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Abstract

The AdS/CFT correspondence has proved to be a powerful tool in the analysis of
many systems of interest in theoretical physics. Strongly coupled gauge theories
that are difficult to solve can be determined by using gravitational theory instead.
Based on this concept the integrability, or rather non-integrability of a gauge theory
system can be determined using semi-classical string solutions. Integrability has
become a coveted property in a system. It indicates that the system can be solved
fully. Since there is no systematic method to check for integrability, the analytic
non-integrability method was conceived to provide a way to test for non-integrability
in string theory by following a set of fixed steps. This method has been able to test
for non-integrability in a variety of backgrounds containing closed string solutions.
One question that remains is whether the method can be extended to include open
strings.

In this dissertation, the analytic non-integrability method is used to test for non-
integrability for an open string solution ending on a Y = 0, maximal giant graviton.
The solution that is used is the Hofman-Maldacena giant magnon. The method is
also tested for open strings ending on a D5 and D7 brane. Two variations are used
for the metric of the D7 brane. These are the S2 × S2 and the nested S4 metrics of
the S5.

The method was able to reproduce the expected results for the D5 brane and
the giant graviton. This is a strong indication that the method can be successfully
adapted when checking for non-integrability in open string solutions. There is po-
tential for the method to conclusively prove non-integrability in the D7 brane case
if an appropriate open string solution can be found.
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Chapter 1

Introduction

An important advancement in theoretical physics in recent years is the AdS/CFT
correspondence. The correspondence essentially claims that some d dimensional
gauge theories can be described by a gravitational theory in d + 1 dimensions [1].
Strongly coupled gauge theories are usually not easily solved. The correspondence
allows for the use of the gravitational theory, that is more easily solved at strong
coupling to gain insight into the gauge theory. Certain gauge theories have a prop-
erty known as integrability [2]. This property allows in principle for a system to be
fully solvable at any value of the gauge coupling.

It is not always possible to prove that a system is integrable. No systematic
method or algorithm exists to show that a given gauge theory is integrable. Based
on the AdS/CFT conjecture, the concept of integrability can be further explored.
The analytic non-integrability method provides a way to test if a given theory is
non-integrable from the string theory side. The method was first applied in [3]
and provides a way to test if a system is non-integrable as long as it has a known
AdS/CFT dual. This is important since there isn’t a way to test for non-integrability
on the gauge theory side.

The method consists of studying the motion of classical strings on the gravi-
tational background. A solution is selected that satisfies the string equations of
motion. By linearising around this solution, an attempt is made to reduce the equa-
tions of motion to a classical Hamiltonian system. Once this is done, the Kovacic
algorithm [4] can be applied to check if the system is non-integrable. If the linearised
system is non-integrable then so is the original system. Finding non-integrability
on the string theory side translates to a lack of quantum integrability on the gauge
theory side.

This method has shown great success in showing non-integrability for closed
string solutions. The hope is that it can be extended to the case of open strings.
Closed strings satisfy periodic boundary conditions. The open string has either
Dirichlet or Neumann boundary conditions depending on the set up being studied.
These boundary conditions complicate what solutions are allowed by adding more
constraints to the system. The question is, how do these open string boundary
conditions affect the way the analytic non-integrability method is applied?

Before the method can be successfully used there are some important concepts
that need introducing. Chapter 2 offers an introduction to classical string theory and
some important concepts crucial for the study of these string systems. The classical
string action and the equations of motion will be discussed. An explanation of
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CHAPTER 1. INTRODUCTION

the string boundary conditions will also be given. This will be followed by a brief
overview of the AdS/CFT correspondence, an important discovery that makes this
work possible. A review of some important string solutions will be discussed. The
remainder of the chapter will be dedicated to discussing the concept of integrability
and the analytic non-integrability method, with some examples of how the method
is applied to closed strings.

In chapter 3, the method will be used to test for non-integrability in an open
string ending on a giant graviton. The Hofman-Maldacena giant magnon solution
will be used as the open string solution [5]. Finally chapters 4 and 5 will consist of
testing for non-integrability of an open string ending on a D5 brane and D7 brane
respectively.

Appendix A offers a map from the embedding coordinates for the giant graviton
to the intrinsic coordinates. Most studies containing giant gravitons use embedding
coordinates. However, all the calculations done in this dissertation use the intrinsic
coordinate system. It is therefore necessary to have a link between these coordinate
systems so that the set-ups and results can be directly compared. Appendix B checks
if the Polyakov action for an S5 can be written as a Principal Chiral Model. Since the
Principal Chiral Model is integrable being able to show the equivalence to a Polyakov
description means that the Polyakov action is integrable. It is not possible to write a
string system on a general background as a Principal Chiral model. However, since
S5 is a symmetric space it can be done. Although this calculation is more suited to a
study on integrability as opposed to non-integrability, it was an interesting exercise
to gain insight on integrable systems. The calculations in this dissertation were done
using Mathematica. Appendix C provides a sample of the code that was used.

The results obtained for the giant graviton and the D5 brane were consistent
with expectations from the gauge theory. This provides confidence that the analytic
non-integrability method can be consistently expanded to open strings. The method
will be a useful in the study of non-integrability in these systems.
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Chapter 2

Introduction to String Theory and
Analytic Non-Integrability

This chapter contains some of the background knowledge needed to gain a better
understanding of open strings and analytic non-integrability. Starting with a brief
study of introductory string theory, the Nambu-Goto and Polyakov actions are dis-
cussed. Next, an overview of the AdS/CFT correspondence proposed by Maldacena
[1] will be given. Finally, there will be a discussion on analytic non-integrability and
the Kovacic algorithm.

2.1 Introduction to String Theory

String theory has its origins in the S-matrix theory research direction, started in
1943 by Werner Heisenberg. S-matrix theory was popular from the 1950s into the
60s. Later in 1968, Gabriele Veneziano worked on developing a theory for the nuclear
forces that arise from the interactions of hadrons. At the time no one realised that
this model had any relevance to string theory. Leonard Susskind, Yoichiro Nambu
and Holger Bech Nielsen independently found that they could derive the Veneziano
formulation from looking at particles as strings instead of points. Their idea was
that quarks are connected by tiny one-dimensional strings [6]. String theory was
supposed to describe the strong interactions between quarks but failed at this task.
It required twenty six dimensions as well as a particle known as a tachyon. The
tachyon is a massless particle that travels faster than the speed of light. Later it
was understood that QCD was the correct theory to describe the strong interactions
[6]. Although string theory failed in its original purpose it still has merit. While
Veneziano’s model only consisted of particles acting through the strong force and
did not include fermions, Pierre Ramond’s reformulation took into account particle
spin. This allowed for the inclusion of fermions and bosons. String theory is now able
to reproduce Yang Mills gauge theory in the low energy limits, electromagnetism
and general relativity [7]. It still gives rise to extra spatial dimensions beyond the
usual three observable dimensions. However, it only requires ten instead of the
initial twenty six and no longer requires the tachyon. Despite any shortcomings,
by thinking of particles as strings of finite length, the re-normalization problem
that occurs in general relativity disappears. String theory also provides new results
in mathematics, for example mirror symmetry, which describes the interrelation
between topologically different Calabi-Yau manifolds [8].
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CHAPTER 2. INTRODUCTION TO STRING THEORY AND ANALYTIC
NON-INTEGRABILITY

2.1.1 From a Relativistic Point Particle to the Nambu-Goto
Action

If a particle is moving in Minkowski space of D- dimensions with the metric ηµν =
diag(−1, 1, 1, ..., 1) and fixed coordinates Xµ = (t, ~x), the action will be S =

−m
∫
dt
√

1− ~̇x · ~̇x [9]. The particle’s motion can be described by giving its po-
sition in terms of D − 1 functions of time. In order to have re-parametrization
invariance, an important property for the point particle action, a new Lagrangian
that treats space and time equally will be required. To this end, time is redefined as
a dynamical degree of freedom. While the particle may or may not move in space,
it must move in time [9]. Introducing a new parameter τ along the world-line allows
the particle’s motion to be described by D functions Xµ(τ). A new action can be
formulated using these functions,

S = −m
∫
dτ

√
−ẊµẊνηµν (2.1)

with µ = 0, ..., D − 1 and Ẋµ = dXµ

dτ
. The τ parametrization is arbitrary, picking

another parameter τ̃ will make no difference [8]. After applying an integration by
parts, the variation of the new action in (2.1) is given by,

δS = −m
∫
dτu̇µδX

µ (2.2)

with the normalised D-velocity uµ = Ẋµ√
−ẊνẊν

[9]. Taking uµ = 0 describes the free

motion of the particle. There is another action that can be used to describe the
relativistic point particle. Introducing another field e(τ), the action in terms of this
field will be,

S =
1

2

∫
dτ(e−1Ẋ2 − em2). (2.3)

Here Ẋ2 = ẊµẊνηµν . In this action it appears as though the world line theory is
coupled to one dimensional gravity with e(τ) acting as the einbein. This new action
is re-parametrization invariant. Equation(2.3) can be brought to the form

S = −1

2

∫
dτ
√
−gττ (gττẊ2 +m2), (2.4)

by denoting e(τ) =
√
−gττ and where gττ = (gττ )−1 is the world line metric. e(τ)

transforms as a density whilst each Xµ transforms as a scalar on the world line.
Moving on to the case of a string, a worldsheet is a two-dimensional manifold

that describes the embedding of the string in spacetime. This worldsheet can be
parametrized by a spacelike coordinate σ and a timelike coordinate τ . The two
worldsheet coordinates can be combined as σα = (τ, σ). For a string the action is
required to be proportional to the area, A, of the worldsheet. This action needs to
describe the string dynamics while being re-parametrization invariant. The metric
that will be induced on the worldsheet is the pull-back of the Minkowski flat metric,

γαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν . (2.5)
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2.1. INTRODUCTION TO STRING THEORY

The action is defined by,

S = −T
2

∫
d2σ
√
−detγ, (2.6)

where T is the tension of the string. With the definitions Ẋµ = ∂Xµ

∂τ
and Xµ′ = ∂Xµ

∂σ
,

the pullback metric can be expressed as,

γαβ =

(
Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

)
(2.7)

where Ẋ2 = ẊµẊνηµν and Ẋ · X ′ = ẊµX ′µηµν = ẊµX ′µ. Equation (2.6) can be
rewritten in terms of (2.7) as

S = −T
2

∫
d2σ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2. (2.8)

Equation (2.8) is the Nambu-Goto Action for a relativistic string.
The Nambu-Goto action has two types of symmetries. The Poincaré invariance

of the spacetime is the first of these symmetries. It is a global symmetry from the
worldsheet perspective. The second is reparametrization invariance which is a gauge
symmetry.

The momenta (Π) need to be introduced in order to derive the Nambu-Goto
string equations of motion. From equation (2.8),

Πτ
µ =

∂L
∂Ẋµ

=
−T [(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ]√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
(2.9)

Πσ
µ =

∂L
∂X ′µ

=
−T [(Ẋ ·X ′)Ẋµ − (X ′)2X ′µ]√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
. (2.10)

The equations of motion in terms of Π are,

∂Πτ
µ

∂τ
+
∂Πσ

µ

∂σ
= 0. (2.11)

From the action in equation (2.6), along with the pullback metric (2.7) and the
equation for the variation of a determinant,

δ
√
−γ =

1

2

√
−γγαβδγαβ, (2.12)

an alternate form for the equations of motion can be derived. These equations are
given by,

∂α(
√
−detγγαβ∂βXµ) = 0. (2.13)

The square root in equation (2.8) makes the action difficult to quantize using path
integration so a different approach is necessary [8].

2.1.2 The Polyakov Action

There is an alternate form for the string action that is classically equivalent to the
Nambu-Goto action. This string action is known as the Polyakov action. This action

14



CHAPTER 2. INTRODUCTION TO STRING THEORY AND ANALYTIC
NON-INTEGRABILITY

eliminates the square root in the Nambu-Goto action [6]. However, a new field needs
to be introduced,

S = −T
2

∫
d2σ
√
−ggαβ∂αXµ∂βX

νηµν , (2.14)

here g = detg. The new field gαβ, is introduced on the worldsheet as a dynamical
metric. The Polyakov action is a group of scalar fields X coupled to 2 dimensional
gravity from the worldsheet perspective [8]. Based on the Polyakov action the
equation of motion for Xµ is,

∂α(
√
−ggαβ∂βXµ) = 0. (2.15)

This looks similar to equation (2.13). However, gαβ is an independent variable
determined by its own equation of motion. The gαβ equation of motion can be
derived by varying the action and using the relation in (2.12),

δS = −T
2

∫
d2σδgγβ[

√
−g∂αXµ∂βX

ν − 1

2

√
−ggαβgρσ∂ρXµ∂σX

ν ]ηµν = 0. (2.16)

From (2.16), the worldsheet metric is determined as,

gαβ = 2f(σ, τ)∂αX · ∂βX, (2.17)

where f(σ, τ) is determined from f−1 = gρσ∂ρX · ∂σX. The metric, gαβ, differs from
γαβ by f , the conformal factor. This does not present a problem because the f drops
out of the equations of motion (2.15), since the

√
−g term is proportional to f 1

and the inverse metric gαβ is proportional to f−1. This means that the Polyakov
and Nambu-Goto actions result in equivalent equations of motion.

The Polyakov action has the same two symmetries as the Nambu-Goto action as
well as a third unique symmetry called the Weyl Invariance. The Weyl invariance is
the invariance of the theory under a local change of scale that conserves the angles
between all lines [8].

The conformal gauge is defined as a gauge in which the worldsheet metric is
Minkowski. By selecting the conformal gauge in this case, the theory can be sim-
plified to the flat metric on the worldsheet in Minkowski coordinates. Choosing the
flat metric simplifies the Polyakov action to the theory of D scalar fields as well as
free fields. The simplified action is given by,

S = −T
2

∫
d2σ∂αX · ∂αX. (2.18)

The equations of motion based on this simplified action in (2.18), for Xµ, reduces
to the free wave equation,

∂α∂
αXµ = 0. (2.19)

The variation of the action (2.18) with respect to the metric gives rise to the stress-
energy tensor Tαβ,

Tαβ = − 2

T

1√
−g

∂S

∂gαβ
. (2.20)

1Since g is a tensor density, the
√
−g is a tensor density with a weight of 1. Since

√
−g is a

tensor density it will transform according to the tensor transformation law [10].
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2.1. INTRODUCTION TO STRING THEORY

The equations of motion associated with gαβ occurs when Tαβ = 0 or

T01 = Ẋ ·X ′ = 0 (2.21)

T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0. (2.22)

The string equations of motion are the free wave equations given by (2.19) subject
to the two constraints (2.21) and (2.22). These constraints are called the Virasoro
constraints. By turning the Nambu-Goto action into the Polyakov action it becomes
easier to quantise since the equations of motion are linear.

2.1.3 Open and Closed Strings

A string can take on two forms, open or closed, the classification is determined by
the endpoints of the string [6]. Open strings, as the name suggests, are open ended
and consist of a worldsheet diffeomorphic to R× [0, σ = π]. Closed strings consist of
end points that are joined together and a worldsheet diffeomorphic to the cylinder
R × S1 [6]. Any theory of open strings must also include closed strings. This is
because open string endpoints can join together to form a closed string [8]. Open
strings require boundary conditions to be imposed on the end points while closed
strings do not.

Deriving the open string boundary conditions

To obtain the open string boundary conditions, the first focus is the region of the
spacetime where −∞ ≤ τ ≤ ∞ and 0 ≤ σ ≤ l, where l is the length of the string.
Next the light-cone gauge is selected, in other words the following three conditions
must be satisfied [9],

X+ = τ, (2.23)

∂σγσσ = 0 (2.24)

and finally,

detγab = 0. (2.25)

The timelike coordinate τ must be selected in accordance with equation (2.23),

whilst the function f = γσσ(−detγab)−
1
2 , transforms as f ′dσ′ = fdσ with a fixed

τ and a re-parametrization of σ. This allows the invariant length fdσ = dl to be
defined [9]. If σ is proportional to

∫
dl from the σ = 0 endpoint, then the constant

of proportionality can be obtained by requiring the σ = l endpoint to always be
fixed. The 0 ≤ σ ≤ l region must remain unchanged so that the τ dependence
may be removed. A Weyl transformation must be performed in order for equation
(2.25) to be satisfied. Since f is Weyl-invariant δσf = 0, this means that equation
(2.25) implies (2.24) [9]. The gauge conditions required by (2.25) can be satisfied
for γττ (τ, σ). As a result of the σ independence of γσσ, the independent degrees
of freedom in the metric can be determined by γσσ(τ) and γστ (τ, σ). The inverse
metric is, [

γττ γτσ

γστ γσσ

]
=

[
−γσσ(τ) γτσ(τ, σ)
γτσ(τ, σ) γ−1σσ (τ)(1− γ2τσ(τ, σ))

]
. (2.26)
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By separating X−(τ, σ) into two parts, x−(τ) and Y −(τ, σ) with,

x−(τ) =
1

l

∫ l

0

dσX−(τ, σ) (2.27)

and
Y −(τ, σ) = X−(τ, σ)− x−(τ), (2.28)

the Polyakov Lagrangian is,

L = −T
2

∫ l

0

dσ[γσσ(2∂τx
− − ∂τX i∂τX

i)

− 2γστ (∂σY
− − ∂τX i∂σX

i) + γ−1σσ (1− γ2τσ)∂σX
i∂σX

i]. (2.29)

In this case Y −(τ, σ) acts as a Lagrange multiplier [9]. The boundary conditions for
the light-cone gauge are therefore,

γτσ∂τX
µ − γττ∂σXµ = 0, (2.30)

at σ = 0, l.
For µ = +, γτσ = 0 at σ = 0, l. In fact as a result of ∂2σγτσ being zero, γτσ is

zero everywhere.
For µ = i, the boundary condition is simply,

∂σX
i = 0, (2.31)

at σ = 0, l.

Classification of Open String Boundary Conditions

The three types of boundary conditions that need to be considered for open strings
are:

� Neumann

� Dirichlet

� Mixed.

The Neumann boundary conditions can be thought of as an open string with ends
that are free to move in the spacetime [6]. These boundary conditions are,

∂σX
µ = 0 at σ = 0, π. (2.32)

The Dirichlet boundary conditions are given by,

δXµ = 0 at σ = 0, π. (2.33)

This expression in (2.33) means that the endpoints of the string are fixed to end on
a sub-manifold of spacetime. The hypersurface that the brane is connected to when
Dirichlet conditions are imposed is called a D-brane. The brane will be located at
the fixed position Xµ = cµ. More generally there will be a Dp-brane where p is
the amount of dimensions. For example a D0-brane corresponds to a particle and a
D1-brane corresponds to a string [8]. The directions that are parallel to the brane
are called Dirichlet while the transverse directions are called Neumann.

