figure 3.2B).

One example of a scale-free network is the network of scientific papers, connected by

citations. The most cited articles in the scientific literature stimulate more researchers to

read and cite these same articles (Barabási and Bonabeau, 2003). A variety of complex

systems, including most biological networks, share this important property of hub nodes.

When a scale-free network emerges, new nodes are preferentially attached to already

established nodes (destined to be hub nodes). In contrast with random networks, scale-

free networks display a very high degree of tolerance against random failures. For example,

although key components occasionally malfunction in complex communication networks,

local failures rarely lead to the loss of the global information-carrying ability of the
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network (Albert et al., 2000). However, removal of hub nodes, which play a vital role

in maintaining the network’s connectivity, comes at a high price in that these networks

are extremely vulnerable to attacks (Albert and Barabasi, 2000). According to Zhang

and Horvath (2005), most gene co-expression networks exhibit a scale-free topology at

least approximately. One would expect to find hub nodes in a biologically meaningful

co-expression network.

3.1.2 Steps in gene co-expression network analysis

Gene co-expression network analyses arose from the merging of network theory and gene

expression data analysis techniques. In general, firstly, gene expression profiles are used

to create a pairwise Pearson correlation matrix of all genes across the individuals in a

population (or across treatments). The correlations are then transformed to connection

strengths in the form of an adjacency matrix, from which a gene co-expression network

can be constructed. The identification of sub-networks, which are clusters of densely in-

terconnected genes, is a natural next step. To determine whether a co-expression module

is biologically meaningful, one can use functional enrichment and gene ontology informa-

tion. Ultimately, the identified modules can be related to one another and to external

trait information.

Langfelder and Horvath (2008) published an R software package, called Weighted Gene

Co-expression Network Analysis (WGCNA), for performing various aspects of weighted

co-expression network analysis. The package includes functions for network construction,

module detection, gene selection, visualisation, and interfacing with external software.

The remainder of this section revisits the various steps in a gene co-expression network

analysis, with a technical emphasis to illustrate the steps. Most of the methodology

mentioned below have been adopted in WGCNA.

Gene co-expression similarity

The first step in gene co-expression network analysis, is to construct a n ⇥ n similarity

matrix S = [s
ij

] (a matrix of values that express the similarity between two data points)

between all gene expression profile pairs, across experiments or samples (Figure 3.3 (a)).

The standard similarity or co-expression measure used in gene expression cluster analyses,

is the absolute value of the Pearson correlation coefficient, s
ij

= |cor(i, j)|. To preserve
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the sign of the correlation, one could use s
ij

= 1+cor(i,j)
2 . For each pair of genes i and j,

the similarity measure denoted by s
ij

must be a value in [0, 1].

Adjacency functions

Any network is based on an adjacency matrix, which encodes the connection strengths

between pairs of nodes. To transform the similarity matrix into an n × n adjacency matrix

A = [a
ij

], one needs to define an adjacency function (Figure 3.3 (b)). By convention, the

diagonal elements of A are set to 0 and a
ij

must be a value in [0, 1]. Depending on the

choice of adjacency function, the resulting network will be unweighted (hard thresholding)

for example the signum function, or weighted (soft thresholding) for example the sigmoid

and power functions:

a
ij

= signum(s
ij,

⌧) ⌘

8
><

>:

1 if s
ij

� ⌧

0 if s
ij

< ⌧
(3.1)

a
ij

= sigmoid(s
ij

,↵, ⌧0) ⌘
1

1 + e�↵(sij�⌧0)
(3.2)

a
ij

= power(s
ij

, �) ⌘ |s
ij

|� (3.3)

The signum adjacency function depends on the parameter t, the sigmoid function on

↵ (slope parameter) and ⌧0 (shift parameter) and the power function on b. Drawbacks of

hard thresholding are loss of information and sensitivity to the threshold choice (Carter

et al., 2004). An increased value of t may lead to fewer node connections and thus less

noise in the network. However, for a too large value of t, not enough nodes will be

connected to detect network modules. Since binary information is used in equation 3.1

(connected=1, unconnected=0), the node connectivity equals the number of direct neigh-

bors. It is biologically more meaningful to use continuous rather than binary information

to encode gene co-expression. However, a disadvantage with soft thresholding is that it

is not clear how to define the directly linked neighbors of a node; one can only threshold

the connection strengths. Node connectivity in the case of soft thresholding is defined as

the row sum of the adjacency matrix (k
i

in Figure 3.3 (b)).

Since metabolic networks have been found to display approximate scale-free topology

(Jeong et al., 2000), Zhang and Horvath (2005) proposed the scale-free topology criterion
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for choosing the parameters of an adjacency function. A defining property of scale-free

networks (see section 3.1.1) is that the probability that a node is connected with k other

nodes (the degree distribution p(k) of a network) decays as a power law, p(k) ⇠ k��. The

value of � determines the properties of the system. For smaller values of �, the role of

the hubs in the network are more important. To visually inspect whether approximate

scale-free topology is satisfied for a given network, one can plot log(p(k)) versus log(k).

The model fitting index R2 of the linear model that regresses log(p(k)) on log(k) can

be used as a testing measure. If R2 approaches 1, indicating a straight line, the scale-

free topology criterion is satisfied. Only adjacency function parameter values that give

rise to networks that satisfy approximate scale-free topology at least approximately, i.e.

R2 > 0.8, should be considered. There is a natural trade-off between maximizing scale-

free topology model fit (R2) and maintaining a high mean number of connections in the

network, i.e. the mean connectivity.

Identifying gene co-expression modules

There are various different methods for detecting subsets of nodes that are tightly con-

nected to each other, i.e. modules. Intuitive views of modularity assume the existence of

a set of modules with varying sizes, potentially separated from other modules. In con-

trast, Ravasz et al. (2002) found that the metabolic network, being a scale-free network,

has an inherent self-similar property: there are many highly integrated small modules,

which group into a few larger modules, which in turn can be integrated into even larger

modules. They illustrated that the hierarchical organisation of modularity revealed bi-

ologically meaningful modules. Zhang and Horvath (2005) have used a dissimilarity

measure in conjunction with a hierarchical clustering method for module identification,

which was applied in WGCNA. Specifically, the topological overlap dissimilarity measure

was employed and modules were defined as groups of nodes with high topological overlap.

The topological overlap matrix (TOM), W = [w
ij

], provides a similarity measure which

reflects the relative interconnectedness of pairs of nodes:

!
ij

=
l
ij

+ a
ij

min{k
i

, k
j

}+ 1� a
ij

(3.4)

where k
i

=
P

u

a
iu

(node connectivity) and l
ij

=
P

u

a
iu

a
uj

(the number of nodes to which

both nodes i and j are connected) (Figure 3.3 (c)). When w
ij

= 1, the node with fewer
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connections meet two conditions: (i) all of its neighbors are also neighbors of the other

node and (ii) it is connected to the other node. In contrast, when w
ij

= 0, the two nodes

i and j are not connected and do not share any neighbors. TOM is a similarity measure

since it is non-negative, symmetric and !
ij

is a value in [0, 1]. TOM can be transformed

into a dissimilarity measure, by subtracting it from one (Figure 3.3 (d)):

d!
ij

= 1� !
ij

(3.5)

WGCNA uses average linkage hierarchical clustering (Figure 3.3 (e)) based on TOM-

based dissimilarity, d!
ij

, to identify gene co-expression modules. Gene modules are identi-

fied to correspond to branches of the resulting hierarchical clustering dendrogram (Figure

3.3 (f)). Selecting a height cut-off to cut the tree branches is a judgement call that can

be guided by inspection of the TOM plot; a color-coded heatmap of the values of the

TOM-based dissimilarity matrix (see Figure 3.4 for an example TOM plot). A height

cut-off value can be chosen such that some of the resulting branches correspond to dark

squares along the diagonal (Zhang and Horvath, 2005).

Relating modules to external traits

The gene expression profiles of a module can be summarised with a weighted average

expression profile. Such a profile is called a module eigengene (ME), and is defined as the

first principal component of a given module (Figure 3.3 (f)). Finding a biologically signif-

icant module depends on the research question under consideration. For example, when

one wants to identify modules relating to a phenotypic trait T , a significance measure

between the module eigengene and the trait can be defined by calculating an eigengene

significance score (ES) of module q (Figure 3.3 (g)):

ES(q) = |cor(ME(q), T )| (3.6)

where ME(q) is the module eigengene of module q. Modules with high trait significance

may represent pathways associated with the phenotypic trait (Langfelder and Horvath,

2008). In a similar way, a gene significance (GS) score can also be calculated for each

gene, to quantify the association of that gene with the external trait:
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GS
i

= |cor(x
i

, T )| (3.7)

where x
i

is the profile of node i. In addition, a module membership (MM) score can be

calculated for each gene to quantify the association of that gene to a specific module:

MM (q)
i

= |cor(ME(q), x
i

)| (3.8)

where ME(q) is the module eigengene of module q and x
i

is the profile of node i. The

MM measure can also be used to find intramodular hub genes, i.e. genes with a high

correlation to the module eigengene. In modules related to a trait of interest, genes with

high GS values often also have high MM values. Such genes are natural candidates for

further validation.

3.1.3 Application of gene co-expression networks

Different types of experimental designs can be used in a gene co-expression network

analysis study. For example, a correlation matrix can be calculated from gene expression

profiles either throughout a time course, or across population-based samples. Both designs

can be used to gain a better understanding of the processes involved in a biological system.

As an example of the first mentioned design, Adhikari et al. (2012) performed expression

profiling of cultivated cucumber (Cucumis sativus) over a time course of infection with

the downy mildew pathogen Pseudoperonospora cubensis to identify genes, pathways,

and systems that are altered during a compatible interaction. Through co-expression

network analyses, modules of temporal-specific transcriptional networks were identified,

which provided a basis for connecting transcription factors with defense response genes.

With this design however, causal interactions between transcript levels and phenotypic

traits cannot be studied, since these samples and resulting modules do not involve genetic

variation. On the other hand, in population-based studies where global transcript levels

and phenotypic traits are measured, one could incorporate QTL and eQTL mapping

(which depend on genetic variation) with gene co-expression network analysis (which does

not necessarily depend on genetic variation) in order to study the connections between

genotypes and phenotypes.

Gene co-expression network analysis has recently been used to discover specific genes
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and pathways affecting various biological systems. Azuaje et al. (2013) used a gene co-

expression network analysis to establish a robust association between Col5a2 (a relatively

uncharacterised gene) and ischemic heart disease. The analysis was based on microar-

ray data originating from a mouse model of myocardial infarction (MI). After Spearman

co-expression coefficients were calculated among all pairs of genes, a weighted gene co-

expression network was generated. Candidate clinically relevant clusters were detected

by applying A-CODE (association-centered community detection algorithm). Motivated

by their results, Azuaje et al. (2013) further assessed the potential relevance of Col5a2 in

MI by estimating its disease discriminatory capability in previously generated microarray

datasets. Col5a2 was identified as a potential novel candidate marker for the identifica-

tion and treatment of ischemic heart disease. In a different study, Kugler et al. (2013)

performed a QTL-dependent analysis of a gene co-expression network associated with

Fusarium head blight (caused by F. graminearum Schwabe) resistance in bread wheat

(Triticum aestivum L.). A combination of a network-driven approach, using WGCNA,

and differential gene expression analysis identified genes and pathways associated with

two well-validated and highly reproducible QTLs, Fhb1 and Qfhs.ifa-5A. RNA-seq data

from near-isogenic lines (NILs), harboring either the resistant or the susceptible allele for

Fhb1 and Qfhs.ifa-5A, was utilised. Genes involved in the biosynthesis and metabolism

of riboflavin were found more abundant after infection in lines harboring Qfhs.ifa-5A.

Furthermore, G-protein coupled receptor kinases and biosynthesis genes for jasmonate

and ethylene earlier induced for NILs harboring Fhb1 were identified.

A variety of other studies that also employed co-expression networks, obtained less spe-

cific results. However, valuable insight and new hypotheses regarding candidate genes and

pathways governing their respective biological systems were extracted. Villa-Vialaneix

et al. (2013) conducted a case study on mammalian species. They used a gene co-

expression network to reveal biological functions underlying eQTLs. Key genes and gene

clusters that were related to muscle pH were highlighted as a potential focus for forth-

coming biological experiments. Zhang et al. (2010) used gene co-expression network

analysis to identify a set of genes that are potential prognostic biomarkers for chronic

lymphocytic leukemia. In plants, Shaik and Ramakrishna (2013) used WGCNA to detect

consensus modules in Arabidopsis and rice, based on differentially expressed genes com-

mon to drought (abiotic) and bacterial (biotic) stress. They identified 9 and 4 modules
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in rice and Arabidopsis, respectively, with either conserved responsive profiles in both

stresses or reversed expression status. Wang et al. (2012b) used co-expression network

analysis to identify cell-wall related genes in Arabidopsis.

Approximately one third of the studies mentioned above used WGCNA to construct

gene co-expression networks, thus many other tools and algorithms also exist for this pur-

pose. Open access databases and tools for the investigation of gene co-expression networks

in plants are currently available for Arabidopsis. Researchers can either calculate gene-to-

gene correlation coefficients using their own expression data sets, or retrieve correlation

coefficient data from public databases (Aoki et al., 2007). Arabidopsis co-expression tool

(ACT) (Jen et al., 2006), ATTED-II (Obayashi et al., 2007, 2009), Genevestigator (Zim-

mermann et al., 2004) and the Botany Array Resource (BAR) (Toufighi et al., 2005) are

databases of gene co-expression data implemented with gene expression visualising tools.

Single or multigene queries can be submitted to these tools. As an example, the ACT

database stores pre-calculated co-expression results for 21,800 genes based on data from

over 300 arrays. When a query gene is submitted, ACT ranks the genes across these mi-

croarray datasets according to how closely their expression follows the expression of the

query gene. An extra tool within ACT called Clique Finder can identify groups of genes,

which are consistently co-expressed with each other across a user-defined co-expression

list (Manfield et al., 2006). Additionally, the AraNet probabilistic functional gene net-

work of Arabidopsis can be searched (Lee et al., 2010). The network was constructed from

24 distinct types of gene-gene associations from multiple organisms consisting of > 50

million individual experimental or computational observations, where each observation

was scored for its ability to correctly reconstruct shared membership in Arabidopsis bi-

ological processes. AraNet provides a resource for plant gene function identification and

genetic dissection of plant traits. An AraNet search will return all of the genes in the ne-

towrk that are directly connected to an input gene (or set of genes), ranked according to

their log-likelihood scores. Also worthy of mentions is CSB.DB, a comprehensive systems

biology database consisting of bio-statistical analyses on gene expression data in associa-

tion with additional biochemical and physiological knowledge (Steinhauser et al., 2004).

For grapevine (Vitis vinifera), a gene co-expression database called VTCdb, recently be-

came available (Sweetman et al., 2013). It stores over 800 publicly available microarray

datasets that were selected to construct global co-expression networks. The database is
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also equipped with functional enrichment and visualisation capabilities. From the variety

of studies mentioned above and the different tools available for gene co-expression net-

work analysis, it is evident that researchers currently consider this a valuable method to

uncover genes and pathways associated with different biological systems.

3.2 Aims and objectives

A major aim of this chapter was to establish whether coordinated responses to C. zeina

infection under field conditions were evident in a maize RIL population by exploiting

genome-wide gene expression profiles. The ultimate goal was to identify genes and path-

ways that respond to C. zeina infection in a susceptible or resistant response, in this

particular maize RIL population derived from two sub-tropical inbred lines that have

been bred for maize growing conditions in southern Africa.

Specific objectives were to employ a correlation analysis based on WGCNA, in or-

der to: (i) identify gene co-expression modules; (ii) identify the modules relating to C.

zeina disease severity; (iii) determine enriched functional categories within the identified

gene co-expression modules; and (iv) identify intramodular hub genes (drivers) for the

biologically relevant modules.

3.3 Materials and methods

3.3.1 Germplasm and field trials

A recombinant inbred line population (RIL, F7:S6) derived from a cross between subtrop-

ical white dent inbred lines CML444 and SC Malawi was used (Messmer et al., 2009). A

total of 145 RILs were planted at Baynesfield Estate in KwaZulu-Natal Province, South

Africa in December 2008. The plot design was a randomised block with three replicates.

Each replicate of a RIL was a row of 10 plants. GLS disease severity was scored on a

per plant basis using a 1� 9 scale, where 1 and 9 represent no GLS disease and full GLS

susceptibility, respectively (Munkvold et al., 2001). The GLS disease severity scores for

each of the three replicate rows were averaged and recorded in order to be used as input

for subsequent analysis. GLS disease severity data was collected at 92, 99, 109 and 116

days after planting (DAP). The maturity of the RILs was between R1 and R4 over this
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period.

3.3.2 RNA extraction and microarray analysis

RNA was extracted from three biological repeats of 100 selected RILs at 103 DAP, sam-

pled at Baynesfield in March 2009. A Bioanalyser RNA quality control assay was run

on all 300 samples. The samples were of good quality, with an average RNA integrity

number (Schroeder et al., 2006) of 7.7. The RNA from the three biological repeats was

pooled to create 100 samples. Each biological repeat consisted of leaf pieces from two

different plants in a RIL row. Fifty RIL microarrays were processed according to the “dis-

tant pair” experimental design, based on the method described in Fu and Jansen (2006).

The choice of the 100 RILs and the microarray design were determined with a customised

computer script based on genotyping results, such that samples with dissimilar genomes

were paired. RNA was amplified from all 100 pools, labeled with either Cy3 or Cy5 and

hybridised to Agilent 4⇥ 44K maize arrays. Analysis of spike-in controls indicated that

labeling and hybridisation worked well and background for both channels was low.

Normalisation of the expression data was performed in the R-based software package

limma (Smyth, 2004), with a weighting of zero for flagged spots. This meant that data

from flagged spots did not influence the normalisation of other spots, although all the

data was transformed at each step. Approximately 15, 000 reporters were flagged in less

than 10% of the arrays, whereas roughly 19, 000 reporters were flagged in more than 90%

of arrays. Background correction was performed using the normexp method (offset = 50)

(Ritchie et al., 2007). The loess method was used for normalisation within arrays and

Aquantile for normalisation between arrays (Yang and Thome, 2003).

After normalisation, there were 50 datasets of M and A values representing expression

data from 100 RILs. Each M and A value had been calculated from hybridisdation of

pairs of RILs to each array. Therefore, back-conversion was required to obtain separate

expression values per reporter for each of the 100 RILs. The back-conversion of the nor-

malised data was performed, using the final M and A values, by solving simultaneously

for R (Red intensity; Cy5 channel) and G (Green intensity; Cy3 channel) from the for-

mulas A = 1
2 log2(RG) and M = log2(

R

G

), to yield G =
q

22A

2M and R =
p
22A2M . Out of

the 42, 034 maize gene reporters on the Agilent arrays, after removal of flagged reporters,

back-converted intensity expression profiles for 30, 280 reporters across the 100 RILs were
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obtained.

3.3.3 Network construction and module identification

WGCNA was performed as described previously (Langfelder and Horvath, 2008) with an

R-script modified for this analysis (available in the electronic Appendix). The input data

matrix consisted of 100 RILs (columns) and 30, 280 microarray reporters (rows). This

matrix was log10-transformed relative to the reporter gene expression means (row means;

across the RILs), prior to the WGCNA analysis. The reason for the log-transformation,

instead of using the raw back-converted expression values, was that the choice of param-

eter for the power adjacency function (based on the scale-free topology criterion) was

more intuitive for the log-transformed data.

Before network construction, a filtering step in the WGCNA analysis removed re-

porters with zero variance as well as reporters with more than 50% missing entries. After

filtering, 19, 281 reporters, representing 14, 201 maize gene models according to the anno-

tations in Chapter 2 (Coetzer et al., 2011), remained in the data set. To assess whether

any samples were outliers, which could disqualify the scale-free topology criterion, aver-

age linkage hierarchical clustering with Euclidean distance was used to draw the sample

dendogram in Figure 3.5. By inspection, no obvious outlying branches were observed in

the dendogram and therefore no RILs were removed from the analysis. When there seem

to be outliers, a constant-height cut can be implemented on the dendogram in order to

remove branches with less than a pre-specified number of objects.

The next aim was to choose a soft thresholding power �, in order to calculate the

adjacency matrix a
ij

= cor(x
i

, x
j

)� (the power adjacency function was used; equation

3.3). The function pickSoftThreshold from the R package WGCNA was used to guide

the selection of a proper soft-thresholding power by applying the approximate scale-free

topology criterion. Figure 3.6 shows the scale-free topology fit index (R2) as well as

the mean connectivity for various soft-thresholding powers. Zhang and Horvath (2005)

recommended only considering parameter values that would lead to a network satisfying

scale-free topology at least approximately, i.e. R2 > 0.8. Furthermore, the mean con-

nectivity need to be as high as possible so that the network contains enough information

for module detection. The best estimate soft-thresholding power for this dataset was 12,

since it was the lowest power for which the scale-free topology fit index was above 0.8.
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To minimize effects of noise and spurious associations, the adjacency matrix was

transformed into a topological overlap matrix TOM (equation 3.4 on page 79). The

resulting TOM was converted into a dissimilarity matrix, 1 � TOM (equation 3.5 on

page 80), which was used in hierarchical clustering to produce a dendrogram of genes.

Since densely interconnected and co-expressed genes were grouped together in branches

of the dendogram, the Dynamic Tree Cut method was used (with default parameters) to

detect clusters by branch cutting. Lastly, modules with similar expression profiles were

merged and colours were assigned to the final modules in order to distinguish between

the modules (Figure 3.9 on page 122).

3.3.4 Relating modules to GLS disease and biological interpre-

tation

The moduleEigengenes function from the WGCNA R package was used to calculate a

summary profile, called a module eigengene, for each gene co-expression module. Pearson

correlation was used to determine the correlation between the module eigengenes and the

GLS severity profile (equation 3.6). For each correlation, an associated p-value was also

calculated to indicate the significance of the corresponding Pearson correlation coefficient.

The GLS severity profile consisted of the GLS severity scores from 1 (indicating a resistant

RIL) to 9 (indicating a susceptible RIL). Therefore, a positive correlation indicated that

higher expression related to higher GLS severity scores (i.e. GLS susceptibility). For

convenience, a profile called “GLS swop” was also calculated. Ten minus the normal GLS

severity scores yielded swopped scores (also between 1 and 9). In this case, a positive

correlation indicated that higher expression related to GLS resistance. The normal GLS

severity profile was used throughout this chapter, unless “GLS swop” was specifically

mentioned.

Gene-wise correlations were also calculated to quantify the association of each gene

with the trait (GLS disease severity) and with each module (the module eigengene).

These correlations were presented as GS scores (equation 3.7) and MM scores (equation

3.8), respectively.

Out of the 19,281 reporters that were used in WGCNA network construction, 17,829

(92%) were annotated with a maize gene ID according to the Maize Microarray Anno-

tation Database (Chapter 2). A Z. mays annotation file, which was released as part of
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Phytozome version 7.0 (http://www.phytozome.net), was downloaded from their FTP

site. The file included the best Arabidopsis TAIR10 and rice BLAST hits for each maize

gene. For 84% and 87%, respectively, of the 17,829 Agilent reporters, Arabidopsis and

rice best BLAST hits were recorded. The resulting Arabidopsis and rice hit descrip-

tions together with the BLAST2GO description for each gene (which was extracted from

the Maize Microarray Annotation Database), were used to formulate a final functional

annotation per reporter.

BiNGO (Maere et al., 2005) was used to identify enriched GO-terms (http://www.

geneontology.org) in order to determine whether genes in the same co-expression mod-

ules were involved in the same biological processes. Groups of “best BLAST hit” Ara-

bidopsis IDs (from Phytozome) corresponding to maize genes in the same modules, were

used as input to the BiNGO analyses. Default BiNGO parameters were used and the ref-

erence set corresponded to the 19, 281 reporters whose expression profiles were included

in the WGCNA analysis. As an alternative to using the full GO hierarchy, BiNGO pro-

vides several GOSlim ontologies that are organism-specific slimmed-down versions of the

full GO hierarchy. GOSlim ontologies generally give a broad overview of the ontology

content without the detail of the specific fine-grained terms. In cases where the full GO

hierarchy did not produce significantly enriched GO-terms, additional BiNGO analyses

based on the plant GOSlim ontology were performed. All GO enrichment output Tables

list the enriched GO-terms from the three categories (i.e. biological process, molecular

function and cellular component) together in one table, sorted by significance. In addi-

tion, MapMan was used to functionally classify genes into predefined bins (Thimm et al.,

2004). The MapMan ontology comprises a set of 34 tree-structured bins, describing a

variety of cellular processes.

Node and edge files were generated by the WGCNA package in R and imported to

Cytoscape version 2.8.2 (Cline et al., 2007; Smoot et al., 2011). Cytoscape was used to vi-

sualise the co-expression modules as a network and to calculate topology parameters, such

as the node degree (the number of edges connected to a specific node). Candidate mod-

ule hub/driver genes were identified by ranking the reporters within each co-expression

module by their node degree. A hub gene is expected to have a similar gene expression

profile than the module eigengene, since it is highly co-expressed with many of the genes

in a module. Thus, MM scores can also be used to find intramodular hub genes, i.e.

http://www.phytozome.net
http://www.geneontology.org
http://www.geneontology.org
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genes with a high correlation to the module eigengene. In modules related to a trait

of interest, genes with high GS scores often also have high MM scores. Such genes are

natural candidates for further validation.

3.4 Results and discussion

3.4.1 The maize RIL population exposed to GLS disease

A maize RIL population derived from a cross between the subtropical parental lines

CML444 and SC Malawi had previously been shown to segregate for quantitative re-

sistance to GLS disease over several seasons and field sites in South Africa (Berger

et al., manuscript in preparation). This population was grown at the Baynesfield Es-

tate (KwaZulu-Natal, South Africa) over the 2008/2009 summer season and was scored

for GLS using a 1 � 9 scale (as used in Munkvold et al., 2001). Typical GLS disease

symptoms were observed with lesions first developing on lower leaves and progressing to

higher leaves. The maturity of the RILs was between growth stages R1 and R4 when

GLS disease was scored (stages R2 to R6 are associated with grain filling and maturity;

http://maizedoctor.cimmyt.org). Figure 3.7 on page 121 gives four photos of samples

that were harvested, including a representative resistant and susceptible RIL. Differences

in the number of lesions on the earleaf were visible between 92, 99, 109 and 116 DAP,

with most of the RILs showing intermediate levels of disease severity at each of the four

ratings (r1� r4 in Figure 3.8).

Global gene expression profiling using the Agilent 44K microarray was carried out on

earleaf samples collected from 100 RILs in March 2009, at 103 DAP (between ratings

2 and 3). Expression profiles for 30,280 microarray reporters across the 100 RILs were

obtained after filtering, normalization and back-conversion. The aim was to determine if

there were any patterns of co-expression of genes across the RIL population at this stage

of disease pressure, and whether these correlated with disease severity.

A weighted average of the GLS severity scores across the four ratings was calculated

for the 2008/2009 season, depending on the number of days between the GLS rating and

the day of RNA sampling. The resulting scores were summarised in a weighted average

boxplot (WA in Figure 3.8), which shows that some RILs exhibit less disease than the

two parents and some RILs more disease than the two parents. CML444 and SC Malawi

http://maizedoctor.cimmyt.org
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scored 3.7 and 5.7, respectively. These values were used as the “GLS severity scores” in

subsequent correlation analyses to the above-mentioned gene expression data.

3.4.2 Co-expression module identification and relation to GLS

disease

The WGCNA input data matrix consisted of 100 samples and 19,281 microarray re-

porters, after removing reporters with zero variance and more than 50% missing entries.

Almost half of the reporters (8, 665/19, 281 = 45%) were assigned to 42 co-expression

modules, with a minimum module size of 30 (default value) (Figure 3.9). A full list

of the microarray reporters and its functional annotations per co-expression module are

available in the electronic Appendix. When changing the parameter to 5 instead of 30,

62% of the reporters were assigned to 269 co-expression modules. The larger modules did

not differ remarkably from those detected previously, however many additional smaller

modules were identified. A decision was made to continue with the parameter set to a

minimum module size of 30.

The next step was to determine if any of the identified co-expression modules signif-

icantly correlated with the GLS severity scores across the individuals in the RIL pop-

ulation. The module eigengenes of eight co-expression modules significantly correlated

(p-value < 0.05) to the GLS severity profile (Table 3.1). The greenyellow module, con-

sisting of 185 reporters, had the strongest positive correlation (0.71) and the turquoise

module, consisting of 1, 564 reporters, had the strongest negative correlation (�0.31) to

the GLS severity profile (Table 3.1). A positive correlation indicates that higher mod-

ule eigengene expression values were associated with higher disease severity scores (more

susceptibile RILs), i.e. “H” in Table 3.1, whereas a negative correlation indicates that

higher module eigengene expression values were associated with lower disease severity

scores (more resistant RILs), i.e. “L” in Table 3.1. Figure 3.10 illustrates this by showing

the module eigengene expression values across the RILs, sorted by GLS severity scores,

for the greenyellow and turquoise modules, respectively.

A co-expression module eigengene dendogram and adjacency heatmap was generated

with the plotEigengeneNetworks function in the WGCNA R package. Input to the clus-

tering was the module eigengenes as well as the GLS severity profile as either “GLS”

(higher scores indicate susceptibility) or “GLS swop” (higher scores indicate resistance).
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The aims were to identify groups of correlated module eigengenes termed meta-modules

and to relate the GLS severity profile to the meta-modules (Figure 3.11). Branches of

the dendrogram as well as squares of red color along the diagonal of the adjacency map,

group eigengenes together that are positively correlated (meta-modules). Interestingly,

the three modules with a significant negative correlation (p-value < 0.05) to the GLS

severity profile (turquoise, darkred and yellow in Table 3.1) together with the green

module formed a meta-module, which also included “GLS swop”. However, the mutual

correlations of the eigengenes in this meta-module were stronger than their correlations

with “GLS swop”. As expected, the greenyellow module, with a strong positive corre-

lation to the GLS severity profile, clustered tightly with “GLS”. Interestingly, each of

the remaining modules with a significant positive correlation to the GLS severity pro-

file (paleturquoise, blue, yellowgreen and magenta in Table 3.1), was part of a different

meta-module.

Figure 3.12 gives the module-trait associations for numerous field trials, where GLS

was scored for this population at different locations and during different seasons. The first

trait called “B_09_GLS” was the focus of this study, since these GLS scores corresponded

to the same GLS infected plants from which RNA was extracted for the gene expression

study (Baynesfield, season 2008/2009). The patterns in Figure 3.12 confirmed that the

same modules generally correlated to GLS resistance and susceptibility across different

field trials. The greenyellow and turquoise modules, previously identified as the strongest

positive and negative correlating modules to GLS severity (Table 3.1), respectively, were

well-correlated with GLS throughout the field trials. For 94% of the field trials, the

greenyellow module had a significant positive correlation to the GLS scores (p-value <

0.05) and for 88% of the field trials this module was the top correlating module to GLS

susceptibiltiy. For 82% of the field trials, the turquoise module had a significant negative

correlation to the GLS scores (p-value < 0.05) and for 71% of the field trials this module

was the top correlating module to GLS resistance.

3.4.3 Interpretation of GLS-related co-expression modules

Co-expression modules are suggestive of coordinated regulation of genes. Therefore, as an

initial step, GO enrichment was used to assess the functional significance of each module

that significantly correlated with GLS severity. Considering the genes in a co-expression
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module, two types of gene lists that can be useful: (i) the genes that highly correlate with

the module eigengene (the MM score in equation 3.8; also potential hub genes); and (ii)

the genes that highly correlate with the trait (the GS score in equation 3.7). Genes that

highly correlate with the trait and also highly correlate with the module eigengene could

potentially be global regulators of processes relating to the trait.

Five co-expression modules had significant positive correlations (p-value < 0.05) with

the GLS severity scores. These modules correlated with GLS susceptibility, since higher

module eigengene expression values were associated with higher disease severity scores.

The greenyellow (185 genes), paleturquoise (41 genes), blue (1521 genes), yellowgreen

(35 genes) and magenta (266 genes) modules had correlation coefficients of 0.71, 0.31,

0.22, 0.21 and 0.20, respectively (Table 3.1). Three co-expression modules had significant

negative correlations (p-value < 0.05) with the GLS severity scores. These modules

correlated with GLS resistance, since higher module eigengene expression values were

associated with lower disease severity scores. The turquoise (1564 genes), darkred (63

genes) and yellow (1170 genes) modules had correlation coefficients of -0.31, -0.24 and

-0.23 respectively (Table 3.1). Figure 3.11 provides an overview of the relationships

between the modules and the GLS severity traits.

