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Abstract

This mini-dissertation seeks to provide the reader with an understanding of one

of the most popular boosting methods in use today called Adaboost and its first ex-

tension Adaboost.M1. Boosting, as the name suggests, is an ensemble and machine

learning method created to improve or "boost" prediction accuracy via repeatedMonte-

Carlo type simulations. Due to the methods flexibility to be applied over any learning

algorithm, in this dissertation we have chosen to make use of decision trees, or more

specifically classification trees constructed by the CART method, as a base predictor.

The reason for boosting classification trees include the learning algorithms lack of ac-

curacy when applied on a stand-alone basis in many settings, its practical real world

application and the ability for classification trees to perform natural internal feature

selection. The core topics covered include where the Adaboost method arose from,

how and why it works, possible issues with the method and examples using classifi-

cation trees as the base predictor to demonstrate and assess the methods performance.

Although no formal mathematical derivation of the method was provided at the time

the method was created, a statistical justification was put forward several years later

which explained Adaboost in terms of well known additive modelling when minimiz-

ing a specific exponential loss function or criterion. This justification is provided along
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with real and simulated examples demonstrating Adaboost’s performance using two

types of classification trees i.e. stumps (classification trees with two terminal nodes)

and optimized or pruned full trees. What is shown empirically is that when boost-

ing tree stumps the performance enhancements achieved by Adaboost in many cases

meets or exceeds the single or boosted larger tree structures. This finding has benefits

such as simplified model structures and lower computational time. Lastly we provide

a cursory review of new developments within the field of boosting such as margin the-

ory which seeks to provide an explanation as to the methods seemingly mysterious test

and training error performance; optimized tree boosting procedures such as gradient

boosted methods and combinatorial ensemble methods using bagging and boosting.
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1

List of terms and notational conventions

• Monte-Carlo simulations: a broad class of computational algorithms that rely

on repeated random sampling to obtain numerical results

• Hypothesis: refers to a learning function and should not be confused with

"hypothesis" used within the context of hypothesis testing

• Dendogram: visual representation of a decision tree

• Split point: a decision criteria based on split variables which splits the data

accordingly into various sub-sets in order to construct a decision tree

• Split variable(s): the input variable which is selected to form part of the

decision criteria in order to construct a decision tree

• Tree node: a subset of data represented in a dendogram which has been created

by an earlier split point and split variable

• I(·): denotes an indicator function with the argument defining an output of 1 if

true or 0 if false

• Neural Nets: abbreviation for neural networks which collectively defines or

encompasses a large class of non-linear statistical learning methods (see Hastie

et al. [4] p 389-416)
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2

• SVM: acronym for support vector machines which is a method of separating a

feature space where there are non-separable or overlapping classes (see Hastie

et al. [4] p 417-438)

• MARS: acronym for multivariate adaptive regression splines which is a

procedure using regression to cater for higher dimensional or multivariate

problems (see Hastie et al. [4] p 423-437)

• k-Kernels: similar to SVM, a method of simplifying learning methods by

mapping a feature space into a higher dimension in order to produce non-linear

models using linear models derived in higher dimensional space (see Hastie et

al. [4] p 670)

• Machine learning: a branch of artificial intelligence which concerns with the

construction and study of systems that can learn from data

• Signal processing: an area of systems engineering, electrical engineering and

applied mathematics that deals with operations on or analysis of signals, or

measurements of time-varying or spatially varying physical quantities (see

Hastie et al. [4] p 139-189)
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3

• Bagging: an abbreviation for bootstrap aggregating is a machine learning

ensemble meta-algorithm designed to improve the stability and accuracy of

machine learning algorithms used in statistical classification and regression. It

has also been known to reduce variance and helps to avoid overfitting

• Note, the input instance variable x where xi = 〈x1i, x2i, ..., xpi〉
′
, i = 1, ...N and

N being the number of observations, is a p dimensional vector and the domain

spaceX where xi ∈ X will be kept consistent throughout this dissertation

• Reference to any term raised to the power t orm such as xt or xm will denote a

reference to a index, usually time, and should not be confused as an exponent

unless explicitly stated otherwise

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4

Chapter 1

Introduction

Throughout the history of statistics a core focus and effort has related to pre-

dictive modelling due to its numerous real-life applications. Many advanced and

complex models have been developed over the years in a bid to ultimately improve

accuracy or prediction performance. The concepts of supervised and machine learn-

ing emerged as strong contenders in producing such predictive models which was

based on defined algorithms using historical or a given set of information to find and

model relationships between variables. However these individual models eventually

suffered from accuracy limitations and a new method was required if accuracy was to

be improved. It was this desire to improve predication accuracy using a wide range

of available learning algorithms which triggered the creation of what is known to-

day as ensemble methods. This class of learning methods was underpinned by the

simple idea of combining several individual predictor models, known as base predic-

tors, to create a more powerful overall model. Its application appeared to be useful

in cases where such individual predictors which suffered from inaccuracy, known as

weak learners, could be improved by combining them into a committee of predictors

and therefore improving the overall result and ultimately producing what is known

as a strong learner. Boosting is one such method of constructing an ensemble of
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5

base predictors to produce a powerful predictive model. Other ensemble methods

include Bayes optimal classifier (see Mitchell [1]), bagging (see Breiman [2]) and

Bayesian model averaging (see Hoeting et al [3]) with each possessing their own

respective strengths and weaknesses in terms of accuracy and applicability. Whilst

Bayesian methods are often challenging to implement, boosting and bagging are rel-

atively straightforward. The difference between the latter two methods stems from

accuracy whereby boosting has proven to be superior (see Figure 1.1). Although

there are many boosting techniques currently available this dissertation focuses on

the most popular method called Adaboost due to its ease (straightforward to pro-

gram) and flexibility of use (works across multiple settings i.e. binary-classification,

multi-classification and regression). In addition since ensemble methods can effec-

tively be applied using any base predictor this dissertation assumes the use of deci-

sion trees as such a base predictor. The primary reason for selecting decision trees

is that this particular learning method has generally shown to perform poorly on an

individual basis and therefore presents itself as an ideal candidate for boosting. Fur-

ther reasons for selecting decision trees as a base predictor is provided in Section

3.1. Within the field of decision trees there are typically two sub-methods which ex-

ist being regression trees for quantitative responses and classification trees typically

used for qualitative or binary responses. As the topic of regression type problems

generally receives more research attention than classification type problems, this dis-

sertation focuses on the latter less studied classification trees.
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6

In order to demonstrate the practical application of Adaboost a real-life ex-

ample will now be presented. In this example the aim is to illustrate the power of

boosting using the Adaboost technique with classification trees as a base predictor.

The results of the Adaboost method will then be compared to its primary competitor

method, bagging. Since boosting is by construction an iterative process and im-

proves with the number of iterations, diagrams shown within this dissertation will

typically plot the error rates as a function of the boosting iterations. Figure 1.1 uses

the SPAM dataset from Hastie et al.[4] (p 305-317) which seeks to develop a model

which can filter spam e-mails from non-spam e-mails using several predictor vari-

ables e.g. counting words containing unusual characters like $%#@, the number of

words associated with spam e-mail such as lucky, money, winner etc. Further details

of this dataset are provided in Section 3.4. Under the subject of classification trees

two specific sub-tree types are encountered and made use of exclusively within this

dissertation:

• stumps i.e. trees containing a single split and therefore possessing only two

terminal nodes and

• pruned trees which are trees generated by creating very large trees which

are then pruned i.e. collapsing of non-terminal internal nodes, to produce a

smaller and more optimized tree structure.
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As a note, all trees constructed and used in this dissertation are based on binary

split points to create simpler tree structures and facilitate quicker implementation.

As can be seen from Figure 1.1 based on the SPAM dataset, when using stumps

as a base predictor, boosting produces far superior results to bagging (compare the

solid red line to the solid blue line). In this case boosting produces an error rate of

less than half that of bagging. In addition, for less than 10 boosting iterations, the

performance of the boosted stumps matches that of the single pruned tree and actually

begins to outperform the pruned tree as the number of boosting iterations continue.

Similarly when using the pruned tree as a base classifier, boosting produces superior

results to bagging (compare the dotted red line to the dotted blue line). What is also

evident from Figure 1.1 is that the performance of the boosted stumps is comparable

to the performance of the bagged pruned tree in terms of accuracy (compare the solid

red line to the dotted blue line). The benefit of boosting the stumps however is that

the process is far less computationally intensive than bagging the pruned tree and

therefore boosting, in this context, would be a significantly more efficient method to

use.

The question as to how and why Adaboost improves prediction performance

provides the underlying motivation for this dissertation. Initially when the first boost-

ing methods where developed by Robert E. Schapire in 1989 the performance of

the method was somewhat of a mystery and could only be understood at an empir-

ical level. A firm theoretical foundation at that time had yet to be provided. Simi-
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Figure 1.1: Graph showing the test error rate of the SPAM dataset as a function of
the boosting and bagging iterations (re-created as per Hastie et al.[4] (p 305-317))
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larly the development of Adaboost stemmed from an extension of another predefined

method known as Hedge(β) which was developed to optimally allocate weights over

’choices’ or strategies with the objective of minimizing some loss function over these

’choices’. Thereafter the first multi-class extension to Adaboost called Adaboost.M1

was formulated by Freund et al. [5] which as the name suggested allowed Adaboost

to be applied in non-binary multi-classification settings. In Section 2.4 an exami-

nation of the genesis of Adaboost and consequently Adaboost.M1 is provided. The

Adaboost.M1 method is compared to the original Adaboost method to understand the

similarities and differences, if any, and lastly Adaboost is compared to its founding

method Hedge(β).

Although the derivation of Adaboost is only explained through a comparative

analysis, its mathematical justification emerged several years later after its develop-

ment. Such a justification took the form of well-known additive modelling using a

specific exponential loss function and criterion. In Section 2.5 the mathematics of

additive modeling and the exponential loss function and criterion are explored and

compared to each step of the Adaboost.M1 method to reaffirm equivalence.

In supplying the above information an answer to the ’how’ question is provided

whilst the ’why’ question remains unexplained. The question as to why Adaboost im-

proves prediction accuracy is reduced in Section 2.6 to understanding the theoretical

error rate of the method and corresponding error bounds. If the Adaboost method re-
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sults in producing narrow or low error bounds then a theoretical explanation as to its

performance can be obtained.

Given that classification trees have been selected as the base predictor it would

be of interest to understand why it has been selected, how classification trees work

and test if it produces the desired results. The answers to these questions will be

covered in Chapter 3.

Although the example in Figure 1.1 demonstrates the superior performance of

Adaboost using classification trees as a base predictor it would be of interest to see

the results of the method applied to different datasets. In Chapter 4 such an analysis

is performed by applying the Adaboost.M1 method using classification trees as a

base predictor to both simulated and real datasets and comparing the test error rates

at different boosting iterations, in essence by re-creating and analyzing Figure 1.1

for each dataset. In addition, for each example in Chapter 4, Adaboost is performed

using both the stump and pruned tree as the underlying base predictor with the output

analyzed and compared to the results obtained in the preceding Chapter 3.

The layout of this dissertation is simple and assumes a reader with a moderate

understanding of statistics but with no prior knowledge of boosting, bagging or any

other ensemble method for that matter. There are five main chapters which comprise

this dissertation including the Introduction which consist of the Theoretical Frame-

work of Adaboost, Classification Trees as a Base Predictor, Application of Adaboost
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and the Conclusion. The chapter on the Theoretical Framework of Adaboost ex-

plains the origins of boosting, the Adaboost methodology and algorithm, the deriva-

tion of the method, its mathematical justification and theoretical error bounds re-

lating to its performance. The chapter on Classification Trees as a Base Predictor

provides an analysis on the choice to use decision trees as a base predictor, gives a

theoretical and practical explanation of classification trees and lastly shows exam-

ples using classification trees on a combination of simulated, real, binary and multi-

classification datasets. The penultimate chapter Application of Adaboost analyzes the

same datasets as given in the previous chapter for comparative purposes and seeks

to determine the effectiveness of the method with the overall objective of illustrating

the performance of the Adaboost technique. Lastly the Conclusion chapter presents

some of the latest developments in the field of boosting and ends with some conclud-

ing remarks and arising questions.
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Chapter 2

Theoretical Framework of Adaboost

In this chapter the origin of boosting is described, which shows early emer-

gence of the method under PAC ("Probably Approximately Correct") theory, and the

appearance of the first boosting algorithms. The Adaboost methodology is then ana-

lyzed which includes understanding the methods underlying principles and processes

followed by the description and analysis of the actual Adaboost.M1 algorithm.

The derivation of Adaboost is then explained by first articulating the on-line

allocation problem which gave rise to the corresponding solution Hedge(β) algo-

rithm and which subsequently lead to the creation of the first Adaboost method. In

this chapter the Hedge(β) method is analyzed from an algorithm and performance

point of view whilst the Original Adaboost algorithm is compared to both the Ad-

aboost.M1 algorithm to reaffirm consistency as well as the Hedge(β) algorithm to

assess the possible similarities and differences.

Although no formal derivation is provided for Adaboost, a mathematical justi-

fication was provided by Hastie et al. [9] several years after the first publication of

the method which sought to firmly explain Adaboost using well understood statistical

principles. What these authors where able to show is that the process of Adaboost was

equivalent to building an additive model using a specific exponential loss function or

criterion. In this chapter we will explore the concept of additive modelling, the expo-
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nential loss function and criterion and lastly how these two well known principals are

combined to give rise to Adaboost, more specifically its discrete case Adaboot.M1.

Lastly the chapter concludes with an analysis on the final error of the Adaboost

prediction and attempts to find and prove the bounds on such an error. The bounds

are then analyzed to determine the conditions under which they tighten or loosen in

order to ultimately determine the theoretical performance of Adaboost.

2.1 The Origins of Boosting

The origin of the boosting technique can be traced back to an early application of PAC

machine learning which was proposed in 1984 by Leslie Valiant. PAC was developed

as a framework which allowed a learner to select the "optimal" function from a class

of possible functions. This was accomplished by selecting such a function that would

result in the lowest error. The field of boosting then emerged as a possible method

of enhancing PAC and was articulated and framed by Kearns et al.[6] through the

following question,

"can a weak learning algorithm which performs slightly better than random
guessing be boosted into an arbitrarily strong learning algorithm."

The formal definition of PAC weak and strong learning algorithms are given

below and are taken from Freund et al. [5].
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Definition 1 A strong PAC-learning algorithm is an algorithm that given ε, δ > 0

and access to random examples, outputs with probability 1 − δ a hypothesis with

error at most ε.

Definition 2 A weak PAC-learning algorithm is an algorithm that satisfies the same

conditions as a strong PAC-learning algorithm but only for ε ≥ 1
2
− γ where γ > 0

is either a constant or decreases as 1/p where p is a polynomial in the relevant

parameters

In other words Definition 1 can be explained as, given some small non-negative

value for ε and δ and the ability to draw random samples from some input space dis-

tribution, the PAC-learning algorithm will select the learning function from a class of

possible functions with a 1− δ chance or high probability and which algorithm pro-

duces an error of at most ε, a measure of the selected learning function’s accuracy.

Definition 2 on the other hand imposes a condition on the accuracy of the selected

learning function to be only slightly better than random guessing and hence the refer-

ence to the termweak learner. Note in both Definition 1 and Definition 2 it is implied

that ε < 1
2
as if this condition is not true we may as well flip a coin as the chosen

learner.

The first boosting algorithm according to Freund et al. [7] was developed by

Robert E. Schapire in 1989. A year later the first enhancements emerged from Yoav

Freund with the boost by majority algorithm that according to Freund et al. [5] was
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considerably more effective. The first application of the boosting technique then ap-

peared in 1993 within the field of Optical Character Recognition ("OCR") i.e. con-

verting scanned hand-written text into displayable and editable computer text. There-

after many authors began to developed new boosting methods and algorithms with

numerous practical applications.

2.2 Adaboost Methodology

This thesis will focus on the most popular booting algorithm in use today called

Adaboost which was first developed and published by Freund et al.[5] in 1995. In

Freund et al.[5] the first extension of PAC learning methods to boosting was estab-

lished along with the formulation of the first basic Adaboost algorithms. The authors

derived a method of optimally allocating weights to observations or strategies with

the objective being to minimize some loss function over the distribution of weights.

It was the extension of this basic idea which lead to the creation of the first Adaboost

method.

Intuitively the Adaboost methodology makes sense when understanding its un-

derlying concept and process. In essence the Adaboost method works by constructing

a strong learner by iteratively applying a weak learner to re-weighted observations.

It is in the re-weighting of the observations that lends to the power of the method. At

each iteration the Adaboost method has the effect of placing relatively more weight

on observations leading to incorrect predictions whilst minimizing or decreasing, on
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a relative basis, the weights placed on observations leading to correct predictions.

The effect of this dynamic weighting process is that those observations which lead

to incorrect predictions are given more emphasis in the next iteration to be correctly

predict by the weak learner. The series of predictors generated, which are essentially

the individual weak learners trained on the same continually re-weighted dataset, at

each iteration are then combined to create the final model. It is in how these indi-

vidual predictors are combined which lends to the strength of the Adaboost method.

Such a combination occurs in a way as to ensure those predictors with higher over-

all accuracy are given more influence or weighting in the overall or combined model

than those with less accuracy.

An illustration is now shown as to how the principal above is applied to a

simple classification problem. Consider a two class problem with dependent variable

Y ∈ {−1, 1} and a given set of samples/examples from a population i.e. training

set (x1, y1), .., (xN , yN) where each observation vector xi vector belongs to some

domain or instance space X consisting of p inputs such that xi = 〈x1i, x2i, ..., xpi〉
′
,

i = 1, ..., N . Next define a weak learner h satisfying the properties in Definition 2

such that

h : X→ {−1, 1} (2.1)
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and let wi > 0 be the weight applied to each observation in X. The estimated error

rate on the training set is then

ǫ̂ =
1

N

N∑

i=1

I(yi �= h(xi)) (2.2)

with the generalized error rate on all future predictions being

ǫ = EXY I(Y �= h(X)) = P [Y �= h(X)]. (2.3)

For h to be defined as a weak leaner as per Definition 2, or classifier in this

case, its error rate ǫ needs to be only slightly better than random guessing, i.e. where

ǫ < 1
2
. Aside from this requirement being intuitive in that it does not make sense

to boost a weak learner that performs less than random guessing, in the case of a

two class problem as we have here, if we did have a weak learner h that performed

worse than random guessing ǫ > 1
2
one such strategy could be to simply replace h

with its compliment h′. The requirement for weak learners to perform better than

random guessing is an important one within the context of Adaboost and the justi-

fication for this criteria to hold true will be shown in Section.2.3. Continuing with

our example, the Adaboost method then proceeds to fit the weak classifier h using

weights wi to the training set (xi, yi), i = 1, ..., N and updates the wi’s using the

resultant classifier’s training error. The weak classifier is once again fitted to the

training set producing a second weak classifier h however on this occasion using the

updated weights from the earlier iteration. This process continues for a number of

pre-determined iterations, which are also known in literature as boosting rounds, and
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are usually parametrized by t = 1, ..., T orm = 1, ...,M . The result is a sequence of

weak classifiers ht(x) trained on observations using weights w
t = 〈wt

1, w
t
2, ..., w

t
N〉

′

calculated at each booting round t = 1, ..., T . The prediction generated from each

weak classifier is then combined through a weighted majority vote to produce the

final output or model,

hf(x) = sign

(
T∑

t=1

αtht(x)

)
. (2.4)

In equation (2.4) the α1, α2, ..., αT are calculated by the Adaboost algorithm so

as to weight the contribution of each individual weak classifier ht(x) in such a way

that higher accuracy weak classifiers receive more influence than lower accuracy

classifiers in determining the final prediction. The sign function used here is due to

the fact that hf(x) can take on any real value between and outside of −1 and 1 and

that Y ∈ {−1, 1}. It is at this juncture that it becomes evident as to how the name

Adaboost was arrived at in that the method continuously adapts to the error rates of

the individual weak learners - "Ada" is therefore short for "adaptive".

In the description of the Adaboost process given by Figure 2.1 one assumes that

the weak learner, or classifier in this case, can be trained on the data using weightswt
i

however when this is not possible Freund et al.[7] suggests an alternate method using

random (re)sampling. Using the weights wt
i one simply samples with replacement

from the training set at each boosting iteration according the distribution of wt. The

classifier is then trained on the sample of un-weighted observations drawn according

to wt and the process continues as before. We have also assumed here that h maps
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Figure 2.1: Visual descrpition of the Adaboost method expanding on the diagram
given in Hastie et al. [4] (p 338). A series of weak -1/1 classifiers are generated
and trained on iteratively reweighted versions of the training set to produce a final
prediction.

the xi’s discretely onto the set {−1, 1} however as shown in Schapire et al.[8], Ad-

aboost can also be extended to handle weak hypothesis which output real-valued or

confidence rated predictions. In this case h outputs a prediction h ∈ Rwhose sign for

example dictates the predicted label for −1 or 1 and whose magnitude |hf(x)| gives

a measure of "confidence" in the prediction. The use of such real-valued outputs

become particularly useful in hybrid ensemble methods (see Kotsiantis et al. [15])

which we shall touch on in Chapter 5. It is also easy to see that such predictions can

be normalised to produce class probability outputs (see Freund et al.[7]) and interest-

ingly from this one can also begin to see a relationship between the weak learner h

and class probabilities P [y = 1]. Such a relationship will be clarified in Section 2.5

within the context of the Adaboost algorithm. The Adaboost method described ear-
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lier within the binary classification context can also be extended seamlessly to handle

multi-classification problems however in these cases restrictions on the accuracy of

the weak learner begin to apply which will be discussed in Section.2.3.

