
 

 

Contributions to control charts for attributes 

data 

 
by 

 

 

Sandile Charles Shongwe 
 

 

 

Submitted in partial fulfilment of the requirements for the degree 
 

 

 

Magister Scientiae (Applied Statistics) 
 

 

In the Department of Statistics 

In the Faculty of Natural & Agricultural Sciences  

 

University of Pretoria 

 

Pretoria 
 

 

 

 

 

 

February 2014 
  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

ii 

 

 

Declaration 

 

I declare that the thesis, which I hereby submit for the degree Magister Scientiae (Applied 

Statistics) at the University of Pretoria, is my own work and has not previously been submitted by 

me for a degree at this or any other tertiary institution. 

 

 

 

 

Signature:  __________________________                                  Date:  __________________  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

iii 

 

 

Acknowledgements 

 

I would like to convey my gratitude to my supervisor, Prof S. Chakraborti, and my co-supervisor, 

Dr M.A. Graham, for their time, guidance and constructive criticism during my study as MSc 

student in the Department of Statistics at the University of Pretoria. I gratefully acknowledge the 

comments I received from Dr S.W. Human (University of Pretoria), Prof M.M. Calzada (Loyola 

University of New Orleans, USA), Prof P. Castagliola (Universite de Nantes, France) and Prof 

M.B.C. Khoo (Universiti Sains Malaysia, Malaysia). 

 

I would like to gratefully acknowledge the financial assistance I received from the National 

Research Foundation (NRF) for a Freestanding Masters Block grant No. 74392:2011, the 

STATOMET and the Department of Statistics at the University of Pretoria for supporting me 

financially, the South African Research Chairs Initiative (SARChI) for sponsoring the two SASA 

(South African Statistical Association) conferences I have attended and made paper presentations. 

Moreover, I would like to thank Mrs M. Zeelie and Mr D. du Toit for the financial assistance I 

received from them during the tenure of my study. 

 

Finally, I would like to thank my family and friends for their moral support and encouragement 

during my study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

iv 

 

 

Summary 

 

 Chapter 1 gives a brief introduction to statistical process control (SPC) and provides 

definitions as well as background information regarding the research conducted in this mini-

dissertation. This will aid in familiarizing the reader with concepts and terminology that are helpful 

to the following chapters. 

 

 We begin Chapter 2 with a literature review of traditional methods to design Shewhart-type 

attributes charts and their disadvantages. It is well known that with variables data, for Case K, under 

the assumption of normality, a Shewhart  ̅ chart with 3-sigma limits yields an in-control (IC) 

average run-length (ARL) equal to 370.4.  However, for attributes control charts the choice of the 

charting constant    3 does not guarantee an IC ARL equal to 370.4 due to the discrete nature of 

the charts, as well as the fact that when the process parameters are small, the normal approximations 

to the binomial distribution and the Poisson distribution do not necessarily hold or hold well. In 

fact, attributes control charts with    3 often result in false alarm rates (FAR) values that are 

significantly different from the advertised nominal value, and this, in turn, raises questions about 

the efficiency of these charts. We then propose new and improved control limits for the Shewhart-

type  ,   ,  ,   charts for parameters known (Case K). It will be shown that this method yields 

control limits that result in IC run-length properties, such as the FAR and the standard deviation of 

the run-length (SDRL), that are either the same or much closer to the nominal values compared to 

the two traditional methods. Moreover, this method can be formulated such that it yields the same 

or better ARL-unbiased control limits compared to the traditional methods.  

  

In Chapter 3, we provide a comprehensive literature review and bibliography of synthetic 

control charts for both univariate and multivariate cases. We consider variables (both parametric 

and nonparametric) control charts and attributes control charts in this review. Synthetic control 

charts were proposed in Wu and Spedding (2000a) and in the early 2000’s there were few outputs 

on this topic. However, recently there is a lot of interest among researchers in this topic. Thus, there 

is a need for a review study, as review studies typically spark a number of new research ideas. 

Moreover, SAS® programs to calculate the chart parameters and the ARL values of the synthetic 

chart are given. In addition, we give a comparison study to compare the performance of the 

synthetic chart, the Shewhart  ̅ chart, the 2-of-2 KL chart and the 2-of-3 KL chart. 
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In Chapter 4 we illustrate that synthetic Shewhart-type attributes charts suffer from similar 

disadvantages as the non-synthetic counterparts discussed in Chapter 2. That is, synthetic attributes 

charts with    3 often result in FAR values that are significantly different from the advertised 

nominal value. Hence, we similarly propose new and improved control limits for the synthetic 

Shewhart-type  ,   ,  ,   charts for parameters known (Case K). Furthermore, we show that this 

method yields control limits that result in IC run-length properties, such as the FAR and the SDRL, 

that are either the same or much closer to the nominal values compared to the two traditional 

methods. Moreover, this method can be formulated such that it yields the same or better ARL-

unbiased control limits compared to the traditional methods. 

 

Finally, Chapter 5 wraps up this mini-dissertation with a summary of the research carried out 

and offers concluding remarks concerning unanswered questions and / or future research ideas. 
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Chapter 1 

 

Introduction 

 

1.1 Statistical process control and monitoring 

 

 Statistical process control and monitoring is an application of a collection of statistical 

techniques which allows high quality products to be produced. Montgomery (2013, pp. 6-7) defines 

quality as fitness for use and that it is inversely proportional to variability. This means that, to 

improve the quality of a process or a product, we need to reduce the variability thereof. Moreover, 

Montgomery (2013, p. 35) states that effective quality improvement can be instrumental in 

increasing productivity and reducing cost. Furthermore, Montgomery (2013, p. 207) lists the 

following seven major statistical process control (SPC) problem solving tools that are used to assist 

in reducing variability and eliminating waste: 

 

 histogram or stem-and-leaf plot, 

 

 check sheet, 

 

 Pareto chart, 

 

 cause-and-effect diagram, 

 

 defect concentration diagram, 

 

 scatter diagram, and 

 

 control chart. 

 

 Among the SPC tools, control charts are undeniably the most widely used for identifying 

changes in processes. Control charts are mainly used to distinguish between chance causes of 

variation and assignable causes of variation, with the Shewhart charts being the primary tools for 

this purpose. 
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1.2 The control chart 

 

A control chart typically is a two dimensional graphic consisting of the values of a plotting 

(charting) statistic plotted on the vertical axis against time or subgroup number on the horizontal 

axis along with the associated control limits. The charting statistic and the control limits are 

calculated from the data which can be individual or subgroups (samples) of observations, collected 

sequentially over time. A typical two-sided Shewhart-type control chart (Walter A. Shewhart 

developed the statistical control chart concept in 1924) is shown in Figure 1.1.  

 

Figure 1.1. A two-sided Shewhart-type control chart 

 

 From Figure 1.1 it can be seen that a control chart usually has a center line (CL) and two 

horizontal lines, one on each side of the CL. The line above the CL is called the upper control limit 

(UCL) whereas the line below the CL is called the lower control limit (LCL). These three lines are 

placed on the control chart to aid the user in making an informed and objective decision whether a 

process is in-control (IC) or out-of-control (OOC). Note that, in some cases the UCL and LCL are 

not symmetric around the CL, see for example, Wu and Wang (2007). Thus, moving forward we 

will not mention the CL again, we only concentrate on the two important limits i.e. UCL and LCL. 

When a charting statistic plots on or outside either of the control limits it is said that a signal has 

been observed and the process is declared OOC (in Figure 1.1, a process would be thought to be 

OOC at times 5, 7 and 11). The corresponding event is called a signalling event. On the contrary, 
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when the charting statistic randomly plots between the upper and the lower control limits the 

process is thought to be IC and hence no signal is observed on the control chart. The corresponding 

event is called a non-signalling event. Montgomery (2013, p. 197) stated that control charts are 

popular in industries and listed five reasons for their popularity. They are: 

 

 proven technique for improving productivity 

 effective in defect prevention 

 prevent unnecessary process adjustment 

 provide diagnostic information 

 provide information about process capability. 

 

1.3 Chance and Assignable causes 

 

Montgomery (2013, p. 189) stated that in any process, a certain amount of variability always 

exist and this natural variability is called common or chance causes. A process operating under 

chance cause of variation is said to be IC. However, in some cases, the source of variability is not 

part of the chance cause pattern. In such a situation, it is said that a process is operating in the 

presence of assignable causes of variation and that the process is OOC. The aim of using a control 

chart is to recognise and eliminate assignable causes in a process. In SPC, the pattern of chance 

causes is usually assumed to follow some parametric distribution (such as the normal distribution 

for the  ̅ chart, see Chapter 6 in Montgomery (2013)). The charting statistic and the control limits 

depend on this assumption and as such the properties of these control charts are „exact‟ only if this 

assumption is satisfied. 

   

1.4 Variables and Attributes data 

 

 In statistical process control and monitoring application, data can be continuous or discrete. 

Quality characteristics that can be expressed in terms of a numerical measurement are called 

“variables” and the data collected on variables are called “variables data”, see Montgomery (2013, 

p. 234). Examples include dimensions such as length or width, temperature, volume etc. 

 

 However, quality characteristics that cannot be measured on a numerical scale, for example, 

the quality of paint on a glass container for a liquid product, are called “attributes” and the 

corresponding the data collected are called “attributes data” see Montgomery (2013, p. 297). To 
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examine attributes data, we classify them into one of the two categories called conforming and 

nonconforming, depending on whether the container meets the requirements on one or more quality 

characteristics. Examples include the number of errors or mistakes made in completing a loan 

application, the number of medical errors made in a hospital, etc., see Montgomery (2013, p. 297). 

  

1.5 Run-length distribution 

 

 “The number of rational subgroups to be collected or the number of charting statistics to be 

plotted on a control chart before the first OOC signal is observed is the run-length of a chart”, see 

Human and Graham (2007). The run-length is a random variable, denoted usually by N, with a 

mean and variance. The most widely used chart performance metric is the mean of the run-length, 

referred to as the average run-length (ARL). However, since the run-length distribution is 

significantly right-skewed, researchers have advocated using other, more representative, measures 

for the assessment of chart performance. These include the standard deviation of the run-length 

(SDRL) and other percentiles of the run-length, more specifically, the median run-length (MRL), 

which provides additional and more meaningful information about the in-control and out-of-control 

performances of control charts, not given by the ARL. Some researchers such as Gan (1994), 

Chakraborti (2007) and Khoo et al. (2011) have advocated the use of percentiles, such as the 

median, for assessment of chart performance. The run-length distribution and the characteristics of 

the run-length distribution can be obtained using four methods, namely 

 

i. The exact approach (for Shewhart and some Shewhart-type charts)  

ii. The Markov chain approach 

iii. The integral equation approach 

iv. The computer simulations (the Monte Carlo) approach 

 

 For a detailed account of these methods, see Graham (2013, pp. 16 - 22). In this essay the 

exact approach is used which is based on a finite homogenous Markov chain; this approach is used 

to evaluate the run-length distribution and the characteristics of the run-length distribution of 

various types of control charts. 
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1.6 Types of control charts 

 

There are three popular types of control charting techniques: the Shewhart chart, the 

cumulative sum (CUSUM) chart and the exponentially weighted moving average (EWMA) chart. 

Relative advantages and disadvantages of these charts are well documented in the literature. See, for 

example, Chapters 6, 7 and 9 in Montgomery (2013). We describe some of the charts in more detail 

in each of the three sections that follow. 

 

1.6.1 Shewhart-type control charts 

 

Shewhart-type charts are the most popular charts in practice because of their simplicity, ease 

of application, and the fact that these versatile charts are quite efficient in detecting moderate to 

large shifts. To describe the Shewhart chart in more detail, assume that               denote a 

random sample (i.e. measurements on some quality characteristic) of size     form the process at 

time    1,2,3,… . Let W be a sample statistic that measures some quality characteristic of interest, 

and suppose that the mean of W is   , the variance is   
  and the standard deviation of   . Then 

the control limits and CL are given by 

 

UCL =        

CL =    (1.1) 

LCL =        

 

where   > 0 is the charting constant which is a design parameter that determines the „distance‟ of 

the control limits from the CL expressed in standard deviation units. When a charting statistic plots 

on or outside either of the control limits it is said that a signal has been observed and the process is 

declared OOC. Typically, a search for assignable causes is then started. 

 

1.6.2 CUSUM-type control charts 

 

While the Shewhart-type charts are widely known and most often used in practice because 

of their simplicity and global performance, other classes of charts, such as the CUSUM charts, are 

useful and sometimes more naturally appropriate in the process control environment in view of the 

sequential nature of data collection. Since the introduction of CUSUM charts by Page (1954), many 

researchers have examined these charts from different perspectives, see, for example, Brook and 

Evans (1972), Hawkins (1987, 1993) and, more recently, Abbasi et al. (2012). A comprehensive 
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description of the construction of CUSUM control charts is discussed in Hawkins and Olwell 

(1998). These charts, typically based on the cumulative sums of a charting statistic, obtained as data 

accumulate over time, are known to be more efficient for detecting certain types of shifts in the 

process; typically shifts of small magnitude. The normal theory CUSUM chart for the mean is 

typically based on the cumulative sum of the deviations of the individual observations (or the 

subgroup means) from the specified target mean.  

 

To describe the CUSUM chart in more detail, assume that                   denote a 

sample (subgroup) of size     on the process output at each sampling instance   for    1,2,… . 

A statistic  

 

    (                 ) (1.2) 

 

is constructed using the data in the     sample,    1,2,… . The statistic in Equation (1.2) is referred 

to as the basic (pivot) statistic; see Bakir (2011). 

 

 For a CUSUM chart, the deviations from the target value (say,   ) of the parameter are 

accumulated in the upward and downward directions separately, using two different statistics: one 

for the upward shift and the other for the downward shift. 

 

For the upper one-sided CUSUM chart we use 

 

  
     ,           

 -  for    = 1,2,3... (1.3) 

 

to detect positive deviations from the target value with starting value   
   0 and the so-called 

reference value    . A signalling event occurs for the first i such that   
   , where     is the 

decision interval. For the lower one-sided CUSUM we use 

 

  
     ,           

 -  for    = 1,2,3... (1.4) 

 

or 

 

  
      [            

  ]  for    = 1,2,3... (1.5) 

 

and is used to detect negative deviation from the target value with starting value   
    

    0. 

Here a signalling event occurs for the first i such that   
     (if Expression (1.4) is used) or 
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     (if Expression (1.5) is used). The design parameters   and   are chosen so that the chart 

has a specified nominal ARL, denoted ARL0 (or a specified nominal MRL, denoted MRL0) and is 

capable of detecting a shift, specially a small shift, as soon as possible. The first step in this 

direction is to choose  .  For the parametric CUSUM chart for the normal mean, the choice of   has 

been discussed by Montgomery (2013, p. 422). After choosing  , the next step is to find the 

decision interval  , in conjunction with the chosen  , so that a specified ARL0 (or MRL0) is attained. 

Note, however, for a discrete random variable the chances are that   cannot always be found such 

that the specified ARL0 (or MRL0) is attained exactly and hence using a conservative approach,   is 

found so that the attained IC ARL (or IC MRL) is less than or equal to the specified ARL0 (or MRL0). 

  

1.6.3 EWMA-type control charts 

 

The EWMA charts also take advantage of the sequentially (time ordered) accumulating 

nature of the data arising in a typical SPC environment and are known to be efficient in detecting 

smaller shifts but are easier to set up and operate than the CUSUM charts (see e.g. Montgomery 

(2013, p. 433). The literature on EWMA charts is enormous and continues to grow at a substantial 

pace (see e.g. the overview by Ruggeri et al. (2007) and the references therein). To describe the 

EWMA chart in more detail, assume that                   denote a sample (subgroup) of size 

    on the process output at each sampling point   for    1,2,… .  The charting statistic for the 

EWMA control chart is defined as 

 

       (   )      for    = 1,2,3... (1.6) 

 

where       is a constant called the smoothing parameter and    is the pivot statistic defined 

in Equation (1.2). The starting value    is typically taken to be the target value, i.e.      . The 

expected value and variance of    are given by  

 

 (  )     (1.7) 

 

and 

 

   (  )    
 (

 

   
) (  (   )  ) (1.8) 

 

respectively, where    denotes the known process standard deviation. The exact control limits and 

the center line of the EWMA control chart are given by 
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     (  )         (  )        √(
 

   
) (  (   )  ) 

 

    (  )     (1.9) 

 

 

     (  )         (  )       √(
 

   
) (  (   )  ) 

 

where   > 0 is a charting constant. The steady-state control limits (which are typically used when 

the EWMA chart has been running for several time periods so that the term (  (   )  ) in (1.9) 

approaches unity) are given by 

 

           √(
 

   
) 

 

and (1.10) 

 

           √(
 

   
)  

 

 

 The two-sided EWMA chart is constructed by plotting    against the sample number   (or 

time). If the charting statistic    falls between the two control limits, that is,           , the 

process is considered to be IC. If the charting statistic    falls on or outside one of the control limits, 

that is        or       , the process is considered to be OOC and a search for assignable 

causes is necessary. 

 

 The two-sided EWMA can be modified to form a one-sided statistic in much the same way a 

CUSUM can be made into a one-sided statistic. For example, an upper one-sided EWMA is given 

by   
      ,       (   )    - for    = 1, 2, 3,... with starting value   

     where    is the 

IC process target value. If the charting statistic    plots on or above the     the process is 

considered to be OOC and a search for assignable causes is necessary. 

 

 The design parameters   and   are chosen so that the chart has a specified nominal ARL0 (or 

MRL0) and is capable of detecting a shift, specially a small shift, as soon as possible. Montgomery 

(2013, p. 436) states that “The optimal design procedure would consist of specifying the desired in-
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control and out-of-control average run-lengths and the magnitude of the process shift that is 

anticipated, and then to select the combination of λ and L that provide the desired ARL 

performance.” The EWMA chart is designed by specifying λ and L so that a specified ARL0 (or 

MRL0) is achieved. The constant λ (     ) is the smoothing parameter (λ = 1 yields the well-

known Shewhart chart) and is selected depending on the magnitude of the shift to be detected (see 

Table 1.1) while the constant L > 0 is the distance of the control limits from the CL (the larger the 

value of L, the wider the control limits and vice versa) and is selected in combination with the value 

of the smoothing parameter λ. With regard to the implementation of the EWMA chart, the first step 

is to choose λ. The recommendation is as follows ((see Montgomery (2013, p. 436)):  

 

Table 1.1. Choice of the smoothing parameter λ 

Magnitude of the shift of interest Choice of λ 

Small 0.05 

Moderate 0.10 

Large 0.20 

 

After λ is chosen, the second step involves choosing L, so that a desired ARL0 (or MRL0) is 

attained.  

 

1.7 Phase I and Phase II 

 

 In practice, SPC is generally divided into two phases (or stages) i.e. Phase I (also called the 

retrospective phase) and Phase II (also called the prospective or monitoring phase), see 

Montgomery (2013, p. 206). The analysis of historical or preliminary data, in order to establish that 

a process is IC, generally comes under what is referred to as Phase I. A process that operates at or 

around a desirable level or specified target with no assignable causes of variation is said to be in 

statistical control, or simply in-control. In Phase I, the focus is on understanding the process 

variability, assessing the stability of the process, investigating process improvement ideas, trying to 

bring the process IC by locating and eliminating any assignable causes of variability and providing 

estimates of the IC parameters so that effective process monitoring can begin in Phase II. A 

considerable amount of knowledge about a process can result from the analysis of Phase I data and 

control charts play a crucial role in Phase I. They help in diagnosing source(s) of assignable causes 

and their removal. The process of establishing control may be iterative and the control limits in this 

phase are usually viewed as trial limits. Once statistical control is established, the parameters are 

estimated and control limits are finalized based on IC data (also called reference data). Once this is 

ascertained, SPC moves to the next phase, called Phase II, where the control limits and / or the 
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estimators obtained in Phase I are used for process monitoring based on new incoming samples of 

data.  

 

 When the underlying parameters of the process distribution are known or specified, this is 

referred to as the „standard(s) known‟ case and is denoted Case K. In contrast, if the distribution‟s 

parameters are unknown and need to be estimated, it is typically done in Phase I, with IC data. This 

situation is referred to as the „standard(s) unknown‟ case and is denoted Case U. One of the main 

differences between the two phases is the fact that the false alarm rate (FAR) (or the IC ARL or the 

IC MRL) is typically used to construct and evaluate Phase II control charts, whereas the false alarm 

probability (FAP) is used to construct and evaluate Phase I control charts. The FAP is the 

probability of at least one false alarm out of the comparison of all the charting statistics to the 

control limits simultaneously, whereas the FAR is the probability of a single false alarm involving 

only a single comparison of a charting statistic to the control limits. Various authors have studied 

the Phase I problem; see the review by Chakraborti et al. (2009). 

 

1.8 Attributes control charts 

 

  Attributes control charts have been widely used to monitor discrete data in manufacturing 

and in service industries (i.e. non-manufacturing) processes (Montgomery (2013, p. 298)). Although 

an attributes chart is not as efficient as a variables control chart in finding root problems and 

solutions, it is an economical tool to collect and analyze some process characteristics before 

continuous charts can be applied (see Aebtarm and Bouguila, 2011). In addition, according to 

Aebtarm and Bouguila (2011), attributes control charts are more practical in many cases, for 

example, monitoring the number of survival patients per year is more practical than monitoring how 

long a patient can survive which uses a variables control chart.  

 

 Among the attributes charts, the Shewhart-type charts are the most popular. There are four 

major Shewhart-type attributes charts, namely the   chart, the    chart, the   chart and the   chart, 

see Montgomery (2013, Chapter 7) and a review by Woodall (1997). The   chart monitors the 

fraction nonconforming in a sample, whereas the    chart monitors the number of nonconforming 

items in a sample. The   chart monitors the number of nonconformities in a single inspection unit, 

whereas the   chart monitors the average number of nonconformities per inspection unit. Note that 

the designs of the latter four charts are very similar, that is, they both fit into the same statistical 

structure in which only the distributions assumed for each chart differ. The   chart and the    chart 
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are based on the normal approximation to the binomial distribution, whereas the   chart and the   

chart are based on the normal approximation to the Poisson distribution. 

 

1.9 Traditional methods to design attributes charts 

 

 In this section, we briefly summarize the traditional Shewhart-type  -sigma limits ( -SL) 

method and the conventional probability limits (CPL) method for Case K. To this end, first let    be 

the known IC proportion nonconforming and    be the known IC number of nonconformities in an 

inspection unit. 

 

1.9.1.  -sigma limits for the   and   charts 

 

 The control limits of the   and   charts using the  -SL method are given by 

 

              √
  (    )

 
 (1.11) 

 

and 

 

              √   (1.12) 

 

respectively. 

 

1.9.2. Conventional probability limits for the   and   charts 

 

 The control limits of the   and the   charts using the CPL method are computed as follows. 

For the   chart, we need to find      and      such that 

 

∑ . 
 
/

[     ]

   
  
 (    )

    
    

 
   and   ∑ . 

 
/ 

  [     ]
  
 (    )

      
    

 
 (1.13) 

 

respectively. For the   chart, we need to find      and      such that 

 

∑
      

 

  

,    -
    

    

 
   and   ∑

      
 

  

 
  ,    -

   
    

 
 (1.14) 
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respectively, with , - the largest integer not exceeding  . 

 

1.10 Synthetic control charts 

 

 Wu and Spedding (2000a) originally proposed and defined a synthetic chart as the 

integration of the operation of a Shewhart chart and a conforming run-length (CRL) chart. 

However, Scariano and Calzada (2009) proposed a generalised synthetic chart (GSC) procedure so 

that a synthetic chart is now defined as the integration of some control charting procedure and a 

CRL chart, that is, a synthetic chart consists of two “sub-charts”, one, a basic (or a standard or a 

classical) chart for the parameter of interest and a second, a CRL chart. Unlike the basic chart, a 

signal is not based on a single charting statistic falling beyond the control limits. Instead, when any 

sample produces a value beyond the control limits of a basic chart, then the control procedure is 

judged pending its effect on the CRL chart. 

 

The conforming run-length (CRL) chart 

 

 The CRL chart was proposed by Bourke (1991) and is defined as the number of inspected 

units between two consecutive nonconforming units, inclusive of the nonconforming unit at the end. 

In most cases, we are interest in detection of process deterioration, hence the CRL chart only has a 

LCL, denoted by  . The run-length of the CRL chart follows a geometric distribution with cdf 

    ( )    (   )
 , for    1, 2,… and   is the probability that a sample is nonconforming. 

Consider Figure 1.2, the white and black dots denote the conforming and nonconforming units, 

respectively. Suppose that the process starts at    0, the CRL chart corresponding to Figure 1.1 has 

the following plotting/charting statistics:       5,       2 and       4. The idea behind the 

CRL chart is that the CRL will change if the probability of obtaining a nonconforming item or 

probability of a plotting statistic plotting beyond the control limits increases/decreases. An OOC 

signal for the CRL chart is given when CRL   . For further discussion on the CRL chart, see 

Bourke (1991). 
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Figure 1.2: A conforming run-length chart 

 

1.11 Research objectives 

 

 We now summarize the research questions in each of the following chapters (i.e. Chapters 2, 

3, 4 and 5). In Chapters 2 and 4 we focus on proposing new and improved control limits for the 

Shewhart-type  ,   ,  ,   charts and the corresponding synthetic  ,   ,  ,   charts, respectively. 

Woodall and Montgomery (1999) stated that literature review papers are very important as they 

spark new research ideas. Motivated by this, we present a review of the literature on the synthetic 

control charts for univariate and multivariate data in Chapter 3. Chapter 5 provides a summary and 

offers some future research ideas.  

 

1.11.1 Chapter 2 

 

 In Chapter 2 we focus on proposing new and improved control limits for the Shewhart-type 

 ,   ,  ,   charts. It is well known that with variables data, for Case K, under the assumption of 

normality, a Shewhart  ̅ chart with 3-sigma limits yields an IC ARL equal to 370.4.  However, for 

attributes control charts the choice of the charting constant    3 does not guarantee an IC ARL 

equal to 370.4 due to the discrete nature of the charts (see Castagliola and Wu (2012)), as well as 

the fact that when the process parameters are small, the normal approximations to the binomial and 

Poisson distributions do not necessarily hold or hold well (see Montgomery (2013, p. 101)). In fact, 

attributes control charts with    3 often result in FAR values called attained false alarm rate 

(AFAR) values that are significantly different from the advertised nominal value, and this, in turn, 

raises questions about the efficiency of these charts; see Szarka and Woodall (2011). 

 

 The traditional methods are generally known to have poor IC run-length properties when the 

process parameters,   and/or    are small. According to the recommendations in the literature, 

when    (    )   5 (i.e. when the central limit theorem approximation is good for the binomial 
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distribution), these methods should yield attained run-length properties that are closer to their 

nominal values. However, it has been shown that this is not the case; see, for example, Chakraborti 

and Human (2006), Wu and Wang (2007) and Castagliola and Wu (2012).  

 

 For illustration (note that more detail will be given in Chapter 2), suppose that      

 0.0027,    100 and     0.2 so that    (    )   20   5. Consequently, we expect that the 3-

SL and CPL methods would result in an AFAR close to     . However, the 3-sigma limits method 

yields AFAR   0.00399, which is 47.60% higher than the nominal value of 0.0027. On the other 

hand, the conventional probability method yields AFAR   0.00159, which is 41.03% lower than the 

nominal value of 0.0027. It is clear for this example that these traditional control charts yield AFAR 

values that are significantly different than the nominal values, see also Chakraborti and Human 

(2006), Wu and Wang (2007) and Castagliola and Wu (2012) for further confirmation. In this 

example, the 3-SL method chart signals more often than expected when the process is IC and the 

CPL method chart signals much less often than what is nominally expected, which also seems 

undesirable. A similar situation was observed for the c chart. 

 

 Thus, in Chapter 2, we offer a solution to this problem by considering a new and improved 

method of chart design to design the  ,   ,  ,   charts for Case K. It will be shown that this method 

yields control limits that result in IC run-length properties, such as the AFAR and the attained  IC 

standard deviation of the run-length (      ), that are either the same or much closer to the 

nominal values compared to the two traditional methods. Moreover, this method can be formulated 

such that it yields a good OOC performance.  

