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Abstract 

Composite indicators have gained popularity in various research areas, such as performance 

monitoring and decision making. However, the determination of an appropriate weighting 

method is a significant problem in the creation of composite indices. Weighting methods 

significantly affect the results of composite indicators in a benchmarking context. Subjective 

weighting processes are criticised for their potential bias that may reduce stakeholders' trust in 

the results of a composite index. By contrast, objective weighting processes are perceived to 

provide unbiased results that may overcome trust issues in the subjective judgements of the 

experts who construct composite indices. The Global Food Security Index (GFSI) is a 

composite indicator that measures the comparative level of food insecurity for 113 countries. 

The initial components of the GFSI included the affordability, availability and quality and 

safety components. In 2017, the GFSI added a fourth component for natural resources and 

resilience (NRR) as a risk to food security.  

The scarcity of natural resources already constrains economic growth and food security. The 

climate-related conditions will profoundly affect those countries that are least resilient. The 

national food security and climate-related performance scores are politically sensitive for 

governments. Both are essential for incentivising progress towards global targets. Moreover, 

the policymakers are seeking a working guide to improving their targeting and monitoring 

efforts for food security. 

The Economist Intelligence Unit's (EIU) panel of experts uses a subjective weighting of 

indicators in the GFSI model. The subjective assessment of sensitive indicators may negate 

trust in the dimensions and overall score and ranks. An objective weighting approach to the 

NRR component of the GFSI may provide an evidence-based understanding of a country's 

progress in the management of natural resource risks and build the confidence of countries in 

the reliability of the index. No studies yet have explored the effect of an objective weighting 

of the new NRR component of the GFSI on country scores and ranks. This study set out to 

assess whether an objective weighting of the NRR component of the GFSI significantly 

changed the country scores and ranks compared to the subjective weighting process.  

The GFSI data set of 113 countries was analysed using a principal component analysis (PCA) 

to derive objectively weighted NRR scores and ranks. The objectively weighted NRR scores 

were then used to adjust the overall GFSI scores and ranks. The Kaiser-Meyer-Olkin (KMO) 

test was 0.682, indicating that the PCA was suitable for analysing the GFSI data. A paired t-
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test showed that on average, the objectively weighted NRR scores were lower than the 

subjectively weighted scores. However, a Spearman's correlation indicated that the objectively 

and subjectively weighted NRR ranks were strongly correlated (rho = 0.831). The study 

concluded that the NRR ranks and the adjusted overall GFSI rank of countries would change 

slightly if an objective weighting technique was applied to the NRR component of the GFSI. 

However, the subjectively (GFSI model) and objectively (PCA model) weighted NRR ranks 

were highly correlated, indicating that the subjectively weighted GFSI model was not strongly 

statistically biased. The findings implied that the subjective weighting of the NRR component 

of the GFSI may still provide relatively fair country scores and ranks for comparison purposes. 

However, the existence of subjectivity in the weighting of the NRR component may affect the 

trustworthiness of the GFSI results among governments and policymakers. An objective 

weighting of the NRR component could overcome the subjectivity of EIU's weighting 

approach, improving the reliability of the NRR component of the GFSI and building greater 

trust.  
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Chapter 1: Introduction 

1.1 Background to the research problem 

Composite indicators have gained popularity in various research areas, such as performance 

monitoring and decision making (OECD, 2008). However, the determination of an appropriate 

weighting method is a significant problem in the creation of composite indices. Weighting 

methods significantly affect the results of composite indicators in a benchmarking context 

(Nardo et al., 2005). Subjective weighting processes are criticised for their potential bias that 

may reduce stakeholders' trust in the results of a composite index (Maricic et al., 2016). By 

contrast, objective weighting processes are perceived to provide unbiased results that may 

overcome trust issues in the subjective judgements of the experts who construct composite 

indices. Therefore, the weighting of indicators should be accorded keen attention by the 

developers of a composite index (Nardo et al., 2005). 

The Global Food Security Index (GFSI) is a composite indicator designed by the Economist 

Intelligence Unit (EIU) as a benchmarking model that measures the comparative level of food 

insecurity for countries (EIU, 2019). The initial components of the GFSI included the 

affordability, availability and quality and safety components that measured a specific food 

security dimension (EIU, 2017). In 2017, the GFSI added a fourth component for natural 

resources and resilience (NRR) to the initial three dimensions of affordability, availability and 

quality and safety components (EIU, 2017). This component was added as an adjustment factor 

to capture changes to the overall food security score in the event of climate-related and natural 

resource risks and how countries adapt to these risks (EIU, 2019).  