A question which arises is why use Adaboost as a method of optimization when

there are numerous alternative boosting methods available. If one was to simply

use the availability of literature on competing boosting methodologies as a gauge,

Adaboost would selected without contest. Aside from this rather anecdotal evidence,

the popularity of Adaboost has grown rapidly over the years when compared to other

boosting methods attributable mainly to the following reasons:

• The algorithm is simple and easy to understand - even to someone without

extensive statistical knowledge.

• The process is quick and easy to implement making its application to real-life

problems appealing.

• Adaboost can be applied to both classification and regression type problems

and therefore is more versatile and allows for practical flexibility.

More specifically, and which will be demonstrated through the course of this

dissertation, the Adaboost method:

• Does not require prior knowledge of the accuracy of the weak learners unlike

some of its competitors.
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• Has appealing error bounds.

• Reduces both training error and test error and in some cases continues to

reduce the test error long after the training error drops to zero even though

theory suggests otherwise.

• In most cases does not succumb to the problem of over-fitting.

• Reduces both variance and bias where other ensemble methods such as

Bagging reduces only variance.

2.3 Adaboost.M1 Algorithm

In this section we will introduce and analyze an algorithm for the Adaboost method

called Adaboost.M1 first described in Freund et al. [5] where the "M" stands for

multi-class and "1" the first extension. As the name suggests the Adaboost.M1

algorithm was created to cater for multi-class problems however for the purposes of

describing theAdaboost.M1 algorithm we will continue to assume yi ∈ {−1, 1} and

therefore restrict the number of classes to k = 2, but will show how the algorithm

can by adjusted to accommodate for situations where k > 2. Adaboost.M1 has also

been referred to as "Discrete Adaboost" by Hastie et al. [9], since the weak learner

h returns a discrete class label, however the method is not limited by this and can

also accommodate situations where the weak learner h outputs real-valued predic-
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tions. More precisely when these predictions are in the form of class probabilities,

Hastie et al. [9] showed that Adaboost.M1 can be successfully adapted to handle

real-valued outputs and named this extended method "Real Adaboost". The authors

in Hastie et al. [9] also showed that Real Adaboost in some instances outperformed

Adaboost.M1 due to additional information being captured at each boosting round.

TheAdaboost.M1 algorithm shown here has been tailored to be more ’user-friendly’

when compared to descriptions given by other authors. In doing so an attempt has

been made to simplify and elaborate on the algorithms provided by Freund et al. [7]

and Hastie et al.[4] (p 337-387). We will also show why there is an accuracy restric-

tion placed on the weak learners in Adaboost and why such a restriction increases as

the number of classes increase within the context of multi-classification.

Analyzing the Adaboost.M1 algorithm set out in the following page, we see

that after the weights in step 1 are initialized, we call the classifier for the first time

creating h1 in step 2a and calculate its corresponding weighted error rate ε̂1 in step

2b. At step 2c the weight α1 for the first classifier’s contribution to the final predic-

tion is calculated. More generally αt ∝ 1/ε̂t i.e.αt gets larger as ε̂t gets smaller and

therefore step 2c has the effect of placing greater importance, by using a higher αt

weighting, on those classifiers ht which have lower error rates and by implication

higher accuracy, and less importance, through a lower αt weighting, on those clas-

sifiers with higher error rates and by implication poorer accuracy. In addition when

the training error rate of each classifier ǫ̂t is much less than
1
2
i.e. the weak classi-
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Algorithm 1 Adaboost.M1 algorithm applied to a binary case

Algorithm Adaboost.M1

Given the training data (y1,x1), ..., (yN ,xN) where xi ∈ X, yi = {−1, 1}

1. Initialize the observation weights wi1 = 1/N, i = 1, 2, ..., N

2. For t = 1 to T :

(a) Fit/train the weak classifier ht on the training data using weights w
t
i (in the case of the

classifier being unable to use these weights, resample with replacement from the training

data according to the distributionwt)

(b) Compute

ε̂t =

∑N

i=1wi
tI(yi �= ht(xi))∑N
i=1wi

t

the weighted error rate of ht(xi)

(c) Calculate αt = ln((1− ε̂t)/ε̂t)

(d) Update the observation weights wt+1i = wti · exp[αt · I(yi �= ht(xi))], for i = 1, 2, ...,N

3. Output hf (x) = sign
(∑T

t=1 αtht(xi)
)
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fiers is significantly better than random guessing, we get αt ≥ 0 and this inequality

becomes larger as ǫ̂t decreases and therefore more weight is placed on those classi-

fiers with better accuracy in the final prediction. In the next step 2d. the weights are

then updated for each individual observation in the training set to produce the next

set of observation weights wt+1
i for i = 1...N . The equation in step 2d has the oppo-

site effect to step 2c in that miss-classified observations have their weights increased

by a factor of exp(αt) where exp(αt) ≥ 1 because αt ≥ 0, while the weights of cor-

rectly classified observations are left unchanged. The effect of weighting observation

in this manner is that in the next boosting round, ht+1 is then forced to train and cor-

rectly classify those observations that where incorrectly classified in the preceding

boosting round t and thus illustrates the power of the Adaboost method of iteratively

improving prediction accuracy. We also note here that if ǫ̂t >
1
2
the algorithm has the

effect of decreasing the observation weights which in this context is counterintuitive

and therefore reinforces the requirement for base predictor accuracy which is better

than random guessing. In such a case the Adaboost.M1 algorithm is halted or the in-

verse classification applied however the latter being only applicable when faced with

binary classification problems. Step 3 of the Adaboost.M1 algorithm simply aggre-

gates all the individual predictors ht for t = 1...T according to a weighted majority

vote based on αt weights to create the final prediction hf . As noted earlier, in step 2c

the αt’s assign more importance i.e. weight to higher accuracy classifiers which en-
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sures that only the most accurate classifiers in the set of all classifiers account for the

majority of the final prediction.

The application ofAdaboost.M1 to multi-class problems, where k > 2 and the

weak learner ht at each boosting round t outputs a discrete class label, is straightfor-

ward. If we assume, for example, the class labels are numeric y ∈ Y = {1, ..., k}

such that ht : X → Y the only resultant change in the Adaboost.M1 algorithm oc-

curs at step 3 i.e. in the creation of the final prediction hf . Instead of hf being the

sign of a weighted summation of predictions outputting −1 or 1 as shown in step 3

and in equation 2.4, hf is simply adapted to:

hf = argmax
y∈Y

T∑

t:ht(x)=y

αt (2.5)

The final prediction is therefore the class y with the largest sum of αt weights

over the correct predictions. In other words, the final prediction hf now outputs the

class label y that maximizes the sum of weights of the weak learners predicting that

label. Since αt measures the accuracy of the weak learner ht, the effect of equation

(2.5) is that the final class label predicted is generated from the most accurate and

correctly predicted weak learners.

With respect to the multi-class case we now analyze the drawback of Ad-

aboost.M1 being the restriction placed on the accuracy of the individual weak clas-

sifiers ht. If during any boosting round whilst in the multi-class application of Ad-

aboost.M1 the weak classifier generates a prediction with accuracy less than 1
2
i.e.
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ε̂t >
1
2
, the algorithm is halted and the final prediction is given using the weak clas-

sifiers generated up until that point. The reason for this can be explained as follows.

In the binary case (k = 2), a random guess will be correct with probability 1
2
and

theAdaboost.M1 algorithm can be adjusted ’on-the-fly’ to cater for situations where

ht performs worse than random guessing for example by replacing ht with its com-

plement h′t. However in the case where k > 2 the probability of a correct random

prediction is only 1/k < 1/2, in which case there is no straightforward adjustment to

the algorithm as before and therefore our requirement for the accuracy of the weak

learner to perform better than random guessing is significantly stronger. Assuming

the requirements of the accuracy of ht are met we encounter yet another problem in

respect of the multi-class application of the Adaboost.M1 algorithm. We shall show

the practical implication of this problem using an informal example as given in Fre-

und et al. [5]. Consider a learning problem where k = 3 and Y = {0, 1, 2}. Suppose

that it is "easy" to predict whether the class label is 2 but "hard" to predict whether

the label is 0 or 1. Then a weak learner which predicts correctly whenever the label is

2 and otherwise guesses randomly between 0 and 1 is guaranteed to be correct at least

half the time, significantly beating the 1/3 accuracy achieved by guessing entirely at

random. In this case the multi-classAdaboost.M1 algorithm can still be boosted into

arbitrary accuracy however becomes infeasible since we have assumed it is hard to

distinguish between 0 and 1 labelled instances. The authors Freund et al. [5] along

with Schapire et al. [8] developed further boosting algorithms to overcome this prob-

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



27

lem by essentially creating a set of binary problems for each class label which will

be discussed in Section 4.4 and Section 4.5.

2.4 "Derivation" of Adaboost

The Adaboost method was first put forward and described by Freund et al. [5] and

was originally formulated within the context of the on-line allocation problem, which

will be described in this section. It is interesting to note that Freund et al. [5] provided

no formal derivation of Adaboost and instead showed how this then "new" boosting

method arose as an extension of the solution to the on-line allocation problem, how-

ever developed with a different goal in mind of "strengthening" weak learners as

apposed to selecting optimal strategies. This section will cover the on-line allocation

problem, show and analyze the Hedge(β) algorithm developed by Freund et al. [5]

to solve such a problem and finally describe the original Adaboost algorithm. Since

Freund et al. [5] also articulates an extension to their original Adaboost algorithm,

i.e. Adaboost.M1, we will also seek to compare their original Adaboost algorithm

to the Adaboost.M1 algorithm shown earlier in Section 2.3. Lastly the solution for

the on-line allocation problem Hedge(β) will be compared to the original Adaboost

algorithm to highlight any similarities and differences, if any, between the two algo-

rithms.
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2.4.1 On-line allocation problem

The on-line allocation problem is best understood using a practical example taken

from Freund et al.[5]. Assume you are a horse racing gambler and you have come into

a losing streak. To try and change your luck you decide to let your fellow gamblers

place wages on your behalf hoping their picks will be the winners. The problem you

face is which gambler(s) do you choose (or allocate) to place bets on your behalf

in order to maximize your winnings. Naturally you would choose the gambler who

would win the most, unfortunately you do not know this ahead of time when placing

the bets (on-line). Instead you attempt to select a combination of gamblers placing

different size bets with each in order to produce a result as close to placing all your

bets with that single expert gambler, if somehow you knew beforehand that he/she

would win the most.

What we have described above is specific occurrence of the on-line allocation

problem, more generally we can reduce the problem to the following statement: how

do we select the options or strategies from a selection of options or strategies which

would maximize our chances of success?. The authors Freund et al.[5] go on to for-

malize the on-line allocation model as follows. The allocation agentA hasN options

or strategies to choose from and we number these options or strategies using integers

1, ..., N . At each timestep t = 1, 2, ..., T the allocator A decides on a distribution

pt = 〈pt1, p
t
2, ..., p

t
N〉 over the strategies, that is each component p

t
i ≥ 0 is the weight

allocated to strategy i at time step t, such that
∑N

i=1 p
t
i = 1. Each strategy i then
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suffers some loss ℓti which is determined by the "environment". In the horse racing

example this would be the size of the loss, if any, incurred for a particular horse race

event t by placing your bet with gambler i. The loss suffered by A can then be cal-

culated as
∑N

i=1 p
t
iℓ
t
i = pt · ℓt, i.e. the combined or average loss of strategies with

respect to A’s chosen allocation rule at time t (note ℓt denotes a loss vector over all

N strategies at time t i.e. ℓt = 〈ℓt1, ℓ
t
2, ..., ℓ

t
N〉

′
, t = 1, ..., T ). Once again if we revert

back to our horse racing example this would be your combined loss for a race t hav-

ing placed bets with each gambler i. The loss function as described here is known as

the mixture loss as it is a "mixture" of losses over all possible strategies or options.

Using the converse argument to describe our goal of maximizing our winnings, the

goal of A is to produce a loss as close to the loss suffered by the best strategy. In

other words A must minimize its total loss relative to the loss suffered by the best

strategy across all time steps t. That is A attempts to minimize its net loss

LA −min
i
Li (2.6)

where,

LA =
T∑

t=1

pt · ℓt (2.7)

is the total/cumulative loss suffered by algorithm A over T time steps or trials, and

Li =
T∑

t=1

ℓti (2.8)
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is strategy i′s cumulative loss over all T time steps. Now that we have sufficiently

articulated the on-line allocation problem we are in a position to analyze one such

possible solution called Hedge(β).

2.4.2 Hedge β algorithm

The authors Freund et al. [5] go on to formulate an algorithm that solves the on-

line allocation problem using the principals of minimization as applied to expression

(2.6). They named this algorithm Hedge(β) presumably because of its analogy to,

"hedging" one’s bets. The Hedge(β) algorithm and its corresponding analysis are in

effect direct generalizations of Littlestone and Warmuth’s weighted majority algo-

rithm as described in Littlestone et al. [10].

Algorithm 2 The on-line allocation algorithm

AlgorithmHedge(β)
Select parameter β ∈ [0, 1]

Initialize the first weight vectorw1 ∈ [0, 1]N with
∑N
i=1w

1
i = 1

For t = 1 to T

1. Choose allocation

pt =

(
wt1∑N

i=1w
t
i

,
wt2∑N

i=1w
t
i

, ...,
wtN∑N

i=1w
t
i

)′

=
wt

∑N

i=1w
t
i

2. Receive loss vector ℓt ∈ [0, 1]N from the environment

3. Suffer loss pt · ℓt

4. Set/update the new weight vector to be

wt+1i = wtiβ
ℓt
i
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Analyzing theHedge(β) algorithmwe see that a vector of non-negative weights

denotedwt = 〈wt
1, w

t
2, ..., w

t
N〉

′
, t = 1, ..., T are maintained and sequentially updated

throughout the time step iterations. The only restriction placed on the weight vec-

tor is that the initial weight vector w1 must be non-negative and sum to one, so that

∑N
i=1w

1
i = 1. Beside this rather loose restriction, the initial weight vector may be ar-

bitrary and set tow1 = 〈1/N, 1/N, ..., 1/N〉′, where w1i = 1/N for i = 1, .., N with-

out loss of generality. The initialization of the first weight vector w1 can be viewed

as a "priori" over the set of strategies however without the need of being highly accu-

rate. If we had some initial knowledge about which strategies to favour we could just

as easily modify the initial weight vector to accommodate such knowledge. Note that

the weights on future trials need not sum to one as they are continually normalized

in step 1.

As the name indicates Hedge(β) is parametrized by the parameter β. The

choice of β, as we will later see, has an impact on the bounds of the total cumulative

loss of the Hedge(β) algorithm over all time steps T called LHedge(β), as defined

generally in equation (2.7), and therefore the overall effectiveness of the algorithm.

Running through the steps of theHedge(β) algorithm we see that in Step 1 the choice

of strategies are weighted by the normalized current weight vector. More specifically

Hedge(β) chooses the strategies according to the distribution vector

pt =
wt

∑N
i=1w

t
i

. (2.9)
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In Step 2 the loss vector ℓt is received. Later we will see that for a specific

choice of ℓ, Hedge(β) appears to give rise to the Adaboost.M1 algorithm. Step

3 simply outputs the loss incurred over all the strategies at each time step t which

ultimately are aggregated to create the total loss LHedge(β) over all available time

steps. Note Step 3 is analogous to calculating an expected loss function over the

probability distribution pt. Using the loss vector in Step 2, Step 4 updates the weight

vector wt using the multiplicative rule

wt+1
i = wt

iβ
ℓti . (2.10)

As a convention note in equation (2.10), β is raised to the power of ℓti whereas

wt
i relates to the weight of observation i at time step t. Analyzing equation (2.10)

we see that for strategies producing greater losses i.e. higher values of ℓti, the next

set of successive weights wt+1
i are decreased relative to the current weights wt

i since

ℓti ∈ [0, 1] and β ∈ [0, 1]. This update rule intuitively makes sense as one would

generally stop or decrease the emphasis placed on choosing strategies which produce

high losses. We can also understand the overall effectiveness of the Hedge(β) in

terms of the algorithm’s total loss LHedge(β). The importance of understanding the

bounds on the error of Hedge(β) i.e. LHedge(β), will become evident as we seek to

establish error bounds on the Adaboost method in Section 2.6. Since at the end of the

algorithm a final optimal weight vectorwT+1, which by construction is a function of

all the previous weight vectors, is produced, we can use the same analysis given in

Littlestone et al. [10] and apply it to find bounds on
∑N

i=1w
T+1
i which will then lead
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to bounds on LHedge(β). We start by proposing the following lemma by expanding

on the summarized proof as given in Freund et al.[5].

Lemma 1 For any sequence of loss vectors ℓ1, ..., ℓT

ln

(
N∑

i=1

wT+1
i

)
≤ −(1− β)LHedge(β) (2.11)

Proof. We can show using the convexity argument

αr ≤ 1− (1− α)r as given in Freund et al.[5] (2.12)

for α ≥ 0 and r ∈ [0, 1] that,

N∑

i=1

wt+1
i =

N∑

i=1

wt
iβ

ℓti , from (2.10)

≤
N∑

i=1

wt
i(1− (1− β)ℓ

t
i), using the convexity argument (2.12) applied to

each βℓ
t
i term

=

(
N∑

i=1

wt
i

)

1− (1− β)

N∑
i=1

wt
iℓ

t
i

(
N∑
i=1

wt
i

)




=

(
N∑

i=1

wt
i

)

1− (1− β)

N∑

i=1




wt
i(

N∑
i=1

wt
i

)ℓti







=

(
N∑

i=1

wt
i

)
(
1− (1− β)pt · ℓt

)
, using the definition in equation (2.9).

Applying repeatedly for t = 1, ..., T yields
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For t = 1 :

N∑

i=1

w2i ≤

(
N∑

i=1

w1i

)
(
1− (1− β)p1 · ℓ1

)

=
(
1− (1− β)p1 · ℓ1

)
, since

N∑

i=1

w1i = 1 (2.13)

For t = 2 :

N∑

i=1

w3i ≤

(
N∑

i=1

w2i

)
(
1− (1− β)p2 · ℓ2

)

≤
(
1− (1− β)p1 · ℓ1

)
×

(
1− (1− β)p2 · ℓ2

)
, using (2.13)

=
2∏

t=1

(
1− (1− β)pt · ℓt

)

Therefore t = T :

N∑

i=1

wT+1
i ≤

T∏

t=1

(
1− (1− β)pt · ℓt

)
.

Using the exponential identity inequality 1+x ≤ ex where x = −(1−β)pt · ℓt

we get

N∑

i=1

wT+1
i ≤

T∏

t=1

(
1− (1− β)pt · ℓt

)

≤
T∏

t=1

exp(−(1− β)pt · ℓt)

= exp

(
−(1− β)

T∑

t=1

pt · ℓt

)
. (2.14)

Recalling that
T∑
t=1

pt · ℓt = LHedge(β) is the total loss incurred for Hedge(β)

and after taking the natural logs on either side of (2.14) we get

ln

(
N∑

i=1

wT+1
i

)
≤ −(1− β)LHedge(β).
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Rearranging Lemma 2.11 we can produce the upper bound on LHedge(β)

LHedge(β) ≤

− ln

(
N∑
i=1

wT+1
i

)

(1− β)
. (2.15)

We see from the inequality (2.15) that the upper error limit of Hedge(β) is a

function of the number of strategies N which intuitively makes sense as the more

choices we have the harder it becomes to limit our losses. Note the wt
i’s will always

be less than one due to the scaling effect in step 4 of the Hedge(β) algorithm and

therefore the numerator in the right-hand-side of inequality (2.15) will always be

positive. The effect of the choice of β on the error bounds is shown later. We note

using equation (2.10) we can express the final weights as a function of the previous

weights. Please note the exponent convention with regards to wi and β below.

wT+1
i = w1i

T∏

t=1

βℓ
t
i = w1i β

(
∑T
t=1 ℓ

t
i) = w1i β

Li (2.16)

with the last equation in (2.16) following from the definition given in equation

(2.8). The combination of inequality (2.15) and equation (2.16) gives rise to the

LHedge(β) or error bound theorem in Freund et al.[5].

Theorem 2 For any sequence of loss vectors ℓ1, ..., ℓT we have

LHedge(β) ≤
− ln (w1i )− Li ln β

1− β
(2.17)
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Proof. The proof follows naturally by replacing wT+1
i in inequality (2.15) with

equation (2.16) and noting that − ln

(
N∑
i=1

w1i

)
≤ − ln (w1i ) since

N∑
i=1

w1i = 1

LHedge(β) ≤

− ln

(
N∑
i=1

wT+1
i

)

(1− β)
=

− ln

(
N∑
i=1

w1i β
Li

)

(1− β)

≤
− ln

(
w1i β

Li
)

(1− β)

=
− ln(w1i )− Li ln β

(1− β)

Assuming arbitrarily that strategy i is the best, Theorem 2.17 tells us that

Hedge(β) does not perform "too much worse" than the best strategy i since the nu-

merator in inequality (2.17) is defined in terms of the loss incurred by the best strategy

Li wherew
1
i and β are known values or constants. ThereforeHedge(β) accomplishes

the criteria required to solve the on-line allocation problem set out in expression (2.6).

We are now in a position to understand the importance of β in that Theorem 2.17 and

Figure 2.2 tells us that for large values of β the upper bound of LHedge(β) tightens and

approaches the loss incurred on the optimal strategy i. The trade-off of large β values

however is that the choice of good strategies becomes harder to distinguish as higher

values of β do not penalize losing strategies as severely as smaller values of β and

therefore either more time steps or a better priori for the initial weights are required.