 

1.11.2 Chapter 3 

 

 In Chapter 3, we provide a comprehensive literature review and bibliography of synthetic 

control charts for both univariate and multivariate data. We consider variables (both parametric and 

nonparametric) control charts and attributes control charts in this review. Ever since this chart was 

proposed in Wu and Spedding (2000a), there have been over 60 papers on this topic. Moreover, this 

review sparked a number of new research ideas and these are given in Chapter 5. In addition, a 

comparison study is conducted to investigate the performance of four variables control charts 

(synthetic chart, Shewhart  ̅ chart, 2-of-2 KL chart and 2-of-3 KL) to monitor the process mean. 
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1.11.3 Chapter 4 

 

 In Chapter 4, we focus on proposing new and improved control limits for the synthetic  , 

  ,  ,   charts. It is well known that with variables data, for Case K, under the assumption of 

normality, a Shewhart  ̅ chart with 3-sigma limits yields an IC ARL equal to 370.4 (see Wu and 

Spedding (2000a)).  However, for attributes control charts the choice of the charting constant    3 

does not guarantee an IC ARL equal to 370.4 due to the discrete nature of the charts (see Castagliola 

et al. (2013)), as well as the fact that when the process parameters are small, the normal 

approximations to the binomial and Poisson distributions do not necessarily hold or hold well (see 

Montgomery (2013, p. 101)). 

 

 The traditional methods are generally known to have poor IC run-length properties when the 

process parameters,   and/or    are small. According to the recommendations in the literature, 

when    (    )   5 (i.e. when the central limit theorem approximation is good for the binomial 

distribution), these methods should yield attained run-length properties that are closer to their 

nominal values. However, it has been shown that this is not the case; see, see Castagliola et al. 

(2013). 

 

For example (note that more detail will be given in Chapter 4), suppose that the nominal 

FAR (    ) is equal to 0.0027,    100 and     0.2 so that    (    )   20   5. Consequently, 

we expect that the 3-SL and CPL methods will result in AFAR values close to the     . Suppose 

that    2, the 3-SL method yields AFAR   0.00209 which is 22.58% lower than the nominal value 

of 0.0027. On the other hand, the CPL method yields AFAR   0.00112 which is 58.46% lower than 

the nominal value of 0.0027. In this example, it is clear that the traditional control charts yield 

AFAR values that are significantly different from the     , since for both methods, the charts will 

signal less often than what is nominally expected, especially for the CPL method. A similar 

situation was observed for the synthetic c chart. 

 

 Thus, in Chapter 4 we offer a solution to this problem by considering a new and improved 

method of chart design to design the synthetic  ,   ,  ,   charts for Case K. It will be shown that 

this method yields control limits that result in IC run-length properties, such as the AFAR and the 

      , that are either the same or much closer to the nominal values compared to the two 

traditional methods. Moreover, this method can be formulated such that it yields a good OOC 

performance. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

16 

 

 

 

1.12 Appendix 1: Distributions considered in this study 

 

 A list of the distributions considered in this study is given below along with general 

formulae to calculate their means and variances. 

 

Distribution 
Probability density or 

massfunction 
Mean Variance 

Standard Normal 

  N(0,1)  

  (    ) 

 ( )   
 

 

√  
   

 

 
  

  
0 1 

Binomial 

  bi(n,p)  

  *         + 

 ( )    
 

. 
 
/   (   )  

np np(1-p) 

Poisson 

  Poi(c)  

  *       + 

 ( )    
 

      

  
  

c c 

Geometric 

  Poi(c)  

  *     + 

 ( )   
 

(   )      

 

 
 

   

  
 

Student’s t 

   ( )  
  (    ) 

    denotes the degrees of freedom  

 ( )   
 

 .
   

 
/

√   .
 

 
/
.  

  

 
/
 .

   

 
/

  
0 

 

   
 for     

   

  for     
   

else undefined 

Gamma 

  GAM(   )  

  ,   ) 
    and      

 ( )    
 

    
    ⁄

 ( )  
  

        

Logistic 

  Logistic(   )  

  (    ) 

       and      

 ( )   
 

  (   )  ⁄

 (    (   )  ⁄ )
   

  
  

 
    

Laplace or  

Double Exponential 

  DE(   ) 

  (    ) 

       and      

 ( )   
 

 

  
 
  
|   |
  

      

Uniform distribution 

   (   ) 
  ,   - 

         

 ( )  
 

   
   

   

 
  

(   ) 

  
  

Contaminated or Mixture Normal Since the formulae for the Contaminated or Mixture 

Normal distribution is too lengthy to fit into this table, a 

discussion follows below. 
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Contaminated or Mixture Normal distribution 

 

 The Contaminated Normal (CN) distribution (also referred to as the Mixture Normal 

distribution), is a linear combination of two normal random variables: 

 

(   ) (     
 )    (     

 ), 

 

where       denotes the level of contamination. If   (   ) (     
 )    (     

 ) then the 

pdf is given by  

 

 ( )  (   ) (     )    (     ) 

 

where  (   ) is the pdf of a normal distribution with mean   and variance   . The expected value 

and variance of the CN distribution are given by  

 

 ( )  (   )       

 

and 

 

   ( )  (   )(  
    

 )   (  
    

 )  ((   )      )
 
,  

 

respectively. 
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Chapter 2 

 

Modified improved probability limits (MIPL) design for the 

Shewhart-type attributes charts 

 

2.1 Introduction 

 

Attributes control charts were introduced in Section 1.8. There are four major Shewhart-

type attributes charts, namely the   chart, the    chart, the   chart and the   chart. In this chapter, 

we focus on the   chart and the   chart which monitors the proportion of nonconforming items in 

a sample and the number of nonconformities in an inspection unit, respectively. Note that when 

the sample size is fixed, the   chart is equivalent to the    chart (Woodall, 1997). 

 

For a thorough account of the attributes control chart literature, see Woodall (1997). More 

recently, Szarka and Woodall (2011) gave a related literature review on the Bernoulli processes, 

with a section discussing the relevance of the   chart in a monitoring environment. Wu and Wang 

(2007) gave a brief discussion of the    chart using the conventional probability limits (CPL) 

method. Aebtarm and Bouguila (2011) presented an empirical comparison of eleven different 

methods to design a   control chart. Recently, Castagliola and Wu (2012) discussed the    and 

the   charts using the Shewhart  -sigma limits ( -SL) method when the charting parameter   is 

different from the typical industry value of 3. The latter authors extended on the work done in 

Braun (1999) and Chakraborti and Human (2006, 2008).  

 

Shewhart control charts are generally recommended if a quick detection of a “large” shift 

is needed. It is well known that with variables data for Case K, under the assumption of 

normality, a Shewhart  ̅ chart with 3-SL yields an IC ARL equal to 370.4. However, for attributes 

control charts the choice of the charting constant    3 does not guarantee an IC ARL equal to 

370.4 due to the discrete nature of the charts, as well as the fact that when the process parameters 

are small, the normal approximation to the binomial and Poisson distributions does not 
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necessarily hold or hold well. In fact, attributes control charts with    3 often result in AFAR 

values that are significantly different from the advertised nominal values, and this, in turn, raises 

questions about the efficiency of these charts, see Szarka and Woodall (2011).   

 

The concept of an “improved probability limits (IPL)” chart design was proposed by 

Zhang et al. (2004) to design charts that have attained FAR values closer to the nominal FAR 

value and applied it to the geometric control chart. In this chapter we refine and modify this 

method and apply it to design what are called the modified improved probability limits (MIPL)   

and   charts that result in better attained FAR values. In addition, these new and improved charts 

can be formulated such that they have the same or better OOC performance than the two 

traditional methods (i.e.  -SL and CPL). 

 

The rest of the chapter is structured as follows. The run-length properties used for 

evaluating the statistical performance of the control charts are discussed in Section 2.2.  This is 

followed by a discussion of the MIPL method for the   chart in Section 2.3 and the 

corresponding discussion for the   chart in Section 2.5; in each section, a review of the traditional 

methods is done. In Sections 2.4 and 2.6 examples and empirical comparisons among the three 

methods are done for the   and   charts, respectively, providing an insight concerning the choice 

of the best method. Concluding remarks are given in Section 2.7. 

 

2.2 Properties of Shewhart-type attributes charts 

 

Suppose that both the fraction nonconforming ( ) or the average number of 

nonconformities ( ) per inspection unit of an IC process are known (or specified), and are 

denoted by    and   , respectively. The formulas for the control limits are presented and 

discussed in Sections 2.3 and 2.5, respectively. Once the control limits are calculated, 

independent random samples (subgroups) or inspection units are typically taken at equally spaced 

intervals and a charting statistic, which is the proportion nonconforming (for the   chart) or the 

number of nonconformities (for the   chart), is plotted on the chart for the     subgroup or 

inspection unit, for         . If the charting statistic plots between the LCL and the UCL, the 

process is declared IC, otherwise, the process is declared OOC and it is said that a signal has been 
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observed. The run-length distribution is characterized by the probability of a no signal, denoted 

by  , which is a function of   and   (for the   chart) and a function of   (for the   chart). The 

probability of a signal is given by     and the probability of a signal when the process is IC, 

that is       is the FAR. 

 

Since, in Case K, the charting statistics are iid random variables and the control chart 

limits are known constants, it is well known that the run-length of a Shewhart-type chart follows 

a geometric distribution with parameter (   )   Hence the run-length pmf and cdf are given by 

 

   ( )   
   (   )  (2.1) 

 

and 

 

   ( )   
   (   )  (2.2) 

 

respectively, for       … . The average and the standard deviation of the run-length 

distribution are given by 

 

    
 

   
 (2.3) 

 

and 

 

     
√ 

   
 (2.4) 

 

respectively. These quantities are used as chart performance measures. 

 

 The FAR is typically used to design a chart in Case K. By design one finds control limits 

for a given nominal FAR value, denoted by     , a number such as 0.0027.  Equivalently, since 

the ARL is the reciprocal of the FAR in Case K, one can also design the chart for a nominal IC 

ARL value such as 370.4. While this is fine for variables control charts, the actual or the attained 
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FAR (and the ARL) of attributes charts may not necessarily be equal to the nominal value, due to 

the discreteness of the distributions of the charting statistics. Thus we distinguish between the 

nominal and the attained values. We denote the attained FAR by AFAR, which is the probability 

that a specific control chart with a specific set of control limits (and chart design parameters), 

gives an OOC signal, when the process is in fact IC. That is, 

 

       (Signal for a chart with a given pair of control limits| IC)      . (2.5) 

 

 The problem simply is that, with the attributes charts based on normal approximation, the 

AFAR can be substantially different from the     . The closer the AFAR value is to the     , 

the better that chart is (or the chart design). The corresponding nominal ARL and SDRL values are 

denoted by      and      , respectively, and the attained IC ARL (= 1 / AFAR) and the attained 

SDRL are denoted by       and         respectively. However, when the process is OOC we 

denote these as       and       , respectively. Other characteristics of the run-length 

distribution can be calculated from the pmf or the cdf of the run-length distribution. 

 

 The calculations in this chapter were done using Microsoft® Excel functions and the 

graphs were constructed using Minitab®. See Appendix 2A for an illustration of the calculations. 
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2.3 Statistical design of the   chart 

 

Let            ,         and    1 be a sample of independent random variables 

   ∑     
 
       ( ) where    is the proportion nonconforming units (when     , the 

process is IC). Let      and      denote the lower and upper control limits of the   chart, 

respectively. Montgomery (2013, p. 315) defined  , the probability of no signal (or the Type II 

error probability), as a function of   and  : 

 

     (   )   (              | )                                               

       (        | )   (        | )                                                          

 

{
 
 

 
 
∑(

 

 
)   (   )   

 

   

                                                                     

∑(
 

 
)   (   )   

 

   

 ∑(
 

 
)   (   )   

 

   

                   

 (2.6) 

 

 The control limit constants,   and  , are related to the lower and upper control limits, 

respectively, and are defined in Section 2.3.1. Note that     (    ), denotes the probability of 

no signal when the process is IC. Further, note that the probability of a signal equals 

 

   (   )   (        | )   (        | ) (2.6a) 

 

and hence for a given set of control limits, 

 

   (    )    (        |  )   (        |  )      . (2.6b) 
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2.3.1 Traditional methods for designing a    chart 

 

In this section we briefly summarize the traditional  -SL method and the CPL method for 

Case K. 

 

 -sigma limits 

 

The control limits for the  -SL method are as given in Equation (1.11). So that, for  -SL 

method, the control limit constants,   and  , are given by 

 

  [     ]  and   {
    {[     ]  }                                      

   {         }                                 
 (2.7) 

 

respectively, with , - the largest integer not exceeding  . These values of   and   are adopted 

from Chakraborti and Human (2006). 

 

Conventional probability limits 

 

 For the CPL method, the control limits are computed as follows. For the     , using 

Equation (1.13) we find the largest positive integer   [     ] that makes the left tail 

probability,   (    |  ), to be at most equal to  
    

 
. Thus, 

 

∑ . 
 
/ 

     
 (    )

    
    

 
. (2.8) 

 

Following this we have that      
 

 
. If    0, it means that       0 and then we assume that 

the      does not exist since the proportion nonconforming is never negative. This arises when   

and/or    is small. In such a situation      is said to be not applicable (NA). 
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For the     , also using Equation (1.13), we find the smallest positive integer   

[     ]    that makes the right tail probability,   (      |  ), to be at least equal to 

  
    

 
   Thus, 

 

∑ . 
 
/ 

       
 (    )

      
    

 
. (2.9) 

 

Following this we have that      
   

 
  In the event that the      is not applicable, for 

Equation (2.9) we find           so that 

 

  (      |  )        . (2.10) 

 

Problem associated with the traditional methods 

 

 As briefly shown in Section 1.11.1, both of the traditional methods have a poor IC run-

length properties (especially) when the process parameters,   and/or    are small. Now, we show 

in detail the example discussed in that section, where       0.0027,    100 and     0.2. For 

the 3-SL method using Equations (1.11) and (2.7), we find    8 and    31 so that Equation 

(2.6b) yields AFAR   0.00399, which is 47.60% higher than the nominal value of 0.0027. On the 

other hand, for the CPL method using Equations (2.8) and (2.9), respectively, we find    8 and 

   33, so that from Equation (2.6b) we obtain AFAR   0.00159, which is 41.03% lower than the 

nominal value of 0.0027. The corresponding       values are 250.63 and 628.93, respectively. 

It is clear for this example that these traditional control charts yield AFAR and       values that 

are significantly different than the nominal values. In this example, the 3-SL method chart signals 

more often than expected when the process is IC and the CPL method chart signals much less 

often than what is nominally expected, which also seems undesirable. 

 

 In the next section, we offer a solution to this problem by considering a new method of 

chart design called the modified improved probability limits (MIPL), which is an adaptation and 

a modification of the IPL method proposed by Zhang et al. (2004) for a geometric chart. It will be 

shown that this method yields control limits that result in IC run-length properties, such as the 
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AFAR and the       , that are either the same or much closer to the nominal values compared 

to the two traditional methods. Moreover, the MIPL method can be formulated such that it yields 

a good OOC performance. Firstly we consider the   chart. 

 

2.3.2 Modified improved probability limits (MIPL) for the   chart 

 

In Zhang et al. (2004), the IPL method was used for the geometric control chart so that   

          (we call this an anti-conservative approach for the probability limits design). 

Here we modify and refine their method so that it takes into account both the conservative (i.e. 

         ) and the anti-conservative approach to designing probability limits. This way we 

obtain charts with an AFAR that are much closer to the     . Firstly we generate some set  , 

with all values of   [     ] satisfying some condition that will be discussed below. Then for 

each    , we find the pair (    ) that results in           and another pair (    ) that 

results in          . Hence, to this end, we let  (    |    ) for       denote a set of 

control limit constants generated from set  , for some given   and   . Next, let    denote a 

subset of   with control limit constants that yield an     (    |    )       and similarly let 

   denote a subset of   with control limit constants that yield an     (    |    )      . In 

this case, it is easy to see that        . Then proceed with the following steps as in Zhang et 

al. (2004). 

 

Step 1: Generate set  . 

Let   [     ]    {NA           } where      is equal to the largest integer such that   

 

∑ (
 

 
)

    

   

  
 (    )

         (2.11) 

 

holds, for some specified  ,      and   . Recall that “NA” stands for not applicable which 

implies that       0. Unlike Equation (2.8) for the CPL method, we take the left tail to be at 

least      rather than 
    

 
. 
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Step 2: For each    , find the corresponding integer values of   such that 

 

  (    |  )    (      |  )      (   |    )    (2.12) 

 

i.e. for each     in Step 1, we find (    )     for      . Thus, in total we obtain   

(      ) pairs of control limit constants. 

 

Step 3: For each pair (    ) in Step 2 we compute the percentage relative deviation from the 

     defined by 

 

      (
    (    |    )      

    
) (2.13) 

 

Step 4: Choose the pair (     )    such that 

 

    (     |    )  *    (    |    )+   | |
(    )    (2.14) 

 

i.e. we choose the pair (     ) that result in the minimum absolute deviation of      from the 

    . The MIPL for the   chart are given by       
    and      ( 

   )  . 

 

 To picture the MIPL procedure, assume that set   contains all possible pairs of control 

limit constants (   ) where   and   are integers with     and     (for the MIPL method), 

for some given   and   . Some of these pairs will yield      values much closer to the      

and others will yield      values that differ significantly from the     . Note that the control 

limit constants of all three methods (i.e.  -SL, CPL and MIPL) will be in set  . Furthermore, let 

    as defined in Equation (2.12). That is, for each  , we find the corresponding two values of 

  (i.e.    and   ) such that the resulting      will either be at most equal or at least equal to the 

target     , respectively. Then, consequently the four step procedure for the MIPL method 

results in the pair (     ), which is as close as possible to the     , that is, a local IC optimal 

pair in set   and subsequently, this pair will be the global optimal pair also in set  . 
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Remark 1: MIPL for the    chart 

 

 Since the   chart is equivalent to the    chart when the sample size is fixed, and in this 

essay we assume fixed sample size (FSS) scheme, then it follows that the corresponding MIPL 

for the    chart are given by        
  and        

   . 

 

 

 In the next section, we consider a numerical example and a comparative study for the 

three methods considered here. 

 

2.4 Illustrations and performance comparisons of the   chart methods 

 

Firstly we illustrate the three methods using an example. Following this, we do an 

empirical comparison among the three methods by looking at different combinations of   and   . 

Furthermore, we show that the MIPL method can be formulated such that it yields similar or 

better nearly ARL-unbiased control limits compared to the traditional methods. 

 

2.4.1 Example 

 

Example 2.1. Assume that a manufacturing production process must operate at a 

proportion nonconforming (fallout) of 20% and that    100 and       0.0027.   

 

Chart Designs 

 

 The traditional charts for this example are constructed and illustrated in Sections 1.11.1 

and 2.3.1 and are displayed in Table 2.2. For the MIPL method, the calculations are as follows. 

From Step 1, the value of      that satisfies Equation (2.11) is equal to 9, so that   

 {NA       9}. For each     , we find the corresponding    such that the     (    |100,0.2) 

of these pairs is an element of   (see Step 2). Table 2.1 shows all the possible pairs of control 

limit constants in set   (with subsets    and   , as defined earlier), the      and the percentage 

relative deviation from the      for each pair (calculated in Step 3). Then using Step 4, we see 
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that in Table 2.1, (     ) = (9, 34) are the optimal values for the control limits constants of the 

MIPL method when the process is IC, with an      that is only 1.12% lower than 0.0027. This 

is indicated by the use of grey shading in Table 2.1. 

 

Table 2.1: All possible pairs of control limits constants in set   for the   chart using the 

MIPL method for    100,     0.2 and       0.0027 

 
Set     Set    

                         | |                          | | 

NA 32 0.00155 42.58% NA 31 0.00313 15.91% 

0 32 0.00155 42.58% 0 31 0.00313 15.91% 

1 32 0.00155 42.58% 1 31 0.00313 15.91% 

2 32 0.00155 42.57% 2 31 0.00313 15.92% 

3 32 0.00155 42.55% 3 31 0.00313 15.94% 

4 32 0.00155 42.44% 4 31 0.00313 16.05% 

5 32 0.00157 41.88% 5 31 0.00315 16.61% 

6 32 0.00163 39.69% 6 31 0.00321 18.80% 

7 32 0.00183 32.32% 7 31 0.00341 26.17% 

8 32 0.00241 10.89% 8 31 0.00399 47.60% 

9 34 0.00267   1.12% 9 33 0.00307 13.72% 

 

Table 2.2 summarizes the three methods along with the      values, the percentage 

relative deviation from the      for each pair and the       and        values, respectively. 

 

Table 2.2: Comparison among the three methods for the   chart constants for    100,     0.2 

and       0.0027 

 

Method (   )      | |              

3-sigma limits (8,31) 0.00399 47.60% 250.93 250.43 

Conventional probability limits (8,33) 0.00159 41.03% 628.03 627.53 

Modified improved probability limits (9,34) 0.00267   1.12% 374.58 374.08 

 

              It is clear that, for this example, the MIPL method results in control limits with       

and        values that are almost close to the target nominal value of approximately 370. 

 

2.4.2 Empirical comparison of the   chart methods 

 

In Example 2.1, we showed that the MIPL method yields a better      and a better 

       compared to the 3-SL and CPL methods for    100 and     0.2. We now investigate 

whether this is true for other combinations of   and    values. Firstly, consider the comparison 
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between the 3-SL, the CPL and the MIPL methods in Figures 2.1 (a) and (b). For a fixed sample 

of size 50 and varying the IC proportion nonconforming from 0.01 to 0.50 in increments of 0.01, 

we find that the 3-SL method results in an extremely large number of false alarms when the 

proportion nonconforming is very small and stabilizes as the proportion nonconforming 

increases. For the CPL method, the resulting FARs are always less than or equal to     , 

however, the resulting        is undesirable, since it is mostly much higher than the nominal 

value of approximately 370. Although, for small values of   , the MIPL method results in high 

fluctuations from the nominal values, but as    increases, it yields AFAR and        values that 

are much closer to the nominal values compared to the traditional methods. 
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(a)  The fluctuation occurrence of the AFAR for a       0.0027 

 
(b)  The fluctuation occurrence of the        for a       of approximately 370 

 
Figure 2.1: Comparison of the behavior of the run-length characteristics among the three designs 

of the   chart when the process is IC for    50 and varying    = 0.01(0.01)0.50 
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Furthermore, for a fixed     0.2 and varying the sample size, the AFAR behavior is 

shown in Figure 2.2. For the 3-SL method, there are extremely high fluctuations in the AFAR 

compared to the other methods. Although the CPL method is conservative, it is seen that it results 

in high        values (see Figure 2.1 (b)). For very small sample sizes, the MIPL method has 

high fluctuations from the nominal value (not as bad as the 3-SL method) but once the sample 

size is greater than 25 the fluctuations tend to be closer to the target value of 0.0027 than the 

traditional methods. This pattern indicates that, as the sample size increases, the MIPL method 

will result in AFAR and        values that are closer to target nominal values faster than the 

two traditional methods. Similar patterns were observed when investigating other combinations 

of   and   . 

 

 

 
Figure 2.2: Comparison of the behavior of the AFAR among three designs of the   chart when 

the process is IC for     0.2 and varying   = 1(1)75 
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In Table 2.3 we investigate more combinations of   and    and we find that, for all 

different combinations under consideration, the MIPL method either yields the same or better 

AFAR values with respect to the target       0.0027. For example, for    500 and     0.05, 

the control limits of the MIPL method yield an AFAR   0.00270 whereas the 3-SL and the CPL 

methods yield an AFAR of 0.00316 and 0.00201, respectively. However, when    20 and    

 0.2, all three methods yield an AFAR of 0.00259, in this case all three methods yield the same 

control limits. For    5 and     0.4 or 0.5, all three methods yield an AFAR of zero and 

consequently the       and the        approach infinity (i.e. does not exist). 

 

Therefore, from the discussion above we see that Equation (2.14) ensures that the MIPL 

method yields AFAR and        values that are the same or much closer to the nominal values 

compared the two traditional methods. 
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Table 2.3: Comparison of the AFAR values and the corresponding percentage relative deviation (in brackets) from the nominal value 

of 0.0027 for the 3-SL, CPL and MIPL methods of the   chart in rows 1, 2 and 3, respectively, for different combinations of   and    

n\   0.01 0.02 0.05 0.1 0.2 0.25 0.3 0.4 0.5 

5 

0.04901 (1715.18%) 0.00384 (42.31%) 0.02259 (736.76%) 0.00856 (217.04%) 0.00672 (148.89%) 0.00098 (63.83%) 0.00243 (10.00%) 0 (-) 0 (-) 

0.00098 (63.70%) 0.00008 (97.13%) 0.00116 (57.11%) 0.00046 (82.96%) 0.00032 (88.15%) 0.00098 (63.83%) 0.00243 (10.00%) 0 (-) 0 (-) 

0.00098 (63.70%) 0.00384 (42.31%) 0.00116 (57.11%) 0.00046 (82.96%) 0.00032 (88.15%) 0.00098 (63.83%) 0.00243 (10.00%) 0 (-) 0 (-) 

10 

0.00427 (58.01%) 0.01618 (499.17%) 0.0115 (326.06%) 0.01280 (373.90%) 0.00637 (13.59%) 0.00351 (29.84%) 0.00159 (41.10%) 0.00168 (37.86%) 0.00195 (27.66%) 

0.00011 (95.78%) 0.00086 (68.00%) 0.00103 (61.91%) 0.00163 (39.45%) 0.00086 (67.99%) 0.00042 (84.60%) 0.00159 (41.10%) 0.00168 (37.86%) 0.00195 (27.66%) 

0.00427 (58.01%) 0.00086 (68.00%) 0.00103 (61.91%) 0.00163 (39.45%) 0.00086 (67.99%) 0.00351 (29.84%) 0.00159 (41.10%) 0.00168 (37.86%) 0.00195 (27.66%) 

20 

0.01686 (524.42%) 0.00707 (161.80%) 0.01590 (488.95%) 0.00239 (11.63%) 0.00259 (3.90%) 0.00394 (46.01%) 0.00128 (52.63%) 0.00214 (20.90%) 0.00258 (4.56%) 

0.00100 (62.83%) 0.00060 (77.79%) 0.00257 (4.67%) 0.00239 (11.63%) 0.00259 (3.90%) 0.00094 (65.36%) 0.00208 (23.08%) 0.00084 (68.85%) 0.00258 (4.56%) 

0.00100 (62.83%) 0.00060 (77.79%) 0.00257 (4.67%) 0.00239 (11.63%) 0.00259 (3.90%) 0.00394 (46.01%) 0.00208 (23.08%) 0.00214 (20.90%) 0.00258 (4.56%) 

30 
0.03615 (1238.81%) 0.02172 (704.36%) 0.00328 (21.57%) 0.00778 (188.28%) 0.00311 (15.22%) 0.00293 (8.45%) 0.00244 (9.74%) 0.00117 (56.68%) 0.00143 (47.00%) 

0.00022 (91.76%) 0.00030 (88.88%) 0.00057 (78.76%) 0.00202 (25.19%) 0.00214 (20.75%) 0.00100 (63.05%) 0.00094 (65.24%) 0.00117 (56.68%) 0.00143 (47.00%) 

0.00332 (22.88%) 0.00289 (7.17%) 0.00328 (21.57%) 0.00202 (25.19%) 0.00214 (20.75%) 0.00278 (3.09%) 0.00274 (1.46%) 0.00285 (5.71%) 0.00264 (2.18%) 

40 

0.00750 (177.68%) 0.00824 (205.22%) 0.00339 (25.63%) 0.00506 (87.52%) 0.00307 (13.67%) 0.00185 (31.39%) 0.00302 (11.75%) 0.00182 (32.73%) 0.00222 (17.72%) 

0.00069 (74.61%) 0.00118 (56.47%) 0.00071 (73.65%) 0.00147 (45.57%) 0.00112 (58.37%) 0.00159 (41.18%) 0.00145 (46.23%) 0.00182 (32.73%) 0.00222 (17.72%) 

0.00069 (74.61%) 0.00118 (56.47%) 0.00339 (25.63%) 0.00147 (45.57%) 0.00245 (9.14%) 0.00272 (0.89%) 0.00264 (2.18%) 0.00246 (9.04%) 0.00222 (17.72%) 

