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Economic return quantity model for a multi-type empty container 

management system with possible storage constraint and shared cost 

of shipping  

Containerisation has been said to be one of the most significant innovations of 

port management. Some ports usually tend to be more export driven and others 

import driven. This imbalance in the number of inbound and outbound containers 

necessitates movement of containers from locations or surplus to those of deficit. 

A port needs to cater for not only the level of containers required, but also the 

variety. Many factors affect the cost efficiency of container movement, and 

hence, that of port operations and these need to be managed in an integrated 

manner to optimise cost in a port. 

We studied the management of a multi-type container system in a port where 

there can be savings from joint movement of containers, both empty return and 

procurement of replacement containers, and where there is limited storage 

capacity with storage cost. We developed a model to determine the optimal 

integrated return and purchase cycles and quantities. We illustrated the solution 

approach with a numerical example and performed sensitivity analysis. We 

believe this problem is rife and this model can guide such management of 

container return and replenishment in ports operations and management. 

Keywords: empty container management, container repositioning, lot sizing, 

return management, economic order Quantity (EOQ) 

1. Introduction 

Globalisation has changed the nature of trade, production and transport in the world and 

containerisation has been a major driver of the modern trade flows. The Lloyd Marine 

intelligence report of 2009 stated that about 75 percent by volume and 60 percent by 

value of the global trade is done by sea while 52 percent of cargoes shipped by sea are 

carried through containers (Lee and Song, 2017). These container movements are said 

to be generally imbalance as some ports tend to send a lot more containers than they 

receive while some receive more than they send. This gap is said to be driven by 

production regionalisation and globalisation of trade (Yu et al, 2018), and this trend 

seems to be continuing into the near future. This creates a general gradient for flow of 



 

 

containers and there is usually the need to create a reverse flow for such imbalance. 

Song and Dong (2011) actually stated that about 20 percent of container movements is 

that of empties. This is a massive cost given the value of the global trade using 

containers. They stated that the drivers of the massive container imbalance include 

factors like trade imbalance, dynamic behaviour, uncertainty in demands/handling/ 

transportation, types of equipment, blind spots in the transport chain, and a carrier’s 

operational and strategic practice.  

Trade imbalance is about the single most important of these factors, but planning 

issues are also contributory. Chen et al (2016) noted that there is currently no alternative 

to the long distance movement of goods across the globe. This makes it imperative for 

those in the transport industry to continue to find means to reduce the cost of managing 

this consequence of the dynamics of the global manufacturing and trading pattern which 

is not about to change any time soon. This has created the challenge of repositioning 

and replenishing containers in order to continue to meet the demand for its use. There is 

the need to continue to find data guided policies to minimise the cost of container 

repositioning and recovery because in a very competitive global industry, it is becoming 

more and more difficult to recoup the cost of Empty Container Repositioning (ECR) as 

cargoes move along the long global transport routes. 

The challenge of managing ECR is not only limited to that between ports across 

many different countries, but also between the port and the hinterland. International 

shipping permits the specification of the term of shipment via the incoterm, and this can 

place different scopes of liability on the shipper and the carrier. This position is actually 

bolstered through the adoption of inter-modal transport, making it possible for the 

carrier to not only move containers hinterland, but also plan the possible return. The 

process is then said to involve carrier haulage (Lee and Song, 2017).  

Other issues could complicate this problem further. One such issue is container 

attrition. This is because containers are usually lost or damaged or even converted to 

some other uses during its life cycle such that some of the containers that have been 

moved hinterland may not return to the port or may return in an unusable state. The 

shortage may also be dynamic in nature. This means even if there is a relative balance 

between the import and export demand rate for containers, there could be the challenge 

of alignment between the times of need such that the containers coming from import 

might not be available to be used for export at the appropriate time. These may 



 

 

necessitate the procurement of new containers to augment those in circulation while 

also repositioning empty containers in use. 

Another complicating issue is guaranteeing the appropriate mix of containers 

available at the point of use. There are different types of containers: twenty-foot 

equivalent units (TEU) forty-foot equivalent units (FEU), other specialised container 

types like refrigerated containers, and possible combinations of these categories. This 

means it is not sufficient to have enough number of containers that could meet the 

aggregate demand, but also the appropriate mix to meet the demand for each type of 

container in appropriate quantities. 

Empty Container (EC) repositioning is about moving containers around from 

areas of over-supply to areas of under supply. Such movement may include moving 

containers from the port to some locations hinterland and moving from hinterland to the 

port such that the container is being used and re-used. There may also be space 

constraint at the port. This may be because of growth in economy without a concomitant 

expansion of the port. The port, hence, charges some money for each day a container 

spends in the port, and the charges may also depend on the type of container stored. 

The mode and contract of shipment of containers are other factors that might 

make container management and repositioning more difficult. While many private users 

may simply use trucks to move containers on road because of the relatively low number 

of usage and truck accessibility, it is usually not cheap to use such mode for mass 

movement of containers for repositioning. It pays to consolidate container shipment and 

move higher volume in order to reduce the cost of shipment of containers. For instance, 

a common carrier may provide a train head to drive a given number of containers at a 

fixed cost and charge some marginal cost for each of the container types and quantities 

moved by the head. If the shipper moves each type separately, s/he pays the fixed cost 

separately for each of the container types as opposed to the containers sharing this fixed 

cost. 