GO enrichment and overview of the greenyellow module

The greenyellow module had an exceptionally strong correlation with GLS susceptibility

(the correlation coefficient of 0.71 was significantly higher than that expected by chance;

according to a permutation test the expected maximum correlation coefficient was 0.31).

Table 3.2 shows that there were a variety of over-represented GO-terms for the 185 re-

porters in the greenyellow module. Enriched GO-terms in the biological process category

included (i) secondary metabolic process, with more specific terms diterpenoid and gib-

berellin metabolic process; (ii) lipid metabolic process; (iii) catabolic process, including

cellular nitrogen compound catabolic process and heterocycle catabolic process; and (iv)

response to stress: specifically response to organic substance, response to chitin and gib-

berellic acid-mediated signalling pathway. In the molecular function category, catalytic

activity was highly enriched with more specific terms such as aspartic-type endopeptidase

and lipase activity, as well as C4-dicarboxylate transmembrane transporter and malate

transmembrane transporter activity. Therefore, since the genes in the greenyellow module
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were co-expressed, their expression profiles were highly correlated with GLS severity and

the module were enriched for a variety of functional categories, it could be concluded that

the susceptible interaction (the presence of lesions) resulted in coordinated transcriptional

responses.

Gibberellins (GAs) form a large family of phytohormones that are important for many

aspects of plant growth and development, as well as for the discernment of environmen-

tal stimuli (Hedden and Kamiya, 1997). Examples of GAs are tetracyclic diterpenoids,

products of the terpenoid pathway (together with terpenes), terpene-derived compounds

and steroids. GAs were first identified from the necrotrophic fungus Gibberella fujikuroi

(Yabuta and Sumiki, 1983), which causes super-elongated “bakanae” rice. The pathogen

produces GAs, which causes rice seedlings to become spindly and lodge (Grennan, 2006).

The necrotroph benefits by later extracting nutrients from the dead host cells. Yang et al.

(2008) found that GAs negatively regulate rice basal disease resistance against bacterial

blight (Xanthomonas oryzae pv. oyrzae), a biotrophic pathogen, and rice blast fungus

(Magnaporthe oryzae), a hemibiotrophic pathogen of rice. DELLA proteins are a family of

transcriptional repressors of GA responses and their accumulation implicates resistance

to necrotrophs and susceptibility to virulent biotrophs, partly by altering the relative

strength of JA and SA signalling (Navarro et al., 2008). As a result, GA-activated degra-

dation of DELLA proteins leads to negative regulation of defense against necrotrophs.

Seven enzymes have been identified to be involved in GA biosynthesis, of

which four are present in the greenyellow module: ent-copalyl diphosphate syn-

thase (A_92_P008699), ent-kaurene synthase (A_92_P005300), ent-kaurene oxidase

(A_92_P020405) and GA 2-oxidase (A_92_P016737). These genes were responsible

for the enriched GO-terms “gibberellin metabolic process” and “gibberellin biosynthetic

process”, as well as for a few GO-terms lower down in Table 3.2, such as “gibberellic acid

mediated signalling pathway” and “cellular response to gibberellin stimulus”. A BLASTX

analysis of the 60-mer reporter sequences against the non-redundant (nr) database con-

firmed that the four above-mentioned genes were not fungal genes, since only plant hits

were obtained. Only one reporter in the list of 19,281 reporters represented a DELLA

protein, which did not have a significant correlation to GLS severity (0.1). It could be

that other DELLA reporters (i) were not present on the microarray, (ii) were not included

in the WGCNA input dataset of 19,281 due to missing data or (iii) were mis-annotated
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or annotated as “protein with unknown function”. However, one can speculate that up-

regulation of GA and consequent down-regulation of DELLA proteins is associated with

maize susceptibiltiy to C. zeina infection.

Thirty-seven genes in the greenyellow module (20%) were annotated with the en-

riched GO-term “response to stimulus” and four of these genes were also annotated

with the term “response to chitin” (Table 3.2): a WRKY family transcription factor

(A_92_P018873), a MYB family transcription factor (A_92_P020962), a zinc fin-

ger (AN1-like) protein (A_92_P041535) and an immediate-early fungal elicitor protein

CMPG1 (A_92_P019503). Chitin is a major component of fungal cell walls and a general

elicitor of plant defense responses (Boller, 1995). Fungal infection induces the expression

of chitinases (chitin-degrading enzymes) in plant cells as well as numerous downstream

defense response genes. Four genes encoding chitinase-like proteins were present in the

greenyellow module and all four were highly correlated to GLS susceptibility (GS scores

varied from 0.51 to 0.66). Interestingly, out of the thirteen chitinases in the full set of

19,281 reporters, eight were significantly correlated with GLS susceptibility and two with

GLS resistance. One reason for the general strong correlation of chitinases to GLS sus-

ceptibility in this study, could be that more chitinases were being made in susceptible

plants due to a more severe fungal infection. Furthermore, it has been reported that one

race-specific effector AVR4 of the tomato pathogen Cladosporium fulvum (a biotrophic

fungus), which is a chitin-binding protein, can protect fungi against plant chitinases

(van den Burg et al., 2004). One can speculate that C. zeina could also be protected

against plant chitinases, due to some form of chitin-binding effector. It is further possi-

ble that R-genes evolved to recognise this effector, but that these are more effective in

resistant maize lines.

Two other highly enriched GO-terms in Table 3.2, was “carboxylic acid transmem-

brane transporter activity” and “organic acid transmembrane transporter activity”. These

terms were due to five reporters: a carnitine acylcarnitine translocase (A_92_P040413)

involved in metabolite transport at the mitochondrial membrane; an amino acid perme-

ase 6 (A_92_P033915) and a lysine histidine transporter 1 (A_92_P017759) involved

in amino acid transport; a tonoplast dicarboxylate transporter (A_92_P012461) and a

general dicarboxylate transporter (A_92_P019164) involved in ion transport. The latter

two reporters were responsible for additional GO-terms lower down in Table 3.2 includ-
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ing “malate transport”, “dicarboxylic acid transport” and “C4-dicarboxylate transport”.

Physiological processes in plants strongly depend on solute and water fluxes across the

plasma membrane, tonoplast and other endomembranes. Therefore, membrane trans-

porters, such as those mentioned above, have been associated with various processes such

as stomatal closure, hormone signalling, membrane excitability, cellular osmoregulation,

growth regulation, and anionic nutrition (Tavares et al., 2011).

Another group of enriched GO-terms that linked with the previous mentioned group

included “small molecule metabolic process” and “monocarboxylic acid metabolic process”.

Genes involved in these processes were two 3-ketoacyl-CoA synthases (A_92_P018659,

A_92_P032943) and a 3-ketoacyl-CoA thiolase (A_92_P012775) involved in lipid

metabolism, an iso-kaurene synthase (A_92_P005300) involved in terpenoid secondary

metabolism, an ent-kaurene synthase (A_92_P008699) and a gibberellin 2-oxidase

(A_92_P016737) involved in gibberellin hormone metabolism, a malate synthase

(A_92_P005391) involved in gluconeogenesis, a cytochrome P450 (A_92_P020405)

which is part of the miscellaneous enzyme families and a phospholipase (A_92_P040918)

involved protein storage.

Figure 3.13 gives an overview of the functional categories that are associated with the

185 reporters in the greenyellow module. According to this figure, abundant functional

categories in the greenyellow module included calcium signalling, regulation of transcrip-

tion, protein degradation and transport-related genes. The greenyellow module contained

many metabolism-related genes, of which lipid and secondary metabolism were the largest

categories. Furthermore, numerous biotic and abiotic stress-related genes as well as genes

encoding enzymes in the miscellaneous enzyme families were present. Genes in the latter

mentioned categories were particularly strongly correlated to GLS susceptibility.

Driver genes in the greenyellow module with high GLS severity correlation

Figure 3.14 shows that the bulk of potential driver genes in the greenyellow module, were

also the genes that best correlated with GLS severity. Table 3.3 lists the top 35 genes

that best correlated with the greenyellow module eigengene (potential driver genes) and

Table 3.4 the top 35 genes that best correlated with GLS susceptibility. More than half

of the entries (54%) in the two tables were identical. Furthermore, five out of the top 10

driver genes for the greenyellow module were also in the top 10 GLS severity-correlating
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genes. These included an F-box kelch-repeat protein skip11-like (A_92_P037621), car-

nitine acylcarnitine translocase (A_92_P040413), heptahelical transmembrane protein

receptor (A_92_P035171), nodulin MtN3 family protein (A_92_P015826) and a NAC

transcription factor (A_92_P032766). These reporters are represented by the 5 largest

yellow nodes in Figure 3.14 and are the best candidate regulators of processes relating to

GLS susceptibility in the greenyelow module.

An F-box domain is a motif that binds to the Skp1 family of proteins, resulting in the

formation of the Skp1 Cullin F-box (SCF) E3 ubiquitin ligase complex. The E3 ligase is

involved in the degradation of a specific target protein by polyubiquitination. The kelch-

repeat domain is a motif typically involved in protein-protein interactions. In Arabidopsis,

a kelch repeat-containing F-box protein SON1, acts in the defense response independent

of SA and SAR (Kim, 2002). In most of the known phytohormones (e.g. auxin, GA, JA,

SA and strigolactone), the signals are mediated by the components of E3 ligase-substrate

complexes (Takahara et al., 2013). In gibberellin signalling, the DELLA proteins are

targeted for degradation by the F-box proteins SLY1 in Arabidopsis and GID2 in rice

(Dill et al., 2004; Gomi et al., 2004). It can be hypothesised that the F-box kelch-repeat

protein skip11-like gene in Tables 3.3 and 3.4 assist in GA signalling (an enriched process

of the greenyellow module) by targeting DELLA proteins for degradation. This gene was

part of the protein degradation category in Figure 3.13.

Carnitine-acylcarnitine translocase is an enzyme responsible for transporting both

carnitine-fatty acid complexes and carnitine into and out of the mitochondria, across

the inner mitochondrial membrane, and is involved in fatty acid degradation and en-

ergy metabolism. Yang et al. (2012) found that a carnitine-acylcarnitine carrier protein,

MoCrc1, is essential for pathogenicity in rice blast fungus (M. oryzae). This gene seems

to play a vital role in appressorium-mediated infection, where generation of appressorial

turgor is needed for penetration. They showed that deletion of this gene severely reduced

appressorium turgor generation, appressorial penetration, and development of infection

hyphae. However, according to BLASTN searches against the C. zeae maydis genome

sequence, using the Joint Genome Institute (JGI) Genome Portal, it appears that this

reporter (A_92_P040413) does not represent the presence of fungal mRNA (no hits);

whereas a 60/60 BLASTN match against the Zea mays genome sequence was obtained.

This reporter contributed to a few enriched GO-terms in Table 3.2, including ”carboxylic



CHAPTER 3. WGCNA ANALYSIS ON GLS DISEASE IN MAIZE 97

acid transmembrane transporter activity”, ”small molecule metabolic process” and “re-

sponse to stimulus”. It was part of the “transport” functional category in Figure 3.13.

The reason that high expression of this maize gene correlates with GLS susceptibility is

unclear.

Hsieh and Goodman (2005) studied heptahelical transmembrane proteins (HHP) in

Arabidopsis. They found the expression of the HHP gene family to be differentially reg-

ulated by plant hormones, i.e. levels of HHP1 mRNA were increased by treatments with

ABA and GA, whereas levels of HHP2 mRNA were increased by ABA and benzyladenine

treatments. Kim et al. (2002) showed that the expression of a rice heptahelical plasma

membrane-localized (MLO) gene was strongly induced by a fungal elicitor as well as by

plant defense signalling molecules. They reported that it functions as a negative regu-

lator of broad-spectrum disease resistance and leaf cell death; and further showed that

MLO mediates defense modulation via direct Ca2+-dependent interaction with calmod-

ulin. According to Panstruga (2005), specific isoforms of the family of heptahelical MLO

proteins in barley is required for successful host-cell invasion by the biotroph powdery

mildew species, Blumeria graminis f. sp. hordei. Powdery mildew fungi appear to ma-

nipulate plant heptahelical MLO to regulate vesicle-associated processes at the plant cell

periphery for successful pathogenesis. Expression levels of the HHP receptor in Tables

3.3 and 3.4 was high in plants with (i) high expression levels of GA-related genes (cor-

responding to the above-mentioned result from Hsieh and Goodman, 2005) as well as

(ii) high levels of calcium/calmodulin signalling (corresponding to the result from Kim

et al., 2002). GA and calcium signalling were both over-represented processes in the

greenyellow module. This gene appears to be associated with maize susceptiblity to C.

zeina infection. One can speculate that C. zeina also manipulates maize HHP receptor

for successful pathogenesis.

Nodulins are organ-specific plant proteins induced during symbiotic nitrogen fixation.

Apart from genes involved in root nodule development, this gene family also includes re-

combination activation genes (RAGs) as well as specific sugar efflux transporters essential

for plant nectar production, and plant seed and pollen development. The Pfam anno-

tation for this nodulin MtN3 family protein is “sugar efflux transporter for intercellular

exchange”. Although the molecular function of these proteins is largely unknown, they

are mostly transmembrane proteins and generally mediate glucose transport. Chen et al.
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(2010a) identified a new class of sugar transporters, named SWEETs, which mediates

glucose transport. Of the eleven nodulin MtN3 family proteins that were present in the

WGCNA data set, Blast2GO annotated seven as bidirectional sugar transporter SWEET-

like proteins. Two of these significantly correlated with GLS susceptibility and with GLS

resistance. Two other nodulin MtN3 family proteins, not annotated as SWEET-like pro-

teins by Blast2GO (including A_92_P015826 mentioned above), strongly correlated to

GLS susceptibility (with correlation coefficients of 0.66 and 0.61) and belonged to the

greenyellow module. However, these two genes were annotated with similar GO-terms

than the previously mentioned SWEET-like proteins (including “carbohydrate transport”

and “plasma membrane”) and likely have similar functionality. Chen et al. (2010a) showed

that bacterial symbionts as well as fungal and bacterial pathogens can induce the expres-

sion of different plant SWEET genes. This indicates that the sugar efflux function of

SWEET transporters is likely targeted by pathogens for nutritional gain, which could also

be the case for C. zeina-infected plants, since the pathogen switches to a necrotrophic

growth habitat after first growing intercellularly in the leaf mesophyll where it would

require plant nutrients.

NAC (NAM/ATAF/CUC) transcription factors have important functions in regulat-

ing plant growth, development, and abiotic and biotic stress responses. In Arabidop-

sis, the NAC transcription factor ATAF1 negatively regulates the defense response to

necrotrophic fungi and bacterial pathogens (Wang et al., 2009) and ATAF2 acts as a

repressor of PR gene expression (Delessert et al., 2005). Conversely, ANAC019 and

ANAC055 are involved in the JA-dependent expression of defense genes in Arabidopsis

(Bu et al., 2008). In maize, ZmNAC41 and ZmNAC100 were identified to be transcrip-

tionally induced both during the initial biotrophic as well as the ensuing necrotrophic colo-

nization of maize leaves by the hemibiotrophic ascomycete fungus C. graminicola (Voitsik

et al., 2013). ZmNAC41 was present in the WGCNA data set and had a strong correla-

tion of 0.5 to GLS susceptibility. In a promoter element analysis of six pathogen-induced

maize NAC transcription factors, Voitsik et al. (2013) identified response elements for

ERF, WRKY, TGA and NAC transcription factors in five of the six analysed genes, sug-

gesting an involvement of these pathogen-induced NACs in the transcriptional network

controlling the plant defense response. Three of the six pathogen-induced maize NACs

mentioned above, including ZmNAC41, were present in the WGCNA data set: ZmNAC38
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had a significant correlation to GLS susceptibility (0.25) and ZmNAC97 slightly correlated

to GLS susceptibility (0.1). None of three mentioned NACs belonged to the greenyel-

low module. The greenyellow module included 12 transcription factors of which 6 were

annotated with a “response to stress” GO-term: 2⇥WRKY, 2⇥AP2/ERF, 1⇥MYB and

1⇥NAC transcription factors (included in the “regulation of transcription” category in

Figure 3.13).

Other potential driver genes in the greenyellow module

Table 3.3 contains a few regulatory genes that potentially modulate processes in the

greenyellow module. Patatin/phospholipase (A_92_P040918; Table 3.3) contributed

to enriched GO-terms such as “small molecule biosynthetic process”, “response to stim-

ulus”, “lipid metabolic process” and “monocarboxylic acid metabolic process”. An-

other reporter (A_92_P034498) representing the same maize gene was also part of the

greenyellow module, thus confirming the expression profile and significance of this gene.

Patatin/phospholipase is not only a storage protein, it also catalyses the cleavage of fatty

acids from membrane lipids (Mignery et al., 1988). Plants widely use phospholipid-based

signal transduction to transfer the recognition of extracellular signals. Activation of phos-

pholipases also initiates the production of defense signalling molecules, such as oxylipins

and jasmonates (Canonne et al., 2011). Camera et al. (2005) showed that two members of

the patatin-like gene family (PLPs) are strongly induced in leaves challenged with fungal

and bacterial pathogens in Arabidopsis. The accumulation of PLP2 in response to Botry-

tis cinerea or Pseudomonas syringae pv. tomato is dependent on JA and ET signalling,

but is not dependent on SA. Their data indicate that PLP2-encoded lipolytic activity

can be exploited by pathogens with different lifestyles to facilitate host colonisation.

The AP2 domain containing protein (A_92_P029518; Table 3.3) was part of the

“regulation of transcription” functional category in Figure 3.13 and contributed to the

“response to stimulus” enriched GO-term in Table 3.2. Pré et al. (2008) reported that the

AP2/ERF domain transcription factor ORA59 in Arabidopsis integrates ET and JA sig-

nals in plant defense. Over-expression of ORA59 caused increased resistance against the

fungus Botrytis cinerea, whereas ORA59-silenced plants were more susceptible. Several

genes involved in the ET and JA biosynthesis were present in the greenyellow module.

Specifically, ACC synthase (A_92_P039018; Table 3.3) and 3-ketoacyl-thiolase, key en-
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zymes involved in ET and JA biosynthesis respectively, were part of the greenyellow

module. However, a few other ET and JA biosynthesis and response genes were iden-

tified to significantly correlate with susceptibility and a few to resistance. It can be

hypothesised that ET and JA signalling-related responses could be effective in conferring

resistance to C. zeina, but occurred too late after infection in the susceptible response.

The WRKY transcription factor (A_92_P018873) in Table 3.3 contributed to the

“response to chitin” enriched GO-term (Table 3.2). WRKY transcription factors are

global regulators of host responses in reaction to pathogen challenge, typically via SA

and JA signalling (Pandey and Somssich, 2009).

Other high GLS-correlating genes in the greenyellow module

The gene with the second highest correlation to GLS disease severity was a glutathione

S-transferase (GST) (Table 3.4). GSTs are required for detoxification of lipid hydroper-

oxides that are generated during oxidative stress (Bhattacharjee, 2012). Although best

known for their ability to detoxify cellular environments, GSTs are also capable of bind-

ing non-substrate ligands, with important cell signalling implications. Wisser et al.

(2011) discovered high positive genetic correlations between GLS, Northern leaf blight

and Southern leaf blight in a diverse panel of maize inbred lines and found a GST gene to

be associated with modest levels of resistance to all three fungal diseases. They proposed

that variability in detoxification pathways underlie natural variation in maize multiple

disease resistance. Dean et al. (2005) highlighted that plants respond to foliar challenge

by GST expression. They demonstrated that different GST genes respond in different

ways to fungal infection and were the first to show a plant GST gene that plays a role

in susceptibility to fungal infection: NbGSTU1, a Nicotiana benthamiana GST gene was

in part responsible for susceptibility to fungal infection by Colletotrichum destructivum

and Colletotrichum orbiculare. Two GSTs, highly correlated to GLS susceptibility, were

present in the greenyellow module. Susceptible harvested samples had mature lesions

(Figure 3.7), so these plants might be responding by detoxifying toxins produced by C.

zeina.

Tonoplast dicarboxylate transporter (A_92_P012461; Table 3.3 and 3.4) contributed

to many of the enriched GO-terms including “carboxylic acid transmembrane transporter

activity”, “dicarboxylic acid transport”, “malate transport” and “C4-dicarboxylate trans-
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port”, as mentioned earlier. It can be hypothesised that this plant tonoplast dicarboxylate

transporter and potentially other genes with similar functionality, could be up-regulated

due to fungal manipulation, in order to benefit from manipulated stomatal aperture,

hormone signalling and/or to gain nutrients.

Another gene with an exceptional GLS susceptibility correlation (Table 3.4) in

the greenyellow module, is an EF hand / calmodulin-related calcium sensor protein

(A_92_P029666). The greenyellow module also includes two other calmodulin-related

calcium sensor proteins (A_92_P037035 and A_92_P040397), two calmodulin binding

proteins (A_92_P021227 and A_92_P015623) and one calmodulin-dependent protein

kinase (A_92_P006123). The calmodulin family is a major class of calcium sensor pro-

teins with a key role in the regulation of numerous target proteins via cellular signalling

cascades. It has been shown that pathogen infection causes significant ion fluxes across

membranes in plants. These ion fluxes and specifically the activation of Ca2+ signalling

pathways are vital for the activation of defense responses (Ranty et al., 2006). Signal-

specific changes in the cellular Ca2+ level were also found to function as a messenger

in modulating diverse physiological processes that are important for stress adaptation

(Reddy et al., 2011). Due to various different defense responses that are activated in

response to different stages of C. zeina infection, it is proposed that calcium signalling

play a significant role in regulation of induced defense-related signalling cascades as well

as plant adaptation to fungal attack. Figure 3.13 highlights calcium signalling as a key

factor in the greenyellow module.

Other modules correlating with GLS susceptibility

The paleturquoise module correlated with GLS susceptibility, with a correlation coef-

ficient of 0.31. It consisted of 41 reporters and no enriched GO-terms were detected

using BiNGO. According to MapMan, a total of five reporters in this small module

were annotated as transcriptional regulators and three as part of the “miscellaneous en-

zyme families” category. Table 3.7 gives the ten genes with the highest MM scores

and Table 3.8 gives the ten genes with the highest GS scores. Two of the genes in

Table 3.7, without a specific annotation from their rice and Arabidopsis best-matched

homologous genes, were annotated by MapMan as putative transcriptional regulators

(A_92_P026329 and A_92_P028020). One of the two, A_92_P028020, was also in
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Table 3.8. Two other genes that were in both Tables 3.7 and 3.8, thus potentially regu-

lating processes relating to GLS susceptibility in the paleturquoise module, were a citrate

synthase (A_92_P027135) involved in the tricarboxylic acid (TCA) cycle (a central path-

way in the production of energy from carbohydrates, fats, or proteins) and a cell wall

hydroxyproline-rich glycoprotein (A_92_P027779). An additional cell wall-related gene,

cellulose synthase (A_92_P025632), was also present in the paleturquoise module. In

Table 3.8, the reporter with the second highest correlation with GLS susceptibility, was

a CAS1 domain-containing protein (A_92_P030287), part of the O-methyltransferase

enzyme family. An adenosine triphosphate (ATP) citrate lyase (A_92_P030448), an

enzyme that represents an important step in fatty acid biosynthesis was also present in

Table 3.8.

The blue module, consisting of 1,521 reporters, correlated with GLS susceptibility

with a correlation coefficient of 0.22. Table 3.5 gives the enriched GO-terms of the blue

module, according to BiNGO. Most of these GO-terms belonged to the cellular com-

ponent ontology. The GO-term “intracellular membrane-bounded organelle” was one

of the most significant GO-terms and more specific terms included “chloroplast” and

“mitochondrial membrane”. In the molecular function and biological process ontologies

“aminopeptidase activity” and “cellular response to phosphate starvation” were enriched,

respectively. For this module, there was no overlap between the top ten genes that best

correlated with the blue module eigengene (Table 3.7) and the top ten genes that best

correlated with GLS susceptibility (Table 3.8). However, due to the size of the mod-

ule, when considering the top 100 genes in the two gene lists, seven genes occurred in

both and are the best candidates to regulate GLS-related processes in the blue mod-

ule: a citrate synthase (A_92_P041513; also mentioned in the paragraph above) and

an aconitate hydratase (A_92_P039324) that both play a role in the tricarboxylic acid

cycle; a mitogen-activated protein kinase kinase (A_92_P037761) involved in postransla-

tional modification; a transport protein particle component (A_92_P035766) involved in

vesicular trafficking; an ATP-binding cassette (ABC) transporter / ATP-binding protein

(A_92_P037362) involved in the transport of diverse substrates across cell membranes;

an ubiquinol-cytochrome C reductase iron-sulfur subunit (A_92_P037947) involved in

mitochondrial electron transport and ATP synthesis; and a VHS domain containing pro-

tein (A_92_P041610) involved in vesicle transport in the cell. Energy metabolism, vesi-



CHAPTER 3. WGCNA ANALYSIS ON GLS DISEASE IN MAIZE 103

cle transport and plasma membrane transport thus appear to be linked to the blue co-

expression module and GLS susceptibility, where the above-mentioned genes seem to play

key roles in the regulation of these procesesses.

The yellowgreen module correlated with GLS susceptibility with a correlation coef-

ficient of 0.21 and consisted of 35 reporters. “Catalytic activity” was the only enriched

GO-term for this module. According to MapMan, four genes belonged to the “miscel-

laneous enzyme families” category, two was involved in protein degradation and two in

nucleotide metabolism. Three out of the five reporters that were shared between the

top ten genes with the highest MM scores in the yellowgreen module (Table 3.7) and

the top ten with the highest GS scores (Table 3.8), represented a single maize gene: a

NUDIX hydrolase (A_92_P039569) that is involved in nucleotide metabolism, a pro-

tein transport protein SEC24-like (A_92_P035027) in the secretory pathway and a GST

(A_92_P038512) involved in the cellular detoxification of both xenobiotic and endobiotic

compounds.

The magenta module correlated with GLS susceptibility with a correlation coefficient

of 0.2 and consisted of 266 reporters. Table 3.6 gives the enriched GO-terms of the ma-

genta module. Most of these GO-terms belonged to the cellular component ontology,

where “chloroplast thylakoid membrane” was one of the most significant GO-terms. En-

riched GO-terms in the molecular function ontology included ”binding”, “unfolded protein

binding” and “structural constituent of ribosome” and enriched GO-terms in the biolog-

ical process ontology included “response to salt stress”, “response to metal ion”, “cellular

protein metabolic process” and “photosynthesis”. According to MapMan, thirteen genes

in the magenta module were involved in regulation of transcription, of which four en-

coded C2H2 zinc finger family proteins and two auxin response factor family proteins.

MapMan contributed to the BiNGO results by further highlighting and confirming pro-

cesses of importance: nine genes encoded proteins that were involved in photosynthesis,

seven in transport, seven in signalling, six in redox (reduction-oxidation) reactions, six in

development, five in mitochondrial electron transport / ATP synthesis, five in amino acid

metabolism, five in abiotic stress (heat stress response), five were miscellaneous enzyme

families, four were involved in DNA synthesis / chromatin structure and four in cellular

organisation. There was no overlap between the top ten genes with highest MM scores

(Table 3.7) and the top ten genes with the highest GS scores (Table 3.8) in the magenta
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module. However, when the top 30 genes in both lists were considered, four reporters over-

lapped of which two were annotated. These were the best candidates for regulating pro-

cesses relating to GLS susceptibility in the magenta module: a mitogen-activated protein

kinase 3 (A_92_P019536; in Table 3.8) involved in the MAP-kinase signalling pathway

and a cysteine proteinase inhibitor (A_92_P001644). Apart from being involved in many

aspects of plant physiology and development, as well as in the control of the programmed

cell death or HR (Solomon et al., 1999), cysteine proteases can also act as inhibitors of

fungal plant pathogens (López-García et al., 2012). Out of the ten genes with highest

MM scores in the magenta module (potential drivers in Table 3.7), three were part of the

mentioned MapMan categories: a plastid developmental DAG protein (A_92_P011228)

acting in chloroplast development, a plastid-lipid-associated protein (A_92_P028770)

involved in cellular organisation and a dehydroascorbate reductase (A_92_P012559)

involved in redox control. The highest GLS-correlating gene in the magenta module

(with a GS score of 0.52), was a flavanone 3-hydroxylase (A_92_P029634; Table 3.8),

an enzyme involved in flavonoid biosynthesis. Two other flavonoid biosynthesis-related

enzymes that significantly correlated with GLS susceptibility were also present in the ma-

genta module. Out of the ten genes with highest GS scores (Table 3.8), two genes not yet

referred to, were part of the above-mentioned MapMan categories: a chorismate mutase

(A_92_P029669) involved in amino acid metabolism and a chloroplast post-illumination

chlorophyll fluorescence increase protein (A_92_P042004) involved in photosynthesis

and chlororespiration.

GO enrichment and overview of the turquoise module

The turquoise module (1,564 genes) was the co-expression module with the strongest neg-

ative correlation with GLS severity (correlation coefficient of -0.31). Several enriched GO-

terms were detected for the turquoise module when the analysis was based on BiNGO’s

plant GO slim. These terms included nucleotide binding, protein binding, transport /

transporter activity, cell growth, protein modification process and abscission (Table 3.9).

According to MapMan (Figure 3.15), 19% of the reporters in the turquoise module

(271 reporters) were involved in protein degradation (8.1%), post-translational modifica-

tion (5.4%), protein synthesis (2.5%), protein targeting (1.5%), and amino acid activa-

tion (0.9%). Fourteen percent of the reporters in the turquoise module (199 reporters)
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were involved in RNA regulation of transcription (9.6%), RNA processing (2.6%), RNA

binding (1.4%) and RNA transcription (0.4%). The third largest main category was

transport (77 reporters; 5.4% of the turquoise module), which consisted of a variety of

different transport-related genes. The largest sub-categories were ABC transporters and

multidrug resistance systems (0.7%), metabolite transporters at the mitochondrial mem-

brane (0.7%) and sugar transport (0.6%). G-protein signalling (1.8%), calcium signalling

(0.8%) and receptor kinases (0.8%) were the largest sub-categories for signalling (61 re-

porters; 4.3% of the reporters in the turquoise module). Four percent of the reporters in

the turquoise module (60 reporters) were involved in cellular organisation (1.8%), vesicle

transport (0.9%) and other cell-related activities (1.4%).

Due to the large number of reporters in this module, GO enrichment was also per-

mormed on subsets of reporters. The 400 reporters (26% of the reporters in the turquoise

module) with the strongest positive correlation to the module eigengene (i.e. potential

drivers) were enriched for localization, establishment of localization and transport. The

200 (13% of the reporters in the turquoise module) reporters with the strongest negative

correlation to the GLS disease profile (i.e. correlation to GLS resistance) were enriched

for chloride transport and chloride channel activity. Interestingly, GO-terms related to

“transport” was enriched in both cases.

There was no overlap between the top twenty genes that best correlated with the

turquoise module eigengene (Table 3.10) and the top twenty genes that best correlated

with GLS resistance (Table 3.11). However, due to the size of the module, when consider-

ing the top 100 genes in the two gene lists, three genes occurred in both: a DNA binding

protein (A_92_P006660) involved in regulation of transcription, a MIF4G domain con-

taining protein (A_92_P005288) involved in protein synthesis and a DNA mismatch

repair protein MutS (A_92_P011271) involved in DNA repair. These genes could be

potential drivers of processes in the turquoise co-expression module that play a role in

GLS resistance.

Potential driver genes in the turquoise module

The twenty top candidate “central nodes” that may serve as module drivers, are given

in Table 3.10. The top candidate (A_92_P001413) encoded a coronatine-insensitive 1

(COI1), an F-box protein essential for all jasmonate responses. It interacts with multiple
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proteins to form the SCF(COI1) E3 ubiquitin ligase complex and recruits jasmonate

ZIM-domain (JAZ) proteins, negative regulators of JA signalling, for degradation by

the 26S proteasome (Yan et al., 2009). He et al. (2012) showed that COI1 regulate

NB–LRR accumulation and function in Arabidopsis. They further demonstrated that

apart from being involved in JA signalling-dependent disease resistance, COI1 also has

a role in disease resistance independent of JA signalling. Melotto et al. (2006) showed

that coronatine (COR), a compound made by Pseudomonas syringae, promotes stomatal

reopening through the E3 ligase subunit COI1, which allows bacteria to enter. Since C.

zeina hyphae also penetrate the leaf mesophyll via stomata (Beckman and Payne, 1983;

Lyimo et al., 2013), regulation of stomatal aperture play a key role. However, since high

expression of this COI1 relates to GLS resistance, it seems unlikely that C. zeina produce

compounds analogous to coronatine that alter stomatal aperture. Interestingly, a second

gene encoding COI1 (with a GS score of -0.26) is also present in the turquoise module. It

can be hypothesised that COI1 plays a key regulatory role in enhanced disease resistance

against C. zeina.