The last case consists of mixed boundary conditions where one end of the string
is free to move in the spacetime and the other end is fixed to a D-brane. The free end
will require Neumann boundary conditions whilst the fixed end requires Dirichlet
boundary conditions to be applied.
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2.2 AdS/CFT Correspondence

The AdS/CFT correspondence first proposed by Maldacena in [1] claims that there is
an equivalence between classical supergravity theory in five dimensional AdS space-
time and strongly coupled four dimensional gauge theory. It is sometimes referred
to as holographic theory. By definition, a hologram takes a three dimensional image
and encodes it onto a two dimensional surface. Holographic theory encodes a five
dimensional theory by a four dimensional one. Following the work first presented
in [11] and [12], string theory has a dual holographic description in terms of gauge
fields. The correspondence allows fundamental type IIB strings to be identified in
a ten dimensional anti-de-Sitter cross sphere background with the dual, maximally
supersymmetric Yang-Mills theory with gauge group SU(N) in four dimensions
(N = 4 SYM). This spacetime is written as AdS5× S5. The duality was first intro-
duced by ’t Hooft [13] who determined that in the large-N limit, the perturbation
expansion of SU(N) gauge theories may be interpreted as a genus expansion of two
dimensional surfaces constructed using Feynman diagrams. The quantity 1

N
counts

the genus of these diagrams and N also denotes the rank of the gauge group. The ’t
Hooft coupling λ counts the quantum loops and is given by λ = g2YMN where gYM
is the gauge theory coupling constant. For a review of the correspondence see [14].

The string model has two important parameters. These parameters form the link
between the string theory and the gauge theory. The parameters are the coupling
constant gs and the string tension T , which can be expressed as R2

α′ , where R denotes
the radius of S5 as well as AdS5 and α′ is the Regge slope. There are also two
parameters that govern the gauge theory, λ and N . The correspondence relates
these parameters by the following expressions,

gs =
4πλ

N
and

√
λ =

R2

α′
.

Another important feature of the conjecture is the AdS/CFT dictionary that relates
the excitations of these two theories. In simple terms, the energy eigenvalues of the
string denoted by E is hypothesised as being equal to ∆. In this context ∆ is
the scaling dimension of the gauge theory dual operator. The scaling dimension is
calculated from the two point function of the CFT. It is possible to do perturbative
calculations on the gauge theory side where λ � 1. However, at a strong coupling
where λ� 1, these calculations become difficult. The AdS/CFT duality claims that
a gauge theory can be analysed using a weakly curved Anti de Sitter spacetime, or
AdS for short, at a strong coupling. The de Sitter spacetime, with a constant
positive curvature, provides a solution to the Einstein equation. By extension AdS
is a spacetime of constant negative curvature. There is a naturally occurring idea
that the AdS spacetime contains a spatial boundary. This boundary is called the
AdS boundary and the gauge theory lives on this four dimensional boundary [15].
The result of the correspondence is a duality where the weakly coupled gauge fields
are described by highly quantum strings moving in a curved spacetime while the
strongly coupled gauge fields are described by classical gravity. There is also a
relationship between the symmetries of these two theories. Global symmetries in
both the AdS and the CFT correspond to one another. Conformal and R-symmetries
on the gauge theory are isometries of the full AdS5 × S5 geometry. In particular,
the four-dimensional conformal group SO(4, 2) corresponds to isometries of AdS5.
The SO(6) R-symmetry corresponds to the isometry of the five-sphere (S5).
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String Quantum Number Gauge Operator
SO(2, 4) Labels E ∆

J1 s1
J2 s2

S5 Labels S1 R1

S2 R2

S3 R3

Table 2.1: Table showing which string quantum numbers correspond to the operators
on the dual gauge theory.

As in table 2.1, the string is labelled by the energy E and the J1 and J2 quantum
numbers of SO(2, 4). The three spins S1, S2 and S3 are the rotations of the string in
the S5. The scaling dimension ∆ of the dual gauge theory must match the energy.
The spins s1 and s2 corresponds to J1 and J2. The R-charges of the scalar fields, R1,
R2 and R3 of the N = 4 SYM equate to the rotations S1, S2 and S3 respectively.
Although there is a great deal of evidence that the AdS/CFT correspondence works,
the strong-weak nature of the duality prevents the conjecture from being proven.

While the AdS/CFT correspondence was originally introduced to study the quan-
tum behaviour of gauge invariant theories, it has since been extended to numerous
other uses. For example, in non conformal theories it gives rise to an explanation
for confinement and Chiral symmetry breaking. Additionally, the correspondence is
used to study non-equilibrium phenomena in strongly coupled plasmas. In recent
years it has been applied to condensed matter physics. The correspondence verifies
the ideas about the behaviour of gauge theories in the large N limit, by naturally
implementing the ’t Hooft large N expansion [16].

For further reading see [17] and [18] in addition to the references mentioned
above.

2.3 Review of String Solutions

As a result of the AdS/CFT correspondence the solution of semi-classical strings
should correspond to long gauge invariant operators in the dual theory. This section
presents a review of semi-classical spinning string solutions following[14] and [17].
Beginning with the metric of AdS5 × S5 spacetime,

ds2AdS5
= dρ2 − cosh2 ρdt2 + sinh2 ρ(dθ2 + cos2 θdϕ2

1 + sin2 θdϕ2
2) (2.34)

ds2S5 = dγ2 + cos2 γdφ2
3 + sin2 γ(dψ2 + cos2 ψdφ2

1 + sin2 ψdφ2
2), (2.35)

the Polyakov action is,

S = −T
2

∫
d2σ[cosh2 ρ(t′2 − ṫ2)− γ̇2 + γ′2 − ρ̇2 + ρ′2

− sin2 γ(cos2 ψ(φ̇1
2 − φ′21 ) + ψ̇2 − ψ′2 + sin2 ψ(φ̇2

2 − φ′22 ))

− sinh2 ρ(θ̇2 − θ′2 + cos2 θ(ϕ̇1
2 − ϕ′21 ) + sin2 θ(ϕ̇2

2 − ϕ′22 ))− cos2 γ(φ̇3
2 − φ′23 )].

(2.36)
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The equations of motion for each of the coordinates are,

ϕ1 : 2 sin θ sinh ρ(θ̇ϕ̇1 − θ′ϕ′1) + 2 cos θ cosh ρ(ρ′ϕ′1 − ρ̇ϕ̇1) + cos θ sinh ρ(ϕ′′1 − ϕ̈1) = 0,

ϕ2 : 2 cos θ sinh ρ(θ′ϕ′2 − θ̇ϕ̇2) + 2 sin θ cosh ρ(ρ′ϕ′2 − ρ̇ϕ̇2) + sin θ sinh ρ(ϕ′′2 − ϕ̈2) = 0,

θ : 2 sin 2ρ(θ′ρ′ − θ̇ρ̇) + sin 2θ sinh2 ρ(ϕ′21 − ϕ′22 − ϕ̇1
2 + ϕ̇2

2) + 2 sinh2 ρ(θ′′ − θ̈) = 0,

ρ : cosh ρ sinh ρ(t′2 − ṫ2 − θ′2 + θ̇2 − cos2 θ(ϕ′21 − ϕ̇1
2)− sin2 θ(ϕ′22 − ϕ̇2

2)) + ρ′′ − ρ̈ = 0,

t : 2 sinh ρ(ṫρ̇− t′ρ′) + cosh ρ(ẗ− t′′) = 0,

φ1 : 2 cos γ cosψ(γ′φ′1 − γ̇φ̇1)− 2 sin γ sinψ(ψ′φ′1 − ψ̇φ̇1) + cosψ sin γ(φ′′1 − φ̈1) = 0,

φ2 : 2 cos γ sinψ(γ′φ′2 − γ̇φ̇2) + 2 sin γ cosψ(ψ′φ′2 − ψ̇φ̇2) + sinψ sin γ(φ′′2 − φ̈2) = 0,

φ3 : 2 sin γ(γ̇φ̇3 − γ′φ′3) + cos γ(φ′′3 − φ̈3) = 0,

γ : cos γ sin γ(cos2 ψ(φ′21 − φ̇1
2
) + sin2 ψ(φ′22 − φ̇2

2
)− φ′23 + φ̇3

2
+ ψ′2 − ψ̇2) + γ′′ − γ̈ = 0,

ψ : sin2 γ(sin 2ψ(φ̇1
2 − φ′21 + φ′22 − φ̇2

2
) + 2ψ′′ − 2ψ̈) + 2 sin 2γ(γ̇ψ̇ − γ′ψ′) = 0,

where the ‘prime’ denotes a derivative with respect to σ and a ‘dot’ is a derivative
with respect to τ . The Virasoro constraints are,

− cosh2 ρṫt′ + γ̇γ′ + sinh2 ρ(θ̇θ′ + sin2 θϕ̇2ϕ
′
2 + cos2 θϕ̇1ϕ

′
1) + ρ̇ρ′

+ sin2 γ(cos2 ψφ̇1φ
′
1 + sin2 ψφ̇2φ

′
2 + ψ̇ψ′) + cos2 γφ̇3φ

′
3 = 0,

and

− cosh2 ρ(ṫ2 + t′2) + γ̇2 + γ′2 + sinh2 ρ(θ̇2 + θ′2 + cos2 θ(ϕ̇1
2 + ϕ′21 + sin2 θ(ϕ̇2

2 + ϕ′22 ))

+ ρ̇2 + ρ′2 + sin2 γ(cos2 ψ(φ̇1
2

+ φ′21 )

+ sin2 ψ(φ̇2
2

+ φ′22 ) + ψ̇2 + ψ′2) + cos2 γ(φ̇3
2

+ φ′23 ) = 0.

Rotating point particle

The most basic example to consider is the rotating point particle on S5. This
configuration is simply a degenerated string [14]. Consider the ansatz,

t = κτ, ρ = 0, γ =
π

2
, φ1 = κτ, φ2 = φ3 = ψ = 0. (2.37)

This particular choice for the coordinates satisfies both the equations of motion and
the Virasoro constraints listed above. The cyclic coordinates 2 (t, ϕ1, ϕ2, φ1, φ2, φ3)
lead to conserved charges (E, S1, S2, J1, J2, J3) respectively. These charges corre-
spond to the energy E, spin S and angular momentum J [14]. For the point particle
there are only two non zero quantities to be considered, E and J1,

E =
∂ L
∂ṫ

=
√
λ

∫ 2π

0

dσ

2π
cosh2 ρṫ =

√
λκ (2.38)

and

J1 = − ∂ L
∂φ̇1

=
√
λ

∫ 2π

0

dσ

2π
sin2 γ cos2 ψφ̇1 =

√
λκ. (2.39)

In the classical limit E = J . However, quantum fluctuations may be considered
around these solutions.

2Cyclic coordinates correspond to U(1) isometries.
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Spinning String Solutions

Consider a closed string rotating in an S3 within an S5. The string is evolving in
time with J3 = 0 and S1 = S2 = 0. The string is chosen to be at the centre of AdS5

so ρ = 0. With the ansatz,

t = κτ, ρ = 0, γ =
π

2
, φ1 = ω1τ, φ2 = ω2τ, φ3 = 0, ψ = ψ(σ), (2.40)

the choice γ = π
2

corresponds to the equator of the S5. The action will be defined
as,

S = −
√
λ

4π

∫
dτ

∫ 2π

0

dσ[κ2 + ψ′2 − ω2
1 cos2 ψ − ω2

2 sin2 ψ]. (2.41)

The only non-trivial equation of motion is,

ψ′′ + sinψ cosψ(ω2
2 − ω2

1) = 0. (2.42)

Defining a new variable ω2
21 = ω2

2 − ω2
1 and integrating (2.42) yields,

ψ′ = ω21

√
q − sin2 ψ, (2.43)

where q is an integration constant. There will be two distinct cases that arise, one
where q ≤ 1 and q > 1. The q ≤ 1 case results in the well known folded string
solution [18]. The string has q = sin2 ψ0 and extends from −ψ0 to ψ0 with ψ′ = 0
at the points where the string turns and folds back onto itself. When q > 1, the
derivative ψ′ is never zero, this results in the circular string that spans a full circle on
the S3. The Virasoro constraints produce an equation for the integration constant,

q =
κ2 − ω2

1

ω2
21

(2.44)

where ω21 6= 0. Finally the two angular momenta J1 and J2 and the energy E are
given by [14],

E =
√
λ (2.45)

J1 =
√
λω1

∫ 2π

0

dσ

2π
cos2 ψ(ω) (2.46)

J2 =
√
λω2

∫ 2π

0

dσ

2π
sin2 ψ(ω). (2.47)

Solving each of these integrals produces 1
2
. So simplifying equations (2.46) and (2.47)

results in,
√
λ =

2J1
ω1

and
√
λ =

2J2
ω2

. (2.48)

This leads to an expression for the energy,

√
λ =

J1
ω1

+
J2
ω2

. (2.49)

The energy of both of these solutions has been determined on the S3 in the S5 as
a function of J1 and J2, the commuting angular momenta. This energy (E) should
coincide with the scaling dimension (∆) of the dual gauge theory. The angular
momenta J1 and J2 correspond to the spin s1 and s2 of the scalar fields of N = 4
SYM.
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2.4 What is Integrability?

For a system to be integrable it must exhibit certain properties. The precise defini-
tion of integrability is different between different fields. However, the consensus is
that an integrable system is fully solvable. In the context of AdS/CFT, integrabil-
ity provides a link between the strongly coupled and weakly coupled theory. The
presence of integrability suggests that physical observables such as dimensions that
are functions of the ’t Hooft coupling λ should match. These observables calculated
from large values of λ in the bulk should correspond to the values obtained from
small values of λ on the gauge theory side. The value of λ at intermediate coupling
can not always be determined. However, the presence of integrability suggests that
it does exists. It is only natural to want to find other integrable structures in a re-
spective theory. The AdS/CFT correspondence allows for determining integrability,
or for the purpose of this research, non-integrability on the bulk and relating it to
the gauge theory side. As a result only classical integrability for Hamiltonian sys-
tems will be briefly discussed in the remainder of this section. The first important
concept to address, is what is a Hamiltonian system? From [19], the Hamiltonian
H, is a function that consists of integral curves defined by a vector field XH . These
vector fields are known as Hamiltonian vector fields and are defined on the symplec-
tic manifold 3 M. The Hamiltonian is related to XH by XH = [−1 · dH, where [ is
a map from the tangent to the cotangent vector bundle i.e [ : TM → T ∗M . The
differential equations associated with XH are called a Hamiltonian system and can
be written as,

ẋi =
∂H

∂pi
and ṗi =

∂H

∂xi
. (2.50)

To define the Liouville Theorem, consider a Hamiltonian system defined in 2d-
dimensional phase space. The system is described by the canonical variables (xi, pi)
such that i = 1, . . . , d. Then H will be a function of xi and pi. The system requires
the Poisson brackets to fulfil the following relations,

{xi, pj} = δi,j and {xi, xj} = {pi, pj} = 0, (2.51)

for all i, j = 1, . . . , d. A system is said to be Liouvillian integrable if there exists
independent 4 conserved quantities Fi such that {Fi, Fj} = 0 with i, j = 1, . . . , d.
This conservation requirement of Fi means {H,Fi} = 0 which in turn implies that
H must be a function of Fi. The Liouville theorem states that for a Liouvillian
integrable system, the equations of motion of can be solved by straight forward
integration. For more information as well as a proof of the Liouville theorem see
[20]. There is only one method currently available to determine the integrability
of a Hamiltonian system and it is based on the Lax representation. A system is
integrable whenever a Lax pair can be determined. A Lax pair is defined as two
NxN functions L(x, p) and M(x, p) that are matrix valued and equivalent to the
Hamiltonian equations by the following relationship,

L̇ = [L,M ]↔
(
ẋi = {xi, H}
ṗi = {pi, H}

)
(2.52)

3A symplectic manifold is a smooth manifold in differential geometry, that contains a closed
non-degenerate two-form ω known as the sympletic form.

4In this context independent refers to the set of linearly independent one-forms dFi.
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where L̇ = [L,M ] is known as the Lax equation. There is no test or systematic
approach to check if the Lax pair exists or to find it explicitly [21].

2.5 Analytic Non-integrability and the Kovacic

Algorithm

2.5.1 Analytic Non-Integrability Method

The analytic non-integrability method is a definitive method to determine if a given
system is non-integrable. Integrability is a coveted property in gauge theory since it
implies that the theory is solvable at any value of the gauge coupling. As a result of
the AdS/CFT correspondence, if a system is integrable on the string side it directly
translates to integrability of the boundary of the gauge theory. Proving that a
system is integrable can often be a cumbersome process. It is not always possible
to determine the precise Lax connection required to definitively declare a theory as
integrable. The method of analytic non-integrability is a more systematic approach.
Due to the condition that integrability has to appear everywhere in a given theory,
a single instance of non-integrability is enough to state that the entire theory is
non-integrable. An important condition for finding non-integrability is that it is
still possible to have integrable sub-sectors within the background. As a result of
this condition, it is incorrect to infer that a system is integrable if non-integrability
is not found. The solution used in the method could simply be contained in the
integrable sub-sector of the theory [22].

In order to prove non-integrability in a system of differential equations, the vari-
ational equation around a specified solution needs to be analysed. The variational
equation refers to the linear system obtained from linearising the vector field around
that specific solution. If within a given class of functions, the variational equation
does not produce any first integrals, the original non linear system is non-integrable.
The Kovacic algorithm [4] provides a test for non-integrability. Once the NVE is
in an appropriate form, the Kovacic algorithm can be applied. This algorithm only
emits solutions if the system is integrable, thus no solution equates to non integra-
bility.