More generally the bound (2.17) shows the difference in loss betweenHedge(β) and

the best strategy i is dependent on the choice of β and on the initial weight w1i of the

best strategy i. Interestingly when we set the initial weights w1i = 1/N the bound

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



37

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

Beta

Multiplier

Figure 2.2: Shows the relationship between β and the multiplier − ln(β)
1−β

of the loss of

the best strategy Li which constitutes a component of the upper bound of LHedge(β)

becomes

LHedge(β) ≤
− ln(1/N)− Li ln β

(1− β)
=
lnN − Li ln β

(1− β)

and hence is dependent on the logarithm of N which is reasonable even for

very large number of strategies.

2.4.3 Original Adaboost algorithm

It now becomes quite evident as to the possible extension ofHedge(β) to Adaboost in

that Hedge(β) seeks to optimally select the best strategies by sequentially reweight-

ing the importance of higher accuracy strategies while Adaboost, in its simplest form,

seeks to enhance prediction by weighting a series of individual predictors based on

their accuracy whilst sequentially reweighting observations based on their impor-
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tance in terms of inaccuracy. It is this connection that formed the basis the authors

Freund et al. [5] used to formulate the first Adaboost algorithm,

"...there is an obvious similarity between the algorithms Hedge(β) and Ad-
aboost [what we have called the Original Adaboost]. This similarity reflects
a surprising "dual" relationship between the on-line allocation model and the
problem of boosting. Put another way there is a direct mapping or reduction of
the boosting problem to the on-line allocation problem"

In Section 2.4.4 we shall also explore the differences between these two algo-

rithms in further detail.

We shall now describe the original Adaboost algorithm as given in Freund et al.

[5]. The authors first articulate the Adaboost algorithm for the binary case however

with the class labels defined as Y ∈ {0, 1} instead of Y ∈ {−1, 1}. In addition the

weak learner is not a discrete mapping as before but a real function mapping onto the

range of the new class labels such that h : X→ [0, 1].

We shall now analyze theOriginal Adaboost algorithm by comparing it against

Adaboost.M1 noting the following similarities and differences. As a convention

note in Step 2(e) of the Original Adaboost algorithm, β is raised to the power of

1− |ht(xi)− yi| whereas w
t
i relates to the weight of observation i at time step t:

Similarities

• The error ε̂t in both algorithms has the effect of calculating the "average"

training error of the classifier at a particular iteration ht with respect to the

observation weights at each boosting round t.
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Algorithm 3 The original Adaboost algorithm applied to a binary case

AlgorithmOriginal Adaboost

Given the training data (y1,x1), (y2,x2), ..., (yN,xN) where xi ∈ X, yi = {0, 1}

1. Initialize the observation weights w1i for i = 1,2, .., N such that w1 ∼ D (some arbitary

distribution)

2. For t = 1 to T :

(a) Generate the weight distribution

pt =
wt

∑N
i=1w

t
i

(b) Fit/train the weak learner ht on the training data using the weight distribution pt

(c) Calculate the estimated weighted error of ht

ε̂t =
N∑

i=1

pti |ht(xi)− yi|

(d) Calculate βt = ε̂t/(1− ε̂t)

(e) Update the observation weights

wt+1i = wtiβ
1−|ht(xi)−yi|
t

3. Output the final prediction

hf =
1, if

∑T
t=1(ln(1/βt)ht(x)) ≥

1
2

∑T
t=1(ln(1/βt)

0, otherwise
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• The weight update steps of both algorithms accomplish the same effect

by increasing the weights of incorrectly predicted observations relative to

correctly predicted observations (see Figure 2.3 - all beta’s are monotone

increasing. Note Weight Update refers to β
1−|ht(xi)−yi|
t and Observation Error

|ht(xi)− yi|).

• The classifier weights of ln(1/βt) in the Original Adaboost algorithm has the

same effect of increasing the weights of higher accuracy classifiers ht in the

final prediction as βt ∝ ε̂t and therefore ln(1/βt) ∝ 1/ε̂t.

• The construction of the final hypotheses although different for the Original

Adaboost algorithm accomplishes the same objective by increasing the

weights of those weak learners with greater accuracy and correspondingly

decreasing the weights of low accuracy weak learners. Further to this the

Original Adaboost algorithm has the effect of outputting the class label 1

if most of the weak learners outputs values greater than 1
2
and 0 when less

than 1
2
which is analogous to the sign function used in Adaboost.M1 when

Y ∈ {−1, 1}.

Differences

• Step 1 in the Original Adaboost algorithm allows the initial weight vector to

be any distribution however by settingw1 to w1i = 1/N for i = 1, .., N we can

get equality between the two algorithms.
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• In Adaboost.M1 αt ∝ 1/ε̂t whilst βt ∝ ε̂t for Original Adaboost however

this difference is nullified in Step 3 of the Original Adaboost algorithm by

taking the inverse natural log of βt.

• Although as mentioned above the weight update steps accomplishes the same

objective it differs for both algorithms - Adaboost.M1 increases the weights

of incorrectly predicted observations and leaves the weights unchanged for

correctly predicted observation whilst Original Adaboost decreases all

the weights but decreases the weights of correctly predicted observations

by a greater margin. (see Figure 2.3 - observations with low error (good

predictions) have their weights scaled/decreased more than observations with

high error (bad predictions)).

• The construction of the final hypotheses differ however as mentioned above,

the final prediction in the Original Adaboost algorithm is analogous to using

the sign function in the final prediction of Adaboost.M1 for the binary case.

This difference makes sense given the ht’s are real valued functions and the

class labels are 0/1 in the Original Adaboost algorithm as apposed to discrete

classifiers with class labels−1/1 in the Adaboost.M1 algorithm for the binary

case.
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Figure 2.3: Shows the relationship between the weight update and observation error
as defined in the Original Adaboost algorithm for β = 0.1, 0.5 and 0.9

We can conclude from the above analysis that although theOriginal Adaboost

algorithm differs from Adaboost.M1 algorithm in form, in substance the two algo-

rithms are virtually alike and accomplish the same objective.

2.4.4 Hedge β vs. the Original Adaboost algorithm

Although no formal derivation of the Adaboost method was ever provider the pa-

per, which outlines the first Adaboost algorithm Freund et al.[5], used principals

contained in the Hedge(β) algorithm to assist in the formulation of the Original

Adaboost algorithm. In addition although the two algorithms make use of similar

principals they are fundamentally different in their construction and output with such

differences best articulated using extracts taken from Freund et al.[5].
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Difference 1 The implied extension or reduction of Hedge(β) to the Original

Adaboost is reversed in that,

"in such a reduction [from Hedge(β) to the Original Adaboost], one might

naturally expect a correspondence relating the strategies to the weak hypotheses

and trials (and associated loss vectors) to examples in the training set. However the

reduction we have used is reversed: the "strategies" correspond to the examples,

and the trials are associated with the weak hypotheses."

Difference 2 The definition of loss is reversed in that,

"inHedge(β) the loss ℓti is small if the i
th strategy suggests a good action on the

tth trial while in Original Adaboost the "loss" ℓti = 1 − |ht(xi)− yi| appearing

in the weight-update rule (Step 2e.) is small if the tth hypothesis suggests a bad

prediction on the ith example."

The above quotes make sense as the goal inHedge(β), is to decrease the weight

of those strategies which results in greater losses, whilst the goal in the Adaboost

method and more specifically the Original Adaboost is to increase the weights of

those observations which results in incorrect predictions in order to "force" the weak

learner to "concentrate" on correctly predicting those "hard" observation in the next

boosting round.

The main technical difference between the two algorithms is related to the pa-

rameter β which is no longer fixed ahead of time as in the case of Hedge(β) but
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rather changes at each time step according to the error. The two benefits of this is

that we obtain a significantly superior error bounds on the individual weak learners

which contributes to a lower final boosting error ǫf and that we do not require prior

knowledge of the accuracy of the weak learners as β adapts dynamically to the error

rates of the weak learners at each boosting round.

2.5 The mathematical justification of Adaboost

In 1998, almost a decade after the first papers where published on the general con-

cept of boosting (see Kearns et al. [6]) Jerome Friedman, Trevor Hastie and Robert

Tibshirani put forward a paper (see Hastie et al. [9]) which sought to provide the

statistical community with the first theoretical framework explaining the Adaboost

methodology, which up until that point had been regarded as somewhat of a phenom-

enon in terms of its effectiveness. In essence they where able to successfully explain

the mystery surrounding Adaboost using the well known statistical principal of ad-

ditive modelling and maximum likelihood making use of a specific exponential loss

function and criterion. More specifically they where able to show howAdaboost.M1

is equivalent to forward stagewise additive modelling minimizing an exponential loss

function as well as additive logistic regression minimizing the exponential criterion.

In this section we will start by understanding the basic construct of additive

models and how it can be extended to handle more complex model structures. We

shall also examine possible methods to construct additive models such as backfit-
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ting or using the forward stagewise process. Next a description and analysis of the

exponential loss function and criterion is provided and lastly we show that when

these processes and functions are combined they can be proved, on a step-by-step

basis, to being equivalent to Adaboost. In other words we will show in detail how

Adaboost.M1 is equivalent to forward stagewise additive modelling using an ex-

ponential loss function as well as additive logistic regression using the exponential

criterion.

2.5.1 Additive Regression Models

We start our analysis by understanding the basic principles of additive modeling us-

ing one of its most simplest forms, the additive regression model. In this case the

response variable Y is quantitative and correspondingly so is the vector of predictor

variables X = 〈X1,X2,...,Xp〉
′
, where p denotes the number of individual predictor

variables. The goal of additive regression is to therefore modelE(Y |X1, X2, .., Xp) =

F (X) such that

F (X) = α+ f1(X1) + f2(X2) + ...+ fp(Xp) (2.18)

where the fj’s are separate functions fitted using each predictor variableXi and

α is a constant usually estimated using the arithmetic average of the yi’s. Many au-

thors have suggested different ways to generate the fj’s, Hastie et al. [4] (p 295-336)

suggests the use of unspecified smooth ("non-parametric") functions whilst Hastie et

al. [9] makes use of the modular backfitting algorithm as given in Buja et al. [11] to
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achieve stability or convergence. We shall now describe the backfitting algorithm as

given in Hastie et al.[9] due to its simplicity and ease of implementation, as well as

for its suitable practical application.

Algorithm 4 Backfitting algorithm for additive models

Algorithm Additive Backfitting

1. Initialize α̂ = 1
N

∑N

i=1 yi , and use any method to fit f̂j or set f̂j ≡ 0 , for all j = 1 to p

2. Repeat until the f̂j’s stabilize or converge i.e. the sucessive iterations of the f̂j’s differ less than

some pre-specified tolerance

(a) For j = 1 to p

i. calculate the vector y − α̂−
∑
k �=j

f̂k(xk)

ii. Fit the updated responses in step i above to xj such that f̂j becomes

f̂j(xj)← E


y − α̂−

∑

k �=j

f̂k(xk) | xj


 (2.19)

We can see from the right-hand-side of the update rule in (2.19) of theAdditive

Backfitting algorithm that all the latest versions of the functions fk are used to form

the partial residuals and hence fj is the model fitted which best explains the partial

residuals. Buja et al.[11] then showed that under fairly general conditions the Addi-

tive Backfitting algorithm, as shown here, will converge to a closed form solution of

the minimizer of E(y − F (x))2.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



47

2.5.2 Extended Additive Models

Additive models described in the previous Section 2.5.1 can be extended to situations

where we are not limited to p, fj functions or elements with each a function of a single

predictor variablesXj , but rather where we have as many fj elements as we like with

each a function of any subset of the predictor variables including possibly the full set

X. Within this context we can define a set ofM functions {fm(x)}
M
1 each consisting

potentially of all the predictors. Using the general basis function expansion as given

by Hastie et al.[4] (p 139-189)

fm(x) = βmb(x;γm), (2.20)

where the definition in equation (2.20) is given in terms of a "basis function"

b(·) i.e. linear or non-linear combinations of the multivariate vector x, and is char-

acterized by the multiplier βm and vector of parameter(s) γm. Note, we have also

dropped the use of α as in equation (2.18) which we have assumed is modelled in the

fm’s in equation (2.20). The extended additive model then becomes

FM(x) =
M∑

m=1

fm(x) =
M∑

m=1

βmb(x;γm). (2.21)

As noted above, in this extended additive model the "basis functions" b(x;γm) ∈

R can take on numerous forms in addition to linear and quadratic combinations of

the predictor variables and can be used for example to model single-layer neural net-

works (see Hastie et al. [4] (p 389-416)), signal processing (see Hastie et al. [4]
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(p 139-189)) and multivariate adaptive regression splines (see Hastie et al. [4] (p

295-336)).

As the authors Hastie et al. [4] (p 337-387) note, typically these extended

additive models are fitted by minimizing a loss function averaged or aggregated over

the training data

min
{βm,γm}

N∑

i=1

L

(
yi,

M∑

m=1

βmb(xi;γm)

)
(2.22)

where the loss function L can be squared-error or a likelihood-based loss func-

tion. If a least-squares loss function is used, Hastie et al.[9] suggest one can solve

for an optimal set of parameters {βm,γm}
M
1 through a generalized version of the

Additive Backfitting algorithm with updates

{βm,γm} ← argmin
β,γ

E

[
y −

M∑

k �=m

βkb(x;γk)− βb(x;γ)

]2
(2.23)

for m = 1, 2, ...,M until convergence is reached. Both expressions (2.22)

and (2.23) are formidable minimization problems that require intensive numerical

optimization techniques. However Hastie et al. [4] (p 337-387) suggests a simple

alternative when it is feasible to rapidly solve the problem of (2.22) using a single

basis function

min
β,γ

N∑

i=1

L (yi, βb(x;γ)) .

Similarly Hastie et al.[9] suggests a "greedy" forward stepwise approach to solve

problem (2.23) as

{βm,γm} ← argmin
β,γ

E [y − Fm−1(x)− βb(x;γ)]
2

(2.24)
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for m = 1, 2, ...,M , where Fm−1(x) is as defined in equation (2.21) and it’s

component parameters {βk,γk}
m−1
1 are fixed at their corresponding solution values

at earlier iterations. At this point we begin to notice the similarities of additive mod-

elling to boosting, and more specifically to Adaboost. By equating the multiplier

and basis functions to the weak learners βmb(x;γm) = ht(x) where t = m the final

boosting predictor hf(x) then mirrors the form of FM(x), where T =M . In addition

when analyzing the backfitting updates of (2.23) and its greedy cousin given in ex-

pression (2.24), both methods only require an algorithm to fit a single weak learner

to modified versions of the response data

ym ← y −
∑

k �=m

fk(x) (2.25)

for backfitting updates in (2.23) and

ym ← ym−1 − Fm−1(x) (2.26)

for backfitting updates in (2.24). The effect of the update in (2.26) is that the

previous solutions at earlier iterations have no effect on explanatory power on the new

outputs ym. This observation along with the update rules combined with the additive

form of the final predictor is analogous to the Adaboost process which calls the same

weak learner multiple time on different instances or weightings of the training data

and then pools or adds together the individual weak learners to create a powerful

"committee" prediction.
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At this point we now introduce the use of decision tress or more specifically

classification trees as a weak learner. In the context of extended additive modeling we

can define the parameter γ = 〈s, j〉′, where s is the split point and j the split variable.

We shall describe why we have chosen to use decision trees as our base classifier in

Section 3.1.

2.5.3 Forward Stagewise Additive Modelling

What we have described previously in the backfitting update of (2.24) is a particular

aspect of forward stagewise additive modelling, albeit unknowingly. The purpose of

forward stagewise additive modelling, as given in Hastie et al. [4] (p 337-387) is,

"to produce an efficient solution to the minimization problem [given in (2.22)]
by sequentially adding new basis functions to the expansion without adjusting

the parameters and coefficients of those that have already been added."

We shall now show the forward stagewise additive modeling algorithm as given

in Hastie et al. [4] (p 337-387).

At each iteration in step 2a we solve for the optimal parameter γm, to find the

basis function b(x;γm), and corresponding coefficient βm to add to the current ex-

pansion fm−1(x) in step 2b. Once the term fm(x) is produced the process is repeated

eventually growing the final expansion toM basis terms withM corresponding β co-

efficients. Note the term "forward stagewise" is used because we start the algorithm

with a single term then successively "move forward" (note reference to the word "for-

ward" is because we cannot go back and change fm(x)
′s after they have been added
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Algorithm 5 Algorithm showing the forward stagewise additive modeling process

Algorithm Forward Stagewise Additive Modeling

1. Initialize f0(x) = 0

2. Form = 1 toM

(a) Calculate

(βm,γm) = argmin
β,γ

N∑

i=1

L (yi, fm−1 + βb(xi;γ))

(b) Set fm(x) = fm−1(x)+βmb(x;γm)

to the expansion) to grow it term by term "in stages". Such a process differs from tra-

ditional additive modelling which typically starts with a full set ofM additive terms,

albeit arbitrary, and enhances allM terms in an iterative fashion until convergence is

reached.

2.5.4 Exponential Loss Criterion and Function

As with most of the expressions used previously we have defined a generic loss func-

tion L and used squared-error loss only for illustrative purposes to show how back-

fitting using squared-error loss can create additive models. However we have yet

to specify a specific loss function that would lead to the Adaboost method. In this

section we define such a loss function using the exponential function

L(y, f(x)) = exp(−y f(x)). (2.27)
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Similarly Hastie et al.[9] define the exponential criterion as

J(F ) = E(e−yF (x)). (2.28)

The choice and use of these measures will become apparent when we show:

1. the equivalence of forward stagewise additive modeling using the exponential

loss function (2.27) to Adaboost.M1

2. and the equivalence of additive logistic regression modeling using the

exponential criterion (2.28) to Adaboost.M1.

specifically for the binary case where the response variable is Y ∈ {−1, 1}.

We shall now set some groundwork that will be required to prove the second

point above in the next Section 2.5.5. The lemma below and accompanying proof is

taken from Hastie et al.[9] however in doing so we have expanded on the proof which

shows the function F (x) that minimizes J(F ) is the closed form symmetric logistic

transform of P (y = 1|x).

Lemma 3 E(e−yF (x)) is minimized at

F (x) =
1

2
ln
P (y = 1|x)

P (y = −1|x)
(2.29)

Hence

P (y = 1|x) =
eF (x)

e−F (x) + eF (x)
(2.30)
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P (y = −1|x) =
e−F (x)

e−F (x) + eF (x)
(2.31)

Proof. While E entails expectations over the joint distribution of y and x, it is

sufficient to minimize the criterion of J(F ) conditional on x as we have assumed

x is the training predictor variable(s) which are given. Expanding the conditional

criterion we get

E(e−yF (x)|x) = P (y = 1|x)e−(1)×F (x) + P (y = −1|x)e−(−1)×F (x)

= P (y = 1|x)e−F (x) + P (y = −1|x)eF (x).

Minimizing with respect to F (x) requires finding the partial derivative of the

criterion

∂E(e−yF (x)|x)

∂F (x)
= −P (y = 1|x)e−F (x) + P (y = −1|x)eF (x)

and setting the above result to zero. Therefore,

−P (y = 1|x)e−F (x) + P (y = −1|x)eF (x) = 0

P (y = −1|x)eF (x) = P (y = 1|x)e−F (x) (2.32)

eF (x) =
P (y = 1|x)e−F (x)

P (y = −1|x)

e2F (x) =
P (y = 1|x)

P (y = −1|x)
...divided through by e−F (x)

2F (x) = ln

(
P (y = 1|x)

P (y = −1|x)

)

F (x) =
1

2
ln

(
P (y = 1|x)

P (y = −1|x)

)
.
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Which proves equation (2.29) of the lemma. The corollaries are then found by

rearranging equation (2.32)

P (y = 1|x)e−F (x) = P (y = −1|x)eF (x)

= (1− P (y = 1|x))eF (x)...because P (y = 1|x) = 1− P (y = −1|x)

= eF (x) − eF (x)P (y = 1|x)

P (y = 1|x)e−F (x) + eF (x)P (y = 1|x) = eF (x)

P (y = 1|x)(e−F (x) + eF (x)) = eF (x)

P (y = 1|x) =
eF (x)

e−F (x) + eF (x)
.

Similarly using the same arguments and solving for P (y = −1|x) we get

P (y = −1|x) =
e−F (x)

e−F (x) + eF (x)
.

We notice here that the usual logistic transform does not have the factor 1
2
as in

equation (2.29) however by multiplying the numerator and denominator in equation

(2.30) by eF (x) we get the usual logistic model

p(x) =
e2F (x)

1 + e2F (x)

and hence the two models i.e. the model given in equation (2.29) and the traditional

logistic model are equivalent up to a factor of two.

Further to our choice of the exponential loss criterion, we can compare this

measure to another well-known loss function, squared error loss. In Figure 2.4 the
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quantity yF on the x-axis is a measure of classification accuracy, where sign(F ) is

analogous to the final predictor hf (x) as per the Adaboost.M1 algorithm and there-

fore F is not a probability mass function and can take on values less than 0 and

greater than 1. Negative yF values indicate the degree of incorrect classification

and conversely positive values indicate the degree of correct classification. We see

from Figure 2.4 that exponential loss is monotone decreasing while squared error is

not. The non-monotonicity of the squared-error limits the practical application of

this loss function, in our binary case, as it begins to penalize classifications where

yF is greater than 1, or in other words classifications which are "too correct". There-

fore exponential loss appears to be the more appropriate choice due to its decreasing

monotonicity as well as being able to be continuously differentiable (smooth) which

is an important requirement in proving both points (1) and (2) above.