COI1, together with three other genes in Table 3.10 were annotated as pro-

tein degradation-related genes: a zinc finger C3HC4 type domain containing pro-

tein (A_92_P007274), a signal peptide peptidase-like 2B (A_92_P006383) and an F-

box/RNI-like superfamily protein (A_92_P006712). As mentioned above, 115 of the

reporters in the turquoise module (8.1%) were involved in protein degradation. Of these,

74 were associated specifically with ubiquitin-dependent protein degradation. Ubiquitin,

the ubiquitination system and the 26S proteasome play a key role in the regulation of

plant immune response processes such as the oxidative burst, hormone signalling, gene

induction, and programmed cell death (Trujillo and Shirasu, 2010). Without ubiquitin

functioning properly, toxins from invading pathogens and other harmful molecules would

increase dramatically due to weakened immune defenses.

Two phosphatases (A_92_P006813 and A_92_P005988) and one kinase (A_92_P002512)

were also in the top 20 candidate drivers (Table 3.10). In signal transduction pathways,

protein kinases modify other proteins by phosphorylation and phosphatases dephosphory-

late proteins. Protein kinases and phosphatases play a key role in signalling mechanisms

critical for responses to environmental stresses and attack by pathogens (Sessa and Mar-

tin, 2000). For example, mitogen-activated protein kinase (MAPK) pathways transfer
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information from sensors to cellular responses. Mészáros et al. (2006) provided evidence

that the MAP kinase kinase (MKK1) signalling pathway modulates the expression of

genes responding to the bacterial elicitor flagelli and plays an important role in pathogen

defense in Arabidopsis. Francia et al. (2011) showed that arbuscular-mycorrhizal (AM)

fungal exudates activate MAP kinase cascades in plant cells. Here MAPK activation was

dependent on the cytosolic Ca2+ increase. Yamaguchi et al. (2013) showed that fungal

chitin recognition by CERK1, a chitin receptor, triggered rapid engagement of a rice MAP

kinase cascade, which lead to defense response activation in rice. Specifically, in response

to chitin, OsRLCK185 (a rice receptor-like cytoplasmic kinase) is directly phosphorylated

by OsCERK1 at the plasma membrane. One can speculate that the phosphatases/kinases

in the turquoise module are involved in post-translational modifications associated with

MAPK cascades, which are activated in response to fungal elicitors. Interestingly, as

mention above, 5.4% of the reporters in the turquoise module were involved in post-

translational modifications. The phosphatases/kinases in Table 3.10 can be potential

drivers in the form of post-transcriptional regulators.

GLS-correlating genes the turquoise module

The twenty genes in each module with the strongest negative correlation to GLS disease

severity (i.e. highest correlation to GLS resistance) are given in Table 3.11. The gene

with the highest correlation to GLS resistance (-0.53) in the turquoise module encoded a

callose synthase (A_92_P010785). It belongs to the “minor CHO metabolism” category

in Figure 3.15. Callose deposition in the form of local cell wall thickenings, called papillae,

is a typical response of plants to fungal attack. Hinch and Clarke (1982) documented

callose formation in maize roots as a response to infection with Phytophthora cinnamomi.

In resistant Arabidopsis transgenic lines during powdery mildew infection, Ellinger et al.

(2013) showed that haustoria formation was stopped due to expression of POWDERY

MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase under

the control of the constitutive 35S promoter. They concluded that elevated early callose

deposition resulted in complete penetration resistance to powdery mildew in Arabidopsis,

so that activation of subsequent defense mechanisms was not needed. Our results showed

that callose synthases generally correlated well with GLS resistance. Of the 10 genes

encoding callose synthase proteins (from the input set of 19,281 reporters), five had a
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significant negative correlation to GLS severity and one a significant positive correlation

(Table 3.12). The top gene belonged to the turquoise module (the gene mentioned above)

and three others to the yellow co-expression module.

Interestingly, phenylalanine ammonia-lyase (PAL) (A_92_P031017) and hydroxycinnamoyl-

coenzyme A shikimate/quinate hydroxycinnamoyltransferase protein (A_92_P025879),

which are involved in lignin biosynthesis, both had very strong positive correlations with

GLS severity (0.51 and 0.5, respectively) in the turquoise module. It is thus apparent

that lignification does not play a vital role in resistance against C. zeina. Both men-

tioned lignin biosynthesis-related genes also belonged to the turquoise module, due to

their strong association with the turquoise module expression profile. The bulk of genes

in the turquoise module (83%) had a negative correlation to GLS severity, but genes with

a similar expression profile in the opposite direction were also included. There are cases

where this can be biologically meaningful, for example when the same regulator repress

or activate two different processes. As an example, Majello et al. (1997) reported that

Sp3 is a dual-function transcription regulator with modular independent activation and

repression domains. This gene’s activity is dependent upon both the promoter and the

cellular context.

The gene with the second best negative correlation to GLS severity in the turquoise

module (-052), encoded an auxin response factor (A_92_P008134; Table 3.11). Auxin is

an important plant hormone that regulates growth and development. It also regulates the

plant’s defense response by stimulating the degradation of transcriptional repressors (Bari

and Jones, 2009). The turquoise module also contained two other auxin response factors

(A_92_P008427 and A_92_P004482) with GLS severity correlations of -0.36 and -0.30,

respectively, as well as a “suppressor of auxin resistance” protein (A_92_P026229) with

an opposite expression profile (with a GLS severity correlation of 0.22). Interestingly,

Navarro et al. (2006) found that induced auxin signalling promotes Arabidopsis suscepti-

bility to the biotrophic bacterium Pseudomonas syringae, whereas Paponov et al. (2008)

reported that repression of auxin signalling promotes susceptibility of Arabidopsis plants

to the necrotrophic fungi Plectosphaerella cucumerina and Botrytis cinerea. Comparable

to the latter, a high expression of these auxin response factors in our maize popula-

tion in all probability promotes resistance to the hemibiotroph C. zeina. Furthermore,

three auxin-related hormone metabolism genes (O-fucosyltransferase proteins) were also
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present in the turquoise module: A_92_P006771, A_92_P004860 (in Table 3.10) and

A_92_P008697.

The auxin response factor mentioned above (A_92_P008134), together with three

other reporters in Table 3.11 are involved in regulation of transcription: a transcrip-

tion termination factor nusG family protein (A_92_P012261), a ternary complex factor

MIP1-like protein (A_92_P011441) and a basic helix-loop-helix DNA-binding protein

(A_92_P015327). Also, two reporters are involved in RNA binding (A_92_P012893

and A_92_P004813; Table 3.11).

Other modules correlating with GLS resistance

The darkred module (63 genes) was the co-expression module with the second strongest

negative correlation with GLS severity (correlation coefficient of -0.24). No GO-terms

were enriched for the darkred module using BINGO. Protein degradation was the largest

category according to MapMan, consisting of 11% of the reporters in the darkred mod-

ule. There was no overlap between the top ten genes that best correlated with the

darkred module eigengene (Table 3.10) and the top ten genes that best correlated with

GLS resistance (Table 3.11). A good candidate driver gene could be “enhanced dis-

ease resistance 2 protein” (Table 3.10). According to Hiruma et al. (2011), Arabidopsis

enhanced disease resistance 1 protein exerts an important positive role in resistance re-

sponses to hemibiotrophic/necrotrophic fungi, in part by inducing antifungal protein

expression through depression of MYC2 function. MYC2, a basic helix-loop-helix leucine

zipper transcription factor, represses a set of JA-responsive genes, while activating oth-

ers. Interestingly, the two MYC2 transcription factors in the full data set (not in the

darkred module) positively correlated with the GLS severity profile and the majority of

the enhanced disease resistance proteins negatively correlated with GLS severity. Thus

similar to what Hiruma et al. (2011) observed, this enhanced disease resistance protein

was likely required for the induced expression of antifungal proteins. Furthermore, two

protein degradation-related reporters, two protein targeting reporters, one reporter in-

volved in post-translational modification and one in cell wall degradation, were present

in Table 3.10: a ubiquitin-conjugating enzyme (A_92_P005017), a 26S proteasome

non-ATPase regulatory subunit (A_92_P004214), a transportin (A_92_P004852), a

vacuolar protein sorting-associated protein (A_92_P005333), a polyprenyltransferase
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protein (A_92_P003665) and a pectin lyase-like protein (A_92_P004287). A serine

carboxypeptidase-like gene was in the top ten best correlating genes to GLS resistance

(-0.31) in the darkred co-expression module (Table 3.11). Serine carboxypeptidase is a

wound-inducible gene product that functions in signal transduction (Li et al., 2001). Liu

et al. (2008) isolated a serine carboxypeptidase-like gene from rice, that was significantly

up-regulated after treatments with benzothiadiazole, SA, JA and 1-amino cyclopropane-

1-carboxylic acid (ACC). It was also up-regulated in incompatible interactions between

rice and the blast fungus, Magnaporthe grisea. Liu et al. (2008) overexpressed the rice

serine carboxypeptidase-like gene in transgenic plants to show enhanced resistance to

Pseudomonas syringae pv. tomato and Alternaria brassicicola, as well as increased re-

sistance to oxidative stress. Crampton et al. (2009) found that serine carboxypeptidase

was one of the candidate genes that were significantly induced by SA treatment, but

not up-regulated to the same extent by MeJA in pearl millet (Pennisetum glaucum). It

was also induced in response to a biotrophic rust pathogen, Puccinia substriata, in pearl

millet. Apart from the serine carboxypeptidase-like gene mentioned above, a second gene

in Table 3.11 was also related to protein degradation: a peptidase M50 family protein

(A_92_P013508).

The yellow module (out of 1,170) had a correlation coefficient to GLS severity of -

0.23. According to BINGO, no terms were enriched for the full module, but “nucleic acid

binding” was enriched for the top 500 genes in the yellow module that best correlated

with GLS resistance. According to MapMan, 108 reporters (10% of the genes in the

yellow module) are involved in regulation of transcription, 77 reporters (7%) in protein

degradation and 52 reporters (5%) in signalling (of which 22 are specifically involved in

G-protein signalling). G-proteins were identified to be involved in signal transduction,

induction of stomatal closure and defense responses (Zhang et al., 2012a). Even though

it is not part of the top ten candidate drivers (Table 3.10), an ethylene response factor

(ERF), subfamily of AP2 transcription factor genes, with a MM score of 0.91 and GS score

of -0.2, is a good candidate driver gene in the yellow module. According to Gutterson

and Reuber (2004), the expression of several ERF genes is regulated by JA, SA and

ET, as well as by pathogen challenge. The yellow module includes at least 30 genes

involved in JA, ET and SA signalling according to the Blast2GO derived GO-terms of

single genes. Allene oxide cyclase (A_92_P004273), with a strong correlation to GLS
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resistance (-0.39) but also not in the top ten (Table 3.11), is an important enzyme involved

in the JA biosynthesis pathway. Two WRKY transcription factors (with GLS severity

correlations of 0.32 and -0.24, respectively) were also present in the yellow module. Two

abiotic stress-related reporters that could be drivers of defense mechanisms, were present

in Table 3.10: a universal stress protein domain containing protein (A_92_P001412)

and a wound-responsive protein (A_92_P004097). Interestingly, 2% of the genes in the

yellow module (21 reporters) were stress-related, of which 17 played a role in abiotic

stress. Three reporters in Table 3.11 (best correlating with GLS resistance in the yellow

module), were involved in regulation of transcription and contributed to the enriched

GO-term “nucleic acid binding” mentioned above: a DNA binding domain containing

protein (A_92_P002149), a DNA-binding storekeeper-related transcriptional regulator

(A_92_P014539) and a homeobox-leucine zipper protein (A_92_P005598).

3.5 Conclusion

The expression patterns in genes and groups of genes across individuals in a C. zeina-

infected maize RIL population were studied and coordinated responses to C. zeina in-

fection were observed. Listed below is evidence in support of the observed coordinated

responses. A genome-wide maize co-expression network identified 42 co-expression mod-

ules, eight of which were significantly associated with GLS susceptibility or resistance.

Functional enrichment analyses of the resulting GLS-linked gene co-expression networks

confirmed that the modules were biologically meaningful. In addition, specific genes and

processes potentially contributing to GLS susceptibility and resistance were revealed.

The RIL population was sampled during flowering when GLS lesions were evident.

Thus sampling was more suited to measure susceptible responses. A rapid response

by the plant, typically conferring resistance, would more likely be detected at an earlier

growth stage. Thus constitutively expressed genes that were differently expressed between

the parental lines, rather than induced genes, were expected to be detected with the

microarray analyses, since induced genes might have been activated earlier when the

fungus started to invade and was likely switched off by the time of sampling (or turned on

equally in susceptible and resistant plants at the later time point). This could explain the

exceptionally high positive correlation to GLS severity (susceptibility) of the greenyellow
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co-expression module, which was associated with a variety of enriched GO-terms. In order

to standardise RNA sampling comparable areas on maize ear leaves of the same age, from

plants of the same age, were sampled in the same field. A randomised block design with

three replicate blocks was used to eliminate unwanted variation. Furthermore material

was pooled, firstly from two plants per row and later from the three biological repeat

blocks, allowing the measurement of the average expression for a RIL. A few limitations

of this study were that (i) inoculum might be uneven in space and time, since the data

came from a field trial; (ii) the observed gene expression levels were the average expression

in and around lesions; and (iii) other diseases could influence the results (if genes involved

in the GLS disease response were affected), however the Baynesfield site was dominated

by GLS symptoms in this particular season (data not shown).

As mentioned above, one of the five co-expression modules that were identified to

be related with GLS susceptibility had a remarkably high correlation coefficient of 0.71

(greenyellow co-expression module; p-value=1e�16). Enriched processes/mechanisms in

this co-expression module, included GA-signalling, response to stimulus and specifically

chitin, transmembrane transporter activity, calcium signalling and protein degradation.

Prominent processes in two other co-expression modules relating to GLS susceptibility,

included (i) energy metabolism, vesicle transport and plasma membrane transport, and

(ii) photosynthesis, flavonoid biosynthesis and abiotic stress. From this study it is appar-

ent that up-regulation of GA and consequent down-regulation of DELLAs is associated

with GLS susceptibility to C. zeina infection. Due to various different defense responses

that are activated in response to C. zeina infection, one can speculate that calcium sig-

nalling play a significant role in regulation of induced defense-related signalling cascades

as well as plant adaptation to fungal attack. Since susceptible harvested samples had

mature lesions, these plants might be responding by detoxifying and degrading toxins

produced by C. zeina and by up-regulating chitin-degrading enzymes. It can further be

hypothesised that plant trans-membrane transporters could be up-regulated due to fun-

gal manipulation, in order to benefit from altered stomatal aperture, hormone signalling

or to gain nutrients.

Out of the three co-expression modules with negative correlations to GLS disease

severity, i.e. positive correlation to resistance, the module with the strongest association

to GLS resistance was linked with processes including post-translational modifications,
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ubiquitin-mediated protein degradation and callose depositions. Another module relating

with GLS resistance, was associated with protein degradation and G-protein signalling.

From the results of this study, one can speculate that the phosphatases and kinases are

involved in post-translational modifications associated with MAPK cascades, which are

activated in response to fungal elicitors. It can be hypothesised that COI1 plays a key reg-

ulatory role in enhanced disease resistance against C. zeina. Ubiquitin-mediated protein

degradation seem to act on toxins produced by C. zeina to strengthen immune defenses.

One can speculate that callose depositions in the form of local cell wall thickenings is an

effective response of maize to C. zeina infection. Lastly, G-protein signalling seems to

play a role in improved GLS disease resistance.

The findings in this chapter were mostly hypotheses, which need to be validated with

further studies. However, this chapter confirms that coordinated responses to C. zeina

infection under field conditions in maize were observed. A major hypothesis that follows

from this result is that there is a genetic basis for the observed coordinated responses.

This will be focus of the next two chapters.
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Figure 3.1: An illustration of how degree distributions are calculated. Adapted from
Albert (2005). The number of interactions a node participates in is quantified by its
degree, k (k

in

and k
out

in directed networks). The degree distribution P (k) quantifies
the fraction of nodes with degree k (P (k

in

) and P (k
out

) in directed networks). (a) This
undirected and disconnected graph is composed of two connected components ABCD and
EFG. The graph has degrees (k) ranging from 1 to 3, indicated in red, which was used to
calculate the degree distribution P (k). As an example, the degree of node B is 3, since
it has links with 3 other nodes: A, C and D. The fraction of nodes with a degree of 3
is 1/7, since only node B (out of the 7 nodes in this graph) has a degree of 3. (b) This
directed graph contains a source node H that can reach every other node in the network.
Its out-component consists of the sink nodes M and K. The graph has in- and out-degrees
ranging from 0 to 2 (not shown). As an example, node L has in-degree 1 and out-degree
2. Degree distributions P (k

in

) and P (k
out

) are given separately.
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Figure 3.2: The difference between a random and a scale-free network. Adapted from
Barabási and Oltvai (2004). (Aa) The random network is homogeneous: most nodes have
approximately the same number of links. (Ab) The node degrees of a random network
follow a Poisson distribution, which indicates that most nodes have approximately the
same number of links (close to the average degree k). The x-axis represents the degree k
and the y-axis the degree distribution P (k). The tail (high k region) of the degree distri-
bution P (k) decreases exponentially, which indicates that nodes that significantly deviate
from the average are extremely rare. (Ba) The scale-free network is inhomogeneous: the
majority of the nodes have one or two links, but a few nodes have a large number of links.
In a scale-free network, the probability that a node is highly connected is statistically
more significant than in a random graph and the network’s properties are often being
determined by a relatively small number of highly connected nodes that are known as
hubs (the blue nodes). (Bb) Scale-free networks are characterised by a power-law degree
distribution; the probability that a node has k links follows P (k) ⇠ k–g, where g is the
degree exponent. The degree exponent g is usually in the range 2 < g < 3. Such distri-
butions are seen as a straight line on a log-log plot, where the x-axis represents log(k)
and the y-axis log(P (k)).
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Figure 3.4: Topological Overlap Matrix (TOM) plot generated by Langfelder and Hor-
vath (2012). A TOM plot is a color-coded heatmap of the values of the TOM-based
dissimilarity matrix, where genes (in rows and columns) are sorted by the clustering tree
and clusters correspond to dark squares along the diagonal. Light colour represents low
overlap and increasingly darker red higher overlap. Dark coloured blocks along the di-
agonal correspond to gene co-expression modules. The “blue” gene co-expression module
is highlighted with grey dashed lines. The gene dendrogram and module assignment are
shown along the left side and the top.
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Figure 3.5: Sample clustering to detect outliers. A clustering dendrogram of the in-
dividuals in the RIL population was based on Euclidean distances across the reporter
expression values on the microarray. The heatmap gives an indication of the GLS disease
severity score per RIL: White indicates resistance (minimum score is 1); Red indicates
susceptibility (maximum score is 9); Grey indicates a missing entry.
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Figure 3.7: Grey leaf spot on maize in the field, caused by Cercospora zeina. Symptoms
are necrotic lesions on the leaf surface. The range of differences in levels of lesions
indicates that there is large variation in disease resistance/susceptibility for C. zeina
in this population. CML444 was the more resistant parent and SC Malawi the more
susceptible parent of the RIL population. Transgressive segregation was observed in this
population, since some RILs showed less and other more GLS disease symptoms compared
to the parental lines.
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Figure 3.8: Boxplots of GLS disease severity data (y-axis), collected at 92, 99, 109 and
116 days after planting (r1� r4) at Baynesfield Estate in KwaZulu-Natal, South Africa.
The last boxplot represents a weighted average (WA) of the GLS severity scores across
the four ratings for the 2008/2009 season, depending on the number of days between the
rating and the day of sampling.
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Figure 3.10: Module eigengene (ME) expression values (y-axis) across the RILs (x-axis;
sorted by GLS severity scores) for the greenyellow and turquoise modules. A positive
correlation indicates that RILs with high ME expression values, also have high disease
severity scores (susceptible RILs), and RILs with low ME expression values also have a low
disease severity scores (resistant RILs). Genes in the greenyellow module are positively
correlated with GLS severity across the RILs. A negative correlation indicates that RILs
with high ME expression values have low disease severity scores (resistant RILs), whereas
RILs with low ME expression values have high disease severity scores (susceptible RILs).
Genes in the turquoise module are negatively correlated with GLS severity across the
RILs.
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Figure 3.11: The co-expression module eigengene dendogram and adjacency heatmap
represent the relationships among the co-expression modules. “GLS” refers to the nor-
mal GLS severity profile, where a positive correlation indicates that higher expression
correlates with susceptible RILs. For convenience “GLS swop” was also calculated, so
that a positive correlation indicates that higher expression correlates with resistant RILs.
(A) A hierarchical clustering dendrogram of the eigengenes in which the dissimilarity of
eigengenes E

I

and E
J

, is given by 1�cor(E
I

, E
J

). (B) The heatmap shows the eigengene
adjacency, A

IJ

= (1+cor(E
I

, E
J

))/2, which preserves the sign of the correlation. Within
the heatmap, red indicates high adjacency (i.e. 1 represents a strong positive correlation)
and green low adjacency (i.e. 0 represents a strong negative correlation), as shown by
the color legend.
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Figure 3.14: Network representation of the greenyellow module. Nodes represent genes
and edges represent co-expression. The network layout is force-directed and node size
corresponds to node degree. Yellow indicate nodes/genes that are highly correlated to the
GLS severity profile (genes with a GS.GLS score > 0.65 in Table 3.4) and green indicate
genes with correlation coefficients < 0.65 in the greenyellow module. This figure shows
that the bulk of potential driver genes in the greenyellow module (the largest nodes),
were also the genes that best correlated with GLS severity (yellow nodes). Table 3.3
lists the top 35 driver genes in the greenyellow module and Table 3.4 the top 35 GLS
severity-correlating genes.
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Figure 3.15: Summary of the MapMan categories in the Turquoise module. A total
of 1,029 reporters (out of the 1,564 reporters in the turquoise) were assigned to specific
MapMan categories.
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Table 3.1: Module eigengenes were correlated with the GLS severity scores, using Pear-
son correlation. Eight co-expression modules were identified to be significantly associated
with GLS severity (p-value < 0.05).

a The null hypothesis is that there is no correlation between the ME expression values
and GLS severity scores across the RILs



CHAPTER 3. WGCNA ANALYSIS ON GLS DISEASE IN MAIZE 130

Table 3.2: Enriched GO-terms for the Greenyellow module based on the full GO ontology
using BiNGO.
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Table 3.3: The 35 best potential drivers in the greenyellow module. Reporters were
sorted by MM scores (decreasing).

a Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.greenyellow is the module membership of a specific gene with the greenyellow
module. It is the correlation of the gene expression profile with the module eigengene
expression profile, across the RILs.
d GS.GLS is the gene significance value of a specific gene with the GLS disease severity
profile. It is the correlation of the gene expression profile with the GLS disease severity
scores, across the RILs.
e Genes that were also part of the top 35 potential driver genes in the greenyellow module
(Table 3.4) are marked with a star.
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Table 3.4: The 35 strongest GLS disease-correlating reporters in the greenyellow module.
Reporters were sorted by GS scores (decreasing).

a Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.greenyellow is the module membership of a specific gene with the greenyellow
module. It is the correlation of the gene expression profile with the module eigengene
expression profile, across the RILs.
d GS.GLS is the gene significance value of a specific gene with the GLS disease severity
profile. It is the correlation of the gene expression profile with the GLS disease severity
scores, across the RILs.
e Genes that were also part of the top 35 potential driver genes in the greenyellow module
(Table 3.3) are marked with a star.
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Table 3.5: Enriched GO-terms for the Blue module based on the full GO using BiNGO.
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Table 3.6: Enriched GO-terms for the Magenta module based on the full GO using
BiNGO.
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Table 3.7: The ten genes that best correlated with the module eigengenes of each of the
remaining modules significantly associated with GLS susceptibility. These lists include
potential driver genes of the respective modules.

a Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.module is the module membership of a gene with a specific module. It is the
correlation of the gene expression profile with the module eigengene expression profile,
across the RILs. The “module” corresponds to the specific module colour in the first
column.
d GS.GLS is the gene significance value with the GLS disease trait. It is the correlation
of the gene expression profile with the GLS disease severity scores, across the RILs.



CHAPTER 3. WGCNA ANALYSIS ON GLS DISEASE IN MAIZE 136

Table 3.8: The ten genes that best correlated with the GLS disease scores, in each of
the remaining modules significantly associated with GLS susceptibility.

a Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.module is the module membership of a gene with a specific module. It is the
correlation of the gene expression profile with the module eigengene expression profile,
across the RILs. The “module” corresponds to the specific module colour in the first
column.
d GS.GLS is the gene significance value with the GLS disease trait. It is the correlation
of the gene expression profile with the GLS disease severity scores, across the RILs.
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Table 3.9: Enriched GO-terms for the Turquoise module based on plant GO slim using
BiNGO.
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Table 3.10: The genes that best correlated with the module eigengenes of the modules
significantly associated with GLS resistance. These lists include potential driver genes of
the respective modules.

a

Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.module is the module membership of a gene with a specific module. It is the
correlation of the gene expression profile with the module eigengene expression profile,
across the RILs. The “module” corresponds to the specific module colour in the first
column.
d GS.GLS is the gene significance value with the GLS disease trait. It is the correlation
of the gene expression profile with the GLS disease severity scores, across the RILs.
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Table 3.11: The genes that best correlated negatively with the GLS disease scores, in
the modules significantly associated with GLS resistance.

a Functional annotation derived from the best Arabidopsis and rice BLAST hits, as well as
the Blast2GO description. A dot indicates that the reporter annotation was inconclusive.
b Cytoscape was used to calculate the node degree index (the number of edges connected
to a specific node).
c MM.module is the module membership of a gene with a specific module. It is the
correlation of the gene expression profile with the module eigengene expression profile,
across the RILs. The “module” corresponds to the specific module colour in the first
column.
d GS.GLS is the gene significance value with the GLS disease trait. It is the correlation
of the gene expression profile with the GLS disease severity scores, across the RILs.
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Table 3.12: A list of all the reporters encoding callose synthases, in the WGCNA input
set of 19,281 input reporters. The correlation of their expression profiles in relation to
the GLS scores are also given, together with p-values indicating significance.



Chapter 4

Global expression QTL analysis

towards identifying the molecular basis

of grey leaf spot disease in maize

4.1 Introduction

Grey leaf spot (GLS) is a foliar disease of maize of great economic importance in many

countries. GLS is caused by the fungal pathogens Cercospora zeae-maydis Tehon and E.

Y. Daniels and Cercospora zeina Crous & U. Braun and can significantly reduce grain

yield depending on the level of susceptibility of the hybrid (Latterell and Rossi, 1983).

Resistant commercial hybrids are not readily available. In order to breed new resistant

hybrids it is essential to understand the mechanisms, determined by the expression of

certain genes and pathways, underlying disease resistance.

As reviewed in Chapter 1, quantitative trait locus (QTL) mapping is used to analyse

natural variation by identifying genomic regions affecting a quantitative trait such as

GLS resistance in maize. Determining the causal genes underlying phenotypic QTLs is

currently a major challenge, for which the combination of large scale expression profiling

and genetic analyses to identify expression QTLs (eQTLs) can play a significant role.

Figure 4.1 gives an overview of the steps in a full eQTL experiment, where population-

wide genotyping and gene expression profiling precede eQTL mapping and interpretation.

eQTLs are thus not linked to specific phenotypic traits, but can be used to search for

associations between gene expression polymorphisms and phenotypic QTLs.

141
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In Chapter 3, expression traits (e-traits) across a CML444⇥SC Malawi maize recom-

binant inbred line (RIL) population infected with C. zeina were used in a correlation

analysis to show that coordinated responses to GLS disease in subtropical white dent

maize lines were apparent. Clusters of genes that significantly correlated with GLS re-

sistance or susceptibility were determined and central nodes were identified as potential

network drivers. However, a limitation of the analysis so far was that there was no ref-

erence to what the genetic basis for the response to C. zeina infection in the maize RIL

population could be. The natural variation captured in this RIL population provided a

valuable resource for answering this question.

According to previous studies, complex genetic interactions underlie GLS resistance in

maize (Bubeck et al., 1993; Saghai Maroof et al., 1996; Lehmensiek et al., 2001; Gordon

et al., 2004; Menkir and Ayodele, 2005; Zhang et al., 2012b). However, in most of the

published GLS quantitative trait locus (QTL) studies, C. zeae-maydis instead of C. zeina

was the causal agent of GLS disease. Therefore, adding the genetic dimension will reveal

valuable information about the genomic locations responsible for C. zeina resistance or

susceptibility in the CML444⇥SC Malawi maize cross. Once the genetic basis (i.e. the

causal genes or polymorphisms) is determined, this could be utilised in crop improvement

through marker-assisted breeding or via genetic modification.

The aim of the work reported in this chapter was to combine QTL mapping for GLS

severity with eQTL analyses to investigate the molecular basis of the quantitative disease

response to C. zeina infection. The ultimate goal was to identify hypotheses of genes and

mechanisms that could explain the GLS severity phenotypic QTLs.

4.1.1 Using expression QTLs for the identification of genes and

pathways affecting phenotypic traits

QTL analysis of gene expression profiles (i.e. eQTL analysis) identifies genomic regions,

which are likely to contain a causal gene with regulatory effect on the gene whose ex-

pression profile is affected by the eQTL. eQTLs are classified as cis or trans, where a

cis-eQTL represent a polymorphism physically located near the gene itself and a trans-

eQTL represent a polymorphism at a different location than the position of the gene

affected by the eQTL.

Identifying cis-eQTLs that co-localise with a phenotypic QTL can be a valuable ap-
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proach for causal gene discovery, since these show differences in gene expression that are

under the control of DNA sequence variants in or close to the gene itself, potentially

contributing to the phenotypic QTL. Furthermore, the identification of a set of genes

with trans-eQTLs at a common locus can be used to dissect genetic variation that in-

fluences an entire pathway or biological process, which can lead to the identification of

initiating polymorphisms upstream in a transcriptional network. Additionally, one could

also perform a correlation analysis between the phenotype scores and the gene expression

values (e-traits) across the individuals in a population, to filter the lists of candidate genes

underlying phenotypic QTLs. Since a causal relationship cannot be inferred based on cor-

relation alone, a gene with a good correlation and with an eQTL that coincides with the

phenotypic QTL is a stronger candidate for causing the trait. Furthermore, the combina-

tion of e-trait correlations (correlation of gene expression patterns) and co-localisation of

trans-eQTL positions with phenotypic QTLs, could provide a powerful strategy to infer

potential regulatory gene networks affecting the phenotypic trait. Ultimately, phenotypic

QTLs can be searched for regulatory genes with cis-eQTLs that potentially affect the

phenotype through its effect on many downstream genes.

The first two examples given below, illustrate that the combination of e-trait corre-

lations (the correlation between pairs of gene expression profiles) with eQTL mapping

approaches is a powerful strategy to infer regulatory gene networks. The third example

illustrates that a correlation analysis between phenotype values and gene expression val-

ues of the genes that underly a phenotypic QTL can give considerable insight, when the

aim of the investigation is to identify candidate genes responsible for a phenotypic trait.

Lan et al. (2006) used gene expression data across the individuals of a segregating

population to identify co-regulated genes as well as genomic locations of putative regula-

tory loci (i.e. eQTLs). Their study was based on 45,000 e-traits derived from 60 mice in

an F2 population segregating for obesity and diabetes. They first used eQTL mapping

to identify 6,016 “seed” transcripts (with LOD scores of 3.4 or greater at one or more

locations in the genome). Subsequently, they identified transcripts whose expression pro-

files were highly correlated to those of the seed transcripts (using Pearson correlation

coefficient cut-off of 0.7). They further tested for enrichment of common biological func-

tions among the lists of correlated transcripts. Out of the 6,016 seed transcripts, 1,341

produced lists of e-traits that were enriched for at least one gene ontology (GO) term.
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Thirty-eight of the identified seeds belonged to the G protein-coupled receptor (GPCR)

protein signalling pathway and were correlated with 174 transcripts that were also part of

the GPCR protein signalling pathway according to GO-term annotations. Remarkably,

131 of the identified transcripts shared a regulatory locus on chromosome 2, even though

the linkage was not always significant across the 60 F2 mice. Thus, Lan et al. (2006)

used e-trait correlation combined with eQTL mapping to reveal regulatory networks that

would otherwise be missed. Several QTLs for obesity and related traits have been mapped

to this region on chromosome 2, making it a region of interest for further study.