In order to use the analytic non-integrability method, the system of equations
must first be reduced to a two coordinate system, for example θ(x) and φ(x), with
two non-trivial equations of motion. This is done by selecting trivial solutions for
the other coordinates in the system. Select the straight line solution for one of the
remaining two coordinates. This is defined by a simple solution, such as θ(x) = 0,
that must solve the equation of motion for the selected coordinate. This solution will
simplify the equation of motion for φ. It is not necessary to determine the solution
for φ exactly, it can simply be defined as φ̄(x). Next substitute the φ̄ solution
into the θ equation of motion. Consider fluctuations η(x) around the straight line
solution for θ and the φ̄ solution. The θ equation of motion will become a second
order differential equation for η. The φ̄ that is still contained in the η equation
of motion will need to be eliminated because the NVE needs to be a second order
linear differential equation. This is done by making an appropriate substitution
with a new variable, for example z. All the derivatives of η must be determined
in terms of this new variable z. After doing this, the NVE will have the form

23



2.5. ANALYTIC NON-INTEGRABILITY AND THE KOVACIC ALGORITHM

f(z)η′′(z) + g(z)η′(z) + h(z)η(z) = 0. Once the NVE has been determined it is
entered into the Kovacic algorithm. If no solution is determined by the Kovacic
algorithm then the system is non-integrable. If a solution is found, the system may
be integrable or the fluctuations considered around the straight line solution that
was used to determine the NVE may be contained in an integrable sub-sector of the
theory.

The method can be summarised in the following three steps:

� Select the straight line solution for one of the coordinates.

� Compute the NVE.

� Apply the Kovacic algorithm to check the NVE for integrability.

2.5.2 The Kovacic Algorithm

The Kovacic algorithm proposed in 1986 , provides a method to compute a funda-
mental system of solutions for a second order differential equation as long as that
differential equation is integrable. This property makes the algorithm a good check
to test for non-integrability in a given system. If the system is non-integrable the
algorithm will fail to provide any solution. The Kovacic algorithm is included in
symbolic computation software such as Maple. The Maple implementation is used
in this dissertation. A comprehensive overview of the algorithm can be found in
[19], so only a brief summary will be provided here.

A second order differential equation with the set of coefficients C(z) can be
written as an NVE. Within these sets of coefficients there may be a Liouvillian
algebra on which the possibility of integrability hinges.

η′′ + g(z)η = 0 (2.53)

where g(z) ∈ C(z). Equation (2.53) is Liouvillian integrable if and only if the
equation,

dη

dz
= Aη (2.54)

with A ∈ Mat(m,K) has an algebraic solution. In order for an algebraic solution
to exist, the degree n of the associated polynomial Q(v) that is calculated in the
algorithm, using differential Galois theory, and has coefficients contained in C(x)
must belong to a specific set of possible degrees called L [19]. The algorithm can
be broken down into three steps. The first step is to compute the possible n values
that make up the set L. If L is the empty set then (2.53) is non-integrable. The
values of L determined in step one are fixed throughout steps two and three. Steps
two and three attempts to calculate the polynomial Q(v) if it exists, beginning with
the first element of L. If the algorithm fails to compute the polynomial then then
next value of n is selected and another attempt is made. If the last n in L is selected
and no such polynomial exists then (2.54) does not have an algebraic solution and
equation (2.53) is non-integrable and by extension so is the original system. If the
polynomial is determined then the algebraic solution for (2.54) can be found. The
algebraic solution being found means the equation in (2.53) will be integrable.
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2.5.3 Testing for Non-integrability in Closed Strings

Following the examples given in [3], this section provides some examples of calcula-
tions testing the analytic non-integrability method for closed string solutions.

The S5 example

The first example is that of the S5, this particular case has been proven to be
integrable ([23] and [24]), by the construction of a Lax pair, so the Kovacic algorithm
should produce a solution. The metric of S5 can be written in terms of the CP 2

metric,
ds2CP 2 = dµ2 + sin2 µ(σ2

1 + σ2
2 + cos2 µσ2

3), (2.55)

where,

σ1 =
1

2
(cos dψdθ + sinψ sin θdφ),

σ2 =
1

2
(sinψdθ − cosψ sin θdφ),

σ3 =
1

2
(dψ + cos θdφ).

The metric of S5 is then expressed in the simplified form,

d2S5 = ds2CP 2 + (dχ+ sin2 µσ3)
2. (2.56)

The string ansatz that will be used is,

θ(τ, σ) = θ(τ), µ(τ, σ) = µ(τ), χ(τ, σ) = χ(τ),

φ(τ, σ) = α1σ, ψ(τ, σ) = α2σ.

Once this ansatz is applied the Lagrangian and non-trivial equations of motion are
as follows,

L = − 1

2πα′

[
ṫ2 − µ̇2 − χ̇2 − 1

4
sin2 µ(θ̇2 − α2

1 sin2 θ − (α2 + α1 cos θ)2)

]
, (2.57)

µ̈+
1

8
sin(2µ)

[
θ̇2 − 2α1α2 cos θ − α2

1 − α2
2

]
= 0, (2.58)

θ̈ + 2µ̇θ̇ cotµ+ α1α2 sin θ = 0. (2.59)

Taking µ = π
2

will satisfy the equation of motion given in (2.58) as well as simplify
the equation of motion in (2.59) to,

θ̈ + α1α2 sin θ = 0. (2.60)

It is possible to find an explicit solution to equation (2.60), however it is not necessary
for the analytic non-integrability method. Let θ̄ be the solution to this equation of
motion. Substituting θ̄ into equation (2.58) is the first step in finding the NVE,

µ̈+
1

8
2 cosµ sinµ

[
˙̄θ2 − 2α1α2 cos θ̄ − α2

1 − α2
2

]
= 0. (2.61)

25



2.5. ANALYTIC NON-INTEGRABILITY AND THE KOVACIC ALGORITHM

Expanding around the straight line solution µ = π
2

such that µ = π
2

+η(τ) will result
in a equation of motion for η. The new variable η is a small fluctuation around this
solution,

η̈ +
1

4
η
[

˙̄θ2 − 2α1α2 cos θ̄ − α2
1 − α2

2

]
= 0. (2.62)

There should not be any variables other than η in the NVE. Normally a change of
variables to eliminate θ̄ and change the dependence of η from τ to this new variable
will be needed. However, this case is more simple, equation (2.60) is all that is
required to eliminate θ̄ from the NVE. With some manipulation equation (2.60) can
be written as,

d

dτ
( ˙̄θ2 − 2α1α2 cos θ) = 0. (2.63)

In order for (2.63) to be true,

˙̄θ2 − 2α1α2 cos θ = const. (2.64)

Substituting this into (2.62) gives the final NVE,

η̈ +
1

4
η
[
const− α2

1 − α2
2

]
= 0. (2.65)

All the terms in parenthesis are constants so the NVE is just the equation for a simple
harmonic oscillator. An analytical solution for this NVE can easily be obtained and
it was integrable when tested with the Kovacic algorithm as expected.

The T p,q example

The next example is in AdS5 × X5 space, explicitly the T p,q 5-manifold [3] with
non-specified values of p and q. Beginning with the metric,

ds2 = a2(dψ+p cos θ1dφ1 + q cos θ2dφ2)
2 + b2(dθ21 + sin2 θ1dφ

2
1) + c2(dθ22 + sin2 θ2dφ

2
2),

with the ansatz:

θ1 = θ1(τ), θ2 = θ2(τ), ψ = ψ(τ),

t = t(τ), φ1 = α1σ, φ2 = α2σ.

The Polyakov Lagrangian for the system simplifies to,

L =
−1

2πα′
[ṫ2 − b2θ̇21 − c2θ̇22 − a2ψ̇2 + α2

1(b
2 − a2p2) sin2 θ1

+ α2
2(c

2 − a2q2) sin2 θ2 + 2α1α2pqa
2 cos θ1 cos θ2]. (2.66)

The equations of motion can be determined using the Euler-Lagrange equations.
For θ1,

d

dt

(
∂ L
∂θ̇1

)
− ∂ L
∂θ1

= 0

=⇒ θ̈1 +
α1

b2
sin θ1

[
α1(b

2 − a2p2) cos θ1 − a2α2pq cos θ2
]

= 0. (2.67)

For θ2,
d

dt

(
∂ L
∂θ̇2

)
− ∂ L
∂θ2

= 0
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=⇒ θ̈2 +
α2

c2
sin θ2

[
α2(c

2 − a2q2) cos θ2 − a2α1pq cos θ1
]

= 0. (2.68)

The equations of motion for t and ψ are both trivial equations of the form, ẗ = 0 and
ψ̈ = 0. Now that the equations of motion are explicitly expressed. The three steps
of the method can be applied. First, let the straight line solution be θ2 = θ̇2 = 0.
This solves the θ equation of motion (2.68). This solution simplifies (2.67) to,

θ̈1 +
α1

b2
sin θ1

[
α1(b

2 − a2p2) cos θ1 − a2α2pq
]

= 0. (2.69)

An explicit solution can be obtained for θ1 at this point. However this is not neces-
sary for the analytic non-integrability method. It is sufficient to assume the solution
to (2.69) is θ̄1. Substituting this solution into (2.68) yields,

θ̈2 +
α2

c2
sin θ2

[
α2(c

2 − a2q2) cos θ2 − a2α1pq cos θ̄1
]

= 0 (2.70)

To find the NVE, consider small fluctuations in θ2 around the solution θ̄1 such that
θ2 = 0 + η(τ). Equation (2.70) becomes

η̈ +
α2

c2
η
[
α2(c

2 − a2q2)− a2α1pq cos θ̄1
]

= 0. (2.71)

All the instances in (2.68) where the terms were zero due to the solution θ2 = 0
are replaced with the small variation η. To obtain the NVE and to remove any
direct dependence on θ̄1 the substitution z = cos θ̄1 is performed and the chain rule
is applied,

dη

dτ
=
dη

dz

dz

dτ
= −η′ ˙̄θ1sinθ̄1

d2η

dτ 2
=
d2η

dz2

(
dz

dτ

)2

+
dη

dz

(
d2z

dτ 2

)
= η′′sin2θ̄1

˙̄θ21 − η′( ¨̄θ21 sin θ̄1 + cosθ̄1
˙̄θ21),

all ‘primes’ denote derivatives with respect to z. Substituting the new derivatives
as well as (2.69) into (2.71) gives the NVE,

f ′′(z)η′′(z) +
1

2
f ′(z)η′(z) +

α2

c2
[
α2(c

2 − a2q2)− a2α1pqz
]
η(z) = 0, (2.72)

where f(z) = ˙̄θ21 sin2 θ̄1 = [6E2− 1
3
(4α1α2z+α2

2(1−z2))](1−z2). The NVE in (2.72)
is now ready to input into the Kovacic algorithm. In this case the algorithm provides
no solution so this NVE and by extension the original system is non-integrable.

In any attempt to expand the method to include open strings, the worldsheet
coordinate σ needs to be treated non-trivially. The additional constraints from
the open string boundary conditions need to taken into account when selecting the
straight line solution and computing the NVE.

2.5.4 Further Reading on Analytic Non-Integrability

In recent years there have been developments where the Analytic Non-Integrability
method has been applied as a check for integrability in a variety of set-ups. In this
section a brief overview of these papers will be given.
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In [25], the method was used to test what effects marginal deformations of N = 4
SYM theory and β deformations have on integrability. [26] shows that certain clas-
sical string configurations exhibit chaos, resulting in non-integrability. “Analytic
Non-Integrability and the S−matrix” [27], proposes a connection between integra-
bility and S−matrix factorization in theories that violate Lorentz invariance. The
reference [28], looks at possible integrability of classical motion in curved p-brane
backgrounds.

In [29], it is shown that the string world sheet theory of Gaiotto-Maldacena,
holographic duals to N = 2 SCFTs fails to be integrable in general. References [30]
and [31] both consider six-dimensional N = (0, 1) SCFTs. The authors of [30] show
string duals in Massive IIA, specifically the string soliton wrapping and rotating
on the Massive IIA background is non-integrable. While [31] explicitly shows the
Neveu-Schwarz part of the string sigma model is integrable. “Non integrability of the
Ω deformation”, [32] tests for the preservation of integrability on the super gravity
vacuum dual to the field theory Ω deformation of N = 4 SYM theory.

The authors in [33] investigate the relationship between non-integrability and
chaos in gravity dual backgrounds of strongly coupled gauge theories with un-
quenched flavour. Specifically looking at the four dimensional N = 2 SYM theory
and the three dimensional ABJM theory. Reference [34] classifies D-brane geome-
tries that lead to integrable geodesics. [35] uses the method on string configurations
defined over η as well as λ−deformed backgrounds. In [36], the author classifies
generic non-relativistic theories that give rise to non-integrable string solutions. [37]
uses the Kovacic algorithm in non-relativistic pulsating strings over torsion Newton-
Cartan geometry with topology R×S2. Finally, [38] checks for classical integrability
on two classes of backgrounds in Massive IIA super gravity.

What is missing from this list is a general study of analytic non-integrability for
open string solutions. Therefore the following chapters will attempt to expand this
method to study various open string solutions. An open string with endpoints on a
giant graviton will be analysed and compared to the gauge theory expectations. A
configuration of open strings ending on a D5 and D7 brane will also be tested for
non-integrability using this method and these results will be compared to the gauge
theory counterparts.
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Chapter 3

Giant Gravitons

3.1 Introduction

The goal of this chapter is to test the method of analytic non-integrability for an
open string ending on a giant graviton. A giant graviton is a wrapped brane that
wraps an S3 in the S5 [39]. The S3 wrapped by the brane has a maximum size,
this gives rise to the concept of maximal and non-maximal giant gravitons. There
is also a giant graviton that wraps an S3 on the AdS5. However, these AdS5 giant
gravitons will not be considered in this dissertation. Firstly, the coordinate choices
for the giant gravitons are discussed. The Polyakov action and the equations of
motion are determined. Lastly, the giant magnon solution proposed by Hofman and
Maldacena [5], is used to determine the NVE and check for non-integrability.

The giant magnon solution, first discovered in 2006, is an open string whose
endpoints move along the equator of the S5. It was an attempt to replicate the
dispersion relation obtained from the gauge theory by starting from the string theory
side. The name giant magnon, comes from making the link from the single magnon
states in gauge theory to the giant graviton in the string theory.

3.2 Coordinate Choices

In the literature available on giant gravitons, it is a common occurrence to see
references made to Y = 0 or Z = 0 giant gravitons. The Y = 0 and Z = 0
giant gravitons permit a BPS ground-state configuration, a state that preserves
some of the supersymmetry algebra, [40]. This is associated with the coordinates of
embedding an S5 in R6.

For the purpose of this study, the embedding coordinates were not used. It is
therefore necessary to obtain a transformation between the embedding coordinates
and the intrinsic coordinate system. The basic transformation is as follows,

Y = cos θ cosψeiϕ, W = cos θ sinψeiη, Z = sin θeiφ. (3.1)

Appendix A shows the full details of this transformation. This creates a correspon-
dence between the work presented here and previous publications on this subject.
The distinction of Y = 0 and Z = 0 giant gravitons simply dictates which sector of
the spacetime the system is confined to. By selecting a Y = 0 giant graviton, the
graviton will be situated at Y = 0 and will extend in the other directions.
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3.3. THE GIANT MAGNON

To obtain a W = 0 giant graviton start by making ψ = 0. This will result in
the embedding coordinates simplifying to, W = 0, Y = cos θeiϕ and Z = sin θeiφ.
The way that the embedding coordinates are defined means by shifting ψ by π

2

radians a Y = 0 giant graviton is obtained. The remaining coordinates simplify to
W = cos θeiη and Z = sin θeiφ. It is clear then, that the W = 0 and Y = 0 case
are the same if the change of coordinates η → ϕ is performed. This change has no
physical effect on the system and is simply a convention. The W = 0 and Y = 0
cases are therefore treated as the same and referred to as the Y = 0 giant graviton.
The other classification is the Z = 0 giant graviton which is obtained by setting
θ = 0. The other two coordinates simplify to Y = cosψeiϕ and W = sinψeiη.

The reason that the intrinsic coordinates were selected instead of the embedding
coordinates is that the giant graviton in this system is not dynamical. It is simply
wrapping a surface in the metric and the string endpoints are required to end on
it. The string equations of motion use the intrinsic coordinate system so it was the
overall better choice.

Another important consideration is how the open string boundary conditions
behave when they end on giant gravitons. In the language of the embedding coordi-
nates, according to [40], the Z = 0 giant graviton should exhibit Dirichlet boundary
conditions. In other words, for the open string boundary at σ = 0 and σ = π, it
is required that Ż = 0 at Z = 0. The Y = 0 giant graviton on the other hand re-
quires open strings to move on the Z space. This results in the Neumann boundary
conditions, Z ′ = 0, since Z is parallel to the world volume of the brane.

3.3 The Giant Magnon

3.3.1 Equations of Motion

Beginning with the AdS5 × S5 metric,

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ
′2
3 + sin2 θdφ2 + dθ2 + cos2 θdΩ2

3, (3.2)

with dΩ2
3 = cos2 ψdϕ2 + dψ2 + sin2 ψdη2, the system can be restricted to the SU(2)

sector by taking ρ = 0 and ψ = 0 [41]. The simplified metric for this sector becomes,

ds2 = −dt2 + sin2 θdφ2 + dθ2 + cos2 θdϕ2. (3.3)

The Polyakov action was calculated to be,

S = −T
2

∫
d2σ[t′2− ṫ2− θ′2 + θ̇2− sin2 θφ′2 + sin2 θφ̇2− cos2 θϕ′2 + cos2 θϕ̇2]. (3.4)

The equations of motion are given by,

cos θ(ϕ′′ − ϕ̈)− 2 sin θ(θ′ϕ′ − θ̇ϕ̇) = 0, (3.5)

sin θ(φ′′ − φ̈) + 2 cos θ(θ′φ′ − θ̇φ̇) = 0, (3.6)

θ′′ − θ̈ + sin θ cos θ(ϕ′2 − ϕ̇2 − φ′2 + φ̇2) = 0. (3.7)

This was consistent with the equations obtained following the method given in [41]
(see Appendix B), with the Virasoro Constraints,

−t′ṫ+ θ′θ̇ + sin2 θφ′φ̇+ cos2 θϕ′ϕ̇ = 0, (3.8)

t′2 − ṫ2 + θ′2 + θ̇2 + sin2 θ(φ′2 + φ̇2) + cos2 θ(ϕ′2 + ϕ̇2) = 0. (3.9)
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3.3.2 The Hofman-Maldacena Solution

The Hofman-Maldacena giant magnon [5], is a solution that solves the equations of
motion with ϕ = 0. In order to understand how this solution was first proposed the
authors considered elementary magnons or impurities at large ’t Hooft coupling λ.
On the string theory side consider a string in flat space. Selecting the light cone
gauge with X+ = τ and X− =constant, the string will have a large P− and P+ = 0.
P± is the momentum of the light cone gauge. This corresponds to the string having
a light like trajectory. Next two excitations with world sheet momentum p and
−p respectively are added to this set up. The idea is to understand the spacetime
description of a state that has these excitations on opposite points of a circle on the
world sheet. An important concept to keep in mind is that each of the excitations is
at a different X− value. To visualise this set up, think of two particles joined by a
string that move along light like trajectories. The string transfers momentum from
the leading particle to the trailing particle. Eventually the excitations will pass each
other and the leading particle becomes the trailing one. X− must be periodic for
a closed string which leads to the condition that the overall momentum p must be
zero. Next expand this concept to an infinite string limit (P− is infinite), with an
infinite string. The string has a single excitation with momentum p. Again there are
two light like trajectories that are joined by the string. This time the momentum
transfer that occurs will be infinite and never ending since P− is infinite. The string
shape is dependent on the excitations carrying the momentum p.