2.5.5 Equivalence of Adaboost to Additive Modelling using

Exponential Loss or the Exponential Criterion

We are now in a position to show that Adaboost actually fits:

1. an additive forward stagewise model using the exponential loss function given

in equation (2.27) and

2. an additive logistic regression model using Newton updates for minimizing the

exponential criterion given in equation (2.28).
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-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

1

2

3

yF

Loss

Solid line - Exponential Loss

Dashed line - Squared Error Loss

Figure 2.4: Graph, as per Hastie et al. [4] (p 347), showing how the exponential loss
function continues to decrease as yF increases i.e. classification accuracy improves.
Conversely with squared error loss the graph also shows how such a function begins
to penalize classifications which are "too correct".
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Once again we consider the binary case with y ∈ {−1, 1} and xi= 〈x1i, x2i, .., xpi〉
′
,

i = 1, ...N a vector of p inputs. We will first present a proposition and proof using

elements from Hastie et al. [4] (p 337-387) to show point 1 above, followed by the

proposition and proof from Hastie et al.[9] to show point 2 above.

Proposition 4 Adaboost.M1 is equivalent to Forward Stagewise Additive Model-

ing using the exponential loss function.

Proof. Let the basis function be the weak classifier defined in (2.1) such that

hm ∈ {−1, 1}. We start by replacing the loss function in the minimization prob-

lem (2.22) with the exponential loss function of (2.27) and use the Forward Stage-

wise Additive Modeling algorithm to generate the {βk, hk}
M
1 to develop the addi-

tive model. Therefore we need to solve Step 2a of the Forward Stagewise Additive

Modeling algorithm in the form

(βm, hm) = argmin
β,h

N∑

i=1

exp[−yi(fm−1(xi) + βh(xi))] (2.33)

for the weak classifier hm and corresponding coefficient βm to be added at each

step. We can re-write (2.33) as

(βm, hm) = argmin
β,h

N∑

i=1

wm
i exp(−yiβh(xi)) (2.34)

where

wm
i = exp(−yifm−1(xi)). (2.35)

Since each wm
i does not depend on β nor h it can be regarded as a weight that

is applied to each observation at each time stepm. We also see from equation (2.35)
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that the weights change at each iteration since wm
i is a function of fm−1. Noting that

−yih(xi) =

{
1, when yi �= h(xi)
−1, when yi = h(xi)

we can now express the right-hand-side of the minimization argument in equa-

tion (2.34) as

e−β ·
∑

i:yi=h(xi)

wm
i + e

β ·
∑

i:yi �=h(xi)

wm
i (2.36)

Note, reference here to eβ or e raised to any variable, number or parameter

should be interpreted in the usual exponent way and does not denote a timestep such

as in wm
i . Expression (2.36) can then be written using indicator functions as

{
e−β ·

N∑

i=1

wm
i − e

−β ·
N∑

i=1

wm
i I(yi �= h(xi))

}
+ eβ ·

N∑

i=1

wm
i I(yi �= h(xi)) =

e−β ·
N∑

i=1

wm
i + (e

β − e−β) ·
N∑

i=1

wm
i I(yi �= h(xi)). (2.37)

Therefore solving for hm for some given β > 0, and because the left-hand-side

term in expression (2.37) i.e. e−β ·
N∑
i=1

wm
i and the coefficient of the right-hand-side

term i.e. (eβ − e−β) can be viewed as positive constants as they made up of known

quantities,.the solution to equation (2.34) becomes

hm = argmin
h

N∑

i=1

wm
i I(yi �= h(xi)). (2.38)

It is reaffirming to note that our reduction in equation (2.38) results in a solu-

tion hm which minimizes the weighted error rate. We now need to solve for β by
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differentiating expression (2.37) with respect to β and setting the result equal to zero

∂

∂β

[
e−β ·

N∑

i=1

wm
i + (e

β − e−β) ·
N∑

i=1

wm
i I(yi �= h(xi))

]
= 0

Therefore,
∂

∂β

[
e−β ·

N∑

i=1

wm
i + (e

β − e−β) ·
N∑

i=1

wm
i I(yi �= h(xi))

]
=

−e−β ·
N∑

i=1

wm
i + e

β ·
N∑

i=1

wm
i I(yi �= h(xi)) + e

−β ·
N∑

i=1

wm
i I(yi �= h(xi)) =

−e−β + eβ · εm + e
−β · εm (divided through by

N∑

i=1

wm
i )

where εm =

N∑
i=1

wm
i I(yi �= h(xi))

N∑
i=1

wm
i

as defined in step 2b of the Adaboost.M1 algorithm.

Then

−e−β + eβ · εm + e
−β · εm = −1 + e

2β · εm + εm = 0 (multiplied through by e
β)

and

e2β =
1− εm
εm

.

Therefore,

β =
1

2
ln

(
1− εm
εm

)
. (2.39)

Now that we have found both βm and hm we can proceed to the next step

in the Forward Stagewise Additive Modeling algorithm (step 2b) and update the

approximation

fm(x) = fm−1(x) + βmhm(x)
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which causes the weights for the next iteration to be

wm+1
i = exp(−yifm(xi)) ...using equation (2.35)

= exp(−yifm−1(x)− yiβmhm(x))

and finally

wm+1
i = wm

i exp (−yiβmhm(x)) (2.40)

Using the well-known identity −yihm(xi) = 2 · I(yi �= hm(xi)) − 1 we can

re-write equation (2.40) as

wm+1
i = wm

i ·exp [2βm · I(yi �= hm(xi))− βm] = w
m
i ·exp [αmI(yi �= hm(xi))]·e

−βm

(2.41)

where αm = 2βm is the quantity defined at step 2c in the Adaboost.M1 al-

gorithm. The factor e−βm in equation (2.41) does not have an effect as it multiplies

all the weights by the same value and therefore equation (2.41) is equivalent the

weight update step 2d in the Adaboost.M1 algorithm. Note up until this point we

have shown equivalence to steps 2b, 2c and 2d of the Adaboost.M1 algorithm. Step

2a can be viewed as an approximate solution to equation (2.38), by fitting a weak

learner, in this case a base classifier, which minimizes the weighted error rate. The

final step 3 in the Adaboost.M1 algorithm is equivalent to equation 2.21 i.e. the final

or full additive model, since αm = 2βm all the terms in equation (2.21) are mul-

tiplied by a constant of two, and combined with the sign function in step 3 of the
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Adaboost.M1 algorithm results in the desired output. Setting M = T and m = t

completes the proof.

Proposition 5 Adaboost.M1 is equivalent to additive logistic regression by using

adaptive Newton updates for minimizing the exponential criterion.

Proof. Define the exponential loss criterion as in equation (2.28) and suppose we

have a current estimate F (x) and seek an improved estimate FI(x) = F (x)+ cf(x).

We start by fixing c (and x) and expanding J(F (x) + cf(x)) using regular Taylor

series to second order about f(x) = 0.Also let the function f(x) ∈ {−1, 1} (discrete

case).

J(F + cf) = E[e−y(F (x)+cf(x))] = E[e−yF (x)−ycf(x)] (2.42)

≈ E[e−yF (x)(1− ycf(x) + c2f(x)2/2)] ...where y2 = 1 because

y ∈ {−1, 1}

Note, reference here to eβ or e raised to any variable, number, parameter or com-

bination thereof should be interpreted in the usual exponent way. Using the same

argument as in the previous proof the quantity e−yF (x) is fixed at the current step (as

F (x) is known) and can therefore be regarded as a weight

w = w(x, y) = e−yF (x). (2.43)

Using the definition of weighted conditional expectation taken from Hastie et al.[9]

Ew[g(x,y)|x]
def
=
E[w(x, y)g(x,y)|x]

E[w(x, y)|x]
(2.44)
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or re-written as

E[w(x, y)|x]·Ew[g(x,y)|x] =E[w(x, y)g(x,y)|x], (2.45)

we can minimize the approximation in equation (2.42) at each point of f(x) ∈

{−1, 1} i.e. point-wise

f̂(x) = argmin
f
Ew(1− ycf(x) + c

2f(x)2/2|x)·E(e−yF (x)|x), (using definition (2.45))

= argmin
f
Ew(1− ycf(x) + c

2f(x)2/2|x), (since E(e−yF (x)|x) is fixed/known)

= argmin
f
Ew[1/2 + 1/2(y

2 − 2ycf(x) + c2f(x)2)|x)], (replacing 1 with y2)

= argmin
f
Ew[1/2 + 1/2(y − cf(x))

2|x)]

= argmin
f
Ew[(y − cf(x))

2|x)]

, (since Ew(1/2) and the coefficient 1/2 of (y − cf(x))
2 are constants which

do not effect the minimization argument)

and therefore

f̂(x) = argmin
f
Ew[(y − f(x))

2|x)]. (2.46)

Equation (2.46) arises when considering the two possible choice for f(x) ∈ {−1, 1}

and which does not effect the minimization argument as c is fixed. Thus minimiz-

ing the quadratic approximation (using Taylor series) to the exponential loss criterion

leads to a weighted least-squares choice of f(x) ∈ {−1, 1} and this therefore consti-

tutes the Newton step. Given f̂(x) ∈ {−1, 1}, we can now find an estimate for c i.e.
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ĉ by directly minimizing J(F + cf̂) using the results of the Lemma 2.29.

ĉ = argmin
c
J(F + cf̂) = argmin

c
E[e−yF (x)e−ycf̂(x)]

= argmin
c
Ew[e

−ycf̂(x)], (using the definition of weighted conditional

expectation in equation (2.45) and the fact that E(e−yF (x)) is fixed/known)

=
1

2
ln

Pw(yf̂(x) = 1|x)

Pw(yf̂(x) = −1|x)
, (using result of the Lemma 2.29)

where c = F (x), y = yf̂(x) and Pw(·) is the weighted probability.

Noting Pw(yf̂(x) = 1|x) = Pw(y = f̂(x)|x) and Pw(yf̂(x) = −1|x) = Pw(y �=

f̂(x)|x) =q, therefore

ĉ =
1

2
ln
1− q

q
(2.47)

, since Pw(yf̂(x) = 1|x) = Pw(y = f̂(x)|x) =1− q

where q can also be written as q = Ew[I(y �= f̂(x)] (2.48)

i.e. the weighted expected error rate

of incorrect predictions

since,

Ew[I(y �= f̂(x)] =
E[wI(y �= f̂(x))|x]

E[w|x]
.(using definition (2.44))

=
wy �=f̂(x)1 · P (y �= f̂(x))

w
+
wy=f̂(x)0 · P (y = f̂(x))

w

=
wy �=f̂(x)1 · P (y �= f̂(x))

w
= Pw(y �= f̂(x)). (2.49)
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Note from expression (2.47) c can be negative if q > 1
2
i.e. the weak learner

does worse than 50% which automatically reverses the polarity of f and therefore

once again highlighting the requirement for better than random performance of the

weak learner. Combining the steps above and the estimates f̂(x) in (2.46) and ĉ in

(2.47) we can produce the update for F (x) and hence find FI(x) i.e. the improved

estimate.

FI(x) = F (x) + ĉf̂(x) (2.50)

and therefore the update becomes

F (x)← F (x) +
1

2
ln
1− q

q
× f̂(x). (2.51)

The implication of update (2.51) is that it also updates the weights. Using equation

(2.43)

wu(x, y) = e
−yFI(x) = e−y(F (x)+ĉf̂(x)) = e−y(F (x)+ĉf̂(x)) = w(x, y)e−yĉf̂(x)

the weight updates becomes

w(x, y)← w(x, y)e−yĉf̂(x). (2.52)

Using the identity once again −yf̂(x) = 2× I(y �= f̂(x))− 1 we see that the update

is equivalent to

w(x, y) ← w(x, y) · exp

[
1

2
ln

(
1− q

q

)
(2× I(y �= f̂(x))− 1)

]

= w(x, y) · exp

[
ln

(
1− q

q

)
I(y �= f̂(x))−

1

2
ln

(
1− q

q

)]
(2.53)
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and therefore the weight update is

w(x, y)← w(x, y) · exp

[
ln

(
1− q

q

)
I(y �= f̂(x))

]
(2.54)

since the last term on the right-hand-side in (2.53) −1
2
ln

(
1−q
q

)
= −ĉ multiplies all

the weights by the same value and therefore has no effect. In conclusion we have

shown in equation (2.48) that q = ε̂, that α = 2ĉ, and that the weight update rule

(2.54) is equivalent to step 2d of Adaboost.M1. Using the same arguments in the

previous proof we can view equation (2.46) as being a least squares approximation

to step 2a of Adaboost.M1. Lastly we note the final prediction in step 3 of Ad-

aboost.M1 is equivalent by way of construction to equation (2.50).

2.6 Adaboost Error

One of the central ideas underpinning the development of Adaboost is the method’s

ability to improve prediction accuracy and hence reduce the final prediction error of

hf . In this section we shall analyze the theoretical effect that Adaboost has on the

training error by understanding the training error bounds and in Chapter 4 we will

analyze this effect empirically. Given the definition of error in equation (2.3) we can

use this to define the training error at each boosting round t using the distribution of

(2.9) as

ǫt = Pi∼pt[ht(xi) �= yi] =
∑

i:ht(xi)�=yi

pti (2.55)
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where the pti’s are normalized weights for each observation at each boosting

round t. In our analysis to follow we start by writing the above training error (2.55)

of a weak learner ht on the t
th boosting round as

ǫt =
1

2
− γt, (2.56)

where γt ≥ 0 is a measure of how much better the weak learner ht is than

random guessing since we have assumed we remain in the binary case. The authors

Freund et al. [5] then proved that the training error of the final prediction has an

upper bound of

ǫf ≤
T∏

t

[
2
√
ǫt(1− ǫt)

]
=

T∏

t

√
1− 4γ2t ≤ exp

(
−2

T∑

t

γ2t

)
. (2.57)

Therefore the training error of the final prediction ǫf is given in terms of the

accuracy of the individual component predictions and hence if the γ′ts increase, the

error drops exponentially fast. Pre-Adaboost algorithms required some knowledge of

the error bound or accuracy of ht, however in practice this information is generally

not known or difficult to obtain. It is the ability of Adaboost to continue in the

absence of this prior information and dynamically adapt to the error of the individual

weak predictors which has set it apart from other boosting methods. We shall now

formally state the theorem and proof that the training error of hf i.e. ǫf is bounded

above as per inequality (2.57). The following theorem and proof are both taken from

Freund et al. [5] however they have been expanded on for completeness.
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Theorem 6 Suppose the weak learners ht generate training errors ǫ1, ǫ2, ..., ǫT for

each boosting round. Then the final prediction error ǫf = Pi∼p[hf(xi) �= yi], where

p is the population distribution, of the final prediction hf is bounded above by

ǫf ≤
T∏

t

[
2
√
ǫt(1− ǫt)

]
. (2.58)

which can also be written as

ǫf ≤
T∏

t

√
1− 4γ2t (2.59)

or,

ǫf ≤ exp

(
−2

T∑

t

γ2t

)
(2.60)

Proof. Let y,wt and pt be defined as in the Original Adaboost algorithm. We start

by using the update rule given in the Original Adaboost algorithm Step 2e and the
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main arguments from Lemma 2.11 and Theorem 2.17.

N∑

i=1

wt+1
i =

N∑

i=1

wt
iβ
1−|ht(xi)−yi|
t

≤
N∑

i=1

wt
i[1− (1− βt)(1− |ht(xi)− yi|)], using

the Convexity Argument in 2.12

and where α = βt and r = 1− |ht(xi)− yi|

=

(
N∑

i=1

wt
i

)
[1− (1− βt)(1− ǫt)],

where

N∑
i=1

wt
i(1− |ht(xi)− yi|)

N∑
i=1

wt
i

=

N∑
i:ht(xi)�=yi

wt
i

N∑
i=1

wt
i

=
∑

i:ht(xi)�=yi

pti

= ǫt as per equation 2.55.

Using the same argument as in Lemma 2.11 for repeated application where

t = 1, ..., T and noting that
N∑
i=1

w1i = 1 is by definition a distribution as per Step 1 of

the Original Adaboost, we get

N∑

i=1

wT+1
i ≤

T∏

t=1

[1− (1− βt)(1− ǫt)]. (2.61)

We note in the Original Adaboost algorithm that the final prediction hf only

make a mistake on observation i when

T∏

t=1

β
−|ht(xi)−yi|
t ≥

(
T∏

t=1

βt

)−1/2

(2.62)
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where the derivation of (2.62) is shown below and follows from step 3 of theOriginal

Adaboost algorithm and noting that hf will only make amistake when |ht(xi)− yi| =

1 for most boosting rounds,

T∑

t=1

(ln 1/βt)× |ht(xi)− yi| ≥
1

2

T∑

t=1

ln 1/βt from step 3 of the Original Adaboost

T∑

t=1

(ln βt)×− |ht(xi)− yi| ≥
1

2

T∑

t=1

− ln βt

T∑

t=1

ln β
−|ht(xi)−yi|
t ≥ −

1

2

T∑

t=1

ln βt

ln

(
T∏

t=1

β
−|ht(xi)−yi|
t

)
≥ ln

(
T∏

t=1

βt

)− 1

2

T∏

t=1

β−|ht(xi)−yi|t ≥

(
T∏

t=1

βt

)− 1

2

as per (2.62).

The final weight of any observation i is then

wT+1
i = wT

i β
1−|hT (xi)−yi|
T

= wT−1
i β

1−|hT−1(xi)−yi|
T−1 β

1−|hT (xi)−yi|
T

= ...

= D(i)
T∏

t=1

β
1−|ht(xi)−yi|
t (2.63)

where D(i) = w1i are the chosen initial weights as per step 1 of the Original

Adaboost algorithm. Using expressions (2.62) and (2.63) we can derive the lower

bound for the sum of the final weights by using the sum of the final weights where
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hf is incorrect,

N∑

i=1

wT+1
i ≥

N∑

i:hf (xi)�=yi

wT+1
i , because i : hf(xi) �= yi ⊆ N

=
N∑

i:hf (xi)�=yi

[
D(i)

T∏

t=1

β
1−|ht(xi)−yi|
t

]
, using equation (2.63)

≥

N∑

i:hf (xi)�=yi


D(i)

(
T∏

t=1

βt

)1/2

 , using the inequality (2.62) multiplied by βT

=




N∑

i:hf (xi)�=yi

D(i)




(
T∏

t=1

βt

)1/2

= ǫf ·

(
T∏

t=1

βt

)1/2

, using the definition of training (2.64)

error in (2.55) applied to the final error.

Using equations (2.61) and (2.64) we get

ǫf ≤

∑N
i=1w

T+1
i(

T∏
t=1

βt

) 1

2

, using inequality (2.64)

≤

T∏
t=1

[1− (1− βt)(1− ǫt)]

(
T∏
t=1

βt

) 1

2

, using inequality (2.61)

=
T∏

t=1

[
[1− (1− βt)(1− ǫt)]√

βt

]
(2.65)

Since we note that all the factors in the product of equation (2.65) are positive

we can minimize the right-hand-side by minimizing each factor with respect to βt
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∂

∂βt

{
[1− (1− βt)(1− ǫt)]√

βt

}

=
∂

∂βt

{
βt + ǫt − βtǫt√

βt

}

=
∂

∂βt

{
β
1

2

t + β
−1

2

t ǫt − β
1

2

t ǫt

}

=
1

2
β
− 1

2

t −
1

2
β
− 3

2

t ǫt −
1

2
β
− 1

2

t ǫt

= 1− β−1t ǫt − ǫt, by dividing through by
1

2
β
− 1

2

t

βt =
ǫt

1− ǫt
, by setting the above result equal to zero (2.66)

Therefore equation (2.66) minimizes equation (2.65) and plugging equation

(2.66) into equation (2.65) we get the final expression for the upper bound.

ǫf ≤
T∏

t=1

[
[1− (1− ǫt

1−ǫt
)(1− ǫt)]√ ǫt

1−ǫt

]

=
T∏

t=1

[
[1− (1− ǫt −

ǫt
1−ǫt

+ ǫ2t
1−ǫt

)]
√

ǫt
1−ǫt

]

=
T∏

t=1

[
[ǫt +

ǫt−ǫ2t
1−ǫt

]
√

ǫt
1−ǫt

]

=
T∏

t=1

[
[ǫt +

ǫt(1−ǫt)
1−ǫt

]
√ ǫt

1−ǫt

]

=
T∏

t=1

[
2ǫt√

ǫt
1−ǫt

]

=
T∏

t=1

[
2ǫt ×

√
1− ǫt
ǫt

]

=
T∏

t=1

[
2
√
ǫt(1− ǫt)

]
. (2.67)
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To show the alternate expression of inequality (2.59) we simply use equation

(2.56) in place of ǫt in equation (2.67)

ǫf ≤
T∏

t=1

[
2
√
ǫt(1− ǫt)

]
=

T∏

t=1

[
2

√(
1

2
− γt

)(
1−

1

2
+ γt

)]

=
T∏

t=1

[
2

√
1

4
− γ2t

]

=
T∏

t=1

[√
1− 4γ2t

]
.