Bing and Hoeschele (2005) reanalysed the e-trait data from a yeast study (Brem et al.,

2002). The data set contained 6,215 gene expression values as well as genotypes at 3,312

markers for each of 40 haploid segregants from a cross between a laboratory strain and

a wild strain of Saccharomyces cerevisiae. They incorporated a correlation analysis for

transcription network inference and their strategy was to: (i) identify eQTLs; (ii) deter-

mine a set of regulatory candidate genes physically located within each eQTL confidence

region (using the sequenced yeast genome map); (iii) reduce the number of candidate

causal genes in each eQTL interval by correlation analysis of expression; (iv) draw direc-

tional links from the remaining candidate causal gene(s) in each eQTL region to the gene

affected by the eQTL; and (v) join the putative regulatory links to form networks. This

method was used for reducing the set of candidate genes for both cis- and trans-eQTL

regions. For 65% of the identified eQTL regions, a single candidate regulatory gene was

retained in the e-trait correlation analysis (step iii); for 7% of the eQTL regions, no gene

was retained; and for 28% of the eQTL regions, more than one gene were retained. A few

biological processes were identified as significantly overrepresented in either independent

network structures or in highly interconnected sub-networks. Interestingly, most of the

transcription factors that were found in the inferred networks had a putative regulatory

link to only one other gene or exhibited cis-regulation (Bing and Hoeschele, 2005). Since

the aim of this study was to illustrate a method for transcriptional regulatory network

inference, no phenotypic QTLs were investigated.

Druka et al. (2008) exploited regulatory variation to identify genes underlying quan-

titative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in

barley. They used used 1,536 SNP markers and 139 DH lines of the Steptoe⇥Morex refer-

ence barley mapping population to explore the potential of using e-traits as surrogates for
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the identification of candidate genes underlying the interaction between barley and the

wheat stem rust fungus. Six phenotypic QTLs associated with barley’s reaction to stem

rust were identified and one of these coincided with the major stem rust resistance locus,

Rpg1 on chromosome 7H, that were previously positionally cloned using this population.

Correlation analysis between phenotype values for rust infection and the gene expression

values of the genes underlying the major QTL on chromosome 7H, placed Rpg1 in the

top five candidate genes.

4.1.2 Tools for eQTL discovery and interpretation

eQTL analysis recently moved from a cutting-edge genomics concept to a more mature

area of investigation (Wright et al., 2012). This led to a rapid expansion of available

datasets and numerous attempts to functionally relate eQTLs to phenotypic traits. To

this end, tools for detecting eQTLs (Basten et al., 2001; van Ooijen, 2009), ways to display

or browse pre-analysed eQTL data (Mueller et al., 2006; Zou et al., 2007) and databases

to store available datasets (Wang et al., 2003; Mueller et al., 2006) became essential to

numerous researchers. However, only a few computational tools for the analysis and post-

processing of eQTL data are available and these are generally not widely distributed or not

accompanied by user-friendly software packages. As a result, investigators interested in

eQTL analyses often need to develop their own code or use tools not specifically suited for

eQTL analysis. Wright et al. (2012) mentioned that the ever-increasing complexity and

the added dimensions of the resulting datasets not only create opportunities for further

development and refinement of the computational tools, but also produce challenges for

the visualisation of the results.

QTL Cartographer is a powerful, flexible and widely used program for mapping QTLs

onto a genetic linkage map (Basten et al., 2001). It can handle data from a variety of

experimental designs and from any organism. Most of the genome-wide eQTL mapping

studies in crops that were described in Section 1.5 on page 19 used QTL Cartographer

for eQTL mapping. However, investigators had to either use additional post-processing

tools for eQTL analysis or develop their own code in order to interpret the resulting eQTL

data. The biological interpretation of detected eQTLs may include the classification of

cis- and trans-eQTLs, the evaluation of functional enrichment and the modeling of causal

interactions among eQTL (to identify candidate genes influencing biologic pathways)
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or between eQTL and other genetic associations (phenotypic traits for example disease

associated loci) (Michaelson et al., 2009) (Figure 4.1).

WebQTL (http://www.webqtl.org/) is a web-based tool that combines databases

of complex traits with software for mapping QTLs (Wang et al., 2003). It also calculates

correlations among traits. WebQTL includes well-curated genotype data for various sup-

ported populations and users need to provide only the quantitative trait data to identify

QTLs. QTL reaper is a batch-oriented version of WebQTL, which establishes genome-

wide significance via a permutation approach. Hubner et al. (2005) used it for an eQTL

study carried out in the BXH⇥HXB panel of recombinant inbred rat strains using the

Affymetrix microarray platform. The algorithm in QTL reaper was used to build eQTL

Explorer (Mueller et al., 2006), an application that enables integrated visualisation and

mining of results from genome-wide linkage analyses and expression profiling. eQTL Ex-

plorer allows eQTL results across the whole genome from multiple array experiments to

be displayed alongside phenotypic QTLs mapped to the genome. It consists of a Java

interface as well as a relational database, to store and manage expression, linkage and

external data. Upon import into the database, the software also determines and indicates

whether the eQTLs are cis- or trans-acting. eQTL Explorer is useful when studying a

model organism with genome, genotype and phenotypic QTL data already stored in the

database.

eQTL Viewer is a web-based tool for visualising the relationships between the e-

trait genes and the candidate genes in the eQTL regions using Scalable Vector Graphics.

It does not include functionality for eQTL mapping. The output display is a scalable

and annotated two-dimensional plot of the e-trait gene positions versus the linked eQTL

positions across the genome. As a result, the eQTLs on the diagonal indicate potential cis-

eQTLs. It provides biologists with an efficient and intuitive way to explore transcriptional

regulation patterns and to generate hypotheses on the genetic basis of transcriptional

regulations (Zou et al., 2007).

The different types of data that need to be incorporated as well as different study

objectives, especially when working with non-model organisms, make the development

of flexible eQTL data analysis tools complex and challenging. There is a need for user-

friendly eQTL post-processing tools and browsers that can provide assistance to those

interested in mining eQTL data, also from less-studied species, for their own research.

http://www.webqtl.org/
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4.2 Aims and objectives

The main aim of this chapter was to investigate the genetic basis for the response to

C. zeina infection in the CML444⇥SC Malawi maize RIL population. Specific objectives

were to (i) identify phenotypic QTLs for GLS severity; (ii) identify eQTLs for infected leaf

tissue, i.e. identify genomic regions where genetic variation could explain gene expression

differences; (iii) classify eQTLs as cis or trans ; (iv) identify eQTLs that coincide with

the GLS severity QTLs; (v) filter the lists of candidate genes, for genes with a significant

correlation between their gene expression profiles and the GLS severity scores; and (vi)

identify trans-eQTL hotspots linked to disease resistance or susceptibility responses; (vii)

determine enriched functional categories within the candidate trans-eQTL hotspots.

Ultimately, the overlap between GLS severity QTLs and cis-eQTLs could reveal indi-

vidual candidate genes that are responsible for the respective GLS QTLs; and the overlap

between GLS severity QTLs and trans-eQTLs could reveal the mechanisms conferred by

the respective GLS QTLs. A refined analysis, including only the genes with cis- and

trans-eQTL peaks in the trans-eQTL hotspot intervals that coincide with the GLS sever-

ity QTLs, might reveal potential regulatory network models contributing to the various

GLS severity QTLs.

4.3 Materials and methods

The data used in this chapter is described in Section 3.3.1 (Germplasm and field trials)

and section 3.3.2 (RNA extraction and microarray analysis) from the previous chapter.

4.3.1 Construction of linkage map and QTL identification

The CIMMYT maize RIL population was derived from a CML444×SC Malawi cross (see

section 3.3.1). A linkage map was previously constructed by Messmer et al. (2009) with

160 publicly available restriction fragment length polymorphism (RFLP) and simple se-

quence repeat (SSR) markers, using MapMaker v3.0 software (Lander et al., 1987). The

markers were tested primarily for polymorphism between the parental lines. Regions

where there were gaps of approximately 20 centimorgan (cM) or more were identified

and SSR markers in these regions were selected from the Maize Genetics and Genomics
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database (http://www.maizegdb.org/). An improved version of this linkage map,

named QMap 2.0, was constructed using 148 of the markers that were used by Messmer

et al. (2009) together with 19 additional SSR markers (thus a total of 167 markers) across

145 RILs. Markers that were closer than 5cM from each other were removed to reduce pos-

sible distortion of the map. The following SSR markers were added: bnlg1811, bnlg615,

umc1111, phi073, bnlg1449, bnlg1108, umc1720, bnlg105, dupssr10, umc1155, umc1572,

bnlg2191, umc1413, umc1424, umc1562, umc1170, bnlg1375, umc1137, umc1337. Map-

Manager QTX software (Manly et al., 2001) was used to construct QMap 2.0 (available

in the electronic Appendix) and the final genetic map was displayed using MapChart

(Voorrips, 2001). The order of the markers corresponded to that from Messmer et al.

(2009). The total map length was 1,862 cM Kosambi. It had good coverage over the 10

chromosomes, with approximately one marker every 11 cM. QMap 2.0 was used for QTL

and eQTL mapping.

GLS disease severity data was recorded at 92, 99, 109 and 116 days after planting

(DAP). QTL Cartographer (Basten et al., 1994; Wang et al., 2012a) was employed to map

QTLs for GLS disease severity, at each of the four ratings, in the CML444⇥SC Malawi

RIL population of 145 individuals. A walking speed of 2 cM was used in composite interval

mapping (CIM) with forward regression and backward elimination (p-value = 0.1). The

LR threshold was set to 11.5 after permutation testing showed that 11.5 corresponded to

approximate ↵ = 0.05 experiment-wise (Doerge and Churchill, 1996). The eQTL data

analysis pipeline was utilised for eQTL mapping (see section 4.3.2).

4.3.2 Development of a Galaxy workflow for global eQTL analysis

An eQTL data analysis pipeline was developed as part of this study. It was implemented

in Python and R, and developed as a workflow in the online data analysis platform Galaxy

(http://galaxyproject.org). The eQTL data analysis pipeline is currently an in-house

tool, which employs a computer cluster at the Bioinformatics and Computational Biology

Unit at the University of Pretoria for eQTL mapping. Figure 4.2 gives an overview of

the six modules in the pipeline as well as the required input files. The six modules are

described below in general terms and the application of the pipeline to this study are

given in section 4.3.3.

http://www.maizegdb.org/
http://galaxyproject.org
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Mapping eQTLs

The eQTL pipeline employs QTL Cartographer to map eQTLs. Apart from an input

file that contains a matrix of the expression values (where rows correspond to genes and

columns to individuals in a mapping population) called the “e-traits file”, two additional

files need to be generated using (Windows) QTL Cartographer beforehand: the “map file”

containing information on the genetic linkage map (marker order, chromosome assignment

and recombination fractions) and the “cross file” containing information on the population

(the marker names, marker genotypes, trait values and other explanatory variables).

This first module in the pipeline consists of three parts: the first component splits the

e-traits file into 48 sub-files; the second component identifies eQTLs by running QTL

Cartographer as 48 parallel tasks using different nodes on a computer cluster; and the

third component concatenates the eQTL result files after the parallel runs. The module

permits the setting of several parameters, including the model for stepwise regression, the

model for interval mapping, the walking speed and the likelihood ratio (LR) threshold.

The module also allows the inclusion of “other traits”, i.e. factors that will be “regressed

out” in the regression analysis.

Linking the genetic and physical maps

Before a distinction between cis- and trans-eQTLs can be made, it is necessary to link the

genetic and physical maps (since eQTLs have cM positions, while genes and reporters have

base pair (bp) positions). It is assumed that a draft genome sequence of the species under

study is available and that the physical marker positions are known or at least estimated.

The second module in the pipeline requires a “chromosome length file”, containing the

bp length of each chromosome, as well as a “markers file”, containing the marker names,

cM positions and bp positions of each marker on the genetic map. When mapping QTLs,

QTL Cartographer scans the entire genome at a constant walking speed (typically 2 cM).

The resulting interval positions, from here on referred to as “bins”, are used in CIM and

are fixed for every QTL mapping run based on the same genetic map. The marker cM and

bp positions in the “markers file”, are used as anchor points to proportionally estimate

the bp positions at each corresponding bin. As a result, a “lookup table” is generated,

containing the cM and bp positions of each bin (an example of a lookup table is provided

in the electronic Appendix). It is important to note that the last interval before the next
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marker is smaller than the selected walking speed if the marker spacing is not a multiple

of the bin size. Every eQTL starts and ends at a specific cM position, and the lookup

table makes it possible to find the corresponding eQTL coordinates on the physical map

in order to extract the gene models or single-nucleotide polymorphisms (SNPs) within

specified regions.

Classifying eQTLs as cis or trans

To classify eQTLs as cis or trans, a “gene positions file” that provides the bp positions

of all the genes in the genome is required. The lookup table is used to proportionally

estimate a cM-based position for each gene to compare to the corresponding eQTL start

and end positions. This pipeline defines an eQTL that is located within a distance of 5

cM from the location of its linked gene as cis and an eQTL that is located further than

5 cM from the location of its linked gene, often on a different chromosome, as trans.

Identifying eQTL hotspots

To identify eQTL hotspots, the frequency of eQTLs and genes throughout the genome

are calculated per bin. A sliding-window approach is implemented within the pipeline,

where users can choose to include two or three bins per window. Whenever a bin smaller

than 2 cM (e.g. the last interval before the next marker) is part of a “sliding window”, an

additional bin is added so that the window size for two or three bins per sliding window

is always 4 � 6 cM or 6 � 8 cM, respectively. eQTL peaks and gene models are then

counted per sliding window. With this information available, two tests are conducted:

(i) whether the eQTL frequency is higher than that expected by chance, and (ii) whether

gene density is an explanatory factor for eQTL hotspots.

Firstly, the expected maximum number of eQTL peaks per cM is calculated with a

permutation approach. Each of the identified eQTLs are randomly assigned to 1 cM of

the total number of cM on the map, and the resulting maximal number of eQTLs per bin

is stored. The procedure is repeated 1000 times and the threshold corresponding to 95%

of the obtained distribution established (Potokina et al., 2008). This serves as a threshold

to test if the eQTL frequency per sliding window is significantly high. Sliding windows

for which the number of eQTL peaks per cM are above the permutation threshold are

marked as potential eQTL hotspots.
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Secondly, the proportion of genes to eQTL peaks per cM is calculated for each sliding

window. Here the null hypothesis which is tested for each sliding window is that the pro-

portion of genes to eQTL peaks in a specific sliding window is the same as the proportion

of genes to eQTL peaks across the whole genome, i.e. that the number of eQTLs can be

explained simply by local gene density. Sliding windows for which the null hypothesis is

rejected, thus with a significant eQTL excess or deficiency compared to gene number, are

identified (chi-squared test p-value < 0.0001).

Finally, sliding windows with (i) the number of eQTL peaks per cM are above the

permutation threshold and (ii) significant eQTL excess compared to gene number, are

called “unbiased” eQTL hotspots. Adjacent sliding windows that meet the specified

hotspot criteria are merged to form larger hotspot regions. Three different sets of hotspots

are identified, namely hotspots based on “all eQTLs”, “cis-eQTLs only” and “trans-eQTLs

only”.

Determining enriched GO-terms per eQTL hotspot

The last module performs a GO over-representation analysis on each identified hotspot

using the TopGO R package (Alexa and Rahnenfuhrer, 2010). TopGO was ideal for

incorporation within the Galaxy workflow, since (i) it is it is a script-based R package,

instead of a web-based tool, and (ii) it is not species-specific, i.e. one can provide an

independent “gene2GO map file” including genes from any species, which can be generated

from external information. A “gene2GO map file” is required as input for this analysis,

listing all the genes on the array or in the genome (generally it will be the genes in

the “gene positions file” mentioned above) together with their associated GO-terms. A

Fisher’s exact test is applied and significant GO-terms (http://www.geneontology.org)

are listed in an output file, per hotspot. In an additional optional step, each hotspot is

split according to the parental allele associated with higher expression and further GO

over-representation analyses are performed on the resulting subsets.

4.3.3 Input files and use of the eQTL data analysis pipeline

The input files that were used for the eQTL analysis in this study are available in the

electronic Appendix. The e-traits file consisted of microarray-based gene expression pro-

files for 30,280 reporters in leaf samples across 100 RILs. These were the back-converted
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intensity expression profiles after removal of flagged reporters from the original set of

42,034 reporters (see section 3.3.2). Functions from Windows QTL Cartographer was

used to convert the linkage map and cross information (see section 4.3.1) into a format

suitable for QTL Cartographer (i.e. a map file and a cross file were generated). eQTL

mapping was performed using the parameters mentioned above for QTL mapping, i.e.

forward and backward stepwise regression (p-value = 0.1), a 2 cM walking speed and

CIM was implemented. The LR threshold for eQTL mapping was set to 11.5.

Since the genome sequences of the two parental maize lines, CML444 and SC Malawi,

were not known, the maize B73 reference genome (RefGen) v2 (Schnable et al., 2009)

was used as a physical map. Sequences of all 10 chromosomes (in FASTA format) were

downloaded from the maizesequence.org FTP site (http://ftp.maizesequence.org/

current/). The chromosome length file was constructed with this information; it con-

sisted of the base pair (bp) length of each chromosome in order to assist in linking the

genetic and physical maps. To generate the markers file (for which cM and bp positions

of each marker was needed), the MaizeGDB locus lookup tool (Andorf et al., 2010) was

used to extract the physical positions of most markers. In cases where the physical co-

ordinates on the B73 genome sequence were not available, primer or marker sequences

were downloaded from MaizeGDB (http://www.maizegdb.org) and located on the maize

B73 reference genome v2.0 using the basic local alignment search tool (BLAST) (Altschul

et al., 1990).

The gene positions file consisted of the start and end bp positions, on the B73 RefGen

v2 genome sequence, of the gene models representing each e-trait reporter. The reporter

positions were necessary for classification of eQTLs as cis or trans. BLASTN results of

the 42,034 60-mer microarray reporter sequences were used to assign the reporters into

six genomic annotation groups (Chapter 2; Coetzer et al., 2011). Information on the

reporters in the following annotation groups were included (32,937 reporters) in the file:

“annotated by sense gene model”; “annotated by antisense gene model”; “annotated by

gDNA” (reporters without a working gene set (WGS) transcript hit); and “annotated

by EST” (in which case the EST from which the reporter was designed, but not the

reporter itself, has a WGS transcript hit). Reporters in the “ambiguous annotation” and

“inconclusive annotation” groups were excluded (9,097 reporters), since no single gene

position could be assigned for these reporters. Therefore, the reporter positions of 32,937

http://www.maizegdb.org
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reporters were included in the gene positions file.

For eQTL hotspot identification, two 2 cM bins per sliding window were selected. This

resulted in 4-6 cM sized sliding windows. The average cM size of an eQTL region was 10.9

cM. Thus a full eQTL region was mostly not included in a 4-6 cM sized sliding window,

however a significant part of each eQTL region surrounding its peak was included.

In order to generate a suitable “gene2GO mapping” input file for GO enrichment anal-

ysis, the “Zea mays V5a” GO annotation file was downloaded from the AgriGO (a web-

based GO analysis toolkit for the agricultural community) website (http://bioinfo.

cau.edu.cn/agriGO/). This file consisted of maize gene IDs annotated with GO-terms.

According to the reporter�gene model annotations from Coetzer et al. (2011), GO-terms

were assigned to the matching Agilent reporter IDs. All the genes that were represented

on the array (the genes in the “gene positions file” mentioned above) together with their

associated GO-terms were included in the gene2GO mapping file.

4.3.4 Overlap analysis between QTLs and eQTLs

An eQTL was said to overlap a GLS severity QTL if it spanned at least one common

2 cM bin. A customised python script was developed to extract the QTL-overlapping

eQTLs and the gene expression profiles of the genes to which these eQTLs belonged.

Genes with cis-eQTLs that overlapped the GLS severity QTLs were identified as

candidates that could be responsible for the respective GLS severity QTLs. Overlapping

cis-eQTLs (per GLS severity QTL) were divided into two groups, based on the parental

allele associated with higher expression. The Pearson correlation coefficient of each cis-

eQTL gene’s expression profile with the GLS severity scores was calculated and genes

with an associated p-value < 0.01 (experiment-wise) were identified as the best candidates

(Tables S4.1 and S4.2 in the electronic Appendix). The null hypothesis in each case stated

that there was no linear relationship between the cis-eQTL gene’s expression profile and

the GLS severity scores, i.e. that the value of the Pearson correlation coefficient was zero.

In cases where the p-value was significantly small, this null hypothesis was rejected and

a significant correlation was inferred.

Genes with trans-eQTLs that overlapped the GLS severity QTLs were identified as

candidates involved in the mechanisms that might explain the respective GLS severity

QTLs. Overlapping trans-eQTLs (per GLS severity QTL) were also divided into two

http://bioinfo.cau.edu.cn/agriGO/
http://bioinfo.cau.edu.cn/agriGO/
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groups, based on the parental allele associated with higher expression. The Pearson

correlation coefficient of each trans-eQTL gene’s expression profile with the GLS severity

scores were calculated and genes with an associated p-value < 0.01 (experiment-wise) were

identified. The null hypothesis in each case stated that there was no linear relationship

between the trans-eQTL gene’s expression profile and the GLS severity scores. GO

enrichment analysis were performed on different sets of overlapping trans-eQTL genes

(Table S4.3 in the electronic Appendix).

4.3.5 Overlap analysis between QTLs and trans-eQTL hotspots;

and gene regulatory network reconstruction

A trans-eQTL hotspot was said to overlap a GLS severity QTL if it spanned at least

one common 2 cM bin. Note that a gene belonged to a trans-eQTL hotspot if it had a

trans-eQTL with a peak in the identified hotspot interval. After the QTL-overlapping

trans-eQTL hotspots were identified, the eQTLs within each of the identified hotspots

were extracted (output from the eQTL data analysis pipeline) and a customised python

script was used to extract the gene expression profiles of the genes affected by these

eQTLs. For each identified hotspot, the trans-eQTLs were split into two groups based

on the parental allele associated with higher expression and the trans-eQTL genes whose

gene expression profiles significantly correlated to the GLS severity scores were extracted

for further analysis (p-value < 0.01). In order to identify genes that potentially regulated

the identified groups of genes with trans-eQTLs, genes with cis-eQTL peaks within the

same hotspot intervals were identified. These cis-eQTL genes were split into two groups

based on the parental allele associated with higher expression and cis-eQTL genes whose

gene expression profiles significantly correlated to the GLS severity scores were extracted

for further analysis (p-value < 0.01). This overlap analysis was considered a “refined”

analysis, since the bulk of genes included in the analysis was a subset of the previously

mentioned overlap analysis (see section 4.3.4).

Subsequently, for each hotspot, the candidate genes with cis-eQTLs for which a spe-

cific allele (e.g. CML444) was associated with increased expression and the candidate

genes with trans-eQTLs for which the same allele was associated with increased expres-

sion, were grouped together as a basis for regulatory network reconstruction. For each

group, the Pearson correlation coefficients (and associated p-values) between the gene
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expression profiles of each identified cis-eQTL gene and all the trans-eQTL genes in its

group were calculated. The null hypothesis that was tested for each pair of gene ex-

pression profiles stated that there was no linear relationship between the gene expression

values of the cis- and trans-eQTL genes. In cases where the p-value was < 0.00001, this

null hypothesis was rejected and a significant correlation between the gene expression

profiles was inferred.

Therefore, for each identified hotspot per parental allele associated with higher ex-

pression, cis- and trans-eQTL genes with significantly correlated gene expression profiles

were included in “regulatory network” models per GLS severity QTL, where cis-eQTL

genes were potential regulators of trans-eQTL genes (Figures 4.9, 4.10, 4.11, 4.12, 4.13,

4.14, 4.15). The R package igraph (Csardi and Nepusz, 2006) was used to create directed

graphs for visualisation of the putative regulatory networks. Nodes represented genes

and directed edges connected genes with cis-eQTLs to highly co-expressed (correlated)

genes with trans-eQTLs. The phenotypic trait “GLS severity” was included as an ad-

ditional node in each network. Black dotted lines were used to indicate a remarkably

strong correlation (p-value <0.00001) between GLS resistance or susceptibility and an

eQTL gene’s expression profile (the previous filter for correlation between GLS severity

and the eQTL gene expression profiles was: p-value <0.01). No annotation filters were

applied before the regulatory networks were constructed. To assist with interpretation,

predefined functional categories from MapMan, distinguished by colour, were used to

group eQTL genes per network. Table 4.7 gives the functional categories as well as the

colours that were assigned to each category.

4.3.6 Functional annotation and GO over-representation analysis

Out of the 30,280 e-traits (that remained after removal of flagged reporters from the

original set of 42,034 reporters), 23,848 (78.8%) were assigned a single maize gene ID

according to the Maize Microarray Annotation Database (reporters in annotation groups

“annotated by sense gene model”, “annotated by antisense gene model” and “annotated

by EST” (Chapter 2; Coetzer et al., 2011)). A Z. mays annotation file, which was released

as part of Phytozome version 7.0 (http://www.phytozome.net), was downloaded from

the FTP site. The file included the best Arabidopsis TAIR10 and rice BLAST hits for

each maize gene. The resulting Arabidopsis and rice hit descriptions together with the

http://www.phytozome.net


CHAPTER 4. GLOBAL EQTL ANALYSIS 156

BLAST2GO description for each gene (which was extracted from the Maize Microarray

Annotation Database), were used to formulate a final functional annotation per reporter.

TopGO was used to identify enriched GO-terms per eQTL hotspot as part of the

eQTL data analsis pipeline (see section 4.3.2). However, due to more specific functional

annotations that are available for Arabidopsis (compared to maize), BiNGO (Maere et al.,

2005) was also used in additional analyses to identify enriched GO-terms in order to

determine whether genes in the same trans-eQTL hotspots (or sub-groups) were involved

in the same biological processes. “Best BLAST hit” IDs from Phytozome corresponding

to the relevant maize genes were used as input to the BiNGO analyses. Default BiNGO

parameters were used and a reference set of 11,291 Arabidopsis IDs corresponded to the

30,280 e-trait reporters. As an alternative to using the full GO hierarchy, BiNGO provides

several GOSlim ontologies that are organism-specific slimmed-down versions of the full

GO hierarchy. GOSlim ontologies generally give a broad overview of the ontology content

without the detail of the specific fine-grained terms. In cases where the full GO hierarchy

did not produce significantly enriched GO-terms, additional BiNGO analyses based on

the plant GOSlim ontology were performed. All BiNGO GO enrichment output tables

list the enriched GO-terms from the three categories (i.e. biological process, molecular

function and cellular component) together in one table, sorted by significance (Table S4.3

in the electronic Appendix and Table 4.6).

In addition, MapMan was used to functionally classify genes into predefined bins

(Thimm et al., 2004). MapMan’s classification, together with manual revision, were used

to group eQTL genes into functional categories. The MapMan ontology comprises a set

of 34 tree-structured bins, describing a variety of cellular processes.

4.4 Results and discussion

4.4.1 Identification of QTLs for a C. zeina-infected maize RIL

population

A phenotypic QTL analysis was performed to identify the regions of the genome where

genetic variation explained GLS disease severity differences in the CML444⇥SC Malawi

RIL population. From the GLS disease severity data that was collected at 92, 99, 109
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and 116 days after planting (DAP) from the field trial at Baynesfield Estate (2008/2009

season), GLS disease severity QTLs were mapped. Note that the samples for gene ex-

pression profiling (and subsequent eQTL analysis) were collected at 103 DAP, from the

same field trial. Eight consensus QTLs were identified (Table 4.1). For six of the eight

QTLs, CML444 (the more resistant parent) was the parent with the resistance associ-

ated allele, whereas SC Malawi (the more susceptible parent) was the parent with the

resistance associated allele for the other two QTLs (Table 4.1). It was concluded that

complex genetic interactions appeared to lie at the foundation of the C. zeina disease

response in maize.

QTL 9-7 was consistently present in three out of the four ratings (the first three time

points: 92, 99 and 109 DAP) and accounted for 12% of the total phenotypic variation.

QTL 9-7 also had the highest peak LR of 22.99, thus the strongest marker-trait associ-

ation. Interestingly, SC Malawi was the parent with the resistance associated allele for

this QTL even though it is regarded as the more susceptible parent. Since both parents

are neither fully resistant nor fully susceptible, it could be expected that the more resis-

tant parent would be the source of most of the resistance associated alleles, but that the

susceptible parent could also contribute to resistance. QTL 6-13 and QTL 10-10 were

detected in the latest two ratings (109 and 116 DAP). These QTLs accounted for 18% and

14% of the total phenotypic variation, respectively. QTL 10-10 had the second largest

peak LR of 19.67 and CML444 was the parent with the resistance associated allele. QTL

6-13 had a peak LR of 17.86 and SC Malawi was the parent with the resistance associated

allele. QTL 3-3, QTL 3-14 and QTL 5-3 were detected in the first and either the second

or third ratings. These QTLs accounted for 9%, 10% and 7% of the total phenotypic

variation and had below average peak LRs of 12.68, 16.15 and 12.82, respectively (the

average for all eight QTL was 16.24). QTL 4-11 and QTL 9-5 were only detected in the

earliest rating (92 DAP), accounted for 7% and 9% of the total phenotypic variation,

and had peak LRs of 14.10 and 13.67, respectively. For the five QTL lastly mentioned,

CML444 was the parent with the resistance associated allele.

The lookup table (available in the electronic Appendix), which is an output from of

eQTL data analysis pipeline (see section 4.3.2), was used to proportionally estimate the

start, peak and end bp positions of each GLS severity QTL region. QTL 9-5 spanned

the largest region of 36 Megabase (Mb), whereas the remaining seven QTLs spanned
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regions of between 3.5 and 12 Mb. However, on the cM scale QTL 9-5 spanned a region

of only 15.08 cM, which is only slightly more than the average of 14.44 cM across the

eight QTL. On this scale, QTL 3-14 spanned the largest region of 20.35 cM (12.27 Mb)

and the remaining seven QTLs spanned regions of between 8.54 and 18.38 cM.

4.4.2 Global analysis of eQTLs in C. zeina-challenged leaves us-

ing the CML444×SC Malawi maize RIL population

Global eQTL analysis was performed to identify regions of the genome where genetic vari-

ation explained gene expression differences in the CML444⇥SC Malawi RIL population.

Subsequent analyses were aimed at finding overlap between GLS severity QTLs and either

individual eQTLs or eQTL hotspots. The overlap between GLS severity QTLs and cis-

eQTLs might reveal candidate genes causing the respective GLS severity QTLs, whereas

the overlap between GLS severity QTLs and trans-eQTLs might reveal mechanisms con-

ferred by the respective GLS severity QTLs. Furthermore, when a trans-eQTL hotspot

overlaps a GLS severity QTL, one could hypothesise that there may be a polymorphism

in a gene that affects the expression of many related genes and thereby underlies a GLS

severity QTL.

Before the above-mentioned analyses could be carried out, the following main steps

were necessary: (i) identification of eQTLs for the 30, 280 e-traits, (ii) classification of the

resulting eQTLs as cis or trans, and (iii) identification of eQTL hotspots. For this pur-

pose, an eQTL data analysis pipeline was developed as part of this study and developed

as a workflow in the online data analysis platform Galaxy (Figure 4.2).

eQTL identification using the eQTL data analysis pipeline

Out of the 30,280 initial reporters, 24,732 (81.7%) were identified to belong to a single

genomic location (these were not part of the “ambiguous” or “inconclusive” annotation

groups from Coetzer et al., 2011). Furthermore, the 24,732 reporters represented 17,250

unique maize gene models (according to the analysis by Coetzer et al., 2011; see Chapter

2). Thus approximately 30% of the 63,331 protein coding gene models in the working

gene set (WGS) and 40% of the 39,656 gene models in the functional gene set (FGS) was

included as e-traits in this study (FGS is a subset of the WGS in which transcripts that

are “probable pseudogene”, “possible transposon”, “contamination” or “low confidence”
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have been filtered out). Therefore, at least 60% of the genes in the maize genome were

not included in this study.

From the 30,280 input reporter expression profiles across the individuals in the RIL

population i.e. e-traits, 31,549 eQTLs were identified based on a LR threshold of 11.5

(LOD=2.5). These eQTLs explained the expression of 18,000 reporters (thus no eQTLs

were identified for the remaining 12,280). Out of the 18,000 reporters with eQTLs, 15,006

were identified to belong to a single genomic location representing 12,035 unique maize

gene models (Coetzer et al., 2011; see Chapter 2). Therefore, eQTLs were identified for

less than 30% of the maize gene models. Approximately 80% of the reporters had only

one eQTL, whereas 20% of the reporters’ expression profiles were affected by up to nine

eQTLs.