This is the background information required to formulate the Hofman-Maldacena
solution. Keeping this in mind while moving to the AdS5xS

5 case, with the metric
of S5 the same as (3.2) with ρ = 0 and ψ = 0, the φ coordinate is shifted by J . The
string ground state with E − J = 0 is a light like trajectory that moves along the φ
direction with φ− t =constant. The trajectory sits in the centre of AdS5 hence the
choice ρ = 0 and at θ = π

2
. The authors were searching for the configuration with

the lowest possible energy E − J = ε. A pair of antipodal points on S3 that form
an S2 with θ and φ were selected. Making the coordinate transformation, t = τ and
φ′ = φ− t, while selecting θ(τ, σ) = θ(σ), the string action is,

S =

√
λ

2π

∫
dtdφ′

√
cos2 θθ′2 + sin2 θ. (3.10)

Integrating the equations of motion from this action leads to,

sin θ =
sin θ0
cosφ′

, (3.11)

and
−
(π

2
− θ0

)
≤ φ′ ≤ π

2
− θ0, (3.12)

where θ0 is the integration constant with the condition 0 ≤ θ0 ≤ π
2
. Although the

extent of the string on the world sheet is finite in this coordinate system, around the
endpoints they carry an infinite J . The angular difference of the string endpoints
is,

∆φ′ = 2
(π

2
− θ0

)
, (3.13)

with energy,

E − J =

√
λ

π
cos θ0 =

√
λ

π
sin

∆φ

2
. (3.14)
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(a) A plot showing θ as a function of σ as in (3.15)
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(b) A plot showing φ as a function of σ as in (3.16)

Figure 3.1: The Hofman-Maldacena solution for θ and φ at time t = 4 with θ0 = π
4
.

The authors propose that ∆φ = p. Substituting this proposition in equation (3.14)

results in E − J =
√
λ
π

∣∣sin p
2

∣∣. Negative values are possible since orientation of the
string has an influence of the sign of p. Equation (3.14) is a non-relativistic dispersion
relation that naturally occurs from the spin chain side due to the periodicity of the
lattice. This shows that the authors were successful in replicating the dispersion
relation from the string theory perspective with the idea of a giant magnon.

The final step in obtaining the full giant magnon solution is selecting a suitable
gauge. The choice of gauge needs to allow the density of J to be constant for the
ground state. This condition need only be satisfied away from the excitations. The
conformal gauge is selected with t = τ and σ as the spatial world sheet coordinate.
Using the solution in (3.11), a solution for θ and φ can be determined in the new
gauge. Finally, the giant magnon solution is as follows,

θ = ArcCos

 cos θ0

cosh
(
σ−sin θ0t
cos θ0

)
 (3.15)

and

φ′ = ArcTan

[
cot θ0 tanh

(
σ − sin θ0t

cos θ0

)]
. (3.16)

Figure 3.1 shows the θ and φ solution for a given time. This figure 3.1a also shows
that the endpoints of the string are fixed at π

2
in the θ direction. This is consistent

for a Y = 0 maximal giant graviton. This specific case has been studied in other
papers such as [42] so it provides a good way to check the analytic non-integrability
method.

3.3.3 The NVE

To obtain the NVE the Hofman-Maldacena giant magnon solution will be used.
Usually this solution is considered a closed string solution by patching two of the
semi-circular solutions together. However the solution will be used as an open string
as it appears in its original form in equations (3.15) and (3.16). The string has its
endpoints on a maximal giant graviton and the analytic non-integrability method
will be applied to this solution. Since the giant magnon solution holds for ϕ = 0, this
is selected as the straight line solution to expand around for the NVE. The NVE is a
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linear order expansion so only terms that are of linear order in ϕ are considered. Any
terms that arise from the equations of motion from a non-zero ϕ are not of linear
order and can therefore be ignored. The solutions given in equations (3.15) and
(3.16) can be used without alteration. Equation (3.5) has no explicit φ dependence

so (3.16) will be ignored for the moment. Let ϕ = 0 + η
(

cosh
(
σ−sin θ0t
cos θ0

))
where

η
(

cosh
(
σ−sin θ0t
cos θ0

))
is this small fluctuation around ϕ = 0. The variable dependence

of η is too complex at this point since it depends on two variables τ and σ, so some
simplification will be necessary before finding the NVE. Performing two change of
variables

y = σ − sin θ0t z = cosh

(
y

cos θ0

)
, (3.17)

provides a nice simplification such that ϕ = 0 + η(z). The equation of motion for
ϕ needs to be modified for this new variable z. Applying the chain rule the first
derivative for σ and τ in terms of z is as follows (from now on all ‘primes’ denote
derivatives with respect to z),

dϕ

dσ
=
dϕ

dz

dz

dy

dy

dσ
= ϕ′ sec θ0 sinh

(
y

cos θ0

)
, (3.18)

dϕ

dt
=
dϕ

dz

dz

dy

dy

dt
= −ϕ′ tan θ0 sinh

(
y

cos θ0

)
. (3.19)

The transformation for the second derivatives is as follows,

d2ϕ

dσ2
=
d2ϕ

dz2

(
dz

dy

)2(
dy

dσ

)2

+
d2y

dσ2

dϕ

dz

dz

dy
+
d2z

dy2

(
dy

dσ

)2
dϕ

dz

= ϕ′′ sec2 θ0 sinh2

(
y

cos θ0

)
+ ϕ′ sec2 θ0 cosh

(
y

cos θ0

)
, (3.20)

and

d2ϕ

dt2
=
d2ϕ

dz2

(
dz

dy

)2(
dy

dt

)2

+
d2y

dt2
dϕ

dz

dz

dy
+
d2z

dy2

(
dy

dt

)2
dϕ

dz

= ϕ′′ sec2 θ0 sin2 θ0 sinh2

(
y

cos θ0

)
+ ϕ′ sec2 θ0 sin2 θ0 cosh

(
y

cos θ0

)
. (3.21)

In the z coordinate the solution in (3.15) simplifies to,

θ = ArcCos

[
cos θ0
z

]
.

Taking the respective derivatives of new θ expression gives,

dθ

dσ
=
dθ

dz

dz

dy

dy

dσ
=

sinh
(

y
cos θ0

)
z2
(
1− cos2 θ0

z2

) 1
2

(3.22)

and

dθ

dt
=
dθ

dz

dz

dy

dy

dt
=
− sin θ0 sinh

(
y

cos θ0

)
z2
(
1− cos2 θ0

z2

) 1
2

. (3.23)
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Lastly, an expression for tan θ in terms of z is required,

tanθ = z

(
1− cos2 θ0

z2

) 1
2

sec θ0. (3.24)

To obtain the NVE equations (3.17) to (3.24) needs to be substituted in the equation
of motion for ϕ expressed in (3.5). The resulting NVE is,

z

2
cos2 θ0η

′′ +

(
sin2 θ0 +

z2 cos2 θ0
2(z2 − 1)

+ 1

)
η′ = 0. (3.25)

The NVE in (3.25) can be directly solved. If the solution is a Heun or even a
Bessel function with non-integer values of the index, then the NVE is non-integrable.
Using the DSolve function in Mathematica leads to a solution for η(z),

η(z) = c1 +
f(z)

1− 2(sec θ0 + tan2 θ0)
, (3.26)

where,

f(z) = c2z
1−2(sec θ0+tan2 θ0)

2F1

[
1

2
,
1

2
(1− 2(sec θ0 + tan2 θ0)),

3

2
− sec θ0 − tan2 θ0; z

2

]
.

Since the parameters are not explicitly integer values depending on the value of θ0,
it is not a very clear indicator for integrability. The Kovacic algorithm should be
applied to test this solution for non-integrability.

The algorithm was able to produce a solution. This means that the variation
around the Hofman-Maldacena solution with string endpoints on maximal Y = 0
giant graviton appears to be integrable.

In obtaining the Hofman-Maldacena giant magnon solutions the string had to
be stretch in the spacetime so that the endpoints of the string became −∞ and
∞. Taking the limits of (3.26) as z → ∞ and z → −∞ will provide some insight
on the behaviour of the fluctuations around the endpoints of the string. Despite
the solution containing a hyper-geometric function, both of these limits converge to
constant values. This means that Neumann boundary conditions imposed on ϕ are
still satisfied. The string is open and has a length in the ϕ direction. By subtracting
the two limits the length of the string opening in the ϕ direction can be determined.

In figure 3.2, the dependence of the string opening on θ0 is as expected. The
maximum gap length corresponds to the value when cos θ0 is a maximum, θ0 = 0.
As the value of cos θ0 decreases so does the gap length. Since the expression given
in (3.26) contains both a tan θ0 and a sec θ0, θ0 6= π/2. In addition to this constraint
the gap length between the limit of η(z) as z → ∞ and z → −∞ becomes infinite
once θ0 >

π
2
.

3.4 Discussion

The Hofman-Maldacena solution with string endpoints on maximal Y = 0 giant
graviton is contained in the integrable subsector. Turning on the ϕ angles creates
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Figure 3.2: The figure above shows the length of the opening of the string in the ϕ
direction, against different values of the angle θ0. For the purpose of this plot the
constants c1 and c2 were given the values i and 1 respectively.

a more general open string solution than the giant magnon. From the results of
the Kovacic algorithm, perturbing the giant magnon along the ϕ direction appears
compatible with integrability. This is consistent with other studies of this system.
This does not mean that all open strings with endpoints on giant gravitons are
integrable. Another system where integrability is in question is the Z = 0 non-
maximal giant graviton. In [42], the author attempts to use the method of images
to show that the non-maximal Z = 0 giant graviton is integrable in a scattering
process. The method of images showed promise for the Y = 0 maximal and non-
maximal case as well as the Z = 0 maximal case. However, it failed to produce any
results for the Z = 0 non-maximal case since the treatment of the endpoints became
too complex. The analytic non-integrability method is an excellent tool to check this
case. The method is a more straight forward process and can determine if this case
is definitively non-integrable when compared to attempting to prove integrability on
the gauge theory side. By producing the expected results for the giant magnon, the
method is proving to be a promising way to test for non-integrability in other open
string solutions.
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Chapter 4

Defects: The D5 Brane

4.1 Introduction

In this chapter open semi-classical strings with endpoints ending on D5 branes [43]
are studied. The D5 brane is embedded in AdS5×S5. The idea is to use the set up
given in [44] to test for non-integrability. In [44], open spinning strings were studied.
In order to have a truly open string solution, it is necessary to have a structure that
the end points can be fixed to. This is done by inserting a D5 brane into the bulk of
the AdS5×S5. An important consideration is the open string boundary conditions.
These boundary conditions, Dirichlet or Neumann, separate the open string from
the closed string case by imposing additional constraints.

The first step is to fix the coordinate system by embedding the D5 brane. The
authors considered both the SU(2) and SL(2) sectors for finding the open string
solutions. The SU(2) sector defines rotation on the S5, while the SL(2) sector
pertains to rotation on the AdS side. For the purpose of this study only the SU(2)
sector will be used. The D5 brane is embedded in the AdS4 × S2 subspace of
AdS5 × S5. The D5 brane occupies six of the 10 spacetime coordinates as follows,

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 o o o x x x o x x x
D5 o o o o o o x x x x

Table 4.1: The embeddings of the D3 and D5 branes in 10d Minkowski space,
with the ‘o’ showing the coordinates wrapped by each brane. The ‘x’s’ show the
coordinates where the branes are pointlike.

The coordinates of greatest interest are those that are occupied by the D5 brane.
The four coordinates x6, x7, x8 and x9 are taken to be zero since they are not
occupied by the brane. The coordinates, x0, x1, x2 and x6 are on the AdS side. The
remaining non-zero coordinates that parametrize the 2-sphere are defined by,

x3 = sinφ cosψ, x4 = sinφ sinψ, x5 = cosφ.

The D5 brane fills the four coordinates of the AdS4 and wraps an S2 in the S5

parametrized by the two coordinates φ and ψ. In [44] the solutions for the string
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sigma model are considered in this particular set up, using the rotating string ansatz.
The Elliptical folded is considered in the SL(2) sector. The Circular open string,
elliptical folded open strings as well as the Rational Circular open string are con-
sidered in the SU(2) sector. The Bethe ansatz [45] was applied on the gauge theory
side. This was done to check if the boundary conditions for the Bethe wave function
matched with the boundary conditions for open strings on the bulk of SU(2). The
open string solutions were related to the close string solutions using the doubling
trick. The conclusions that were drawn were as follows. The energy corrections,
using the doubling trick, could be determined for all loop levels of the string side.
However, on the gauge theory side the Bethe root relation needs to be computed
one order in λ at a time, for all values of λ. This calculation was only performed at
one-loop level and the system showed signs of integrability. For integrability to be
proven it must be done for all loop levels. This means that theoretically integrability
is still in question for this problem.

For the remainder of this chapter, the same embedded D5 brane system will
be considered. The elliptical folded open string solution will be used to test the
system for non-integrability. The solution shows signs of integrability so the Kovacic
algorithm is expected to produce a solution when applied to the NVE. It may seem
counter intuitive to use a solution that has been shown to be integrable to check
for non-integrability. However, the analytic non-integrability method has until now
solely been applied to closed string solutions. It is not certain if the method will work
when expanded to include open strings. Testing a solution where there are already
results available for comparison is important. This will provide a consistency check
that the method is being applied correctly. It is precisely for the sake of consistency
that a closed string solution will be tested first. The closed strings do not see any
effects of the D5 brane so this solution should also be integrable. This consistency
check is to determine if the metric for this particular embedding has been correctly
defined.

4.2 An Elliptical Folded Open String ending on a

D5 brane

4.2.1 Metric and Equations of Motion

The metric in intrinsic coordinates used to determine the equations of motion for
all ten of the coordinates is given by,

ds2 = dρ2 − cosh2 ρdt2 + sinh2 ρ(dθ2 + cos2 θdφ2
1 + sin2 θdφ2

2)

+ dγ2 + cos2 γdϕ2
3 + sin2 γ(dψ2 + cos2 ψdϕ2

1 + sin2 ψdϕ2
2). (4.1)
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The equations of motion for each of the coordinates are determined as,

t : 2 sinh ρ(ṫρ̇− t′ρ′) + cosh ρ(ẗ− t′′) = 0,

ρ : cosh ρ sinh ρ(t′2 − θ′2 − ṫ2 + θ̇2 − cos2 θ(φ′21 − φ̇1
2
)− cos2 θ(φ′22 − φ̇2

2
)) + ρ′′ − ρ̈ = 0,

θ : 2 sinh 2ρ(θ′ρ′ − θ̇ρ̇) + sinh2 ρ(sin 2θ(φ′21 − φ′22 − φ̇1
2

+ φ̇2
2
) + 2(θ′′ − θ̈)) = 0,

φ1 : sinh ρ(2 sin θ(θ̇φ̇1 − θ′φ′1) + cos θ(φ′′1 − φ̈1)) + 2 cosh ρ cos θ(ρ′φ′1 − ρ̇φ̇1) = 0,

φ2 : sinh ρ(2 cos θ(θ′φ′2 − θ̇φ̇2) + sin θ(φ′′2 − φ̈2)) + 2 cosh ρ sin θ(ρ′φ′2 − ρ̇φ̇2) = 0,

ϕ1 : 2 cos γ cosφ(γ′ϕ′1 − γ̇ϕ̇1)− 2 sin γ sinψ(ψ′ϕ′1 − ψ̇ϕ̇1) + cosψ sin γ(ϕ′′1 − ϕ̈1) = 0,

ϕ2 : 2 cos γ sinφ(γ′ϕ′2 − γ̇ϕ̇2) + 2 sin γ cosψ(ψ′ϕ′2 − ψ̇ϕ̇2) + sinψ sin γ(ϕ′′2 − ϕ̈2) = 0,

ϕ3 : 2 sin γ(γ̇ϕ̇3 − γ′ϕ′3) + cos γ(ϕ′′3 − ϕ̈3) = 0,

γ : cos γ sin γ(cos2 ψ(ϕ′21 − ϕ̇1
2) + sin2 ψ(ϕ′22 − ϕ̇2

2)− ϕ′23 + ϕ̇3
2 + ψ′2 − ψ̇2)− γ′′ + γ̈ = 0,

ψ : sin2 γ(sin 2ψ(ϕ′21 − ϕ̇1
2 − ϕ′22 + ϕ̇2

2) + 2(ψ′′ − ψ̈)) + 2 sin 2γ(γ′ψ′ − γ̇ψ̇) = 0.

The two Virasoro constraints are,

− cosh2 ρt′ṫ+ γ′γ̇ + sinh2 ρθ′θ̇ + ρ′ρ̇+ cos2 θ sinh2 ρφ′1φ̇1 + cos2 ψ sin2 γϕ′1ϕ̇1

+ sin2 θ sinh2 ρφ′2φ̇2 + sin2 ψ sin2 γϕ′2ϕ̇2 + cos2 γϕ′3ϕ̇3 + sin2 γψ′ψ̇ = 0 (4.2)

and

− cosh2 ρt′2 + γ′2 + sinh2 ρθ′2 + ρ′2 + cos2 θ sinh2 ρφ′21 + cos2 ψ sin2 γϕ′12

+ sin2 θ sinh2 ρφ′22 + sin2 ψ sin2 γϕ′22 + cos2 γϕ′23 + sin2 γψ′2

− cosh2 ρṫ2 + γ̇2 + sinh2 ρθ̇2 + ρ̇2 + cos2 θ sinh2 ρφ̇1
2

+ cos2 ψ sin2 γϕ̇1
2

+ sin2 θ sinh2 ρφ̇2
2

+ sin2 ψ sin2 γϕ̇2
2 + cos2 γϕ̇3

2 + sin2 γψ̇2 = 0. (4.3)

Since these are the equations for all ten coordinates of the AdS5 × S5, they will
need to be reduced appropriately to reflect the AdS4 × S2 embedding of the D5
brane. Choosing an appropriate string ansatz will take care of this simplification.
First a closed string solution will be applied to this background to check for non-
integrability. Next the elliptical folded open string solution will be tested using the
analytic non-integrability method.