To show the final inequality (2.60) we use the Kullback-Leibler divergence

KL(a ‖ b) = a ln(a/b) + (1− a) ln((1− a)/(1− b))

where a = 1− a = 1
2
and b = ǫt =

1
2
− γt we get

KL

(
1

2
‖
1

2
− γt

)
=

1

2
ln

(
1

2
/

[
1

2
− γt

])
+
1

2
ln

(
1

2
/

[
1

2
+ γt

])

=
1

2

{
ln

(
1

2

)
− ln

(
1

2
− γt

)}
+
1

2

{
ln

(
1

2

)
− ln

(
1

2
+ γt

)}

= ln

(
1

2

)
−
1

2
ln

(
1

2
− γt

)
−
1

2
ln

(
1

2
+ γt

)
. (2.68)

Using the inequality (2.59) we get,
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ǫf ≤
T∏

t=1

[√
1− 4γ2t

]

= exp

{
ln

(
T∏

t=1

[√
1− 4γ2t

])}

= exp

{
T∑

t=1

ln
[√
1− 4γ2t

]}

= exp

{
1

2

T∑

t=1

ln
(
1− 4γ2t

)
}

= exp

{
1

2

T∑

t=1

ln [(1− 2γt)(1 + 2γt)]

}

= exp

{
1

2

T∑

t=1

[
ln 2

(
1

2
− γt

)
+ ln 2

(
1

2
+ γt

)]}

= exp

{
T∑

t=1

[
1

2
ln 2 +

1

2
ln

(
1

2
− γt

)
+
1

2
ln 2 +

1

2
ln

(
1

2
+ γt

)]}

= exp

{
−

T∑

t=1

[
ln
1

2
−
1

2
ln

(
1

2
− γt

)
−
1

2
ln

(
1

2
+ γt

)]}

= exp

{
−

T∑

t=1

KL

(
1

2
‖
1

2
− γt

)}
,...as per (2.68) (2.69)

≤ exp

{
−2

T∑

t=1

γ2t

}

Where the last step follows from the fact that KL(a ‖ b) is an asymmetric

measure of distance of b from a and therefore the "distance" is γt. Following on from

this the smaller the inner term KL(•) of equation (2.69) is, and therefore distance,

the larger the whole quantity on the right-hand side of inequality (2.69) and since

0 ≤ γt ≤
1
2
, therefore 2γ2t ≤ γt.
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We note that we proved the above theorem for the discrete binary case where

y ∈ {0, 1}. In this case the condition of ǫt ≥
1
2
is acceptable however as noted earlier,

in the multi-class case we require a stricter condition such that ǫt ≤
1
2
.

We conclude this sections with a brief view of the generalization error of Ad-

aboost. The authors in Freund et al. [5] showed that the generalization error of the

Adaboost method, with high probability, is at most

P̂ [h(x) �= y] + Õ

(√
Td

N

)
(2.70)

where P̂ [·] is the empirical probability on the training set and d is the number

of VC-dimensions which Freund et al. [7] quotes as "a measure of the "complexity"

of a space of hypotheses". For further information on VC dimensions see Blumer

et al. [12]. What is interesting in expression (2.70) is that it suggests that boosting

will overfit if run for too many rounds i.e. the upper generalization error bound

becomes large as T increases. However, as we will see in the Chapter 4, in most

cases overfitting does not occur when run for hundreds of boosting rounds and that

Adaboost continues to drive down the test error long after the training error nears or

is at zero. It is this somewhat positive phenomenon that lends to Adaboost’s practical

and attractive application as an effective boosting method.
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Chapter 3

Classification Trees as a Base Predictor

In this chapter we will provide the reasons for selecting classification trees as

our chosen base predictor which will be made use of within the Adaboost examples

in the following Chapter 4. An overview of the Classification And Regression Tree

("CART") method created by Breiman et al.[16] is provided which is used to con-

struct or grow our classification trees. In addition we will also show and analyze the

method of cost-complexity pruning used to prune or optimize the outputted tree struc-

ture. Lastly examples showing how classification trees are applied to actual datasets

and a review of the resulting performance is provided. To ensure a complete analy-

sis both simulated and real data-sets are made use of and within each we analyze a

binary classification and multi-classification problem.

3.1 The choice of decision trees as a base predictor

As we have seen in Chapter 2, Adaboost is a generalized method of enhancing the

predictive accuracy of weak learners or base predictors. A question which then fol-

lows is which weak learner or base predictor should we select for boosting and why.

In most cases it is difficult to select the "best" weak learning method as the perfor-

mance of these methods tend to vary depending on the data in terms of size, complex-

ity and completeness. In addition the methods should also satisfy important practical
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considerations to be regarded as useful such as exhibiting quick computational time,

being easy to understand as well as allowing an interpretation of the results. The au-

thors Hastie et al. [4] (p 351) attempt to rate various popular learning methods along

different criteria. We have added to their comparison by including a relative score

calculated using an equal weighting of each characteristic and applying the follow-

ing score where 1 = good, 0 = fair, -1 = poor. The results of the comparison and

corresponding scores are shown below.

Characteristic Neural Nets SVM Trees MARS k-Kernels

Natural handling of data of "mixed" type ⇓ −1 ⇓ −1 ⇑ +1 ⇑ +1 ⇓ −1
Handling of missing values ⇓ −1 ⇓ −1 ⇑ +1 ⇑ +1 ⇑ +1
Robustness to outliers in input space ⇓ −1 ⇓ −1 ⇑ +1 ⇓ −1 ⇑ +1
Insensitive to monotone transformations of inputs ⇓ −1 ⇓ −1 ⇑ +1 ⇓ −1 ⇓ −1
Computational scalability (large N) ⇓ −1 ⇓ −1 ⇑ +1 ⇑ +1 ⇓ −1
Ability to deal with irrelevant inputs ⇓ −1 ⇓ −1 ⇑ +1 ⇑ +1 ⇓ −1
Ability to extract linear combinations of features ⇑ +1 ⇑ +1 ⇓ −1 ⇓ −1 ⇐⇒ 0
Interpretability ⇓ −1 ⇓ −1 ⇐⇒ 0 ⇑ +1 ⇓ −1
Predictive power ⇑ +1 ⇑ +1 ⇓ −1 ⇐⇒ 0 ⇑ +1

Score -5 -5 +4 +2 -2

It is clear from the table that Trees as a learning method appears to be the most

attractive and scores higher than the other methods by a significant margin aside

from MARS. Trees however fail on only two criteria being,"Ability to extract linear

combinations of features", as it is constructed by a series of indicator functions, and

"Predictive power" which we shall demonstrate in Section 3.3 to Section 3.6 . It is

the failure of Tree methods on the latter criteria that is of interest as boosting has

been specifically designed to enhance weak learners or put in other words, learners

which have poor predictive power. The authors Hastie et al. [4] (p 351) then go on to

refer to an "off-the-shelf" method. They define "off-the-shelf" as a method that can
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be directly applied to the data without requiring a great deal of time-consuming data

preprocessing or careful tuning of the learning procedure. Referring back to the table

we can now see that Trees appear to meet most of the requirements to be called an

"off-the-shelf" learning method primarily because they are:

• Fast to construct

• Easy to implement

• Produce interpretable models (when the Trees are small)

• Can accommodate mixed variables - categorical and numeric

• Not sensitive to missing values

• Invariant to monotone transformations of the predictors and therefore immune

to scaling and outlier effects

• By design perform internal feature selection i.e. select the most appropriate

variables to be used, and can therefore deal with data comprising of large

domains.

It is because of the analysis and reasons given above that Trees has been se-

lected as the base learner to be used in this dissertation with classification trees as a

specific tree based method. We will show in Chapter 4 that classification trees also

happen to benefit from an accuracy point of view when used with Adaboost.
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3.2 Classification tree methodology

We start by understanding the basic methodology of classification trees in that clas-

sification trees work by recursively splitting the domain of xi ∈ X where xi =

〈x1i, x2i, ..., xpi〉
′
is a vector consisting of p input variables, into a set of separate

multi-dimensional "cubes", called nodes or regions, with each node defining a class

label. For aK class problem where the class labels are denoted k = {1, 2, ..., K} and

where we have createdM such regions or nodes R1,R2, ..., RM , classification trees

seek to find a mapping f(X) : X→ {1, 2, ..., K} using the model,

f(x) =
M∑

m=1

k(m)I(x ∈ Rm), (3.1)

where k(m) : {1, 2, ...,M} → {1, 2, ..., K} is the mapping of theM regions to the

K classes.

As noted we shall describe one of the most popular tree-based method known

as CART, however focusing on the first letter of the acronym i.e. the "C" part of

CART. The primary goal in constructing classification trees using CART and hence

the creation of the partitions and resultant regions Rm, is to determine which of the

input variables j = 1, 2, ..., p to select for splitting and at what points s, known as

split-points, these variables need to be split. Once these regions are defined we also

need to determine which classification to make within each region in order to create

the best fit. This process is an iterative one as splitting, or the formation of multiple

regions, is continued until some predefined stopping rule is triggered or we have as
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many classes as there are observations. Usually binary trees i.e. trees with a single

variable j and split point s which result in only two child nodes, are used in the

CART method however creation of trees comprising of more than two child nodes is

possible but not shown here due to added structural complexity. The CART method

for constructing binary trees can best be understood using a simple example taken

from Hastie et al.[4] (p 305-317) however applied to the case of a two class K = 2

classification problem.

Example 1 Consider a classification problem where X consists of two input vari-

ables such that X = 〈X1,X2〉
′
and can only take on values in the unit interval i.e.

X1 ∈ [0, 1] andX2 ∈ [0, 1]. Let Y be the binary dependent variable such thatK = 2

and Y ∈ {−1, 1}. Then X1 is first chosen as the variable to be split, j = 1 and is

thereafter split at point t1, s = t1. Next, the regionX1 ≤ t1 is split atX2 = t2 and the

region X1 > t1 split at X1 = t3. Finally the region X1 > t3 is split at X2 = t4. The

result of this process is a partition into five regions or terminal nodes R1, R2, R3, R4

and R5 shown in Figure 3.1 with each of the regions defining a class label either 1 or

2 .

The same tree growing process can be depicted using a binary tree or den-

dogram, see Figure 3.2. The full data-set sits on the top of the tree. Observations

satisfying the condition at each split are assigned to the left branch, and conversely

observations failing to satisfy the condition are assigned to the right branch. The ter-

minal nodes correspond to the regions R1, R2, R3, R4 and R5. A key advantage of
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X1

X2

0 1

1

t1

t2

t3

t4

R1

R2

R3

R4

R5

Figure 3.1: Graphical representation of how the CART methodology works using
Example 1 as shown in Hastie et al.[4] (pg 306).
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R1 R2 R3

R4 R5

Full data-set

Figure 3.2: Figure showing the graphical respresentation of the CART method using
a binary tree generated from Example 1 as also shown in Hastie et al.[4] (pg 306).

this recursive binary tree representation is interpretability as the entire domain space

can be described using a single tree. Additionally as the number of input variables

exceed two dimensions, representations as in Figure 3.1 become difficult whilst rep-

resentations as in Figure 3.2 can quite easily accommodate higher dimension domain

spaces.

The next questions which arises is how does one go about partitioning the do-

main to find the regions or nodes, in other words we need to find split variable j and

split-point s. In addition we also need to determine what classification needs to be

made within each region or node i.e. in our example this would be equivalent to de-

ciding whether to classify the response variable Y in each region as 1 or −1. We
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shall use the CART method as described by Hastie et al.[4] (p 305-317) for regres-

sion trees but adapted for classification trees. We start by defining the first pair of

half-planes

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s}.

We then need to solve the minimization problem

min
j,s
[N1Q1(T ) +N2Q2(T )] (3.2)

where Qm(T ) is a measure of node impurity in node m of tree T with |T |

terminal nodes (at first |T | = 2) i.e. in our case we have chosen to use the miss-

classification rate as an impurity measure in each node,

Qm(T ) =
1

Nm

∑

xi∈Rm(j,s)

I(yi �= k(m)) (3.3)

and where Nm (also known as node size) is the number of observations falling

in region Rm and k(m) = argmaxk p̂mk is the majority or modal class in node m

where

p̂mk =
1

Nm

∑

xi∈Rm(j,s)

I(yi = k) (3.4)
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is the proportion of class k observations in node m. Note combining equation

(3.3) and equation (3.4) Qm can be expressed as

Qm(T ) =
1

Nm

∑

xi∈Rm(j,s)

I(yi �= k(m))

=
1

Nm

∑

xi∈Rm(j,s)

[1− I(yi = k(m))]

=
1

Nm


Nm −

∑

xi∈Rm(j,s)

I(yi = k(m))




= 1−
1

Nm

∑

xi∈Rm(j,s)

I(yi = k(m))

= 1− p̂mk(m) (3.5)

Therefore the inner term of expression (3.2) has the effect of finding split variable j

and split point swhich creates the regions with the smallest number of miss-classified

observations based on the modal class or, more generally, the smallest impurity mea-

sure. Once j and s are found the process is then repeat on the resulting regions R1

and R2.

Now that we known how to grow the tree we need to be able to determine

when to stop growing it. This is usually done using some predefined stopping rule

such as choosing not to split a node if it contains less than some predefined number

of observations since continuing to build the full tree i.e. |T | = N can become

computationally infeasible as well as potentially resulting in over-fitting. Conversely

if we stop too early and thereby build small trees i.e. trees with a small number of

terminal nodes |T | , we run the risk of losing prediction accuracy. Therefore one
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needs to find an optimum tree size which exists somewhere in-between the full tree

and the tree stump.

One such method to find an optimum tree size is known as cost-complexity

pruning as suggested by the authors in Hastie et al.[4] (p 295-366). In summary the

method works by growing a tree to size T0 stopping the process only when some

predefined minimum node size (say Nm = 5) is reached. This large tree T0 is then

pruned by collapsing any number of its non-terminal nodes resulting in a sub-tree

Tα ⊆ T0 where α ≥ 0 is a tuning parameter. We define the cost complexity criterion

as

Cα(T ) =

|T |∑

m=1

NmQm(T ) + α|T | (3.6)

with the idea being to find a sub-tree Tα for some α which minimizes equation

(3.6). The effect of the tuning parameter is that for large values of |T |, α needs to be

small in order to minimize equation (3.6) and therefore smaller pruned trees are pro-

duced and similarly for small values of α, |T | can be larger resulting in larger pruned

trees. Tα is then found by collapsing the internal (non-terminal) nodes which produce

the smallest per-node increase in
|T |∑
m=1

NmQm(T ) =
|T |∑
m=1

[∑
xi∈Rm(j,s)

I(yi �= k(m))
]

which in our case is the total number of miss-classified observations across all the

terminal nodes. Intuitively this makes sense as we are successively collapsing the

nodes which results in the smallest increase in miss-classification and hence preserv-

ing accuracy to a degree. We continue this process until we reach the single-node

(root) tree and in doing so generate a finite series of trees with diminishing number
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of nodes. Then according to Hastie et al.[4] (p 295-366) this series of trees must con-

tain Tα. To find an estimate for α we select the value α̂ which minimizes the x-fold

cross-validated miss-classification rate to produce the final tree Tα̂.

We now turn to understanding the effectiveness of using miss-classification as

a node impurity measureQm as defined in equation (3.3). As we grow the tree we can

potentially end up with a large tree particularly if we have multiple inputs variables

and a large number of observations. In this case numerical optimization becomes an

appropriate choice as apposed to the manual and time consuming process of scanning

through the input variables and its values. It is within this context that the authors in

Hastie et al.[4] (p 295-366) describe another impurity measures forQm known as the

Gini index and defined as

Qm(T ) =
K∑

k=1

p̂mk(1− p̂mk). (3.7)

Comparing the two impurity measures when faced with a two class problem where

K = 2 and p is the proportion in the second class, equation (3.5) then becomes

1−max(p, 1− p) whilst equation (3.7) becomes (1− p)p+ p(1− p) = 2p(1− p).

Plotting both these expressions as a function of p we get Figure 3.3 where we can

see that immediately the Miss-classification index can become problematic as it is

not continuously differentiable and therefore limits numerical optimization. Addi-

tionally from Figure 3.3 we note the superior performance of the Gini index from the

parabolic shape of its graph which shows that it is more sensitive to changes in p i.e.

the Gini index drops faster on either side of p = 0.5 than the miss-classification index
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Figure 3.3: As per Hastie et al.[4] (p 309) showing node impurity measures for two–
class classification being Miss-classification and Gini Index, as a function of the pro-
portion p in the second class.

and is therefore potentially a better measurement of node impurity. The difference in

effectiveness can also be demonstrated by expanding on the example as described in

Hastie et al.[4] (p 295-366).

Example 2 Assume we are faced with a two-class problem (denoted class (A,B))

and a learning set of data which comprises 400 observations in each class (denoted

as (400, 400)). Suppose we then construct a tree using the method described above

which results in the first split creating a left child node of (300, 100) and a right child

node of (100, 300). Therefore based on the method above the left child node classifies

observations falling in this region to class A (based on the modal class i.e. 300
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observations of class A verses 100 observations of class B) and similarly the right

child node classifies observations to class B. Therefore the total miss-classification

rate for this split is (100 + 100)/(400 + 400) = 200/800 = 0.25. Next suppose

we repeat the tree growing process on the full set of learning data which results in

a left child node of (200, 400) and a right child node of (200, 0) then this split also

creates a miss-classification rate (200+0)/(400+400) = 200/800 = 0.25 however

is intuitively preferable over the previous split as the right child node is now a pure

node. If we calculate the Gini index for both these splits remembering that p is the

proportion in the second class (in our case class B) we get 100/400 ∗ (1− 100/400)

+ 300/400 ∗ (1− 300/400) = 0.375 for the first split and 400/600 ∗ (1− 400/600)

+ 0/200 ∗ (1− 0/200) = 0.222 for the second split and therefore if we where to use

the Gini index as the chosen impurity measure we would have certainly produced the

tree with the second split with the better structure.

We can therefore produce a simple tree growing rule using both impurity mea-

sures. When growing a tree one should use the Gini index as the impurity measure or

more specifically use equation (3.7) in expression (3.2) and when pruning the tree us-

ing cost-complexity one should use miss-classification error or more specifically use

equation (3.3) in equation (3.6). The choice of the miss-classification index for prun-

ing is because it is an easy and quick measure to calculate however the Gini index

could just as equally be used without any loss in accuracy.
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3.3 Simulated binary classification example

We shall now generate the dataset that was used in Example 1 but with specific clas-

sification values {−1, 1} for each region such that R1 and R3 classify the response

variable as 1 and similarly R2, R4 and R5 make a −1 classification. Following the

creation of this dataset we will then build the classification tree using the process de-

scribed in Section 3.2 above and subsequently use cost-complexity pruning to prune

the tree. As a note we have elected to stop the tree growing procedure for a particu-

lar node when that node contains at most 5 observations. We shall use 10-fold cross

validation to examine the error. The code shown in Appendix A.1, and more gen-

erally for all examples used in this dissertation, can be run on the open source and

free statistical computer package R (http://cran.r-project.org/) by simply copying

and pasting the text directly into the programme.

As we can see from Figure 3.5 the full tree does not resemble the structure as

shown in Figure 3.2 and is too cumbersome to be effective practically. Figure 3.4

is generated using the printcp() command in R as detailed in Appendix A.1. The

"root node error" in this case is the number of 1′s relative to the full data set. The

column labeled "CP" is known as the complexity parameter and is analogous to α

in equation (3.6) however is scaled to the unit interval such that α = 1 generates

a tree with no splits and conversely for small values of α large trees are generated

evidenced by the 10th row in Figure 3.4 where nsplit = 61. This is also the reason

why we specified in the R code that cp=0 as the tree growing process would have
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Figure 3.4: Screenshot of the R output using the printcp() command of the full tree
generated using Example 1 applied to a binary classification problem

stopped once the scaled complexity parameter exceeded the given input number. As

the name suggests the column labelled "nsplit" is the number of split points in the

tree from which the number of terminal nodes can easily be calculated as nsplit+1.

Therefore the full tree shown in Figure 3.5 has 62 terminal nodes i.e. |T0| = 62. The

next two columns in Figure 3.4 named "rel error" and "xerror" are scaled (on the unit

interval) miss-classification rates and 10-fold cross validated miss-classification rates

respectively with the last column being the standard deviation of the cross-validated

miss-classification rates. It is straightforward to calculate the actual (un-scaled) miss-

classification rates by simply multiplying the "rel error" and "xerror" columns by the

"root node error" as these measurements have been scaled to the zero split tree.
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Figure 3.5: Dendogram showing the full tree T0 based on the Example 1 applied to a
binary classification problem
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Figure 3.6: Graph showing the miss-classification rates for the simulated data in
Example 1 applied to a binary classification problem as a function of tree size

Figure 3.6 shows the un-scaled miss-classification rates for the training or ac-

tual tree as well as using 10-fold cross validation. What is interesting to note is that

the actual or training miss-classification rates begin to fall as the tree size increases

and in fact drops below the 30% miss-classification level which if we recall was the

pre-determined quantity of introduced error. When analyzing 10-fold cross-validated

miss-classification rate Figure 3.6 shows that for tree sizes where |T | > 4 the cross-

validated error begins to increase which can also be verified by the increase in Figure

3.4 under the "xerror" column. The combination of these two findings indicate that

for trees larger than |T | > 4 the problem of over-fitting occurs. More importantly

what this information tells us is at which point the tree should be pruned which in this
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Figure 3.7: R output using the printcp() command showing the pruned tree on simu-
lated data as per Example 1 applied to a binary classification problem

case is where nsplit = 3. The pruning can be done in R by appending the following

code below to Appendix A.1.