Cis/trans classification using the eQTL data analysis pipeline

Before eQTLs could be classified as cis or trans, the “lookup table” (available in the

electronic Appendix; see section 4.3.2 on page 149) was used to identify the 2 cM bin

where each Agilent reporter was located and subsequently to proportionally estimate a cM

position per Agilent reporter. An eQTL that was located within 5 cM from the location

of its linked gene was classified as cis and an eQTL that was located further than 5 cM

from the location of its linked gene, often on a different chromosome, was classified as

trans. Table 4.2 gives a summary per chromosome, of the numbers of markers, 2 cM bins,

reporters as well as cis- and trans-eQTLs. The average number of 2 cM bins (sometimes

smaller than 2 cM) per chromosome was 101 and the bins had an average physical size

of 2 Mb.

Seventeen percent of the identified eQTL (5,258/31,549) could not be classified due

to uncertainty concerning the genomic location of its linked genes, i.e. the reporters to

which these eQTL belonged were part of the “ambiguous” or “inconclusive” annotation

groups from Coetzer et al. (2011). One-fifth of the classifiable eQTLs were identified as

cis-eQTLs: 19% were cis-eQTLs and 81% were trans-eQTLs. Of the 15,006 reporters

with classifiable eQTLs, 12% had only cis-eQTLs, 67% had only trans-eQTLs and 20%

had cis- and trans-eQTLs.

Various different ways of determining whether a gene is locally regulated were pre-

viously reported. For the studies that were compared in section 1.5 on page 19, most
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authors classified eQTLs as cis if the gene whose expression profile is affected by the

eQTL was less than a fixed cM distance away from the eQTL. Popular intervals were 3.5

cM (West et al., 2007), 5 cM (Potokina et al., 2008; Swanson-Wagner et al., 2009) and

10 cM (Holloway and Li, 2010). West et al. (2007) reported that using a 5 cM distance

instead of a 3.5 cM distance had minimal effect on the number of cis-eQTLs identified.

Kloosterman et al. (2012) used the same linkage group as a criterion for identifying cis-

eQTL. Keurentjes et al. (2008) and Wang et al. (2010b) calculated support intervals per

eQTL and when the gene’s position coincided with the support interval, classified it as

cis-acting.

For the eQTL dataset in the current study, different rules for eQTL classification

were applied to test the effect on the percentage cis-eQTLs detected (data not shown).

Classifying eQTLs as cis if its linked gene’s position was less than 1 cM away from the

eQTL peak versus if its linked gene’s position was less than 5 cM away from the eQTL

peak, resulted in a 2% difference in the percentage of cis-eQTLs detected. Furthermore,

classifying eQTLs as cis if its linked gene’s position was less than 1 cM away from the

eQTL peak versus if its linked gene’s position is on the same chromosome than the eQTL,

resulted in a 10% difference in the percentage of cis-eQTLs detected. Thus different rules

for eQTL classification for this dataset resulted in a change in ratio between cis- and

trans-eQTLs. A decision was made to continue with the criterion for classification set to

a distance of 5 cM.

Figure 4.3 on page 194 gives a scatter plot of the genomic relationships between

the eQTL positions and the corresponding e-trait gene positions. The eQTL and e-

trait positions corresponded to the 1009 bins (from the lookup table) across the genome.

The cis-eQTLs (on the diagonal) appeared to be roughly evenly spread throughout the

genome. Horizontal bands indicate gene-rich regions, for example the region in the middle

of chromosome 2; and vertical bands indicate eQTL-rich regions, for example at the end

of chromosome 5.

It was hypothesised that the cis-eQTLs were mainly larger-effect polymorphisms,

whereas trans-eQTLs were mainly smaller-effect polymorphisms. This hypothesis was

based on three reasons: (i) cis-eQTL sequence polymorphisms (e.g. in a promoter) have

a direct influence on expression of a gene giving rise to a cis-eQTL and trans-eQTLs

are caused by a polymorphism located elsewhere in the genome (e.g. in a regulatory
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factor) (Hansen et al., 2008); (ii) gene expression of most genes are regulated by multiple

factors and thus a polymorphism in one regulatory factor might only result in a small

change in the expression of genes controlled in trans by that polymorphism; and (iii)

the polymorphism underlying a trans-eQTL typically affects numerous other genes and

could therefore be pleiotropic. Large-effect mutations in pleiotropic genes are likely to be

deleterious and, as such, there might be a constraint on the effect size of trans-eQTL loci.

The hypothesis was tested by comparing for cis- and trans-eQTLs: (i) the average peak

LR, which gives the likelihood that an eQTL truly exists in the region of the marker; and

(ii) the average proportion of variation explained, which gives an indication of the relative

importance of an eQTL in influencing gene expression variation for a specific e-trait. In

this study, the average peak LR was 36 for cis-eQTLs and 15.6 for trans-eQTLs; and

the average proportion of variation explained was 29% for cis-eQTLs and 13% for trans-

eQTLs. Since the average peak LR and proportion of variation explained were more than

double for cis-eQTLs than for trans-eQTLs, this result confirmed the hypothesis that

cis-eQTLs were mainly larger-effect polymorphisms, whereas trans-eQTLs were mainly

smaller-effect polymorphisms.

It could further be hypothesised that most of the large-effect (mainly cis) eQTLs were

detected in this study, but that the numerous small-effect eQTLs (mainly trans) remained

undetected. An increase in the number of RILs included in the analysis and the number

of replicates performed might result in more statistical power for the identification of

even more small-effect eQTLs (Mackay, 2001).

Identification of trans-eQTL hotspots using the eQTL data analysis pipeline

Figure 4.4 gives the frequency distribution of genes, cis- and trans-eQTLs per sliding

window bin across the 10 chromosomes. Two 2 cM bins per sliding window were selected

and as a result the sliding window sizes varied between 4 and 5.9 cM (since when one of

the two bins were smaller that 2 cM a third was added). This figure highlights gene-rich

regions as well as potential trans-eQTL hotspots across the genome. Also, there appear

to be fewer cis-eQTL hotspots than trans-eQTL hotspots.

The first aim towards identifying significant trans-eQTL hotspots was to identify

those sliding windows for which the number of trans-eQTLs per cM was significantly

higher than expected by chance. A permutation approach was used to calculate this
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threshold, indicated by the horizontal line in Figure 4.5 (the calculated threshold for

trans-eQTLs was 27). Since these apparent trans-eQTL hotspots may reflect regions of

the maize genome with little recombination or higher gene density, and therefore more

genes per cM than elsewhere in the genome, the second aim was to determine whether gene

density was an explanatory factor for trans-eQTL hotspots. The proportion of reporters

to trans-eQTLs was 0.6:0.4. Thus on average, for every three reporters, two trans-eQTLs

were expected. The null hypothesis, that the proportion of genes to eQTL peaks in a

specific sliding window is the same than the proportion of genes to eQTL peaks across

the whole genome, was tested for each sliding window. Finally, sliding windows where the

number of eQTLs per cM was above the permutation threshold and with significant eQTL

excess compared to reporter number (chi-squared test p-value < 0.0001), were declared

“unbiased” eQTL hotspots. Thirty-two significant trans-eQTL hotspots were identified

and are marked in red in Figure 4.5. Table 4.3 gives a summary of the 32 trans-eQTL

hotspots. The average size of a trans-eQTL hotspot was 6.4 cM or 4.2 Mb.

A significant directional bias was evident for three quarters of the 32 trans-eQTL

hotspots (Table 4.3), such that the same parental allele was associated with higher ex-

pression for most of the transcripts in with a hotspot (Pearson’s chi-squared test was

used to test for excess of positive alleles from one parent; p <0.05). For 11 trans-eQTL

hotspots, the CML444 allele was associated with higher expression (significant positive

effect); and for 13 other hotspots, the opposite allelic effect was observed (in this case

either the SC Malawi allele significantly increased accumulation or the CML444 allele

significantly decreased accumulation). The directional bias for the hotspots was in con-

trast to the global average for the 31,549 eQTLs, where 50.6% of had a positive CML444

allelic effect and 49.4% had a positive SC Malawi allelic effect (data not shown).

The TopGO package in R was employed via the eQTL data analysis pipeline to identify

significantly over-represented GO-terms per trans-eQTL hotspot. The average number

of enriched GO-terms per hotspot was 13.2 with an unadjusted p-value < 0.01, and 0.3

with an adjusted p-value < 0.05 (Table 4.3). GO-terms that are enriched in lists of genes

that share a trans-eQTL hotspot may reveal the involvement of these genes in a shared

biological process. Since gene expression data of C. zeina-infected maize plants was used

in the eQTL analysis, it was expected that some of the eQTLs and eQTL hotspots would

reveal processes associated with the GLS disease response. However, it should be borne
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in mind that some trans-eQTL hotspots may reflect transcriptional responses that are

unrelated to defences against GLS. Also, some aspects of leaf development and structure

may in fact indirectly affect resistance/susceptibility and one would not recognise it as

resistance associated. The genes with trans-eQTLs per hotspot can also be exported

from Galaxy and imported to other tools, such as BiNGO, for GO enrichment analysis.

4.4.3 Overlap analysis between QTLs and eQTLs to identify

genes and pathways involved in the GLS disease response

QTLs may define relatively large regions of the genome and the identification of genes

responsible for the respective QTLs may be difficult. In the current study, there are

on average 508 gene models per GLS severity QTL interval. A gene with a cis-eQTL

is generally a good candidate for also explaining the phenotypic QTL, assuming that

the polymorphism responsible for the cis-eQTL is also responsible for the phenotypic

QTL. Therefore, an overlap analysis of GLS severity QTLs and cis-eQTLs was carried

out to narrow down and prioritise the list of causal candidate genes explaining the GLS

disease response. In addition, the overlap between phenotypic QTLs and trans-eQTLs

could reveal the mechanisms conferred by the respective phenotypic QTLs. This is easiest

understood for the case where a gene causing the phenotypic QTL is a transcriptional

regulator that would influence the expression levels of downstream genes with trans-

eQTLs at the position of the regulator (and hence also of the phenotypic QTL). However,

a polymorphism in almost any gene can affect many other genes; it does not have to be a

transcriptional regulator. Functional enrichment analyses of the genes with trans-eQTLs

that overlapped the respective GLS severity QTLs might reveal these mechanisms.

The top section of Table 4.4 gives a summary of the numbers of gene models and

eQTLs that overlapped each of the eight GLS severity QTLs. Sixteen percent (640/4,060)

of the eQTLs that overlapped the eight GLS severity QTLs could not be classified (due

to uncertainty concerning the genomic location of its linked genes). Furthermore, 19%

of the classifiable eQTLs that overlapped the GLS severity QTLs were identified as cis-

eQTLs and 81% were trans-eQTLs. These results were similar to the results for the full

set of eQTLs across the entire genome (see section 4.4.2). On average, there were 508

gene models per GLS severity QTL and approximately 18% of these had cis-eQTLs.

Figure 4.6 gives an overview of the process that was followed to narrow down the
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candidate genes responsible for and those likely to play a role in GLS disease. Out

of the 63,331 protein coding gene models in the maize B73 RefGen v2 working gene

set (WGS), 17,250 gene models were included as e-traits in the eQTL analysis. These

gene models were represented by 24,732 reporters on the Agilent microarray that were

annotated to belong to a single genomic location (Coetzer et al., 2011). In Figure 4.6, part

(a) considered the full overlap between all GLS severity QTLs and eQTLs (the analysis

discussed in the current section), whereas part (b) focused on the subset of eQTLs with

peaks in the trans-eQTL hotspots that overlapped the GLS severity QTLs (see section

4.4.4). The aim with both analyses was the same, i.e. to identify candidate genes and

pathways (and ultimately to predict regulatory networks) associated with GLS resistance

or susceptibility.

Filtering of cis-eQTL candidates underlying GLS severity QTLs

Assuming that there is an underlying DNA polymorphism that gives rise to a change

in gene expression which in turn affects GLS severity, all reporters with cis-eQTLs that

overlapped the GLS severity QTLs were identified as candidates potentially affecting the

phenotypic trait. A total of 654 reporters with cis-eQTLs, representing 590 gene models

(Figure 4.6 (a)), overlapped the eight GLS severity QTLs (see the electronic Appendix

for a full list of the QTL-overlapping cis-eQTLs). This difference between the number of

reporters and gene models was mainly attributed to reporters in the gDNA annotation

group (see Coetzer et al., 2011) that were not linked to gene models; these could be

classified as cis-eQTLs due to their known position on the genome. A second reason was

that more than one reporter sometimes represented the same gene model.

Further assuming that the allele associated with the trait of interest could be asso-

ciated with higher or lower expression depending on the underlying polymorphism, the

cis-eQTL candidate genes were split into two groups based on whether higher expres-

sion was associated with the allele linked to resistance or susceptibility (Figure 4.6 (a)).

Importantly, for each GLS severity QTL, Table 4.1 stated whether the allele associated

with resistance was inherited from CML444 or SC Malawi; hence in each case the other

parental allele was associated with susceptibility. For convenience in the rest of the text

“QTL 10-10 R”, for example, will be used to refer to the GLS severity QTL (on chro-

mosome 10, starting at marker 10) where the resistance associated allele was associated
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with higher expression (compared to the susceptibility associated allele).

It is generally expected that a causal gene’s expression profile will correlate with the

quantitative trait of interest (Mackay et al., 2009). A significant correlation between a

gene’s expression profile and the GLS severity scores can either be due to a positive or

a negative linear relationship between the gene expression values and the GLS severity

scores. Figure 4.7 uses two examples to illustrate that a negative correlation between a

gene’s expression profile and the GLS severity scores indicates a correlation with GLS

resistance and a positive correlation indicates a correlation with GLS susceptibility. This

is due to low GLS severity scores of 1 meaning resistant and a high GLS severity score of

9 meaning susceptible. Figure 4.7 (a) gives an example of a gene whose expression values

correlate with GLS resistance and Figure 4.7 (b) an example of a gene whose expression

values correlate with GLS susceptibility.

Table S4.1 (in the electronic Appendix) gives the annotations of the 36 reporters (rep-

resenting 35 gene models; Figure 4.6 (a)) where: (i) the susceptibility associated parental

allele was linked with higher expression; (ii) and a significant (p-value < 0.01) correlation

to GLS severity was evident. The predominantly positive correlation coefficients in these

tables confirm that these genes are higher expressed in susceptible plants and lower ex-

pressed in resistant plants. Table S4.2 (in the electronic Appendix) gives the annotations

of the 59 reporters (representing 53 gene models; Figure 4.6 (a)) where: (i) the resis-

tance associated parental allele was linked with higher expression; and (ii) a significant

correlation (p-value < 0.01) to GLS severity was evident. The predominantly negative

correlation coefficients in these tables confirm that these genes are higher expressed in re-

sistant plants and lower expressed in susceptible plants. The correlation analysis brought

the number of candidate causal gene models with cis-eQTLs down from an average of

74 to an average of 11 per GLS severity QTL (Figure 4.6 (a)). The middle section of

Table 4.4 gives a breakdown of the numbers of cis-eQTLs that overlapped each GLS

severity QTL after: (i) it was divided into groups based on the parental allele associated

with higher expression; and (ii) genes that significantly correlated to GLS severity were

identified (p-value < 0.01).
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Filtering of trans-eQTL candidates underlying GLS severity QTLs

Genes with trans-eQTLs that overlapped the GLS severity QTLs were identified as can-

didate genes involved in the biological processes, or mechanisms that might explain the

respective GLS severity QTLs. A total of 2,766 reporters with trans-eQTLs (Table 4.4),

representing 2,636 gene models (Figure 4.6 (a)), overlapped the eight GLS severity QTLs

(see the electronic Appendix for a full list of the QTL-overlapping trans-eQTLs). Again

assuming that the allele associated with the trait of interest was also associated with

higher expression depending on the underlying polymorphism, the trans-eQTL genes

were split into two groups based on allele associated with higher expression (Figure 4.6

(a)).

Since a causal gene’s expression profile was expected to correlate (positively or neg-

atively) with the quantitative trait of interest, the expression profiles of the response

genes being regulated by the causal gene can also be expected to correlate with the trait

of interest. Trans-eQTL candidate genes with a significant correlation to GLS severity

were identified (Figure 4.6 (a)) and a GO over-representation analysis was performed on

various sets of trans-eQTL genes that overlapped the respective GLS severity QTLs to

elucidate the mechanisms that these genes were involved in (Table S4.3 in the electronic

Appendix). The bottom section of Table 4.4 gives a breakdown of the numbers of trans-

eQTLs that overlapped each GLS severity QTL after: (i) it was divided into groups based

on the parental allele associated with higher expression; and (ii) genes that significantly

correlated to GLS severity were identified (p-value < 0.01).

No direct and obvious relationships were identified between the annotations of the cis-

eQTL candidate genes (see Tables S4.1 and S4.2) and the biological processes identified

in the GO enrichment analysis (see Tables S4.3), for the respective GLS severity QTLs.

This could be due to a few reasons regarding the “true regulatory gene”: it could be that

(i) it was not present on the microarray; (ii) its cis-eQTL effect was too small, so that

it was not detected as an eQTL; (iii) its gene expression profile did not correlate well

with GLS severity profile across the RILs (not a significant correlation); (iv) it was not

well-annotated (or it was mis-annotated), so that it was not recognised in Tables S4.1 and

S4.2; or (v) it was recognised in Tables S4.1 and S4.2, but it is a transcriptional regulator

with multiple functions or one that indirectly regulates specific processes. Finally it is

likely that some GLS severity QTLs are caused by polymorphisms that do not give rise
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to expression variation, but rather to variation in gene splicing or protein sequence.

4.4.4 Exploiting trans-eQTL hotspots to identify candidate genes

and pathways that play a role in the GLS disease response

The trans-eQTL hotspots that were previously identified using the eQTL data analysis

pipeline (Section 4.4.2), were hypothesised to each disclose a significant number of re-

sponse genes regulated by one or more regulatory genes within the respective hotspot

loci. The hotspot regions that overlapped the GLS severity QTLs were found to be

considerably smaller than the GLS severity QTL intervals (Figure 4.8); and only genes

with trans-eQTL peaks in a hotspot region were considered part of the hotspot, since

the eQTL peak can be considered the most likely position of an eQTL causing polymor-

phism. Therefore, a “refined” analysis based on only those genes with trans-eQTL peaks

in each QTL-overlapping hotspot region was performed to gain a more focused perspec-

tive regarding the mechanisms and pathways that might affect GLS severity (Figure 4.6

(b)).

Additionally, it was hypothesised that the polymorphism(s) explaining each overlap-

ping trans-eQTL hotspot might be cis variation in a gene that affects the expression of

many related genes and thereby underlies a GLS severity QTL. Consequently, genes with

cis-eQTL peaks in the same confined hotspot regions were also investigated. The iden-

tified genes might suggest a “model” per QTL-overlapping trans-eQTL hotspot, which

could suggest hypotheses of which genes with cis-eQTLs potentially control processes or

mechanisms responsible for GLS resistance or susceptibility, respectively.

The presence of trans-eQTL hotspots overlapping phenotypic QTLs, suggest possible

epistatic interactions among these QTLs. However, no significant epistatic effects between

any pairwise combination of GLS severity QTL was observed (data not shown) following

an assessment by using the Multiple Interval Mapping (MIM) utility in Windows QTL

Cartographer (Balint-Kurti et al., 2008).

Filtering of genes with eQTLs in QTL-overlapping trans-eQTL hotspots

Out of the 32 genome-wide trans-eQTL hotspots (Table 4.3), five were identified to

overlap GLS severity QTLs. The five hotspots of interest were the last hotspots on

chromosomes 3, 4 and 10 and the first two hotspots on chromosome 9 (Figure 4.5). All



CHAPTER 4. GLOBAL EQTL ANALYSIS 168

five trans-eQTL hotspot regions were less than half the size of its overlapping GLS severity

QTL region (Figure 4.8).

A similar strategy than the one implemented for the QTL-eQTL overlap analysis

(Figure 4.6 (a)), was also implemented to narrow down the genes with eQTL peaks in

the QTL overlapping hotspot regions (Figure 4.6 (b)). A total of 1,375 reporters (Table

4.5), representing 1,321 gene models, were identified with trans-eQTL peaks in the five

trans-eQTL hotspots that overlapped the GLS severity QTLs. The difference between

the number of reporters and the number of gene models, in this case, was mainly due

to genes with trans-eQTLs in more than one QTL overlapping hotspot. The trans-

eQTL candidate genes were split into two groups: for 494 the resistance associated allele

was associated with higher expression; and for 827 the susceptibility associated allele was

associated with higher expression (Figure 4.6 (b)). For convenience, trans-eQTL hotspots

were named such that “HS 10-10 R” referred the trans-eQTL hotspot (on chromosome 10,

starting at marker 10 on QMap 2.0) overlapping a GLS severity QTL where the resistance

associated allele (that was determined by the overlapping GLS severity QTL; Table 4.1)

was associated with higher expression.

After filtering for trans-eQTL genes with a significant correlation to GLS severity

(p-value < 0.01), the number of eQTLs where the resistance associated allele was asso-

ciated with higher expression dropped to 129 reporters (representing 126 gene models)

and the number of eQTLs where the susceptibility associated allele was associated with

higher expression dropped to 261 reporters (representing 256 gene models). The bottom

section of Table 4.5 gives a breakdown per QTL-overlapping trans-eQTL hotspot, of the

numbers of trans-eQTLs with peaks in the hotspot regions, after (i) it was divided into

groups based on the parental allele associated with higher expression; and (ii) genes that

significantly correlated to GLS severity were identified (p-value < 0.01). Interestingly,

for each of the identified overlapping hotspots, more trans-eQTL genes had an increased

expression positively associated with the allele of the susceptible plant compared to the

allele of the resistant plant (bottom section of Table 4.5).

A GO overrepresentation analysis was performed on sets of trans-eQTL genes that be-

longed to the respective QTL-overlapping trans-eQTL hotspots, to identify the biological

processes that these genes were involved in (Figure 4.6 (b)). Over-represented GO-terms

were identified for three out of the five hotspots (Table 4.6). The 121 genes with trans-



CHAPTER 4. GLOBAL EQTL ANALYSIS 169

eQTLs that were regulated from HS 9-6 S whose gene expression profiles significantly

correlated to GLS severity (Table 4.5), were enriched for cell wall-related genes (“HS 9-6

S cor” in Table 4.6); similar to the genes with trans-eQTLs in “QTL 9-5 S cor” (Table

S4.3). Also, the 74 trans-eQTL genes that were regulated from HS 10-10 S whose gene

expression profiles significantly correlated to GLS severity (Tables 4.5), were enriched for

phenylpropanoid biosynthesis-related genes (“HS 10-10 S cor” in Table 4.6); similar to

the genes with trans-eQTLs in “QTL 10-10 S cor” (Table S4.3). These results were not

unexpected, since 84% of the trans-eQTLs in “QTL 10-10 S cor” were also in “HS 10-10

S cor”; and the trans-eQTLs in “QTL 9-5 S cor” and in “HS 9-6 S cor” overlapped with

95%.

Genes with cis-eQTL peaks in the trans-eQTL hotspot intervals could explain the

expression of the target genes with trans-eQTLs at the hotspot loci. A total of 132 re-

porters (representing 125 gene models) with cis-eQTL peaks in the 5 QTL-overlapping

trans-eQTL hotspots were identified (Table 4.5). Finally, 14 reporters (representing 14

gene models) and 9 reporters (representing 9 gene models) with the resistance and sus-

ceptibility associated alleles, respectively, linked with higher expression were identified to

significantly correlate with the GLS severity scores (Figure 4.6 (b)). The middle section

of Table 4.5 gives a breakdown per QTL-overlapping trans-eQTL hotspot, of the num-

bers of cis-eQTLs with peaks in the hotspot regions, after (i) it was divided into groups

based on the parental allele associated with higher expression; and (ii) genes significantly

correlated to GLS severity were identified (p-value < 0.01).

Reconstruction of gene regulatory networks

“Regulatory networks” for GLS resistance and susceptibility were constructed per QTL-

overlapping trans-eQTL hotspot. Nodes represented reporters (transcripts) with eQTL

peaks in the hotspot interval and directed edges connected genes with cis-eQTLs to

highly co-expressed (correlated) genes with trans-eQTLs. Steps in the construction of

the regulatory networks per GLS severity QTL (Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14

and 4.15) are given below.

Genes with cis- and trans-eQTL peaks in the QTL-overlapping trans-eQTL hotspot

regions were identified (see the sub-sections above). For each hotspot, the cis-eQTL

genes for which a specific allele (e.g. CML444) was associated with increased expression
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and the trans-eQTL target genes for which the same allele was associated with increased

expression, were extracted for regulatory network reconstruction. This step assumed

that when a specific allele was present (e.g. CML444), more mRNA transcripts of the

regulator resulted in more mRNA transcripts of each of the target genes. Thus, cases

where negative regulation have a positive effect, for example, will not be detected in this

analysis.

Candidate genes were filtered so that only cis- and trans-eQTL genes that positively

correlated (p-value <0.01) with either GLS resistance or susceptibility were included

(the number of filtered eQTL genes per hotspot are given in Table 4.5). An additional

filter was applied to ensure that “regulators” and “target genes” were co-expressed; the

cis-eQTL genes were only linked to trans-eQTL genes when significantly correlated gene

expression profiles (p-value <0.00001) were observed. As a result of various filtering steps,

it is likely that some information or candidate genes will be lost. Predefined functional

categories, distinguished by colour, were used to group eQTL genes involved in similar

gene activities per regulatory network (Table 4.7).

QTL 4-11 regulatory network for genes associated with GLS susceptibility

Figure 4.9 and Table 4.8 give the QTL 4-11 regulatory network for genes positively

associated with GLS susceptibility. Fifty-nine percent of the trans-eQTLs that overlapped

QTL 4-11 S (201 eQTLs) had trans-eQTL peaks within HS 4-12 S (118 eQTLs). This

relatively low percentage was mainly due to the hotspot locus that did not entirely overlap

the GLS severity QTL region (Figure 4.8). Twenty percent of the trans-eQTLs with peaks

in HS 4-12 S (24 out of 118) belonged to genes whose expression profiles were significantly

correlated to GLS severity. The network was constructed from 24 genes with trans-eQTL

peaks and four genes with cis-eQTL peaks in HS 4-12 S (Table 4.5).

The four putative regulatory genes with cis-eQTLs encoded: a nudix family hy-

drolase domain-containing protein (A_92_P038137; NX), a protein binding gene with

no other annotation information (A_92_P036978; PB), a DHHC-type zinc finger fam-

ily protein (A_92_P039457; ZF) and a tetratricopeptide repeat (TPR) family protein

(A_92_P040694; TPR). The TPR- and nudix domain-containing proteins had edges

to 79% and 53% of the trans-eQTL genes (the largest subsets), respectively. TPRs

are protein-protein interaction modules involved in regulation of different cellular func-
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tions. Proteins containing TPRs have been identified as essential determinants for signal

transduction pathways mediated by most plant hormones including ABA, ET, cytokinin,

gibberellin and auxin (Schapire et al., 2006). Interestingly, none of the trans-eQTL genes

that were connected to the TPR cis-eQTL gene were part of the “GLS susceptibility”

sub-network (Figure 4.9). Nudix domain-containing proteins are known to hydrolyse

nucleotide derivatives. Ge et al. (2007) identified a nudix domain-containing protein in

Arabidopsis to be a negative regulator of the basal defense response to infection by Pseu-

domonas syringae. They identified that this protein negatively regulates two distinct

defense response pathways, one independent of and the other dependent on NPR1 and

SA accumulation. The DHHC-type zinc finger family protein is involved in regulation

of transcription. The DHHC domain is a highly conserved cysteine-rich motif (Putilina

et al., 1999), which helps to anchor proteins to cell membranes.

ZF seemed to regulate five genes, that were all well-correlated to GLS susceptibil-

ity. The two trans-eQTL genes with the highest GLS susceptibility correlation coeffi-

cients in Table 4.8 with links to the “GLS susceptibility” node as well as to ZF, were

an F-box/kelch-repeat protein SKIP11-like (A_92_P037621; as1) and a glucan endo-

1,3-beta-glucosidase (A_92_P036877; as2). The F-box/kelch-repeat protein SKIP11 is

a component of Skp1 Cullin F-box (SCF) E3 ubiquitin ligase complexes, which may me-

diate the ubiquitination and subsequent proteasomal degradation of target proteins (see

description on page 96). This pathway is essential to many processes in plants including

hormone signalling, flower development and stress responses. Angot et al. (2006) showed

that the phytopathogenic bacterium Ralstonia solanacearum requires F-box-like domain-

containing type III effectors to promote disease on several host plants. They proposed

that these effectors may act by hijacking the host SCF-type E3 ubiquitin ligases in order

to interfere with the host ubiquitin/proteasome pathway and as a result promote dis-

ease. It can be hypotehsised that C. zeina uses a similar strategy to manipulate the host

ubiquitin/proteasome pathway not to act on and degrade fungal toxins, but rather target

specific host substrates. b-glucosidases in plants play important roles in diverse aspects

of plant physiology including plant defense, e.g. formation of intermediates in cell wall

lignification, activation of phytohormones and activation of chemical defense compounds

(Morant et al., 2008).

Four of the trans-eQTL genes in Figure 4.9 were annotated with the GO-term “re-
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sponse to chitin” or “response to fungus”, accroding to Blast2GO. These genes, mostly reg-

ulated by both NX and TPR, were: a glycolipid transfer protein (A_92_P041126; as3);

a serine hydrolase domain containing protein (A_92_P035799; as10); a serine threonine-

protein kinase OXI1-like protein (A_92_P038869; as11); and an uncharacterised protein

family (A_92_P030773; as12). An additional GO-term of as3 was “negative regulation

of defense response”, which aligned with what Ge et al. (2007) reported regarding its po-

tential regulator, NX (see the description above). Since as3 (glycolipid transfer protein)

had links to both the “GLS susceptibility” node and the NX cis-eQTL reporter, it can

be hypothesised that the expression of these two genes (NX and as3) are manipulated by

C. zeina to negatively regulate the basal defense response.

Three defense-related genes with trans-eQTLs that appeared to be regulated by TPR,

likely a post-translational regulator, was respectively involved in hormone metabolism,

reduction-oxidation (redox) and abiotic stress. These genes respectively encoded: a 2-

oxoglutarate and Fe(II)-dependent oxygenase (A_92_P041146; as15), which is involved

in ethylene formation (also linked to NX); a glutaredoxin (A_92_P029218; as7), which is

a catalyst of deglutathionylation/glutathionylation reactions and also involved in stress

response and iron sulfur assembly reactions (Rouhier et al., 2008); and a universal stress

domain containing protein (A_92_P029298; as17).

Therefore, the QTL 4-11 regulatory network associated with GLS susceptibility in-

cluded a few defense-related genes that seemed to be activated in response to fungal

infection. It could be that either (i) the plants activated the correct defense response

genes too late after infection started; (ii) the plants activated genes involved in less effec-

tive strategies against C. zeina, or (iii) the fungus manpulated plant gene expression to

activate genes to either negatively regulate the basal defense response (for example the

NX regulator) or to interfere with host pathway functionality (for example the ubiqui-

tin/proteasome pathway).

QTL 9-5 regulatory network for genes associated with GLS susceptibility

Figure 4.10 and Tables 4.9 and 4.10 give the QTL 9-5 regulatory network for genes

positively associated with GLS susceptibility. More than 95% of the trans-eQTLs in

“QTL 9-5 S” had trans-eQTL peaks within “HS 9-6 S” and 39% of the trans-eQTLs with

peaks in HS 9-6 S (121 out of 311) belonged to genes with genes whose expression profiles
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were significantly correlated to GLS severity (Table 4.5). The network was constructed

from 121 genes with trans-eQTL peaks and three genes with cis-eQTL peaks in HS 9-6

S.

The cis-eQTL gene with the highest correlation to GLS susceptibility (0.4), had links

to 88% of the trans-eQTLs in Figure 4.10 and encoded an EF hand or calmodulin-related

calcium sensor protein (A_92_P037035; EF). The calmodulin (CaM) family is a major

class of calcium sensor proteins, which collectively play a crucial role in cellular signalling

cascades through the regulation of numerous target proteins (Ranty et al., 2006). The

second cis-eQTL gene had links to 61% of the trans-eQTLs in Figure 4.10 and encoded a

currently uncharacterised protein (A_92_P028216; PUF). The last cis-eQTL gene had

links to 46% of the trans-eQTLs in Figure 4.10 and encoded an enoyl-CoA hydratase

(ECH) family protein (A_92_P022781; ECH). ECH proteins are known to catalyse a

step in the beta-oxidation pathway of fatty acid metabolism (Agnihotri and Liu, 2003)

and is unlikely a regulator. Interestingly, none of the cis-eQTL genes were linked with

GLS susceptibility, but the “GLS susceptibility” node had links to 38% of the trans-eQTLs

in the network. Furthermore, 90% of all the trans-eQTL genes with links to the “GLS

susceptibility” node also had links to the EF hand cis-eQTL gene (Figure 4.10).