The quantity and mix problem discussed are important for both the repositioned 

and newly procured containers. There is, hence, the need to determine the optimum 

number of containers to reposition and/or purchase per cycle as well as the length of the 

cycle and the mix of each type of container in each repositioning or replenishment 

cycle. This is a lot-sizing problem with integrated reverse logistics in which there are 

multiple types of containers, constraint on the storage capacity and economy of scale on 

the joint shipment. While there have been models of reverse logistics presented since 



 

 

Schrady (1967), the complexities of the container repositioning discussed herein seems 

not well addressed, and hence the need for this work. A tactical decision to make during 

container repositioning is the determination of the shipment size and interval. Work has 

continued in this area and many of this draw from the field of repairable inventory items 

and reverse logistics. 

The seminal work for lot sizing of repairable inventory item seems to have been 

Shrady (1967) and many lot-sizing models of reverse logistics seem to have extended 

this model. He developed a model of a system consisting of two inventory items: one in 

a Ready for Issue (RFI) state, and the other being in a Non Ready For Issue (NRFI) 

state. He discussed two repair policies called continuous supplement and substitution 

policies. He favoured the substitution policy in that it holds the NRFI items longer 

because they are much cheaper in overall cost. He ordered the cycles such that it uses 

the RFI items first, followed by the NRFI items and developed the optimal lot sizes for 

both items. He assumed that one manufacturing batch follows R recovery batches and 

that there would be no disposals from return items. 

Mambini et al (1992) presented a multi item repairable inventory system with 

shared repair capacity and under a restriction on the maximum shortage period allowed. 

Richter (1996 a,b) extended Schrady’s model solution into spaces where the search for 

solution considers multiples of repairs per procurement and multiple procurements per 

return, arguing it should produce better results than Shrady’s. Teunter (2001) is another 

interesting work considering cases of return, repair and reuse where a certain number of 

the batch returned is discarded and formulated policies considering (1,R) and (R,1) 

policies and the optimum batch sizing under these conditions. He considered cases 

where R recovery batches follows M manufacturing batches as a generalisation of 

Schrady’s as well. Other areas that have been explored in recoverable inventory include 

time varying demand, quality dependent recovery, and recovery with inspection and 

sorting, among others. Guide and Srivastava (1997) provided a good review of 

recoverable inventory items. They classified all models presented as single- or multi- 

echelon problems with various sub-classifications under each main category.  

Modelling reverse logistics is an area that has gained pre-eminence because of 

the global concern for environmental degradation. Many governments proposed laws 

and institutions developed best practices for including environmental factors in 

logistics. Many lot-sizing models in this area have also referenced Schrady and its 

sequels. They considered lot-sizing problems incorporating various return strategies like 



 

 

remanufacturing, reuse, recycling and even disposal. Some such models incorporated 

costs for environmental degradation like Green House Gas (GHG) emission, 

environmental pollution and others. Fleischmann et al (1997) provides a comprehensive 

review of reverse logistics models up until about 1997 while Bazan, Jaber and Zanonib 

(2016) provides a review of subsequent papers. Thierry (1995) provides a 

comprehensive framework that many authors have used to classify all forms of 

recycling activities and has become a basis for classifying return logistics models. 

Among authors that have considered the effect of limited capacity storage on lot-sizing 

decisions is Ghosh, Chakar and Chaoudri (2015). They presented a model for 

deteriorating items with stock dependent demand and limited storage space. 

2. Model formulation 

We first derive the model with different holding costs for new and return items and then 

progress to a case where these are the same, after which we consider a model with 

economy via sharing of fixed shipping cost. Consider a container management system 

of a port where there are different types of containers used therein. Each of these types 

of containers is moved from a port to another (or hinterland). After use, the container is 

to be returned to the port. Not all the containers sent out return to the port for re-use 

because some of the containers become unusable (or lost) and need to be replaced and 

the lost (or damaged) containers are replaced through procurement.  

 

Figure 1: Schematics of a container return system 

 

The ports authority may ship the containers (new or return) to the port in fixed 

batches. The port management can choose to ship different types of containers (return 

or procured) together or ship each type individually. If they ship a type of container, 

there is a fixed cost for each such shipment. If they ship different types together, there is 

a base fixed cost, and then marginal add-on for each type of containers shipped together 



 

 

(e.g. a case of a train head pulling many containers that could be of different types). 

This leads to possible economy of scale, and is partly an incentive from the carrier to 

procure high quantity of shipment. There is, however, also a restriction on the space 

available for storage of containers at the port. This space must be judiciously allocated 

among all the different types of containers to ensure that both the right aggregate 

quantities and varieties are available when needed. 

In this study, we present a lot sizing model to determine the optimum number of 

containers to reposition for re-use, as well as the optimum number of new containers to 

order from vendor as a replacement. In addition, the optimum cycle time for collection 

and purchase as well as the integrated number of return and procurement cycles for such 

replenishments is determined. Most assumption would be considered obvious, and 

where necessary, such would be stated. 

We define ݆ as an index for types of containers managed at the port, ݆ ൌ

 as a subscript denoting ݌ ,as a subscript denoting returned containers ݎ ,݊…,1,2

purchased containers, ܦ௝ as the annual demand rate for container type ݆  and ݔ௝ as the 

proportion of container type ݆ returned to the port from points of use. For the fixed 

costs, ܭ௥௝ is the fixed cost of returning a batch of useful container type ݆ from point of 

use and ܭ௣௝ the fixed cost of ordering a new batch of container type ݆ to make up for 

lost or damaged containers.  