50 

0.01382 (411.75%) 0.01776 (557.71%) 0.00319 (18.09%) 0.00322 (19.26%) 0.00270 (0.14%) 0.00312 (15.41%) 0.00309 (14.53%) 0.00213 (21.07%) 0.00260 (3.62%) 

0.00160 (40.88%) 0.00048 (82.29%) 0.00076 (72.00%) 0.00100 (62.79%) 0.00222 (17.86%) 0.00151 (43.91%) 0.00166 (38.67%) 0.00128 (52.72%) 0.00260 (3.62%) 

0.00160 (40.88%) 0.00321 (18.88%) 0.00319 (18.09%) 0.00322 (19.26%) 0.00270 (0.14%) 0.00270 (0.18%) 0.00261 (3.35%) 0.00272 (0.61%) 0.00260 (3.62%) 

75 

0.00692 (156.30%) 0.00397 (47.09%) 0.00412 (52.53%) 0.00271 (0.51%) 0.00247 (8.49%) 0.00356 (31.93%) 0.00236 (12.73%) 0.00297 (10.06%) 0.00244 (9.47%) 

0.00097 (64.23%) 0.00077 (71.32%) 0.00123 (54.35%) 0.00138 (49.01%) 0.00217 (19.67%) 0.00116 (57.02%) 0.00142 (47.44%) 0.00201 (25.53%) 0.00244 (9.47%) 

0.00097 (64.23%) 0.00397 (47.09%) 0.00412 (52.53%) 0.00271 (0.51%) 0.00247 (8.49%) 0.00302 (11.84%) 0.00248 (8.24%) 0.00269 (0.51%) 0.00270 (0.08%) 

100 

0.01837 (580.52%) 0.00406 (50.45%) 0.00427 (58.30%) 0.00490 (81.57%) 0.00399 (47.60%) 0.00377 (39.76%) 0.00308 (14.20%) 0.00290 (7.04%) 0.00352 (30.28%) 

0.00053 (80.20%) 0.00093 (65.48%) 0.00146 (45.76%) 0.00113 (58.18%) 0.00159 (41.03%) 0.00171 (36.52%) 0.00205 (23.90%) 0.00207 (23.30%) 0.00179 (33.71%) 

0.00343 (27.12%) 0.00406 (50.45%) 0.00146 (45.76%) 0.00275 (1.94%) 0.00267 (1.12%) 0.00275 (1.71%) 0.00270 (0.00%) 0.00260 (3.53%) 0.00265 (1.71%) 

150 

0.00421 (55.97%) 0.00341 (26.19%) 0.00360 (33.45%) 0.00205 (24.11%) 0.00307 (13.70%) 0.00251 (7.01%) 0.00319 (18.16%) 0.00341 (26.22%) 0.00241 (10.91%) 

0.00085 (68.58%) 0.00095 (64.93%) 0.00100 (63.08%) 0.00145 (46.12%) 0.00203 (24.72%) 0.00173 (35.88%) 0.00232 (14.16%) 0.00196 (27.56%) 0.00241 (10.91%) 

0.00421 (55.97%) 0.00341 (26.19%) 0.00189 (29.83%) 0.00283 (4.68%) 0.00263 (2.59%) 0.00251 (7.01%) 0.00264 (2.18%) 0.00267 (1.29%) 0.00274 (1.54%) 

200 

0.00430 (59.09%) 0.00748 (177.01%) 0.00270 (0.01%) 0.00340 (25.96%) 0.00352 (30.28%) 0.00249 (7.86%) 0.00257 (5.00%) 0.00300 (11.03%) 0.00228 (15.58%) 

0.00101 (62.50%) 0.00253 (6.27%) 0.00156 (42.08%) 0.00127 (52.99%) 0.00189 (30.10%) 0.00182 (32.70%) 0.00194 (28.27%) 0.00237 (12.21%) 0.00228 (15.58%) 
0.00430 (59.09%) 0.00253 (6.27%) 0.00270 (0.01%) 0.00292 (8.00%) 0.00274 (1.43%) 0.00268 (0.82%) 0.00268 (0.68%) 0.00272 (0.68%) 0.00284 (5.28%) 

500 

0.00521 (92.89%) 0.00317 (17.31%) 0.00316 (17.07%) 0.00233 (13.86%) 0.00305 (12.79%) 0.00230 (14.73%) 0.00289 (7.05%) 0.00297 (10.14%) 0.00270 (0.12%) 

0.00065 (76.06%) 0.00107 (60.53%) 0.00201 (25.66%) 0.00215 (20.51%) 0.00207 (23.23%) 0.00230 (14.98%) 0.00244 (9.52%) 0.00220 (18.58%) 0.00270 (0.12%) 

0.00190 (29.61%) 0.00269 (0.37%) 0.00270 (0.04%) 0.00271 (0.40%) 0.00271 (0.24%) 0.00270 (0.08%) 0.00269 (0.25%) 0.00273 (1.17%) 0.00270 (0.12%) 

750 

0.00440 (62.91%) 0.00319 (18.33%) 0.00272 (0.82%) 0.00291 (7.88%) 0.00301 (11.36%) 0.00239 (11.44%) 0.00279 (3.38%) 0.00252 (6.75%) 0.00242 (10.47%) 

0.00127 (53.03%) 0.00154 (42.91%) 0.00189 (30.15%) 0.00185 (31.42%) 0.00220 (18.37%) 0.00239 (11.57%) 0.00244 (9.80%) 0.00252 (6.75%) 0.00242 (10.47%) 

0.00238 (11.83%) 0.00268 (0.85%) 0.00272 (0.82%) 0.00278 (3.02%) 0.00268 (0.61%) 0.00272 (0.85%) 0.00270 (0.13%) 0.00269 (0.19%) 0.00271 (0.19%) 

1000 

0.00333 (23.39%) 0.00266 (1.46%) 0.00305 (12.94%) 0.00270 (0.05%) 0.00303 (12.17%) 0.00243 (9.87%) 0.00267 (1.03%) 0.00267 (1.13%) 0.00265 (2.02%) 

0.00113 (58.11%) 0.00204 (24.48%) 0.00228 (15.44%) 0.00261 (3.28%) 0.00232 (14.09%) 0.00243 (9.95%) 0.00238 (12.03%) 0.00240 (11.05%) 0.00265 (2.02%) 

0.00270 (0.18%) 0.00266 (1.46%) 0.00272 (0.82%) 0.00270 (0.05%) 0.00270 (0.02%) 0.00269 (0.40%) 0.00271 (0.32%) 0.00270 (0.10%) 0.00270 (0.07%) 
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2.4.3 Performance 

 

Next we investigate the performance of the   chart using these three methods when the 

process has a sustained shift from the IC value. It is generally known that when the process is IC, 

the       of a control chart should be large (preferably close to the     ) and when the process 

is OOC, the       should be small. To study the OOC performance we use an    -curve (it 

shows an ARL for any possible value that parameter   can shift to (see Acosta-Mejia (1999))). 

For example, in Example 2.1 the control limit constants (9, 34) resulted in an AFAR and an 

      much closer to      and     , respectively. However, assuming that only sustained 

shifts with increments of 0.01 are of interest, this pair is not optimal in detecting small process 

deterioration, since the maximum of the ARL curve is not equal to       (where     0.2). That 

is, for some values of   (   )            . Control charts with this property were defined 

in Pignatiello et al. (1995) as ARL-biased charts. Acosta-Mejia (1999) showed that for the   

chart, it is not always possible to obtain exact unbiasedness (because of the discrete nature of the 

plotting statistics).  

 

Our aim in this section is to construct control charts that are nearly ARL-unbiased using 

the MIPL method, hence we proceed as follows. 

 

Step 1: Let    be the value of the proportion nonconforming corresponding to the peak of the 

ARL curve, so that    (    |   
 ) is the value of the peak of the curve, with (    )    defined 

in Equation (2.12). In addition,    (    |    ) is the       when     , for some      . 

Then construct the ARL curve for each (    )    for some given increment shift of size  . 

 

Step 2: For each pair (    ) in Step 1, we compute 

 

     (    |   
 )     (    |    ).  (2.15) 

 

Note that    0 if the   chart has ARL-unbiased control limit constants. 
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Step 3: Choose the pair (     )    such that 

 

   (     |   )     (    |   )   | | 

(    )   .  (2.16) 

 

i.e. we choose the pair (     ) that result in the smallest value of  . Thus the nearly ARL-

unbiased MIPL for the   chart are given by       
    and      ( 

   )    Note that, if 

there is more than one pair that satisfies Equation (2.16), then we must choose the pair that 

results in an       closest to the     . 

 

 To illustrate this, we use Example 2.1 to construct a   chart that results in nearly ARL-

unbiased control limits. Taking the pairs (    ) in   that are given in Table 2.1 as the control 

limit constants, we construct the ARL curves as shown in Figures 2.3 (a) and (b). Figure 2.3 (a) 

shows all the control limit constants in set    and Figure 2.3 (b) shows all the control limit 

constants in set   .  Note that the pairs (0, 31) and (0, 32) were not plotted as the resulting ARL 

values ( -axis) are excessively high. It is evident that most of the control limit constants in set   

have undesirable OOC values in addition to having a poor IC performance. The pair (8, 32) 

results in   = 0 (see Equation (2.15)); hence this pair results in an ARL-unbiased design for the   

chart. 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



36 

 

(a) ARL curves for control limit constants in set    from Table 1 
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(b) ARL curves for control limit constants in set    from Table 1 

 

Figure 2.3: ARL curves of the control limit constants generated by the MIPL methods with     0.2 and    100

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



38 

 

In Figure 2.4, we plot the competing traditional methods’ ARL curves along with the 

nearly    -unbiased MIPL pair (8, 32) and deduce that the 3-SL method yields ARL-biased 

control limits. The CPL method has ARL-unbiased control limits, but the        628.03 is 

much higher than the expected value of 370.4 and, lastly, the ARL-unbiased MIPL method results 

in        415.66 (much closer to 370.4 than 628.03). Therefore, if the OOC performance of 

the   chart is also important, the practitioner may consider taking into account Equation (2.16) 

rather than Equation (2.14). 

 

 
Figure 2.4: ARL curves for all three methods with     0.2 and    100 

 

Simulations indicate that when the parameters   and   are both small, the nearly ARL-

unbiased MIPL method does not result in nearly ARL-unbiased control limits, however, this 

method never performs any worse than the 3-SL and CPL methods. In fact, for very small    

values, all three methods require a high value of   for the chart to be efficient, but, in most cases, 

the nearly ARL-unbiased MIPL method yields better performance than its competitors because 

the set   provides more options for the optimal pair (     ) compared to 3-SL and CPL 

methods, which have only one option for the pairs (   ). 
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Remark 2: Nearly ARL-unbiased control limits for the    chart  

 

 It follows similarly (from Remark 1) that the nearly ARL-unbiased control limits for the 

   chart are given by        
  and        

   . 

 

 

2.5 Statistical design of the   chart 

 

Let            ,         and    1 be a sample of independent random variables 

   ∑     
 
       ( ) where   is the  number of nonconformities (when     , the process is 

IC). Let      and      denote the lower and upper control limits of the   chart, respectively. 

Montgomery (2013, p. 331) defined  , the probability of no signal (or the Type II error 

probability), as a function of  : 

 

 ( )   (            | )                                   

               (       | )   (       | )                                                                

 

 

∑
     

  

 

   

 ∑
     

  

 

   

                                                   (2.16) 

 

 The control limit constants   and   are related to the lower and upper control limits, 

respectively, and are defined in Section 2.5.1. Note that     (  ), denotes the probability of no 

signal when the process is IC.  Further, note that the probability of a signal equals 

 

   ( )   (       | )   (       | ) (2.17a) 

 

and 

 

   (  )    (       |  )   (       |  )      .  (2.17b) 
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2.5.1 Traditional methods for designing the   chart 

 

 -sigma limits 

 

 The control limits for the  -SL method are given by Equation (1.12). So that, for the  -SL 

method, the control limit constants,   and   are given by 

 

  ,    - and   {
 ,    -                             
                                

, (2.18) 

 

respectively. 

 

Conventional probability limits 

 

 For the CPL method, the control limits are computed as follows. For the       using 

Equation (1.14) we find the largest integer   ,    - that makes the left tail probability, 

  (    |  ), to be at most equal to 
    

 
. Thus, 

 

∑
      

 

  

 
    

    

 
. (2.19) 

 

Following this we have that       . If    0, it means that       0 then we assume that the 

     does not exist since the number of nonconformities is never negative. For Case K, this 

arises when    is small, for instance, for the 3-SL this happens when     9 (see Chakraborti and 

Human (2008)). In such a situation,      is said to be not applicable (NA). 

 

 For the     , again using Equation (1.14) we find the smallest integer   ,    -    

that makes the right tail probability,   (      |  ), to be at least equal to   
    

 
, i.e. 

 

∑
      

 

  

 
        

    

 
. (2.20) 
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Following this,         . In the event that      is not applicable, for Equation (2.20) we 

find   so that 

 

  (      |  )        . (2.21) 

 

Problem associated with the traditional methods 

 

 According to the recommendations in the literature, when the normal approximation to 

the Poisson distribution is satisfied (i.e. central limit theorem), these methods should yield 

attained run-length properties that are close to the nominal values. However, it has been shown 

that this is not the case; see, for example, Chakraborti and Human (2008) and Castagliola and Wu 

(2012). For illustration, suppose that       0.0027 and     20. According to Montgomery 

(2013, p. 101) the normal approximation is satisfied since     15, thus we would expect that the 

3-SL and CPL methods result in an AFAR much closer to the     . However, for the 3-SL 

method using Equations (1.12) and (2.18), we find    6 and    33 so that Equation (2.17b) 

yields AFAR   0.00294 which is 9.02% higher than the nominal value of 0.0027. On the other 

hand, for the CPL method using Equations (2.19) and (2.20) we find    7 and    35 so that 

Equation (2.17b) yields AFAR   0.00158 which is 41.40% lower than the nominal value of 

0.0027. The corresponding       values are 339.72 and 632.01, respectively. It is clear for this 

example that these traditional control charts yield AFAR and       that are significantly 

different from the nominal values. In this example, the 3-SL method chart signals a bit more 

often than expected when the process is IC and the CPL method chart signals much less often 

than what is nominally expected, which also seems undesirable. 

 

In the next section, we similarly offer a solution to this problem by considering a MIPL 

method for the   chart. 
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2.5.2 Modified improved probability limits (MIPL) for the   chart 

 

Similar to the MIPL method for the   chart, we first generate set  . Further, we let 

 (    |  ) for       denote a set of control limit constants generated from set  , for some 

given   . Next, let    denote a subset of   with control limits that yield an     (    |  )  

     and similarly let    denote a subset of   with control limits that yield an     (    |  )  

    . Then proceed with the following steps as in Zhang et al. (2004). 

 

Step 1: Generate set  . 

Let   ,    -    {NA             } where      is equal to the largest integer such that  

 

∑
      

 

  

    

   

      (2.22) 

 

holds, for some      and   . “NA” stands for not applicable, it implies that       0. Note the 

difference between Equations (2.19) and (2.22). 

 

Step 2: For each    , we find the corresponding values of   such that, 

 

  (    |  )    (      |  )      (   |  )    (2.23) 

 

i.e. for each     in Step 1, we find (    )     for      . Thus, in total we obtain   

(      ) pairs of control limit constants. 

 

Step 3: For each pair (    ) in Step 2 we compute the percentage relative deviation from the 

     defined by 

 

      (
    (    |  )      

    
) (2.24) 

 

Step 4: Choose the pair (     )    such that 
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    (     |  )       (    |  )   | | 
 (    )  . (2.25) 

 

i.e. we choose the pair (     ) that result in the minimum absolute deviation of AFAR from the 

    . The MIPL for the   chart are given by       
  and       

   . 

 

 Similarly to the MIPL procedure of the   chart in Section 2.3.2, the four step procedure 

for the MIPL method of the   chart results in the pair (     ), which is as close as possible to the 

target     , that is, a local IC optimal pair in set   and subsequently, this pair will be the global 

optimal pair also in set  . 

 

 

Remark 3: MIPL for the   chart 

 

 Similarly, the corresponding MIPL for the   chart can be formulated by assuming that 

        ( ) where   is the OOC average number of nonconformities per inspection unit, by 

defining  ̅  
 

 
∑     
 
   . For example, the Shewhart   chart control limits are given in 

Montgomery (2013, p. 324) and using    instead of    in Equations (2.19) and (2.20) yield the 

corresponding CPL method. 

 

 

 In the next section, we consider a numerical example and a comparative study for the 

three methods of the   chart considered here. 

 

2.6 Illustration and performance comparison of the   chart methods 

 

Firstly we illustrate the three methods using an example. Following this, an empirical 

comparison between the three methods is done by considering different values of the parameter 

  . Furthermore, we show that the MIPL method can be formulated such that it yields similar or 

better nearly ARL-unbiased control limits compared to the traditional methods. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



44 

 

 

2.6.1 Example 

 

Example 2.2. Assume that a manufacturing process produces inspection units that 

normally have 20 defects with       0.0027. 

 

Chart Designs 

 

 The traditional charts for this example have been found in Section 2.5.1 and are displayed 

in Table 2.5. For the MIPL method, the calculations are as follows. From Step 1, the value of 

     that satisfies Equation (2.22) is 8, so that    {NA       8}. For each    , we find the 

corresponding    such that     (    |20) of these pairs is an element of   (see Step 2). Table 

2.4 shows all possible pairs of control limit constants in set   (with subsets    and   ), the AFAR 

and the percentage relative deviation from the      for each pair (calculated in Step 3). Then 

using Step 4, we see that in Table 2.4, the pair (     ) = (4, 33) are the optimal pair of control 

limits of the MIPL method when the process is IC, with an AFAR that is 0.20% higher than the 

0.0027. This is indicated by the use of grey shading in Table 2.4. 

 

Table 2.4: All possible pairs of control limit constants in set   for the   chart using the MIPL 

method 
Set     Set    

                      | |                       | | 
NA 33 0.00269   0.43% NA 32 0.00473 75.09% 

0 33 0.00269   0.43% 0 32 0.00473 75.09% 

1 33 0.00269   0.43% 1 32 0.00473 75.09% 

2 33 0.00269   0.41% 2 32 0.00473 75.11% 

3 33 0.00269   0.31% 3 32 0.00473 75.21% 

4 34 0.00151 44.22% 4 33 0.00271   0.20% 

5 34 0.00156 42.19% 5 33 0.00276   2.24% 

6 34 0.00174 35.40% 6 33 0.00294   9.02% 

7 34 0.00227 16.01% 7 33 0.00347 28.41% 

8 36 0.00251   7.03% 8 35 0.00289   7.07% 

 

Table 2.5 summarizes the three charting methods (control limits) along with the AFAR 

and the percentage relative deviation from the      for each pair,       and        values, 

respectively. 
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Table 2.5: Comparison among the three methods of the   chart for a       0.0027 and     20 

Method (   )      | |              

3-sigma limits (6,33) 0.00294  9.02% 339.72 339.22 

Conventional probability limits (7,35) 0.00158 41.40% 632.01 631.51 

Modified improved probability limits (4,33) 0.00271  0.20% 369.63 369.13 

 

It is clear that, for this example, the MIPL method results in control limit constants with 

much improved       and        values compared to the traditional 3-SL and CPL methods. 

For this example,     20, the control limits (   )   (4, 33) are the only values that ensure that 

we get as close as possible to the nominal ARL and SDRL values. 

 

2.6.2 Empirical comparison of the   chart methods 

 

 In Example 2.2, we showed that the MIPL method yields better AFAR and       values 

when compared to the 3-SL and CPL methods for     20. We now investigate whether this is 

true for other values of   . In Figures 2.5 (a) and (b), the AFAR and        values for small    

are not close to their respective nominal values, that is, when the normal approximation to the 

Poisson distribution is not satisfied the performance of the   chart is severely degraded 

(especially for 3-SL). However, as the process parameter increases, the AFAR and        

values fluctuate more or less around the nominal values for the MIPL method. Whereas, the 3-SL 

method results in relatively higher false alarms for most of the process parameters and the CPL 

method has very high values for the        (which is undesirable when the process is IC). 

Thus, in Figure 2.5, we see that the MIPL approach would be a preferred method to design the   

chart when the process is IC. 
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(a)  The fluctuation occurrence of the AFAR for a       0.0027 

 
(b)  The fluctuation occurrence of the        for a       of approximately 370 

 
Figure 2.5: Comparison of the behavior of the run-length characteristics among three methods of 

the   chart when process is IC 
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2.6.2 Performance 

 

Next we investigate the performance of the   chart using these three methods when the 

process has a sustained shift from the IC value. For example, in Example 2.2, the pair (4, 33) 

resulted in AFAR and       values much closer to      and      for the MIPL method, 

however, assuming that only sustained shifts with increments of 1 are of interest, this pair will 

not be optimal in detecting process improvement, since the maximum of the     curve for this 

pair is not equal to the       (where     20), see Figure 2.6 (b). From Figures 2.6 (a) and (b) it 

can be seen that there is a pair such that for all shifts,            . For the   chart, it is not 

always possible to obtain exact unbiasedness (because of the discrete nature of the Poisson 

distribution).  

 

Thus, if the objective is to construct a   chart such that it has nearly ARL-unbiased control 

limits, we need to proceed as follows. 

 

Step 1: Let    be the value of the proportion nonconforming corresponding to the peak of the 

ARL curve, so that    (    | 
 ) is the value of the peak of the curve, with (    )    defined in 

Equation (2.23). In addition,    (    |  ) is the       when     , for      . Then 

construct the ARL curve for each (    )    for some given increment shift of size  . 

 

Step 2: For each pair (    ) in Step 1, we compute 

 

     (    | 
 )     (    |  ).  (2.26) 

 

Note that    0 if the   chart has ARL-unbiased control limit constants. 

 

Step 3: Choose the pair (     )    such that 

 

   (     | )     (    | )   | | 

(    )    (2.27) 
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i.e. we choose the pair (     ) that result in the smallest value of  . Thus the nearly ARL-

unbiased MIPL for the   chart are given by       
  and       

   . Note that, if there is 

more than one pair that satisfies Equation (2.27), then we must chose the pair that results in an 

      closest to the     . 

 

To illustrate this, we use Example 2.2 to construct a   chart that will result in nearly ARL-

unbiased control limits. Taking the pairs (   ) in   that are given in Table 2.4 as the control 

limits, we construct the ARL curves shown in Figures 2.6 (a) and (b). It is evident that most of the 

control limits in set   have undesirable OOC performance in addition to having poor IC 

performance. The   chart using MIPL method with control limits (4, 33) is not ARL-unbiased, 

however the   chart with the pair (8, 35) results in    . 
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(a)  ARL curves for control limit constants in set    from Table 2.3 
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(b)  ARL curves for control limit constants in set    from Table 3 

 

Figure 2.6: ARL curve for the control limit constants generated by the MIPL method for      20 
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In Figure 2.7, we plot the competing traditional methods’ ARL curves along with the 

nearly ARL-unbiased MIPL pair (8, 35) and deduce that the 3-SL method is ARL-biased. 

Furthermore, the CPL method has ARL-unbiased control limits but the        632.01 is much 

higher than the expected value of 370.4 and the ARL-unbiased method results in ARL-unbiased 

control limits with an       equal to 345.91 (much closer to 370.4 than 632.01). Therefore, if 

the OOC performance of the   chart is also importance, the practitioner may consider taking into 

account Equation (2.27) rather than Equation (2.25). 

 

 

Figure 2.7: ARL curves for all three methods for     20 

 

Simulations indicate that when the parameter    is small, the nearly ARL-unbiased MIPL 

method does not result in ARL-unbiased control limits, however, this method never performs 

worse than the 3-SL and CPL methods. In addition, we observed that as    increases, the OOC 

MIPL method yields better performance than its competitors because the set   provides more 

options for the optimal pair (     ) compared to 3-SL and CPL methods, which have only one 

option for the limits (   ). 
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2.7 Concluding Remarks 

 

In this chapter, we proposed an MIPL method to design the   and   control charts for Case 

K and compared the results with the traditional methods (i.e. 3-SL and CPL). The MIPL method 

ensures that, when the process is IC, the   and the   charts always have attained FAR and SDRL 

values that are either the same as, or much closer to the nominal values compared to the 

traditional methods. Furthermore, it was shown that the MIPL approach can be formulated such 

that the   and   charts have similar or better nearly ARL-unbiased control limits compared to 

using traditional methods. The key component of the MIPL method is the fact that it creates a set 

of control limits that a practitioner can use to choose the best possible pair of control limits to 

design a   or   control chart. For very small sample sizes and/or process parameters, the MIPL 

method yields similar (and in some cases, better) results as the traditional methods, however as 

the sample size and/or process parameters increase, the MIPL method either performs similar to 

or outperforms the traditional methods. 
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2.8 Appendix 2A: Microsoft® Excel calculations 

  

 We illustrate how the results in Example 2.1 were calculated. 

 

3-sigma limits 

 

 The 3-sigma limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by, 
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and the corresponding value sheet is given by 

 

 

 

 

Conventional probability limits 

  

 The conventional probability limits calculations in Table 2.2 were calculated as follows. 

The formula sheet is given by, 
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and the corresponding value sheet is given by 
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Modified improved probability limits 

 

 The following formula and value sheets show how to calculate the value of      for the 

MIPL method in Example 2.1.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



57 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



58 

 

 

 

The rest of the steps follow as discussed in Example 2.1. 

 

 Similar calculations were done for the   chart in Example 2.2. 
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Chapter 3 

 

Synthetic quality control charts: An overview 

 

3.1 Introduction 

 

In the literature, many control charts have been proposed. Among the most popular 

are the Shewhart charts, the CUSUM charts and the EWMA charts. Various adaptations and 

generalizations of these basic charts have been considered, for example, the variable 

sampling interval (VSI), the variable sample size (VSS) and the double sampling (DS) charts. 

In this review chapter, our focus will be on a class of charts called the synthetic charts. 

  

Wu and Spedding (2000a) originally defined a synthetic chart as the integration of a 

Shewhart chart and a conforming run-length (CRL) chart, see Section 1.10. Following this, 

Scariano and Calzada (2009) proposed a more general approach referred to as the generalized 

synthetic chart (GSC) procedure. For the GSC procedure, a synthetic chart is defined as the 

integration of some control charting procedure and a CRL chart. That is, a GSC consists of 

two sub-charts, one, a basic (or a classical) chart for the parameter of interest and a second, a 

CRL chart. However, unlike a classical chart, a signal is not based on a single charting 

statistic falling beyond the control limits. Instead, when any sample produces a value beyond 

the control limits of a classical chart, called a sub-chart of a synthetic chart, that sample is 

marked as nonconforming and the control procedure moves to the second sub-chart, the CRL 

chart, and a signal is obtained depending on the outcome of the CRL chart. Since Wu and 

Spedding (2000a) proposed the concept of a synthetic control chart to monitor the mean for 

normally distributed data, there have been a number of authors who contributed to this topic. 

Most, if not all, articles that discuss the concept of synthetic charts will be reviewed in this 

chapter. Several types of synthetic charts have been considered in the literature, with a large 

number of these based on the second sub-chart being the CRL chart. However, there are other 

synthetic-type charts where the second sub-chart is not a CRL chart but is either (i) a 

cumulative quantity count chart to monitor the time until the  th
 event (denoted CQC- ); (ii) a 

cumulative count conforming chart to monitor the number of inspected items until the 

occurrence of   defects (denoted CCC- ); (iii) a group conforming run-length (these are 
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denoted by GCRL). In Table 3.1 we classify the synthetic chart based on the CRL sub-chart 

into variables (parametric and nonparametric) and attributes (parametric) control charts, 

respectively, for the univariate and multivariate cases, and are reviewed in Sections 3.3 and 

3.4, respectively. 