At least 11 biotic stress-related genes were part of this network (see Table 4.9). The

trans-eQTL gene with the best gene expression correlation with GLS susceptibility in this

category, was a beta-1,3-glucanase / glycosyl hydrolases family 17 (matching Arabidop-

sis ortholog At4G16260). Doxey et al. (2007) studied the functional divergence in the

Arabidopsis beta-1,3-glucanase gene family. They found that At4G16260 (a root-specific

beta-1,3-glucanase) displayed a significant expression response to four pathogens (Al-

ternaria brassicicola, Botrytis cinerea, Erysiphe orontii and Phytophthora infestans) and

that it was highly expressed following treatment with ET (a major hormonal regulator of

pathogenesis-related (PR)-responses). Importantly, two ET biosynthesis-related genes,

namely 1-aminocyclopropane-1-carboxylate (ACC) synthase (A_92_P039018; bs29) and

1-aminocyclopropane-1-carboxylate oxidase (A_92_P026516; bs73), were also part of

the network (see Table 4.10). Generally, ET is thought to be an important factor for the

induction of defense responses against pathogen attack. However, Ohtsubo et al. (1999)

illustrated that ET promoted necrotic lesion formation in tobacco mosaic virus (TMV)-

infected tobacco. They further showed that at least two kinds of basic PR protein genes,
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the PR-1 and proteinase inhibitor II genes, were positively regulated by ET. Since ET

biosynthesis-related genes were higher expressed in susceptible plants (with lesions) it

could be hypothesised that ET was associated with necrotic lesion formation and with

positively regulated proteinase inhibitors in the network (mentioned in the next para-

graph). A third hormone metabolism gene in the network, was an ABA synthesis-related

gene (A_92_P018101; bs103). According to Mauch-Mani and Mauch (2005) it appears

that ABA, the abiotic stress hormone, affects disease resistance mainly negatively by

interfering at different levels with biotic stress signalling primarily controlled by SA, JA

and ET.

Other biotic stress-related genes included a Bowman-birk type trypsin inhibitor

(A_92_P006679; bs13), a maize proteinase inhibitor (A_92_P034379; bs37), a

cysteine proteinase inhibitor (A_92_P032100; bs62), a OTU-like cysteine protease

(A_92_P030068; bs84), a pathogenesis-related maize seed protein (A_92_P023606;

bs46), two chitinases (A_92_P022755; bs15 and A_92_P001063; bs44), two GRAM

domain-containing proteins (A_92_P009951; bs53 and A_92_P022862; bs71) and a

dirigent-like protein (A_92_P030266; bs57). Most pathogens secrete extracellular en-

zymes and enzymes causing proteolytic digestion of proteins, which play important roles

in pathogenesis. Plants defend themselves through the synthesis of various inhibitors that

act against these proteolytic enzymes. Cordero et al. (1994) showed that maize proteinase

inhibitors were induced in response to wounding and fungal infection. Chilosi et al. (2000)

identified wheat trypsin inhibitors (WTIs), belonging to the Bowman Birk-type protease

inhibitor family, to have a strong antifungal activity against a number of pathogenic fungi

and to inhibit fungal trypsin-like activity. Chitin is a structural component of the cell

wall of many phytopathogenic fungi and plant chitinases are digestive enzymes that break

down glycosidic bonds in chitin, thereby playing a key role in the plant defense response

against fungal pathogens (Punja and Zhang, 1993). GRAM-domain containing proteins

have diverse functions, but generally function at or near membranes of cells or organelles.

Lorrain et al. (2004) identified a GRAM domain-containing protein that was expressed in

response to pathogen infection, which is involved in cell death and defense responses in

vascular tissues. Dirigent proteins (DIRs) are extracellular glycoproteins that are thought

to play important roles in plant secondary metabolism (Pickel and Schaller, 2013). Shi

et al. (2012) reported that a cotton DIR gene was identified to be involved in cotton lig-
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nification, which can block the spread of the fungal pathogen Verticillium dahliae. The

two abiotic stress-related genes in the network was two glutathione S-transferases (GSTs)

(A_92_P022951; bs29 and A_92_P022861; bs98). GSTs are involved in the detoxifica-

tion of endogenous and xenobiotic compounds (compounds that are foreign to the plant)

and in plant secondary metabolism. Glutathione-dependent reactions are known to play

an important role in plant stress responses (Marrs, 1996).

Twelve signalling genes were included in the QTL 9-5 regulatory network associ-

ated with GLS susceptibility (Table 4.9). Apart from the EF-hand cis-eQTL gene,

three other calcium signalling genes (A_92_P021227; bs7, A_92_P006094; bs27

and A_92_P006123, bs54), three guanine nucleotide-binding proteins (G-proteins)

(A_92_P030257; bs45, A_92_P022078; bs50 and A_92_P019150; bs97) and four re-

ceptor kinases (A_92_P009091; bs23, A_92_P039626; bs43, A_92_P029167; bs49 and

A_92_P020152; bs93) were part of this network. Pathogen infection causes significant

ion fluxes across membranes in plants and increasing evidence implicates calcium sig-

nalling in plant defense responses (Ranty et al., 2006). G-proteins belong to the larger

group of enzymes called GTPases. They function to transduce signals from a variety of

different stimuli from outside a cell to the inside. G-proteins were identified to play an

important regulatory role in multiple physiological processes, including the plant immune

response (Zhang et al., 2012b). Receptor-like kinases (RLKs) are known to play a central

role in signalling during pathogen recognition as well as in the subsequent activation of

plant defense mechanisms (Afzal et al., 2008).

Six genes were responsible for the enriched GO-term “secondary metabolic process”

in Table 4.6, of the trans-eQTLs in “HS 9-6 S cor”. Two of these genes were phenyl-

propanoids involved in lignin biosynthesis, namely PAL (A_92_P031017; bs19) and

dihydroflavonol-4-reductase (A_92_P013002; bs80); and two were flavonoids, namely

flavanone 3-hydroxylase (A_92_P017679; bs30) and anthocyanin 5-aromatic acyltrans-

ferase (A_92_P020690; bs65). Lignification makes cell walls more resistant to the me-

chanical pressure applied during fungal penetration and flavonoids are known to pos-

sess antibacterial activity. Two cytochrome P450 genes were also part of the network

(A_92_P041061; bs77 and A_92_P036137; bs90), playing critical roles in the biosynthe-

sis of plant secondary metabolites. According to analyses of the functional and metabolic

pathways of mulberry cytochrome P450 genes, Ma et al. (2013) reported that these genes
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may participate in the metabolism of lipids, other secondary metabolites, xenobiotics,

amino acids, cofactors, vitamins, terpenoids, and polyketides.

Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellu-

lose and pectin, along with 10% protein and up to 40% lignin (Tan et al., 2013).

Two hemicellulose synthesis genes (A_92_P017529; bs24 and A_92_P025721; bs70)

and one pectin esterase (A_92_P029498; bs33) were part of the network, as well as

a few other genes annotated with the GO-terms “cell-wall” and “external encapsulating

structure”: beta-glucanase (A_92_P007649; bs9 mentioned above), xylanase inhibitor

(A_92_P021132; bs12), two chitinases, pathogenesis-related maize seed proteina, cys-

teine proteinase inhibitor (bs15, bs45, bs46 and bs62 mentioned above) and aconitate

hydratase (A_92_P031077; bs100). Flatman et al. (2002) showed that a xylanase in-

hibitor (Xip-I) from wheat inhibits fungal xylanases (fungal enzymes that degrade hemi-

cellulose in plant cells). Igawa et al. (2005) further showed that the wheat Xip-I gene

was significantly induced by biotic and abiotic signals that trigger plant defense. Also,

the expression of Xip-1 was significantly elevated by treatment with methyl jasmonate

(MeJA).

Furthermore, seven genes were involved in protein degradation, seven in transport

and a variety of genes in other categories are not mentioned in the text (see Tables 4.9

and 4.10).

The genes in the QTL 9-5 regulatory network associated with GLS susceptibility

seemed to be involved in a variety of different processes. The EF-hand cis-eQTL gene,

being a calmodulin-related calcium sensor protein, appeared to act as a global tran-

scriptional regulator to activate numerous target proteins. This could be due to the ion

fluxes across membranes in response to pathogen infection, since many of the genes in

this network encoded pathogenesis-related proteins. However, being associated with GLS

susceptibility, these genes were likely activated too late after infection started or involved

in strategies not effective against C. zeina.

QTL 10-10 regulatory network for genes associated with GLS susceptibility

Figure 4.11 and Table 4.11 give the QTL 10-10 regulatory network for genes positively as-

sociated with GLS susceptibility. Sixty-three percent of the trans-eQTLs that overlapped

QTL 10-10 S had trans-eQTL peaks within HS 10-10 S (148 out of 234 eQTLs). Fifty
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percent of the trans-eQTLs in HS 10-10 S belonged to genes whose expression profiles

were significantly correlated to GLS severity (74 out of 148; Table 4.5). The network was

constructed from 74 genes with trans-eQTL peaks and two genes with cis-eQTL peaks

in HS 10-10 S. Only 33 trans-eQTL were genes significantly correlated with at least one

of the two cis-eQTL genes, but 20 additional trans-eQTL genes had links exclusively to

the “GLS susceptibility” node (Figure 4.11).

One of the cis-eQTL genes encoded a glycosyltransferase protein (A_92_P034905;

GT), which had links to 55% of the trans-eQTL genes in Figure 4.11. GTs catalyse the

transfer of sugars to a wide range of acceptor molecules by the formation of glycosidic

bonds (Glombitza et al., 2004). Glycosylation serves to change the stability and solu-

bility of molecules. In plants, GTs are generally involved in biosynthesis of secondary

metabolites and in the detoxification of xenobiotics. The other cis-eQTL gene, encoding

an AAA (ATPases Associated with various cellular Activities) family ATPase peroxin 6,

had links to only 19% of the trans-eQTLs in Figure 4.11 (A_92_P025529; AAA). Perox-

ins are required for peroxisome biogenesis. Plant peroxisomes are organelles involved in

numerous processes, including oxidation reactions, primary and secondary metabolism,

development as well as responses to abiotic and biotic stresses (Hu et al., 2012). AAA

ATPase peroxin 6 plays a role in the import of proteins into peroxisomes and peroxisome

biogenesis. These two genes are likely not regulators that play a major role in GLS sus-

ceptibility. In contrast to the two cis-eQTL genes, the “GLS susceptibiltiy” node had

links to 75% of the trans-eQTLs in Figure 4.11.

Three other glycosyltransferases (A_92_P013322; cs15, A_92_P026596; cs36 and

A_92_P038403; cs53) had links to the above-mentioned cis-eQTL gene, GT, together

with a GST (A_92_P022951; cs17), a cytochrome P450 (A_92_P041061; cs50) and

two ATP-binding cassette (ABC) transporters and multidrug resistance related proteins

(A_92_P030884; cs20 and A_92_P019947; cs34) (Table 4.11). These gene families en-

code enzymes acting in plant xenobiotic metabolism and pathogen defense (Glombitza

et al., 2004). ABC transporters are characterised by the presence of specific transmem-

brane and signature adenosine triphosphate (ATP)-binding cassette domains (Martinoia

et al., 2002). Apart from their involvement in plant growth and developmental processes,

ABC transporters also play a key role in detoxification of xenobiotic conjugates.

The enriched GO-terms for “HS 10-10 S cor” (Table 4.6) included “transferase activ-
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ity” as well as “secondary metabolic process”. More specific secondary metabolic process

terms were “phenylpropanoid biosynthetic process” and “phenylpropanoid metabolic pro-

cess”. Among various other functions in plants, phenylpropanoid compounds play key

roles in resistance to pathogen attack (Dixon et al., 2002). Phenylpropanoid compounds

that are involved in plant defense include lignin, coumarins and flavonoids (Naoumkina

et al., 2010). Three trans-eQTL genes in Figure 4.11 encoded proteins that were involved

in phenylpropanoid biosynthesis. Flavanone 3-hydroxylase (A_92_P017679; cs29) is in-

volved in flavonoid biosynthesis, phenylalanine ammonia-lyase (PAL) (A_92_P000336;

cs48) in lignin biosynthesis and hydroxycinnamoyl-coenzyme A shikimate/quinate hy-

droxycinnamoyl transferase (A_92_P014030; cs11) has a putative role also in lignin

biosynthesis (Hoffmann et al., 2004). Flavonoids are known to act as antimicrobial com-

pounds and lignification makes cell walls more resistant to the mechanical pressure applied

during fungal penetration.

Four biotic stress-related genes were part of the network, encoding a Bowman-

birk type trypsin inhibitor (A_92_P006679; cs9), a chitinase (A_92_P022755; cs10),

a beta-1,3-glucanase (A_92_P007388; cs27) and a C2 domain-containing protein

(A_92_P018920; cs44). The three genes that were firstly mentioned, had links exclu-

sively to the “GLS susceptibility” node (not to the cis-eQTL genes). Interestingly, the

reporters encoding the Bowman-birk type trypsin inhibitor and the chitinase were also

mentioned above in the QTL 9-5 regulatory network associated with GLS susceptibility

(thus both reporters had trans-eQTLs in HS 9-6 and in HS 10-10). These may be indica-

tions that that QTLs are interacting via cis-trans relationships, which should give rise to

epistasis. Even though beta-1,3-glucanase was also mentioned above in the QTL 9-5 reg-

ulatory network, different reporters (and maize genes) encoded the beta-1,3-glucanases

in HS 10-10 and HS 9-6. However, both reporters matched the Arabidopsis ortholog

AT4G1626 mentioned by Doxey et al. (2007) (discussed in the previous sub-section) that

displayed a significant expression response to four pathogens and that was highly ex-

pressed following treatment with ET. Plant C2 domain proteins play important roles in

diverse cellular processes including development, growth and membrane targeting. How-

ever, they also play a part as in abiotic and biotic stress adaptations via the sensing of

intracellular calcium signals (Zhang et al., 2013). Zhang et al. (2013) demonstrated that

a wheat C2 domain protein might be involved in wheat defense responses against stripe
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rust and abiotic stresses in an ABA-dependent signalling pathway.

Two calcium signalling genes were part of the network, encoding a calmodulin-

binding heat-shock protein (A_92_P021227; cs3) and a calcium lipid binding protein

(A_92_P002935; cs47). Furthermore, regulation of transcription-related genes in the

network (Figure 4.11) encoded two WRKY transcription factors (A_92_P018873; cs2

and A_92_P015550; cs28) and a NAC domain transcription factor (A_92_P013324;

cs13). Three cell wall-related genes encoded a xylanase inhibitor (A_92_P021132; cs8

also with a trans-eQTL in HS 9-6), a secondary cell wall-related glycosyltransferase

(A_92_P017529; cs23 also with a trans-eQTL in HS 9-6) and a hydroxyproline-rich

glycoprotein (A_92_P022159; cs45). Xylanase inhibitors (as mentioned in the previous

sub-section) and hydroxyproline-rich glycoproteins are known to be induced by biotic

stress. Hydroxyproline-rich glycoproteins generally contribute to the structural support

of plant cell walls. García-Muniz et al. (1998) showed that mRNA accumulation of a

cell wall hydroxyproline-rich glycoprotein gene in maize was induced by fungal elicitors.

Overall, 40% of the trans-eQTL genes in this QTL 10-10 regulatory network were also

part of the QTL 9-5 regulatory network associated with GLS susceptibility. Therefore,

21 out of the 53 trans-eQTL genes in this network had a trans-eQTL in both HS 9-6 and

in HS 10-10, providing evidence of an underlying gene expression network.

In conclusion, the genes in the QTL 10-10 regulatory network associated with GLS

susceptibility, seemed to be involved in detoxification of xenobiotic compounds, phenyl-

propanoid biosynthesis and protein degradation, amongst other processes. Thus for a

more severe infection, it is apparent that more detoxification and protein degradation

enzymes were needed to act against the toxins produced by C. zeina. However, possibly

due to other key defense strategies that were lacking, this attempt was not sufficient.

QTL 4-11 regulatory network for genes associated with GLS resistance

Figure 4.12 and Table 4.12 give the QTL 4-11 regulatory network for genes positively

associated with GLS resistance. Fifty-seven percent of the trans-eQTLs that overlapped

QTL 4-11 R had trans-eQTL peaks within HS 4-12 R (86 out of 150 eQTLs). Twenty-six

percent of the trans-eQTLs in HS 4-12 R belonged to genes whose expression profiles

significantly correlated to GLS severity (22 out of 86; Table 4.5). The network was con-

structed from 22 genes with trans-eQTL peaks and one gene with a cis-eQTL peak in HS
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4-12 R. Only one trans-eQTL gene, encoding an erythronate-4-phosphate dehydrogenase

family protein, had a link to the “GLS resistance” node (A_92_P006115; ar1 in Figure

4.12).

The only cis-eQTL gene in Figure 4.12 encoded a rossmann-fold NAD(P)-binding

domain-containing protein (A_92_P008436; SDR), which had links to 19 trans-eQTL

genes. The rossmann-fold is a common protein structural motif found in proteins that

bind nucleotides, for example the cofactor nicotinamide adenine dinucleotide (NAD).

Rossmann fold proteins make up one of three main classes of proteins that belong to the

alpha/beta structure proteins. Short chain dehydrogenases/reductases (SDRs) constitute

a large family of NAD(P)(H)-dependent oxidoreductases, which shares the rossmann-fold

motif for nucleotide binding (Kavanagha et al., 2008). According to blast2GO, this gene

is located in the chloroplast inner membrane. It is unlikely that this gene is a regulator

involved in GLS resistance.

Four trans-eQTL genes in the network were involved in regulation of transcription,

encoding a bZIP transcription factor family protein (A_92_P008422; ar4), an unclas-

sified RNA recognition motif-containing protein (A_92_P000526; ar10), a C3H zinc

finger family protein (A_92_P015590; ar12) and a coiled-coil domain-containing pro-

tein (A_92_P007314; ar16). A few other trans-eQTL transcripts in the network en-

coded: a ranBP1 domain containing protein that is involved in G-protein signalling

(A_92_P005700; ar3); a metal transport cation efflux family protein (A_92_P005524;

ar5); a bifunctional polymyxin resistance ArnA protein which is involved in arabinoxy-

lans (a major component of graminaceous plant cell walls) biosynthesis (A_92_P007232;

ar7); a peroxiredoxin antioxidant PER1-like family protein (A_92_P004318; ar8); and

an ASC1-like protein that is involved in sphingolipids lipid metabolism (A_92_P012338;

ar15). Spassieva et al. (2002) studied the nectrotrophic fungus Alternaria alternata f.sp.

lycopersici, which infects tomato plants by utilising a host-selective toxin (AAL-toxin)

that kills the host cells by inducing programmed cell death. They identified ASC1 (sim-

ilar to ar15) as a plant disease resistance gene that prevented disruption of sphingolipid

metabolism during ALL-toxin-induced programmed cell death. It can be hypothesised

that this gene (ar15) could likewise be involved in defense against C. zeina toxins. In

general, this regulatory network do not include genes that appear to play a key role in

GLS resistance.
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QTL 9-5 regulatory network for genes associated with GLS resistance

Figure 4.13 and Table 4.13 give the QTL 9-5 regulatory network for genes positively

associated with GLS resistance. More than 95% of the trans-eQTLs in “QTL 9-5 R” had

trans-eQTL peaks within “HS 9-6 S” and 35% of the trans-eQTLs with peaks in HS 9-6 R

(58 out of 166) belonged to genes with genes whose expression profiles were significantly

correlated to GLS severity (Table 4.5). The network was constructed from 58 genes with

trans-eQTL peaks and four genes with cis-eQTL peaks in HS 9-6 R.

The cis-eQTL transcript with the best correlation to GLS resistance had links to

46% of the trans-eQTLs in Figure 4.13 and encoded a serine threonine-protein kinase

(A_92_P033066; STK). Protein kinases and phosphatases play a key role in signalling

mechanisms critical for responses to environmental stresses and attack by pathogens

(Sessa and Martin, 2000). In signal transduction pathways, protein kinases modify other

proteins by phosphorylation and phosphatases dephosphorylate proteins (which are post-

translational modifications). In particular, serine/threonine protein kinases phosphory-

late the OH group of serine or threonine, which have similar side-chains. Activity of

these protein kinases can be regulated by specific events, for example DNA damage, or

chemical signals such as Ca2+/calmodulin. At least five trans-eQTL genes in this network

were also involved in signalling/post-translational modification, encoding a cysteine-rich

receptor-like protein kinase (A_92_P012575; cr7), a receptor-like serine threonine kinase

(A_92_P008364; br29), two serine/threonine protein phosphatases (A_92_P010477;

br28 and A_92_P010609; br42) and a protein kinase family protein (A_92_P017199;

br32). The first four genes that were mentioned had links to the STK cis-eQTL gene

(as well as the NAGLU cis-eQTL gene; see description below). Based on their structural

characteristics, receptor-like kinases function as cell surface receptors and play a crucial

role in defense signalling.

The cis-eQTL transcript with the second best correlation to GLS resistance had links

to 64% of the trans-eQTLs in Figure 4.13 and encoded an alpha-N-acetylglucosaminidase

(NAGLU) (A_92_P009668; NAG). Ronceret et al. (2008) confirmed that NAGLU plays

an important role in plant reproductive development. Therefore, this gene is not likely

a regulator for defense. The other two cis-eQTL reporters did not have functional an-

notations and had links to only 19% and 17% of the trans-eQTL genes in Figure 4.13,

respectively. According to the microarray re-annotation analysis (see Chapter 2; Coet-
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zer et al., 2011), A_92_P001417 did not match any transcript sequence in the maize

WGS, but it matched a gDNA position at this locus on chromosome 9. Furthermore,

A_92_P001249 matched a maize transcript that was not yet annotated.

Three trans-eQTL genes in this network had absolute GLS severity correlation co-

efficients that were higher than 0.5. These genes included a chlorophyll synthase

that is involved in photosynthesis (A_92_P011013; br1), an uncharacterised protein

(A_92_P011630; br2) and a callose synthase that is involved in carbohydrate metabolism

(A_92_P010785; br3). Interestingly, six trans-eQTL genes encoding proteins involved

in photosynthesis were included in the network (Figure 4.13). This callose synthase was

also identified as one of the best candidates linked to GLS resistance in the previous

Chapter (see section 3.4.3 on page 107). It is well established that the local deposition of

callose is induced by abiotic stress and wounding (Jacobs et al., 2003). Callose deposits

are thought to act as a physical barrier to impede microbial penetration. Mauch-Mani

and Mauch (2005) reported that ABA considerably enhances plant resistance to fungal

pathogens through its positive effect on callose deposition.

ECERIFERUM1 (CER1) is the product of one of the trans-eQTL genes in this QTL

9-5 regulatory nework (A_92_P034039; br26) with a link to the cis-eQTL gene STK.

This protein plays a role in cuticular wax production, but could be an important player

in defense. The cuticle, a hydrophobic layer that covers plant aerial organs, serves

as a waterproof barrier protecting plants against desiccation, ultraviolet radiation and

pathogens. It mainly consists of cuticular waxes in which very-long-chain alkanes are the

major components. Bourdenx et al. (2011) reported that overexpression of Arabidopsis

CER1 promoted wax very-long-chain alkane biosynthesis and influenced plant response

to biotic and abiotic stresses. However, they found that CER1-overexpression increased

susceptibility to bacterial and fungal pathogens. Importantly, C. zeina does not directly

penetrate through the wax layer (since it enters through stomata), but wax composition

could effect its success of either binding to the leaf or germination.

A ranBP1 domain-containing protein involved in G-protein signalling (A_92_P005700;

br22 also with a trans-eQTL in HS 4-12 mentioned above) was encoded by a reporter

in the network. At least two transcripts were involved in regulation of transcription, en-

coding a bZIP transcription factor family protein (A_92_P006669; br10) and a CCAAT

box binding factor family protein (A_92_P039278; br38). In addition, two RNA bind-
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ing proteins (A_92_P008762; br27 and A_92_P011285; br30) and a RNA processing

protein (A_92_P005627; br41) appeared to be regulated from this locus. Furthermore,

genes encoding proteins involved in calcium transport (A_92_P005246; br11), ion and

metabolite transport (A_92_P006606; b15), metal transport (A_92_P002406; br20)

and potassium transport (A_92_P014444; br47), were also part of this network.

The QTL 9-5 regulatory network associated with GLS resistance seemed to include a

group of genes involved in signalling/post-translational modification, including the cis-

eQTL gene STK, which could act as a post-translational global regulator. A few single

genes had potential links to biotic stress. Since resistant plant material harvested at

this time point would have fewer lesions, the gene expression most likely expected is

rather due to constitutive defenses that are still present at the late stage of sampling,

than due to induced defenses in response to C. zeina (since the fungus is likely to have

attempted penetration weeks earlier and have been stopped). Furthermore, fewer lesions

also imply more photosynthetic material, which could explain why photosynthesis-related

genes were detected to have more transcripts compared to samples with lesions and a

strong (negative) correlation with GLS severity scores. Therefore, the photosynthesis-

related genes with eQTLs in this network are potentially spurious eQTLs.

QTL 9-7 regulatory network for genes associated with GLS resistance

Figure 4.14 and Table 4.14 give the QTL 9-7 regulatory network for genes positively

associated with GLS resistance. Fifty-seven percent of the trans-eQTLs that overlapped

QTL 9-7 R had trans-eQTL peaks within HS 9-7 R (163 out of 93 eQTLs). Twenty-seven

percent of the trans-eQTLs in HS 9-7 R (25 out of 93) were associated with genes whose

expression profiles significantly correlated to GLS severity (Table 4.5). The network was

constructed from 25 genes with trans-eQTL peaks and 4 genes with cis-eQTL peaks in

HS 9-7 R.

The four cis-eQTL transcripts within this network encoded a 3-dehydroquinate syn-

thase (A_92_P009686; DQS), with links to 72% of the trans-eQTL genes, which is an

enzyme that belongs to the family of lyases and participates in the biosynthesis of aro-

matic amino acids (e.g. phenylalanine, tyrosine and tryptophan) as part of the shikimate

pathway (see description below); a GTP-binding protein (A_92_P014787; GTP), with

links to 24% of the trans-eQTL genes, which plays a key role in the signal transduction
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pathways for numerous hormones; and two uncharacterised proteins (A_92_P001310;

PUF1 and A_92_P011516; PUF2), with links to 60% and 28% of the trans-eQTL genes,

respectively. The shikimate pathway is the basis of many secondary metabolite pathways

in plants, which could potentially play important roles in plant defense against biotic and

abiotic stresses as well as environmental interactions (Tohge et al., 2013).

The three trans-eQTL transcripts in the network with the strongest correlating gene

expression profiles to GLS resistance encoded a PLAC8 family protein (A_92_P009740;

cr1), the only gene in the network with a link to the “GLS resistance” node (see de-

scription below); a peptidyl-prolyl cis-trans isomerases (PPIases), which catalyses and

facilitates protein folding (A_92_P017490; cr2) (Breimans et al., 1992); and a histone

H1 protein, which is a DNA sequence-dependent determinant of chromatin structure and

of transcriptional activity in chromatin (A_92_P020271; cr3) (Sera and Wolffe, 1998).

PLAC8 (placenta-specific gene 8 protein) motif-containing proteins form a large family,

which was originally found in the spongiotrophoblast layer of the placenta of mammals.

Despite this protein family’s wide distribution, knowledge about their function is very

limited. Two very different functions were previously associated with PLAC8 motif-

containing proteins, namely a role in (i) the determination of fruit and plant size and (ii)

transport of heavy metals such as cadmium or zinc (Song et al., 2011). This family also

includes the plant cadmium (an important environmental pollutant) resistance (PCR)

proteins of plants (Song et al., 2004).

Six out of the 22 trans-eQTL genes in this QTL 9-7 regulatory network were also

part of the QTL 9-5 regulatory network associated with GLS resistance. These genes

encoded a PLAC8 family protein (mentioned above, cr1); a ATP synthase mitochondrial

F1 complex assembly factor 1, which is essential for the assembly of the mitochondrial F1

complex (A_92_P007992; cr4); a protein of unknown function (A_92_P015277; cr9); a

serine/threonine protein phosphatase, which is involved in post-translational regulation

(A_92_P010477; cr10); a RNA recognition motif containing protein (A_92_P011285;

cr11); and a AP2-domain DRE binding factor DBF1, which is an abiotic stress-related

transcription factor (A_92_P005298; cr14). Dimosthenis and Montserrat (2002) re-

ported that the maize dehydration responsive element (DRE)-binding proteins, DBF1

and DBF2, are involved in rab17 (an ABA-responsive gene of maize) regulation through

the drought-responsive element in an ABA-dependent pathway. Chen et al. (2007) con-
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cluded that the soybean (Glycine max L.) DRE-binding transcriptional activator may be

useful in improving plant tolerance to abiotic stresses.

Another potentially interesting trans-eQTL gene encoded a Topless-related protein

containing WD repeats (A_92_P003738; cr20). According to Zhu et al. (2010), Ara-

bidopsis resistance protein SNC1 (encoding a TIR-NB-LRR-type R protein) activates

immune responses through association with a transcriptional corepressor, Topless-related

1 (TPR1). Among the target genes of TPR1 are “Defense no Death” 1 and 2, two known

negative regulators of immunity that are repressed during pathogen infection. Zhu et al.

(2010) suggested that TPR1 activates R protein-mediated immune responses through

repression of negative regulators. It can be hypothesised that in the current study, this

gene could act as a repressor of negative regulators of the plant immune response, which

were activated due to C. zeina manipulated plant gene expression (e.g the nudix domain-

containing protein associated with GLS susceptibiltiy described in sub-section 4.4.4).

Four transport-related genes were present in the network encoding an iron ABC

superfamily transporter (A_92_P019715; cr5), a ABC transporter family protein

(A_92_P006825; cr8), a protein-export membrane protein (A_92_P009675; cr18) and

an adaptor protein complex AP1 (A_92_P012143; cr22). Interestingly, Krattinger et al.

(2009) showed that a putative ABC transporter conferred durable resistance to multiple

fungal pathogens in wheat. Apart from a few single genes potentially of interest, this

regulatory network do not include genes that appear to play a key role in GLS resistance.

QTL 10-10 regulatory network for genes associated with GLS resistance

Figure 4.15 and Table 4.15 give the QTL 10-10 regulatory network for genes positively

associated with GLS resistance. Sixty-one percent of the trans-eQTLs that overlapped

QTL 10-10 R had trans-eQTL peaks within HS 10-10 R (122 out of 201 eQTLs). Seven-

teen percent of the trans-eQTLs in HS 10-10 R (21 out of 122) were associated with genes

whose expression profiles significantly correlated to GLS severity (Table 4.5). The net-

work was constructed from 21 genes with trans-eQTL peaks and 3 genes with cis-eQTL

peaks in HS 10-10 R.

Two of the cis-eQTL transcripts in this network had exceptionally strong correlations

to GLS resistance; both had absolute correlation coefficiets of 0.5 to GLS severity and

had links to the “GLS resistance” node. Therefore, these genes could be components of an
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underlying transcriptional network involved in GLS resistance. Interestingly, out of all the

regulatory networks presented above, these were the only two genes with cis-eQTLs with

a highly significant gene expression correlation to GLS severity (p-value <0.00001). These

genes encoded a leucoanthocyanidin reductase (A_92_P009023; LAR) with links to 64%

of the trans-eQTL genes in the network and a glutamyl-tRNA reductase (A_92_P006618;

GTR) with links to 100% of the trans-eQTL genes in the network. LAR is an enzyme that

participates in flavonoid biosynthesis and flavonoids may provide antioxidant activity as

part of a general stress response (Winkel-Shirley, 2002). GTR catalyses the first step

of tetrapyrrole biosynthesis in plants, which is involved in chlorophyll and heme (among

other products) production. The third cis-eQTL gene encoded an uncharacterised protein

(A_92_P001146; PUF) with links to 36% of the trans-eQTL genes. Not one of these

cis-eQTL genes are likely global regulators.

Three trans-eQTL genes with links to the “GLS resistance” node encoded a lipid

phosphate phosphatase (A_92_P017985; dr1), a cysteine-rich receptor-like protein kinase

(A_92_P012575; dr2) and a RNA processing splicing factor (A_92_P018634; dr3).

Interestingly, the two genes that were firstly mentioned were two of the three genes

in this network that also had trans-eQTLs in HS 9-6 (Table 4.14).