The cost per unit per year of keeping a returned container type ݆ is ݄௥௝, and ݄௣௝, 

the cost per unit per year of keeping a newly purchased container type ݆ (this would 

later be modified during modelling). For cycle times, ௝ܶis the return cycle time for 

container type ݆, ௝ܶ
∗is the optimum return cycle time for container type ݆, ܶ is a common 

return cycle time for all containers while ܶ∗ is the optimum common return cycle time 

for all containers. Also, ௝݉ is the number of container return cycles per single cycle of 

procurement for a container type ݆ (this assumption would later be modified during 

modelling) while ܥ is the capacity of storage of all types of containers in the port 

terminal. The storage space requirement for a unit of container type ݆ is defined as ݏ௝ 

and λ the Lagrange multiplier for a constraint function. ܳ௥௝
∗ is the optimum return 

quantity for container type ݆ while ܳ௣௝
∗ is the optimum replenishment order quantity for 

container type ݆. 

Figure 2 is the quantity-time graph of the inventory level of containers in an 

inventory management system for a single type of containers. We have adopted the 



 

 

modelling paradigm of Koh et al (2002) wherein there is simultaneous consumption of 

both the purchased and repaired containers as opposed to Schrady’s complementary or 

substitution policies because the container consumption process seems more like Koh’s. 

The thick line is the graph of the returned containers position and the thin line, that of 

the new containers. In this example, there are ݉ cycles of returned containers for every 

new container cycle. Also, the norm is that the return rate of the container is usually 

close to 1, and this is without any loss of generality for the model development. In 

general, it would be assumed initially in the model derivation that each container type, 

݆, may have a separate number of return cycle, ௝݉, per single procurement cycle. This 

would later be modified for all types of containers to have a common cycle, ݉, per 

return so we can take advantage of economy of scale due to shared fixed cost in 

purchase and/or return.  

 

Figure 2: Quantity-time graph for a single container system with different cycles 

 

 

Figure 3: Aggregate inventory level for a single container type 



 

 

Figure 3 shows the aggregate inventory level position for a single container type 

with consumption occurring simultaneously from both the returned and procured stocks. 

This can be generalised for a multi-container system. To derive the model, we start by 

considering the single item case of Figure 2 for the return and replenishment containers. 

We progress to derive the cost function for a system with	݊ different types of containers 

in which there is a constraint on the storage space available. In deriving the model, a 

general case in which all items are ordered separately, return cycles per procurement 

cycle are different and the holding costs for new and recycled containers are different is 

first presented, from which particular cases of shared ordering cost and constant holding 

cost rates are then derived. 

Consider a container management system in which there is a container type ݆ with both 

return and procurement cycles. The total cost of this system consists of the costs of 

managing the returned containers and those of managing the procurement of the new 

containers. The cycle cost of managing returned containers (excluding purchase cost 

since it is independent of Q) is shown in 1 while the cycle cost or managing new 

containers (excluding purchase cost) is shown in 2. 

 

௥௝ܭ௝ܦ௝ݔ
ܳ௥௝

	൅		
ܳ௥௝݄௥௝
2

																																																													ሺ1ሻ 

ሺ1 െ ௣௝ܭ௝ܦ௝ሻݔ
ܳ௣௝

	൅		
ܳ௣௝݄௣௝
2

																																																						ሺ2ሻ 

In order to be able to integrate the cycles for the return and procurement sub-

systems, we chose to work on their cycle times. We would then retrieve the equivalent 

optimal lot-sizes (quantities) for the return and procurement systems from these 

optimum cycle times since ܶ and ܳ are jointly determined. The quantities, ܳ, in the cost 

functions for the return, the procurement and the total system costs can be written in 

terms of their cycle times as follows: 

ܳ௥௝ ൌ ௝ܦ௝ݔ ௝ܶ																																																																									ሺ3ሻ 

  ܳ௣௝ ൌ ௝݉൫1 െ ௝ܦ௝൯ݔ ௝ܶ																																																														ሺ4ሻ                             

ܳ௝ ൌ 	 ሾݔ௝ ൅ ௝݉ሺ1 െ ௝ܦሻሿݔ ௝ܶ																																																								ሺ5ሻ                            

Substituting 3 and 4 into 1 and 2 respectively, we have 6 and 7. The total cost of 

managing ݊-type container system is shown in 8. Considering there is possible space 



 

 

limitation and it may be impossible to store all containers if the combined return 

quantity and order quantity is too large, the space constraint for all containers managed 

can be written as 9, and from 5 and 9, we have 10. 

௥௝ܭ
௝ܶ
	൅ 		 ௝ܶݔ௝ܦ௝݄௥௝

2
																																																																ሺ6ሻ 

௣௝ܭ
௝݉ ௝ܶ

	൅ 		 ௝݉ ௝ܶሺ1 െ ௝݄௣௝ܦ௝ሻݔ
2

																																																					ሺ7ሻ 

෍ቈ
௥௝ܭ
௝ܶ
	൅ 		 ௝ܶݔ௝ܦ௝݄௥௝

2
	൅	

௣௝ܭ
௝݉ ௝ܶ

	൅ 		 ௝݉ ௝ܶሺ1 െ ௝݄௣௝ܦ௝ሻݔ
2

቉						

௡

௝ୀଵ

																				ሺ8ሻ 

∑ ܳ௝ݏ௝ 		൑ ௡		ܥ
௝ୀଵ 																																																														ሺ9) 

෍ ௝ܶܦ௝ݏ௝ൣݔ௝ ൅ ௝݉൫1 െ ௝൯൧ݔ 		൑ 																																										ܥ

௡

௝ୀଵ

ሺ10ሻ 

The problem becomes minimising 8 subject to 10. To solve this problem, we 

observe that it is either 10 is binding or not. If 10 is not binding, then we may simply 

drop it and solve 8. This is illustrated in Figure 4 showing the total cost function for a 

single container case, i.e. ݊ ൌ 1, with space constraint. If the constraint is binding, then 

the capacity limit, ܥ, is to the left of the optimum quantity, ܳ௝, as shown, rendering the 

optimum quantity, ܳ௝, infeasible and hence, making ܥ	the best quantity to select since 

the cost function is convex in ܳ. 