 

Table 3.1: Summary of the synthetic charts that are based on the CRL sub-chart 

Data 

dimensionality 

Synthetic chart 

for 

Quality characteristic 

Univariate 

Variables: 

Parametric 

Mean 

Variation 

Mean and Variation 

Coefficient of variation 

Mean time between events 

Economic and economic-statistical designs 

Variables: 

Nonparametric 

Location 

Variation 

Attributes: 

Parametric 

Fraction/number nonconforming 

Average/actual number of nonconformities 

Multivariate 

Variables: 

Parametric 

Mean 

Variation 

Mean and Variation 

Economic and economic-statistical designs 

Variables: 

Nonparametric 
Location 

Attributes: 

Parametric 
Fraction/number nonconforming 

 

 

While there are a vast number of articles based on parametric synthetic control charts 

for variables data, not much work has been done on parametric synthetic charts based on 

attributes data and nonparametric synthetic charts. In SPC there are a number of authors that 

have compiled literature reviews to summarize what has been done in a specific area; for 

example, (i) Woodall (1997) provided a broad review for parametric attributes charts; (ii) 

Cheng and Thaga (2006) and more recently McCracken and Chakraborti (2013) reviewed 

charts that jointly monitor the mean and variation; (iii) Jensen et al. (2006) and more recently 

Psarakis et al. (2013) investigated the effects of parameter estimation; (iv) Chakraborti et al. 

(2001), Chakraborti and Graham (2007) and Chakraborti et al. (2011) reviewed 

nonparametric charts. For synthetic charts, only Khoo (2014) did a literature review for the 

univariate parametric variables synthetic charts to monitor the mean and those to monitor the 
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variation. In this chapter, we provide a more comprehensive review of the synthetic charts 

following the outline in Table 3.1 as well as discussing other synthetic-type charts. 

 

The rest of the chapter is structured as follows. In Section 3.2, the basic characteristics 

of the synthetic chart are discussed with an emphasis on the synthetic chart for the mean. 

Then in Sections 3.3 and 3.4, a review of the literature is done according to the structure 

outlined in Table 3.1. In Section 3.5, we briefly discuss other available synthetic-type charts 

in the literature, where the second sub-chart is not a CRL. Finally in Section 3.6, we give 

some concluding remarks with the summary of future research ideas given later in Chapter 5. 

In addition, some proofs of the equations that are used in this chapter are shown in Appendix 

3A. In Appendix 3B, SAS® programs to calculate the run-length properties of the synthetic 

chart are given. A comparison study among four variables control charts is done in Appendix 

3C and finally, the corresponding SAS® programs for the 2-of-2 KL and 2-of-3 KL charts are 

given in Appendix 3D. 

 

3.2 Operation and run-length characteristics of the synthetic chart for the mean 

 

As noted earlier, Wu and Spedding (2000a) proposed the first synthetic chart for the 

mean of variables data which is a combination of two sub-charts, the Shewhart  ̅ chart and a 

CRL chart. Assuming that the observations    ‟s follow a normal  (     
 ) distribution, 

where    and   
  are the specified IC mean and variance, respectively, the Shewhart  ̅ chart 

is the most commonly used and familiar control chart to monitor the mean. Two cases are 

generally considered.  First, where the parameters    and   
  are known or specified, called 

the standards known case (i.e. Case K) and second, where the parameters are 

unknown/unspecified (i.e. Case U) and need to be estimated from a Phase I reference sample. 

Most synthetic charts are proposed for Case K but some work is available for Case U.  

 

Moreover, Davis and Woodall (2002) showed that the run-length (RL) distribution of 

the synthetic chart must be obtained under two scenarios called the zero-state and the steady-

state mode, respectively. In the zero-state mode, it is assumed that there is a nonconforming 

sample at time zero. This is known as a head-start feature and Davis and Woodall (2002) 

showed that it is this assumption that made the synthetic chart of Wu and Spedding (2000) 

seem more powerful than several popular competing charts. Zero-state is an important point, 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



62 

 

because when it is ruled-out, as Davis and Woodall (2002) showed, the average run-length 

(ARL) performance of the synthetic chart declines. On the other hand, in the steady-state 

mode, one assumes that the process starts and stays IC for a long time (i.e. the effect of a 

head-start feature has disappeared) and then a process shift occurs at some „random time‟. As 

will be discussed below, one may obtain significantly different performance results for the 

synthetic chart depending on what mode of analysis is assumed. We describe these in the 

sequel. 

 

3.2.1 Parameters known (Case K) 

 

The operation of the synthetic chart to monitor the mean in Case K for both the zero-

state and the steady-state modes is as follows. 

 

Step 1. Determine the LCL of the CRL sub-chart (i.e.    ) and the distance of the control 

limits from the center line (i.e.    ). 

Step 2. Compute the control limits of the  ̅ sub-chart, i.e.     ̅     ̅      
  

√ 
.  

Step 3. Take a random sample of size   at each inspection time point and compute  ̅ . 

Step 4. If     ̅   ̅      ̅, the sample is declared conforming and the control flow returns 

to Step 3. Otherwise, the control flow proceeds to Step 5. 

Step 5. Calculate the number of  ̅ samples between the present and the last nonconforming 

sample. This is the plotting statistic of the     chart, denoted by     . 

Step 6. If       , the process is declared IC and the control flow returns to Step 3. 

Otherwise, an OOC signal is generated and the control flow proceeds to Step 7. 

Step 7. Find and remove assignable cause(s). Then return to Step 3. 

 

The algorithm to determine the optimal values of k and H is discussed below for the 

zero-state and the steady-state, respectively. To illustrate the above, consider the  ̅ sub-chart 

shown in Figure 1 for certain values of  ,          . Based on the   ̅ sub-chart, there are 

nonconforming samples at times, 5, 7 and 11, respectively. We determine the CRL plotting 

statistics between two nonconforming samples, first between times 0 and 5 (assuming a 

signal at time 0):       5, then between times 6 and 7:       2 and finally between times 

8 and 11:       4; see Figure 2. Now, assume that    3 (we show later how   is 

determined), the synthetic  ̅ chart signals once, at time 7.  
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Performance properties of a control chart are typically assessed in terms of its RL 

distribution and the associated characteristics, such as the average (mean), median, 

percentiles, etc. Davis and Woodall (2002) noted that the synthetic chart is the same as a 2-of-

(H+1) runs-rule chart with a head-start feature. Consequently, they suggest using the Markov 

chain (MC) approach discussed in Champ and Woodall (1987) for the runs-rule chart which 

allows calculation of the entire run-length distribution along with associated characteristics 

such as the mean (ARL), the SDRL, percentiles, the cdf, etc. 

 

 

Figure 3.1: A two-sided Shewhart  ̅ control chart 

 

    

 Figure 3.2: A CRL sub-chart 
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Davis and Woodall (2002) showed that the synthetic chart for the mean can be 

represented as a runs-rules chart and used an absorbing Markov chain to model the synthetic 

chart. Let      ( ̅  (       )) (i.e.   is the probability that the first sub-chart, say, 

the  -sigma Shewhart chart for the mean, will mark a sample as nonconforming, that is, the 

corresponding  ̅  plots on or outside the control limits. The probability   can be calculated 

exactly under the assumption of normality both in the IC and OOC cases. Then the elements 

of the transition probability matrix (TPM) of the Markov chain, for any general value of   

are constructed as follows. For the matrix  (       ), the first row contains     in the first 

column and   in the second column; the last row contains     in the first column; in all 

other rows, the entry above the diagonal is     and in all other locations, the entry is zero. 

Thus, the TPM of the synthetic chart is given by 

 

 (       )  (

 (       )

 
  (     )

   
 
 
 
    

 (     )

 
 (   )

 )    (3.1) 

 

where  (       ) is the matrix of transient probabilities given by 

 

  

[
 
 
 
 
 
          

        
      
      
        

        

 

]
 
 
 
 
 

 

 

with  (     ) a vector that satisfies        and a vector  (     ) is given by (       ) , 

  (       ) .  

 

Using  the seven steps “direct approach”, Wu and Spedding (2000a) showed that the 

ARL is given by (see Proof 3.4 in Appendix 3A) 

 

    
 

 (  (   ) )
   (3.2) 
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where      , ̅  (       )-     (   √ )   (    √ ). However, other 

RL characteristics like the cdf, pdf and SDRL were not provided by Wu and Spedding 

(2000a). We will discuss these later. 

 

Equivalence of the synthetic chart and runs-rule chart with a head-start feature 

 

Davis and Woodall (2002) noted that the synthetic chart for the mean is equivalent to the 2-

of-(   ) runs rules chart with a head-start feature (which means assuming there was a 

signal at time zero). To show the equivalence of the two control charts, let    3 and then 

follow the approach given by Davis and Woodall (2002) for a 2-of-4 chart. Suppose that each 

observed sample is classified as either “0” for conforming or “1” for nonconforming. Then 

the sequence 0101 would indicate that the second and the fourth samples are nonconforming. 

Let    (Next sample will be nonconforming), then according to Champ and Woodall 

(1987) the following transition probability matrix would govern the 2-of-4 control chart‟s 

Markov chain. 

 

                       

            
            
            
            

       
            

 

 

For example, assume that the Markov chain is in state “0001”, then the next sample could 

either be “0” or “1”. Thus, if we focus on the last four samples, the next transition could 

either be “0010” or “0011”. That is, the probability to go to state “0010” is    , whereas 

the probability to go to state “0011” is  . The rest of the Markov chain transitions can be 

explained similarly. Thus, taking “0001” as the initial state (assuming that the first sample 

plots outside the control limits i.e. with the head-start feature), then for this 2-of-4 runs-rule 

chart the average time for the Markov chain to eventually reach an absorbing state (i.e. gives 

an OOC signal) is the same as the ARL that results from Equation (3.2). 
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 Zero-state mode 

 

Run-length characteristics 

 

 Using known formulas (see Fu and Lou (2003, Chapter 5)) the zero-state run-length 

pmf and cdf can be obtained as 

 

   ( )            (3.3) 

 

   ( )            (3.4) 

 

respectively, for       … . Note that  (     ) is the vector of initial probabilities associated 

with the transient states and since the second row of   corresponds to the initial state of the 

Markov chain then  (     ) is equal to (         ) . Furthermore, the zero-state ARL and 

SDRL are equal to 

 

      (   )      (3.5) 

 

     √   (   )                (3.6) 

 

respectively. Using direct methods, Scariano and Calzada (2009) and Calzada and Scariano 

(2013b) showed that the ARL and SDRL of the synthetic chart can equivalently be written as 

 

    
 

 (  (   ) )
   (3.7) 

 

     √    

(  (   ) )  
 

1

    ∑  (   )    
   

(  (   ) ) 
    (3.8) 

 

respectively. Note that Expression (3.7) is the same as that first given in Wu and Spedding 

(2000). The advantage of (3.7) and (3.8) are that they can be calculated directly without 
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involving a matrix inversion. However, the advantage of the MC approach of course is that 

the entire run-length distribution is available. 

 

Algorithm to determine   and   

 

 The optimal values   and   are needed to implement the synthetic chart. In short, we 

determine the values of   and   that minimizes the OOC ARL, say     (    ), for a mean 

shift of a given magnitude expressed in units of the process standard deviation,      

         ⁄ , while ensuring that the IC ARL is equal to some given nominal value denoted 

by     . Wu and Spedding (2000b) formulated the following optimization model to 

calculate the optimal values (and hence design the synthetic  ̅ chart) for the zero-state: 

 

Minimize:     (    )  
 

 
 

 

  (   ) 
 

 

where    (    )    , (      √ )   (       √ )-. 

 

 Under the constraint:  
 

  (  )
 

 

  ,    (  )- 
     . 

 

Note that it is possible to write   
       

   √ 
 then    ( )    , (   )   (    )] 

as in Scariano and Calzada (2013a) but this was not done in Wu and Spedding (2000a). We 

follow the method done in Wu and Spedding (2000a). 

 

Here is how the algorithm is implemented: 

 

Step 1. Specify         and     . 

Step 2. Initialize   as 1 and find the corresponding   by solving the constraint function for 

the given     . 

Step 3. Calculate  (    ) and     (    ) from the current   and   for the specified value of 
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Step 4. For    1, compare     (    ) value for the current value of   with that of    1. 

If     (    ) has been reduced, increase   by one and go back to step 3 and continue 

iterating until increasing   no longer reduces     (    ), then go to the next step. 

Step 5. Take the   and   values corresponding to the lowest value of     (    ) as the 

optimal values for the synthetic chart. 

 

Example 

 

In Table 2, we illustrate this algorithm for       0.75 and deduce that the optimal values are 

   2.3218 and    7 (see the boldfaced values in Table 2) for      equal to 370.4. The 

Microsoft® Excel algorithm used to construct Table 3.2 is given in Appendix 3B. 

 

Table 3.2: Values of the     (    ) for different   and   combinations when       0.75 

for    5 with       370.4 

 

        (0.75) 

1 1.9435 6.40581 

2 2.0848 5.16177 

3 2.1640 4.72298 

4 2.2188 4.52441 

5 2.2604 4.43126 

6 2.2939 4.39349 

7 2.3218 4.38795 

8 2.3458 4.40237 

9 2.3667 4.42966 

10 2.3852 4.46542 
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 Steady-state mode 

 

Run-length characteristics 

 

 The run-length distribution of the Shewhart charts can be computed analytically, 

whereas the run-length distribution of other more advanced charts such as adaptive, EWMA, 

CUSUM and synthetic charts have to be approximated numerically since their closed form 

expressions cannot be obtained (see Khoo et al. (2011, 2012)). Thus, to address this problem, 

authors in most cases use the Markov chain. The zero-state Markov chain has already been 

discussed in the previous section and here we discuss the steady-state mode.  

 

 Champ (1992) simplified the procedure for computing the cyclical steady-state 

probability vector, denoted by  , which is explained as follows: 

 

First   is computed by solving       subject to      , where   is the transition 

probability matrix with absorbing states in Equation (3.1). Then   (   )    where   is a 

vector of length     given by 

 

  (    )  u  

 

where   (         )  and  

 

  

[
 
 
 
 

 

     
     
     
     
     

 

]
 
 
 
 

  

 

Note that   is called the steady-state vector that consists of the percentage of time, over many 

samples, that the Markov chain representing the synthetic control chart will be in each 

transient state, conditioned on “no signal”. 
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 Thus, in the steady-state mode, the run-length pmf, cdf, ARL and SDRL are 

respectively given by  

   ( )                    (3.9) 

 

   ( )                (3.10) 

 

      (   )          (3.11) 

 

     √   (   )                      (3.12) 

 

Algorithm to determine   and   

 

 Similar to the zero-state mode, we determine the values of   and   that minimizes 

    (    ), while ensuring that the IC ARL is equal to     . That is, 

 

Minimize:     (    )    (   )    

 

where    (    )    , (      √ )   (       √ )-. 

 

Under the constraint:   (   )         

 

when    (   ). 

 

Then we follow similar steps as in the zero-state mode above. 
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Example 

 

 Consider Table 3, we illustrate how to obtain the optimal values of H and k for the 

steady-state synthetic chart for       0.75. We see that the optimal values are    2.2714 

and    6 (see the boldfaced values in Table 3) for      equal to 370.4. The SAS® program 

to illustrate the construction of Table 3.3 is given in Appendix 3B. 

 

Table 3.3: Values of the     (    ) for different   and   combinations when       0.75 

for    5 with       370.4 

 

        (0.75) 

1 1.9328 8.06444 

2 2.0706 7.01799 

3 2.1472 6.67147 

4 2.1997 6.52295 

5 2.2395 6.46037 

6 2.2714 6.44211 

7 2.2978 6.44829 

8 2.3204 6.47155 

9 2.3401 6.50589 

10 2.3575 6.54747 
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3.2.2 Parameters unknown (Case U) 

 

 For Case U, the unknown parameters    and    are estimated from an IC Phase I 

dataset composed of   subgroups each of   observations. Assuming independence between 

and within samples, a commonly used estimator for    is given by 

 

 ̂  
 

 
∑ ̅ 

 

   

 

 

and a biased estimator  ̂  for    is 

 

 ̂  √
 

 (   )
∑∑(     ̅ )

 
 

   

 

   

  

 

Hence, in Case U, the control limits   ̂  and   ̂  are random variables. Khoo et al. (2008, 

2009), Zhang et al. (2011) and Castagliola et al. (2013) have studied the effect of parameter 

estimation for the synthetic charts. Thus, the conditional probability that in Phase II, an  ̅ 

sub-chart marks the ith sample as nonconforming, given the Phase I parameter estimates, is 

(see Zhang et al. (2011)) 

 

      [ ̅  (  ̂    ̂ )  ̂   ̂ ]               (3.13) 

                                        .
√  ( ̂    )

  
  

√  ̂ 

  
  √ /   . 

√  ( ̂    )

  
  

√  ̂ 

  
  √ /  

 

Further, let   
√ ( ̂    )

  
 and   

√  ̂ 

  
 be the random variables with pdf   (   )  

 (    
 

√ 
) and   (     )      .  |

 (   )

 
 

  

 (   )
/, respectively, where    is pdf of a 

gamma distribution with parameters 
 (   )

 
 and 

  

 (   )
. Using this estimate of   and 

following Case K, one calculates first the conditional and then the unconditional RL 

distribution. Associated run-length distribution characteristics follow from these in a straight 

forward manner. 
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 Zero-state mode 
 

Run-length characteristics 

 

 By replacing   in Equation (3.1) by    in Equation (3.13), then the conditional pmf 

and cdf are given by  

 

   ( )          (3.14) 

 

   ( )          (3.15) 

 

respectively. Whereas the unconditional pdf and cdf of the RL are given by 

 

   ( )  ∫ ∫(       )

 

 

 

  

  (   )  (     )     (3.16) 

 

   ( )    ∫ ∫(     )

 

 

 

  

  (   )  (     )     (3.17) 

 

respectively, see Zhang et al. (2011). Similarly, while the conditional ARL and SDRL are 

given by  

 

      (   )    (3.18) 

 

     √   (   )              (3.19) 

 

respectively, the unconditional ARL (denoted by UARL) and the unconditional SDRL 

(denoted USDRL) are given by 

  

     ∫ ∫(  (   )   )

 

 

 

  

  (   )  (     )     (3.20) 
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      ∫ ∫ √   (   )              

 

 

 

  

  (   )  (     )     (3.21) 

 

respectively. 

 

Algorithm to determine   and   

 

 For the zero-state Case U, we need to determine the values of   and   that minimizes 

the OOC UARL, say      (    ), for a mean shift of     , while ensuring that the IC UARL 

is equal to some given nominal value denoted by     . That is, the optimization model to 

calculate the optimal values for the zero-state for Case U: 

 

Minimize:      (    )  ∫ ∫ (  (   )   )
 

 

 

  
  (   )  (     )     

 

where      (    )   .
√  ( ̂    )

  
  

√  ̂ 

  
  √ /   . 

√  ( ̂    )

  
  

√  ̂ 

  
  √ /. 

 

 Under the constraint:  ∫ ∫ (  (   )   )
 

 

 

  
  (   )  (     )          

 

when      (   ). 

 

Then we follow similar steps as in the zero-state mode for Case K above. An illustration is 

given in Zhang et al. (2011) to determine these optimal values. 
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 Steady-state mode 

 

Run-length characteristics 

 

 Using the steady-state vector,  , it is easy to see that the conditional pmf and cdf are 

given by 

 

   ( )                  (3.22) 

 

   ( )                (3.23) 

 

respectively. Whereas the unconditional pdf and cdf of the RL are given by 

 

   ( )  ∫ ∫(       )

 

 

 

  

  (   )  (     )           (3.24) 

 

   ( )    ∫ ∫(     )

 

 

 

  

  (   )  (     )           (3.25) 

 

respectively. Similarly, while the conditional ARL and SDRL are given by 

 

      (   )          (3.26) 

 

     √   (   )                      (3.27) 

 

respectively, the unconditional ARL (denoted by UARL) and the unconditional SDRL 

(denoted USDRL) are given by 

 

     ∫ ∫(  (   )   )

 

 

 

  

  (   )  (     )           (3.28) 
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      ∫ ∫ √   (   )              

 

 

 

  

  (   )  (     )            (3.29) 

 

respectively. 

 

Algorithm to determine   and   

 

 For the steady-state Case U, we need to determine the values of   and   that 

minimizes the OOC UARL, say      (    ), for a mean shift of a given magnitude     , 

while ensuring that the IC UARL is equal to some given nominal value denoted by     . 

That is, the optimization model for Case U: 

 

Minimize:      (    )  ∫ ∫ (  (   )   )
 

 

 

  
  (   )  (     )     

 

where      (    )   .
√  ( ̂    )

  
  

√  ̂ 

  
  √ /   . 

√  ( ̂    )

  
  

√  ̂ 

  
  √ /. 

 

 Under the constraint:  ∫ ∫ (  (   )   )
 

 

 

  
  (   )  (     )          

 

when      (   ). 

 

Then we follow similar steps as in the zero-state mode for Case K above. 

 

In the following Sections 3.3 and 3.4 we use the structure in Table 3.1 to review the work 

done for the synthetic charts for both univariate and multivariate cases. 
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3.3  Univariate synthetic charts 

 

3.3.1 Parametric variables charts 

 

 A nice review for univariate synthetic charts to monitor the mean and those to monitor 

the variance is done in Khoo (2014). Papers already reviewed by Khoo (2014) will not be 

discussed but will only be mentioned briefly. 

 

Mean 

 

 Synthetic charts to monitor the mean for skewed population were proposed in Khoo et 

al. (2008) and Castagliola and Khoo (2009), see the review by Khoo (2014). Moreover, Khoo 

(2014) reviewed the double sampling scheme proposed in Khoo et al. (2011a).  

 

 Aparisi and de Luna (2009b) formulated an optimization algorithm for no detection of 

shifts in a region of acceptable shifts (i.e. IC region) and at the same time, being able to 

detect shifts considered important (i.e. OOC region). When both the IC and OOC regions are 

considered, the synthetic  ̅ chart seems to be the worst option whereas the side-sensitive 

synthetic  ̅ chart (proposed in Davis and Woodall (2002)) is the best option in steady-state 

mode. Moreover, if the practitioner has no historical data to estimate  , the Taguchi loss 

function given in Aparisi and Garcia-Diaz (2007)  can be used to determine the shift region of 

  to be detected and those which are not to be detected.  

 

 A synthetic chart for individual observation is an integration of the operation of the   

chart and the CRL chart. Hence, Wu et al. (2010) proposed a Syn-  chart, which is a 

combined scheme of the synthetic   chart and the   chart. The first part of the scheme is 

more sensitive to small shifts, whereas the second part is more sensitive to large shifts. The 

Syn-  chart gives an OOC signal when either the charting statistic        (i.e. UCL of 

the   chart) or CRL   . Two indexes called the average extra quadratic loss (AEQL i.e. 

which is the weighted average ARL across the mean shift range) and the average ratio of ARL 

(ARARL) were used as objective functions to measure the overall performance. That is, 

 

      
 

    
∫        ( )
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and 

  

       
 

    
∫  

   ( )

      - ( )

    

 
    

  

respectively, where the mean shift range 0       , where      is the maximum possible 

mean shift. With respect to both these performance measures, it was shown that across the 

entire mean shift range, the Syn-  chart produces smaller OOC ARL values at more shift 

points or at a larger degree compared with the   chart and the synthetic   chart. Furthermore, 

they formulated new non-Markov chain method to derive the zero-state and steady-state ARL 

for the synthetic   chart and the Syn-  chart. 

 

 Zhang et al. (2011) investigated the effect of parameter estimation for the synthetic  ̅ 

chart. They compared the performance of the synthetic  ̅ chart in Case U with that in Case K. 

They showed that the unconditional run-length properties (i.e. ARL, SDRL, cdf) in Case U 

can be significantly different from those in Case K (especially when the number of Phase I 

samples is small), making it inappropriate to using the optimal parameters   and   

corresponding to Case K in Case U. Moreover, they showed that in Case U, new optimal 

parameters (     ) for some given  ,   and   values must be calculated so that the resulting 

ARL is as close as possible to the ARL of Case K. For example, when    5 and    0.2, the 

optimal values of   and   for Case K are 1.1966 and 60, respectively, so that the 

corresponding       127.8 and        167.2. Using the same   and   in Case U 

scenario (with    10), these results in        801.9 and         880.0, whereas the 

alternative parameters,     1.1449 and     98 results in        217.2 and        

 256.1, for this example, these values are as close as possible to the values in Case K. In 

addition, tables were constructed to show how many Phase I samples are required in practice 

for the synthetic  ̅ chart to have similar IC run-length distribution in both Case K and Case 

U. 

 

 Gan (1994) and other authors have argued that the interpretation of the run-length 

based on the ARL can be misleading and complicated, since the shape of the run-length 

distribution changes with the mean shift. Instead, the median run-length (MRL) provides a 
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more meaningful interpretation of the run-length for the IC and OOC performance of the 

charts. Hence, given the pair (   ), the 100  (0     1) percentage points of the run-length 

distribution corresponding to desired values of   and   can be determined as the value    

such that  

 

   (       )          (3.30a) 

 

  (     )          (3.30b) 

 

If    0.5 in Equations (3.30a) and (3.30b), then      is called the median run-length (MRL). 

Thus Khoo et al. (2012) proposed a synthetic  ̅ chart based on the percentage points of the 

run-length with more emphasis on the MRL under zero-state and steady-state modes. For both 

states (i.e. zero and steady) it was observed that the difference between the values of the ARL 

and the MRL is large when the process is IC, but it reduces as the shift increases. 

Furthermore, as with the ARL, the OOC MRL of the synthetic  ̅ chart is always greater than 

that of the EWMA chart, unless the shift is very large.   

 

 The performance of the  ̅ chart is based on the assumption that the mean and the 

standard deviation have been estimated from a homogenous retrospective samples. However, 

Zhang et al. (2009) showed that the  ̅ chart suffers from wide variation from the expected IC 

ARL values, or else becomes insensitive to changes in the process mean. Hence Zhang et al. 

(2009) proposed a t and an EWMA-t charts that do not require estimation of the standard 

deviation from retrospective samples and possesses desirable robustness properties against 

changes in the standard deviation. Thus, Calzada and Scariano (2013a) used the GSC 

approach to propose the synthetic version of the t chart and the EWMA-t chart to monitor the 

process mean using the zero-state mode. The authors used two different methods to evaluate 

the synthetic charts i.e. the     ( ) based on a single specified shift value and the expected 

value of the OOC ARL (i.e.  ,    -) over a range of shifts (see Castagliola et al. (2011)). 

Castagliola et al. (2011) noted that specifying a   of interest beforehand is often too 

restrictive because the quality practitioner may not have historical knowledge of the process, 

or because shifts are not deterministic but follow some unknown distribution, i.e. it is based 

on  ,    - over the support   ( ) (i.e. the pdf of  ) rather than one specific value of  . 

With respect to the zero-state ARL performance, the synthetic EWMA-t chart is better for 
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small shifts, however, for large shifts (i.e.    1.5), the synthetic t chart is the best. 

Moreover, the synthetic EWMA-t and synthetic t charts have somewhat larger SDRL values 

for small shifts when the process is IC. However, the OOC SDRL values decrease sharply for 

medium shifts, so that it is always less or equal to the OOC SDRL values of the non-synthetic 

counterparts. In terms of the  ,    -, the synthetic EWMA-t chart is optimal for small shifts 

whereas, synthetic t chart is optimal for large shifts. Lastly, Calzada and Scariano (2013a) 

noted that the synthetic EWMA-t chart is not as efficient as the synthetic EWMA- ̅ chart but 

the latter suffer from lack of robustness to estimation and changes in the process standard 

deviation. 