4.2.2 A Closed String Solution

As a consistency check on the metric, an analysis must be done for a closed string
living in this space time. The ansatz that is used is given by,

ρ(τ, σ) = 0, t = κτ, φ1 = 0, φ2 = 0, θ = 0,

ψ = ψ(τ), γ = γ(τ), ϕ1 = ω1σ, ϕ2 = 0, ϕ3 = 0. (4.4)

This ansatz is the standard type of closed string ansatz such as the one used in [33].
The string is wrapping a U(1) angle ϕ1 while some non-U(1) angles ψ and γ are
taken to be non-trivial functions of time. The closed string ansatz in (4.4) leaves
two non-trivial equations of motion for the γ and ψ coordinates,

γ : cos γ sin γ(−ω2
1 cos2 ψ + ψ̇2)− γ̈ = 0, (4.5)

ψ : −2 sin 2γγ̇ψ̇ + sin2 γ(ω2
1 sin 2ψ − 2ψ̈) = 0. (4.6)
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Selecting the solution γ = π
2

explicitly solves the equation of motion (4.5). As a
result this will be selected as the straight line solution to determine the NVE. This
choice for γ simplifies (4.6) to,

ω2
1 sin 2ψ − 2ψ̈ = 0, (4.7)

and the non-trivial Virasoro constraint (4.3) simplifies to,

− κ2 + ω2
1 cos2 ψ + ψ̇2 = 0. (4.8)

The other Virasoro constraint (4.2) is zero. It is not necessary to solve (4.7) explic-
itly. Simply let ψ̄ be the solution to (4.7).

The NVE

Consider small fluctuations around the straight line solution, such that γ = π
2

+η(τ).
Expand around this new solution to linear order in η. Substituting this expansion
into equation (4.8) gives an equation of motion for η,

η(κ2 − 2ω2
1 cos2 ψ̄) + η̈ = 0. (4.9)

The NVE is required to be a single variable function, so the presence of ψ̄ is less than
ideal. Performing a change of variables, z = cos ψ̄, is the first step in eliminating
this dependence. The derivatives of η need to be calculated in terms of the new
variable z. The equation of motion for ψ and the non-trivial Virasoro constraint
will help get rid of any explicit dependence on ψ̄. Applying the chain rule will allow
for the derivatives of η to be expressed in terms of the new variable z,

dη

dτ
=
dη

dz

dz

dτ
= −η′ ˙̄ψ sin ψ̄

d2η

dτ 2
=
d2η

dz2

(
dz

dτ

)2

+
dη

dz

(
d2z

dτ 2

)
= η′′ sin2 ψ̄ ˙̄ψ2 − η′( ¨̄ψ2 sin ψ̄ + cos ψ̄ ˙̄ψ2).

Here all ‘primes’ denote a derivative with respect to z. To get the NVE, these new
derivatives, together with (4.7) and (4.8) substituted in them are entered in equation
(4.9). The expression ψ̄ = arccos(z) is also required. The final NVE is,

η(z)′′(z2−1)(κ2−ω2
1z

2) +η(z)′(z(ω2
1(1−2z2) +κ2)) +η(z)(2ω2

1z
2−κ2) = 0. (4.10)

The NVE is only dependent on z and is now ready to be entered in the Kovacic
algorithm. When the closed string NVE (4.10) was entered into Kovacic, the algo-
rithm was able to solve the NVE and produce Liouvillian solutions. The presence
of these type of solutions indicates that the closed string solutions are integrable.
The closed string solutions were expected to be integrable for this set up. This is
because closed string should not notice the presence of the D5 brane. Getting a
non-integrable result for the closed string solution would mean there is a problem
with the selected metric. This result indicates that the metric is consistent and
correct. Armed with this knowledge an open string solution can be tested.
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4.2.3 An Open String Solution

Now, the elliptical folded open string solution will be applied from [44]. This open
string ansatz is defined as follows,

ρ(τ, σ) = 0, t = κτ, φ1 = 0, φ2 = 0, θ = 0,

ψ = ψ(σ), γ = γ(σ), ϕ1 = ω1τ, ϕ2 = 0, ϕ3 = 0, (4.11)

The open string ansatz in (4.11) differs from the closed string ansatz in (4.4) since
this case the non-trivial dependence is on the spatial coordinate σ instead of time.
Applying this ansatz to all the equations of motion results in only two non-trivial
equations of motion. These equations are for the (γ, ψ)-system,

γ : γ′′ + sin γ cos γ(ω2
1 cos2 ψ − ψ′2) = 0, (4.12)

ψ : sin γ(ψ′′ − ω2
1 sinψ cosψ) + 2 cos γγ′ψ′ = 0, (4.13)

where ‘primes’ denote derivatives with respect to σ. Lastly, the non-zero Virasoro
constraint is given by,

− κ2 + γ′2 + sin2 γ(ψ′2 + ω2
1 cos2 ψ) = 0. (4.14)

The Virasoro constraint (4.14) allows a solution for ψ to be obtained, although the
explicit solution is not required to compute the NVE. These equations bear a striking
resemblance to the closed string case from the previous section. The difference
comes in the dependence on the worldsheet coordinate σ. There are angles that
are wrapping the worldsheet coordinate τ and the γ − ψ system is assumed to be
of a more complicated dependence on σ. In the closed string case the angles were
wrapping σ and non-trivial in τ . Another very important distinction are the open
string boundary conditions. Closed strings do not have boundary conditions that
they are required to satisfy.

The boundary conditions are dependent on how the D5 brane is embedded. The
D5 brane is located at φ2 = 0 on the AdS side. For the S5, the brane sits at
ψ = ϕ3 = 0. This means that the brane is wrapping the ψ and ϕ3 angles of S5. The
endpoints of the string need to be fixed to the brane, this means that the φ2, ψ, and
ϕ3 must satisfy Dirichlet boundary conditions. These boundary conditions for the
open string are,

ψ(0) = ψ(π) = 0, φ2(0) = φ2(π) = 0, ϕ3(0) = ϕ3(π) = 0. (4.15)

The remainder of the coordinates must satisfy Neumann boundary conditions at the
string endpoints. These conditions mean that the first derivatives with respect to σ
of these coordinates must be zero at the boundaries where σ = 0 or σ = π. Most of
the boundary conditions are satisfied by the string ansatz. The only two that are
in question are for γ and ψ. The elliptical folded string stretches in the ψ direction
and is constrained around the equator of the S5. This equator is defined by γ = π

2
.

The only remaining boundary condition is,

ψ(0) = ψ(π) = 0. (4.16)
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The NVE

To constrain the system to the equator of the S5, the straight line solution is selected
to be γ = π

2
. This choice satisfies the condition given by equation (4.12) and equation

(4.13) simplifies to,
2ψ′′ − ω2

1 sin 2ψ = 0, (4.17)

and the non-zero Virasoro constraint is reduced to,

ψ′2 = κ2 − ω2
1 cos2 ψ. (4.18)

Once again there is no need to solve for the ψ solution explicitly. If it is assumed that
ψ̄ is a solution to equation (4.17), the ψ̄ solution can be substituted into equation
(4.12),

γ′′ + sin γ cos γ(ω2
1 cos2 ψ̄ − ψ̄′2) = 0. (4.19)

Next consider small fluctuations in γ around ψ̄ such that γ = π
2

+ η(σ). Equation
(4.19) is rewritten as an equation of motion for the fluctuation η,

d2η

dσ2
+ η(ω2

1 cos2 ψ̄ − ψ̄′2) = 0. (4.20)

There can only be a one variable dependence in the NVE so the substitution z =
cos ψ̄2 is made. The derivatives of η are needed in terms z so the chain rule is
applied. All primes denote a derivative with respect to z for the remainder of this
calculation,

dη

dσ
=
dη

dz

dz

dσ
= −2η′ψ̄′ sin ψ̄ cos ψ̄

d2η

dσ2
=
d2η

dz2

(
dz

dσ

)2

+
dη

dz

(
dz2

dσ2

)
= 4η′′ cos2 ψ̄ sin2 ψ̄ψ̄′2 − 2η′(cos2 ψ̄ sin ψ̄ψ̄′′ + (cos2 ψ̄ − sin2 ψ̄)ψ̄′2).

Using the results of the chain rule and substituting (4.17) and (4.18) into equation
(4.20) with ψ̄ = arccos[

√
z] results in the NVE,

η′′[4z(z − 1)(ω2
1z − κ2)]

+ η′[(2− 4z)κ2 − 2zω2
1(2− 3z)] + η[κ2 − 2zω2

1] = 0. (4.21)

The NVE in (4.21) results in Liouvillian solutions when the Kovacic algorithm is
applied. This indicates that this solution may be integrable. This system sometimes
called the Karch-Randall D5 brane has been proven to be integrable on the gauge
theory side to one-loop in [46] so this result is consistent with the expectations.

By solving (4.21) some insight on the behaviour of the fluctuation η around the
endpoints of the string can be gained. The solution to this differential equation
seems complex. The relationship between the boundary condition ψ(0) = ψ(π) = 0
and the new variable z can be helpful since z is a function of ψ̄. The ψ boundary
condition translates to z(0) = z(π) = 1. To obtain η at the endpoints of the string
the limit as z → 1 of η[z] needs to calculated. This limit is calculated to be,

limz→1η[z] =
2c√

κ2 − ω2
1

, (4.22)
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where c is a constant of integration. The limit in (4.22) is nothing more than a
constant. The boundary condition for γ requires the σ derivatives of γ to vanish
and γ is related to η by γ = π

2
+ η. By using the result from the limit in (4.22) it

is clear that γ is a constant at the boundaries. This means that the derivative will
vanish and that η satisfies the open string boundary condition.

4.2.4 Discussion

Both the closed and open string solutions are integrable for the D5 brane. This
is consistent with the results produced on the gauge theory [46]. This is a strong
indication that the D5 brane is fully integrable but does not prove integrability.
The elliptical folded string uses γ = π

2
so the only angle that is non-trivial in σ is

ψ. This solution was enough to test the analytic non-integrability method for open
strings on a background containing a defect. The method appears to work and the
results are consistent. However, in further research a solution that is a more complex
function of σ should be applied. Perhaps this more complex solution will venture
out of the integrable subsector and exhibit non-integrability if it is present. Another
option is to consider solutions that depend on both σ and τ . The only additional
requirement is that any potential solutions that are attempted must satisfy the open
string boundary conditions.
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Chapter 5

Defects: The D7 Brane

5.1 Introduction

There have been many papers of late on the gauge theory side ([47], [48], [49])
that discuss integrability of open strings ending on the D7 brane. These studies
have led to the expectation that this system is non-integrable. In this chapter
the hope is to contribute to this ongoing discussion. The method of analytic non-
integrability could determine if this sector is non-integrable which would back the
current hypothesis. Two different systems will be analysed in a similar manner to
chapter 4. The supergravity background is considered to be the geometry of the
near horizon limit of the D3 brane. The following table shows the construction of
the D7 brane,

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 o o o x x x o x x x
D7 o o o o o o x o o x

Table 5.1: The embedding of the D3 and D7 branes in 10d Minkowski space, with the
‘o’ showing the coordinates wrapped by the brane and the ‘x’s’ denote coordinates
where the branes are pointlike.

While the D5 brane was able to preserve supersymmetry, the D7 brane com-
pletely loses supersymmetry. The loss of this symmetry becomes evident by the
appearance of instabilities. The first of the two systems that will be considered
is a string ending on a D7 brane that is wrapping two S2’s in the S5 of the full
AdS5 × S5 space. The equations of motion will be determined and an NVE will
be computed. The NVE will determine if the system is non-integrable using the
Kovacic algorithm. Next, the same calculations will be done for an open string with
endpoints on a D7 brane that is wrapping an S4 in the S5. In previous literature,
the status of integrability in these systems is somewhat open ended. Using the an-
alytic non-integrability method will hopefully bring some clarity to the question of
integrability in these sectors.
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5.2 The S2 × S2 Case

The first step is to determine the equations of motion and find a solution to determine
the NVE. The metric for this calculation contains an S2 × S2 inside the S5,

ds2 = dρ2 − cosh2 ρdt2 + sinh2 ρ(dθ2 + cos2 θdφ2
1 + sin2 θdφ2

2)

+ dγ2 + cos2 γ(dψ2 + sin2 ψdϕ2) + sin2 γ(dχ2 + sin2 χdξ2). (5.1)

The equations of motion are as follows,

θ : 2 sinh 2ρ(θ′ρ′ − θ̇ρ̇) + sinh2 ρ(sin 2θ(φ′21 − φ̇1
2 − φ′22 + φ̇2

2
)− 2θ̈ + 2θ′′) = 0,

t : 2 sinh2 ρ(ṫρ̇− t′ρ′) + cosh2 ρ(ẗ− t′′) = 0,

ρ : cosh ρ sinh ρ(t′2 − ṫ2 − θ′2 + θ̇2 − cos2 θ(φ′22 − φ̇1
2
)− sin2 θ(φ′22 − φ̇2

2
)) + ρ′′ + ρ̈ = 0,

φ1 : sinh ρ(2 sin θ(θ̇φ̇1 − θ′φ′1) + cos θ(φ′′1 − φ̈1)) + 2 cosh ρ cos θ(ρ′φ′1 − ρ̇φ̇1) = 0,

φ2 : sinh ρ(2 cos θ(θ′φ′2 − θ̇φ̇2) + sin θ(φ′′2 − φ̈2)) + 2 cosh ρ sin θ(ρ′φ′2 − ρ̇φ̇2) = 0,

γ : cos γ sin γ(sin2 χ(ξ′2 − ξ̇2)− sin2 ψ(ϕ′2 − ϕ̇2) + χ′2 − χ̇2 − ψ′2 + ψ̇2)− γ̈ + γ′′ = 0,

ψ : cos γ(cosψ sinψ(ϕ̇2 − ϕ′2) + ψ′′ − ψ̈)− 2 sin γ(γ′ψ′ − γ̇ψ̇) = 0,

ξ : 2 cos γ sinχ(γ′ξ′ − γ̇ξ̇) + 2 cosχ sin γ(ξ′χ′ − ξ̇χ̇) + sin γ sinχ(ξ′′ − ξ̈) = 0,

ϕ : 2 sin γ sinψ(γ̇ϕ̇− γ′ϕ′) + 2 cosψ cos γ(ϕ′ψ′ − ϕ̇ψ̇) + cos γ sinψ(ϕ′′ − ϕ̈) = 0,

χ : sin γ(sinχ cosχ(ξ̇2 − ξ′2) + χ′′ − χ̈) + 2 cos γ(γ′χ′ − γ̇χ̇) = 0.

The two Virasoro constraints are,

ρ′ρ̇+ cosh2 ρ(−t′ṫ+ θ′θ̇ + cos2 θφ′1φ̇1 + sin2 θφ′2φ̇2)

+ sin2 γ(sin2 χξ′ξ̇ + χ′χ̇) + cos2 γ(sin2 ψϕ′ϕ̇+ ψ′ψ̇) = 0, (5.2)

and

− cosh2 ρ(t′2 + ṫ2) + sinh2 ρ(θ′2 + θ̇2 + cos2 θ(φ′21 + φ̇1
2
) + sin2 θ(φ′22 + φ̇2

2
))

+sin2 γ(χ′2+χ̇2+sin2 χ(ξ′2+ ξ̇2))+cos2 γ(ψ′2+ψ̇2+sin2 ψ(ϕ′2+ϕ̇2))+ρ′2+ ρ̇2 = 0.
(5.3)

5.2.1 A Closed String Solution

Before an open string can be considered the metric must be tested for consistency
by calculating an NVE for a closed string. Again the closed string does not feel
the effects of the defect and should therefore be integrable. The following ansatz is
applied,

t(τ, σ) = κτ, θ(τ, σ) = 0, ρ(τ, σ) = 0, φ1(τ, σ) = 0, φ2(τ, σ) = 0,

γ(τ, σ) = γ(τ), ψ(τ, σ) = ψ(τ), ξ(τ, σ) = ω1σ, ϕ(τ, σ) = ω2σ, χ(τ, σ) = 0.
(5.4)

The string is wrapping the U(1) angles ϕ and ξ while the non-U(1) angles ψ and γ
are taken to be non-trivial functions of time. The remaining non-zero equations of
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motion are for γ and ψ,

γ : sin 2γ(α2
1 sin2 ψ − ψ̇2)− 2γ̈ = 0, (5.5)

ψ : −2 sin γγ̇ψ̇ + cos γ(α2
1 cosψ sinψ + ψ̈) = 0. (5.6)

Taking γ = 0 solves equation (5.5) and reduces equation (5.6) to,

ψ̈ + α2
1 cosψ sinψ = 0. (5.7)

The non-trivial Virasoro constraint (5.3) simplifies to,

ψ̇2 = κ2 − α2
1 sin2 ψ. (5.8)

Let ψ̄ be a solution to (5.7). It is not necessary to compute the exact expression for
ψ̄. However in this case it was fairly straight forward to calculate ψ̄,

ψ̄ = ±am[κτ ± κc, α
2
1

κ2
], (5.9)

where c is a constant of integration and am is the Jacobi amplitude function 1.

Calculating the NVE

Next consider small fluctuations γ around the solution ψ̄. Expanding around γ =
0 + η(τ) to first order, results in an equation of motion for η,

η(α2
1 sin2 ψ̄ − ψ̇2)− η̈ = 0. (5.10)

The NVE cannot contain any τ dependence so a change of coordinates must be
implemented. A new coordinate z is selected such that z = sin ψ̄. The derivatives of
η need to be determined for the new variable. For the remainder of this calculation
all ‘primes’ will refer to derivatives with respect to z.

dη

dτ
=
dη

dz

dz

dτ

= η′ cos ψ̄ ˙̄ψ,

d2η

dτ 2
=
d2η

dz2

(
dz

dτ

)2

+
dη

dz

d2z

dτ 2

= η′′ cos2 ψ̄ ˙̄ψ2 + η′(− sin ψ̄ ˙̄ψ2 + cos ψ̄ ¨̄ψ).