 

Figure 4: Behaviour of optimal cost under storage capacity constraint 

 

In a multi-type container system where the constraint is not binding, we partially 

differentiate with respect to ௝ܶ 	to obtain the optimal cycle time, ௝ܶ, for each item, ݆, we 



 

 

have 10. If the returned container is considered as good as new and their holding cost is 

the same, then 11 becomes 12. 

 

௝ܶ
∗ ൌ ඩ

2∑ ሺܭ௥௝ ൅
௣௝ܭ

௝݉
ሻ௡

௝ୀଵ

∑ ௝݄௥௝ݔ௝ሺܦ ൅ ௝݉ሺ1 െ ௝ሻ݄௣௝ሻ௡ݔ
௝ୀଵ

																																							ሺ11ሻ 

௝ܶ
∗ ൌ ඩ

2∑ ሺܭ௥௝ ൅
௣௝ܭ

௝݉
ሻ௡

௝ୀଵ

∑ ௝ܦ ௝݄ሾݔ௝ ൅ ௝݉൫1 െ ௝൯ሿ௡ݔ
௝ୀଵ

																																											ሺ12ሻ 

We may obtain the optimum lot size of containers to return or purchase from 3 

and 4 respectively. Equation 11 (or 12 as appropriate) yields ݊ equations.  Since each 

௝݉ is also an unknown, each of these ݊ equations of ௝ܶ can be solved iteratively for the 

optimum ௝݉ and ௝ܶvalue for each ݆. In a case where the constraint is binding, we may 

transform the inequality in 10 into an equation using the Lagrange multiplier, ߣ, and 

rewrite equations 8 with 10 as the Lagrangean function 

∑ ଵ

்ೕ
ሺܭ௥௝ ൅	

௄೛ೕ
௠ೕ
ሻ௡

௝ୀଵ ൅ ቂ∑
஽ೕ்ೕ
ଶ
௝൫݄௥௝ݔൣ	 ൅ ௝൯ݏߣ2 ൅ ௝݉ሺ1 െ ௝ሻሺ݄௣௝ݔ ൅ ௝ሻ൧ݏߣ2

௡
௝ୀଵ 	ቃ െ  (13)      ܥߣ	

Partially optimising 13 with respect to ௝ܶ for each ݆ yields  14. Again, if the 

returned container is considered as good as new and their holding costs taken as the 

same, equation 14 simplifies to 15.  

௝ܶ
∗ ൌ 	ඩ

2∑ ሺܭ௥௝ ൅
௣௝ܭ

௝݉
ሻ௡

௝ୀଵ

∑ ௝൫݄௥௝ݔൣ	௝ܦ ൅ ௝൯ݏߣ2 ൅ ௝݉ሺ1 െ ௝ሻሺ݄௣௝ݔ ൅ ௝ሻ൧௡ݏߣ2
௝ୀଵ

																							ሺ14ሻ 

௝ܶ ൌ 	
ඩ

2∑ ሺܭ௥௝ ൅
௣௝ܭ

௝݉
ሻ௡

௝ୀଵ

∑ ൣ൫	௝ܦ ௝݄ ൅ ௝ݔ௝൯ሾݏߣ2 ൅ ݉௝ሺ1 െ ௝ሻሿ൧௡ݔ
௝ୀଵ

																																	ሺ15ሻ 

 

2.1. Ordering/Collection cost economy of scale consideration 

If there is economy of scale for joint return of different types of container, then 

we seek to have a common optimal cycle, ݉, for all containers such that ௝݉ ൌ ݉	∀	݆. 

Let us say each time an order is placed, there is a fixed portion of ordering cost to which 

some marginal cost of order is added for each container type collected (or purchased). 



 

 

There will be cost savings because of shared fixed order cost when multiple containers 

are moved together (return or purchase cycle).  

We define ܭ௥௝
ᇱ as the marginal increase in fixed cost of returning a batch of 

container type ݆ from point of use to the port and ܭ௣௝
ᇱ  the marginal increase in fixed cost 

of ordering a new batch of container type ݆ to make up for lost or damaged containers. 

௥ܭ
௙is the fixed portion of the cost of returning a batch of useful container type ݆ from 

point of use to the port, whether single or multiple types of containers are involved. 

௣ܭ
௙is the fixed portion of the cost of ordering a new batch of container type ݆ to make up 

for lost or damaged containers whether single or multiple types are involved. We can re-

write the ordering costs of return and purchase for each container type in the form 16 

and 17. If each of the items are returned and purchased independently, the total ordering 

cost per cycle return for all items would be 18. If we take advantage of the economy of 

joint return and purchase, then ݊ ൌ 1 for the fixed ordering cost portion and 18 becomes 

19. 

௥௝ܭ ൌ ௥ܭ
௙ ൅ ௥௝ܭ

ᇱ 																																																																	ሺ16ሻ 

௣௝ܭ ൌ ௣ܭ
௙ ൅ ௣௝ܭ

ᇱ 																																																																	ሺ17ሻ 

෍ሺܭ௥௝ ൅
௣௝ܭ
݉
ሻ

௡

ଵ

ൌ ݊൫ܭ௥
௙ ൅ ௣ܭ

௙൯ ൅෍ ൫ܭ௥௝
ᇱ ൅ ௣௝ܭ

ᇱ ൯																													ሺ18ሻ
௡

௝ୀଵ
 

෍ሺܭ௥௝ ൅
௣௝ܭ
݉
ሻ

௡

ଵ

ൌ ൫ܭ௥
௙ ൅ ௣ܭ

௙൯ ൅෍ ൫ܭ௥௝
ᇱ ൅ ௣௝ܭ

ᇱ ൯																												ሺ19ሻ
௡

௝ୀଵ
 

It can be seen that 19 would always be less than 18 for any ݊ ൐ 1. We would, 

however, need to check that this saving is not outweighed by the cost of storing the 

containers, especially because this can be aggravated by the effect of storage constraint. 