 

Variation 

 

 A synthetic chart to monitor a sample range and a sample standard deviation based on 

the zero-state mode were proposed by Chen and Huang (2005) and Huang and Chen (2005), 

respectively. These latter two papers were reviewed in Khoo (2013). To further enhance the 

detection of shifts in variation, Rajmanya and Ghute (2013a, b) proposed a synthetic   chart 

based on the Downton‟s estimator under normal and non-normal data to monitor increases in 

the standard deviation using the zero-state mode. The Downton‟s estimator is given by 

 

  
 √ 

 (   )
∑(  

 

 
(   )) ( )

 

   

 

 

which is an unbiased estimator of   for normally distributed quality characteristics and  ( ) 

corresponds to the order statistics of the observed data for          . When the underlying 

process distribution is normal, it was observed that the synthetic   chart produce significant 

ARL improvement in comparison to the  ,  ,   and synthetic   charts. Moreover, the 

performance of the synthetic   chart is similar to that of the synthetic   chart, however, for 

the Weibull, double exponential and gamma distributions, the synthetic   chart consistently 

produced smaller      values than that of the synthetic   chart for the entire range of shifts 

in the standard deviation. 
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Joint mean and variation 

 

 In some situations, it is necessary to monitor assignable causes attributed to both the 

mean from    to           where     and/or shift in the standard deviation from    

to        where    , i.e. assignable causes that shift the process mean, increase the 

variance, or both. Hence, Costa and Rahim (2006) proposed a synthetic chart based on the 

non-central chi-square (NCS) statistic to jointly monitor the mean and variance using the 

zero-state mode. The authors stated that it is operationally simpler and more effective than 

the joint  ̅ and   chart. In addition, a process is monitored using only one chart instead of 

looking at two charts, separately. Let     ̅     and define,      if      or, –   

otherwise, then the NCS charting statistic is given by 

 

   ∑(           )
 

 

   

 

 

where        . When    ,    (   )
  is distributed as a non-central chi-square 

distribution with   degrees of freedom and a non-centrality parameter         . Finally, it 

was shown that the synthetic NCS chart with     is superior to the joint  ̅ and   chart in 

terms of the ability to detect any kind of process disturbance. 

 

 Chen and Huang (2006) proposed a synthetic MAX chart for normally distributed 

data. The charting statistic is based on the       *     + where   
 ̅   

   √ 
  and   

   2 .
(   )  

  
 /3. Based on the zero-state ARL, the synthetic MAX chart was shown to be 

more effective than the MAX chart and the joint  ̅ and   charts. The variable sampling 

interval (VSI) scheme was applied to the synthetic MAX chart and the authors showed that it 

is more efficient than the fixed sampling interval (FSI) scheme. Costa et al. (2008) further 

proposed a two-stage testing procedure, where, in the first stage, one item of the sample is 

inspected and if its value is close to the target value of the process mean (e.g. if          

   , with   a design parameter of the chart) then this terminates testing, otherwise the 

process goes to the second stage. In the second stage, the remaining items are inspected and a 

NCS statistic is computed taking into account all items of the sample. For this chart the NCS 

statistic is given by 
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   ∑(      )
 

 

   

 

 

where        , with     (      )    . Note that when         and      the i
th

 

sample is classified as nonconforming. Thus, with two-stage sampling, any sample has a 

probability given by Pr,(           )  (    )- to be classified as nonconforming. 

Moreover, the two-stage synthetic NCS chart is insensitive to decreases in the variance, 

except when it is followed by large shift in the mean. 

 

 Lee and Khoo (2013) proposed a synthetic mean square error (MSE) chart using the 

zero-state mode. Assume that   is the target value of the mean, then MSE charting statistic is 

given by 

 

       
  

 ( ̅   ) 

   
 

 

and it follows a non-central chi-square distribution 
  

   
  

 ( ) with   degrees of freedom and 

non-central parameter    0
   

 
1. They showed that the synthetic MSE chart performs 

better than the joint  ̅ and   chart, NCS chart and synthetic NCS chart for a wide variety of 

shifts. Furthermore, the synthetic MSE chart always performs better than the MSE chart for 

all the considered shifts. In addition, for large shifts in the mean, the synthetic MSE chart 

consistently gives smaller      compared to EWMA semi-circle chart (except for some 

cases where shift in the mean are small).  

 

Coefficient of variation 

 

 Given that      (    
      

 ) where    
 ⁄      is the population 

coefficient of variation (CV),   is the shift parameter and    is its IC target value. Let 

    ̅   ⁄  denote the charting statistic of the CV chart for Case K. Calzada and Scariano 

(2013b) proposed a synthetic chart to monitor increases in   using the zero-state mode. They 

followed the same approach as in Calzada and Scariano (2013a) to evaluate the run-length 
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characteristics with respect to a single specified   (    ( )) and using the  ,    - over a 

range of shifts. When the process is IC, the SDRL of the synthetic CV chart is typically larger 

than that of the CV chart. However, the       and the      of the synthetic CV chart 

significantly decrease for some shift  , thereafter. With respect to both the      and 

 ,    -, the EWMA chart has better performance for small shifts of size    1.5, whereas 

for large shifts, the synthetic CV chart has a better performance. 

 

Mean time-between events 

 

 Scariano and Calzada (2003) proposed a synthetic exponential chart; see the review 

by Khoo (2013). More recently, Yen et al. (2013) proposed three synthetic-type control charts 

to increase the sensitivity of the mean time between events (TBE) chart of a homogenous 

Poisson process. In this section, we only review the chart based on the integration of the 

operation of a lower one-sided Erlang‟s (time until the r
th

 event in a Poisson process) chart to 

monitor decreases in the mean TBE and the CRL chart. Using average number of observation 

to signal (ANOS), the authors showed that for the zero-state, the synthetic Erlang (   4) 

chart outperforms the exponential-EWMA chart for all shifts. Whereas for the steady-state, 

the synthetic Erlang (   5) chart is more efficient than the exponential-EWMA chart in 

detecting small to moderate shifts. For large shifts, the synthetic exponential chart and the 

synthetic Erlang (   2) chart perform better than the other charts. 

 

Economic and economic-statistical designs 

 

 Yeong et al. (2012) proposed the first economic model for a synthetic chart. The 

authors formulated an algorithm to find the optimal parameters of the synthetic  ̅ chart which 

minimizes the net sum of all costs involved, so that the chart can be operated at the 

economically optimal level by using the approximation of the cost function in Chung (1990). 

It always assumes that a process starts IC and the time until the assignable cause occurs is 

assumed to be exponential distributed with parameter  . The cost function of this chart has 

14 input parameters, however the only input parameters that have significant effects on the 

cost function are  ,  , the quality cost per hour when the process is IC and OOC, and the cost 

per unit sampled. Sensitivity analysis was done by these authors, and it was further 

investigated in Yeong and Khoo (2013); both these papers stressed that sometimes it is not 
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feasible to operate the chart at the economically optimal point, hence in such a case; there are 

alternative parameters which can be chosen from these values that will incur minimal 

increase in the cost. Yeong et al. (2013a) proposed economic and economic-statistical designs 

under different quality loss functions and investigated the effect of misspecification of the 

type of the loss function, the Taguchi loss function and risk aversion coefficient of the loss 

function where it was shown that the penalty cost results in cases where there are larger 

values of   and longer expected time to sample and interpret one unit. Also the cost function 

for the synthetic  ̅ chart compares favourably with that of the  ̅ chart and EWMA chart. 

 

3.3.2 Nonparametric variables charts 

 

 A control chart is called nonparametric (NP) if its IC run-length distribution is the 

same for every continuous distribution (see e.g. Chakraborti et al. (2001)). To our knowledge, 

so far, only two NP synthetic control charts for Case K have been proposed in the literature, 

i.e. (i) based on the sign test (see Khilare and Shirke (2010)) and (ii) based on the signed-rank 

test (see Pawar and Shirke (2010)). 

 

Operation and optimal values of the NP synthetic chart 

 

 To this end, let     be some unknown continuous distribution with the i
th

 observation 

in the j
th

 sample. The operation of the NP synthetic chart is similar to that in Section 3.2. The 

optimal pair      (i.e. the UCL of the classical NP sub-chart) and   are calculated as 

follows. Let the IC ARL of the synthetic chart be given by    (0) 
 

 
 

 

  (   ) 
 and 

suppose that the desired nominal IC ARL is      and the subgroup size is  . Then we 

compute the    (0) values for all possible values of the      and    1,2,… and choose the 

pair      and   for which the    (0) is closer to     . Khilare and Shirke (2010) as well 

as Pawar and Shirke (2010) illustrate how to calculate these optimal values. 
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Location 

 

 For an ordinary sign chart, define 

 

 sign(      )  {

               

               

              

  

 

so that the sign statistic for the ith sample is given by     ∑     (      )
 
   . Khilare 

and Shirke (2010) proposed a synthetic sign chart and they compared the zero-state ARL 

performance of this chart with the sign chart and the  ̅ chart under normal, double 

exponential and Cauchy distributed data. They observed that the synthetic sign chart has a 

greater detection power for shifts in the median than the sign chart and the  ̅ chart. In 

addition, they observed that the improvement in the ARL is more significant for small to 

moderate shifts, however, for large shifts, the ARL performance declines. 

 

 For an ordinary signed-rank (SR) chart, define 

 

    ∑ sign 
   (      )   

    where sign (      ) ={

               

               

              

  

 

and    
    ∑  (         |      |)

 
    with  (   )   , if     and 0 otherwise, 

where    is target median. Pawar and Shirke (2010) proposed a synthetic SR chart and they 

compared the zero-state ARL performance of then chart with the 1-of-1 SR chart, the 2-of-2 

runs-rule SR chart (see Chakraborti and Eryilmaz (2007)) and the  ̅ chart, under three 

continuous and symmetric (i.e. normal, double exponential and Cauchy) distributions. They 

observed that the synthetic SR chart has a greater detection power for all upwards shifts in the 

process medians than the 1-of-1 chart, 2-of-2 chart and the  ̅ chart. In addition, the zero-state 

ARL performance for different quartiles of the run-length distribution indicated that the 

synthetic SR chart had shorter interquartile ranges for all the three distributions under study. 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



86 

 

Variation 

 

 Khilare and Shirke (2012) proposed a NP synthetic sign chart to monitor the process 

variation for both zero-state and steady-state modes. The charting statistics are given by 

   ∑    
 
   , with 

 

     {

                           

                         

                              

  

 

where    and    are the 1
st
 and 3

rd
 quartiles, respectively. They observed that the synthetic 

sign chart has greater detection power for shifts in the variation than the    and the sign 

charts for all the distributions under consideration, namely the normal, double exponential 

and gamma. However, the superiority of the synthetic sign chart is limited to the zero-state, 

since in the steady-state, the ARL performance declines. Furthermore, the authors proposed a 

NP side-sensitive synthetic control chart to monitor variation based on quartiles and they 

observed that side-sensitive synthetic chart performs better than the synthetic sign chart for 

all distributions that were considered. 

 

3.3.3 Parametric attributes charts 

 

 Attributes control charts are needed in situations when data consist of qualitative 

information, as variables control chart cannot be used. For illustration of the operation of the 

attributes synthetic chart, see Chapter 4. 

 

Fraction/number nonconforming and average/actual number of nonconformities 

 

 Hence Wu et al. (2001) presented the design, operation and zero-state average time to 

signal (ATS) performance for the synthetic    chart. In addition, Wu and Yeo (2001) 

provided the description of the algorithm that can be used to obtain optimal chart parameters 

      and   of the synthetic    chart that minimizes the OOC ATS for some given shift, 

denoted by    (  ), for the input parameters    (IC fraction nonconforming),    (OOC 

fraction nonconforming) and   (i.e. the actual IC ATS), while ensuring that    (  )   . 
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Furthermore, Wu et al. (2001) showed that the synthetic    chart performs better than the 

CRL chart and the    chart, also for some shifts, the    (  ) of the synthetic chart is 50% 

lower than that of the    chart. However, Bourke (2008) showed that the apparent superior 

performance reported in Wu et al. (2001) is due to a limited choice of circumstances for 

making comparisons. Bourke (2008) showed that in the zero-state mode, the geometric 

CUSUM chart (see Bourke (1991)) outperforms the synthetic    chart. In addition, the RL2 

(moving sums of successive pairs of CRLs; see Bourke (1991)) is somewhat inferior to the 

synthetic    chart when the    (  ) is set at a relatively high value of 10000, however, 

when the    (  ) is lowered to 5000, the RL2 performs better than the synthetic    chart. In 

the steady-state mode, the advantage of the synthetic    chart over the    chart is at most 

3%, which is not significant enough to adopt the more complicated synthetic chart. Finally, 

the geometric CUSUM and the RL2 charts always perform better than the synthetic    chart 

in steady-state mode.  

 

 Following Wu et al. (2010), Haridy et al. (2012) proposed a combined scheme of the 

synthetic    chart and the    chart. In addition, they adopted the non-Markov chain 

approach to calculating the steady-state    (  ) of the chart. The authors used the index 

WAATS (weighted average    (  ) produced across a range of fraction nonconforming,   , 

          ) given by 

 

      
 

      
∑   

    

   

    (  ) 

 

to measure the overall performance of the combined scheme chart and they showed that the 

combined scheme is more effective than the    chart and the synthetic    chart by 73% and 

13%, respectively, in terms of the WAATS. 

  

 Castagliola et al. (2013) studied the effect of parameter estimation for synthetic 

attributes charts. An algorithm in Section 3.2 was used to obtain the optimal parameters   and 

  for shifts of sizes    0.25, 0.75 and 1.5 for small, medium and large shifts, respectively. 

Then, using these parameters and the normal approximation to the binomial and Poisson 

distributions, respectively, they evaluated the run-length properties of the synthetic  ,   ,   

and   charts using the Markov chain approach for both Case K and Case U. Note that this is 
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an attributes charts version of what was done in Zhang et al. (2011) for the synthetic  ̅ chart. 

Firstly, the authors showed that the IC ARL and the IC SDRL can be significantly different to 

the corresponding nominal values for both Case U and Case K, more especially when the 

number of Phase I samples ( ) is small in Case U. Thus, it seemed inappropriate to use the 

optimal values of   and   for Case K in the Case U scenario. Hence they suggested 

alternative chart parameters    (  ) and    (  ) which takes  ,   and   as given, then 

computes the alternative parameters such that the IC ARL value corresponding to Case U is as 

close as possible to the IC ARL value for Case K. In addition, they gave an indication of how 

many Phase I samples are required for a chart in Case U to have a similar IC performance to 

that of Case K. More recently, Chong et al. (2014) proposed a DS scheme for the synthetic 

   chart. 
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3.4   Multivariate synthetic charts 

 

 In many applications the data are multivariate and need to be monitored on p 

variables. Let the data vectors   , where           be a random sample from a  -variate 

distribution with mean   and variance  . These vectors represent measurements on   process 

characteristics or variables. Multivariate control charts have been developed in the literature 

to enable joint monitoring of more than one quality characteristic simultaneously, instead of 

using separate classical charts for each of the quality characteristics. See Bersimis et al. 

(2007) for a review of multivariate control charts. Synthetic version of some of these charts 

have been developed. Note that the operation and the algorithm to obtain the optimal design 

parameters   and   are similar as those for the synthetic  ̅ chart, however, in this case   is 

called the Mahalanobis distance used to measure a change in the process mean vector. 

Assume that  ̅ denotes a (   1) vector of sample means,    denotes a (    ) known IC 

covariance matrix and  
 
 denotes a (   1) known IC mean vector. A multivariate version of 

the synthetic  ̅ chart was first proposed by Ghute and Shirke (2008b) and it is an integration 

of the operation of (Hotelling‟s)    sub-chart and the CRL sub-chart. The charting statistic of 

synthetic    chart is given by 

 

     ( ̅    )
   

  ( ̅    ). 

  

 The sample statistics are plotted against an upper control limit,       
 ( ). That is, 

when the process is IC,    has a central chi-square distribution with   degrees of freedom. 

However, when the process is thought to be OOC then    has a non-central chi-square 

distribution with a non-central parameter equal to     (    )
   

  (    )     . 

 

3.4.1 Parametric variables charts 

  

Mean 

 

 Ghute and Shirke (2008b) observed that the synthetic    chart consistently 

outperforms the    chart and the    with runs-rules chart for the entire range of shifts in the 

process mean vector. Also, for large samples sizes and large shifts, the performance of the 

synthetic    chart and the Hotelling‟s    chart are similar. Note, Ghute and Shirke (2008b) 
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only evaluated the ARL for zero-state mode and only considered large shifts. Aparisi and de 

Luna (2009a) considered both the zero-state and steady-state cases as well as small shifts. 

Similar to univariate synthetic charts, the zero-state ARL performance is shown to be always 

better than that of the steady-state. Furthermore, for very small shifts, the synthetic    chart 

cannot compete with the multivariate EWMA (MEWMA) chart, the VSS-   chart and the 

DS-   chart. 

 

 In Aparisi and de Luna (2007), a special synthetic    control chart was proposed, 

such that it does not detect small shifts in the acceptable region (i.e. IC region) but ensures a 

good performance in detecting moderate and large shifts (i.e. OOC region). The chart entails 

specifying two objective functions i.e. first to maximize the ARL in the IC region and the 

second to minimize the ARL in the OOC region. The authors demonstrated that it is possible 

to formulate a zero-state multi-objective optimization using a generic algorithm to find the 

Pareto-optimal front of non-dominated solutions for the optimization problem, so that only 

moderate and large shifts can be detected quickly. Following the univariate synthetic 

weighted standard deviation (WSD) method coined by Khoo et al. (2008), same authors 

proposed a synthetic    chart based on the WSD method aimed to improve the sensitivity of 

the    chart in monitoring (known and unknown) multivariate skewed distributions in 2009, 

using the zero-state mode. Note that when the underlying process distribution is symmetric, 

the synthetic WSD-   chart reduces to a synthetic    chart proposed in Ghute and Shirke 

(2008b). For both Case K and Case U, the authors noted that when the process is IC, the 

synthetic WSD-   chart gives lower FARs compared to the WSD-   chart, the   chart and 

the WSD-EWMA chart when the underlying process is skewed. Furthermore, for OOC cases, 

it has the highest mean shift detection rates among all the charts for skewed populations, 

when moderate and large shifts are of interest based on various values of the skewness. For 

multivariate charts, Khoo et al. (2011b) proposed a synthetic    chart based on the 

percentage points of the run-length with more emphasis on the MRL (this is the multivariate 

version of work done in Khoo et al. (2012)). It was shown that the zero-state MRL 

performance surpasses that of the steady-state. Furthermore, the zero-state mode synthetic    

chart outperforms the MEWMA chart when    1. For steady-state, the OOC MRL values of 

the synthetic    chart are greater than that of the MEWMA chart, unless the shift is large. For 

small shifts (in both states), the    chart was observed to have the worst performance.  
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 Lee (2012) used the GSC procedure to propose a synthetic MEWMA chart using the 

zero-state mode. The charting statistic is given by 

       
    

      

where    
 (

 

   
)  , with    an identity matrix and        (   )     with    a zero 

vector and    is a vector of   quality characteristics observed at j
th

 sample. The authors show 

that the synthetic MEWMA chart is always faster than the MEWMA chart and the synthetic 

   chart in detecting shifts, as well as the    chart (when the sample size is small). However, 

for very large  , the synthetic MEWMA chart has a better performance than the    chart for 

small and moderate shifts. Lee et al. (2013) further used the GSC procedure to propose a 

synthetic multivariate CUSUM (MCUSUM) chart for detecting shifts in the mean vector 

using the zero-state mode. Let    be the standardized sample mean, that is, independently 

normal, each with   different quality components of interest. The charting statistic is given 

by 

 

      ,  
   

    -
    

  

with  

 

   {
(           ) (  

 

  
)          

             

 

 

where    *(           )
   

  (           )+
    where     is the reference 

value and    is the covariance matrix in correlation form. The authors noted that, in practice, 

it is impossible to specify the exact size of the shift in the mean vector, hence; they proposed 

an index to evaluate the overall performance of the chart over a range of pre-specified shifts 

i.e. the average ratio of steady-state ARL (ASARL) which is given by 

 

      
 

   
∑

                            

                               

 

   

 

 

where   is the number of steady-state ARL (SARL) for the control chart and       

 

 
(     ), where [     ] is the pre-specified shift range. Thus, with respect to the ASARL, 
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the synthetic MCUSUM chart performs better than the MCUSUM, the synthetic    and the 

   charts in detecting a specified range of shifts. Also, it performs slightly better than the 

synthetic MEWMA chart in detecting moderate to large shifts.  

 

 The methods reviewed so far for the multivariate synthetic charts were for fixed 

sampling scheme (FSS) scheme. The first VSS scheme was proposed by Khoo et al. (2013) 

namely a synthetic    chart based on the DS method using the zero-state mode. The synthetic 

DS chart operation is more complicated since a sample is classified as conforming or 

nonconforming depending on the information given by not only the first sample, but the joint 

information on the first and second sample. In addition, the DS synthetic chart requires 

calculation of six parameters for some given  , whereas the FSS synthetic chart requires only 

two (  and  ). Furthermore, the authors observed that the synthetic DS-   chart performs 

better than the DS-   chart for almost all shifts based on the      and the      . 

Moreover, the MEWMA chart only outperforms the synthetic DS-   chart for small shifts of 

size    0.5. 

 

Variation 

 

 Ghute and Shirke (2008a) proposed a synthetic     chart to monitor shifts in the 

covariance matrix of bivariate and multivariate processes. This chart is based on the use of 

the determinant of the sample covariance matrix called the generalised variance, i.e. 

 

    |
 

 
∑(    ̅)(    ̅) 

 

   

|  

 

The (zero-state) ARL performance is based on the determinant ratio (DR) of the IC and OOC 

covariance matrix i.e.             , where a value equal to one implies the process is IC, 

however, when     1 or     1, the dispersion variable is thought to have increased or 

decreased, respectively. For the bivariate case, the authors observed that the synthetic     

chart outperforms the     chart, the adaptive sample size     chart and the bivariate EWMA 

chart. For the multivariate case, the synthetic chart consistently produces smaller      

values than the multivariate     chart. Note that Lee and Khoo (2013) applied the VSI scheme 

to the synthetic     chart. In Machado et al. (2009a) a synthetic VMAX chart, to monitor the 
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covariance matrix of two correlated quality characteristics, say   and  , is proposed, 

assuming that the underlying process is a bivariate normal distribution with the analysis done 

for both zero-state and steady-state. The points plotted on this chart correspond to the 

maximum of the values of the two variances i.e. VMAX = max(  
 ,   

 ). The IC and OOC 

covariance matrix are given by 

 

   4
  

    

     
 5   and      4

      
        

             
 5, 

 

respectively. They observed that the synthetic VMAX chart is more efficient than the     

chart. In addition, it has a similar performance to that of the VMAX chart, except for 

situations where   is small and the assignable cause(s) affects only one variable (i.e.     & 

    or     &    ).  

 

Joint mean and variation 

 

 Ghute and Shirke (2007) proposed the use of the combined scheme involving 

simultaneous use of the synthetic    and the synthetic     chart for normally distributed data. 

It was found that, as the mean shifts and/or the variability in the covariance matrix increases, 

the zero-state ARL performance comparison indicated that the combined synthetic scheme 

performs better than the combined    and     chart for the entire range of shifts in the 

process parameters. Machado et al. (2009b) used the concept of VMAX, introduced in 

Machado et al. (2009a), to propose a synthetic MVMAX chart to jointly monitor the mean 

vector and covariance matrix of a bivariate process. Consider the two correlated variables 

(   ) with sample means ( ̅,  ̅) and sample variances (  
 ,   

 ). Then the charting statistic of 

this chart is given by V = max{|  |, |  |,   ,   }, where    √ ( ̅    )   ,    

√ ( ̅    )   ,           and          . The parameter   is required to attend the 

imposed condition that during the IC period, the four statistics have the same probability to 

exceed the UCL of the MVMAX sub-chart. The authors showed that the synthetic MVMAX 

chart is faster than the NCS chart and the joint    and     chart except when the correlation 

between   and   is high. Moreover, the authors noted that the higher the correlation the 

better the performance of joint    and     chart. 
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Economic and economic-statistical designs 

 

 Yeong et al. (2014a) proposed an economic design and an economic-statistical design 

for the synthetic    chart. An algorithm to find the optimal parameters of the synthetic    

chart, which minimizes the net sum of all the costs involved, was derived so that the chart can 

be operated at an economically optimal level. For this chart the cost function consists of 15 

input parameters and the   quality characteristics follow a multivariate normal distribution 

with mean vector   and covariance matrix  . The assignable cause is assumed to be 

exponential distributed with parameter  . The authors observed that the synthetic    chart 

yields lower minimum cost than the    chart for all examples, under both economic and 

economic-statistical designs. Furthermore, the economically optimal design for the    chart 

results in weaker statistical performance compared to the synthetic    chart. Furthermore, 

they showed that the optimal parameters are quite robust to changes in the input parameters, 

except   and  , thus care should be taken when approximating these. Moreover, the synthetic 

   chart outperforms the MEWMA chart, except for small   and when a long time is 

required to sample and interpret one unit. The multivariate version of the work discussed in 

Yeong et al. (2013) and Yeong and Khoo (2013) has been done in Yeong et al. (2014b) and 

Yeong et al. (2014c), respectively. 

 

3.4.2 Nonparametric variables charts 

 

Location 

 

 Bennett (1964) proposed a NP bivariate SR statistic which is computed for each 

variate in    (       ) using   observations in a sample. Let    and    be the two signed-

rank statistics corresponding to two variables. For the i
th

 variate, define the signed-rank 

statistic 

 

    ∑  (   )
 
    (   )   for        

 

where 
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 (   )  {
          

           
 

 

and  (   ) is the rank of |   | among      ,      , …,      . Let  (       )     for 

     . Then, the Bennett‟s SR statistic is given by 

 

   (   )  ̂  (   )    

  

where,   (     ) ,    (     )  and   (
      

      
) is the variance-covariance matrix of 

the vector  . When     , the statistic   is asymptotically   ( ) distributed. The chart 

indicates that a process has shifted when        . Thus, Ghute and Shirke (2012) 

developed a control chart based on the integration of the operation of the bivariate SR chart 

and a CRL chart. They observed that the     ( ) of the bivariate synthetic SR chart is 

smaller than that of the    chart for small shifts in the location, whereas for large shifts the 

performance of the bivariate synthetic SR chart is equivalent to that of the    chart. Under a 

heavy tail bivariate double exponential distribution, the bivariate synthetic SR chart is 

uniformly better than the     chart. However, when the data is normal, then the two charts 

have an equivalent performance. 

 

3.4.3 Parametric attributes charts 

 

Fraction/number nonconforming 

 

 In multi-attribute process, a product has different types of defects. A single multi-

attribute chart can be used to monitor the number of nonconforming units found in a sample 

of size n with respect to the   attributes (or defect types). In this case, a unit is classified as 

nonconforming if any of the   types of defects is found. Haridy et al. (2013) used the multi-

attribute    chart design discussed in Jolayemi (1999) to propose a multi-attribute synthetic 

   chart and a combined scheme of the multi-attribute synthetic    chart and multi-attribute 

   chart (i.e. a multi-attribute version of the scheme in Haridy et al. (2012)). They used the 

index     (average number of defectives produced across a range of fraction 

nonconforming,   ,           ) given by 
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∑   

    

   

    (  ) 

 

to measure the overall performance of the control chart. They observed that the combined 

scheme is more effective than multi-attributes    chart and synthetic    chart by 83% and 

27%, respectively, in terms of    . 
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3.5   Other synthetic-type charts 

 

 All the synthetic charts reviewed to this point were based on the second sub-chart 

being the CRL. However, other synthetic-type charts with a different second sub-chart have 

been proposed in the literature. To our knowledge, three such other synthetic-type charts exist 

and these have a second sub-chart called the GCRL, CQC-  and CCC-  based on the 

geometric, gamma and negative binomial distributions, respectively. Consider the GCRL 

sub-chart; this chart is similar to the CRL sub-chart, except in the decision making procedure. 

The GCRL gives an OOC signal when the first CRL charting statistic is less or equal to   or 

any two consecutive CRL charting statistics are both less than or equal to   for the first time. 

That is, when        or        &          for    2,3,…, then the process is 

considered OOC. Suppose that defects in a process occur according to a Poisson distribution 

with parameter   per unit quantity of product. Then the number of units required to observe 

exactly   (  2) defects has an Erlang or gamma distribution. Hence the chart to monitor TBE 

until the  th
 event in a Poisson process is called the CQC-  (see Fang et al. (2013)). The 

CCC-  chart is based on the quality characteristic to monitor the cumulative count of items 

inspected until observing   (  2) nonconforming items (see Mishima et al. (2002)).  

 

 Fang et al. (2013) proposed a synthetic exponential chart and a synthetic Erlang chart 

by integrating the operation of an exponential chart and an Erlang chart, respectively, with a 

GCRL chart. These synthetic charts were shown to perform better than their non-synthetic 

counterparts in detecting mean shifts of all sizes for both zero-state and steady-state modes. 