All that remains is to substitute (5.7) and (5.8) along with the new expressions for
the derivatives of η into equation (5.10). With some simplification the NVE turns
out to be,

η′′(z2 − 1)(κ2 − α2
1z

2) + η′(z(α2
1 − 2α2

1z
2 + κ2)) + η(2α2

1z
2 − κ2) = 0. (5.11)

When the NVE was checked with the Kovacic algorithm it turned out to be inte-
grable since it admitted Liouvillian solutions. This is consistent with integrability
of the full system for closed strings as expected. This is due to the fact that closed
strings can not feel the effects of the defects so integrability should be preserved.

1For more information on this function see https://mathworld.wolfram.com/

JacobiAmplitude.html
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5.2.2 An Open String Solution

The open string solution differs from the closed string case as a result of the addi-
tional constraints that arise from the boundary conditions. In order to calculate the
NVE an appropriate ansatz must be applied to the equations of motion. The ansatz
will reduce the system of ten equations of motion to just two non-trivial equations.
The ansatz is as follows,

t(τ, σ) = κτ, θ(τ, σ) = 0, ρ(τ, σ) = 0, φ1(τ, σ) = 0, φ2(τ, σ) = 0,

γ(τ, σ) = γ(σ), ψ(τ, σ) = ψ(σ), ξ(τ, σ) = 0, ϕ(τ, σ) = ω2τ, χ(τ, σ) = ω1τ.
(5.12)

The non-trivial equations of motion are for the coordinates γ and ψ. Once the
ansatz is applied, the γ − ψ system reduces to,

γ : sin 2γ(ψ′2 − ω2
2 sin2 ψ + ω2

1) + 2γ′′ = 0, (5.13)

ψ : −2 sin γγ′ψ′ + cos γ(ω2
2 cosψ sinψ + ψ′′) = 0. (5.14)

The important boundary condition in this case is the boundary condition for the
ψ angle. In the D5 brane case, ψ was required to be a Dirichlet direction which
means that the function itself had to vanish at the boundary. However in the D7
brane case ψ must satisfy a Neumann boundary condition. The angle γ is also a
Neumann direction so the ansatz gives rise to the following boundary conditions,

γ′(0) = γ′(π) = 0, ψ′(0) = ψ′(π) = 0. (5.15)

The Dirichlet directions are explicitly set to zero so those boundary conditions do
not constrain the system based on the ansatz in (5.12).

Calculating the NVE

The first step in calculating the NVE is determining a solution to expand around.
In this case the solution γ = 0 is selected. This solution satisfies the equation in
(5.13) and simplifies (5.14) to,

ω2
2 cosψ sinψ + ψ′′ = 0. (5.16)

Equation (5.16) gives an expression for ψ′′ that will be useful in simplifying the NVE
later on. The first Virasoro constraint (5.2) simply reduces to zero once the ansatz
is applied. The non-zero Virasoro constraint, (5.3) simplifies to,

ψ′2 + ω2
2 sin2 ψ − κ2 = 0. (5.17)

This Virasoro constraint provides the required expression for ψ′2. Solving (5.17) by
integration gives the solution of ψ for this system. Of course there is no need to
know the exact expression for this solution. The ψ solution turns out to be,

ψ̄ = ±am
[
κσ ±

√
2κc,

ω2
2

κ2

]
, (5.18)

where c is a constant of integration.
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Figure 5.1: The positive ψ solution as a circular or folded string depending on the
choice of the constants κ and ω2. In 5.1a the solution is periodically identified.
Whilst in 5.1b the solution extends between two values of ψ such that ψ′ = 0 at the
boundaries.

Figure 5.1 shows how the solution for ψ changes depending on the choice of the
constants. Since the argument of (5.18) contains a ratio of κ and ω2 depending on
when this ratio is greater than or less than 1 results in different behaviour. When
the ratio is larger than one, the result is a folded string. The string extends between
two values of ψ such that ψ′ = 0 at the boundaries. This behaviour can be seen in
5.1b. When the ratio is less than 1, the result is a circular string. This is seen in
5.1a where the value of ψ only increases as it goes around the sphere of S5. Since
the string does not turn back or fold onto itself ψ′ is never zero. The circular string
spans a half circle on the S3. This can be seen as the graph goes from 0 to π. Since
ψ is required to satisfy Neumann boundary conditions, the circular string solution
can not be used. The derivative of ψ for the circular string is never zero, so it will
not vanish at the boundaries. The folded string satisfies the Neumann boundary
conditions as seen in 5.1b, so the folded string is an allowed solution.

Assuming that ψ̄ is a solution to (5.16) and using the expression in (5.17), the
equation of motion for γ can be expressed in terms of ψ̄,

sin 2γ(ψ̄′2 − ω2
2 sin2 ψ̄ + ω2

1) + 2γ′′ = 0. (5.19)

Next, consider small fluctuations (η) in γ around the ψ̄ solution such that γ =
0 + η(σ). The result is a new equation of motion for η(σ),

η′′ + η(κ2 − 2ω2
2 sin ψ̄2 + ω2

1) = 0. (5.20)

In equation (5.20) above, (5.17) has been used for further simplification. The NVE
can not have an explicit dependence on σ, so the substitution z = sin2 ψ̄ is used.
The chain rule is required to calculate the derivatives of η with respect to the new
variable z. For the remainder of this section all ‘primes’ will refer to derivatives with
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respect to z.

dη

dσ
=
dη

dz

dz

dσ
= 2η′ sin ψ̄ cos ψ̄ψ̄′,

d2η

dσ2
=
d2η

dz2

(
dz

dσ

)2

+
dη

dz

d2z

dσ2

= 4η′′ cos2 ψ̄ sin2 ψ̄ψ̄′2 + η′(2 cos2 ψ̄ψ̄′2 − 2 sin2 ψ̄ψ̄′2 + 2 cos ψ̄ sin ψ̄ψ̄′′).

Substituting these new derivatives along with (5.16) and (5.17) results in the NVE,

η′′ sin2 ψ̄(κ2 − ω2
2 sin2 ψ̄) + η′

(
− cos ψ̄(κ2 − ω2

2 sin2 ψ̄) +
1

2
ω2
2 sin ψ̄ sin 2ψ̄

)
= 0.

(5.21)
The final step before the Kovacic algorithm can be applied is to completely get rid
of the ψ̄ dependence in (5.21). This is done by using ψ̄ = arccos(

√
z). The final

NVE is,

η′′(4z(z−1)(ω2
2z−κ2))+η′(κ2(2−4z)−2ω2

2z(2−3z))+η(κ2−2ω2
2z+ω2

1) = 0. (5.22)

The NVE in (5.22) produced Liouvillian solutions when the Kovacic algorithm was
applied. The solution that was used to calculate the NVE had both endpoints on the
same S2. This is therefore a similar set-up as the one proposed for the D5 brane.
The key difference lies with the boundary conditions. As a result of ψ having a
Neumann boundary condition it is not required for the function to return to zero
when σ = π as it was required for the D5 brane. The Neumann boundary conditions
are somewhat less stringent than the Dirichlet conditions and allows more freedom
when finding a suitable solution. Since the lesser restriction allows for a wider pool of
solutions there is a greater chance that one of these solutions will break integrability.
This indicates that there is still potential to show that this system is non-integrable.
The gauge theory computation for the S2 × S2 defect has led to the expectation
of non-integrability [50]. Perhaps a more complicated solution that spans both the
S2’s may be required to prove that the system is in fact non-integrable.

5.3 Nested Spherical Metric S4

In this section an alternate metric to the one in (5.1) will be used. The metric from
[51], describes the S5 as a series of nested spheres. The nested spherical metric is a
more natural metric for the SO(5) defect. The SO(5) defect is discussed from the
gauge theory side in [52] where the authors found indications of integrability. The
metric is defined as,

ds2 = dθ29 + cos2 θ9(dθ
2
8 + cos2 θ8(dθ

2
7 + cos2 θ7(dθ

2
6 + cos2 θ6dθ

2
5))), (5.23)
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5.3.1 Equations of Motion

The equations of motion were computed as,

θ5 : 2 cos θ7 cos θ8 cos θ9sinθ6(θ̇5θ̇6 − θ′5θ′6) + 2 cos θ6(cos θ8 cos θ9 sin θ7(θ̇5θ̇7 − θ′5θ′7)
+ cos θ7(cos θ9 sin θ8(θ̇5θ̇8 − θ′5θ′8) + cos θ8 sin θ9(θ̇5θ̇9 − θ′5θ′9)))
+ cos θ6 cos θ7 cos θ8 cos θ9(θ

′′
5 − θ̈5) = 0,

θ6 : cos θ6 cos θ7 cos θ8 cos θ9 sin θ6(θ
′2
5 − θ̇5

2
) + 2 cos θ8 cos θ9 sin θ7(θ̇6θ̇7 − θ′6θ′7)

+ cos θ7(cos θ9 sin θ8(θ̇6θ̇8 − θ′6θ′8) + cos θ8 sin θ9(θ̇6θ̇9 − θ′6θ′9)) + cos θ7 cos θ8 cos θ9(θ
′′
6 − θ̈6) = 0,

θ7 : cos θ7 cos θ8 cos θ9 sin θ7(cos2 θ6(θ
′2
5 − θ̇5

2
) + θ′26 − θ̇6

2
) + 2 cos θ9sinθ8(θ̇7θ̇8 − θ′7θ′8)

+ 2 cos θ8 sin θ9(θ̇7θ̇9 − θ′7θ′9) + cos θ8 cos θ9(θ
′′
7 − θ̈7) = 0,

θ8 : cos θ8 cos θ9 sin θ8(cos2 θ7(cos2 θ6(θ
′2
5 − θ̇5

2
) + θ′26 − θ̇6

2
) + θ′27 − θ̇7

2
)

+ 2 sin θ9(θ̇8θ̇9 − θ′8θ′9) + cos θ9(θ
′′
8 − θ̈8) = 0,

θ9 : cos θ9 sin θ9(cos2 θ8(cos2 θ7(cos2 θ6(θ
′2
5 − θ̇5

2
) + θ′26 − θ̇6

2
) + θ′27 − θ̇7

2
) + θ′28 − θ̇8

2
) + θ′′9 − θ̈9 = 0.

The two Virasoro constraints are as follows,

cos2 θ6 cos2 θ8 cos2 θ9 cos2 θ7θ
′
5θ̇5 + cos2 θ8 cos2 θ9 cos2 θ7θ

′
6θ̇6

+ cos2 θ8 cos2 θ9θ
′
7θ̇7 + cos2 θ9θ

′
8θ̇8 + θ′9θ̇9 = 0 (5.24)

and

cos2 θ6 cos2 θ8 cos2 θ9 cos2 θ7θ
′2
5 + cos2 θ8 cos2 θ9 cos2 θ7θ

′2
6 + cos2 θ8 cos2 θ9θ

′2
7

+ cos2 θ9θ
′2
8 + θ′29 + cos2 θ6 cos2 θ8 cos2 θ9 cos2 θ7θ̇5

2
+ cos2 θ8 cos2 θ9 cos2 θ7θ̇6

2

+ cos2 θ8 cos2 θ9θ̇7
2

+ cos2 θ9θ̇8
2

+ θ̇9
2 − κ2 = 0. (5.25)

5.3.2 A Closed String Solution

Once again to ensure there are no errors with the metric being used, an NVE is
calculated for a simple closed string. The ansatz is given by,

θ5(τ, σ) = ω1σ, θ6(τ, σ) = 0 θ7(τ, σ) = 0,

θ8(τ, σ) = θ8(τ), θ9(τ, σ) = θ9(τ), t(τ, σ) = κτ. (5.26)

This leaves only the θ8 and θ9 coordinates non-trivial for the calculation. The
simplified equations of motion are as follows,

θ8 : 2 sin θ9θ̇8θ̇9 + cos θ9(ω
2
1 cos θ8 sin θ8 − θ̈8) = 0, (5.27)

θ9 : sin 2θ9(ω
2
1 cos2 θ8 − θ̇8

2
)− 2θ̈9 = 0. (5.28)

Selecting the solution θ9 = 0 simplifies (5.27) and the Virasoro constraint in (5.25)
as follows,

ω2
1 sin 2θ8 − 2θ̈8 = 0, (5.29)

and
θ̇8

2
= κ2 − ω2

1 cos2 θ8. (5.30)

Equation (5.29) and (5.30) are compatible by taking a σ derivative of equation
(5.30). Let θ̄8 be a solution to equation (5.29).
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The NVE

Now expanding to linear order around θ9 = 0 + η results in the following equation
for η,

η(ω2
1 cos2 θ̄8 − ˙̄θ28)− η̈ = 0. (5.31)

A change of variables is required. Let z = cos θ̄8 with ‘primes’ denoting a derivative
with respect to z. Applying the chain rule yields,

dη

dτ
=
dη

dz

dz

dτ
= −η′ ˙̄θ8 sin θ̄8

d2η

dτ 2
=
d2η

dz2

(
dz

dτ

)2

+
dη

dz

(
d2z

dτ 2

)
= η′′ sin2 θ̄8

˙̄θ28 − η′( ¨̄θ8 sin θ̄8 + cos θ̄8
˙̄θ28).

Substituting these new derivatives along with (5.29) and (5.30) into equation (5.31)
results in the NVE,

η′′(z2 − 1)(κ2 − ω2
1z

2) + η′(z(ω2
1 − 2ω2

1z
2 + κ2)) + η(2ω2

1z
2 − κ2) = 0. (5.32)

There is a clear resemblance between (5.11) and (5.32). In fact if ω1 = α1 then
the two are identical. This is further evidence that both the metrics used in this
chapter are correct and consistent. The different embeddings of the D7 brane make
no difference to the closed string solutions.

5.3.3 An Open String Solution

The D7 brane wraps an S4 in this metric so θ9 is required to be a constant value.
As a result, the boundary conditions for an open string are given by,

θ9 = 0, θ′8 = θ′7 = θ′6 = θ′5 = 0 at σ = 0, π. (5.33)

The coordinates θ5, θ6, θ7 and θ8 must satisfy Neumann boundary conditions.
The only coordinate that must satisfy a Dirichlet boundary condition is θ9. The
AdS side coordinates apart from the time coordinate are taken to be zero so they
are ignored for this calculation. Using the ansatz,

θ5(τ, σ) = ω1τ, θ6(τ, σ) = 0 θ7(τ, σ) = 0,

θ8(τ, σ) = θ8(σ), θ9(τ, σ) = θ9(σ), t(τ, σ) = κτ,

there are only two non-zero equations of motion,

θ8 : 2 sin θ9θ
′
8θ
′
9 + cos θ9(ω

2
1 cos θ8 sin θ8 − θ′′8) = 0, (5.34)

θ9 : cos θ9 sin θ9(θ
′2
8 − ω2

1 cos2 θ8) + θ′′9 = 0. (5.35)

The NVE

Expanding around the solution θ9 = 0 directly satisfies the Dirichlet boundary
condition. Equation (5.34) reduces to,

ω2
1 cos θ8 sin θ8 − θ′′8 = 0, (5.36)

50



CHAPTER 5. DEFECTS: THE D7 BRANE

and the non-trivial Virasoro constraint simplifies to,

− κ2 + ω2
1 cos2 θ8 + θ′28 = 0, (5.37)

The exact solution for θ8 is not necessary for the NVE. However, in this case it turns
out to be a Jacobi amplitude function (am). This suggests that with the appropriate
choice of constants the Neumann boundary conditions will be satisfied. Let θ̄8 be a
solution to equation (5.36). Consider small fluctuations in θ9 around θ̄8 such that
θ9 = 0 + η leads to,

η(κ2 − 2ω2
1 cos2 θ8) + η′′ = 0. (5.38)

Applying the chain rule with the substitution z = cos θ̄8 with all ‘primes’ from this
point denoting a derivative with respect to z,

dη

dσ
=
dη

dz

dz

dσ
= −η′θ̄8

′
sin θ̄8

d2η

dσ2
=
d2η

dz2

(
dz

dσ

)2

+
dη

dz

(
dz2

dσ2

)
= η′′ sin2 θ̄8θ̄8

′2 − η′(θ̄8
′′

sin θ̄8 + cos θ̄8θ̄8
′2

)

= η′′ sin2 θ̄8κ
2 − η′ cos θ̄8κ

2

Substituting these results into (5.38) with θ̄8 = arccos(z) will produce the NVE,

η′′((z2 − 1)(ω2
1z

2 − κ2)) + η′(ω2
1z(2z2 − 1)− κ2z) + η(κ2 − 2ω2

1z
2) = 0. (5.39)

This NVE appears to be integrable when Kovacic is applied so a more complex class
of solutions needs to be explored to check for non-integrability.

5.4 Discussion

The solutions used in this chapter are very simple open string solutions. There is
still a very good possibility that there are non-integrable solutions in D7 brane back-
grounds. Finding a more complex open string solution that satisfies the boundary
conditions is not a simple task. In the case of the nested spherical metric, turning
on any additional angles results in added constraints that any proposed solution
must satisfy. In order to see non-integrability the variation needs to be expanded
around a non-trivial function of σ. In the S2 × S2 embedding, a good potentially
non-integrable solution would be an open string with one end on one of the S2’s and
the other endpoint on the other S2. Another possibility that could be explored is a
solution that is non-trivial in both the σ and τ coordinates. Consistent open string
solutions of these types that are sufficiently complex have not yet been found and
will be the subject of future studies.
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Conclusion

Integrability continues to be an area of interest for many researchers in the string
theory field. While there is no simple approach to checking a given theory for in-
tegrability, the analytic non-integrability method is a useful tool. The method is
simple and provides a step-by-step guide for checking for non-integrability. It con-
sists of studying classical strings moving in the bulk of AdS space. As a result of the
AdS/CFT correspondence, and the nature of integrability, showing non-integrability
on the bulk directly translates to non-integrability of the gauge theory. In this man-
ner a gauge theory can be shown to be non-integrable without directly doing any
gauge theory calculations. This is what makes the method an invaluable tool in the
study of integrable systems.

Although the NVE’s produced in this dissertation did not show non-integrability,
the method consistently produced results that were in line with expectations. This
is a good indication that the method can be successfully applied to open string
solutions.

The Hofman-Maldacena giant magnon is a well known integrable solution. The
method backing up this claim is a good indicator that it can be successfully applied
to open strings ending on giant gravitons. The next step is to apply the method
to an open string ending on a non-maximal Z = 0 giant graviton. This sector is
expected to be non-integrable since the gauge theory research has not shown any
signs of integrability. The analytic non-integrability method is well suited to make a
meaningful contribution to this discussion. By doing a somewhat simple calculation,
once an appropriate solution is found, the question of integrability could be settled.
If no indication of non-integrability is found it will provide motivation to continue
to attempt to look for integrability in this sector.