This is because joint shipment may lead to a higher maximum inventory level (ܫ௠௔௫) in 

the system since all containers arrive at the same time. This makes it quite easy to sub-

optimise consequent to the increased cost of holding container inventory, especially as 

the constraint becomes binding. This means the savings in joint collection and purchase 

needs to be weighed against this possible additional cost of holding stock. 

From 11, the optimal common cycle time (݄ now assumed equal) becomes 20. If 

the constraint is also binding with the economy of scale present, and since 10 also holds 

true and now becomes an equality, we may make ܶ the subject from 10 as in 21. 



 

 

ܶ∗ 	ൌ ඨ
2ൣ൫ܭ௥

௙ ൅ ௣ܭ
௙൯ ൅ ∑ ൫ܭ௥௝

ᇱ ൅ ௣௝ܭ
ᇱ ൯௡

௝ୀଵ ൧

∑ ௝ܦ ௝݄ሾݔ௝ ൅ ௝݉൫1 െ ௝൯ሿ௡ݔ
௝ୀଵ

																																								ሺ20ሻ 

௝ܶ ൌ ܶ ൌ 	
ܥ

௝ݏ௝ܦ∑ ௝ݔൣ ൅ ௝݉൫1 െ ௝൯൧ݔ
																																												ሺ21ሻ 

Solving 21 and 14 together for any ݆ yields the equations to calculate the value of λ 

as in 22. When the holding cost is identical, it becomes 23. It can be seen from 22 and 

23 that we cannot factorise ߣ completely, hence, we have to solve for ߣ iteratively. We 

may also use the optimal value(s) of ݉ ( ௝݉  obtained from solving the unconstrained (ݏ′

problem to find the appropriate value of λ.  

2
ଶܥ

෍ቆܭ௥௝ ൅
௣௝ܭ

௝݉
ቇ ൌ

∑ ௝݄௥௝ݔൣ	௝ܦ ൅ ௝݉൫1 െ ௝൯݄௣௝ݔ ൅ ௝ݔ௝ሺݏߣ2 ൅ ௝݉ሺ1 െ ௝ሻሻ൧ݔ
௡
௝ୀଵ

ሺ∑ܦ௝ݏ௝ ௝ݔൣ ൅ ௝݉൫1 െ ௝൯൧ሻଶݔ

௡

ଵ

								ሺ22ሻ 

2
ଶܥ

෍ቆܭ௥௝ ൅
௣௝ܭ

௝݉
ቇ ൌ

∑ ௝ܦ 	ቂሺ ௝݄ ൅ ௝ሻݏߣ2	 ቀݔ௝ ൅ ௝݉൫1 െ ௝൯ቁቃݔ
௡
௝ୀଵ

൫∑ܦ௝ݏ௝ ௝ݔൣ ൅ ௝݉൫1 െ ௝൯൧൯ݔ
ଶ

௡

ଵ

														ሺ23ሻ 

 

2.2. Proof of convexity 

To check that 11 and 14 actually give the minimum, it suffices to find the second 

derivative of 8 (or 13) with respect to ܶ (or ௝ܶ) and confirm that they are positive (semi) 

definite, which both give 24. This function, 24, is positive definite since all the input 

parameters are non-negative and non-zero, and hence 11 and 14 (and their variants 

presented) are minima for the cost functions in 8 and 13 respectively. 

 

2

ܶଷ ∑ ൬	ܭ௥௝ ൅
௣௝ܭ
݉ ൰

																																																											ሺ24ሻ 

3. Solution procedure and algorithm 

To determine what the best cost would be, it is pertinent to answer two questions. The 

first is if there is savings as a result of joint purchase and/or collection of containers. 

The second is if the capacity constraint is violated or not when the optimal quantities are 

determined from the optimal cycle times estimated. The process of determining the 

optimal cost by answering these two questions has been used to formulate an algorithm 

and is presented together with the solution procedure flow chart (Figure 5). 
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Figure 5: Solution procedure flow chart 

 

3.1. Solution algorithm 

1. Establish if there is economy of scale in ordering cost in order to choose the path 

to adopt for the solution. If there is opportunity for savings due to joint return or 

procurement ordering cost, follow paths ܽ and ܾ (the left of the flow chart) else, 

follow path ܿ (the right). 

2. Using 11 (or 12 as appropriate for common ݄) iteratively with 8, solve for the 

optimal ௝ܶ’s for the individual items (containers) and compute the optimal cost 

a. Check feasibility of solution using 10 

3. Adopting the economy of scale in the ordering cost for joint collection and/or 

purchase and using 20, solve for ௝ܶ’s 

a. Check feasibility of the solution using 10 

4. If both are feasible, choose the minimum of steps 2 and 3 

a. Adopting the better of the feasible costs, using 3 and 4, calculate ܳ௝’s, 



 

 

i. Stop 

b. Else, proceed to step 5 

5. Adopt the ௝݉ values obtained from step 2 or 3. Using 22 (or 23 as appropriate 

for common ݄), solve for lambda 

6. Using 14 (or 15 ), solve for ௝ܶ’s if individually determined 

7. For joint ordering with economy of scale, using 21, determine ܶ. Adopt equation 

19 into 14 (or 15) for order cost, solving iteratively with varying ݉ values. 