#Prune the full tree0 to the selected cp value where xerror is minimized

treealpha<-prune(tree0,cp=0.0045147)

#Plot and print the pruned tree

printcp(treealpha)

plot(treealpha,compress=TRUE,margin=0.2)

text(treealpha,all=TRUE,use.n=TRUE)

The R code to prune the tree requires the specific cp value at which to prune and

hence the input of 0.0045147 in the prune() command. As we can see from Figure 3.7

we have now produced the pruned tree with nsplit = 3 (4 terminal nodes). We also

note that the actual training miss-classification error (rel error) is 0.433 ∗ 0.65688 =

0.28443 and the 10-fold cross validated miss-classification error (xerror) is 0.433 ∗
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Figure 3.8: Dendogram of the pruned tree generated as per Example 1 applied to a
binary classification problem
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0.71106 = 0.30789 are both close to the original constructed error of 0.3 providing

us with a degree of comfort that the tree is right-sized. Analyzing the tree in Figure

3.8 we first notice that structurally it resembles Figure 3.2. Extending the analysis we

notice that the estimated split points are very near to those of the actual constructed

split points of 0.4 and 0.6. Lastly and most importantly the classifications made

within each region as shown in Figure 3.8 are compared to the original construct of

the simulated binary data:

• R1:{Y = −1 : X1 ≥ 0.5935 ≈ 0.6} - this is comparable to R5 and R4 which

both make a −1 classification

• R2:{Y = −1 : X1 < 0.4108 ≈ 0.4 and X2 ≥ 0.4007 ≈ 0.4} - this is

comparable to R2 which makes a −1 classification

• R3:{Y = 1 : 0.4 ≈ 0.4108 ≤ X1 < 0.5935 ≈ 0.6 and X2 ≥ 0.4007 ≈ 0.4} -

this is comparable to R3 which makes 1 classification

• R4:{Y = 1 : X1 < 0.5935 ≈ 0.6 and X2 < 0.4007 ≈ 0.4} - this is

comparable to R1 which makes 1 classification

Therefore the regions generated by the pruned tree in Figure 3.8 map exactly

back to the regions constructed in the simulated data set and in fact has gone a step

further and simplified the original constructed tree by reducing the number of termi-

nal nodes from 5 to 4 without any loss in accuracy.
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3.4 Real binary classification example

We now apply the CART method to an actual real-life data set called SPAM as used

in Hastie et al.[4] (p 295-366) which can be found at www-stat.stanford.edu. The

data set comprises of 4601 observations or e-mails, which was part of a study to de-

velop an automated machine learning method to screen for "spam" or "junk" e-mails.

The dependent variable is binary with "spam" being coded as a 1 and 0 representing

actual e-mails. The data was compiled by Hewlett-Packard laboratories and used 57

predictor variables to in a bid to develop a predictive model which where made up

of:

• 48 predictor variables each measuring the percentage of times a particular

word occurred in an e-mail such as business, address, internet, free etc.

• 6 predictor variables each measuring the percentage of times a particular

non-alphanumeric character occurred in an e-mail i.e. ch; , ch( , ch[ , ch! ,

ch$ and ch#

• 1 predictor variable called CAPAVE measuring the average length of

uninterrupted sequences of capital letters in an e-mail

• 1 predictor variable called CAPMAX measuring the length of the longest

uninterrupted sequence of capital letters in an e-mail
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• 1 predictor variable called CAPTOT measuring the sum of the length of all

uninterrupted sequences of capital letters in an e-mail

The full tree T0 can then be created by running the R code as given in Appendix

A.2 resulting in the output shown in Figure.3.9. As before the tree growing procedure

for a particular node is halted when a minimum node size of 5 is reached.

Analyzing Figure 3.9 we notice on of the salient benefits of the CART method

in that it performs natural internal feature selection which even in the full tree T0

reduced the number of predictor variables from 57 to 28. The table output in Figure

3.9 and the miss-classification graph in Figure 3.10 shows that the optimum tree size

is reached where |T | = 21 as beyond this the cross-validated error rate no longer

improves remaining at more or less this level. The results shown in Figure 3.10 also

closely resembles the graph as shown in Figure 9.4 in Hastie et al.[4] (p 314) which

showed the 10-fold cross validated error rate flattening out at between 8% and 9%

hence the results shown here are to a degree consistent. However where Hastie et

al.[4] (p 295-366) elected to prune the tree at |T | = 17 we will prune it at |T | =

21,as per our reason above, and therefore we will use the prune() command where

nsplit = 20 and cp = 0.0027579. The pruned tree can be created and displayed

by appending the R code below to Appendix A.2 which results in a 10-fold cross

validated error rate of 0.39404 ∗ 0.22173 = 8.737% which is a fairly good result.

#Prune the full tree0 to the selected cp value where xerror is minimized

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



97

Figure 3.9: R output showing the full tree T0 trained on the SPAM data using 10-fold
cross-validation
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Figure 3.10: Graph showing the actual or training miss-classification rate and 10-fold
cross-validation error rate for the SPAM dataset as a function of the tree size |T |
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Figure 3.11: R output showing the prunned tree Tα

#in this case where cp=0.0027579

treealpha<-prune(tree0,cp=0.0027579)

#Plot and print the pruned tree

printcp(treealpha)

plot(treealpha,uniform=TRUE,branch=0,margin=0.015)

text(treealpha,all=TRUE,use.n=TRUE)

From Figure 3.12 we notice the similarity in shape to the dendogram in Fig-

ure 9.5 shown in Hastie et al.[4] (p 315). Analyzing the tree in Figure 3.12 from the
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Figure 3.12: Dendogram of the prunned tree trained on the SPAM data set
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top-down we notice both trees use the dollar character char_freq_dollar as the first

split variable with the same corresponding split point and likewise uses the variables

REMOVE and hp with approximately the same split points in the next level down.

The trend of similarities continues as one moves down the tree dendogram and there-

fore we are relatively comfortable that we have created the optimum classification

tree for the SPAM data. A possible reason for the slight deviance between the two

trees could be attributed to different impurity measures and/or tree optimization pro-

cedures being employed however this would require further analysis which is beyond

the scope of this dissertation.

3.5 Simulated multi-classification example

The extension of CART to miss-classification problems i.e. whenK > 2 is straight-

forward as we have set out in Section 3.2. However one does need to be cognizant that

certain draw-backs could arise such as for large number of classes K ≫ the com-

putational time can increase by a factor of K where numerical optimization is not

possible. In addition the requirement for a larger training data sets becomes increas-

ingly more important as there are now N/K possible observations per class and this

decreases asK increases. A simulated example using CART on a multi-classification

problem will now be shown.

We shall once again make use of the earlier simulated dataset as in Section 3.3

however instead of coding the regions R as either 1 or −1 we shall use the same

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



102

region coding as given in Figure 9.2 of Hastie et al.[4] (p 306) or more specifically

set K = 5 with k(1) = −5, k(2) = −7, k(3) = 0, k(4) = 2, k(5) = 4. A visual

representation of the dataset structure is shown below. At this point we note that

these classes are numeric whereas the primary purpose of classification trees is to

deal with non-numeric response variables however we have chosen to use numeric

values for graphical representation and could have just as easily assigned each region

with alphanumeric or non-alphanumeric characters.
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Graph showing the multi-classification structure of the simulated dataset as per

Example 1 and Hastie et al.[4] (pg 306).

The R code shown in Appendix A.3 generates the simulated multi-classification

dataset with random error added to 30% of the data. We also generate the full tree
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Figure 3.13: R output showing the the full tree T0 trained on simulated multi-classi-
fication data as per Example 1

T0 based on the minimum node size rule of 5 and assess at which point based on the

10-fold cross-validated error rate the tree would need to be pruned.

From Figure 3.13 and Figure 3.14 we notice that the relative or scaled 10-fold

cross validated error is minimized at nsplit = 4 and therefore |T | = 5 which is the

number of terminal nodes by design. Note the plotcp() command in R is used to

generate Figure 3.14. The actual 10-fold cross validated error at nsplit = 4 can be
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Figure 3.14: Graph showing releative or scaled 10-fold cross validated error as a
function of the tree size |T | and complexity parameter α of the simulated multi-clas-
sification problem based on Example 1
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obtained by multiplying xerror with the "root node error", which in this case would

be the aggregate of all the other class observations excluding observations belonging

to the modal class of the entire data set. We therefore calculate the 10-fold cross

validated error rate 0.41209 ∗ 0.728 = 0.3 which as we know is the simulated pre-

determined miss-classification rate. We then prune the tree at the appropriate cp value

and plot the resultant dendogram by appending the R code below to Appendix A.3.

#Prune the full tree0 to the selected cp value where xerror is minimized

treealpha<-prune(tree0,cp=0.00343407)

#Plot the pruned tree

plot(treealpha,compress=TRUE,margin=0.2)

text(treealpha,all=TRUE,use.n=TRUE)

From Figure 3.15 we notice the terminal nodes provide classifications for all

five predefined classes. As a note the number of observations per class in Figure 3.15

are given in increasing sequential order i.e. −7/ − 5/0/2/4. Analyzing the regions

further we get:

• R1:{Y = −5 : X1 < 0.4 and X2 < 0.4031 ≈ 0.4}

• R2:{Y = −7 : X1 < 0.4 and X2 ≥ 0.4031 ≈ 0.4}

• R3:{Y = 0 : X1 ≥ 0.4 and X1 < 0.6002 ≈ 0.6}

• R4:{Y = 2 : X1 > 0.6 andX2 < 0.8002 ≈ 0.8}
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Figure 3.15: Dendogram of the prunned tree based on simulated multi-classification
data as per Example 1
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• R5:{Y = 4 : X1 < 0.4 andX2 ≥ 0.8002 ≈ 0.8}

All the regions shown above are almost an exact match to the original structure

of the simulated data aside from the boundary classifications and therefore we can

conclude that CART, in addition to solving binary problems, also works well when

faced with multi-classification problems.

3.6 Real multi-classification example

We now turn to a real-life example of a multi-classification problem similar to the

OCR text recognition problem mentioned earlier. The data set chosen is taken from

the US Postal services as in Hastie et al. [4] (p 295-366) which consist of scanned

images of handwritten ZIP codes with each data point or observation representing

a single number. Each scanned digit is a represented using a 16x16 bit greyscale

image. The idea being to be able to develop an automated model which can quickly

and accurately classify each scanned handwritten digit as a number (0,1,2...,9) and

therefore negate the need for manual sorting. The training dataset comprises of 7291

observations or scanned digits with 256 predictor variables representing the 16x16

bit image and coded on a scale from -1 to 1 with -1 values representing "white space"

pixels and 1 representing "dark space" or "marked" pixels. The full tree T0 is built

and pruned to find Tα by running the R code in Appendix A.4.
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Figure 3.16: CP plot of T0 trained on the digits data
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Figure 3.17: R output of the full tree T0 trained on the digits data

Based on Figure 3.16, Figure 3.17 and Figure 3.18 we see that the 10-fold

relative cross validated error flattens out around |T | = 79 at an error rate of 0.83624∗

0.15598 = 13.044%. We therefore elect to prune the tree at this point calling the R

code below and appending it to Appendix A.4.

#Prune the full tree0 to the selected cp value where xerror is minimized or in

this case where the error rate flattens i.e. where cp=0.00082008

treealpha<-prune(tree0,cp=0.00082008)

printcp(treealpha)

plot(treealpha,uniform=TRUE)

text(treealpha,splits=FALSE,all=FALSE)

From a cursory analysis of Figure 3.19 we note that all the digits (0,1,2,...,9)

have a classification mapping and therefore combined with the low cross-validated
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Figure 3.18: Second part of the R output of the full tree T0 trained on the digits data
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Figure 3.19: Dendogram showing the prunned tree Tα trained on the digits data
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error rate of 13.04% provides us with a degree of comfort that this model may be

appropriate. The creators of the digits data also provided a test set which comprised

of a further 2007 observations or digits. The R code below, which should be appended

in sequential order to the earlier code, calculates the test error which produced a

slightly higher error rate of 17.04% verses the 10-fold cross validated error rate based

on the training set of 13.04%.

#calculate the test error

errordata<-data.frame(Actual= digitstestdata[,1],Predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

testerror=sum(temp)/nrow(errordata)

print(testerror)

#output shown as

[1] 0.1704036

What we have shown in this chapter is that although classification trees can

produce relatively acceptable results from an accuracy point of view they tend to suf-

fer from the problem of over-fitting for large trees. In the next chapter we will use

the same four datasets as used in this chapter i.e. simulated binary classification, real

binary classification, simulated multi-classification and real multi-classification, to

determine if boosting using Adaboost produces better results than the single classifi-

cation trees constructed here.
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Chapter 4

Application of Adaboost

In this chapter we will focus our attention on the application of Adaboost using

classification trees as a base predictor. As in Chapter 3 the first set of applications

will be in the simulated case exploring both a binary and multi-classification problem.

The next set of applications is where the datasets are real and once again where we

are faced with a binary and multi-classification problem. We will also test to see if

boosting using stumps produces results comparable or better than large trees and what

happens when these large trees themselves are boosted. The metric of interest that

we will be analyzing will be the test and training error rates of the final predictions as

a function of boosting iterations to determine to what extent boosting using different

base classifiers improves the previous results as seen in Chapter 3.

4.1 Illustration of the effectiveness of Adaboost

The simulated example given in Hastie et al. [4] (p 339-340) will be used to demon-

strate the effectiveness of Adaboost. The simulated data is structured such that the

input variables X1, X2, ..., X10 are generated from a standard independent Gaussian

N(0, 1) distribution and the output variable Y is defined as

Y =

{
1 if

∑10
j=1X

2
j > χ

2
10(0.5)

−1 otherwise
(4.1)
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where χ210(0.5) is the median of a chi-squared random variable with 10 de-

grees of freedom and is selected because of how the independent variable are pooled

together i.e. sum of squares of 10 standard Gaussian variables. The choice of the me-

dian in the construction of this simulated dataset has the effect that any single learner

trained on this data will be at most regarded as a weak learner possessing an accu-

racy rate only marginally better than random guessing. Therefore for a large enough

number of simulated observations, due to the fact that we have 10 predictor variables,

this dataset should be an ideal candidate for boosting. Based on structure as given

in equation (4.1) we shall generate a training data set consisting of 2000 observa-

tions and a test data set consisting of 10000 observations. We will then use the CART

method to grow the full tree T0 and compare the test error against the test error pro-

duced using boosted stumps. The R code shown in Appendix B.1 uses a relatively

new Adaboost package in R called Adawhich we customize to run theAdaboost.M1

algorithm.

From Figure 4.1 we see that the full tree T0 has 233 terminal nodes with a

10-fold cross validated error rate of 0.56557 ∗ 0.4995 = 28.25%. The R code in

Appendix B.1 outputs the test error rate of 26% for the full tree T0 and 46% for the

stump. Both these test error rates are shown as the solid lines in Figure 4.2. We

notice from Figure 4.2 that after around the 50th boosting iteration the Adaboost.M1

method begins to outperform the full tree T0 and at M = 400 produces a test error

of 1 − 0.882 = 11.8% as shown in Figure 4.3 by calling the summary() command
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Figure 4.1: Output showing the full tree T0 grown using the simulated gaussian data
as per equation 4.1
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Figure 4.2: Graph showing the training error and test error of tree stumps boosted
using Adaboost on the simulated data as per equation 4.1. The lines entitled single
stump and 232 node tree represent the test errors
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Figure 4.3: R output showing the error rates for the boosted stumps on simulated data
as per Equation 4.1 atM = 400

in R. Hence Adaboost using stumps has provided a four times improvement over the

single tree stump and a two times improvement when compared to the full tree T0. It

is reaffirming to note that the results shown here correlate to the findings as given in

Hastie et al. [4] (p 339-340).

4.2 Simulated boosted binary classification example

We now analyze the first example given in Section 3.3 whereby we simulated a two

variable input space on the unit interval with a binary response as given in Hastie et

al. [4] (p 305-317). In our analysis we will compare the effectiveness of Adaboost

using boosted stumps against the optimized full tree or pruned tree shown in Section

3.3. The R code used to perform the comparison is shown in Appendix B.2. Note the

simulated data is re-generated to ensure consistency in comparing the results.
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As a note the full tree T0 is pruned based on the 10-fold cross validated out-

put of printcp() under the column xerror shown in Figure 4.4 After the full tree is

pruned at CP = 0.00434783 the resultant pruned tree is then run on the 10000 sim-

ulated observations of test data which produces a test error of 30.71% (the variable

fulltreetesterror outputs this error rate in R as shown in Appendix B.2). The same

process is run for the tree stumpwith a test error of 39.4% (the variable stumptreetester-

ror outputs this error rate in R as shown in Appendix B.2). It is at this point we note

that boosting the tree stump is unlikely to beat the performance of the pruned tree

with an error rate already close to the introduced population error of 30% however

what we are interested in is to what extent boosting will enhance the accuracy of the

single stump tree. We can see from Figure 4.5 that after less than 10 boosting itera-

tions the test error rate drops from the single stump error rate of 39.4% to less than

34% however remains above the error rate of the pruned tree (note this is not shown

in Figure 4.5 as it falls below the x-axis). We also notice that the test error rate jumps

upwards marginally between the 10th and 80th boosting iterations however stabilizes

for iterations greater thanm = 80which reaffirms to a degree the anomaly that boost-

ing when run for numerous rounds does not suffer from the problem of over-fitting

as we have seen with CART.

Following the improvements seen using boosted stumps it would be of interest

to test what performance enhancement could result if we elected to boost the pruned

tree Tα. This analysis can quite easily be performed by appending the R code below
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Figure 4.4: R output of the full tree grown on simulated binary data as given in
Section 3.3
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Figure 4.5: Test and training error of the boosted stump generated on simulated bi-
nary data as per Section 3.3
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to Appendix B.2. Note the cp value selected for the pruned tree is based on Figure

4.4 .

#calculate the boosted alpha tree

stoprule=rpart.control(cp=0.005)

adaboost<-ada(Y~.,data=traindata,iter=M,loss="e",type="discrete",

control=stoprule,bag.frac=1,nu=1, test.x=testdata[,-1],test.y=testdata[,1])

print(adaboost)

plot(adaboost,FALSE,TRUE)

Figure 4.6 shows that after the first few boosting iterations the training error

of the boosted pruned tree drops below the true population error rate. This can

be explained by the fundamental principal of boosting in that after each successive

boosting iterations miss-classified observations are given more training weight in

subsequent classification models and therefore the boosted model additively caters

for those miss-classified observations. When looking at the test error in Figure 4.6

we notice that after the 50th boosting iteration the test error flattens out at 40% which

is above the test error rate we obtained earlier for boosted stumps. A possible expla-

nation for the superior performance of the boosted stumps over the boosted pruned

trees is that the simple two node tree structure of each term in the boosted stump

model is more appropriate for additive modeling when using this dataset.
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Figure 4.6: Error rates of the boosted pruned tree on simulated binary classification
data as per Section 3.3
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4.3 Real boosted binary classification example

We now turn to the real life SPAM data to assess if applying Adaboost will result

in performance enhancements over the pruned classification tree Tα as per Section

3.4 . Unlike before where we used 10-fold cross validation as a proxy for test error

we shall now split the 4601 observations into training and test data into the ratio

90%/10% respectively to make the comparison more meaningful. The R code in

Appendix B.3 can be used to generate the comparison.

From Figure 4.7 we notice a marked improvement in accuracy when using Ad-

aboost with stumps on the SPAM data. The test error rate of the pruned tree here

was 7% (in the earlier example as per Section 3.4 we had a 10-fold cross validated

error rate of between 8% − 9%) however after boosting using stumps the test error

rate reduces to around 5%which represents almost a 50% improvement. What is also

interesting to note from Figure 4.7 is that both the training error and test error con-

tinues to drop after the 300th boosting iterations which indicates we could boost to

some arbitrary accuracy without suffering from over-fitting. Analyzing the perfor-

mance of the boosted pruned tree Tα, which can be performed by appending the R

code below to the R code given in Appendix B.3, Figure 4.8 shows that the boosted

pruned tree outperforms the boosted stumps. The boosted pruned tree only required

roughly 50 boosting rounds before the test error rate stabilized at less than 3% which

represented almost a 50% improvement over the boosted stump and a 75% improve-

ment over the single pruned tree Tα. Figure 4.9 shows Figure 4.8 however zoomed in
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Figure 4.7: Error rates of boosted tree stump on the SPAM data as per Secion 3.4
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on the x-axis for boosting iterations ranging from 1-50. What this shows is that the

test error continues to fall after the 10th boosting iterations where the training error

is near or at zero which, as noted in Chapter 2, is a one of the positive anomalies of

Adaboost.

#calculate the boosted alpha tree

stoprule=rpart.control(cp=0.003)

adaboost<-ada(Y~.,data=traindata,iter=M,loss="e",type="discrete",

control=stoprule,bag.frac=1,nu=1, test.x=testdata[,-1],test.y=testdata[,1])

print(adaboost)

plot(adaboost,FALSE,TRUE)

4.4 Simulated boosted multi-classification example

Adaboost.M1 has a distinct drawback within the multi-classification setting as the

method will only work for weak learners with an accuracy rate > 1
2
. In addition this

criteria becomes increasingly more difficult to hold true forK > 2 particularly when

the base learner is a tree stump and therefore two solutions become available:

1. The response variable is re-coded to binary and therefore the Adaboost.M1

algorithm is run using stumps K times for each binary class 0-1 outputting K

responses for each observation. The predicted class is then selected based on the

highest class value as calculated as in equation (2.5)
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Figure 4.8: Error rates of the boosted prunned tree based on SPAM data
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Figure 4.9: Shows Figure 4.8 zoomed in to boosting iterations from 1-50
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2. The pruned tree is used as a base learner and boosted using Adaboost.M1

The R code in Appendix B.4 compares the accuracy of these two approaches

using the simulated multi-classification data as per Section 3.5. The "ada" package

for R we have been using up until now is only capable of handling binary responses

and therefore its application to the first point above is appropriate. However when

using the second approach we need to use a package capable of handling multi-class

responses and therefore turn to the package "adabag". Both of these packages can

be found in the online R library including related help files.

As like before in order to ensure consistency we regenerate the simulated multi-

classification dataset and pruned tree using the code in Appendix B.4.1. The pruned

tree built as per Section 3.5 results in a test error rate of 26% which is lower than the

predefined population error rate of 30%. Note, this is quite plausible as the test sam-

ple could have a lesser proportion of error observations due to the random sampling.