Two transport-related trans-eQTL genes were present in the network encoded: an

ABC transporter family protein (A_92_P025469; er4) and a a multidrug resistance

(MRP)-type ATP binding protein (A_92_P017437; dr11). The MRP subfamily of plant

ABC transporters are suggested to play a role in cellular detoxification by vacuolar se-

questration of endogenous or exogenous toxic compounds. Stukkens et al. (2005) showed

that NpPDR1, a pleiotropic drug resistance-type ABC transporter (another subfamily

of plant ABC transporters) from tobacco (Nicotiana plumbaginifolia), plays a major role

in pathogen resistance due to its involvement in both constitutive and JA-dependent in-

duced defense. It can be hypothesised that the the ABC transporter family, via hormone

signalling, play a part in GLS resistance.

Furthermore, two F-box proteins (A_92_P008221; dr9 and A_92_P015985; dr13)

were also included in this network, which mediate ubiquitination and subsequent pro-

tein degradation. The COI1 F-box is an example of a component of the ubiquitination

system that was shown to play a role in plant immunity (Xie et al., 1998). COI1 con-

trols defence pathways that are regulated by JAs, which are synthesised in response to
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pathogen attack. Thomma et al. (1998) showed that coi1 mutants, which are unable to

relay the JA-signal, are more susceptible to necrotrophic pathogens. van den Burg et al.

(2008) provided another example where F-box proteins were involved in defense. They

reported that the F-Box protein ACRE189/ACIF1 (with an F-box domain that interacts

with SKP1/CUL1/ F-box (SCF) subunits) regulated cell death and defense responses

activated during pathogen recognition in tobacco and tomato. It could therefore be hy-

pothesised that the F-box proteins in this network also play a role in disease resistance

via plant hormone signalling.

Also, a gene encoding a cytochrome P450 (A_92_P039824; er10) were included in

the network. Cytochrome P450s are known to catalyse most of the oxidation steps in

plant secondary metabolism. Compounds metabolised by P450 enzymes can act as stress

signals in plant defense or exert a direct antifungal activity. Li et al. (2010) showed

that resistance to Fusarium head blight and seedling blight in wheat is associated with

activation of a cytochrome P450 gene, where cytochrome P450 plays an important role

in protecting plants against trichothecene mycotoxins. A P450 gene in potato was also

identified as a molecular marker of resistance to fungal pathogen Phytophthora infestans

(Trognitz et al., 2002).

A few genes with potential associations to defense were part of the QTL 10-10 regula-

tory network associated with GLS resistance. It can be proposed that increased antifungal

activity, due to higher levels of flavonoids and cytochrome P450s in resistant plants, could

protect plants against toxins from C. zeina. Futhermore, the ABC transporter family or

F-box proteins together with the ubiquitin system could play a role in disease resistance

via plant hormone signalling.

4.5 Conclusion

The genetic basis for the response to C. zeina infection in the CML444⇥SC Malawi maize

RIL population was studied and candidate genes and pathways associated with GLS

resistance or susceptibility were identified. Various filtering steps were used to narrow

down the list of potential candidates and the final output was hypotheses regarding

genes and mechanisms that could explain the GLS severity QTLs. The analysis was

based on the hypothesis that there is an underlying DNA polymorphism that gives rise
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to a change in gene expression which in turn affects the phenotypic trait. Genetic control

is not directly observed, rather genetic response to a purtubation, in this case a DNA

polymorphism. Figure 4.16 is a Circos diagram (Krzywinski et al., 2009) that displays

the candidate genes with trans-eQTLs potentially involved in mechanisms associated

with GLS resistance or susceptibility. These genes had expression profiles significantly

correlating (positively or negatively) to GLS severity and their expression were (partially)

explained by trans-eQTLs that were part of trans-eQTL hotspots coinciding with GLS

severity QTLs.

Many of the genes in the proposed regulatory networks associated with GLS suscep-

tibility (Figures 4.9, 4.10 and 4.11) had functional annotations that disclosed potential

defense-related mechanisms. Since leaves were sampled during flowering when GLS lesions

were evident, it was expected that cells around the lesions would be fighting the fungus

and consequently that genes with a higher expression in susceptible plants would be ac-

tivated in response to pathogen infection and damage to leaf cells. Susceptibility could

be due to the plants either activating the response genes too late after infection started

or activating genes involved in less effective strategies against C. zeina. Alternatively,

it could be due to fungal manipulation of plant gene expression, for example activating

genes that negatively regulate the basal defense response. Surprisingly, 21 genes with

trans-eQTLs were shared between the QTL 9-5 and the QTL 10-10 regulatory networks

for GLS susceptibility. This may indicate that these two QTLs are interacting, which

could give rise to epistasis. Furthermore, these genes could be components of an under-

lying transcriptional network regulating the response to GLS disease. A few hypotheses

regarding potential genes and pathways playing a role in GLS susceptibility are given

below.

The EF-hand gene with a cis-eQTL in HS 9-6 S (a calmodulin-related calcium sen-

sor protein) appears to act as a global regulator that activate numerous target pro-

teins through calcium signalling, due to the ion fluxes across membranes in response to

pathogen infection (Ranty et al., 2006). Since 30% of genes displayed in Figure 4.16 had

trans-eQTLs in HS 9-6 S, this locus appeared to play a significant role in GLS suscep-

tibility. The genes with trans-eQTLs in HS 9-6 S seemed to be involved in a variety of

different processes and included a strong signature of pathogenesis-related genes, genes

involved in signalling, and secondary metabolism-related genes. It is hypothesised that a
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PR beta-1,3-glucanase (with a trans-eQTL in HS 9-6 S) is activated too late after infection

or that its activity was not effective against C. zeina. Due to two ET biosynthesis-related

genes and three proteinase inhibitors (with trans-eQTLs in HS 9-6 S), it is hypothesised

that ET promotes necrotic lesion formation, which was observed in susceptible plants,

and simultaneously positively regulates proteinase inhibitors (similar to a result obtained

from Ohtsubo et al. (1999) on TMV-infected tobacco).

Due to a gene encoding an F-box/kelch-repeat protein SKIP11 (with a trans-eQTL in

HS 4-12 S), it is hypothesised that C. zeina could require F-box-like domain-containing

type III effectors to promote disease and as a result manipulate the host ubiqui-

tin/proteasome pathway. It is also hypothesised that the expression of two genes en-

coding a nudix family hydrolase domain-containing protein (with a cis-eQTL in HS 4-12

S) and a glycolipid transfer protein (with a trans-eQTL in HS 4-12 S) were manipulated

by C. zeina to negatively regulate the basal defense response and promote disease.

The genes in the QTL 10-10 regulatory network associated with GLS susceptibil-

ity, seemed to be involved in detoxification of xenobiotic compounds, phenylpropanoid

biosynthesis and protein degradation. It was hypothesised that the plant’s attempt to

detoxify and degrade toxins produced by C. zeina was not sufficient, probably due to

other key defense strategies that were lacking. It was further hypothesised that these

processes are explained by the presence of a gene (or a few tightly linked genes) within

the HS 10-10 locus that were not detected by this study for two reasons: (i) the two genes

with cis-eQTLs in the network were not likely regulators of the mentioned processed and

(ii) the 20 out of 53 genes had expression values that highly correlated with GLS sus-

ceptibility, did not have links to genes with cis-eQTLs. It could be that the additional

regulator(s) was not present on the microarray, its cis-eQTL effect was too small to be

detected, its cis-eQTL peak was just outside the hotspot region, or its gene expression

profile did not correlate well with GLS severity.

The gene expression in resistant plants with fewer lesions is most likely due to consti-

tutive defense mechanisms that are still present at the late stage of sampling, rather than

due to induced defenses in response to C. zeina, since the fungus has likely attempted

penetration weeks earlier and has been stopped in resistant plants. Noteworthy, six genes

with trans-eQTLs were shared between the QTL 9-5 and the QTL 9-7 regulatory net-

works for GLS resistance, indicating potential interaction between these QTLs. A few
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hypotheses regarding potential genes and pathways playing a role in GLS resistance are

given below.

A serine threonine-protein kinase (with a cis-eQTL in HS 9-6 R) is hypothesised to act

as a global regulator through post-translational modification. Due to at least five trans-

eQTL genes (with trans-eQTLs in HS 9-6 R) that were also involved in signalling/post-

translational modification, it is hypothesised that the phosphatases/kinases in the QTL

9-5 regulatory network associated with GLS resistance could be involved in post-

translational modifications, which could modulate the expression of genes responding

to fungal elicitors and play an important role in defense. It is further hypothesised that

the gene encoding a callose synthase (with a trans-eQTL in HS 9-6 R), plays a role in

GLS resistance via deposition of callose in the form of local cell wall thickenings to block

fungal penetration. Furthermore, the gene encoding CER1 (with a trans-eQTL in HS 9-6

R), which is involved in cuticular wax production, is hypothesised to play a role in GLS

resistance, since wax composition could affect C. zeina’s success of binding to the leaf or

germination.

It is hypothesised that the gene encoding an ASC1-like protein in HS 4-12 R, act

as a plant disease resistance gene by preventing disruption of sphingolipid metabolism

during C. zeina toxin-induced programmed cell death (similar to what was reported by

Spassieva et al., 2002). A Topless-related protein containing WD repeats (with a trans-

eQTL in HS 9-7 R) is hypothesised to act as a repressor of negative regulators of the plant

immune response, which could have been activated due to C. zeina manipulation of plant

gene expression (similar to what was reported by Zhu et al., 2010). Furthermore, it is

hypothesised that members of the ABC transporter family (two genes with trans-eQTLs

in HS 10-10 R) could play a role in disease resistance via plant hormone signalling, as

well as that the F-box proteins together with the plant ubiquitin system (two additional

genes with trans-eQTLs in HS 10-10 R) could be involved in GLS resistance, through

hormone signalling.

The overlap of eQTLs with GLS severity QTLs, including additional filtering steps,

were used to identify candidate genes and pathways that could be involved in the disease

response of maize to GLS. The findings in this chapter were mainly hypotheses, which

need to be validated with further studies, for example via the generation of overexpres-

sion or knockout lines. However, this chapter indicates that that there is a genetic basis
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for the response to C. zeina infection in the CML444⇥SC Malawi maize RIL population.

It further reveals the complex genetic architecture of transcript level variation in maize

and confirms that determining the molecular mechanisms underlying complex phenotypic

traits generally remains a bottleneck. Once the genetic basis (the causal genes and/or

polymorphisms) is determined, it can be put to practical use in crop improvement. Chap-

ter 5 will incorporate gene co-expression networks (from Chapter 3) with the QTL/eQTL

analyses (from Chapter 4) in a systems genetics context to determine whether there is a

genetic basis for the coordinated expression responses to GLS disease.

4.6 Acknowledgement of data contributions

I would like to acknowledge the following people for contributing to make the analysis of

this chapter possible:

• Ms. Jeanne Korsman for constructing the linkage map.

• A bioinformaticist (who preferred to stay anonymous) employed in the Maize eQTL

project for developing the first version of a customised computer script for QTL and

eQTL identification.



CHAPTER 4. GLOBAL EQTL ANALYSIS 192

Figure 4.1: The steps in an eQTL study. Adapted from Michaelson et al. (2009). A set
of individuals in a population is genotyped (using for example SNP arrays) and markers
that are polymorphic in the study population are selected for the QTL analysis. Gene
expression, in the same individuals, is measured (using microarrays or RNA sequencing)
and the expression data are pre-processed using standard procedures. eQTL mapping
consists of selecting markers that explain the expression variation in the population.
Significant eQTLs are interpreted, for example by checking groups of genes with eQTLs
at a common locus for functional enrichment or by using network analysis for inferring
causal relationships.
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Figure 4.2: eQTL data analysis pipeline implemented in Galaxy. The pipeline consists of
six modules and seven input files are required (shown as blue blocks). The first module
runs QTL Cartographer for each expression trait (e-trait) as 48 parallel tasks using a
computer cluster in order to map eQTLs. The second module links the genetic and
physical maps, where markers are used as anchor points to proportionally estimate bp
positions for each 2 cM interval. The third module classifies eQTLs as cis or trans. The
fourth module calculates the frequency of eQTL and genes per sliding window throughout
the genome. The fifth module identifies significant unbiased eQTL hotspots. The last
module performs a GO over-representation analysis on each identified hotspot using the
TopGO R package.
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Figure 4.3: A scatter plot giving the genomic relationships between eQTL positions (x-
axis) and the corresponding e-trait gene positions (y-axis) across the maize genome. The
figure was generated by the “classification” module of the eQTL data analysis pipeline
in Galaxy. The eQTL and e-trait positions corresponded to the 1009 bins (from the
lookup table) across the genome. Each bin is linked to a cM and bp position. The
color-key distinguishes between cis- (blue) and trans-eQTLs (green). The ten maize
chromosomes are separated by grey dashed lines and tick-marks indicate the middle of
each chromosome.
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Figure 4.6: Flow diagram of the QTL/eQTL overlap strategy to identify the genes
and processes associated with GLS resistance or susceptibility. Table 4.1 states whether
CML444 or SC Malawi was the parent with the resistance associated allele for each GLS
severity QTL. “R” and “S” in the diagram refer to the resistance (R) or susceptibility (S)
associated allele. (a) Genes with cis- (green) and trans-eQTLs (red) that overlapped the
GLS severity QTLs were identified and divided into groups based on parent associated
with higher expression. Subsequently, genes with expression profiles that significantly
correlated with the phenotype values (GLS severity scores) across the RILs were identified
(p-value < 0.01). (b) Genes with cis- (green) and trans-eQTL (red) peaks within the
five previously identified trans-eQTL hotspot intervals that overlapped the GLS severity
QTLs, were identified and divided into groups based on parent associated with higher
expression. Subsequently, genes with expression profiles that significantly correlated with
the GLS severity scores were identified (p-value < 0.01). GO enrichment analyses were
performed on the resulting sets of genes with trans-eQTL to reveal biological processes
potentially associated with GLS disease.
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Figure 4.7: Scatter plots illustrating a negative and a positive gene expression corre-
lation with GLS disease severity scores. (a) Scatter plot of the gene expression values
across the RILs, for a gene encoding an ubiquitin-specific protease (USP) with a cis-eQTL
that overlapped GLS severity QTL 10-10 (Table S4.2 in the electronic Appendix). The
negative correlation indicates that RILs for which this gene have high gene expression
values, have low disease severity scores (i.e. resistant RILs); whereas RILs for which this
gene have low gene expression values, have high disease severity scores (i.e. susceptible
RILs). Therefore, this gene’s expression values correlate with GLS resistance. (b) Scat-
ter plot of the gene expression values across the RILs, of a receptor-like cytosolic serine
threonine-protein kinase (RLK) with a cis-eQTL that overlapped GLS severity QTL 9-5
(Table S4.1 in the electronic Appendix). The positive correlation indicates that RILs for
which this gene have high gene expression values, also have high disease severity scores
(i.e. susceptible RILs); and RILs for which this gene have low gene expression values, also
have low disease severity scores (i.e. resistant RILs). Therefore, this gene’s expression
values correlate with GLS susceptibility.
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Figure 4.8: Trans-eQTL hotspot regions (green) coinciding with GLS severity QTLs
(brown). Summary statistics per trans-eQTL hotspot that overlapped a GLS severity
QTL are given in Table 4.5. The Mb position, 2 cM bin number (see lookup table in
electronic Appendix) and chromosome number are given for each of the five GLS severity
QTL overlapping trans-eQTL hotspot regions. QTLs and trans-eQTL hotspots were
named based on the chromosome and the number of the start marker on QMap 2.0.
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Figure 4.9: QTL 4-11 regulatory network model for genes associated with GLS suscepti-
bility. The black square represents the phenotypic trait “GLS susceptibility”. Black dot-
ted lines indicate a strong correlation (p-value <0.00001) between the GLS severity profile
and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square nodes rep-
resent cis-eQTL genes (ZF=DHHC-type zinc finger family protein; NX=NUDIX family
domain containing protein; TPR=TPR repeat region family protein; PB=protein-binding
protein) and round nodes trans-eQTL genes. The trans-eQTL nodes are sequentially
numbered from “as1” to “as19” where “as1” represents the trans-eQTL gene with the
strongest correlation to GLS susceptibility (see Table 4.8 for node annotations). Node
colours correspond to the categories in Table 4.7. Solid edges represent gene co-expression
between cis- and trans-eQTL genes (p-value <0.00001); and arrows indicate direction of
regulation, assuming that cis variation explains gene expression differences for genes in
trans. Grey dotted lines indicate a strong correlation (p-value <0.00001) between the
gene expression profiles of pairs of cis-eQTL genes.
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Figure 4.10: QTL 9-5 regulatory network model for genes associated with GLS sus-
ceptibility. The black square represents the phenotypic trait “GLS susceptibility”. Black
dotted lines indicate a strong correlation (p-value <0.00001) between the GLS severity
profile and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square
nodes represent cis-eQTL genes (EF=EF hand calmodulin-related protein; ECH=Enoyl-
CoA hydratase family protein; PUF=protein of unknonw function) and round nodes
trans-eQTL genes. The trans-eQTL nodes are sequentially numbered from “bs1” to
“bs104” where “bs1” represents the trans-eQTL gene with the strongest correlation to
GLS susceptibility (see Tables 4.9 and 4.10 for node annotations). Node colours corre-
spond to the categories in Table 4.7. Solid edges represent gene co-expression between cis-
and trans-eQTL genes (p-value <0.00001); and arrows indicate direction of regulation,
assuming that cis variation explains gene expression differences for genes in trans. Grey
dotted lines indicate a strong correlation (p-value <0.00001) between the gene expression
profiles of pairs of cis-eQTL genes.
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Figure 4.11: QTL 10-10 regulatory network model for genes associated with GLS sus-
ceptibility. The black square represents the phenotypic trait “GLS susceptibility”. Black
dotted lines indicate a strong correlation (p-value <0.00001) between the GLS severity
profile and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square
nodes represent cis-eQTL genes (GT=glycosyltransferase; AAA=AAA family ATPase)
and round nodes trans-eQTL genes. The trans-eQTL nodes are sequentially numbered
from “cs1” to “cs53” where “cs1” represents the trans-eQTL gene with the strongest cor-
relation to GLS susceptibility (see Table 4.11 for node annotations). Node colours corre-
spond to the categories in Table 4.7. Solid edges represent gene co-expression between cis-
and trans-eQTL genes (p-value <0.00001); and arrows indicate direction of regulation,
assuming that cis variation explains gene expression differences for genes in trans. Grey
dotted lines indicate a strong correlation (p-value <0.00001) between the gene expression
profiles of pairs of cis-eQTL genes.
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Figure 4.12: QTL 4-11 regulatory network model for genes associated with GLS resis-
tance. The black square represents the phenotypic trait “GLS susceptibility”. Black dot-
ted lines indicate a strong correlation (p-value <0.00001) between the GLS severity pro-
file and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square nodes
represent cis-eQTL genes (SDR=short-chain dehydrogenase/reductase or rossmann-fold
NAD(P)-binding domain-containing protein) and round nodes trans-eQTL genes. The
trans-eQTL nodes are sequentially numbered from “ar1” to “ar19” where “ar1” represents
the trans-eQTL gene with the strongest correlation to GLS susceptibility (see Table 4.12
for node annotations). Node colours correspond to the categories in Table 4.7. Solid edges
represent gene co-expression between cis- and trans-eQTL genes (p-value <0.00001); and
arrows indicate direction of regulation, assuming that cis variation explains gene expres-
sion differences for genes in trans. Grey dotted lines indicate a strong correlation (p-value
<0.00001) between the gene expression profiles of pairs of cis-eQTL genes.
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Figure 4.13: QTL 9-5 regulatory network model for genes associated with GLS re-
sistance. The black square represents the phenotypic trait “GLS susceptibility”. Black
dotted lines indicate a strong correlation (p-value <0.00001) between the GLS severity
profile and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square
nodes represent cis-eQTL genes (STK=serine threonine-protein kinase; NAG=NAGLU
family protein; PP=putative protein; PUF=protein of unknown function) and round
nodes trans-eQTL genes. The trans-eQTL nodes are sequentially numbered from “br1”
to “br49” where “br1” represents the trans-eQTL gene with the strongest correlation to
GLS susceptibility (see Table 4.13 for node annotations). Node colours correspond to
the categories in Table 4.7. Solid edges represent gene co-expression between cis- and
trans-eQTL genes (p-value <0.00001); and arrows indicate direction of regulation, as-
suming that cis variation explains gene expression differences for genes in trans. Grey
dotted lines indicate a strong correlation (p-value <0.00001) between the gene expression
profiles of pairs of cis-eQTL genes.
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Figure 4.14: QTL 9-7 regulatory network model for genes associated with GLS re-
sistance. The black square represents the phenotypic trait “GLS susceptibility”. Black
dotted lines indicate a strong correlation (p-value <0.00001) between the GLS severity
profile and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square
nodes represent cis-eQTL genes (DQS=3-dehydroquinate synthase; GTP=GTP-binding
protein; PUF=protein of unknown function) and round nodes trans-eQTL genes. The
trans-eQTL nodes are sequentially numbered from “cr1” to “cr22” where “cr1” represents
the trans-eQTL gene with the strongest correlation to GLS susceptibility (see Table 4.14
for node annotations). Node colours correspond to the categories in Table 4.7. Solid edges
represent gene co-expression between cis- and trans-eQTL genes (p-value <0.00001); and
arrows indicate direction of regulation, assuming that cis variation explains gene expres-
sion differences for genes in trans. Grey dotted lines indicate a strong correlation (p-value
<0.00001) between the gene expression profiles of pairs of cis-eQTL genes.
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Figure 4.15: QTL 10-10 regulatory network model for genes associated with GLS re-
sistance. The black square represents the phenotypic trait “GLS susceptibility”. Black
dotted lines indicate a strong correlation (p-value <0.00001) between the GLS severity
profile and the expression profiles of genes with eQTLs in HS 4-12 S. Coloured square
nodes represent cis-eQTL genes (LAR=leucoanthocyanidin reductase; GTR=glutamyl-
tRNA reductase; PUF=protein of unknown function) and round nodes trans-eQTL genes.
The trans-eQTL nodes are sequentially numbered from “dr1” to “dr14” where “dr1” rep-
resents the trans-eQTL gene with the strongest correlation to GLS susceptibility (see
Table 4.15 for node annotations). Node colours correspond to the categories in Table
4.7. Solid edges represent gene co-expression between cis- and trans-eQTL genes (p-
value <0.00001); and arrows indicate direction of regulation, assuming that cis variation
explains gene expression differences for genes in trans. Grey dotted lines indicate a strong
correlation (p-value <0.00001) between the gene expression profiles of pairs of cis-eQTL
genes.
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Figure 4.16: Circos plot of candidate genes with trans-eQTLs potentially involved in
mechanisms associated with GLS resistance or susceptibility. The ten maize chromo-
somes are indicated in black. Green blocks indicate the eight GLS severity QTLs. Each
arrow links a trans-eQTL position, coinciding with a GLS severity QTL, with the position
of the gene whose expression level is affected by the trans-eQTL. Arrowheads indicate
gene positions. Only genes with trans-eQTLs in the five trans-eQTL hotspots that were
identified to overlap GLS severity QTLs 3-14, 4-11, 9-5, 9-7 and 10-10, and whose expres-
sion profiles were significantly correlated with the GLS severity scores (p-value<0.01),
are indicated. Red lines link trans-eQTLs for which the resistance associated allele (of
the coinciding GLS severity QTL) was the allele associated with higher expression. Blue
lines link trans-eQTLs for which the susceptibility associated allele (of the coinciding
GLS severity QTL) was the allele associated with higher expression.
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Table 4.2: A summary of the numbers of markers, 2 cM bins, reporters and eQTLs per
maize chromosome. This table was generated by the “classification” module of the eQTL
data analysis pipeline in Galaxy after classification of eQTLs as eQTL cis or trans.

aBins refer to 2 cM intervals used in CIM. Bins were 2 cM in size, except for the last bin
before each new marker.
bThe number of Agilent reporters with known positions on the maize genome, as re-
annotated by Coetzer et al. (2011).
cSome eQTLs could not be classified as cis or trans, due to uncertainty concerning the
genomic position of its linked genes.
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Table 4.3: A summary of the 32 trans-eQTL hotspots identified across the maize
genome. This table summarises a list that was generated by the “GO enrichment” module
of the eQTL data analysis pipeline in Galaxy.

aHotspots were named based on the chromosome and the number of the interval start
marker on QMap 2.0; bBins were 2 cM in size, except for the last bin before each new
marker. Multiplying the number of bins by 2 thus gives the upper-limit cM size of the
trans-eQTL hotspot; cThe number of trans-eQTLs with eQTL peaks in the hotspot region;
dThe number of trans-eQTLs for which the SC Malawi allele was associated with higher
expression; eThe number of trans-eQTLs for which the CML444 allele was associated
with higher expression; fThe number of enriched GO-terms identified by TopGO using a
classic Fisher exact test unadjusted (for multiple testing) p-value of 0.01; gThe number of
enriched GO-terms identified by TopGO using a classic Fisher’s exact test adjusted (for
multiple testing) p-value of 0.05; hPearson’s chi-squared tests for excess of positive alleles
from one parent (with a p-value cut-off of 0.05); “yes” indicates a significant directional
bias.
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Table 4.5: Summary statistics of the eQTLs per trans-eQTL hotspot that overlapped
GLS severity QTLs. The table provides the numbers of cis- and trans-eQTLs with peaks
in each QTL-overlapping trans-eQTL hotspot interval after: (i) eQTLs were divided into
groups based whether higher expression was associated with the resistance or suscepti-
bility associated allele and (ii) genes with expression profiles that significantly correlated
to the phenotype values (GLS severity scores) were identified (p-value <0.01). Table 4.1
states whether CML444 or SC Malawi was the parent with the resistance associated allele
for each GLS severity QTL.
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Table 4.6: Enriched GO-terms from BiNGO analyses of the trans-eQTLs with peaks in
the trans-eQTL hotspots that overlapped the GLS severity QTLs. All trans-eQTLs that
belonged to the relevant hotspot were included in the first analysis (“All”), whereafter the
subsets of these trans-eQTLs (given in Table 4.5) were included in subsequent analyses.
“S” and “R” refers to the trans-eQTLs where the parent associated with higher expression
was the susceptibility (S) or resistance (R) associated allele, respectively; and “cor” refers
to the subset of trans-eQTLs with gene expression profiles that significantly correlated
with the GLS severity scores (p-value <0.01).

*The analysis was based on the plant-specific GO slim ontology as opposed to the full
GO hierarchy.
aThe GO-term definition that corresponds to the GO-ID.
bThe hypergeometric test unadjusted (for multiple testing) p-value for GO enrichment.
cAdjusted p-value, based on Benjamini and Hochberg correction applied on hypergeo-
metric test.
dCluster frequency represents the total number of genes annotated to that GO term
divided by total number of genes in the test set.
eTotal frequency represents the total number of genes annotated to that GO term divided
by total number of genes in the reference set.
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Table 4.7: Functional categories (based on MapMan bins) and the associated colours of
genes referred to in Tables 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15.
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Table 4.8: The node annotations for the QTL 4-11 regulatory network model for genes
associated with GLS susceptibility (Figure 4.9 on page 200). For a description of the
categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.9: The node annotations (part I) for the QTL 9-5 regulatory network model for
genes associated with GLS susceptibility (Figure 4.10 on page 201). For a description of
the categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.10: The node annotations (part II) for the QTL 9-5 regulatory network model
for genes associated with GLS susceptibility (Figure 4.10 on page 201). For a description
of the categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.11: The node annotations for the QTL 10-10 regulatory network model for
genes associated with GLS susceptibility (Figure 4.11 on page 202). For a description of
the categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.12: The node annotations for the QTL 4-11 regulatory network model for
genes associated with GLS resistance (Figure 4.12 on page 203). For a description of the
categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.13: The node annotations for the QTL 9-5 regulatory network model for genes
associated with GLS resistance (Figure 4.13 on page 204). For a description of the
categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.14: The node annotations for the QTL 9-7 regulatory network model for genes
associated with GLS resistance (Figure 4.14 on page 205). For a description of the
categories in the “MM (MapMan) bin” column refer to Table 4.7.
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Table 4.15: The node annotations for the QTL 10-10 regulatory network model for
genes associated with GLS resistance (Figure 4.15 on page 206). For a description of the
categories in the “MM (MapMan) bin” column refer to Table 4.7.



Chapter 5

Meta-analysis: Combining

co-expression network analysis with

QTL/eQTL overlap analysis

5.1 Introduction

A systems genetics strategy, outlined in Figure 5.1, was developed to incorporate the

analysis of gene co-expression with phenotypic QTL and eQTL mapping, to identify

candidate genes and pathways associated with GLS disease.

As an initial analysis in Chapter 3, gene expression profiles across the individuals

(C. zeina-infected maize plants) of the CML444⇥SC Malawi RIL population was used

in a correlation analysis to identify 42 gene co-expression modules (Figure 5.1 Box A).

The GLS severity measurements (phenotype data) across the same individuals were in-

corporated to identify eight modules significantly correlated to GLS severity (an output

of Chapter 3). Advantages of this analysis were that central nodes of the relevant gene

co-expression modules could be identified as potential global regulators, or drivers, and

functional enrichment analyses could be used to potentially link biological processes to

the GLS disease response. However, the analysis provided no reference to the genetic

basis for either gene expression variation or the response to GLS disease.

Subsequently, a global eQTL analysis was performed to identify associations between

genotype and gene expression (Figure 5.1 Box B). The expression profile of each gene,

across the individuals in the above-mentioned population, was treated as a quantitative

223



CHAPTER 5. META-ANALYSIS 224

trait to identify regions of the genome where genetic variation was associated with gene

expression variation among the RIL lines. In Chapter 4 the 31,549 identified eQTLs

were classified as cis- or trans-acting and 32 trans-eQTL hotspots were identified. A

biologically meaningful trans-eQTL hotspot was assumed to reveal a significant number

of response genes under common transcriptional control and acting in the same pathway.

Genes that belong to such a hotspot are typically regulated by one or more regulatory

gene(s) located in the eQTL hotspot, which in turn may have a cis-eQTL at the hotspot

locus. However, it is also possible that the cis-polymorphism is based on DNA variation

in coding regions leading to a change in protein sequence or structure rather than gene

expression variation. Even though C. zeina-infected maize plants were used for expression

profiling, no conclusions regarding the genetic basis for the response to GLS disease could

be inferred from the eQTL analysis results alone.

In order to unravel the genetic basis for the quantitative disease response to GLS,

a QTL analysis for GLS severity was performed in Chapter 4 on the same field trial

that was sampled for the expression study (Figure 5.1 Box C). Eight regions of the

maize genome were identified, where genetic variation was significantly associated with

phenotypic variation. However, the identified regions spanned broad genetic intervals

including hundreds of genes, any of which might contain a polymorphism affecting the

phenotype.

A QTL/eQTL overlap analysis was performed in Chapter 4, including only genes with

eQTLs that belonged to trans-eQTL hotspots overlapping GLS severity QTLs (Figure 5.1

Box D). A hotspot may be significant if it points to a polymorphism in a gene that affects

the expression of many related genes which, in turn, affects GLS severity and therefore

underlies a GLS severity QTL. QTL-overlapping trans-eQTL hotspots in this study were

on average 60% smaller than GLS severity QTLs themselves and only genes with eQTL

peaks in these hotspots were included in the analysis. Two data management steps were

performed on the identified cis- and trans-eQTL candidate genes: (i) candidates were split

based on whether higher expression was associated with the resistance or susceptibility

linked allele; and (ii) correlation analysis between phenotype values (GLS severity scores)

and the gene expression values were used to filter the resulting gene lists. This QTL/eQTL

overlap analysis assumed that: (i) there is an underlying DNA polymorphism that gives

rise to a change in gene expression which in turn affects GLS severity; (ii) the allele
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associated with a higher expression was linked to the trait of interest (i.e. GLS resistance

or susceptibility, depending on the underlying polymorphism); (iii) the causal gene’s

expression profile correlates with the quantitative trait of interest. Additional correlation

analyses between the expression values of each identified gene with a cis-eQTL and all

the genes with trans-eQTLs in a linked trans-eQTL hotspot, were used to construct

putative regulatory network models per GLS severity QTL with an overlapping trans-

eQTL hotspot. Thus gene expression data, genotype data and phenotype data were

integrated to construct regulatory network models (Figures 4.9-4.15). A limitation of

this analysis was that information relating to the gene co-expression modules (see Figure

5.1 Box A) was not incorporated.

One way to incorporate the identified gene co-expression modules would be to ask

whether it was possible to identify a genetic basis for the observed coordinated expression

responses to GLS disease, i.e. if there was significant concurrence between the genes in

co-expression modules correlating with GLS disease (Table 3.1) and the genes in trans-

eQTL hotspots that overlapped the GLS severity QTLs (Table 4.5). This question will

be further explored in the this chapter.