8. Adopting ௝ܶ’s from steps 5 and 6, and adopting lambda from step 4 or 5 as 

appropriate, using 13, calculate the costs. 

9. Choose the minimum from step 8 

10. End 

4. Numerical example and sensitivity analysis  

Two numerical examples were solved using the proposed solution procedure, ݊ ൌ 3. 

For the first example (hereinafter Example 1), the storage capacity constraint is not 

binding while it is binding in the second example (hereinafter Example 2). The 

following input parameters apply to both examples: 

ଵܦ ൌ ଶܦ ,ݏݎ݁݊݅ܽݐ݊݋ܿ	000	15 ൌ ଷܦ ,ݏݎ݁݊݅ܽݐ݊݋ܿ	000	20 ൌ ଵݏ ,ݏݎ݁݊݅ܽݐ݊݋ܿ	000	25 ൌ

ଶݏ ,ݎ݁݊݅ܽݐ݊݋ܿ/ଷݐ݂	20 ൌ ଷݏ ,ݎ݁݊݅ܽݐ݊݋ܿ/ଷݐ݂	15 ൌ ଵݔ ,ݎ݁݊݅ܽݐ݊݋ܿ/ଷݐ݂	10 ൌ 0.95, 

ଶݔ ൌ ଷݔ ,0.9 ൌ ௥ଵܭ ,0.8 ൌ ௥ଶܭ ,000	$10 ൌ ௥ଷܭ ,000	$8 ൌ ௣ଵܭ ,000	$7 ൌ $15	000, 

௣ଶܭ ൌ ௣ଷܭ ,000	$12 ൌ ௥ܭ ,500	$10
௙ ൌ ௣ܭ ,000	$7

௙ ൌ ௥ଵܭ ,000	$10
ᇱ ൌ ௥ଶܭ ,000	$3

ᇱ ൌ

௥ଷܭ ,400	$2
ᇱ ൌ ௣ଵܭ ,100	$2

ᇱ ൌ ௣ଶܭ ,000	$6
ᇱ ൌ ௣ଷܭ ,800	$4

ᇱ ൌ $4	200, ݄௥ଵ ൌ

௥ଶ݄ ,ݎܽ݁ݕ/$40 ൌ ௥ଷ݄ ,ݎܽ݁ݕ/$30 ൌ ௣ଵ݄ ,ݎܽ݁ݕ/$20 ൌ ௣ଶ݄ ,ݎܽ݁ݕ/$60 ൌ  ,ݎܽ݁ݕ/$50

݄௣ଷ ൌ  .ݎܽ݁ݕ/$40

The storage capacity for all container types in Example 1 is given by ܥ ൌ

ܥ ,ଷ, and for Example 2ݐ݂	000	200 ൌ  .ଷݐ݂	000	100

Four possible scenarios can result depending on the presence of the binding 

storage capacity constraint and the economies of scales achieved by joint ordering. 

Tables 1 and 2 present the results from the two examples, with the results in the former 

Table corresponding to a case where the constraint is not binding and in the latter Table, 

the constraint is binding.   

 

 



 

 

Table 1: Results from Example 1 
Scenario Common (or 

individual) cycle 

times) ሺ࢙࢘ࢇࢋ࢟ሻ 

Number of return 

cycles per 

procurement cycle 

Total cost  

ሺ$/࢘ࢇࢋ࢟ሻ 

Space requirements 

ሺ࢚ࢌ૜ሻ 

1 ଵܶ ൌ 0.1808 

ଶܶ ൌ 0.1690 

ଷܶ ൌ 0.1750 

݉ଵ ൌ 5 

݉ଶ ൌ 3 

݉ଷ ൌ 2 

ଵܥܶ ൌ 143 770.65 

ଶܥܶ ൌ 141	985.92 

ଷܥܶ ൌ 140	000.00 

࡯ࢀ ൌ ૝૛૞ ૠ૞૟. ૞ૠ 

ଵܥ ൌ 65	104  

ଶܥ ൌ 60	851	 

ଷܥ ൌ 52	500	 

࡯ ൌ ૚ૠૡ	૝૞૞  

૜ ࢀ ൌ ૙. ૚ૡૢ૞ ࢓ ൌ ૛ ࡯ࢀ ൌ ૜૞ૠ ૞૛૞. ૞૟ ࡯ ൌ ૚ૠૢ	૙ૠ૞  

 

From the data and for the two examples, we can see that that joint ordering 

results in cost total reductions when compared to equivalent individual ordering 

policies. In Example 1, the optimal solution is achieved when jointly ordering (for all 

container types) every ܶ ൌ 0.1270 years and having ݉ ൌ 2 returns cycles for all 

container purchase cycles. Under this optimal policy, the total cost is  $357	525.56 per 

year. When the storage capacity constraint is binding (as is the case in Example 2), the 

optimal cycle time and the number of return cycles per purchase cycle remain the same 

but the total cost increases to  $362	151.68 per year. 

It can also be verified that the value of lambda (the Lagrange multiplier) for the 

first example is negative (ߣ ൌ െ0.8748) if used in the computation of the optimal cycle 

time or quantity as indicated in 14 of 15 instead of 11 or 12 when the constraint is not 

binding. This is expected because negative lambda indicates that the capacity was not 

yet exhausted, and is, therefore, not necessary given the computational effort involved 

compared to the simpler equations (11 or 12).  

The capacity constraint in the second example justifies the use of 14 of 15 

instead of 11 or 12, and it can be verified that lambda in that case is positive, ߣ ൌ

0.0816. This factor is necessary to adjust the optimal cycle time (and hence optimal 

order quantity) for all items ݆ in order to be within the capacity limit. It can also be seen 

that with an appropriate choice of lambda, the capacity just got fully utilised as 

indicated in Figure 4, and the container mix was appropriately allocated.  