The R code given in Appendix B.4.2, which must be run after the code in Appendix

B.4.1 is called, re-codes the simulated data into binary responses and runs boosted

stumps on the resultant "binarized" dataset as per the method in point 1 above. As

a note the nested loop in Appendix B.4.2 is computationally intensive and therefore

may take a few minutes to compute even when run on a high powered PC.

From Figure 4.10 we see that using boosted stumps on the response variables

in binary format produces somewhat satisfactory results as the test error of 35% at
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Figure 4.10: Graph showing the boosted training and test error rates using stumps
based on simulated multi-classification data as per Section 3.5
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the final boosting iteration M = 300 is near the actual population error of 30%

and hence is also comparable in performance to the pruned multi-classification tree

shown in Section 3.5. We also notice that the test error is lower than the training error

most likely due to the larger size of the training set relative to test set and the fact that

cross-validation is not used here and therefore the test set could very well contain a

lower error rate than the training set. Interestingly on further analysis of Figure 4.10

we note that the stumps generated from about iterations 1 to 25 produce error rates

above 50% indicating that one could have applied random guessing initially, for at

least the first 25 boosting rounds, and thereafter boosted the stumps. Next we shall

use the second approach and boost the pruned tree to ascertain if we can produce

better results than the boosted stumps. The R code shown in Appendix B.4.3 must

be run after both sets of code in Appendix B.4.1 and Appendix B.4.2 have been

compiled.

Figure 4.11 shows the error rate as a function of the boosting iterations when

using the pruned tree as the base classifier. Earlier we noted that the test error rate

for the pruned tree was 26%, which happened to be lower than the pre-specified pop-

ulation error rate of 30%. As a result, boosting the pruned tree classifier resulted in

those miss-classified training observations in the first iteration being given additional

weighting relative to the correctly classified observations in subsequent boosting it-

erations, which adversely affected the performance when the boosted models at each

iteration where run on the test data. This problem is analogous to over-fitting and
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Figure 4.11: Error rates of the pruned tree boosted using simulated multi-classifica-
tion data as per Section 3.5
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therefore the result obtained here reaffirms the "somewhat" in the earlier statement

that "boosting was somewhat immune to over-fitting" and hence we have discovered

a case where over-fitting within the context of boosting has indeed resulted in loss

of accuracy. However we do notice a downward trend in the test error from around

the 100th boosting iteration indicating some recovery in accuracy as the component

models which pushed up the test error are increasingly outnumbered by component

models which push down the test error as more classifiers are added to the boosted

model. The final boosted test error rate using the pruned tree as a base classifier in

our case is 38% which is relatively close to the test error rate of 35% generated by

the boosted stumps however on careful inspection of Figure 4.11 we notice that we

do attain a test error of 35% between iterations 250 to 300.

4.5 Real boosted multi-classification example

Turning back to our earlier real multi-classification problem of OCR using US postal

zip codes as described in Section 3.6 we shall again make use of the two approaches

of (1) running boosted stumps on a "binarized" version of the response variable and

(2) boosting the pruned tree. The R-code in Appendix B.5.1 "binarizes" the response

data and produces the boosted stump. As noted earlier the algorithm as coded here

is computationally intensive and will take a significant amount of time to output the

results. Alternatively one can reduce the number of boosting iterations however the

trade-off will be less accurate results.
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The output shown in Appendix B.5.1 is a test error rate of 16.692% which is

lower, albeit marginally, than the test error of the pruned decision tree of 17.04% as

calculated in Section 3.6 and similarly the training error here of 12.207% is lower

than the 10-fold cross-validated training error of the pruned decision tree of 13.04%

also calculated in Section 3.6. It is interesting to note from Figure 4.12 that error

curves of both the training and test data appear to continue to fall after the 100th

boosting round suggesting that if one where to boost beyond 100 rounds superior re-

sults could be obtained. Note the reason we have chosen to boost to 100 rounds is

due to the fact that the algorithm is computationally intensive and boosting upwards

of 200 rounds would take a significant amount of time to compile even on a high

powered PC. Once again we note from Figure 4.12 that stumps generated from about

iterations 1 to 10 produce error rates above 50% indicating that one could have ap-

plied random guessing initially, for at least the first 10 boosting rounds, and thereafter

boosted the stumps.

We shall now conclude our analysis by boosting the pruned tree using the R-

code shown in Appendix B.5.2 to ascertain if we obtain improved results. From

the output shown in Appendix B.5.2 we get a test error rate of 5.923% which is

significantly lower than both the single pruned tree error rate (17.04%) and boosted

stumps error rate (16.692%) both shown in Figure 4.13. We also notice in Figure

4.13 that the training error of the pruned tree drops to zero after a few (<10) boosting

rounds yet the test error continues to fall well after this, demonstrating once again
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Figure 4.12: Graph showing the error rates of the boosted stumps using the Digits
data
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Adaboost’s unexplained performance. Figure 4.13 also shows that boosting after

approximately 40 rounds yield marginal gains and therefore the boosting procedure

should be stopped at this stage to reduce computational time. Although we have

attained significant improvement in prediction accuracy it has come at the expense of

added computational time as well as created a final model which is highly complex

in structure i.e. a hundred 79 node trees.
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Figure 4.13: Graph showing the error rates of the boosted prunned tree using the
Digits data as per Section 3.6
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Chapter 5

Conclusion

5.1 Latest Developments

The section below presents some of the latest developments in the field of boosting.

The first new development explored is the topic of Margin Theory which seeks to

provide an understanding of boosting’s continued performance particularly in light

of situations where the training error has reached zero and the test error continues to

decline. The second topic is the development of combinatorial techniques using both

boosting and bagging. The purpose being to leverage the best each method has to

offer in order to create more accurate and robust predicitive power when compared

to the individual methods. The last development discussed is the topic of Gradi-

ent Boosted Trees which seeks to optimize the boosting algorithim when the base

predictos are trees.

5.1.1 Margin theory

We have seen that Adaboost displays somewhat of a positive phenomenon in that the

test error rate continues to decrease even after the training error reaches zero for an

increasing number of boosting iterations. It was not until the authors Schapire et al.

[14] that a firm reason for this positive anomaly was provided in terms of a defined
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quantity called a margin. The margin was constructed to measure the "confidence

of prediction" i.e. yh(x) where in the binary case y ∈ {−1, 1} with a real valued

base predictor h(x) ∈ [−1, 1] is a number in the range [−1, 1]. It is easy to see that

a positive margin indicates a correct classification and conversely a negative margin

indicates a incorrect classification. In addition a margin closer to 1 indicates a "more

confident" prediction whilst a positive number closer to 0 indicates a "less confident"

prediction. The authors also showed that the margin could be represented graphi-

cally as a cumulative distribution function where the x-axis is the margin value say

θ and the y-axis the cumulative percentage of observations with a margin less than θ

i.e. P [yh(x) ≤ θ]. Figure 5.1 is taken from Schapire et al. [14] with the bottom two

graphs showing the margin distribution of training dataset for the bagging and boost-

ing methods. From Figure 5.1 we see that the training error rate using boosting is

zero at 5 iterations whilst the test error continues to come down after 5. Similarly the

same result is seen using bagging however only after 100 iterations which demon-

strates the superiority of boosting over bagging. The dotted lines in the bottom two

graphs of Figure 5.1 is the margin distribution taken after 5 iterations whilst the solid

line is the margin distribution taken after 1000 iterations. Since we would want as

many observations with a margin close to or equal to 1 we would ideally like to see

the graph of the cumulative distribution to be concentrated towards the extreme right.

As noted earlier for boosting that the training error rate was zero after 5 iterations,

we now notice that the dotted line (which represents the margin distribution after 5
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Figure 5.1: Top two graphs showing the training error rates and test error rates as a
function of bagging and boosting iterations.Bottoms two graphs showing the margin
distributions of the training dataset of the bagging and boosting examples above

iterations) is seen to be relatively spread out over margin values greater than 0. When

looking at the solid line for boosting (which represents the margin distribution after

1000 iterations) we notice that the curve is more concentrated to the right beyond a

margin value of 0.5. It is this improvement, remembering that the margin distribu-

tion is in terms of the training dataset, that translates into improved performance in

the test error rate of boosting.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



140

The authors Schapire et al.[14] provided an explanation and showed that the

Adaboost algorithm has the effect of increasing the weights of those observations

where the margin was small (or negative) and therefore Adaboost sought not only

to boost prediction accuracy but also the margin quantity. Because the margin is a

real valued function even after the training error had reached zero the margin, due

to observations with small positive margins which would have irrespectively been

correctly classified, continued to be "boosted" by the algorithm which therefore im-

proved the test error rate performance. The authors Schapire et al. [14] went on to

formally prove that if most of the margins of the examples where large the chances

of the total margin being less than zero (negative) decreased.

5.1.2 Combining boosting and bagging

A question which arises under the theme of improving prediction accuracy is "what

would result if multiple ensemble methods where combined" and specifically within

this dissertation where we have compared boosting to bagging, what would the re-

sult be if these two methods where merged somehow. The authors Kotsiantis et al.

[15] performed such a combination noting that there are conditions where bagging

outperforms boosting which occurs namely within noisy data settings. The reason

being is that bagging, by way of construction, is primarily a bias reducing method

whilst boosting reduces both bias and variance. The authors Kotsiantis et al. [15]

in effect create a model by running the two methods (boosting using Adaboost and
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bagging) simultaneously with each producing a prediction with an associated "con-

fidence value". The confidence value is calculated by summing up the individual

prediction probabilities i.e. the base predictors are able to produce confidence rated

predictions, of each method. The method with the highest number is then selected.

This method seeks to improve the robustness of both the boosting and bagging al-

gorithm in order to accommodate various settings i.e. noisy data and or noise-less

data.

The authors go onto to compare their newmethod against bagging and a variety

of boosting methods including Adaboost using different base predictors. The results,

compiled over multiple datasets, prove positive, albeit not by a significant margin

improving performance only between 9%-16%. However the combinatorial method

did consistently outperforming competitor ensemble methods by this margin. The

authors also note that although the results where positive, drawbacks of the method

included lengthy computation times (only boosted for 25 iterations and 10 bagging

iterations) and added model complexity.

5.1.3 Gradient boosted trees

Adaboost method using classification trees, as described in this thesis, is underpinned

by minimizing the exponential loss function as in equation (2.27). However there are

multiple other loss function available which serve to be more robust but which un-

fortunately result in increased complexity and computational intensity. Faced with
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this problem the authors in Hastie et al. [4] (p 337-387) proposed an alternate or en-

hanced technique to Adaboost for trees using numerical optimization calledGradient

Boosting. The method, in summary, works by using a more robust differentiable loss

function, for classification trees the authors propose using the multinomial deviance

loss function which has a closed formed solution, which is then partially differen-

tiated at the discrete training data set observations which targets are subsequently

fitted to the independent training data. The effect of differentiating the loss function

is known as Steepest Descent as one aims to minimize the loss function optimally us-

ing its gradient. The process is repeated or boosted as many times as required and

thereby builds an additive model similar to forward stagewise additive modelling de-

scribed earlier. What has been outlined here is merely a high level summary of the

Gradient Boosting method and further reading on this method may be found in Hastie

et al. [4] (p 337-387).

5.2 Concluding Remarks

We have shown that although the field of boosting has been around since the 80’s, Ad-

aboost, boosting’s most popular sub-method, was only developed in the mid 90’s and

is a relatively young and evolving development in the field of statistics. The method

has many practical and appealing applications such as improving prediction accuracy

whilst remaining simple to implement however also exhibits certain drawbacks such

as the blackbox nature of the final model and being computationally intensive.
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We have also shown the origin of Adaboost does not derive from a neat lin-

ear mathematical proof and instead was discovered somewhat by chance through

an extension of a solution to the very popular on-line allocation problem. There-

after for a period of time the statistical community continued to be astounded by the

methods unexplained performance and it was only after a few years that more rigor-

ous and robust mathematical justifications were put forward. Such justifications were

based on using well known statistical frameworks, namely by employing specific loss

functions under forward stagewise additive and additive logistic modelling processes

which resulted in the exact formulation and match to the Adaboost algorithm.

We also described the methodology of classification trees and studied the ap-

plication of this predictive model on simulated and real data. The output in summary

was that although the results where satisfactory for larger trees, stumps generally

where not accurate enough to be of any use in practice and hence presented itself as

an ideal candidate for boosting.

Lastly we analyzed the application of Adaboost on the same real and simu-

lated datasets used for classification trees in order to compare the results. What we

found was that Adaboost using stumps generally performed as well or in some cases

better than a full or optimized pruned tree. A possible explanation for this could

be attributed to the boosted stumps simpler additive model structure and which also

presents itself as topic for further exploration. We also discovered that when apply-

ing Adaboost using a pruned tree the overall results where somewhat mixed. Where
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underperformance was noted, and not by a large margin, this could be corrected by

increasing the number of boosting rounds. Conversely where superior performance

was noted the achievement in prediction accuracy appeared significant. In addition

we also noted situations where the test error continued to fall long after the training

error had reached zero which empirically reaffirmed the positive anomaly of boost-

ing. Therefore although Adaboost as a prediction enhancing technique generally

appeared to perform well it suffered at times under certain situations, however which

underperformance could be corrected by changing the choice of the base predictor

or increasing the number of boosting iterations with the latter coming at the cost of

increased computational time.

By nomeans are we suggesting Adaboost as a "silver bullet" method to increase

prediction accuracy when faced with poor performing individual learning methods.

As with improved accuracy emanating from the application of Adaboost comes in-

creased model complexity and interpretability attributed to the additive nature of the

method as well as increased computational time as we have experienced in the boost-

ing examples. The issue of model complexity and interpretability can be argued that

in the real world their are cases where complexity can be ignored i.e. black-box mod-

els are acceptable, because one is more interested in the prediction output rather than

the underlying methodology or casual relationships. Similarly the issue of prolonged

computational time becomes mute when projecting the trend of ever increasing com-

puter power and therefore we can be confident that over a relatively short period of

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



145

time this issue will fall away completely. In summary the combination of the ar-

guments above can not help but lead one to believe that Adaboost is very likely to

become increasingly more popular in the future as a generic method of overcoming

modeling inaccuracy problems.
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Appendix A

R Code used for Classification Tree

Examples

A.1 R code for the simulated binary classification example

#Load the rpart package

library(rpart)

# Generate the input variables X1 and X2 on the unit interval

Y=0

N=1000

X1=runif(N)

X2=runif(N)

# Select values for t1, t2, t3 and t4

t1=0.4

t2=0.4

t3=0.6

t4=0.8

# Generate the binary dependent variable which takes on values of -1 and 1

for (i in 1:N) {

#define region R1 to be Y=1
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if (X1[i]<=t1 & X2[i]<=t2){Y[i]=1}

#define region R2 to be Y=-1

if (X1[i]<=t1 & X2[i]>t2){Y[i]=-1}

#define region R3 to be Y=1

if (X1[i]<=t3 & X1[i]>t1){Y[i]=1}

#define region R4 to be Y=-1

if (X1[i]>t3 & X2[i]<=t4){Y[i]=-1}

#define region R5 to be Y=-1

if (X1[i]>t3 & X2[i]>t4){Y[i]=-1}

}

# add random error to say 30% of the observations

maxerror=round(0.3*N,0)

index=0

for (count in 1:maxerror){

isin=1

while (isin==1){

isin=0

temp=round(runif(1,min=1,max=N),0)

for (i in 1:length(index)) {

if(index[i]==temp) {isin=1}

}
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}

index[count]=temp

if (Y[index[count]]==1) {Y[index[count]]=-1} else {Y[index[count]]=1}

}

# create the data set/frame

Data <- data.frame(Y=Y,X1=X1,X2=X2)

# Grow the full tree using the Gini index and stop when a minimum node size of 5

is reached

#first set the tree stopping criteria i.e. minimum node size of 5. Also set

cross-validation to 10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0 <-rpart(Y ~X1 + X2,data=Data,method="class",control=stoppingrule,

parms=list(split="gini"))

printcp(tree0)

plot(tree0,compress=TRUE,margin=0.2)

A.2 R code for the real binary classification example

#Load the rpart and XLconnect packages

library(rpart)

library(XLconnect)

#XLconnect allows reading of excel files into R
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# Specify the file location

spamfile <- system.file("demoFiles/spamdata.xlsx", package = "XLConnect")

# Load the workbook

spamwb <- loadWorkbook(spamfile)

# Read worksheet “spam”

spamdata <- readWorksheet(spamwb, sheet = "spam")

# Grow the full tree using the Gini index and stop when a minimum node size

#of 5 is reached

#first set the tree stopping criteria i.e. minimum node size of 5.

#Also set cross-validation to 10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0<-rpart(Y~.,data=spamdata,method="class",control=stoppingrule,

parms=list(split="gini"))

printcp(tree0)

A.3 R code for the simulated multi-classification example

#Load the rpart package

# Generate the input variables X1 and X2 on the unit interval

Y=0

N=1000

X1=runif(N)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



152

X2=runif(N)

# Select values for t1, t2, t3 and t4

t1=0.4

t2=0.4

t3=0.6

t4=0.8

# Generate the binary dependent variable which takes on values of -1 and 1

for (i in 1:N) {

#define region R1 to be Y=-5

if (X1[i]<=t1 & X2[i]<=t2){Y[i]=-5}

#define region R2 to be Y=-7

if (X1[i]<=t1 & X2[i]>t2){Y[i]=-7}

#define region R3 to be Y=0

if (X1[i]<=t3 & X1[i]>t1){Y[i]=0}

#define region R4 to be Y=2

if (X1[i]>t3 & X2[i]<=t4){Y[i]=2}

#define region R5 to be Y=4

if (X1[i]>t3 & X2[i]>t4){Y[i]=4}

}

# add random error to say 30% of the observations

maxerror=round(0.3*N,0)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



153

index=0

for (count in 1:maxerror){

isin=1

while (isin==1){

isin=0

temp=round(runif(1,min=1,max=N),0)

for (i in 1:length(index)) {

if(index[i]==temp) {isin=1}

}

}

index[count]=temp

if (Y[index[count]]==-5) {Y[index[count]]=4} else

if (Y[index[count]]==-7) {Y[index[count]]=2} else

if (Y[index[count]]==0) {Y[index[count]]=-5} else

if (Y[index[count]]==2) {Y[index[count]]=-7} else

if (Y[index[count]]==4) {Y[index[count]]=0}

}

# Create the data set/frame

Data <- data.frame(Y=Y,X1=X1,X2=X2)

# Grow the full tree using the Gini index and stop when a minimum node size

of 5 is reached
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#first set the tree stopping criteria i.e. minimum node size of 5.