5.2 Methods

Fisher’s exact tests were used to determine whether each co-expression module was en-

riched for genes with eQTLs in a common trans-eQTL hotspot (Figure 5.1 Box E), using

a customised script in R (available in the electronic Appendix). Thus for a specific co-

expression module, the proportion of genes with eQTLs in a given trans-eQTL hotspot

was compared to the proportion of genes included in the analysis with eQTLs in that

hotspot. Therefore, for each of the 42 co-expression modules, 64 tests were performed (32

hotspots were split according to the parental allele associated with higher expression).

The p-values were adjusted for multiple testing by controlling the false discovery rate

(Benjamini and Hochberg, 1995). The resulting p-values per co-expression module are

given in the electronic Appendix. Note that the trans-eQTL hotspots were named such

that “HS 10-10 R” referred to the trans-eQTL hotspot (on chromosome 10, starting at

marker 10) overlapping a GLS severity QTL where the resistance associated allele (that

was determined by the overlapping GLS severity QTL; Table 4.1) was associated with a
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higher expression.

As an example, the proportion of reporters in the greenyellow module with eQTLs in

HS 9-6 S [39 reporters in the greenyellow module with eQTLs in HS 9-6 S (Tables 5.1

and 5.2) out of 185 reporters in the greenyellow module (Table 3.1), thus 39/185 = 0.21,

i.e. 21%] was compared to the proportion of total reporters that was included in the

co-expression module analysis with eQTLs in HS 9-6 S [296 reporters with eQTLs in HS

9-6 S (Table 4.3; note that 296 out of the 311 were included in the co-expression module

analysis) out of 19,281 reporters in the co-expression module analysis (see section 3.4.2),

thus 296/19,281=0.015, i.e. 1.5%]. The p-value calculated using the Fisher’s exact test

was 3.5e�33 (adjusted p-value = 1.4e�30), which indicated that genes with eQTLs in HS

9-6 S were significantly overrepresented in the greenyellow module.

MapMan was used to functionally classify genes into predefined bins (Thimm et al.,

2004). This classification, together with manual revision, were used to construct Figures

5.2, 5.3 and 5.4, summarising the functional annotations of the genes per co-expression

module enriched for genes with eQTLs in QTL-overlapping trans-eQTL hotspots.

The first module in the eQTL data analysis pipeline (Figure 4.2) was used to map

“a priori network eQTLs” as defined by Hansen et al. (2008). The module eigengene

expression profiles of the eight gene co-expression modules correlating with GLS severity

(Table 3.1), were extracted using functions from the weighted gene co-expression net-

work analysis (WGCNA) package in R. An “e-traits file”, consisting of the eight module

eigengene expression profiles, together with the “map file” and “cross file” that were pre-

viously used for eQTL mapping, were used as input files in Galaxy. QTL mapping was

performed using the parameters mentioned previously for eQTL mapping, i.e. forward

and backward stepwise regression (p-value = 0.1), a 2 cM walking speed and CIM was

implemented. The LR threshold was set to 11.5. A customised R script was used to

visualise the results (Figure 5.5).

5.3 Results and Discussion

5.3.1 Over-representation analysis

Out of five co-expression modules with a significant correlation to GLS susceptibility

(greenyellow, paleturquoise, blue, yellowgreen and magenta), an enrichment analysis re-
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vealed that only the greenyellow module was significantly enriched for genes with eQTLs

in trans-eQTL hotspots that overlapped with GLS severity QTLs (Figure 5.1 Box F).

In total, the greenyellow module was enriched for genes with eQTLs in five hotspots, of

which two overlapped GLS severity phenotypic QTLs 9-5 and 10-10; and in both cases the

hotspot’s parental allele associated with increased expression matched the GLS severity

QTL parental allele associated with susceptibility. Tables 5.1 and 5.2 give the 58 gene

models in the greenyellow module with eQTLs either in HS 9-6 S or in HS 10-10 S (or

with eQTLs in both hotspots) and Figure 5.2 provides an overview of the functional cat-

egories of these genes. All 58 gene models (100%) had significant individual correlation

coefficients (p-value <0.01) when gene expression values were correlated with the GLS

severity scores. Since the module eigengene of the greenyellow co-expression module was

highly correlated (with a correlation coefficient of 0.71) with GLS severity, it was not

unexpected that the genes with correlated expression values in this co-expression module

were also correlated to GLS severity. Out of all the trans-eQTLs in HS 9-6 S and HS

10-10 S, 12.6% and 22.3% respectively, belonged to genes in the greenyellow module.

Furthermore, out of the three co-expression modules with a significant correlation to

GLS resistance (turquoise, darkred and yellow), the turquoise and yellow modules were

significantly enriched for genes with eQTLs in trans-eQTL hotspots that overlapped the

GLS severity QTLs (Figure 5.1 Box F). The turquoise module was enriched for genes

with eQTLs in nine hotspots, of which two overlapped GLS severity phenotypic QTLs

9-5 and 9-7; and in both cases the hotspot’s parental allele with increased expression

matched the GLS severity QTL parental allele associated with resistance. Tables 5.3, 5.4

and 5.5 give the 74 gene models in the turquoise module with eQTLs either in HS 9-6 R

or in HS 9-7 R (or with eQTLs in both hotspots) and Figure 5.3 provides an overview

of the functional categories of these genes. Thirty out of the 74 gene models (41%) had

significant individual correlation coefficients (p-value <0.01) when gene expression values

were correlated with the GLS severity scores. The yellow module was enriched for genes

with eQTLs in four hotspots, of which one overlapped GLS disease QTL 4-11; and this

hotspot’s parental allele with increased expression also matched the GLS severity QTL

parental allele associated with resistance. Tables 5.6 and 5.7 give the 41 gene models

in the yellow module with eQTLs in HS 4-12 R and Figure 5.4 provides an overview of

the functional categories of these genes. Fourteen out of the 41 gene models (34%) had
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significant individual correlation coefficients (p-value <0.01) when gene expression values

were correlated with the GLS severity scores.

5.3.2 Network eQTL analysis

An a priori network eQTL analysis (according to terminology used by Hansen et al., 2008)

was performed where the module eigengene profiles of the gene co-expression modules

were used as the traits in a QTL analysis. The aim was to identify genomic regions

where genetic variation influences entire co-expression modules. For the greenyellow

module eigengene, three network eQTLs were mapped, of which two overlapped GLS

severity phenotypic QTLs 9-5 and 10-10 (Figure 5.5). In both cases, the module eigengene

network eQTL’s parental allele with increased expression matched the GLS severity QTL

parental allele associated with susceptibility (the SC Malawi allele was associated with

susceptibility for QTL 9-5 and QTL 10-10). Importantly, this supported the above-

mentioned result (Figure 5.1 Box F) that the genes in the greenyellow module had a

significant number of eQTLs in the trans-eQTL hotspots that overlapped GLS severity

phenotypic QTLs 9-5 and 10-10. For the turquoise module eigengene, only one network

eQTL was identified on chromosome 7, not overlapping a GLS severity QTL (Figure 5.5).

However, not surprisingly it overlapped one of the trans-eQTL hotspots for which the

turquoise module was strongly enriched, i.e. the hotspot with the lowest Fisher’s exact

test p-value for the turquoise module (HS 7-6 SC with an adjusted p-value of 4.8e�49; data

available in electronic Appendix). For the yellow module eigengene, one network eQTL

was identified on chromosome 4 and it overlapped GLS severity QTL 4-11 (Figure 5.5).

Here, the module eigengene network eQTL’s parental allele with increased expression

matched the GLS severity QTL parental allele associated with resistance (the CML444

allele was associated with resistance for QTL 4-11). This finding also supported the

above-mentioned result (Figure 5.1 Box F) that the genes in the yellow module had a

significant number of eQTLs in the trans-eQTL hotspot that overlapped GLS severity

phenotypic QTL 4-11.

Therefore, three of the gene co-expression modules that were previously linked to

GLS disease were identified to have module eigengene network eQTLs overlapping GLS

severity QTLs. Furthermore, depending on whether the co-expression module was pos-

itively associated with either resistance or susceptibility, the module eigengene network
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eQTL’s parental allele with increased expression matched the overlapping GLS severity

QTL parental allele associated with the same phenotype (either resistance or susceptibil-

ity). Also, in most cases, the genes in a co-expression module had a significant number

of eQTLs that belonged to a trans-eQTL hotspot coinciding with its module eigengene

network eQTL. In such cases, the module eigengene network eQTL’s parental allele asso-

ciated with higher expression matched that of the coinciding trans-eQTL hotspot (which

was split by parental allele associated with higher expression).

5.3.3 Final hypotheses regarding genes and processes underlying

the GLS disease response in maize

In this study, loci that affected GLS severity were identified and consequently several

mechanisms of defense were hypothesised. Due to the complexity of disease resistance

mechanisms, the plant molecular mechanisms that control quantitative disease resistance

(or susceptibility) are generally poorly understood. Since quantitative disease resistance

is usually conditioned by many loci with small effects, no single hypothesis can fully

explain the scope of quantitative disease resistance (Poland et al., 2009). It is anticipated

that each of the eight GLS severity QTLs that were identified in this population offers a

different mechanism of defense.

The RIL population was sampled during flowering when GLS lesions were evident

and therefore sampling was more suited to measure the plant’s responses to the spread-

ing disease within the leaf (i.e. susceptibility). The greenyellow co-expression module

(consisting of 185 genes) had an exceptionally strong correlation with GLS susceptibility

(correlation coefficient of 0.71; Table 3.1). The expression of the bulk of genes in this

co-expression module seemed to be explained by the two trans-eQTL hotspot loci, HS

9-6 S and HS 10-10 S, coinciding with the GLS severity phenotypic QTLs 9-5 and 10-10.

These genes are co-expressed, they belong to the greenyellow module which is associated

with GLS susceptibility and their expression is explained by the two loci (HS 9-6 S and

HS 10-10 S) (Figure 5.2, together with Tables 5.1 and 5.2, provides a summary of these

candidate genes and their functional categories). Several final hypotheses of potential

mechanisms underlying quantitative disease susceptibility, for GLS severity QTLs 9-5

and 10-10, are given below.

The first group of hypotheses for mechanisms or genes involved in quantitative disease
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susceptibility was associated with defense signal transduction. It is hypothesised that a

calmodulin-related calcium sensor gene with a cis-eQTL that coincided with HS 9-6 S

(Table 5.2) encodes a protein that acts as a transcriptional regulator to activate numerous

target proteins through signalling due to the ion fluxes across membranes in response to

pathogen infection. It is hypothesised that calcium signalling plays a role in the regulation

of induced defense-related signalling cascades and plant adaptation to fungal attack.

Since the expression of these genes were mainly explained by HS 9-6 S (Table 5.2), this

could be a mechanism conferred by the overlapping GLS severity QTL 9-5. It is further

hypothesised that the higher expression in susceptible plants of two WRKY transcription

factors with trans-eQTLs in HS 9-6 S and HS 10-10 S (Tables 5.1 and 5.2), respectively,

aid in the regulation of host responses in reaction to pathogen challenge typically via

hormone signalling (Pandey and Somssich, 2009). Furthermore, it is hypothesised that

ethylene (Aminocyclopropane-1-carboxylic acid synthase in Table 5.1 with a trans-eQTL

in HS 9-6 S), which is an important factor for the induction of defense responses against

pathogen attack, promoted necrotic lesion formation in susceptible plants.

A second group of hypotheses for mechanisms or genes involved in quantitative dis-

ease susceptibility was associated with chemical warfare. It is hypothesised that increased

antifungal activity was needed to act against the toxins produced by C. zeina in suscep-

tible plants. This activity resulted from genes involved in secondary metabolism with

trans-eQTLs in HS 9-6 S (Table 5.1). Similarly, it is hypothesised that genes involved

in cellular detoxification of xenobiotic conjugates were activated in response to C. zeina

infection. This mechanism linked to GLS severity QTL 10-10, where the trans-eQTLs

of a few adenosine triphosphate (ATP)-binding cassette (ABC) transporters as well as a

glutathione S-transferase were localised in HS 10-10 S (Table 5.2).

Finally, there was a strong signature of pathogenesis-related (PR) and biotic stress

response genes with trans-eQTLs mainly coinciding with QTL 9-5 (Table 5.2). These

genes, which appeared to be associated with GLS susceptibility, included two proteinase

inhibitors, a PR beta-1,3-glucanase, two chitinases and a GRAM-domain containing pro-

tein. The mentioned genes were either activated too late after infection started or its

activity was overcome or suppressed by C. zeina effectors. It is hypothesised that C.

zeina could be protected against plant chitinases due to chitin-binding effectors for ex-

ample Avr4 or Ecp6 (extracellular protein 6) (van den Burg et al., 2006; de Jonge, 2010).
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In contrast to the susceptible response, gene expression in resistant plants were ex-

pected to portray constitutive defenses that were still present at the late stage of sampling,

rather than early induced defenses in response to C. zeina. The turquoise co-expression

module (a large module, consisting of 1,564 genes) was the module with the strongest

correlation with GLS resistance. The expression of a group of genes in this co-expression

module seemed to be explained by the two trans-eQTL hotspot loci, HS 9-6 R and HS 9-7

R, coinciding with the GLS severity phenotypic QTLs 9-5 and 9-7. These genes are co-

expressed, they belong to the turquoise module which is associated with GLS resistance

and their expression is explained by the two loci (HS 9-6 R and HS 9-7 R) (Figure 5.3,

together with Tables 5.3, 5.4 and 5.5, provides a summary of these candidate genes and

their functional categories). Several final hypotheses of potential mechanisms underlying

quantitative disease resistance, for GLS severity QTLs 9-5 and 9-7, are given below.

The main hypothesis for quantitative disease resistance relate to defense signal trans-

duction. It is hypothesised that polymorphisms at QTLs 9-5 and 9-7 could differentially

regulate the expression of phosphatases/kinases that are involved in post-translational

modifications, which promote defense mechanisms that threaten the survival of fungal

cells. Interestingly, out of the nine phosphatases/kinases that were part of the above-

mentioned list of candidate genes (Table 5.4), only one (A_92_P010477) was included

in the previously constructed QTL 9-5 and 9-7 regulatory network models (Tables 4.13

and 4.14). Importantly, signalling/post-translational modification was also identified as

a main hypothesis for the QTL 9-5 regulatory network model, however most of the con-

tributing genes were not part of the turquoise module. Therefore, the eight remaining

genes in the turquoise module with this same functionality (that were previously removed

through filtering), confirmed signalling/post-translational modification as an important

potential mechanism of resistance conferred by GLS severity QTLs 9-5 and 9-7.

Other hypotheses for quantitative disease resistance, linked to QTLs 9-5 and 9-7, relate

to genes or mechanisms involved in basal defense. It is hypothesised that the two receptor-

like kinases (Table 5.4), with trans-eQTLs in HS 9-6 R, function as cell surface receptors

and play a crucial role in perception of fungal pathogen-associated molecular patterns

(PAMPs) and defense signal transduction. In addition, it is hypothesised that the gene

encoding a TOPLESS-related protein containing WD repeats (involved in regulation

of transcription), with a strong correlation to GLS resistance and with a trans-eQTL
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in HS 9-7 R (Table 5.4), could act as a repressor of negative regulators of the plant

immune response. Such negative regulators of the plant immune response will typically

strongly correlate with GLS susceptibility and can potentially be activated due to C.

zeina manipulated plant gene expression. An example of a potential negative regulator

associated with GLS susceptibiltiy from this study, was the NUDIX domain-containing

protein (Table 5.1) with a cis-eQTL in HS 4-11 S and a trans-eQTL in HS 9-6 S. Finally,

it is hypothesised that the gene encoding a callose synthase (with a trans-eQTL in HS

9-6 R and a strong gene expression correlation to GLS resistance; Table 5.3), plays a role

in GLS resistance via depositions of callose in the form of local cell wall thickenings to

block fungal penetration (similar to the Arabidopsis callose synthase studied by Jacobs

et al., 2003).

The yellow co-expression module (another large module, consisting of 1,170 genes)

was also associated with GLS resistance. The expression of a group of genes in this co-

expression module was explained by the trans-eQTL hotspot locus, HS 4-12 R, coinciding

with the GLS severity QTL 4-11. These genes are co-expressed, they belong to the yellow

module which is associated with GLS resistance and their expression is explained by a

single locus (HS 4-12 R) (Figure 5.4, together with Tables 5.6 and 5.7, provides a summary

of these candidate genes and their functional categories). Several final hypotheses of

potential mechanisms underlying quantitative disease resistance, for GLS severity QTL

4-11, are given below.

It is hypothesised that the ubiquitination system and the 26S proteasome play a key

role in conferring resistance against C. zeina (Table 5.6), possibly via the regulation

of processes such as the oxidative burst, hormone signalling, gene induction, and pro-

grammed cell death (Trujillo and Shirasu, 2010). Seven genes in the above-mentioned

list of candidate genes encoded proteins involved in ubiquitin-mediated protein degra-

dation, of which two were previously also included in the QTL 4-11 regulatory network

(Table 4.12). It is further hypothesised that maize heterotrimeric G-proteins successfully

control defense responses to C. zeina (Table 5.6).

Finally, it is hypothesised that R-gene-mediated defense could potentially account

for a proportion of the quantitative disease resistance against the necrotrophic fungus

C. zeina. An R-gene encoding a NBS-LRR resistance protein (Table 5.7), located on

chromosome 3, but with a trans-eQTL in HS 4-12 R, was part of this group of candidate



CHAPTER 5. META-ANALYSIS 233

genes. Poland et al. (2009) noted that although it is commonly believed that R-genes

confer complete race-specific resistance and QTLs confer partial race non-specific resis-

tance, there are examples of R-genes that condition partial resistance. This hypothesis

would be much stronger if there was an R-gene with a cis-eQTL coinciding with a GLS

severity QTL.

5.4 Conclusion

This chapter concluded the systems genetics strategy which was developed to incorpo-

rate the analysis of gene co-expression with phenotypic QTL and eQTL mapping, in

order to identify candidate genes and biological processes associated with GLS disease in

maize. Three of the co-expression modules correlating with GLS disease were enriched

for genes with eQTLs in trans-eQTL hotspots that overlapped the GLS severity pheno-

typic QTLs. Module eigengene network eQTLs were identified to verify these findings.

It was possible, at least in some cases, to identify a genetic basis for the coordinated

expression responses to GLS disease. In two cases, the genes in a co-expression module

correlating with GLS severity were identified to have a significant number of trans-eQTLs

in two different QTL-overlapping hotspots. This indicates that more than one regula-

tory gene likely participates in explaining the expression variation in the same endpoint

genes/mechanisms.

Hypotheses regarding genes and processes associated with GLS resistance/susceptibility

were concluded, firstly from the co-expression modules correlating with GLS disease in

Chapter 3 and secondly from the trans-eQTL hotspots that overlapped the GLS severity

QTLs in Chapter 4. The approach outlined in this chapter brought the above-mentioned

separate analyses together by studying the overlap between the co-expression modules

correlating with GLS disease and the trans-eQTL hotspots that overlapped the GLS

severity QTLs. Thus, this meta-analysis highlighted the most likely defense mechanisms

utilised by maize plants in this RIL population against the fungus Cercospora zeina.
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Figure 5.1: Overview of the strategy that was followed in this study. Gene expres-
sion data, genotype data and GLS severity data from a CML444⇥SC Malawi maize RIL
population were used in a systems genetics approach to dissect quantitative disease re-
sistance and susceptibility of GLS disease. These data types were used to identify gene
co-expression modules (Box A), expression QTLs (Box B) and GLS severity QTLs (Box
C). To prioritise genes and pathways associated with GLS disease, co-expression modules
correlating with GLS disease were identified in Chapter 3 and eQTLs overlapping with
GLS severity QTLs (Box D) in Chapter 4. Finally, in Chapter 5, candidate genes in the
GLS-correlating co-expression modules and in the QTL-overlapping trans-eQTL hotspots
were compared (Box E) to determine the genetic basis of the co-expression modules. Box
F gives a summary of these results.
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Table 5.1: Gene models in the greenyellow co-expression module with eQTLs in HS 9-6
S and HS 10-10 S (part 1 of 2).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspots that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.2.
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Table 5.2: Gene models in the greenyellow co-expression module with eQTLs in HS 9-6
S and HS 10-10 S (part 2 of 2).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspots that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.2.
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Table 5.3: Gene models in the turquoise co-expression module with eQTLs in HS 9-6
R and HS 9-7 R (part 1 of 3).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspots that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.3.



CHAPTER 5. META-ANALYSIS 242

Table 5.4: Gene models in the turquoise co-expression module with eQTLs in HS 9-6
R and HS 9-7 R (part 2 of 3).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspots that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.3.
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Table 5.5: Gene models in the turquoise co-expression module with eQTLs in HS 9-6
R and HS 9-7 R (part 3 of 3).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspots that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.3.
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Table 5.6: Gene models in the yellow co-expression module with eQTLs in HS 4-12 R
(part 1 of 2).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspot that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.4.
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Table 5.7: Gene models in the yellow co-expression module with eQTLs in HS 4-12 R
(part 2 of 2).

aMaize core bin where the reporter is located; bPearson correlation coefficient of the
reporter’s expression profile with the GLS severity scores (* indicates significance; p-
value <0.01); cThe trans-eQTL hotspot that this gene belong to (or overlap when it is
a cis-eQTL); dFunctional annotation derived from the best Arabidopsis and rice BLAST
hits, as well as the Blast2GO description; eMapMan BIN corresponding to Figure 5.4.



Chapter 6

Concluding remarks

This study was designed to investigate the transcriptional variation underlying the quan-

titative genetic response to grey leaf spot (GLS) disease, caused by the fungus Cercospora

zeina, in a recombinant inbred line (RIL) population derived from a CML444×SC Malawi

cross. The major aims of the study were to: (i) annotate the reporter set of the Agilent-

016047 microarray, using the maize B73 genome sequence; (ii) establish whether coordi-

nated transcriptional responses to C. zeina infection under field conditions were evident

in the RIL population; (iii) combine QTL mapping for GLS severity with eQTL analysis

to investigate the molecular basis of the quantitative disease response to C. zeina infec-

tion; and finally (iv) elucidate the genetic basis for the coordinated expression responses

to GLS disease. Agilent 44K microarrays were used for gene expression profiling across

100 RILs. A gene co-expression module analysis revealed 42 modules, of which eight were

significantly correlated with GLS severity. Making use of 167 polymorphic DNA mark-

ers, eight QTLs for GLS severity were identified. In an eQTL analysis, 31,549 eQTLs for

30,280 e-traits were detected, comprising 4,866 cis-eQTLs (37.2%), 23,313 trans-eQTLs

(74%) and 3,370 eQTLs (11%) that could not be classified. The analysis revealed 32

trans-eQTLs hotspots, five of which overlapped with GLS severity QTLs. The genes in

three of the co-expression modules correlating with GLS severity were identified to have

a significant number of trans-eQTLs in specific QTL-overlapping hotspots. This gave rise

to a final list of 171 genes possibly involved in the mechanisms that might explain the

resistance/susceptibility response for the respective GLS severity QTLs.

The QTL analysis revealed eight loci that affected GLS severity, implying underlying

DNA polymorphisms in at least eight different genes. This was expected to result in eight

246



CHAPTER 6. CONCLUDING REMARKS 247

resistance/susceptibility “mechanisms”, some of which may converge on the same resis-

tance/susceptibility pathway. Assuming that some of these causal DNA polymorphisms

also give rise to a change in gene expression and that such causal genes’ expression profiles

correlate with GLS severity, several mechanisms of defense were hypothesised. Although

not all QTLs may be explained by gene expression differences, the study was able to

highlight two hypotheses, both for QTL 9-5, based on potential networks where cis vari-

ation in regulatory factors gives rise to changes in expression levels for numerous genes

in trans, potentially giving rise to phenotypic variation. For the susceptible response,

it is hypothesised that a calmodulin-related protein with a cis-eQTL acts as a global

regulator of various pathogenesis-related proteins that are activated in the susceptible

RILs presumably in reaction to pathogen spreading in the leaf, but too late overall in the

plant to result in resistance or tolerance. For the resistant response, it is hypothesised

that a serine threonine-protein kinase with a cis-eQTL acts as a post-translational global

regulator regulating phosphatases and kinases involved in activation of defense gene ex-

pression. The proposed hypotheses and identified QTLs may be transferable to other

maize inbred lines, only if the underlying DNA polymorphism is found in those lines.

Balint-Kurti et al. (2008) reported cases where GLS severity QTLs from different maize

populations mapped to the same bin, which could indicate the same QTL with the same

underlying DNA polymorphism, in which case the markers might be transferable. How-

ever, downstream responses are likely to be found also in other maize lines, since plants

are thought to have a limited number of defense pathways, for example the salicylic acid

and jasmonic acid signalling pathways (Dong, 1998) that lead to the production of anti-

fungal proteins like pathogenesis-related proteins. Interestingly, in two cases, the genes in

a co-expression module correlating with GLS severity were identified to have a significant

number of trans-eQTLs in two different QTL-overlapping hotspots. This suggests that

more than one regulatory gene likely participates in explaining the expression variation

in the same endpoint genes/mechanisms.

This study further contributed towards the development of (i) a strategy to anno-

tate the Agilent-016047 maize microarray and a publicly accessible annotation database

(Coetzer et al., 2011); and (ii) an eQTL data analysis pipeline in Galaxy, which can

be used for global eQTL analyses in any species for which a draft reference genome se-

quence is available. Finally, a systems genetics strategy was developed to incorporate
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the analysis of gene co-expression with phenotypic QTL and eQTL mapping, in order

to prioritise candidate genes and identify putative regulatory gene networks associated

with GLS resistance/susceptibility. This strategy can be replicated in other studies with

similar research objectives.

The analysis of global gene expression profiling of genetically related plant populations

has evolved over the past decade. A few authors studied the overall genetic architecture

that explains expression polymorphisms in genome-wide eQTL studies (Kirst et al., 2005;

West et al., 2007; Keurentjes et al., 2007). A major step forward in plant QTL cloning

has occurred via eQTLs, which can be utilised to search for associations between gene

expression polymorphisms and phenotypic QTLs (Potokina et al., 2008; Swanson-Wagner

et al., 2009; Chen et al., 2010b; Claverie et al., 2012). Correlation analysis between

gene expression profiles and the phenotype values across the individuals of a population

has proved useful for identification of candidate genes associated with phenotypic traits

(Druka et al., 2008). Furthermore, co-expression module-based network analysis has

recently been used to discover specific genes and pathways relating to morphological

phenotypic traits (Kugler et al., 2013). Ultimately, combining the analysis of gene co-

expression within genetic populations with genome-wide eQTL analysis is a powerful

approach to dissecting quantitative phenotypic traits (Wang et al., 2014). This study is

close to the forefront of strategies for analysis of global gene expression data in the plant

research community and implements a unique strategy by sequentially conducting a co-

expression module-based network analysis identifying trait-related modules, followed by

a global eQTL analysis identifying QTL-overlapping trans-eQTL hotspots. Finally these

results are combined to identify a genetic basis for the coordinated expression responses

to GLS disease.

A few limitations influenced the interpretation of the results from this study. This

study was based on a small (100 RIL) bi-parental mapping population, implying lim-

ited mapping resolution and restricted allelic variation. Instead, using the maize IBM

(Intermated B73 Mo17) RIL population would provide higher statistical power and ge-

netic resolution than conventional RIL populations. Using the maize NAM population,

a collection of 5,000 RILs, would capture the allelic variation between 25 diverse inbred

lines and the reference line B73 (Yu et al., 2008). Microarrays were used for gene expres-

sion profiling across the RILs. In microarray-based eQTL studies, spurious eQTLs can
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be caused by (i) technical confounding factors (for example variations introduced dur-

ing sample preparation or expression measurements); (ii) non-specific cross-hybridisation

to highly similar sequences, gene families or alternatively spliced variants, i.e. cross-

hybridisation of one probe to several targets; or (iii) hybridisation differences that are due

to sequence polymorphisms rather than actual expression differences (for example when

there are differences between the reference genome reporters and the subject genome).

High-throughput sequencing technologies such as RNAseq or third-generation sequencing

platforms (e.g. Pacific Biosciences) is an alternative that could overcome most of these

limitations. This study was based on 100 RILs, which is less than what Ferreira et al.

(2006) suggests. They proposed that that a total of 200 individuals is sufficient for the

construction of reasonably accurate genetic maps. Increasing the size of a RIL popula-

tion would result in (i) more measurements per allelic class, leading to an increase in

statistical power to detect a QTL at a given location; and (ii) more recombination events

within the population, providing greater genetic resolution (Hansen et al. 2008). Simple

sequence repeat (SSR) and restriction fragment length polymorphism (RFLP) markers

were used for QTL and eQTL mapping, with an average resolution of one marker every

11 cM. High-density single-nucleotide polymorphism (SNP) panels would have facilitated

a higher density map (Ernst and Steibel, 2013), however this would only add value if

a larger population was used. The genome sequences of the parental lines were lack-

ing and thus candidate causative DNA polymorphisms could not be identified. Due to

limited functional annotations in maize, BLAST alignments were employed to obtain

annotations from better annotated plant species. The RIL population was sampled at

only one late time point, during flowering when GLS lesions were evident. Thus, the

initial defense response was not captured. A slight negative relationship between the

GLS severity scores and the number of days after planting until flowering occurs (cor-

relation coefficient of -0.21; p-value=0.01), indicating that late maturing lines appeared

to be generally more resistant than early maturing lines (similar to the finding of Saghai

Maroof et al., 1996). A potential drawback in the strategy of using eQTLs to identify the

polymorphism responsible for a phenotypic QTL, is that the approach will not be useful

when the underlying DNA polymorphism does not give rise to change in the expression

level of a gene. Furthermore, the strategy used in this study assumed that the causal

gene’s expression profile correlates (positively or negatively) with the phenotypic trait of
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interest. A further assumption was that the allele associated with a higher expression

was linked to the trait of interest (i.e. GLS resistance or susceptibility), depending on

the underlying polymorphism. If this assumption is false, an eQTL will be identified as

a candidate associated with the opposite effect, for example if GLS resistance is studied

and the causal gene is negatively linked to this phenotype, the gene will be identified as

a candidate associated with GLS susceptibility.

In future work, candidate genes that have been identified in this study as potentially

important in GLS resistance (or susceptibility) need to be validated, typically in trans-

formed maize or by generating near-isogenic lines (NILs), a longer approach, but one

that does not suffer from possible extopic expression effects. The aim would be to show

that over-expression of a specific gene (for example a gene proposed to be associated with

resistance), results in increased resistance to GLS, or that silencing of such a gene results

in increased susceptibility to GLS. Gene expression profiling of maize transformed for

over-expression or silencing of a putative regulator can be used to validate whether the

expression of selected genes with shared trans-eQTLs are explained by a causal gene at

the position of these trans-eQTLs. It could be valuable to perform a genome-wide identi-

fication and expression profiling analysis for selected candidate gene families or pathways.

Another form of validation would be to look at genome-wide association in independent

maize pedigrees or populations like the NAM population (Yu et al., 2008).

The future of understanding the genetic basis of phenotypic traits will be based on

implementing similar approaches to the systems genetics strategy that was developed in

this study. The incorporation of expression patterns of genes and gene modules with

linkage mapping, contributes in this regard to elucidate the complex molecular networks

underlying phenotypic traits. With technologies advancing and costs decreasing, it will

be possible to conduct systems genetics analyses on larger samples, more environmental

conditions, more developmental time points and more tissues. Metabolic QTL (mQTL)

and protein QTL (pQTL) studies, which can be performed with data analysis strategies

similar to those presented in this study for eQTLs, will provide a more complete picture of

the effects of genetic perturbations on the physiology of whole organisms. Incorporating

results from such studies with phenotypic QTL studies can be used to further validate

and create new hypotheses. Furthermore, sizable and interactive databases to manage

the different types of data and new statistical methodology to infer significant biological
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networks will be needed. The eQTL data analysis pipeline that was developed in this

study as a workflow in Galaxy, is a powerful and easily adaptable tool that can be used in

future eQTL, mQTL and pQTL studies, for parallel QTL mapping and post-processing

analysis of the resulting data, however interactive visualisation of such complex data

types to allow data mining by users remain a challenge and will be the focus of future

bioinformatics research.

In this study, a pioneering approach was developed to investigate the transcriptional

variation underlying the quantitative genetic response of maize to GLS disease. Both the

eQTL data analysis pipeline and the systems genetics strategy have broad application for

systems genetics (Mizrachi et al., 2012), not only in plant science, but also the medical

and industrial biotechnology fields. This work led to candidate gene discovery in maize

for fungal resistance, which can lead to novel control methods of GLS disease in the

long term and provide fundamental new insight into the complex biology and genetics of

plant-pathogen interactions.
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