 

 



 

 

Table 2: Results from Example 2 
Scenario Common cycle time 

(or individual cycle 

times) ሺ࢙࢘ࢇࢋ࢟ሻ 

Number of return 

cycles per 

procurement cycle 

Total cost  

ሺ$/࢘ࢇࢋ࢟ሻ 

Feasibility Space 

requirements 

ሺ࢚ࢌ૜ሻ 

1 ଵܶ ൌ 0.1808 

ଶܶ ൌ 0.1690 

ଷܶ ൌ 0.1750 

݉ଵ ൌ 5 

݉ଶ ൌ 3 

݉ଷ ൌ 2 

ଵܥܶ ൌ 143 770.65 

ଶܥܶ ൌ 141 985.92 

ଷܥܶ ൌ 140	000.00 

࡯ࢀ ൌ ૝૛૞ ૠ૞૟. ૞ૠ 

Storage capacity 

constraint violated 

(i.e. Not feasible) 

ଵܥ ൌ 65 104  

ଶܥ ൌ 60 851  

ଷܥ ൌ 52	500	 

࡯ ൌ ૚ૠૡ ૝૞૞ 

2 ଵܶ ൌ 0.0926 

ଶܶ ൌ 0.0926 

ଷܶ ൌ 0.1112 

݉ଵ ൌ 5 

݉ଶ ൌ 3 

݉ଷ ൌ 2 

ଵܥܶ ൌ 177 228.30 

ଶܥܶ ൌ 168 562.77 

ଷܥܶ ൌ 154	626.98 

࡯ࢀ ൌ ૞૙૙ ૝૚ૡ. ૙૞ 

Feasible ܥଵ ൌ 33 326  

ଶܥ ൌ 33 306  

ଷܥ ൌ 33	368	 

࡯ ൌ ૚૙૙ ૙૙૙ 

3 ܶ ൌ 0.1895 ݉ ൌ 2 357 525.56 Storage capacity 

constraint violated 

(i.e. Not feasible) 

࡯ ൌ ૚ૠૢ ૙ૠ૞ 

૝ ࢀ ൌ ૙. ૚૙૞ૡ ࢓ ൌ ૛ ࡯ࢀ ൌ ૜ૡ૜ ૜૟૝. ૢ૛ Feasible ࡯ ൌ ૚૙૙ ૙૙૙  

 

4.1. Sensitivity Analysis 

Sensitivity analysis was done for the case where the constraint is not binding. The 

following observations were made from the results of the sensitivity analysis as 

presented in Table 3. 

 Changes to the storage capacity for all container types (i.e. ܥ) affected the 

optimal total cost and the cycle time but not the number of return cycle per 

procurement. In general, as the storage capacity decreases the cycle time 

decreases as well. A 50% decrease in capacity results in a 44% decrease in the 

cycle time. Increasing the capacity also had no effect on the cycle time since it 

was non-binding. This is because the cycle time and quantity are jointly 

determined and the optimum quantity would not change until when the capacity 

becomes binding. 

 Changes to the cost of holding returned containers (i.e. ݄௥௝) were found to have 

significant impacts on the total cost and the cycle time but not the optimal 

number of returns per purchase cycle. Case in point, a 50% increase in the 

holding cost for the returned containers resulted in a 14% decrease in the cycle 

time and a 16% increase in the total costs. A similar percentage decrease 

resulted in an increase of 12% in the cycle time and a decrease of 20% in the 



 

 

total cost. Despite these sizable changes, the number of return cycles per 

procurement cycle remained flat at two for all percentage decreases and 

increases tested. 

 Changes to the holding costs of purchased containers (i.e. ݄௣௝) were found to 

have similar effects on the objective function and decision variables as changes 

to the holding costs of returned container. However, the effects on the total cost 

and cycle time were not as severe as those caused by the holding costs of the 

returned containers. For example, a 50% decrease in the retuned containers’ 

holding costs resulted in 12% decrease in the total cost while a similar change to 

the purchased containers’ costs resulted in a decrease of 9%. This may be 

attributed to the assumption that the fraction of returned containers is close to 

unity, making the complementary function multiplying ݄௣௝, ൫1 െ  ௝൯, close toݔ

zero. This makes that the effect of the returned containers on the various cost 

components more dominant. 

 The cost of returning a batch of useful containers (i.e. ܭ௥௝) did not affect the 

optimal solution for every case of joint ordering. Only the solution of individual 

ordering was only affected when ܭ௥௝ was decreased by up to 50%. It is also 

interesting to note that this happened only in this particular case where the 

solution obtained from individual ordering policy resulted in lower total costs 

than a joint ordering policy. When this cost was separated into a fixed portion 

and a variable portion (i.e. ܭ௥௝
௙  and ܭ௥௝

ᇱ ), the number of return cycles per 

procurement cycle was still not affected by any of the changes but the cycle time 

and the total cost showed some movement, with the most notable ones being 

decreases of 10% to the cycle time and 7% to the total cost as a result of a 50% 

decrease in the variable cost of returning a batch of useful containers. 

 With regards to the ordering cost for purchased containers (i.e. ܭ௣௝), its 

movement also affects the optimal cost and cycle time, but not as significantly 

as ܭ௥௝. This makes sense because while ܭ௣௝ is divided by ௝݉, ܭ௥௝ is not. Hence, 

since ௝݉ ൒ 1	∀	݆, the effect gets more significant as ݉ increases. 