Kusukawa and Ohta (2005) proposed a synthetic confirmation sample (CS) chart for a high 

yield process by integrating the operation of the CS (proposed in Steiner (1999)) and the 

CQC-  chart. Two additional synthetic charts for high yield processes with a CCC-  sub-

chart were proposed in Mishima et al. (2002) and in Kusukawa et al. (2008) with a CS sub-

chart and an EWMA sub-chart, respectively. All three of these latter synthetic charts were 

shown to have better performance than their non-synthetic counterparts. 
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3.6   Concluding remarks 

 

 In this chapter, the synthetic charts for variables (parametric and nonparametric) and 

attributes (parametric) for univariate and multivariate data were reviewed. It is worth noting 

that a significantly large part of this review is based on variables synthetic charts whereas 

synthetic charts based on discrete and nonparametric distribution is little. For synthetic charts, 

it is important for a practitioner to indicate (clearly) whether zero-state or steady-state 

analysis was used to evaluate the run-length distribution since significantly different 

performance results are obtained depending on what state is assumed. For most comparisons 

done using the zero-state, the synthetic chart outperformed the non-synthetic counterparts for 

various shifts. This is because of the implicit head-start feature given to this method, which 

gave it a large overall zero-state advantage. When ruled out, the run-length performance 

deteriorates. Therefore, care needs to be taken when making conclusions about the 

performance of a synthetic control chart. 
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3.7   Appendices 

 

3.7.1 Appendix 3A: Proofs of Equations 

 

 The proofs of the results and equations given in Chapter 3 are provided in this 

appendix. 

 

Proof 3.1 - Equation (3.1) 

 

 Note that the proof for Equation (3.1) follows directly from the example illustrating 

the equivalence of the runs-rules chart and the synthetic chart; see Davis and Woodall (2002). 

 

Proof 3.2 - Equation (3.3 & 3.4) 

 

 Kritzinger (2011, p. 213) showed, using the methodology in Fu et al. (2002), that  

 

 (    )       (   )  (A3.1) 

 

where   is the initial vector associated with TPM. Thus taking      yields 

 

 (    )     ( )       (   )           (A3.2) 

 

as given in Equation (3.3). Moreover, Kritzinger (2011, p. 220) showed that  

 

 (    )        . (A3.3) 

 

Similarly, it follows that Equation (3.4) is given by 

 

 (    )     ( )         . (A3.4) 
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Proof 3.3 - Equation (3.5 & 3.6) 

 

 Fu and Lou (2003, p. 73) proved that the first moment is given by  (   )   . Thus 

taking      yields 

 

     (   )       (   )    (A3.5) 

 

as given in Equation (3.5). Furthermore, Kritzinger (2011, pp. 215-216) derived the second 

moment using the method in Fu and Lou (2003, Chapter 5) and showed that the standard 

deviation of the run-length is equal to  

 

     √  (   )(   )    (  (   )   ) . (A3.6) 

 

However, in Latouche and Ramaswani (1999) Equation (A3.9) is given by 

 

     √   (   )     (   )     . (A3.7) 

 

Hence, our aim here is to show that Equations (A3.6) and (A3.7) are the same. Accordingly, 

we use the moment generating function in Fu et al. (2002): 

 

 ( )  (    )  (     )     . (A3.8) 

 

Hence, without showing the calculations, we follow the steps in Kritzinger (2011, p. 215), 

with the first moment being equal to 

 

 (  )    ( )      (     )    (  ( )    )  (     )      

   (   )                                             (A3.9) 
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Following this, the second moment is equal to 

 

 (   )     ( )      (     )      ( )  (     )                                

 (   ( )    )  (     )            

  (  ( )    ( ))  (     )     . 

 

                       (   )      (   )       (   )    . (A3.10) 

 

Equation (A3.6) Equation (A3.7) 

   (  )   (   )   (  )  
   (   )      (   )       (   )    

 (  (   )   )  

   (  (   )    (   )   )(   )   

 (  (   )   )  

   ((   )     )(   )  (   )   

 (  (   )   )  

   (   )(   )    (  (   )   ) . 

 

 

      √  (   )(   )    (  (   )   )  

   (  )   (   )   (  )  
   (   )      (   )       (   )    

 (  (   )   )  

 (  (   )       (   )    )

 (  (   )   )  (  (   )   ) 

    (   )     (   )      

 

 

 

 

      √   (   )     (   )      

 

Therefore Equations (A3.6) and (A3.7) are the same. 

 

Proof 3.4 - Equations 3.7 & 3.8 

  

 Scariano and Calzada (2009) proposed alternative formulas to represent Equations 

(3.5) and (3.6). These formulas are preferred by authors in the literature because the ARL and 

the SDRL can be calculated without involving a matrix inversion. 

 

Let  ( ) denote the probability that an  ̅ sub-chart will not mark a sample as nonconforming 

on the first subsequent sample after a shift in the process mean from    to        with 

   . The detection power of the  ̅ sub-chart is given by    1   ( ). Calzada and 

Scariano (2001) noted that since the  ̅ and the CRL sub-charts work in tandem to signal an 

OOC status, we then need proceed as follows in order to calculate the ARL and the SDRL: 

 

Let    denote the number of samples observed until the  th
 nonconforming sample mean is 

signalled from the  ̅ sub-chart. Let     0, it follows that (     ) follows a geometric 
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distribution with parameter  . Define   ,   ,… similarly and note that the increments (   

  ), (     ), (     ),… are mutually independent, each having a geometric distribution 

with parameter   and an expected value of 

 

 (       )  
 

 
  (A3.11) 

 

As defined in Section 1.10, N denotes the first index for which a signal is given in the CRL 

sub-chart with LCL denoted by  . That is, N  geo( ,       - )   geo(  (   )  ). 

The first and second moments of N are given by 

 

 ( )  
 

  (   ) 
 (A3.12) 

 

and 

 

 (  )  
  (  (   ) )

(  (   ) ) 
 

  (   ) 

(  (   ) ) 
  (A3.13) 

 

Moreover, let M denote the run-length variable of some basic sub-chart. The run-length is 

known to have a geometric distribution with a probability of marking a sample as 

nonconforming given by  . Thus, the pmf, first and second moments of the random variable 

M are given by 

 

 (   )   (   )    (A3.14) 

 

 ( )  
 

 
 (A3.15) 

 

 (  )  
   

  
  (A3.16) 

 

respectively. Note, 
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 ,(       )   -   ,   - (A3.17) 

  

 ,(       )-   , - (A3.18) 

  

 ,(       )
 -   ,  -. (A3.19) 

 

Since the synthetic chart signal at the first index, say l, for which          , the 

increments         and N are not mutually independent. Thus the conditional pmf of 

        given     is used to find the average and standard deviation of the run-length. 

 

 The ARL of the synthetic chart is given by  

            (  )   ( ,      -)   ( [∑(       )

 

   

] |   )         

               ((   )
 ( )

 (   )
[∑    (   )

   

])   ( )  [∑    (   )

 

   

] 

  ( ) [∑    (   )

   

]   ( )  [∑    (   )

 

   

]                    

  ( )  [∑    (   )

 

   

]                                                             

                   ( )   ( )  

 

Therefore from Equations (A3.12) and (A3.15) it follows that  

 

                        
 

 
 

 

  (   ) 
  (A3.20) 
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 The SDRL of the synthetic chart is calculated as follows.  

 

   (  )   ,   (      )-     , (      )- 

  [   (∑(       )

   

   

 (       )    )]     [ (∑(       )

   

   

 (       )    )] 

    ,         -   (   )     ,           -    ,         -     (   ) 

 {
 ( )

 (   )
∑     (   )

 

     

 
  ( )

  (   )
( ∑    (   )

 

     

)

 

} (   )   ( ) {∑     (   )

 

   

}

   ( ) {∑    (   )

 

   

}

 

 
  ( )

  (   )
{ ∑    (   )
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 ( )   (   ) 

  ( )   (  )  
  ( )

 (   )
( ∑    (   )
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   ( ) {∑    (   )
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{ ∑    (   )

 

     

}

 

 

  ( )   (  )    ( ) {( ∑    (   )
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 Hence, using Equations (A3.12) to (A3.16) it follows that 

 

   (  )  (
 

  (   ) 
) (

   

  
)  (

 

  (   ) 
)
 

(
 

 
) {

 

 
  ∑    (   )   

 

   

} 

 
   

  (  (   ) )
 

 

(  (   ) ) 
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)  (

 

 
   ∑   (   )   

 

   

)} 

 
   

  (  (   ) )
 

 

(  (   ) ) 
 {

 

  
  ∑   (   )   

 

   

}  

 

 Therefore, the SDRL is given by 

 

     √
   

  (  (   ) )
 

 

(  (   ) ) 
 {

 

  
  ∑   (   )   

 

   

}  (A3.21) 
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3.7.2 Appendix 3B: SAS® programs 

 

 Optimal search algorithm to determine k and H 

 

(i) Zero-state mode 

 

In Table 3.2, we illustrate this algorithm for    0.75,    5 and      equal to 370.4 is 

easily done using Microsoft® Excel: 

 

Step 1. Specify    0,    1,   5,    0.75. 

Step 2. Assume on the previous iteration    1 and we obtained     (    )   6.40581. 

Now, take    2. 

Step 3. Find   by solving 

 

  (  )
 

 

  ,    (  )- 
        

The corresponding value of   when    2 is 2.085 (using the Solver tool on 

Microsoft® Excel). 

Step 4. First calculate    (    )    [ (          √ )   (       

    √ )] and     (    )  
 

 
 

 

  (   ) 
  5.16177. 

Step 5. Since     (    ) is equal to 6.40581 when    1 and when    2 it is equal to 

5.16177, then according to the algorithm we go back to Step 3. We continue with 

these iterations until increasing   no longer decreases the corresponding     (    ). 

In a situation, we then proceed to Step 6. 
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(ii) Steady-state mode 

 

proc iml; 

 

ARL_0=370.4; 

mu=0; stdev=1; 

shift=0; n=1; 

 

do H=1 to 10; 

Q=J(H+1,H+1,0); 

a1=J(1,4,99999); 

one=J(H+1,1,1); 

initial_vec=J(H+1,1,0); 

initial_vec[2]=1; *head-start feature; 

G=J(H+1,H+1,0); 

G[1,]=1; G[1,1]=2; 

 

do j=2 to H+1; 

G[j,j]=1; 

end; 

u=J(H+1,1,0); 

u[1,1]=1; 

I=I(H+1); 

*print G, u, I, initial_vec; 

 

do k=1 to 3 by 0.0001; 

theta=1-cdf("Normal",k-shift*sqrt(n),mu,stdev)+cdf("Normal",-k-  

        

 shift*sqrt(n),mu,stdev); 

Q[1,1]=1-theta; 

Q[1,2]=theta; 

Q[H+1,1]=1-theta; 

do jj=2 to H; 

Q[jj,jj+1]=1-theta; 

end; 

inv=inv(I-Q); 

 

q1=inv(G-(Q)`)*u; 

s=inv((one)`*q1)*q1; 

*print G, u, I, Q, inv, one, s; 

ARL_vec=inv*one; 

ARL=s`*ARL_vec;*Using Markov chain (see Fu and Lou (2003));  

diff=abs(ARL-ARL_0); 

a=k||theta||ARL||diff; 

a1=a1//a; 

k___theta___ARL___diff=a1[2:nrow(a1),]; 

call sort(k___theta___ARL___diff,{4});  

optimal_K=k___theta___ARL___diff[1,1]; 

ICARL=k___theta___ARL___diff[1,3]; 

end; 

 

print H optimal_K ICARL; 

end; 

run; 

quit; 
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 Zero-state ARL calculation 

 

 A direct calculation using Equation (3.2) in Microsoft® Excel is much easier to use. 

 

 Steady-state ARL calculation 

 

 We use the following SAS® program to calculate the ARL values: 

 

proc iml; 

H=6; 

k=2.2714; n=5; 

ARL_0=370.4; 

mu=0; stdev=1; shift=0.75; 

a1=J(1,2,99999); 

*do shift=0 to 3 by .1; 

Q=J(H+1,H+1,0); 

one=J(H+1,1,1); 

initial_vec=J(H+1,1,0); 

initial_vec[2]=1; *head-start feature; 

G=J(H+1,H+1,0); 

G[1,]=1; G[1,1]=2; 

 

do j=2 to H+1; 

G[j,j]=1; 

end; 

u=J(H+1,1,0); 

u[1,1]=1; 

I=I(H+1); 

theta=1-cdf("Normal",k-shift*sqrt(n),mu,stdev)+cdf("Normal",-k-

shift*sqrt(n),mu,stdev); 

Q[1,1]=1-theta; 

Q[1,2]=theta; 

Q[H+1,1]=1-theta; 

do jj=2 to H; 

Q[jj,jj+1]=1-theta; 

end; 

inv=inv(I-Q); 

q1=inv(G-(Q)`)*u; 

s=inv((one)`*q1)*q1; 

ARL_vec=inv*one; 

ARL=s`*ARL_vec;*Using Markov chain (see Fu and Lou (2003));  

a=shift||ARL; 

a1=a1//a; 

shift___ARL=a1[2:nrow(a1),]; 

*end; 

print shift___ARL; 

run; 

quit; 
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3.7.3 Appendix 3C: Comparison of four variables charts to monitor the process mean 

 

Introduction 

 

 There is a vast number of control charts that have been proposed in the literature to 

monitor the process mean. In this section, we compare the performance of four different types 

of control charts to monitor the process mean for variables data. The four control charts are 

(i) the Shewhart  ̅ chart, (ii) the synthetic chart (see Wu and Spedding (2000)), (iii) the 2-of-2 

KL runs-rule chart (see Klein (2000)), and (iv) the 2-of-3 KL runs-rule chart (see Klein 

(2000)). In this comparison, it is assumed that the quality characteristics are normally 

distributed with a known mean    and a known standard deviation   . 

 

Markov chain approach 

 

 The transition probability matrix (TPM) of the Markov chain for any general (integer) 

value of    0 are given by 

 

 (       )  (

 (   )

 
  (   )

   
 
 
 
    

 (   )

 
 (   )

 )  (A3.22) 

 

where  (   ) is the matrix of transient probabilities, the vector  (   ) satisfies        

with  (   )  (       )  and   (       ) . Fu and Lou (2003, p. 73) proved that the 

first moment of the run-length is given by  (   )   , where   is the initial probability 

vector, that is, 

 

     (   )    (A3.23) 

 

Furthermore, it can be shown that the second moment using the method in Fu and Lou (2003, 

Chapter 5) that the standard deviation of the run-length is equal to 

 

     √ (   )(   )    ( (   )   ) . (A3.24) 
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Shewhart  ̅ chart 

 

 The upper and lower control limits of the Shewhart  ̅ chart are given by     ̅ 

    ̅      
  

√ 
. Since it is customary to use    3, so that three-sigma limits are 

employed (see Montgomery (2013, p. 236)), thus we use this value to implement the  ̅ chart. 

 The ARL is given by  

 

    
 

   (   √ )   (    √ )
 (A3.25) 

 

where   
       

  
 denotes the value of the shift in the process mean, where    is the OOC 

mean. 

 

Synthetic chart 

  

 In Table A3.1 we give the optimal values of   and   using the algorithm in Wu and 

Spedding (2000) for the zero-state and steady-state modes. Davis and Woodall (2002, see p. 

202 & p. 204) showed that using the same optimal values of   and   in the zero-state and in 

the steady-state modes one obtains significantly different performance results for the 

synthetic chart, implying that results depend on which mode of analysis is assumed. 

Moreover, in Table A3.1 we see that the values of k in zero-state and steady-state are 

different, with the steady-state values of k being lower than those in zero-state. Thus, it is our 

opinion that Davis and Woodall (2002, see p. 202) used approximately correct values for k in 

their Table 1, however, in their Table 2 (see Davis and Woodall (2002, p. 204)) the values of 

k are incorrect. This is further supported by the fact that in Davis and Woodall (2002, p. 

204)‟s Table 2, all the values of the IC ARL are much higher than 370.4. The correct values 

of k for the steady-state mode are given here in Table A3.1 obtained using a SAS® program 

given in the Appendix 3B. 
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Table A3.1: Optimal values of H and k with the corresponding values of in-control ARL for 

the zero-state and steady-state modes for a nominal ARL of 370.4 

 

H 
Zero-state Steady-state 

k IC ARL k IC ARL 

1 1.9435 370.4 1.9328 370.3 

2 2.0848 370.4 2.0706 370.4 

3 2.1640 370.4 2.1472 370.5 

4 2.2188 370.4 2.1997 370.3 

5 2.2604 370.4 2.2395 370.4 

6 2.2939 370.4 2.2714 370.4 

7 2.3218 370.4 2.2978 370.3 

8 2.3458 370.4 2.3204 370.3 

9 2.3667 370.4 2.3401 370.4 

10 2.3852 370.4 2.3575 370.5 

20 2.5032 370.4 2.4666 370.4 

30 2.5690 370.4 2.5261 370.4 

40 2.6142 370.4 2.5663 370.4 

50 2.6483 370.4 2.5963 370.4 

 

2-of-2 KL runs-rule chart 

 

 The 2-of-2 KL runs-rule chart was proposed in Klein (2000) where a control chart 

gives an OOC signal when either two successive points plot above an UCL, or two successive 

points plot below a LCL. Splitting a control chart into three regions i.e. one above the UCL 

(upper region), one below the LCL (lower region) and one between the control limits (center 

region). Denote the corresponding probability of a point falling in each region as   ,    and 

 , respectively. Thus using the Markov chain approach, the transient states matrix is given by  

 

  [ 

     
    
    

 ]  

 

Note state {1} (column 1) in the above matrix indicate no points beyond either of the control 

limits, state {2} (column 2) a point above UCL and state {3} (column 3) a point below LCL. 

Klein (2000) showed that the optimal value of   is equal to 1.781419. The above probabilities 

are given by       (   √ ),       (    √ ) and          . The 

ARL is given by Expression (2) with    1.781419 and   (        ). 
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2-of-3 KL runs-rule chart 

 

 The 2-of-3 KL runs-rule chart was proposed in Klein (2000) where a control chart 

gives an OOC signal when either two of three successive points plot above an UCL, or two of 

three successive points plot below a LCL. Similarly, using the Markov chain approach, the 

transient states matrix is given by  

 

  

[
 
 
 
 
 
 

 

         
        
        
       
        
        
       

 

]
 
 
 
 
 
 

  

 

Note state {1} (column 1) in the above matrix indicate two successive points between the 

control limits, state {2} (column 2) a first point between control limits and the second point 

above UCL, state {3} (column 3) a first point between control limits and the second point 

above LCL, state {4} (column 4) a first point above the UCL and the second below the LCL, 

state {5} (column 5) a first point above the UCL and the second between control limits, state 

{6} (column 6) a first point above the LCL and the second between control limits, state {7} 

(column 7) a first point above the LCL and the second point above the UCL. Klein (2000) 

showed that the optimal value of   is equal to 1.930701. The ARL is given by Expression (2) 

with    1.930701 and   (        ). 

 

Discussion 

 

 In Table A3.2 we observe that the 2-of-3 KL chart performs better than all the other 

charts for small shifts of size    0.6. Moreover, the 2-of-3 KL chart always performs 

equally as or better than the 2-of-2 KL chart and equally as or better than the Shewhart  ̅ 

chart except when    2.7. The 2-of-2 KL chart better than the Shewhart  ̅ chart and the 

zero-state synthetic chart when    0.4. Also the Shewhart  ̅ chart performs equally as the 

zero-state synthetic chart when    5. Finally, for moderate to large shifts (i.e.    0.6), the 

zero-state synthetic chart performs better than all the other charts. In addition, as the shift 
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increase from medium to large, the optimal values of H decrease from a large value to a small 

value. 

 However, in Table A3.3, the 2-of-3 KL chart performs better than all the other charts 

for small to medium shifts of size    1.7 (that is, a large degree of shifts compared to zero-

state). Similarly, the 2-of-2 KL chart also now performs better than the Shewhart  ̅ chart and 

the steady-state synthetic chart for a larger degree of shifts than in zero-state (i.e.    1.3). 

Moreover, the Shewhart  ̅ chart performs better than the all the other charts for shifts of size 

  equal to 4 and 5. Finally, for the  steady-state, the synthetic chart only performs better than 

the other charts for shifts of size 1.7     3. 

 With respect to the deterioration in the performance of the synthetic chart from the 

zero-state to steady-state mode, this was originally observed by Davis and Woodall (2002) 

and has been well documented by a number of authors in the literature. Moreover, it goes 

without say that the 2-of-3 KL chart performs well for small shifts and this chart is 

recommended if such shifts are of interest. Whereas, for moderate to large shift the synthetic 

chart yields better results than the competing charts discussed here. 
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Table A3.2: Comparison of the ARL values for the zero-state synthetic chart (for various values of H and k), 3   ̅ chart, 2-of-2 KL chart and the 

2-of-3 KL chart 

 

 

 

H 1 2 3 4 5 6 7 8 9 10 20 30 40 50 3  

limits 
2-of-2 KL 2-of-3 KL 

k 1.9435 2.0848 2.1640 2.2188 2.2604 2.2939 2.3218 2.3458 2.3667 2.3852 2.5032 2.5690 2.6142 2.6483 

Shift 

0 370.4 

354.2 

370.4 

352.3 

370.4 

351.3 

370.4 

350.5 

370.4 

350.0 

370.4 

349.5 

370.4 

349.1 

370.4 

348.8 

370.4 

348.5 

370.4 

348.3 

370.4 

346.9 

370.4 

346.1 

370.4 

345.7 

370.4 

345.4 

370.4 

352.9 

370.4 

342.0 

372.7 

0.1 341.6 

0.2 311.5 305.3 301.8 299.5 297.7 296.3 295.1 294.1 293.3 292.5 288.1 286.0 284.8 284.1 308.4 276.7 271.6 

0.3 255.4 245.1 239.5 235.7 232.9 230.7 228.9 227.4 226.1 225.0 218.5 215.6 214.0 213.1 253.1 207.1 199.5 

0.4 198.9 186.3 179.7 175.3 172.1 169.6 167.6 165.9 164.5 163.3 156.5 153.7 152.3 151.6 200.1 150.3 142.3 

0.5 149.8 136.9 130.3 126.1 123.0 120.6 118.8 117.2 115.9 114.8 109.0 106.8 105.9 105.6 155.2 108.5 101.4 

0.6 110.7 98.9 93.0 89.3 86.6 84.7 83.1 81.8 80.8 79.9 75.4 74.0 73.6 73.7 119.7 78.9 73.0 

0.7 81.2 71.1 66.2 63.1 61.0 59.4 58.2 57.2 56.4 55.7 52.6 51.8 51.9 52.3 92.3 58.2 53.4 

0.8 59.7 51.2 47.3 44.9 43.2 42.0 41.1 40.4 39.8 39.3 37.3 37.1 37.4 38.0 71.6 43.6 39.8 

0.9 44.1 37.3 34.1 32.3 31.0 30.1 29.4 28.9 28.5 28.2 27.0 27.2 27.7 28.4 55.8 33.3 30.2 

1 32.9 27.4 25.0 23.6 22.6 22.0 21.5 21.1 20.9 20.6 20.1 20.4 21.1 21.8 43.9 25.8 23.4 

1.1 24.8 20.5 18.6 17.5 16.8 16.3 16.0 15.8 15.6 15.5 15.3 15.8 16.5 17.2 34.8 20.3 18.4 

1.2 19.0 15.5 14.1 13.2 12.7 12.4 12.2 12.0 11.9 11.8 12.0 12.5 13.2 13.8 27.8 16.3 14.8 

1.3 14.7 11.9 10.8 10.2 9.8 9.6 9.5 9.4 9.3 9.3 9.6 10.2 10.8 11.4 22.4 13.2 12.0 

1.4 11.6 9.4 8.5 8.0 7.8 7.6 7.5 7.4 7.4 7.4 7.8 8.4 9.0 9.5 18.2 10.9 10.0 

1.5 9.2 7.4 6.8 6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.5 7.1 7.6 8.0 15.0 9.2 8.4 

1.6 7.5 6.0 5.5 5.2 5.1 5.0 5.0 5.0 5.0 5.1 5.6 6.0 6.4 6.8 12.4 7.8 7.2 

1.7 6.1 4.9 4.5 4.3 4.3 4.2 4.2 4.2 4.3 4.3 4.8 5.2 5.5 5.8 10.3 6.7 6.2 

1.8 5.1 4.1 3.8 3.7 3.6 3.6 3.6 3.6 3.7 3.7 4.2 4.5 4.8 5.0 8.7 5.9 5.4 

1.9 4.3 3.5 3.2 3.1 3.1 3.1 3.1 3.2 3.2 3.3 3.7 4.0 4.2 4.4 7.4 5.2 4.8 

2 3.7 3.0 2.8 2.7 2.7 2.8 2.8 2.8 2.9 2.9 3.3 3.5 3.7 3.9 6.3 4.6 4.3 

2.1 3.2 2.6 2.5 2.4 2.4 2.5 2.5 2.5 2.6 2.6 2.9 3.1 3.3 3.4 5.4 4.2 3.9 

2.2 2.8 2.3 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.4 2.6 2.8 2.9 3.1 4.7 3.8 3.6 

2.3 2.4 2.1 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.4 2.5 2.7 2.7 4.1 3.5 3.3 

2.4 2.2 1.9 1.8 1.8 1.8 1.9 1.9 1.9 2.0 2.0 2.2 2.3 2.4 2.5 3.6 3.2 3.1 

2.5 2.0 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 2.0 2.1 2.2 2.3 3.2 3.0 2.9 

2.6 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.9 2.0 2.0 2.1 2.9 2.8 2.8 

2.7 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.8 1.9 1.9 2.6 2.7 2.6 

2.8 1.5 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.7 1.7 1.8 2.4 2.6 2.5 

2.9 1.4 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.6 1.6 1.7 2.2 2.5 2.4 

3 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.5 1.5 1.6 2.0 2.4 2.4 

4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 2.0 2.0 

5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 
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Table A3.3: Comparison of the ARL values for the steady-state synthetic chart (for various values of H and k), 3   ̅ chart, 2-of-2 KL chart and 

2-of-3 KL chart 

 

 

H 1 2 3 4 5 6 7 8 9 10 20 30 40 50 3  

limits 
2-of-2 KL 2-of-3 KL 

k 1.9328 2.0706 2.1472 2.1997 2.2395 2.2714 2.2978 2.3204 2.3401 2.3575 2.4666 2.5261 2.5663 2.5963 

Shift 

0 370.3 370.4 370.5 370.3 370.4 370.4 370.3 370.4 370.4 370.5 370.4 370.4 370.4 370.4 370.4 370.4 372.7 

0.1 354.7 353.2 352.3 351.6 351.2 350.9 350.6 350.4 350.2 350.1 349.3 348.9 348.7 348.7 352.9 342.0 341.6 

0.2 313.2 307.9 305.1 303.2 301.8 300.9 300.0 299.3 298.8 298.4 295.8 294.9 294.5 294.4 308.4 276.7 271.6 

0.3 258.5 249.7 245.2 242.1 240.1 238.5 237.2 236.2 235.4 234.7 231.1 229.9 229.5 229.5 253.1 207.1 199.5 

0.4 203.2 192.4 187.0 183.6 181.2 179.5 178.0 176.9 176.1 175.3 171.7 170.7 170.6 170.7 200.1 150.3 142.3 

0.5 154.7 143.7 138.4 135.1 132.8 131.2 129.9 128.9 128.2 127.5 124.6 124.0 124.2 124.6 155.2 108.5 101.4 

0.6 115.8 105.7 101.0 98.2 96.3 94.9 93.9 93.1 92.5 92.0 90.0 89.8 90.2 90.7 119.7 78.9 73.0 

0.7 86.2 77.6 73.7 71.4 69.8 68.8 68.0 67.4 67.0 66.6 65.4 65.5 66.1 66.8 92.3 58.2 53.4 

0.8 64.3 57.2 54.0 52.2 51.1 50.3 49.7 49.3 49.0 48.8 48.1 48.5 49.2 49.9 71.6 43.6 39.8 

0.9 48.3 42.5 40.1 38.7 37.9 37.3 36.9 36.6 36.4 36.3 36.0 36.6 37.3 38.0 55.8 33.3 30.2 

1 36.7 32.1 30.2 29.2 28.5 28.1 27.8 27.6 27.5 27.4 27.5 28.1 28.8 29.5 43.9 25.8 23.4 

1.1 28.2 24.5 23.1 22.3 21.8 21.5 21.4 21.2 21.2 21.1 21.4 22.0 22.7 23.4 34.8 20.3 18.4 

1.2 22.0 19.0 17.9 17.3 17.0 16.8 16.7 16.6 16.6 16.5 16.9 17.6 18.3 18.9 27.8 16.3 14.8 

1.3 17.3 15.0 14.1 13.7 13.5 13.3 13.2 13.2 13.2 13.2 13.7 14.3 15.0 15.6 22.4 13.2 12.0 

1.4 13.9 12.0 11.3 11.0 10.8 10.8 10.7 10.7 10.7 10.7 11.2 11.9 12.5 13.0 18.2 10.9 10.0 

1.5 11.3 9.8 9.2 9.0 8.9 8.8 8.8 8.8 8.8 8.8 9.4 10.0 10.5 11.0 15.0 9.2 8.4 

1.6 9.3 8.1 7.6 7.5 7.4 7.3 7.3 7.4 7.4 7.4 8.0 8.5 9.0 9.4 12.4 7.8 7.2 

1.7 7.7 6.7 6.4 6.3 6.2 6.2 6.2 6.2 6.3 6.3 6.9 7.4 7.8 8.1 10.3 6.7 6.2 

1.8 6.5 5.7 5.5 5.4 5.3 5.3 5.3 5.4 5.4 5.5 6.0 6.4 6.8 7.0 8.7 5.9 5.4 

1.9 5.6 4.9 4.7 4.6 4.6 4.6 4.7 4.7 4.7 4.8 5.3 5.6 5.9 6.2 7.4 5.2 4.8 

2 4.8 4.3 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.7 5.0 5.3 5.4 6.3 4.6 4.3 

2.1 4.2 3.8 3.6 3.6 3.6 3.6 3.7 3.7 3.8 3.8 4.2 4.5 4.7 4.8 5.4 4.2 3.9 

2.2 3.8 3.4 3.3 3.2 3.3 3.3 3.3 3.4 3.4 3.5 3.8 4.0 4.2 4.3 4.7 3.8 3.6 

2.3 3.4 3.0 2.9 2.9 3.0 3.0 3.0 3.1 3.1 3.2 3.5 3.7 3.8 3.9 4.1 3.5 3.3 

2.4 3.0 2.8 2.7 2.7 2.7 2.8 2.8 2.8 2.9 2.9 3.2 3.3 3.5 3.6 3.6 3.2 3.1 

2.5 2.8 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.7 2.7 2.9 3.1 3.2 3.2 3.2 3.0 2.9 

2.6 2.6 2.3 2.3 2.3 2.4 2.4 2.4 2.5 2.5 2.5 2.7 2.8 2.9 3.0 2.9 2.8 2.8 

2.7 2.4 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.4 2.5 2.6 2.7 2.8 2.6 2.7 2.6 

2.8 2.2 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.4 2.5 2.5 2.6 2.4 2.6 2.5 

2.9 2.1 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.3 2.4 2.4 2.2 2.5 2.4 

3 2.0 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.1 2.2 2.2 2.3 2.0 2.4 2.4 

4 1.6 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.2 2.0 2.0 

5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 2.0 2.0 
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Conclusion 

 

 In this section, we compared four variables control charts (the Shewhart  ̅ chart, the 2-of-

2 KL chart, the 2-of-3 KL chart and the synthetic chart) to monitor the process mean. It was 

observed that the 2-of-3 KL performs better than all the other charts for very small shifts and the 

2-of-2 KL chart also performs better than the other charts for small shifts, except the 2-of-3 KL 

chart which always perform better than or equally to 2-of-2 KL chart. Further, we observed that 

the zero-state synthetic chart has a better performance than the steady-state chart. Moreover, both 

the zero-state and steady-state synthetic chart have better performance for moderate to large 

shifts. Also, the findings here, invalidate the findings in Wu and Spedding (2000, Figure 1) that 

the synthetic chart always perform better than the runs-rule chart. 