The scarcity of natural resources already constrains economic growth and food security 

(Rosegrant et al., 2014). Moreover, changing climate-related conditions will profoundly affect 

those countries that are least resilient (Sova et al., 2019). Resilience is defined as the ability to 

restrain and mitigate crises and disaster, likewise, to anticipate, absorb and bounce back from 

these shocks in a timely, efficient and sustainable way (FAO, 2013). An evidence-based 

understanding of a country's progress in the management of natural resource risks may help 

countries to identify the areas that need intervention (Nardo et al., 2005).  

The EIU panel consists of twenty renowned international experts on food security, agricultural 

policy, climate change and natural resources (EIU, 2019). In the weighting of the GFSI, the 

EIU panel of experts apply two sets of weightings. The first, known as an equal weighting, 
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assumes that all indicators have the same level of importance (EIU, 2019). The second 

weighting option of the GFSI is referred to as the 'peer panel recommendation' as it involved 

averaging the indicator weights suggested by five members of the EIU panel of experts (EIU, 

2019). An analyst of the GFSI model has the option of using any of the two mentioned weights 

provided by the EIU or even applying new weights (EIU, 2019). However, the default setting 

weights used in the GFSI model is the indicator weights suggested by the EIU experts (EIU, 

2019). Several researchers have criticised the EIU weighting scheme as a subjective approach. 

Many critics claim that the GFSI results needed validation against the results of an objective 

weighting model (Izraelov and Silber, 2019). The purpose of this study was to explore how an 

objective weighting of the NRR component of the GFSI affected country scores and ranks. 

1.2 Statement of the research problem  

As mentioned above, the EIU panel of experts assigned weights to the indicators of the GFSI 

by averaging the indicator weights suggested by five members of the EIU panel. However, this 

EIU weighting process of allocating indicator weights may be subjective for two reasons. 

Firstly, the suggestion of the indicator weights by the EIU experts depends on the knowledge 

and judgements of these experts. These experts may be conversant with the relative importance 

of the GFSI indicators (Gan et al., 2017). The EIU experts may assign high weights to focus 

advocacy efforts for some indicators while penalising other indicators with low weights (Greco 

et al., 2019). Therefore, the EIU panel of experts may subjectively assign a priori (biased) 

weights to the GFSI indicators (Kao, 2010).  

Secondly, the EIU weighting process does not apply statistical techniques to derive the GFSI 

weights. Statistical methods used for the objective weighting of indicators are known to 

produce less biased results in a benchmarking context (Decancq and Lugo, 2013). By contrast, 

subjective weighting processes are criticised for not using statistical software and for their 

potential bias in the creation of scores and ranks (Maricic et al., 2016). Such criticism of the 

EIU weighting process may reduce the confidence of countries in the GFSI results. 

Several studies have assessed the EIU panel of expert's application of weightings. Chen et al. 

(2019), applied the Hierarchical Data Envelopment analysis (H-DEA) approach to derive 

indicator weights in the 2014 GFSI. Chen et al. (2019), noted that the GFSI weights and H-

DEA weights for indicators gave similar country ranks but slightly different scores for 

countries. Izraelov and Silber (2019), applied the Data Envelopment Analysis (DEA), Principal 

Component Analysis (PCA) and Lower Convex Hull (LCH) approaches to assess the 2015 
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GFSI. Izraelov and Silber (2019), concluded that the GFSI weights selected by the EIU experts 

were not biased as the compared rank of countries were similar. Finally, Maricic et al. (2016), 

scrutinised the 2015 GFSI weighting process by applying the Composite I-Distance Indicator 

(CIDI) method and concluded that the weights in the GFSI model were biased. The biased 

GFSI weights could provide questionable GFSI results to countries, policymakers and 

researchers and reduce their trust (Maricic et al., 2016). However, these studies did not conduct 

tests to evaluate the statistical significance change in the GFSI scores and ranks due to 

alternative weightings. Also, the NRR component of the GFSI was still new to many 

researchers. Therefore, this study set out to determine how an objective weighting of the NRR 

component of the GFSI affected country scores and ranks. 

The national food security and climate-related performance scores are politically sensitive for 

governments (Santeramo, 2015a). Both are essential for incentivising progress towards global 

targets. The objective assessment of indicators for the NRR component of the GFSI may boost 

the confidence of governments in the GFSI results. The policymakers may use the findings of 

this study as a guide to improving their targeting and monitoring efforts for food security. 

Finally, the EIU panel of experts may use the findings of this study to improve the design of 

the efforts for food security. 

1.3 Research questions  

This study set out to explore how an objective weighting of the NRR component of the GFSI 

affected the scores and rank of countries. The specific research questions addressed were: 

i. Did the objective weighting significantly change the countries' NRR scores and ranks 

compared to the subjective weighting of the NRR component of the GFSI? 

ii. Did the objective NRR adjustment of the overall GFSI significantly change the 

countries' adjusted overall GFSI scores and ranks compared to the subjective NRR 

adjustment?  