With respect to the defect theories, the analytic non-integrability method once
again produced the expected results. The D5 brane set-up that was used is expected
to be integrable. The method did not refute this claim so was once again consis-
tent. The solutions used to study these defects were very simplified open string
solutions. The straight line solutions were taken to be constants. In order to find
non-integrability a straight line solution that is a more complex function of σ should
be tested. For example in the case of the D-7 brane embedded by an S2 × S2, a
solution where each of the string end points ends on each of the S2’s should be
tested. An example of a solution with the required characteristics is a Sigmoid
function in the angle γ which controls the radii of the two S2’s. Another important
solution to consider is an open string that is non-trivial in both σ and τ . The main
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constraint within this study is finding an appropriately complex solution that satis-
fies the string equations of motion, as well as the open string boundary conditions.
In practice some defect solutions have fluxes through the spheres that they wrap.
These fluxes were not taken into account in this study. It is likely that the fluxes will
modify the boundary conditions and thus affect the integrability or not of a given
system. This first attempt showed that the method should work once the correct
string ansatz is applied. The D7 brane system is expected to be non-integrable and
the analytic non-integrability method is the best way at this moment to prove this.
There is definitely room to expand this study in the future for a different class of
solutions.
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Appendix A

A Map from Embedding to
Intrinsic Coordinates for S5

Giant gravitons wrap submanifolds of S5. In the application of the analytic non-
integrability method intrinsic coordinates are used. To understand how the giant
gravitons are embedded in the S5 a map from embedding coordinates to intrinsic
coordinates will be needed. The map will also be useful to determine along which
coordinate directions the giant graviton extends during the calculations.

The embedding coordinates are given by six real coordinates Xi, i = 1, . . . , 6 or
three complex coordinates [42],

W = X1 + iX2, Y = X3 + iX4, Z = X5 + iX5. (A.1)

These coordinates (A.1) must satisfy the identity,

|W |2 + |Y |2 + |Z|2 = 1. (A.2)

This defines an S5 embedded in C3 = R6. Next, the substitution,

Y = cos θ cosψeiϕ, W = cos θ sinψeiη, Z = sin θeiφ, (A.3)

is made. As a check, the new coordinates in (A.3) must satisfy, (A.2).

|W |2 + |Y |2 + |Z|2 = cos2 θ(sin2 ψ + cos2 ψ) + sin2 θ = 1.

To get to the usual metric of S5 a map for the coordinate transformations needs to
be determined. The metric in terms of the new coordinates has the form,

ds2 = dWdW ∗ + dY dY ∗ + dZdZ∗. (A.4)

Taking the respective derivatives and their complex conjugates results in the follow-
ing expressions,

dY = − sin θ cosψeiϕdθ − cos θ sinψeiϕdψ + i cos θ sinψeiϕdϕ, (A.5)

dW = − sin θ sinψeiηdθ + cos θ cosψeiηdψ + i cos θ sinψeiηdη, (A.6)

dZ = cos θeiφdθ + i sin θeiφdφ. (A.7)

The complex conjugates are,

dY ∗ = − sin θ cosψe−iϕdθ − cos θ sinψe−iϕdψ − i cos θ sinψe−iϕdϕ, (A.8)

dW ∗ = − sin θ sinψe−iηdθ + cos θ cosψe−iηdψ − i cos θ sinψe−iηdη, (A.9)

dZ∗ = cos θe−iφdθ − i sin θe−iφdφ. (A.10)

54



APPENDIX A. A MAP FROM EMBEDDING TO INTRINSIC COORDINATES
FOR S5

Substituting equations (A.5) through (A.10) in (A.4) results in the metric,

ds2 = dθ2 + cos2 θdψ2 + sin2 θdφ2 + cos2 θ cos2 ψdϕ2 + cos2 θ sin2 ψdη2. (A.11)

This is the usual metric in intrinsic coordinates for S5 so this choice of embedding
coordinates is valid.
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The Equivalence of Polyakov
action and the Principal Chiral
Model

Although this section is more suited for a study on integrable systems, it is important
to understand the relationship between the Polyakov description of a string system
and the Principal Chiral Model (PCM). Since S5 is a symmetric space, the string
action can be written as a PCM. The PCM is integrable since all the Lax connections
can be calculated. For integrable systems, there is an equivalence between the
Polyakov action and the PCM. It is always possible to write down the Polyakov
action for a system. However if it can be shown that the Polyakov action is equivalent
to the PCM then the system in question is integrable. Beginning with the string
sigma model the equations of motion described by the current, j in [41] will be
computed. Then it will be tested if these equations from the PCM turn out to be
the same as those obtained by using the Polyakov action. Since S5 is integrable
there should be an equivalence for these two approaches.

For this calculation, the Minkowski metric η = (−1, 1) will be used. The Hodge
star operator is expressed as,

∗dxν = ενρdx
ρ

= ηνλελρdx
ρ,

where ελρ is the usual two dimensional Levi-Civita tensor. For this calculation all
that is required is an expression for ∗dτ and ∗dσ, with this choice of metric, these
expression simplify to,

∗dτ = −dσ ∗dσ = −dτ. (B.1)

B.1 Calculating the Action

As in the previous section, the embedded coordinates are defined as Z = sinθeiφ

and Y = cos θeiϕ. The SO(6) symmetry can be expressed as an SO(4)xSO(2) where
the SO(4) can be described as an SU(2)xSU(2). Next g, an element of one of these
SU(2) sub-sectors of S5 is introduced,

g =

(
Z Y
−Ȳ Z̄

)
=

(
sin θeiφ cos θeiϕ

− cos θe−iϕ sin θe−iφ

)
, (B.2)
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PRINCIPAL CHIRAL MODEL

The current j is defined as, j = −g−1dg. Taking the inverse and the derivative of
(B.2) followed by the appropriate matrix multiplication the final expression for the
current is,

j =

(
i(cos2 θdϕ− sin2 θdφ) ei(ϕ−φ)(dθ − i sin θ cos θ(dφ+ dϕ))

−ei(φ−ϕ)(dθ + i sin θ cos θ(dφ+ dϕ)) i(sin2 θdφ− cos2 θdϕ)

)
.

(B.3)
According to [41] the action in terms of j is

S = − λ

8π

∫ [
1

2
Tr(j ∧ ∗j) + dt ∧ ∗dt

]
. (B.4)

The action only requires the trace of the j ∧ ∗j matrix so only the first and fourth
elements need to be computed. The first element of the matrix is,

i(cos2 θdϕ− sin2 θdφ) ∧ i(cos2 θ ∗ dϕ− sin2 θ ∗ dφ)

+ ei(ϕ−φ)(dθ − i sin θ cos θ(dφ+ dϕ)) ∧ −ei(φ−ϕ)(∗dθ + i sin θ cos θ(∗dφ+ ∗dϕ))

= (cos4 θ(ϕ̇2 − ϕ′2) + sin4 θ(φ̇2 − φ′2) + θ̇2 − θ′2

+ sin2 θ cos2 θ(φ̇2 − φ′2 + ϕ̇2 − ϕ′2))dτ ∧ dσ. (B.5)

The fourth element of the matrix is computed to be,

− ei(φ−ϕ)(dθ + i sin θ cos θ(dφ+ dϕ)) ∧ ei(ϕ−φ)(∗dθ − i sin θ cos θ(∗dφ+ ∗dϕ))

+ i(sin2 θdφ− cos2 θdϕ) ∧ i(sin2 θ ∗ dφ− cos2 θ ∗ dϕ)

= (− cos4 θ(−ϕ̇2 + ϕ′2)− sin4 θ(−φ̇2 + φ′2) + θ̇2 − θ′2

+ sin2 θ cos2 θ(φ̇2 − φ′2 + ϕ̇2 − ϕ′2))dτ ∧ dσ. (B.6)

The trace of j ∧ ∗j is then,

Tr(j ∧ ∗j) = (2θ̇2 − 2θ′2 + 2 cos2 θ sin2 θ(ϕ̇2 − ϕ′2 + φ̇2 − φ′2)
+2 cos4 θ(ϕ̇2 − ϕ′2) + 2 sin4 θ(φ̇2 − φ′2))dτ ∧ dσ

= 2(θ̇2 − θ′2 + cos2 θ(ϕ̇2 − ϕ′2) + sin2 θ(φ̇2 − φ′2))dτ ∧ dσ.

Finally, the action is computed by substituting these results into equation (B.4).

S = − λ

8π

∫
d2σ

[
−ṫ2 + t′2 + θ̇2 − θ′2 − cos2 θ(ϕ′2 − ϕ̇2)− sin2 θ(φ′2 − φ̇2)

]
, (B.7)

here dτ ∧ dσ → d2σ.
Next, the Polyakov action will be calculated to check if it matches the action

obtained from the current. Starting with the AdS5xS
5 metric with ρ = 0,

ds2 = −dt2 + sin2 θdφ2 + dθ2 + cos2 θ(dψ2 + sin2 ψdη2 + cos2 ψdϕ2), (B.8)

the Polyakov action is given by the expression,

S =
T

2

∫
d2σ
√
−hhabgµν∂aXµ∂bX

ν , (B.9)
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where X contains each of the coordinates given in the metric (B.8). Here the space-
time can be flattened by fixing to the conformal gauge such that

√
−hhab → ηab.

S =
T

2

∫
d2σ − (−∂τX t∂τX

t + ∂σX
t∂σX

t)− ∂τXθ∂τX
θ + ∂σX

θ∂σX
θ

+ sin2 θ(−∂τXφ∂τX
φ + ∂σX

φ∂σX
φ) + cos2 θ(−∂τXψ∂τX

ψ + ∂σX
ψ∂σX

ψ)

+ cos2 θ cos2 ψ(−∂τXϕ∂τX
ϕ + ∂σX

ϕ∂σX
ϕ)

+ cos2 θ sin2 ψ(−∂τXη∂τX
η + ∂σX

η∂σX
η) (B.10)

By choosing the SU(2) sector, the string is restricted such that ψ = 0. The Polyakov
action is then reduced to,

S = −T
2

∫
d2σ − ṫ2 + t′2 + θ̇2 − θ′2 − sin2 θ(φ′2 − φ̇2)− cos2 θ(ϕ′2 − ϕ̇2). (B.11)

It is clear from equation (B.7) and (B.11) that using the current definition(B.4) or
the Polyakov definition (B.9) results in the same expression for the action.

B.2 The Equations of Motion

The current j must obey the following conditions [41],

dj − j ∧ j = 0 and d ∗ j = 0. (B.12)

These expression are the equations of motion that j must satisfy. The equations
listed in (B.12) need to be evaluated for (B.3). This will be done element wise.
Starting with the derivative of the current matrix (B.3), the first element is evaluated
as,

dj1,1 = −2i cos θ sin θ(θ̇ϕ′ − θ′ϕ̇+ θ̇φ′ − θ′φ̇)dτ ∧ dσ. (B.13)

The second element of the dj matrix is,

dj1,2 = −2iei(ϕ−φ)[φ̇θ′ − θ̇φ′ + i cos θ sin θ(ϕ̇φ′ − φ̇ϕ′)
+ cos2 θ(dotφθ′ − θ̇φ′ + dotϕθ′ − θ̇ϕ′)]dτ ∧ dσ, (B.14)

with the third and fourth element given by,

dj2,1 = 2iei(φ−ϕ)[ϕ̇θ′ − θ̇ϕ′ − i cos θ sin θ(φ̇ϕ′ − ϕ̇φ′)
+ sin2 θ(dotθφ′ − φ̇θ′ − dotϕθ′ + θ̇ϕ′)]dτ ∧ dσ, (B.15)

and
dj2,2 = 2i sin θ cos θ(θ̇φ′ − φ̇θ′ + θ̇ϕ′ − ϕ̇θ′)dτ ∧ dσ, (B.16)

respectively. Next the matrix elements of j ∧ j need to be calculated. The four
elements of the matrix are listed in order below.

j1,1 ∧ j1,1 = −2i cos θ sin θ(θ̇ϕ′ − θ′ϕ̇+ θ̇φ′ − θ′φ̇)dτ ∧ dσ. (B.17)

j1,2 ∧ j1,2 = −2iei(ϕ−φ)[φ̇θ′ − θ̇φ′ + i cos θ sin θ(ϕ̇φ′ − φ̇ϕ′)
+ cos2 θ(dotφθ′ − θ̇φ′ + dotϕθ′ − θ̇ϕ′)]dτ ∧ dσ, (B.18)
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j2,1 ∧ j2,1 = 2iei(φ−ϕ)[ϕ̇θ′ − θ̇ϕ′ − i cos θ sin θ(φ̇ϕ′ − ϕ̇φ′)
+ sin2 θ(dotθφ′ − φ̇θ′ − dotϕθ′ + θ̇ϕ′)]dτ ∧ dσ, (B.19)

and
j2,2 ∧ j2,2 = 2i sin θ cos θ(θ̇φ′ − φ̇θ′ + θ̇ϕ′ − ϕ̇θ′)dτ ∧ dσ. (B.20)

The elements from each of the two matrices are identical. Once they are subtracted
as in the expression dj − j ∧ j it is immediately clear that the equations of motion
given by dj − j ∧ j = 0 are automatically satisfied. There is nothing additional that
needs to be done for this constraint. The non-trivial equations of motion for j will
need to come from the set of equations contained in d∗j = 0. From the first element
of (B.3) results in,

d[i cos2 θ ∗ dϕ− i sin2 θ ∗ dφ)] = 0

=⇒ −2 cos θ sin θ(−θ̇ϕ̇+ θ′ϕ′ − θ̇φ̇+ θ′φ′) + cos2 θ(ϕ̈− ϕ′′)− sin2 θ(φ̈− φ′′) = 0.
(B.21)

The second element produces the equation,

d[ei(ϕ−φ)(∗dθ − i sin θ cos θ(∗dφ+ ∗dϕ))] = 0

=⇒ i(−θ̇ϕ̇+ θ′ϕ′ + θ̇φ̇− θ′φ′) + sin θ cos θ(−ϕ̇2 + ϕ′2 + φ̇2 − φ′2) + θ̈ − θ′′

+ i(−θ̇ϕ̇+ θ′ϕ′ − θ̇φ̇+ θ′φ′)(sin2 θ − cos2 θ)− i sin θ cos θ(φ̈− φ′′ + ϕ̈− ϕ′′) = 0.
(B.22)

The third element yields,

d[−ei(φ−ϕ)(∗dθ + i sin θ cos θ(∗dφ+ ∗dϕ))] = 0

=⇒ i(−θ̇ϕ̇+ θ′ϕ′ + θ̇φ̇− θ′φ′)− sin θ cos θ(ϕ̇2 − ϕ′2 − φ̇2 + φ′2) + θ̈ − θ′′

+ i(−θ̇ϕ̇+ θ′ϕ′ − θ̇φ̇+ θ′φ′)(cos2 θ − sin2 θ)− i sin θ cos θ(φ̈− φ′′ + ϕ̈− ϕ′′) = 0,
(B.23)

and the fourth,

d[i sin2 θ ∗ dφ− i cos2 θ ∗ dϕ] = 0

=⇒ 2 cos θ sin θ(−θ̇ϕ̇+ θ′ϕ′ − θ̇φ̇+ θ′φ′)− cos2 θ(ϕ̈− ϕ′′) + sin2 θ(φ̈− φ′′) = 0.
(B.24)

Equations (B.21) and (B.24) are identical. This is expected as there are only three
independent parameters, θ, ϕ and φ. There should only be three unique equations
of motion. These equations are not yet in the correct form and require some manip-
ulation and simplification. To get the equation of motion for θ, add equation (B.22)
and (B.23), then simplify,

θ̈ − θ′′ − sin θ cos θ(φ′2 − φ̇2 + ϕ̇2 − ϕ′2) = 0. (B.25)

Let (B.22)=(B.23) and simplify to obtain an expression for − cos2 θ(ϕ̈ − ϕ′′). Sub-
stituting that expression in equation (B.24), the φ equation of motion is,

sin θ(φ̈− φ′′) + 2 cos θ(θ′φ′ − θ̇φ̇) = 0. (B.26)
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Similarly, let (B.22)=(B.23), obtain an expression for − sin2 θ(φ̈−φ′′) and substitute
that expression in equation (B.21). The equation of motion for ϕ is then,

cos θ(ϕ̈− ϕ′′) + 2 sin θ(θ̇ϕ̇− θ′ϕ′) = 0. (B.27)

The equations of motion given in (B.25), (B.26) and (B.27) exactly match the equa-
tions of motion that were produced in the in Chapter 3 using the Polyakov action.
This shows the equivalence of the Polyakov and PCM which should indeed be the
case for the S5 metric.
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Appendix C

Example of Mathematica Code

The following pages show a sample of the Mathematica code that was used to
calculate the NVE for the D7 brane with the S2 × S2 metric. The same code was
used for all the calculations with only minor adjustments. Mathematica was not
able to solve the NVE or directly implement the Kovacic algorithm. The NVE was
entered into the Kovacicsols routine in maple and was able to produce a solution
indicating that the NVE is integrable.
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Clear[ds2, n,coordsτ,coords, θ,t,ρ,γ,ϕ1,ϕ2,ψ,ξ,χ,φ];
 
(*This is where the desired metric is entered and the various angles/variables are 
defined. A matrix that will be used for the metric is also created and initialized 
to zero.*)
 
ds2 = FullSimplify[d[ρ]^2-Cosh[ρ]^2 d[t]^2+Sinh[ρ]^2 (  d[θ]^2+ Cos[θ]^2 d[ϕ1]^2
+Sin[θ]^2 d[ϕ2]^2)+ d[γ]^2+Cos[γ]^2 d[ψ]^2+Cos[γ]^2 Sin[ψ]^2 d[φ]^2+Sin[γ]^2 d[χ]^2
+Sin[γ]^2 Sin[χ]^2 d[ξ]^2]; 
coords = { θ,t,ρ,γ,ϕ1,ϕ2,ψ,ξ,χ,φ};  
n = Length[coords];
coordsτ = ConstantArray[0, n] ;
Do[coordsτ[[i]] = coords[[i]][τ, σ], {i,1, n}];
g = ConstantArray[0, {n, n}];
 
(*Here the metric is written in matrix form so that calculations can be done.*)
 