 While decreasing the storage space requirement for each container type (i.e. ݏ௝) 

by 25% and 50% did not affect the optimal solution at all, increasing it by the 



 

 

same amounts resulted in changes to the optimal solution. This is explainable 

because the effect only kicks in when the storage capacity constraint becomes 

binding, hence, for both the 25% and 50% increases the cycle time increased by 

11.1% in both cases while resulting increases to the total cost were smaller at 

2.5% while reducing ݏ௝ only increases idle capacity. 

 

Table 3: Results from the sensitivity analysis 
Parameters  Common cycle 

time (or 

individual 

cycle times if 

optimal) 

 Number of common 

return cycles per 

procurement cycle 

(or individual 

cycles) 

Total cost  

Base example  ૙. ૚ૡૢ૞ ૛ ૜૞ૠ	૞૛૞. ૞૟  

 364.62 ൅7.2	െ50 0.1058 െ44.2 2 0 383 ܥ

െ25 0.1585 െ16.2 2 0 352	578.17 െ1.4 

൅25 0.1895 0 2 0 357	525.56 0 

൅50 0.1895 0 2 0 357	525.56 0 

௥௝ െ50 ଵܶܭ ൌ 0.1419 

ଶܶ ൌ 0.1380 

ଷܶ ൌ 0.1479 

െ25.1 

െ27.2 

െ22.0 

݉ଵ ൌ 5 

݉ଶ ൌ 3 

݉ଷ ൌ 2 

൅150 

൅50 

0 

347	035.59 െ2.9 

െ25 0.1895 0 2 0 357	525.56 0 

൅25 0.1895 0 2 0 357	525.56 0 

൅50 0.1895 0 2 0 357	525.56 ൅5.9 

 525.56 ൅5.9	௣௝ െ50 0.1895 0 2 0 357ܭ

െ25 0.1895 0 2 0 357	525.56 ൅5.9 

൅25 0.1895 0 2 0 357	525.56 ൅5.9 

൅50 0.1895 0 2 0 357	525.56 ൅5.9 

௥௝ܭ
௙  െ50 0.1809 െ4.5 2 0 335	808.26 െ6.1 

െ25 0.1853 െ2.2 2 0 346	825.48 െ3.0 

൅25 0.1936 ൅2.2 2 0 367	933.42 ൅4.8 

൅50 0.1977 ൅4.3 2 0 378	070.95 ൅5.7 

௣௝ܭ
௙  െ50 0.1771 െ6.5 2 0 326	090.98 െ8.8 

െ25 0.1834 െ3.2 2 0 342	144.22 െ4.3 

൅25 0.1954 ൅3.1 2 0 372	309.99 ൅4.1 

൅50 0.2011 ൅6.1 2 0 386	559.84 ൅8.1 

௥௝ܭ
ᇱ  െ50 0.1803 െ4.9 2 0 344	607.50 െ3.6 

െ25 0.1849 െ2.4 2 0 351	118.45 െ1.8 



 

 

൅25 0.1934 ൅2.3 2 0 363	832.34 ൅1.8 

൅50 0.1983 ൅4.6 2 0 370	042.32 ൅3.5 

௣௝ܭ
ᇱ  െ50 0.1706 െ10.0 2 0 331	260.61 െ7.3 

െ25 0.1803 െ4.9 2 0 344	607.50 െ3.6 

൅25 0.1983 ൅4.6 2 0 370	042.32 ൅3.5 

൅50 0.2067 ൅9.1 2 0 382	185.76 ൅6.9 

݄௥௝ െ50 0.2116 ൅11.7 2 0 286	391.30 െ19.9

െ25 0.2082 ൅9.9 2 0 325	408.97 െ9.0 

൅25 0.1751 െ7.6 2 0 386	985.85 ൅8.2 

൅50 0.1635 െ13.7 2 0 414	356.82 ൅15.9

݄௣௝ െ50 0.2064 ൅8.9 2 0 328	297.60 െ8.2 

െ25 0.1974 ൅4.2 2 0 343	222.84 െ4.0 

൅25 0.1825 െ3.7 2 0 371	277.70 ൅3.8 

൅50 0.1762 െ7.0 2 0 384	538.34 ൅7.6 

 525.56 0	௝ െ50 0.1895 0 2 0 357ݏ

െ25 0.1895 0 2 0 357	525.56 0 

൅25 0.2116 ൅11.7 2 0 366	285.48 ൅2.5 

൅50 0.2116 ൅11.7 2 0 366	285.48 ൅2.5 

5. Conclusion 

Container return management, including repositioning, is an important part of ports 

management activities. Repositioning is usually necessary when there is a gap between 

demand and supply levels for containers in ports, and there is usually the need to move 

such around. These movements can affect the cost of port operation significantly, and 

hence, the need to plan them appropriately, not only in terms of meeting the aggregate 

objectives, but also the mix of containers needed, given that shortages could be deemed 

to have occurred even when there are containers, but not the types needed for the 

transaction in time. 

A model that could be used to determine the optimum lot size to move in a 

multi-item container management system has been presented in an environment where 

there could be storage capacity constraint and significant savings in moving different 

types of containers together as a batch. There is also the need to manage the top up 



 

 

containers for lost or damaged ones in an integrated manner. This scenario is common 

in container return management, and is deserving of attention.  

We derived the optimal lot sizes for the container movements and repositioning 

for both the procured and returned containers under different scenarios, formulated the 

appropriate solution algorithm to determine the optimal quantity to reposition and 

procure and also presented two numerical examples to illustrate some of the important 

scenarios. We also showed the sensitivity of the solutions derived to changes in 

different parameters. We believe this model would be useful for most port managers. 
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