1.4 Research hypotheses 

The hypothesis for the research question one assumed that the objective weighting significantly 

changed the countries' NRR scores and ranks compared to the subjective weighting of the NRR 

component of the GFSI. The hypothesis for the research question two assumed that the 

objective NRR adjustment of the overall GFSI significantly changed the countries' adjusted 

overall GFSI scores and ranks compared to the subjective NRR adjustment. 
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The justification for the two mentioned hypotheses was as follows. Firstly, the subjective 

weighting process for the NRR component of the GFSI does not involve the use of statistical 

techniques to derive indicator weights. An application of statistical software for the objective 

weighting of NRR indicators may provide less biased NRR scores and ranks (Chen et al., 

2019). However, the objective weights for the NRR component of the GFSI derived using 

statistical techniques might significantly change with changes in data to give new trade-offs 

between indicators (Decancq and Lugo, 2013). Statistical methods for weighting indicators are 

known to change the weights in composite indices depending on data used (Becker et al., 2017; 

Paruolo et al., 2013). The changing weights may help countries with high scores for the 

indicators that received extensive weights to have a greater chance for higher NRR scores 

(Nardo et al., 2005). 

Secondly, the judgements of the EIU experts may have influenced the subjective weighting of 

the NRR component of the GFSI in 2017 by focussing on particular indicators (Alemi-

Ardakani et al., 2016). For example, the EIU experts may have assigned a higher weight 

(21.43%) to the exposure to temperature rise to raise country focus on this indicator compared 

to the storm severity indicator with a lower weight (7.14%). These panel of experts may have 

assigned a priori weights that distort the NRR scores and rank of countries (Kao, 2010; Maricic 

et al., 2016). Conversely, an objective weighting of the NRR component would rely on 

statistical techniques (Izraelov and Silber, 2019) and could provide a posteriori (unbiased) 

weights free of ad hoc restrictions (Kao, 2010). As a result, the NRR scores and ranks might 

significantly change for the countries that performed better or poorly on the indicators with 

higher objective weights compared to subjective weights (Nardo et al., 2005). Finally, the NRR 

scores were used to adjust the overall GFSI scores and rank of countries. The objectively 

weighted NRR scores may significantly change the countries' adjusted overall GFSI scores and 

ranks formerly obtained using subjectively weighted NRR scores.  

1.5 Outline of the dissertation 

The dissertation consists of six chapters. Chapter one has presented the introduction and 

rationale for the study. Chapter two provides a review of the related literature on which the 

research and conceptual framework were based. The third chapter describes the methodology 

used by the GFSI. Chapter four describes the methods used in this study. Chapter five presents 

the results and discussions. Finally, the sixth chapter provides the conclusions, 

recommendations, and suggestions for the improvement of the study and further research.  
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Chapter 2: Review of the related literature 

2.1 Introduction 

Weighting methods can significantly affect the results of composite indicators in a 

benchmarking context (Nardo et al., 2005). The determination of an appropriate weighting 

method is a significant problem in the creation of composite indices (OECD, 2008). As with 

other composite indicators, the GFSI may have the problem of ad hoc restrictions in indicator 

weights (Freudenberg, 2003). A study by Maricic et al. (2016), indicated that the GFSI was 

based on reliable data sources but biased weights. It is crucial to understand how the objective 

weighting of the NRR component of the GFSI affects the countries' scores and ranks in this 

dimension and when combined in the overall index. 

This chapter reviews the related literature on composite indicators. The chapter starts by 

reviewing the theoretical background of composite indicators, followed by the classification of 

weighting methods. The empirical studies on composite indicators are then reviewed to identify 

the research gap and to build the conceptual framework (Figure 2.1).  

2.2 The theoretical background of composite indicators 

The use of composite indicators to score and rank countries based on multiple dimensions has 

increased over the last two decades (Greco et al., 2019). As shown in Table 2.1, composite 

indicators have been useful in performance monitoring, benchmarking comparisons and 

decision making in different research areas (OECD, 2008; Reale et al., 2017). A composite 

indicator is created when individual indicators are combined into a single index to measure 

multifaceted concepts which cannot be measured by an individual indicator (OECD, 2008). 

Measuring food security is one such case where a single, unidimensional indicator does not 

cover the multiple aspects. Jacobs et al. (2004), asserted that a composite indicator succinctly 

conveys performance information in a single score used in developing policy priorities.  

A composite indicator's usefulness is dependent on its underlying construction (OECD, 2008). 

For this reason, Böhringer and Jochem (2007), noted that composite indicators are not exempt 

from criticism despite their extensive use. Some critique pertains to lack of consistency and 

transparency in the creation of such indices (Grupp and Mogee, 2004). Table 2.1 presents the 

benefits and drawbacks of composite indicators. 