 

 A topic that would interesting to pursue is to investigate the performance comparison 

between the 2-of-3 KL runs-rule chart and the EWMA and CUSUM charts that Davis and 

Woodall (2002) show perform better than the synthetic chart. 
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3.7.4 Appendix 3D: SAS® programs for the runs-rule charts 

 

(i) 2-of-2 KL ARL values 

 

proc iml; 

k=1.781419; 

mu=0; stdev=1; n=1; 

a1=J(1,4,99999); 

do shift=0 to 3 by .1; 

pL=CDF("Normal",-k-shift*sqrt(n),mu,stdev); 

pU=1-CDF("Normal",k-shift*sqrt(n),mu,stdev); 

p=1-pU-pL; 

ARL1=1/(1-p-(pU/(1+pU))-(pL/(1+pL)));*see Eq.(A1) on p.430 in Klein (2000); 

*====================Markov Chain Approach====================*; 

 

Q=J(3,3,0); 

Q[,1]=p; 

Q[1,2]=pU; 

Q[3,2]=pU; 

Q[1,3]=pL; 

Q[2,3]=pL; 

I=I(3); 

inv=inv(I-Q); 

one=J(3,1,1); 

initial_vec={1 0 0}; 

ARL_vec=inv*one; 

ARL2=initial_vec*ARL_vec;  *Using Markov chain (see Fu and Lou (2003));  

****************************************************************; 

M2=initial_vec*(I+Q)*(ginv((I-Q)**2))*one; 

* Calculating the standard deviation; 

SDRL=sqrt(M2-((ARL2)**2)); 

a=shift||ARL1||ARL2||SDRL; 

a1=a1//a; 

shift___ARL=a1[2:nrow(a1),]; 

end; 

*print Q, I, inv, one; 

print  shift___ARL [label = 'Shift___ARL1___ARL2___SDRL' format=.1]; 

run; 

quit; 
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(ii) 2-of-3 KL ARL values 

 

proc iml; 

k=1.930701; 

mu=0; stdev=1; n=1; 

a1=J(1,3,99999); 

do shift=0 to 3 by .1; 

pL=CDF("Normal",-k-shift*sqrt(n),mu,stdev); 

pU=1-CDF("Normal",k-shift*sqrt(n),mu,stdev); 

p=1-pU-pL; 

Q=J(7,7,0); 

Q[1,1]=p; Q[5,1]=p; Q[6,1]=p; Q[2,5]=p; Q[7,5]=p; Q[3,6]=p; Q[4,6]=p; 

Q[1,2]=pU; Q[6,2]=pU; Q[3,7]=pU; 

Q[1,3]=pL; Q[2,4]=pL; Q[5,3]=pL; 

I=I(7); 

inv=inv(I-Q); 

one=J(7,1,1); 

initial_vec={1 0 0 0 0 0 0}; 

ARL_vec=inv*one; 

ARL=initial_vec*ARL_vec;*Using Markov chain (see Fu and Lou (2003));  

M2=initial_vec*(I+Q)*(ginv((I-Q)**2))*one; 

* Calculating the standard deviation; 

SDRL=sqrt(M2-((ARL)**2)); 

a=shift||ARL||SDRL; 

a1=a1//a; 

shift___ARL=a1[2:nrow(a1),]; 

end; 

print shift___ARL [label = 'Shift___ARL___SDRL' format=.1]; 

run; 

quit; 
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Chapter 4 

 

Modified improved probability limits (MIPL) design for the 

synthetic Shewhart-type attributes charts 

 

4.1 Introduction 

 

There have been improvements in the field of SPC in developing more efficient designs 

for attribute control charts. For a thorough account of attributes control charts, see Woodall 

(1997) and more recently Szarka and Woodall (2011). In this chapter, we focus on uni-attribute 

control charts; for multiattribute charts see the review given by Topalidou and Psarakis (2009). 

Wu et al. (2001) introduced a synthetic control chart for attributes data, more specifically, the 

synthetic    chart which is a combination of a Shewhart    chart and the CRL chart. The reader 

is referred to Section 1.10 on a discussion of the synthetic chart and the CRL chart. Recall that, in 

designing a synthetic chart, it is assumed that a CRL sub-chart only has a LCL denoted by  . 

Also recall that (see Section 3.2) there are two methods that are widely used to compute the run-

length characteristics of a synthetic charts, i.e. the seven steps “direct” approach given in Wu and 

Spedding (2000a) and the Markov chain approach proposed in Davis and Woodall (2002). 

However, recently Wu et al. (2010) and Haridy et al. (2012) presented a non-Markov chain 

approach to evaluate the run-length properties of a synthetic   chart and a synthetic    chart, 

respectively. 

 

The concept of synthetic charts was introduced in Wu and Spedding (2000a) to monitor a 

shift in the mean. Since then, there have been a number of authors that have made significant 

contributions to this concept. For attributes charts, (i) Wu et al. (2001) proposed a synthetic 

version of the    chart, (ii) Bourke (2008) implemented the Markov chain approach given in 

Davis and Woodall (2002) to re-evaluate the performance of the synthetic    chart in detecting 

increases in fraction nonconforming, (iii) Castagliola et al. (2013) investigated the effect of 

parameter estimation for the synthetic  ,   ,   and   charts and more recently, (iv) Chong et al. 

(2014) studied the synthetic    chart with double sampling scheme. 
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In this chapter, we propose a modified improved probability limits (MIPL) method for the 

synthetic  ,   ,   and   charts. It should be noted that we remark on the design of the synthetic 

   and   charts and focus on the synthetic   and   charts. The concept of an improved 

probability limits (IPL) chart design was originally proposed by Zhang et al. (2004) for a 

standard geometric sub-chart. In this work, we modify and refine this approach and apply it to 

design what are called the MIPL synthetic  ,   ,   and   charts that result in better AFAR values. 

In addition, these new and improved charts can be formulated such that they have the same or 

better OOC performance than the two traditional methods (i.e.  -sigma limits ( -SL) and 

conventional probability limits (CPL)). Therefore, the aim of this chapter is to extend on the 

contributions of Castagliola et al. (2013) in the case where parameters are known (Case K). 

 

The rest of the chapter is structured as follows. The run-length properties used for 

evaluating the statistical performance of the methods for the synthetic   and   charts are 

discussed in Section 4.2. A discussion of the MIPL method for the synthetic   chart is given in 

Section 4.3 and the corresponding discussion for the synthetic   chart is done in Section 4.5; a 

review for the  -SL and CPL methods are given at the beginning of the respective sections. In 

Sections 4.4 and 4.6 examples and empirical comparisons among the three methods are done, 

providing an insight concerning the optimal design for the synthetic   and   charts, respectively. 

Concluding remarks are given in Section 4.7. 
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4.2 Properties of synthetic   and   control charts 

  

 Let (         ) and (         ) denote a pair of control limits (i.e. lower and upper) 

of the   sub-chart and the   sub-chart, respectively. In Section 3.2, we illustrated how the 

synthetic chart operates; discussed the two states under which the analysis of the run-length is 

done. Moreover, we demonstrated the equivalence of the synthetic control chart and the runs-

rules chart with a head-start feature that motivated Davis and Woodall (2002) to formulate the 

Markov chain approach. Then, using the Markov chain approach, we presented and discussed the 

run-length properties. Furthermore, we showed and demonstrated the algorithm to choose the 

optimal values of   and  .  

 

 To this end, we assume that both the IC proportion nonconforming (  ) and the IC 

number of nonconformities (  ) are known or specified. 

 

Run-length characteristics 

 

 The transition probability matrix that governs the Markov chain approach is given by 

Equation (3.2). So that the zero-state pmf and cdf are given by Equations (3.3) and (3.4), 

respectively. The simplified expression form of the zero-state ARL and SDRL are given by 

 

    
 

           
 (4.1) 

 

and 

 

     √    

            
 

 

    ∑           
   

           
 (4.2) 
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respectively. When the process is IC, the FAR is typically used to design a chart in Case K. For 

attributes charts, the AFAR of a particular chart (given by a set of control limits) may not 

necessarily be equal to the nominal value due to the discrete nature of distribution of the charting 

statistics. Thus, 

 

       Signal from a specific pair of control limits |IC             . (4.3) 

 

 The design of a control chart depends on the AFAR value, the closer the AFAR is to the 

nominal value (denoted by     ), the better the chart is (or the chart design is). The nominal 

values of ARL and SDRL are denoted by      and      , whereas the actual (or attained) 

values are denoted by       and       , respectively. However, when the process is OOC, we 

denote these as       and       , respectively. 

 

Algorithm for the optimal values of (   ) 

  

 The algorithm for the chart parameters (  and  ) has already been discussed in Section 

3.2.1. Furthermore, consider Table 4.1, we show the values of          for different 

combinations of   and   when   is equal to 0.25, 0.75 and 1.5; and identify the pair of   and   

that yields the smallest          for a sample of size 5, where    0 and    1. The resulting 

optimal values are        (47, 2.639), (7, 2.322) and (2, 2.085), respectively, where the values 

in grey shading refer to the smallest         .  
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Table 4.1: Values of the       for different (   ) combinations when    0.25, 0.75 and 1.5 

for    5 with       370.4 

 
         (0.25)          (0.75) 

 
         (1.5) 

1 1.943 125.46682 1 1.943 6.40581 
 

1 1.943 1.17936 

2 2.085 113.14676 2 2.085 5.16177 
 

2 2.085 1.12554 

3 2.164 106.92154 3 2.164 4.72298 
 

3 2.164 1.13433 

4 2.219 102.94004 4 2.219 4.52441 
 

4 2.219 1.14725 

5 2.260 100.10235 5 2.260 4.43126 
 

5 2.260 1.15886 

6 2.294 97.94800 6 2.294 4.39349 
 

   

7 2.322 96.24345 7 2.322 4.38795 
 

   

8 2.346 94.85472 8 2.346 4.40237 
 

   

9 2.367 93.69865 9 2.367 4.42966 
 

   

10 2.385 92.72005 10 2.385 4.46542 
 

   

11 2.402 91.88075 
    

   

12 2.417 91.15327   
  

   

13 2.431 90.51726   
  

   

14 2.443 89.95722   
  

   

15 2.455 89.46115   
  

   

16 2.466 89.01955   
  

   

17 2.476 88.62479 
    

   

18 2.486 88.27066 
    

   

19 2.495 87.95208 
    

   

20 2.503 87.66477 
    

   

21 2.511 87.40517 
    

   

22 2.519 87.17025 
    

   

23 2.526 86.95743 
    

   

24 2.533 86.76448 
    

   

25 2.540 86.58947 
    

   

26 2.546 86.43074 
    

   

27 2.552 86.28681 
    

   

28 2.558 86.15640 
    

   

29 2.564 86.03836 
    

   

30 2.569 85.93168 
    

   

31 2.574 85.83545 
    

   

32 2.579 85.74888 
    

   

33 2.584 85.67124 
    

   

34 2.589 85.60187 
    

   

35 2.593 85.54019 
    

   

36 2.598 85.48566 
    

   

37 2.602 85.43779 
    

   

38 2.606 85.39615 
    

   

39 2.610 85.36033 
    

   

40 2.614 85.32997 
    

   

41 2.618 85.30472 
    

   

42 2.622 85.28427 
    

   

43 2.625 85.26835 
    

   

44 2.629 85.25667 
    

   

45 2.632 85.24901 
    

   

46 2.636 85.24512 
    

   

47 2.639 85.24482 
    

   

48 2.642 85.24789 
    

   

49 2.645 85.25416 
    

   

50 2.648 85.26346 
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Castagliola et al. (2013) implemented a search algorithm for (   ) (similar to what is 

done in Table 4.1) for the synthetic  ̅ chart with three distinct shifts of interest i.e. small (  

 0.25), moderate (   0.75) and large (   1.5) given       370.4. Assuming a normal 

approximation to both the binomial and Poisson distributions, the synthetic  ,   ,   and   charts, 

that are expected to be optimal in detecting small, medium and large shifts, have the pairs       

as given in Table 4.1. In this chapter, we follow the same approach as in Castagliola et al. (2013), 

since our objective is to improve the performance of the charts discussed therein. Therefore, 

constructing probability limits from the  -sigma limits, the nominal tail probability of the   or   

sub-charts is given by 

 

    (      ) . (4.4) 

 

So that the pairs        (47, 2.639), (7, 2.322) and (2, 2.085) may equivalently be written as 

       (47, 0.008315), (7, 0.020233) and (2, 0.037069), respectively. 

 

Due to the discrete nature of the assumed distributions, these parameters       do not 

guarantee an       exactly equal to the nominal value of 370.4. Thus, our aim is to adopt       

and formulate a better method that ensures that, given the discrete nature of the binomial and 

Poisson distributions, we obtain an AFAR that is as close as possible to the nominal values of the 

synthetic   and   charts and, when the process is OOC, it has nearly ARL-unbiased control limits. 

 

 Therefore, from this point onwards, we assume that the run-length properties are 

evaluated under the assumption of a zero-state mode. The steady-state performance will be 

reported elsewhere. 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 125 

4.3 Statistical design of the synthetic   chart 

 

Let             for         and    1 be a sample of independent random variables with 

   ∑     
 
           where   is the proportion nonconforming units (when     , the 

process is IC). The probability   that the   sub-chart will mark a sample as nonconforming is 

 

        (        | )   (        | )                                             

                   

{
 
 

 
 
∑(

 

 
)           

 

   

                                                                  

∑(
 

 
)           

 

   

 ∑(
 

 
)           

 

   

                   

 (4.5) 

  

The control limit constants,   and  , are related to the LCL and UCL, respectively, and are 

defined in Section 4.3.1. 

 

4.3.1 Traditional methods of the synthetic   chart 

 

In this section, we briefly summarize the traditional  -SL and CPL methods for Case K. 

 

 -sigma limits 

 

The control limits of the   sub-chart for the  -SL method are given in Section 1.9.1, 

Equation (1.11). 

 

Conventional probability limits 

 

The control limits of the   sub-chart for the CPL method are similar those given in Section 

1.9.2, Equation (1.13), however the nominal tail area is different (see Equation (4.4)). Thus, for 

the synthetic   chart, the control limits are computed as follows. For the       using we find the 
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largest positive integer         that makes the left tail probability,        |   , to be at 

most equal to 
 

 
, i.e. 

 

∑ ( 
 
) 

     
       

    
 

 
. (4.6) 

 

Following this,      
 

 
. If    0, it means that       0 and then we assume that the      

does not exist since the proportion nonconforming is never negative. This arises when   and/or 

   is small. In such a situation      is said to be not applicable (NA). For the       we find the 

smallest positive integer           that makes the right tail probability          |   , 

to be at least equal to   
 

 
, i.e. 

 

∑ ( 
 
) 

       
       

      
 

 
. (4.7) 

 

Following this,      
   

 
. In the event that      is not applicable, for Equation (4.7) we find 

          so that          |       . 

 

Problems associated with traditional methods 

 

 As highlighted in Section 1.11.3, the traditional methods reviewed above have poor IC 

run-length characteristics, more so when   and/or    are small. According to the 

recommendations in the literature, when            5 (i.e. when the central limit theorem 

approximation is good for the binomial distribution), these methods should yield attained run-

length properties that are closer to their nominal values. For example, suppose that      

 0.0027,    100 and     0.2 so that            20   5. Consequently, we expect that the 

3-SL and CPL methods will result in AFAR values close to the     . Suppose that    2 (see 

Table 4.1), for the 3-SL method, using Equations (1.11) and (4.5), we have    11 and    28 so 

that, from Equation (4.3), we obtain AFAR   0.00209 which is 22.58% lower than the nominal 

value of 0.0027. On the other hand, for the CPL method, using Equations (4.6) and (4.7), we have 

   11 and    29 so that, from Equation (4.3), we obtain AFAR   0.00112 which is 58.46% 
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lower than the nominal value of 0.0027. The corresponding       values are 478.41 and 891.56, 

respectively. From this example it is clear that these traditional control charts yield AFAR values 

that are significantly different from the     , since for both methods, the charts will signal less 

often than what is nominally expected, especially for the CPL method. 

 

In the next section we offer a solution to this problem by considering a chart design 

method called the MIPL. It will be shown that this method yields control limits that result in 

AFAR and        values that are the same or much closer to the nominal values compared to 

the two traditional methods. Moreover, we show that the MIPL method can be formulated such 

that it yields similar or better nearly ARL-unbiased control limits compared to the two traditional 

methods. First we consider the synthetic   chart. 

 

4.3.2 Modified improved probability limits (MIPL) for the synthetic   chart 

 

In Zhang et al. (2004), the IPL method for the geometric (sub-) chart was constructed such 

that the           (we call this an anti-conservative approach for the probability limits 

design). Here we modify and refine their method so that it takes into account both the 

conservative (i.e.          ) and the anti-conservative approach to designing probability 

limits (sub-) charts. Firstly, we generate set  , with all the values of        , satisfying some 

condition that will be discussed below. Then for each    , we find the pair (    ) that yields a 

    and similarly we find the pair (    ) that yields a    . Hence, to this end, we let 

      |      for       denote a set of control limit constants generated from set  , for some 

given   . Next, we let    denote a subset of   with control limit constants that yield 

         |           and similarly let    denote a subset of   with control limit constants 

that yield          |          . In this case, it is easy to see that        . Then 

proceed with the following steps. 
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Step 1: Generate set  . 

Let              NA             where      is equal to the largest integer such that 

 

∑
      

 

  

    

   

   (4.8) 

 

holds, for some  ,    and   (as calculated in Equation (4.4)). Recall that “NA” stands for not 

applicable which implies that       0. Note the difference between Equations (4.8) and (4.6). 

 

Step 2: For each    , we find the two corresponding integer values of   such that 

 

       |             |       . (4.9) 

 

i.e. for each     in Step 1, we find           for   1, 2. Thus, in total we obtain 2 

       2  pairs of control limit constants. 

 

Step 3: For each pair        in Step 2, we compute the     , for some pre-calculated value of 

  using Equation (4.9) and then calculate the percentage relative deviation from the target      

defined by 

 

      (
           |          

    
). (4.10) 

 

Step 4: Choose the pair            such that 

 

            |                  |        | |
         

 (4.11) 

 

i.e. we choose the pair         that result in the minimum absolute deviation of AFAR from the 

    . The MIPL for the synthetic   chart are given by           and              . 
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 To picture the MIPL procedure, assume that set   contains all possible pairs of control 

limit constants       where   and   are integers with     and     (for the MIPL method) 

for some given   . Some of these pairs will yield AFAR values much closer to      and others 

will yield AFAR values that differ significantly from     . Note that the control limit constants 

of all three methods (i.e.  -SL, CPL and MIPL) will be in set  . Furthermore, we let     (see 

Equation (4.9)). That is, for each  , we find the corresponding two values of   (i.e.    and   ) 

such that the resulting      will either be at least equal to or at most equal to the target     , 

respectively. Then, consequently the four step procedure for the MIPL method results in the pair 

       , which is as close as possible to the     , that is, a local IC optimal pair in set   and, 

subsequently, this pair will be the global optimal pair also in set  . 

 

 

Remark 1:  Since the synthetic   chart is equivalent to the synthetic    chart when the sample 

size is fixed (see Castagliola et al. (2013)) it follows that the corresponding MIPL for the 

synthetic    chart are given by          and           . Recall that in this study we 

assume the FSS scheme and, consequently, the sample size is fixed. 

 

 

 In the next section, we give a numerical example and do an overall comparative study for 

the three methods considered here. 

 

4.4 Illustrations and performance comparison of the synthetic   chart methods 

 

 We first give an illustrative example for all three methods and then we do an overall 

comparative performance study to see which method outperforms the rest. 

 

4.4.1 Example 

   

 Example 4.1. Assume that a manufacturing production process operates at a proportion 

nonconforming (fallout) of 20% and that    100; with       0.0027. In addition, we are 

interested in detection of large shifts (i.e.    1.5), hence    2 and    2.085 (see Table 4.1).  
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Chart Designs 

  

The traditional charts for this example are constructed and illustrated in Section 4.3.1 and 

are displayed in Table 4.3.  For the MIPL method, the calculations are as follows. From Step 1, 

the value of      that satisfies Equation (4.8) is equal to 12, so that    {NA 0 1   12}. For 

each    , we find the corresponding    such that the     (      |100,0.2) of these pairs is an 

element of   (see Step 2). Table 4.2 shows all the possible pairs of control limit constants in set   

(with subsets    and   , as defined earlier), the AFAR and the percentage relative deviation from 

the      for each pair (calculated in Step 3). Then, using Step 4, the optimal values for the 

control limits constants of the MIPL method, when the process is IC, are obtained using Table 

4.2 and are given by (     )   (12, 29) with an AFAR that is only 2.71% lower than 0.0027. This 

is indicated by the use of grey shading in Table 4.2. 

 

Table 4.2: All pairs of control limits constants in set   for the synthetic   chart using the MIPL 

method for    100,     0.2,    0.037069 and       0.0027 

 
Set     Set    

                         | |                           | | 

NA 27 0.03415 0.00229 15.08% NA 26 0.05583 0.00606 124.46% 

0 27 0.03415 0.00229 15.08% 0 26 0.05583 0.00606 124.46% 

1 27 0.03415 0.00229 15.08% 1 26 0.05583 0.00606 124.46% 

2 27 0.03415 0.00229 15.08% 2 26 0.05583 0.00606 124.46% 

3 27 0.03415 0.00229 15.08% 3 26 0.05583 0.00606 124.46% 

4 27 0.03416 0.00229 15.06% 4 26 0.05584 0.00606 124.49% 

5 27 0.03417 0.00230 14.99% 5 26 0.05585 0.00606 124.61% 

6 27 0.03423 0.00230 14.70% 6 26 0.05591 0.00608 125.08% 

7 27 0.03443 0.00233 13.71% 7 26 0.05611 0.00612 126.66% 

8 27 0.03501 0.00241 10.81% 8 26 0.05669 0.00624 131.29% 

9 27 0.03649 0.00261 3.19% 9 26 0.05817 0.00657 143.33% 

10 28 0.02572 0.00131 51.64% 10 27 0.03985 0.00311 15.28% 

11 28 0.03260 0.00209 22.58% 11 27 0.04673 0.00426 57.95% 

12 29 0.03658 0.00263 2.71% 12 28 0.04535 0.00402 48.88% 

 

Table 4.3 summarizes the three charting methods along with the AFAR values and the 

percentage relative deviation from the      for each pair, the       and the        values, 

respectively. 
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Table 4.3: Comparison among three methods of the synthetic   chart for    100,     0.2 and 

      0.0027 

 

Method (   )      | |              

 -sigma limits (11,28) 0.00209 22.58% 478.41 506.29 

Conventional probability limits (11,29) 0.00112 58.46% 891.56 930.68 

Modified improved probability limits (12,29) 0.00263  2.71% 380.67 405.23 

 

 It is clear that, for this example, the MIPL method results in control limits with       

and        values that are almost close to the corresponding nominal values. 

 

4.4.2 Empirical comparison of the synthetic   chart methods 

 

In this section we perform an empirical comparative study for the three methods of the 

synthetic   chart (discussed in this Sections 4.3) assuming that the       0.0027 (or, 

equivalently,       370.4). In Figures 4.1 to 4.3 we present the graphical plots of the AFAR 

and the corresponding        values for the synthetic   chart for the following pairs       

 (47, 2.639), (7, 2.322) and (2, 2.085). Firstly, for these pairs, we notice that, as the AFAR values 

converge to the       0.0027, the corresponding        values converge to approximately 

457, 413 and 394, respectively. Note that this is in contrast to the ordinary   chart, where the 

       values would have been expected to be approximately 370. Furthermore, for these pairs, 

the AFAR and the        values, which result from the  -SL method, are significantly different 

(i.e. high fluctuations) from the nominal values. The control limits of the CPL method yield 

values of the AFAR (      ) that are all lower than or equal to      (greater than or equal to 

     ). The MIPL method does not perform well when the IC proportion nonconforming is 

small, but as the IC process parameter increases, the AFAR and the        values seem to 

fluctuate around the nominal values.  
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        457 

 
Figure 4.1: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for    50 and varying     0.01(0.01)0.50 for (   47,    2.639) 
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        413 

 
Figure 4.2: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for    50 and varying     0.01(0.01)0.50 for (   7,    2.322) 
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        394 

 
Figure 4.3: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for    50 and varying     0.01(0.01)0.50 for (   2,    2.085) 
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In Figure 4.4, we fix    at 0.25 and the following can be observed. When the sample size 

is very small all the methods have undesirable values for the AFAR and the       . However, 

for all three pairs of      , it can be seen that, as the sample size increases, the AFAR values of 

the MIPL method tends towards the nominal value of 0.0027. This pattern (which is also 

observed for other combinations of   and   ) indicates that, as the sample size increases, the 

MIPL method results in AFAR values that tend towards the nominal value much faster than the 

two traditional methods. Note that the AFAR values of the  -SL method tend towards the      

as a slower rate and the CPL method has been seen to be unreliable since it results in excessively 

high        values (see Figures 4.1 to 4.3). Therefore, the MIPL method for the synthetic   

chart results in better AFAR and        values compared to the  -SL and CPL methods. 