Do[g[[i, j]] = 1/2 D[  D[ds2, d[  coords[[i]]   ]   ],  d[  coords[[j]]   ]  
]     , {i, 1, n}, {j, 1, n}];
 Do[gX = g/.coords[[i]]->coordsτ[[i]], {i, 1, n}];
 Do[gX = gX/.coords[[i]]->coordsτ[[i]], {i, 1, n}];
 
 
(*An array is created for all the angles and they are each given a dependence on τ 
and σ*)
 
X = ConstantArray[0,n];
Do[X[[i]] = coords[[i]][τ, σ], {i, 1, n}];
 
(*Using the metric the derivatives with respect to τ and σ are calculated*)
 
dott[a_, b_, met_] := Sum[met[[i, j]]*a[[i]]*b[[j]], {i, 1, n}, {j, 1, n}];
Xtt = Simplify[ dott[D[X, τ], D[X, τ], gX] ];
Xss = Simplify[ dott[D[X, σ], D[X, σ], gX] ] ;
Xst =  Simplify[ dott[D[X, σ], D[X, τ], gX] ];
 
(*The virasoro constraints and the polyakov action are calculated from these 
derivatives. Then the equations of motion are obtained. The superscripts in the 
equations of motion denote a derivative with respect to τ or σ as well as if it is 
a first derivative or second derivative. For example a (1,0) is a first derivative 
with respect to τ and (0,2) is a second derivative with respect to σ*)
 
lagP =Xtt - Xss;
virasoro1 = Xst; 
 virasoro2 = Xtt + Xss;
eqm1 =Simplify[ D[lagP, θ[τ, σ]] - D[D[lagP, (θ^(1,0))[τ,σ]], τ] -  D[D[lagP, (θ^
(0,1))[τ,σ]], σ]  ];
eqm2 =Simplify[ D[lagP, t[τ, σ]] - D[D[lagP, (t^(1,0))[τ,σ]], τ] -  D[D[lagP, (t^
(0,1))[τ,σ]], σ]  ];
eqm3 =Simplify[ D[lagP, ρ[τ, σ]] - D[D[lagP, (ρ^(1,0))[τ,σ]], τ] -  D[D[lagP, (ρ^
(0,1))[τ,σ]], σ]  ];
eqm4 =Simplify[ D[lagP, γ[τ, σ]] - D[D[lagP, (γ^(1,0))[τ,σ]], τ] -  D[D[lagP, (γ^
(0,1))[τ,σ]], σ]  ];
eqm5 =Simplify[ D[lagP, ϕ1[τ, σ]] - D[D[lagP, (ϕ1^(1,0))[τ,σ]], τ] -  D[D[lagP, 
(ϕ1^(0,1))[τ,σ]], σ]  ];
eqm6 =Simplify[ D[lagP, ϕ2[τ, σ]] - D[D[lagP, (ϕ2^(1,0))[τ,σ]], τ] -  D[D[lagP, 
(ϕ2^(0,1))[τ,σ]], σ]  ];
eqm7 =Simplify[ D[lagP, ψ[τ, σ]] - D[D[lagP, (ψ^(1,0))[τ,σ]], τ] -  D[D[lagP, (ψ^
(0,1))[τ,σ]], σ]  ];
eqm8 =Simplify[ D[lagP, ξ[τ, σ]] - D[D[lagP, (ξ^(1,0))[τ,σ]], τ] -  D[D[lagP, (ξ^
(0,1))[τ,σ]], σ]  ];
eqm9 =Simplify[ D[lagP, χ[τ, σ]] - D[D[lagP, (χ^(1,0))[τ,σ]], τ] -  D[D[lagP, (χ^
(0,1))[τ,σ]], σ]  ];
eqm10=Simplify[ D[lagP, φ[τ, σ]] - D[D[lagP, (φ^(1,0))[τ,σ]], τ] -  D[D[lagP, (φ^
(0,1))[τ,σ]], σ]  ];
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(* In this section the Ansatz is applied to further simplify the 2 non-trivial 
equations of motion for γ, χ and ψ *)
 
eomgamma=Block[{ρ,θ,γ, ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=γ[σ];ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm4]]
eompsi=Block[{ ρ,θ,γ,ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=γ[σ];ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm7]]
eomgamma=Block[{ρ,θ,γ, ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=γ[σ];ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm9]]
eomgamma=Block[{ρ,θ,γ, ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=γ[σ];ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm10]]
 
(* The outputs were as follows *)
 
 2 (Cos[γ[σ]] Sin[γ[σ]] (ω1^2-ω2^2 Sin[ψ[σ]]^2+(ψ^′)[σ]^2)+(γ^′′)[σ])
 2 Cos[γ[σ]] (-2 Sin[γ[σ]] (γ^′)[σ] (ψ^′)[σ]+Cos[γ[σ]] (ω2^2 Cos[ψ[σ]] Sin[ψ[σ]]
+(ψ^′′)[σ]))
 0
 0
 
(* Taking the solution γ=0 satisfies the equation of motion for γ and also reduces 
the ψ equation of motion as follows *)
 
eomgamma0=Block[{ρ,θ,γ, ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=0;ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;
FullSimplify[eqm4]]
Output = 0
 
eompsibar=Block[{ ρ,θ,γ,ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=0;ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm7 ]]
Output= ω2^2 Sin[2 ψ[σ]]+2 (ψ^′′)[σ]
 
(* Here an expression for (ψ^′′)[σ] is defined for later use to simplify the NVE *)
 
ψprimeprime=-ω2^2 Sin[2* ψbar[σ]]/2;
 
(* The Virasoro constraints simplified as follows *)
 
Vira1 =Block[{ ρ,θ,γ,ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=0;ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[virasoro1]]
Output= 0
Vira2 =Block[{ ρ,θ,γ,ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
[τ_,σ_]:=0;ψ[τ_,σ_]:=ψ[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[virasoro2]]
Output= -κ^2+ω2^2 Sin[ψ[σ]]^2+(ψ^′)[σ]^2
 
(* From virasoro 2 an expression for ψ^′^2 is defined *)
 
ψprime2=κ^2-ω2^2 Sin[ψbar[σ]]^2;
 
(* Although not necessary the solution for ψ can be obtained from the expression 
for ψ^′^2*)
DSolve[-κ^2+ω2^2 Sin[ψ[σ]]^2+(ψ^′)[σ]^2==0,ψ[σ],σ];
 
(* Assuming that ψbar is a solution to eompsi and using the above expression for 
ψprime2. eomgamma will change as follows *)
 
eomgamma=Block[{ρ,θ,γ, ψ,t,ξ,χ,φ,ϕ1,ϕ2},t[τ_,σ_]:=κ*τ;θ[τ_,σ_]:=θ[σ];ρ[τ_,σ_]:=0;γ
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[τ_,σ_]:=γ[σ];ψ[τ_,σ_]:=ψbar[σ];ξ[τ_,σ_]:=0; φ[τ_,σ_]:=ω2*τ; χ[τ_,σ_]:=ω1*τ; ϕ1
[τ_,σ_]:=0; ϕ2[τ_,σ_]:=0;FullSimplify[eqm4]]
Output= 2 (Cos[γ[σ]] Sin[γ[σ]] (ω1^2-ω2^2 Sin[ψbar[σ]]^2+(ψbar^′)[σ]^2)+(γ^′′)[σ])
 
(* Next we consider small fluctuations in γ around the solution ψbar *)
 
eomgamma = η(ω1^2-ω2^2 Sin[ψbar[σ]]^2+ψprime2)+d2ηdσ2
 
(* Make the substitution z=Cos[ψbar[σ]] and apply the chain rule to get the 
derivatives in terms on the new coordinate z instead of σ *)
 
z[σ_]:=Sin[ψbar[σ]]^2 ;
dηdσ = ηprime*D[z[σ],σ];
d2ηdσ2 = ηprimeprime*D[z[σ],σ]^2+ηprime*D[D[z[σ],σ],σ];
 
(* Here the expression for  (ψbar^′′)[σ] from the equation of motion and (ψbar^′)
[σ]^2 from the virasoro constraint is subtituted in *)
 
d2ηdσ2=4 ηprimeprime Cos[ψbar[σ]]^2 Sin[ψbar[σ]]^2 ψprime2+ηprime (2 Cos[ψbar
[σ]]^2 ψprime2-2 Sin[ψbar[σ]]^2 ψprime2+2 Cos[ψbar[σ]] Sin[ψbar[σ]] ψprimeprime)
 
(* The last step is to get rid of the explicit ψbar dependence and only have an 
NVE in terms of z*)
 
NVE = Block[{ψbar},ψbar[σ_]:=ArcSin[Sqrt[z]];FullSimplify[eomgamma]]
Output= 2 (ηprime-2 z ηprime-2 (-1+z) z ηprimeprime) κ^2+2 z ((-2+3 z) ηprime+2 (-1
+z) z ηprimeprime) ω2^2+η (κ^2+ω1^2-2 z ω2^2)
 
(* To check for non-integrability the Kovacic algorithm needs to be applied, this 
next step is just to check if mathematica can solve the NVE*)
In[78]:= DSolve[η''[z](4*z(z-1)(z*ω2^2- κ^2))+η'[z](κ^2 (2-4z)-2*ω2^2*z(2-3z))+η[z]
(κ^2+ω1^2-2ω2^2 z)==0,η[z],z]
 
(*DSolve was not able to solve this NVE*)



Bibliography

[1] Juan Martin Maldacena. “The Large N limit of superconformal field theories
and supergravity”. In: Int. J. Theor. Phys. 38 (1999), pp. 1113–1133. doi:
10.1023/A:1026654312961. arXiv: hep-th/9711200.

[2] J.A. Minahan and K. Zarembo. “The Bethe ansatz for N=4 superYang-Mills”.
In: JHEP 03 (2003), p. 013. doi: 10.1088/1126-6708/2003/03/013. arXiv:
hep-th/0212208.

[3] Pallab Basu and Leopoldo A. Pando Zayas. “Analytic Non-integrability in
String Theory”. In: Phys. Rev. D 84 (2011), p. 046006. doi: 10 . 1103 /

PhysRevD.84.046006. arXiv: 1105.2540 [hep-th].

[4] Jerald J. Kovacic. “An algorithm for solving second order linear homogeneous
differential equations”. In: J. Symb. Comp 2 (1986), pp. 3–43.

[5] Diego M. Hofman and Juan Martin Maldacena. “Giant Magnons”. In: J. Phys.
A 39 (2006), pp. 13095–13118. doi: 10.1088/0305-4470/39/41/S17. arXiv:
hep-th/0604135.

[6] David Reutter. “Classical String Theory”. In: (2014 (accessed June 3, 2020)).
url: http://edu.itp.phys.ethz.ch/fs13/cft/CST2_Reutter.pdf.

[7] Kevin Wray. “An Introduction to String Theory”. In: (2011 (accessed June
3, 2020)). url: https://math.berkeley.edu/~kwray/papers/string_

theory.pdf.

[8] David Tong. “String Theory”. In: (Jan. 2009). arXiv: 0908.0333 [hep-th].

[9] Joseph Polchinski. String Theory Volume 1. Cambridge CB2 2RU, UK: Cam-
bridge University Press, 2005.

[10] Sean M. Carroll. “Lecture notes on general relativity”. In: (Dec. 1997). arXiv:
gr-qc/9712019.

[11] S.S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. “Gauge the-
ory correlators from noncritical string theory”. In: Phys. Lett. B 428 (1998),
pp. 105–114. doi: 10 . 1016 / S0370 - 2693(98 ) 00377 - 3. arXiv: hep - th /

9802109.

[12] Edward Witten. “Anti-de Sitter space and holography”. In: Adv. Theor. Math.
Phys. 2 (1998), pp. 253–291. doi: 10.4310/ATMP.1998.v2.n2.a2. arXiv:
hep-th/9802150.

[13] Gerard ’t Hooft. “A Planar Diagram Theory for Strong Interactions”. In:
Nucl. Phys. B 72 (1974). Ed. by J.C. Taylor, p. 461. doi: 10.1016/0550-
3213(74)90154-0.

65

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://arxiv.org/abs/hep-th/0212208
http://dx.doi.org/10.1103/PhysRevD.84.046006
http://dx.doi.org/10.1103/PhysRevD.84.046006
http://arxiv.org/abs/1105.2540
http://dx.doi.org/10.1088/0305-4470/39/41/S17
http://arxiv.org/abs/hep-th/0604135
http://edu.itp.phys.ethz.ch/fs13/cft/CST2_Reutter.pdf
https://math.berkeley.edu/~kwray/papers/string_theory.pdf
https://math.berkeley.edu/~kwray/papers/string_theory.pdf
http://arxiv.org/abs/0908.0333
http://arxiv.org/abs/gr-qc/9712019
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0


BIBLIOGRAPHY

[14] Jan Plefka. “Spinning strings and integrable spin chains in the AdS/CFT
correspondence”. In: Living Rev. Rel. 8 (2005), p. 9. doi: 10.12942/lrr-
2005-9. arXiv: hep-th/0507136.

[15] Makoto Natsuume. AdS/CFT Duality User Guide. Vol. 903. 2015. isbn: 978-
4-431-55441-7, 978-4-431-55440-0. doi: 10.1007/978-4-431-55441-7. arXiv:
1409.3575 [hep-th].

[16] A. Zaffaroni. “Introduction to the AdS-CFT correspondence”. In: Class. Quant.
Grav. 17 (2000), pp. 3571–3597. doi: 10.1088/0264-9381/17/17/306.

[17] A.A. Tseytlin. “Review of AdS/CFT Integrability, Chapter II.1: Classical
AdS5xS5 string solutions”. In: Lett. Math. Phys. 99 (2012), pp. 103–125. doi:
10.1007/s11005-011-0466-0. arXiv: 1012.3986 [hep-th].

[18] S.S. Gubser, I.R. Klebanov, and Alexander M. Polyakov. “A Semiclassical limit
of the gauge / string correspondence”. In: Nucl. Phys. B 636 (2002), pp. 99–
114. doi: 10.1016/S0550-3213(02)00373-5. arXiv: hep-th/0204051.

[19] Juan Morales-Ruiz. Differential Galois Theory and Non-Integrability of Hamil-
tonian Systems. Jan. 1999. doi: 10.1007/978-3-0348-0723-4.

[20] Alessandro Torrielli. “Lectures on Classical Integrability”. In: J. Phys. A 49.32
(2016), p. 323001. doi: 10.1088/1751-8113/49/32/323001. arXiv: 1606.
02946 [hep-th].

[21] Eric D’Hoker and D.H. Phong. “Lectures on supersymmetric Yang-Mills the-
ory and integrable systems”. In: 9th CRM Summer School: Theoretical Physics
at the End of the 20th Century. Dec. 1999, pp. 1–125. arXiv: hep-th/9912271.

[22] Konstantinos S. Rigatos. “Nonintegrability of La,b,c quiver gauge theories”. In:
Phys. Rev. D 102.10 (2020), p. 106022. doi: 10.1103/PhysRevD.102.106022.
arXiv: 2009.11878 [hep-th].

[23] Gautam Mandal, Nemani V. Suryanarayana, and Spenta R. Wadia. “Aspects
of semiclassical strings in AdS(5)”. In: Phys. Lett. B 543 (2002), pp. 81–88.
doi: 10.1016/S0370-2693(02)02424-3. arXiv: hep-th/0206103.

[24] Iosif Bena, Joseph Polchinski, and Radu Roiban. “Hidden symmetries of the
AdS5 × S5 superstring”. In: Physical Review D 69.4 (Feb. 2004). issn: 1550-
2368. doi: 10.1103/physrevd.69.046002. url: http://dx.doi.org/10.
1103/PhysRevD.69.046002.

[25] Dimitrios Giataganas, Leopoldo A. Pando Zayas, and Konstantinos Zoubos.
“On Marginal Deformations and Non-Integrability”. In: JHEP 01 (2014),
p. 129. doi: 10.1007/JHEP01(2014)129. arXiv: 1311.3241 [hep-th].

[26] Pallab Basu and Leopoldo A. Pando Zayas. “Chaos rules out integrability
of strings on AdS5 × T 1,1”. In: Phys. Lett. B 700 (2011), pp. 243–248. doi:
10.1016/j.physletb.2011.04.063. arXiv: 1103.4107 [hep-th].

[27] Dimitrios Giataganas. “Analytic Non-Integrability and S-Matrix Factoriza-
tion”. In: (Sept. 2019). arXiv: 1909.02577 [hep-th].

[28] A. Stepanchuk and A.A. Tseytlin. “On (non)integrability of classical strings
in p-brane backgrounds”. In: J. Phys. A 46 (2013), p. 125401. doi: 10.1088/
1751-8113/46/12/125401. arXiv: 1211.3727 [hep-th].

66

http://dx.doi.org/10.12942/lrr-2005-9
http://dx.doi.org/10.12942/lrr-2005-9
http://arxiv.org/abs/hep-th/0507136
http://dx.doi.org/10.1007/978-4-431-55441-7
http://arxiv.org/abs/1409.3575
http://dx.doi.org/10.1088/0264-9381/17/17/306
http://dx.doi.org/10.1007/s11005-011-0466-0
http://arxiv.org/abs/1012.3986
http://dx.doi.org/10.1016/S0550-3213(02)00373-5
http://arxiv.org/abs/hep-th/0204051
http://dx.doi.org/10.1007/978-3-0348-0723-4
http://dx.doi.org/10.1088/1751-8113/49/32/323001
http://arxiv.org/abs/1606.02946
http://arxiv.org/abs/1606.02946
http://arxiv.org/abs/hep-th/9912271
http://dx.doi.org/10.1103/PhysRevD.102.106022
http://arxiv.org/abs/2009.11878
http://dx.doi.org/10.1016/S0370-2693(02)02424-3
http://arxiv.org/abs/hep-th/0206103
http://dx.doi.org/10.1103/physrevd.69.046002
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://dx.doi.org/10.1007/JHEP01(2014)129
http://arxiv.org/abs/1311.3241
http://dx.doi.org/10.1016/j.physletb.2011.04.063
http://arxiv.org/abs/1103.4107
http://arxiv.org/abs/1909.02577
http://dx.doi.org/10.1088/1751-8113/46/12/125401
http://dx.doi.org/10.1088/1751-8113/46/12/125401
http://arxiv.org/abs/1211.3727


BIBLIOGRAPHY

[29] Carlos Nunez, Dibakar Roychowdhury, and Daniel C. Thompson. “Integra-
bility and non-integrability in N = 2 SCFTs and their holographic back-
grounds”. In: JHEP 07 (2018), p. 044. doi: 10.1007/JHEP07(2018)044.
arXiv: 1804.08621 [hep-th].
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