Also set cross-validation to 10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0 <-rpart(Y ~X1 + X2,data=Data,method="class",control=stoppingrule,

parms=list(split="gini"))

printcp(tree0)

plotcp(tree0)

A.4 R code for the real multi-classification example

#Due to the size of the data-set this code should be run on R as soon as it has been loaded prior to

running any other commands

options(java.parameters = "-Xmx4g" ) #increases the amount of memory to use

# Load the XLConnect and rpart packages

library(XLConnect)

library(rpart)

#XLconnect allows reading of excel files into R

# Specify the file location

digitsfile <- system.file("demoFiles/digitsdata.xlsx", package = "XLConnect")

# Load the workbook

digitswb <- loadWorkbook(digitsfile)

# Read worksheet “zip”
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digitsdata<- readWorksheet(digitswb, sheet = "zip")

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0<-rpart(Y~.,data=digitsdata,method="class",

control=stoppingrule,parms=list(split="gini"))

printcp(tree0)

plotcp(tree0)
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Appendix B

R code used for Adaboost Examples

B.1 R code used for the Adaboost illustration example

#Load the rpart package

library(rpart)

#Generate the training and test data

# Generate the independent standard normal input variables X1 to X10

Y=0

N=12000

X1=rnorm(N)

X2=rnorm(N)

X3=rnorm(N)

X4=rnorm(N)

X5=rnorm(N)

X6=rnorm(N)

X7=rnorm(N)

X8=rnorm(N)

X9=rnorm(N)

X10=rnorm(N)
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#calculate the chi squared value at p=0.5

chisq= qchisq(0.5, df=10)

summation=0

for(i in 1:N){

summation=X1[i]^2+X2[i]^2+X3[i]^2+X4[i]^2+X5[i]^2+

X6[i]^2+X7[i]^2+X8[i]^2+X9[i]^2+X10[i]^2

ifelse(summation>chisq,Y[i]<-1,Y[i]<–1)

}

trainindex=sample(1:N,2000,FALSE)

testindex=setdiff(1:N, trainindex)

datatrain <- data.frame(Y=Y[trainindex],X1=X1[trainindex],X2=X2[trainindex],

X3=X3[trainindex], X4=X4[trainindex], X5=X5[trainindex], X6=X6[trainindex],

X7=X7[trainindex], X8=X8[trainindex], X9=X9[trainindex], X10=X10[trainindex])

datatest <- data.frame(Y=Y[testindex],X1=X1[testindex],X2=X2[testindex],

X3=X3[testindex], X4=X4[testindex], X5=X5[testindex], X6=X6[testindex],

X7=X7[testindex], X8=X8[testindex], X9=X9[testindex], X10=X10[testindex])

#train the full tree

stoppingrule=rpart.control(minbucket=1,xval=10,cp=0)

tree0 <-rpart(Y~.,data=datatrain,method="class",control=stoppingrule,

parms=list(split="gini"))

printcp(tree0)
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#test the full tree

testprediction<-predict(tree0, newdata=datatest, type = "class")

#calculate the test error of the full tree

errordata<-data.frame(Acutal= datatest[,1],Predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

fulltreetesterror=sum(temp)/nrow(errordata)

print(fulltreetesterror)

#train the stump

stumprule=rpart.control(cp=-1,maxdepth=1,minsplit=0)

stump <-rpart(Y ~.,data=datatrain,method="class",control=stumprule,

parms=list(split="gini"))

#test the stump tree

testprediction<-predict(stump, newdata=datatest, type = "class")

#calculate the test error of the stump

errordata<-data.frame(acutal= datatest[,1],predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

stumptreetesterror=sum(temp)/nrow(errordata)

print(stumptreetesterror)

#calculate the boosted stumps

library(ada)

M=400
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adaboost<-ada(Y~.,data=datatrain,iter=M,loss="e",type="discrete",

control=stumprule,bag.frac=1,nu=1, test.x=datatest[,-1],test.y=datatest[,1])

print(adaboost)

plot(adaboost,FALSE,TRUE)

summary(adaboost,n.iter=M)

B.2 R code used for the simulated boosted binary example

#Load the requisite packages

library(rpart)

library(ada)

# Generate the input variables X1 and X2 on the unit interval

Y=0

N=11000

X1=runif(N)

X2=runif(N)

# Select values for t1, t2, t3 and t4

t1=0.4

t2=0.4

t3=0.6

t4=0.8

# Generate the binary dependent variable which takes on values of -1 and 1
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for (i in 1:N) {

#define region R1 to be Y=1

if (X1[i]<=t1 & X2[i]<=t2){Y[i]=1}

#define region R2 to be Y=-1

if (X1[i]<=t1 & X2[i]>t2){Y[i]=-1}

#define region R3 to be Y=1

if (X1[i]<=t3 & X1[i]>t1){Y[i]=1}

#define region R4 to be Y=-1

if (X1[i]>t3 & X2[i]<=t4){Y[i]=-1}

#define region R5 to be Y=-1

if (X1[i]>t3 & X2[i]>t4){Y[i]=-1}

}

# add random error to say 30% of the observations

maxerror=round(0.3*N,0)

index=0

for (count in 1:maxerror){

isin=1

while (isin==1){

isin=0

temp=round(runif(1,min=1,max=N),0)

for (i in 1:length(index)) {
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if(index[i]==temp) {isin=1}

}

}

index[count]=temp

if (Y[index[count]]==1) {Y[index[count]]=-1} else {Y[index[count]]=1}

}

# create the training and test data sets

trainindex=sample(1:N,1000,FALSE)

testindex=setdiff(1:N, trainindex)

traindata <- data.frame(Y=Y[trainindex],X1=X1[trainindex],X2=X2[trainindex])

testdata <- data.frame(Y=Y[testindex],X1=X1[testindex],X2=X2[testindex])

# Grow the full tree using the Gini index and stop when a minimum node size of 5 is reached

#first set the tree stopping criteria i.e. minimum node size of 5. Also set cross-validation to

10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0<-rpart(Y ~X1 +X2,data=traindata,method="class",control=stoppingrule,parms=list(split="gini"))

printcp(tree0)

#Prune the full tree0 to the selected cp value where xerror is minimized

treealpha<-prune(tree0,cp=0.00434783)

printcp(treealpha)

#test the full tree
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testprediction<-predict(treealpha, newdata=testdata, type = "class")

#calculate the test error of the prunned tree

errordata<-data.frame(Acutal= testdata[,1],Predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

fulltreetesterror=sum(temp)/nrow(errordata)

print(fulltreetesterror)

#train the stump

stumprule=rpart.control(cp=-1,maxdepth=1,minsplit=0)

stump <-rpart(Y ~.,data=traindata,method="class",control=stumprule,parms=list(split="gini"))

#test the stump tree

testprediction<-predict(stump, newdata=testdata, type = "class")

#calculate the test error of the stump

errordata<-data.frame(acutal= testdata[,1],predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

stumptreetesterror=sum(temp)/nrow(errordata)

print(stumptreetesterror)

#calculate the boosted stumps

M=300

adaboost<-ada(Y~.,data=traindata,iter=M,loss="e",type="discrete",control=stumprule,bag.frac=1,nu=1,

test.x=testdata[,-1],test.y=testdata[,1])

print(adaboost)
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plot(adaboost,FALSE,TRUE)

B.3 R code used for the real boosted binary example

# Load the rpart, ada and XLconnect packages

library(rpart)

library(ada)

library(XLConnect)

#XLconnect allows reading of excel files into R

# Specify the file location

spamfile <- system.file("demoFiles/spamdata.xlsx", package = "XLConnect")

# Load the workbook

spamwb <- loadWorkbook(spamfile)

# Read worksheet “spam”

spamdata <- readWorksheet(spamwb, sheet = "spam")

# create the training and test data sets based on 10-fold comparision

N=nrow(spamdata)

trainN=round(0.9*N,0)

testN=round(0.1*N,0)

trainindex=sample(1:N,trainN,FALSE)

testindex=setdiff(1:N, trainindex)

traindata<- data.frame(Y=spamdata[trainindex,ncol(spamdata)],X=spamdata[trainindex,- ncol(spamdata)])
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testdata<- data.frame(Y=spamdata[testindex,ncol(spamdata)],X=spamdata[testindex,- ncol(spamdata)])

# Grow the full tree using the Gini index and stop when a minimum node size of 5 is reached

#first set the tree stopping criteria i.e. minimum node size of 5. Also set cross-validation to

10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0<-rpart(Y~.,data=traindata,method="class",control=stoppingrule,parms=list(split="gini"))

printcp(tree0)

#Prune the full tree0 to the selected cp value where xerror is minimized

#in this case where cp=0.003

treealpha<-prune(tree0,cp=0.003)

#test the pruned tree

testprediction<-predict(treealpha, newdata=testdata, type = "class")

#calculate the test error of tree alpha

errordata<-data.frame(acutal= testdata[,1],predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

prunnedtreetesterror=sum(temp)/nrow(errordata)

print(prunnedtreetesterror)

#output: [1] 0.07173913

#train the stump

stumprule=rpart.control(cp=-1,maxdepth=1,minsplit=0)

stump <-rpart(Y ~.,data=traindata,method="class",control=stumprule,parms=list(split="gini"))
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#test the stump tree

testprediction<-predict(stump, newdata=testdata, type = "class")

#calculate the test error of the stump

errordata<-data.frame(acutal= testdata[,1],predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

stumptreetesterror=sum(temp)/nrow(errordata)

print(stumptreetesterror)

#output: [1] 0.2043478

#calculate the boosted stumps

M=300

adaboost<-ada(Y~.,data=traindata,iter=M,loss="e",type="discrete",control=stumprule,bag.frac=1,nu=1,

test.x=testdata[,-1],test.y=testdata[,1])

print(adaboost)

plot(adaboost,FALSE,TRUE)

B.4 R code used for the simulated boosted

multi-classification example

B.4.1 Part 1

# Load the rpart, ada and XLconnect packages

library(rpart)
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library(ada)

library(adabag)

library(XLConnect)

# Generate the input variables X1 and X2 on the unit interval

Y=0

N=1000

X1=runif(N)

X2=runif(N)

# Select values for t1, t2, t3 and t4

t1=0.4

t2=0.4

t3=0.6

t4=0.8

# Generate the binary dependent variable which takes on values of -1 and 1

for (i in 1:N) {

#define region R1 to be Y=-5

if (X1[i]<=t1 & X2[i]<=t2){Y[i]=-5}

#define region R2 to be Y=-7

if (X1[i]<=t1 & X2[i]>t2){Y[i]=-7}

#define region R3 to be Y=0

if (X1[i]<=t3 & X1[i]>t1){Y[i]=0}
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#define region R4 to be Y=2

if (X1[i]>t3 & X2[i]<=t4){Y[i]=2}

#define region R5 to be Y=4

if (X1[i]>t3 & X2[i]>t4){Y[i]=4}

}

# add random error to say 30% of the observations

maxerror=round(0.3*N,0)

index=0

for (count in 1:maxerror){

isin=1

while (isin==1){

isin=0

temp=round(runif(1,min=1,max=N),0)

for (i in 1:length(index)) {

if(index[i]==temp) {isin=1}

}

}

index[count]=temp

if (Y[index[count]]==-5) {Y[index[count]]=4} else

if (Y[index[count]]==-7) {Y[index[count]]=2} else

if (Y[index[count]]==0) {Y[index[count]]=-5} else
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if (Y[index[count]]==2) {Y[index[count]]=-7} else

if (Y[index[count]]==4) {Y[index[count]]=0}

}

# create the training and test data sets comparable to 10-fold cross validation

trainN=round(0.9*N,0)

testN=round(0.1*N,0)

trainindex=sample(1:N,trainN,FALSE)

testindex=setdiff(1:N, trainindex)

traindata <- data.frame(Y=Y[trainindex],X1=X1[trainindex],X2=X2[trainindex])

testdata <- data.frame(Y=Y[testindex],X1=X1[testindex],X2=X2[testindex])

# Grow the full tree using the Gini index and stop when a minimum node size of

#5 is reached

#first set the tree stopping criteria i.e. minimum node size of 5.

#Also set cross-validation to 10-fold

stoppingrule=rpart.control(minbucket=5,xval=10,cp=0)

tree0 <-rpart(Y~.,data=traindata,method="class",control=stoppingrule,

parms=list(split="gini"))

printcp(tree0)

#Prune the full tree0 at the selected cp value where xerror is minimized based on

#the output above.

#Note the cp value chosen here should be simlar to the value chosen in the
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#earlier example. In this case where cp=0.003

treealpha<-prune(tree0,cp=0.003)

printcp(treealpha)

#test the pruned tree

testprediction<-predict(treealpha, newdata=testdata, type = "class")

#calculate the test error of tree alpha

errordata<-data.frame(acutal= testdata[,1],predicted=testprediction)

temp<-ifelse(errordata[,1]!=errordata[,2],1,0)

prunnedtreetesterror=sum(temp)/nrow(errordata)

print(prunnedtreetesterror)

#[1] 0.26

B.4.2 Part 2

#re-code the response variable into binary for the training data

bin1<-as.numeric(traindata[,1]==-7)

bin2<- as.numeric(traindata[,1]==-5)

bin3<- as.numeric(traindata[,1]==0)

bin4<- as.numeric(traindata[,1]==2)

bin5<- as.numeric(traindata[,1]==4)

Iytrain<-cbind(bin1,bin2,bin3,bin4,bin5)

#re-code the response variable into binary for the test data

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



170

bin1<-as.numeric(testdata[,1]==-7)

bin2<- as.numeric(testdata[,1]==-5)

bin3<- as.numeric(testdata[,1]==0)

bin4<- as.numeric(testdata[,1]==2)

bin5<- as.numeric(testdata[,1]==4)

Iytest<-cbind(bin1,bin2,bin3,bin4,bin5)

#specify the number of classes and the rule to grow the stump

K=5

stumprule=rpart.control(cp=-1,maxdepth=1,minsplit=0)

#creates the empty list to generate K boosting models for each class

Fs<-list()

#apply Adaboost.M1 using stumps and 300 boosting iterations

#the code below generates the K models where $model$F[[2]] extracts the

#final test sum and $model$F[[1]] extracts the final training sum

M=300

for(i in 1:K){

Fs[[i]]<-ada(Y~.,data=data.frame(Y=Iytrain[,i],X1=traindata[,2],X2=traindata[,3]),

control=stumprule, iter=M,test.x=testdata[,-1],test.y=Iytest[,i])

}

temptestpred<-list()

temptrainpred<-list()
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boostumptesterror=0

boostumptrainerror=0

#codes the response variable in binary form of the test data so that

#it is easier to manipulate

# i.e column 1=-7, 2=-5, 3=0, 4=2, 5=4

ytest<-apply(Iytest,1,which.max)

ytrain<-apply(Iytrain,1,which.max)

#note that the code before this point will compute relatively quickly

#however the code below will require some time to compute as noted before

for(j in 1:M){

for(ki in 1:K){

#type=”F” below outputs the tree (alpha) weights

temptestpred[[ki]]=predict(Fs[[ki]],newdata=

data.frame(Y=Iytest[,ki],X1= testdata[,2], X2= testdata[,3]),type=”F”,n.iter=j)

temptrainpred[[ki]]=predict(Fs[[ki]],newdata=

data.frame(Y=Iytrain[,ki],X1= traindata[,2], X2= traindata[,3]),type=”F”,n.iter=j)

}

#selects the column index with the highest alpha weight

predstest<- sapply(1:testN,function(i)which.max(c(temptestpred[[1]][i],

temptestpred[[2]][i], temptestpred[[3]][i], temptestpred[[4]][i], temptestpred[[5]][i])))

predstrain<- sapply(1:trainN,function(i)which.max(c(temptrainpred[[1]][i],
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temptrainpred[[2]][i], temptrainpred[[3]][i], temptrainpred[[4]][i], temptrainpred[[5]][i])))

#calculate the error rates

temptest<-ifelse(ytest!=predstest,1,0)

temptrain<-ifelse(ytrain!=predstrain,1,0)

boostumptesterror[j]=sum(temptest)/testN

boostumptrainerror[j]=sum(temptrain)/trainN

}

#plot the test and training error

boosting_iterations<-1:M

matplot(boosting_iterations,cbind(boostumptesterror, boostumptrainerror),

type="l",col=c("blue","red"), main="Testing And Training Error",xlab="Iterations", ylab="Error")

legend("topright", c("test","train"), col = c("blue","red"), lty=1:2)

#print the test error rate at the final boosting iteration

boostumptesterror[M]

#Output - [1] 0.35

B.4.3 Part 3

#alternative method using Adabag package

#convert the response variable to string and create the test and training data

ytrainchar=as.character(traindata[,1])

datatrainchar=data.frame(Y=ytrainchar, X1=traindata[,2],X2=traindata[,3])
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ytestchar=as.character(testdata[,1])

datatestchar=data.frame(Y=ytestchar, X1=testdata[,2],X2=testdata[,3])

#select the tree growing rule to produce the alpha tree at the cp value shown earlier

alpharule=rpart.control(cp=0.003)

#call the boosting routine with M=300 boosting iterations as before

#note "Freund" calculates the tree weights alpha as we have shown above and

#boos=TRUE specifies whether resampling is performed using the iterative weights and

#therefore boos=FALSE means all observations are included

boostwotrain<- boosting(Y ~.,data=datatrainchar,mfinal=M, coeflearn="Freund", boos=FALSE,

control=alpharule)

boostwotest <- predict.boosting(boostwotrain,newdata=datatestchar)

boostwotest$error

#Output: [1] 0.38

#graph of the average error rate at each boosting iteration

errorevol(boostwotrain,newdata=datatrainchar)->evol.train

errorevol(boostwotrain,newdata=datatestchar)->evol.test

#comparing error evolution in training and test set

plot(evol.test$error, type="l", main="Testing and Training Error",

xlab="Iterations", ylab="Error", col = "red")

lines(evol.train$error, cex = .5 ,col="blue", lty=2)

legend("topright", c("test","train"), col = c("red", "blue"), lty=1:2)
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B.5 R code used for the real boosted multi-classification

example

B.5.1 Part 1

#Due to the size of the data-set this code should be run on R as soon as it has been loaded prior to

running any other commands

options(java.parameters = "-Xmx4g" ) #increases the amount of memory to use

# Load the rpart, ada and XLconnect packages

library(XLConnect)

library(rpart)

library(ada)

# Specify the file location for the training and test data

digitsfile <- system.file("demoFiles/digitsdata.xlsx", package = "XLConnect")

digitsfiletest <- system.file("demoFiles/digitstestdata.xlsx", package = "XLConnect")

# Load the workbooks

digitswb <- loadWorkbook(digitsfile)

digitswbtest <- loadWorkbook(digitsfiletest)

# Read worksheet “zip”

digitsdata<- readWorksheet(digitswb, sheet = "zip")

digitsdatatest <- readWorksheet(digitswbtest, sheet = "zip")

#re-code the response variable into binary for the training data
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bin0<-as.numeric(digitsdata[,1]==0)

bin1<-as.numeric(digitsdata[,1]==1)

bin2<-as.numeric(digitsdata[,1]==2)

bin3<-as.numeric(digitsdata[,1]==3)

bin4<-as.numeric(digitsdata[,1]==4)

bin5<-as.numeric(digitsdata[,1]==5)

bin6<-as.numeric(digitsdata[,1]==6)

bin7<-as.numeric(digitsdata[,1]==7)

bin8<-as.numeric(digitsdata[,1]==8)

bin9<-as.numeric(digitsdata[,1]==9)

Iytrain<-cbind(bin0,bin1,bin2,bin3,bin4,bin5,bin6,bin7,bin8,bin9)

#re-code the response variable into binary for the test data

bin0<-as.numeric(digitsdatatest[,1]==0)

bin1<-as.numeric(digitsdatatest[,1]==1)

bin2<-as.numeric(digitsdatatest[,1]==2)

bin3<-as.numeric(digitsdatatest[,1]==3)

bin4<-as.numeric(digitsdatatest[,1]==4)

bin5<-as.numeric(digitsdatatest[,1]==5)

bin6<-as.numeric(digitsdatatest[,1]==6)

bin7<-as.numeric(digitsdatatest[,1]==7)

bin8<-as.numeric(digitsdatatest[,1]==8)
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bin9<-as.numeric(digitsdatatest[,1]==9)

Iytest<-cbind(bin0,bin1,bin2,bin3,bin4,bin5,bin6,bin7,bin8,bin9)

#specify the number of classes and the rule to grow the stump

K=10

stumprule=rpart.control(cp=-1,maxdepth=1,minsplit=0)

#creates the empty list to generate K boosting models for each class

Fs<-list()

#extracts the predictor variable dataset excluding the response variable

xtest=data.frame(digitsdatatest[,-1])

testN=nrow(xtest)

xtrain=data.frame(digitsdata[,-1])

trainN=nrow(xtrain)

M=100 #set the number of boosting iterations

#create the Adaboost.M1 models using stumps

#the code below generates the K models

for(i in 1:K){

Fs[[i]]<-ada(Y~.,data=data.frame(Y=Iytrain[,i],xtrain),control=stumprule,iter=M,test.x=xtest,test.y=Iytest[,i])

}

#create and initialize the temporary variables and error variables

temptestpred<-list()

temptrainpred<-list()
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boostumptesterror=0

boostumptrainerror=0

#codes the response variable in binary form of the test data so that it is easier to manipulate

# i.e column 1=0, 2=1, 3=2, 4=3, 5=4, 6=5, 7=6, 8=7, 9=8, 10=9

ytest<-apply(Iytest,1,which.max)

ytrain<-apply(Iytrain,1,which.max)

#the nested loops below calculates the weighted predictions for the K responses and selects the

highest as the final prediction

for(j in 1:M){

for(ki in 1:K){

#type="F" below outputs the tree (alpha) weights multiplied by the response variable (ensemble

average)

temptestpred[[ki]]=predict(Fs[[ki]],newdata=data.frame(Y=Iytest[,ki],xtest),type="F",n.iter=j)

temptrainpred[[ki]]=predict(Fs[[ki]],newdata=data.frame(Y=Iytrain[,ki],xtrain),type="F",n.iter=j)

}

#selects the column index with the highest ensemble average

predstest<- sapply(1:testN,function(i)which.max(c(temptestpred[[1]][i], temptestpred[[2]][i], temptest-

pred[[3]][i], temptestpred[[4]][i], temptestpred[[5]][i], temptestpred[[6]][i], temptestpred[[7]][i], temptest-

pred[[8]][i], temptestpred[[9]][i], temptestpred[[10]][i])))
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predstrain<- sapply(1:trainN,function(i)which.max(c(temptrainpred[[1]][i], temptrainpred[[2]][i],

temptrainpred[[3]][i], temptrainpred[[4]][i], temptrainpred[[5]][i], temptrainpred[[6]][i], temptrainpred[[7]][i],

temptrainpred[[8]][i], temptrainpred[[9]][i], temptrainpred[[10]][i])))

#calculates the error at each boosting iteration

temptest<-ifelse(ytest!=predstest,1,0)

temptrain<-ifelse(ytrain!=predstrain,1,0)

boostumptesterror[j]=sum(temptest)/testN

boostumptrainerror[j]=sum(temptrain)/trainN

}

#plot the test and training error

boosting_iterations<-1:M

matplot(boosting_iterations,cbind(boostumptesterror, boostumptrainerror),type="l",col=c("blue","red"),

main="Testing And Training Error",xlab="Iterations", ylab="Error")

legend("topright", c("test","train"), col = c("blue","red"), lty=1:2)

#print the test and training error rate at the final boosting iteration

boostumptesterror[M]

#Output: [1] 0.1669158

boostumptrainerror[M]

#Output: [1] 0.1220683
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B.5.2 Part 2

#alternative method using Adabag

library(adabag)

#convert the response variable to string and create the test and training data

ytrainchar=as.character(digitsdata[,1])

datatrainchar=data.frame(Y=ytrainchar,xtrain)

ytestchar=as.character(digitsdatatest[,1])

datatestchar=data.frame(Y=ytestchar,xtest)

#select the tree growing rule to produce the alpha tree at the cp value shown earlier

alpharule=rpart.control(cp=0.00082008)

boostwotrain<- boosting(Y ~.,data=datatrainchar,mfinal=M, coeflearn="Freund", boos=FALSE,

control=alpharule)

boostwotest <- predict.boosting(boostwotrain,newdata=datatestchar)

boostwotest$error

#Output [1] 0.05929248

#graph of the average error rate at each boosting iteration

errorevol(boostwotrain,newdata=datatrainchar)->evol.train

errorevol(boostwotrain,newdata=datatestchar)->evol.test

#comparing error evolution in training and test set

plot(evol.test$error, type="l", main="Testing and Training Error",

xlab="Iterations", ylab="Error", col = "red")
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lines(evol.train$error, cex = .5 ,col="blue", lty=2)

legend("topright", c("test","train"), col = c("red", "blue"), lty=1:2)
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