 

 

 

 

 

(a) The fluctuation occurrence of the AFAR for (   47 and    2.639) 
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(b) The fluctuation occurrence of the AFAR for (   7 and    2.322) 

 
(c) The fluctuation occurrence of the AFAR for (   2 and    2.085) 

 
Figure 4.4: Comparison of the AFAR values for the method of the synthetic   chart when the 

process is IC for     0.25 and varying    1(1)50 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 137 

 

Therefore, Equation (4.11) ensures that the MIPL method yields AFAR and        

values that are the same or much closer to the nominal values compared to the traditional 

methods. Although the MIPL method results in better AFAR and        values for the synthetic 

  chart; the most important function of a control chart is quick detection of a sustained process 

shift. Hence in the next section we illustrate how we can use the MIPL method to construct a 

synthetic   chart with better OOC performance than the two traditional methods. 

 

4.4.3 Performance 

 

It is generally known that, when the process is IC, the       of a control chart should be 

large (preferably close to     ) and when the process is OOC, the       should be small. To 

study the OOC performance we use ARL curves (it shows an ARL for any possible value that 

parameter   can shift to (see Acosta-Mejia (1999))). For example, in Example 4.1 the control 

limit constants (12, 29) resulted in AFAR and/or       values much closer to      and/or      

for the MIPL method, however, assuming that only sustained shifts with increments of 0.01 are 

of interest, this pair is not optimal in detecting small process deterioration, since the maximum of 

the ARL curve is not equal to       (where     0.2). That is, for some values of   (   ) 

           . Control charts with this property were defined in Pignatiello et al. (1995) as 

ARL-biased charts. Acosta-Mejia (1999) showed that for the   chart, it is not always possible to 

obtain exact unbiasedness (because of the discrete nature of the charting statistics). Our aim is to 

construct control charts that are nearly ARL-unbiased using the MIPL method. 

 

Step 1: We first let    be the value of the proportion nonconforming corresponding to the peak of 

the ARL curve, so that           |      is the value of the peak of the curve, with          

defined in Equation (4.17). In addition,           |      is the       when     , for some 

     . 
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Step 2: For each pair (    ) in Step 1, we compute 

 

            |                |     .  (4.12) 

 

Note that    0 if the synthetic   chart has    -unbiased control limit constants. 

 

Step 3: Choose the pair           such that  

 

           |               |    
   | | 

         
 (4.13) 

 

i.e. we choose the pair (     ) that result in the smallest value of  . Thus the nearly    -

unbiased MIPL for the synthetic   chart are given by           and              . 

 

To illustrate this, we use Example 4.1 to construct a synthetic   chart that will result in 

nearly    -unbiased control limits. Taking the pairs (   ) in   that are given in Table 4.3 as the 

control limit constants, we construct the     curves (see Figures 4.5 (a) and (b)). It is evident 

that most of the control limit constants in set   have undesirable OOC values in addition to 

having a poor IC performance. The pairs (11, 28) and (12, 28) result in    0 (see Equation 

(4.15)), with an       equal to 478.41 and 248.77, respectively. It seems more rational to 

choose the pair (11, 28) than (12, 28) since its       is much closer to     . Note that, when 

taking into account both the IC and OOC performance, the pair (12, 29) would be preferred over 

the latter two pairs which are exactly unbiased (see Figure 4.5). 
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(a) ARL curves for control limits in set    
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 (b) ARL curves for control limits in set    

 
Figure 4.5: ARL curves of the control limits generated by the MIPL method for     0.2 and    100 with (   2,    2.085)
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In Figure 4.6, we plot the competing traditional methods’ ARL curves along with the 

nearly ARL-unbiased MIPL pair (11, 28) and deduce that the  -SL method is ARL-unbiased with 

       478.41. Furthermore, although the CPL method has ARL-unbiased control limits, the 

       891.56 is much higher than 370.4. In this example, the  -SL and MIPL methods yield 

the same OOC performance, since they have the same control limits. 

 

 
Figure 4.6: ARL curves for the three methods of the synthetic   chart with     0.2 and    100 

 

Simulations indicate that when the process parameters   and    are both small, all three 

methods do not have a good OOC performance. In fact, for very small values of    all three 

methods require a high value of   for the chart to be efficient. However, in most cases, the nearly 

ARL-unbiased MIPL method outperforms its competitors because the set   provides more options 

for the optimal pair         compared to 3-SL and CPL methods, which only have one option 

for      . 
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Remark 2: Nearly ARL-unbiased control limits for the    chart  

 

 It follows similarly that the nearly ARL-unbiased control limits for the synthetic    chart 

are given by          and           . 

 

 

4.5 Statistical design of the synthetic   chart 

Let            ,         and    1 be a sample of independent random variables with 

   ∑     
 
           where   is the number of nonconformities (when     , the process is 

IC). The probability that the   sub-chart will mark an inspection unit as nonconforming is 

 

           |            |                                 

   ∑
     

  

 

   

 

 

∑
     

  

 

   

                                           (4.14) 

 

4.5.1 Traditional methods for the synthetic   chart 

 

 -sigma limits 

 

The control limits of the   sub-chart for the Shewhart  -SL method is given in Section 

1.9.1, see Equation (1.12). 

 

Conventional probability limits 

 

For the CPL method, the control limits are computed as follows. For the       we find the 

largest integer          that makes the left tail probability,        |   , to be at most equal 

to 
 

 
. Thus, 
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∑
      

 

  

 

   

 
 

 
 (4.15) 

 

So that       . Similarly, for the      we find the smallest integer   that makes the right tail 

probability          |   , to be at least equal to   
 

 
. Thus, 

 

∑
      

 

  

 

     

   
 

 
  (4.16) 

 

In the event that      is not applicable, for Equation (4.16) we find   so that 

         |       . 

 

Problem associated with the traditional methods 

 

 As indicated in Section 1.11.3, the traditional methods reviewed above have poor IC run-

length properties, more especially when    is small. However, when the normal approximation to 

the Poisson distribution is satisfied (i.e.     15 see Montgomery (2013, p. 101)), one would 

expect that these methods should yield attained run-length properties that are close to the nominal 

values. For illustration, suppose that       0.0027,     16 and    2. For the 3-SL method, 

using Equations (1.12) and (4.14) we have    7 and    24 so that from Equation (4.3), yields 

AFAR   0.00205 which is 23.90% lower than the nominal value of 0.0027. On the other hand, for 

the CPL method using (4.15) and (4.16) we have    7 and    25 so that from Equation (4.3) 

AFAR   0.00106 which is 60.87% lower than the nominal value of 0.0027. The corresponding 

      values are 486.66 and 946.47, respectively, and it is clear that these control charts are 

highly problematic for practical use, since the IC ARL is not close to the nominal value of 370.4. 

 

In the next section, we offer a solution to this problem by considering a chart design 

called the MIPL. It will be shown that this method yields control limits that result in the AFAR 

and the        either the same as or much closer to the nominal values compared to the two 
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traditional methods. Moreover, the MIPL method can be formulated such that it yields similar or 

better nearly ARL-unbiased control limits compared to the traditional methods. 

 

4.5.2 Modified improved probability limits (MIPL) for the synthetic   chart 

 

Similar to the MIPL method for the synthetic   chart, we first generate set  . Further, we 

let       |    for       denote a set of control limit constants generated from set  , for some 

given   . Next, let    denote a subset of   with control limits that yield an          |    

     and similarly let    denote a subset of   with control limits that yield an          |    

    . Then proceed with the following steps as in Zhang et al. (2004). 

 

Step 1: Find all possible pairs of integers (   ) in set  . 

Let           NA             where      is equal to the largest integer such that 

 

∑
      

 

  

    

   

   (4.17) 

 

holds, for some   and   . “NA” stands for not applicable which implies that       0. 

 

Step 2: For each    , we find the corresponding integer value of   such that, 

 

       |             |        (4.18) 

 

i.e. for each     in Step 1, we find           for      . Thus, in total we obtain   

         pairs of control limit constants. 

 

Step 3: Then for each pair        in Step 2, we compute the AFAR for some pre-calculated value 

of   and then calculate the percentage relative deviation from the target      defined by 
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      (
           |        

    
) (4.19) 

 

Step 4: Choose the pair            such that 

 

            |                |      | |
          

 (4.20) 

 

i.e. we choose the pair (     ) that result in the minimum absolute deviation of AFAR from the 

    . The MIPL for the synthetic   chart are given by         and          . 

 

 Similarly to the MIPL procedure of the synthetic   chart in Section 4.3.2, the four step 

procedure for the MIPL method of the synthetic   chart results in the pair        , which is as 

close as possible to the target     , that is, a local IC optimal pair in set   and subsequently, this 

pair will be the global optimal pair also in set  . 

 

 

Remark 3: MIPL for the   chart 

 

 Similarly, the corresponding MIPL for the synthetic   chart can be formulated by 

assuming that             where   is the OOC average number of nonconformities per 

inspection unit, by defining  ̅  
 

 
∑     

 
    (see Castagliola et al. (2013)). For example, the 

Shewhart   sub-chart control limits are given in Montgomery (2013, p. 324) and using    instead 

of    in Equations (4.15) and (4.16) yield the corresponding CPL method. 

 

 

 In the next section, we consider a numerical example and comparative study for the three 

methods considered here. 
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4.6 Illustrations and performance comparison of the synthetic   chart methods 

 

Firstly we illustrate the three methods using an example. Following this, an empirical 

comparison between the three methods are done by considering different values of the parameter 

  . Furthermore, we show that the MIPL method can be formulated such that it yields similar or 

better nearly ARL-unbiased control limits compared to the traditional methods. 

 

4.6.1 Example 

 

 Example 4.2. Assume that it is known that an inspection unit typically has 16 defects (i.e. 

    16) given       0.0027. In addition, assume that we are interested in detection of large 

shifts, hence    2 and    2.085 (see Table 4.1). 

 

Chart Designs 

 

 The traditional charts for this example have been found in Section 4.5.1 and are displayed 

in Table 4.5.  For the MIPL method, the calculations are as follows. From Step 1, the value of 

     that satisfies Equation (4.17) is equal to 8, so that    {NA 0 1   8}. For each   

         , we find the corresponding   such that the     (     |16) of these pairs is an 

element of   (see Step 2). Table 4.4 shows all the possible pairs of control limits in set   (with 

subsets    and   , as defined earlier), the AFAR and the percentage relative deviation from the 

     for each pair (calculated in Step 3). Then using Step 4, the optimal values for the control 

limits of the MIPL method when the process is IC, are obtained using Table 4.4 and are given by 

(     ) = (4, 23) with an AFAR that is only 0.01% lower than 0.0027, see the grey shading in 

Table 4.4. 
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Table 4.4: All pairs of control limits constants in set   for the synthetic   chart using the MIPL 

method for     16,    0.037069 and       0.0027 

 
Set     Set    

                       | |                         | | 
NA 23 0.03669 0.00264 2.14% NA 22 0.05824 0.00659 143.94% 

0 23 0.03669 0.00264 2.14% 0 22 0.05824 0.00659 143.94% 

1 23 0.03669 0.00264 2.13% 1 22 0.05824 0.00659 143.96% 

2 23 0.03670 0.00264 2.05% 2 22 0.05826 0.00659 144.08% 

3 23 0.03678 0.00266 1.64% 3 22 0.05833 0.00661 144.71% 

4 24 0.02272 0.00102 62.21% 4 23 0.03709 0.00270 0.01% 

5 24 0.02370 0.00111 58.89% 5 23 0.03807 0.00284 5.31% 

6 24 0.02632 0.00137 49.36% 6 23 0.04069 0.00324 20.16% 

7 24 0.03232 0.00205 23.90% 7 23 0.04669 0.00426 57.68% 

8 25 0.03511 0.00242 10.31% 8 24 0.04430 0.00384 42.17% 

 

Table 4.5 summarizes the three charting methods (control limits) along with the AFAR 

and the percentage relative deviation from the      for each pair,       and        values, 

respectively. 

 

Table 4.5: Comparison among the three methods of the synthetic   chart with     16 

 

Method (   )      | |              

 -sigma limits (7,24) 0.00205 23.90% 486.66 514.80 

Conventional probability limits (7,25) 0.00106 60.87% 946.47 986.87 

Modified improved probability limits (4,23) 0.00270   0.01% 370.40 394.59 

 

 It is clear that, for this example, the MIPL method results in control limits with much 

improved IC run-length characteristics compared to the traditional 3-SL and CPL methods. For 

this example, the control limits        (4, 23) are the only values that ensure that we get as 

close as possible to the nominal ARL and SDRL values. 

 

4.6.2 Empirical comparison of the synthetic   chart methods 

 

 Similarly, as in the case of the synthetic   chart, we notice that as the AFAR values 

converges to the     , the        values converges to approximately 457, 413 and 394 when 

   47, 7 and 2, respectively. In addition, when the parameter    is very small, all the above 

methods are adversely affected, because the normal approximation to the Poisson distribution is 

violated. From Figure 4.7 to 4.9, it can be seen that although when    is small, the MIPL method 
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has high fluctuations in relation to the nominal values, but, as    increases it has much better IC 

performance (in terms of AFAR and       ) compared to the traditional methods. Therefore, 

the MIPL method would be a preferred method to design a synthetic   chart than the traditional 

methods. Thus, it is evident from Figures 4.7 to 4.9 that Equation (4.20) ensures that the MIPL 

method is guaranteed to either have the same or a better IC performance when compared to the 

two traditional methods. 
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        457 

 
Figure 4.7: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for (   47,    2.639) 
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        413 

 
Figure 4.8: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for (   7,    2.322) 
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(a) The fluctuation occurrence of the AFAR for a       0.0027 

 
(b) The fluctuation occurrence of the        for a        394 

 
Figure 4.9: Comparison of the run-length characteristics among three methods of the synthetic   

chart when the process is IC for (   2,    2.085) 
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4.6.3 Performance 

 

Unlike Section 4.6.2, if the objective is to construct the synthetic   chart such that it has 

nearly ARL-unbiased control limits, we need to proceed as follows. 

 

Step 1: Let    be the value of the number of nonconformities corresponding to the peak of the 

ARL curve, so that           |    is the value of the peak of the curve, with          defined 

in Equation (23). In addition,           |    is the       when     , for      . Then 

construct the ARL curve for each          for some given increment shift of size  . 

 

Step 2: For each pair (    ) in Step 1, we compute 

 

            |              |    (4.21) 

 

Note that    0 if the   chart has    -unbiased control limit constants. 

 

Step 3: Choose the pair           such that 

 

           |             |     | | 

         
 (4.22) 

 

i.e. we choose the pair (     ) that result in the smallest value of  . Thus the nearly ARL-

unbiased MIPL for the   chart are given by         and          . Note that, if there is 

more than one pair that satisfies Equation (4.22), then we must chose the pair that results in 

      closer to     . 
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 To illustrate this, we use Example 4.2 to construct a synthetic   chart that will result in 

nearly ARL-unbiased control limits. Taking the pairs (    ) in   that are given in Table 4.5 as the 

control limit constants, we construct the ARL curves (see Figures 4.10 (a) and (b)). It is evident 

that most of the control limits in set   have undesirable OOC values in addition to having a poor 

IC performance. By using the criteria in Equation (4.22), the pairs (8, 25) and (8, 24) result in 

   0, with an       equal to 412.95 and 260.52, respectively. The pair (8, 25) has an       

that is much closer to     . 

 

 In Figure 4.11, we plot all three competing ARL curves for the synthetic   chart and we 

deduce the  -SL method is ARL-biased. Furthermore, the CPL method has    -unbiased control 

limits but the        946.47 is very large (relative to 370.4). For this example, the MIPL 

method results in a better OOC design compared to the two traditional methods. We observed a 

similar behavior for other examples that were considered. 

 

 When the normal approximation to the Poisson distribution is not satisfied, the 

performance of the synthetic   chart is severely degraded. Once      is a positive integer, the 

MIPL method is more likely to yield better OOC performance because set   has more options for 

the optimal pair         compared to the  -SL and CPL methods that have only one option for 

     .
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(a) ARL curves for control limits in set    
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(b) ARL curves for control limits in set    

 
Figure 4.10: ARL curves of the control limits generated by the MIPL method for     16 with (   2,    2.085)
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Figure 4.11: ARL curves for the three methods of the synthetic   chart when     16 

 

4.7 Concluding Remarks 

 

 In this chapter, we proposed an MIPL method for the synthetic   and   charts (and 

remarked on the synthetic    and   charts). The aim of this chapter was to investigate whether 

the MIPL method has a better IC and OOC performance compared to the  -SL and CPL 

methods. From this comparison, we draw the following conclusions. Firstly, when the parameters 

(    ) and    for the respective charts are small, all three methods do not have good IC and OOC 

performance. However, as the parameters increase, the IC run-length properties (e.g. AFAR and 

     ) of the MIPL method fluctuate more or less around the nominal values. Whereas, the  -

SL and CPL methods have poor IC run-length characteristics even in cases when the parameters 

are large. Secondly, the MIPL method is more likely to have better OOC performance than the  -

SL and CPL method because it creates a set of control limit constants that a practitioner can use 

to choose the best possible pair of control limits to design a synthetic   or   chart. Lastly, the 

MIPL method is time-consuming to implement compared to the  -SL and CPL methods, 

however, the improvement in IC and OOC performance of the control chart makes it worthwhile.
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4.8 Appendix 4A: Microsoft® Excel calculations 

 

 We illustrate how the results in Example 4.1 were calculated. 

 

3-sigma limits 

 

 The 3-sigma limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by, 
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and the corresponding value sheet is given by 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 159 

Conventional probability limits 

  

 The conventional probability limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by, 

 

 

 

and the corresponding value sheet is given by 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 160 
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Modified improved probability limits 

 

 The following formula and value sheets show how to calculate the value of      for the 

MIPL method in Example 4.1.  
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The rest of the steps follow as discussed in Example 4.1. 

 

 Similar calculations were done for the synthetic   chart in Example 4.2. 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



163 
 

Chapter 5 

 

Summary and Recommendations for future research 

  

In this final chapter, we give a brief summary of the research conducted in this essay 

and offer concluding remarks concerning unanswered questions and future research ideas. 

 

In this essay, we focused on statistical process control and monitoring, which is an 

application of a collection of statistical techniques which allows high quality products to be 

produced. More specifically, we focused on Shewhart-type attributes control charts to 

monitor count data, since, in some cases; it is not possible to quantify a quality characteristic 

numerically, that is, we can only classify it as either conforming or nonconforming. 

Moreover, we reviewed and discussed some recent developments in the area of synthetic 

control charts for univariate and multivariate data. 

 

Modified improved probability limits 

 

Our objective was to develop a more efficient method to construct attributes control 

charts. We illustrated that designing classical p and c charts, as well as synthetic p and c 

charts using the  -sigma limits ( -SL) and conventional (equal-tailed) probability limits 

(CPL) methods result in control limits with attained false alarm rate values that are 

significantly different from the target nominal value. Moreover, the control limits based on 

the  -SL and CPL methods are either ARL-biased, or are ARL-unbiased, however the IC ARL 

is very large compared to the nominal value. Thus, we offered a solution to this problem by 

implementing a new method of chart design called the modified improved probability limits 

(MIPL). The MIPL method is an adaptation and a modification of the improved probability 

method by Zhang et al. (2004) for a geometric chart. It was shown that the MIPL method 

yields control limits that result in AFAR and attained SDRL values that are close to the 

nominal values compared to the k-SL and CPL methods. Moreover, the MIPL method can be 

formulated such that it yields similar or better nearly-ARL unbiased control limits than the  -

SL and CPL methods. We only considered the case where parameters are known (Case K) 

and much more remains to be done. We list a few ideas to pursue in the future. 
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i. The effect of parameter estimation for both the classical and synthetic   and   

charts using the MIPL method needs to be investigated. This problem has been 

address by Braun (1999), Chakraborti and Human (2006, 2008), Castagliola and 

Wu (2012) and Castagliola et al. (2013) for the  -sigma limits method. 

ii. Borror et al. (1998) showed that the EWMA   chart performs better than the   

chart for small shifts and the corresponding effect of parameter estimation was 

investigated by Testik et al. (2006). An investigation towards the MIPL method 

for EWMA or CUSUM  ,   ,   and   charts would be interesting. In addition, the 

formulation of the synthetic version of these charts for both Case K and Case U 

could be investigated. 

iii. Attributes charts have an asymmetric run-length distribution, also in some cases 

there may be problems with the existence of the mean of the run-length 

distribution for some charts and the ARL isn’t a robust measure; see, for example, 

Chakraborti et al. (2004) and Graham et al. (2012), hence using the median run-

length to assess the performance of the chart rather than an ARL would be an 

interesting topic to investigate.  

 

Synthetic control charts 

 

 Wu and Spedding (2000a) originally defined a synthetic chart as the integration of the 

operation of a Shewhart chart and a conforming run-length (CRL) chart. Following this, 

Scariano and Calzada (2009) proposed a more general approach, i.e. a synthetic chart is 

defined as the integration of some control charting procedure and a CRL chart. Khoo (2013) 

did a literature review for the univariate parametric variables synthetic charts to monitor the 

mean and those to monitor the variation. In this essay, we provided a more comprehensive 

review of the synthetic charts, by considering variables (parametric and nonparametric) and 

attributes synthetic charts for both univariate and multivariate data. A number of important 

topics for synthetic charts have already been investigated, however, more work still remains 

to be done. In addition to the suggestions for future research given in Khoo (2013), here is a 

summary of some topics/questions about synthetic charts that have not yet been addressed or 

have only been partially answered. 
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i. Zhang et al. (2011) gave a thorough account of the run-length properties for a 

synthetic  ̅ chart for Case U under the zero-state mode, however, run-length 

properties for the synthetic    chart for Case U has not yet been explored in detail. 

The reader can start by reading Champ et al. (2005) as they provided properties of the 

   chart for Case U. 

 

ii. The effect of parameter estimation for the synthetic  ̅ chart using the steady-state 

analysis needs to be investigated. In addition, other than the synthetic  ̅ chart (in 

Zhang et al. (2011)) and the synthetic  ,   ,   and   charts (in Castagliola et al. 

(2013)), the effect of parameter estimation has not been investigated for other 

synthetic-type charts. 

 

iii. Huang and Chen (2005) suggested investigating the effect of autocorrelation in 

monitoring process dispersion, since many authors typically use the assumption of 

independence between the monitored quality characteristics. Note that, Machado et al. 

(2009) has investigated this problem for bivariate data, however, more work still 

remains to be done. 

 

iv. Huang and Chen (2005) suggested investigation of synthetic charts based on the 

moving range for individual observations. While on the subject of individual 

observations, one other synthetic chart that may be investigated is one based on the 

moving average for both univariate and multivariate processes. See Ghute and Shirke 

(2013) for a multivariate Hotelling’s    chart based on the moving average. 

Combining the operation of this chart and a CRL chart will yield a multivariate 

synthetic moving average chart. 

 

v. Most of the multivariate synthetic charts are based on the assumption of normality. 

Thus, robustness of these multivariate charts to non-normality still has to be studied 

for both zero-state and steady-state modes. 

 

vi. Generalized synthetic charts (GSC) for Case K under zero-state mode has been 

derived in Scariano and Calzada (2009) and has been used by a number of authors in 
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this essay. However, GSC for Case U under both zero-state and steady-state modes 

needs to be formulated. 

 

vii. The individual or combined VSS and VSI schemes are generally known to be more 

statistically efficient than FSS and FSI schemes (see Costa (1997)). Synthetic charts 

based on the combined scheme have not been investigated and cases when VSS 

and/or VSI is applied in parameter estimation. 

 

viii. Economic and economic-statistical designs of the synthetic-type charts (other than 

those with  ̅ and    as sub-charts) have not yet been investigated. For example, the 

starting point to study economic design of the multivariate synthetic    chart is given 

in Jolayemi (2000) where the economic design of the standard multivariate    chart is 

studied. 

 

ix. Khoo et al. (2011) showed that the double sampling synthetic  ̅ chart has a 

significantly better performance than its FSS counterpart. However, this chart was 

proposed for the zero-state mode; hence it would be interesting to study the 

performance of this chart under the steady-state mode. 

 

x. Yen et al. (2013) considered synthetic charts for time-between events when 

parameters are known; the effect of parameter estimation for this scenario still needs 

to be investigated. 

 

xi. More nonparametric (NP) synthetic charts need to be formulated. As stated earlier, 

only synthetic charts based on the sign and signed-rank statistics have been proposed 

to date. One could study, for example, a synthetic chart based on a Mann-Whitney 

statistic, Mood statistic, precedence or exceedence statistics, Conover’s squared rank 

test for variance, etc. Furthermore, a NP synthetic chart to jointly monitor the location 

and dispersion can be formulated by integrating the operation of the chart proposed in 

Mukherjee and Chakraborti (2012) or Chowdhury et al. (2013) with the CRL chart. 

Similarly, multivariate NP synthetic charts can be investigated by using the sub-charts 

already proposed in Das (2009), Zou and Tsung (2011) and Li et al. (2013). 
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xii. NP Shewhart-type charts are generally known to be efficient for the detection of large 

shifts. NP schemes with CUSUM or EWMA procedures, to monitor small shifts, were 

proposed in Bakir and Reynolds (1979), Amin and Searcy (1991), Amin et al. (1995), 

Li et al. (2010) and further studied in Graham et al. (2011a, b) for the sign, signed-

rank and Wilcoxon rank-sum tests. These schemes may be integrated with the CRL 

chart to develop more efficient NP synthetic charts. 

 

xiii. Until now, only a few synthetic-type charts have been proposed to jointly monitor the 

mean and variance (for parametric and nonparametric charts). Reviews by Cheng and 

Thaga (2006) and McCracken and Chakraborti (2013) give a number of charting 

procedures for this purpose whose operation can be integrated with the CRL chart to 

investigate whether this will yield charts that can efficiently detect process 

disturbances better than the existing methods. 

 

Research outputs 

 

 Next we list the research outputs associated with this dissertation. This includes local 

conferences where papers have been presented, departmental seminars and papers in 

progress. 

 

National conference (presentations) 

 

i. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2012). “Improved probability 

limits design for attributes data.” The 54
th

 annual conference of the South African 

Statistical Association (SASA), Nelson Mandela Metropolitan University (NMMU), 

Port Elizabeth, 5 – 9 November 2012. 

 

ii. Shongwe, S.C., Chakraborti, S., Graham, M.A. (2013). “Modified improved 

probability limits for the synthetic c chart.” The 55
th

 annual conference of the South 

African Statistical Association (SASA), University of Limpopo (UL), Polokwane, 4 – 

8 November 2013. 
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Departmental seminars (presentations) 

 

 

i. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2012). “Improved probability 

limits design for attribute data.” Departmental Seminar, University of Pretoria, 

Pretoria, South Africa, Nov 2012. 

 

ii. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2013). “Modified improved 

probability limits design for synthetic   control charts.” Departmental Seminar, 

University of Pretoria, Pretoria, South Africa, Nov 2013. 

 

Papers in progress 

 

i. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Modified improved 

probability limits for the p and c control charts.”  

ii. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Modified improved 

probability limits for the synthetic p and c control charts.” 

iii. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Synthetic control charts: 

An overview.” 

iv. Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Comparison of four 

variables control charts to monitor the process mean.” 
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