6 

 

Table 2.1: Benefits and drawbacks of composite indicators 

Benefits of composite indicators Drawbacks of composite indicators  

• Composite indicators support decision-

makers by summarising complex 

multidimensional issues. 

• It is easier to interpret a single comparative 

value. 

• Countries can be ranked based on complex 

issues in a benchmarking context. 

• Composite indicators assess a country's 

progress towards managing complex issues 

over time, thereby attracting public interest. 

• The results of a composite indicator indicate 

what areas require intervention. 

• If misinterpreted or poorly constructed, 

composite indicators may convey misleading 

messages. 

• The subjective judgements of the developers 

of a composite indicator may influence the 

selection of sub-indicators and indicator 

weights. 

• It may be challenging to determine the root 

causes of poor performance from a single 

comparative value of a composite index. 

• The developers of a composite index may 

ignore the dimensions of a phenomenon that 

are difficult to measure. 

Source: Adapted from Saisana and Tarantola (2002). 

Several composite indicators have been developed for use in various research areas. Table 2.2 

provides a list of some of the indicators, including their developer and their area of use.  

Table 2.2: Examples of composite indicators 

Research 

area 

Composite indicator The developer of the composite 

indicator 

Food Security Global Hunger Index (GHI) International Food Policy Research 

Institute (IFPRI) 

Hunger and Nutrition Commitment 

Index (HANCI) 

Institute of Development Studies (IDS) 

Global Food Security Index (GFSI) Economist Intelligence Unit (EIU) 

Environment Sustainable Development Index (SDI) United Nations 

Environmental Sustainability Index  World Economic Forum (WEF) 

Economy Internal Market Index (IMI) European Commission (EC) 

Economic Competitiveness Index (ECI) Institute for Management Development 

Technology 

and 

Innovation 

Technology Achievement Index (TAI) United Nations Development 

Programme 

Networked Readiness Index (NRI) World Economic Forum (WEF) 

Society Corruption Perceptions Index (CPI) Transparency International 

Human Development Index (HDI) United Nations Development 

Programme 

Source: Adapted from Jones et al. (2013), OECD (2008) and Pangaribowo et al. (2013). 
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2.2.1 The construction of composite indicators 

Table 2.3 shows the ten universally accepted steps for constructing composite indicators as 

developed by the Joint Research Centre (JRC) of the European Commission and the 

Organisation for Economic Cooperation and Development (OECD) (OECD, 2008). Despite 

the recommendation made by the JRC and OECD, their procedure may not be free of inherent 

weaknesses (Mazziotta and Pareto, 2017). 

Table 2.3: Steps for constructing a composite indicator 

Step Composite indicator construction activity 

1 The development of the theoretical framework  

2 The selection of indicators and data sources  

3 The imputation of missing data  

4 Multivariate analysis 

5 The normalisation and rescaling of data  

6 The weighting and aggregation of indicators  

7 The uncertainty and sensitivity analyses of the composite index 

8 The deconstruction of the components of the composite indicator 

9 The testing of the explanatory power of the composite index 

10 The visualisation of the results of the composite indicator 

Source: OECD (2008). 

Constructing a composite indicator is a complex process that involves various steps where the 

developer makes subjective choices (Mazziotta and Pareto, 2013). These choices may influence 

the results (Freudenberg, 2003). Each of the ten steps for constructing composite indicators is 

discussed in the following paragraphs to provide an understanding of the development process 

of a composite index. 

The first step in the construction of a composite indicator involves developing a theoretical 

framework that links various components and their indicators (OECD, 2008). The constructors 

of any composite indicator need to clearly define the phenomenon being measured and its 

components (Santeramo, 2015b). A sound theoretical framework helps in the selection and 

combination of individual indicators within the components of a composite index (OECD, 

2008). For example, the Human Development Index (HDI) was based on the definition that 

human development exists when people are knowledgeable and enjoying a long healthy life 

with a decent standard of living (OECD, 2008). Therefore, the HDI measures human 
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development within three broad components: life expectancy, education and GDP per capita 

(Hou et al., 2015).  

The second step for constructing a composite indicator involves the selection of indicators as 

guided by the theoretical framework (OECD, 2008). The accuracy and quality of composite 

indicators largely depend on data availability and quality. The data should be of high quality 

in terms of accuracy, completeness, reliability, relevance and timeliness (OECD, 2008). A lack 

of data may limit the construction of a composite index. 

The imputation of missing data is the third step in the construction of a composite indicator. 

Missing data hinders the development of sound composite indicators (OECD, 2008). There are 

three methods of fixing the problem of missing data: case deletion, single imputation and 

multiple imputations (OECD, 2008). In the event of missing data, case deletion either omits 

the affected indicator or country from the analysis (Nardo et al., 2005). However, case deletion 

leads to loss of information, thereby affecting the subsequent analyses and inferences on data 

(Santeramo, 2015b). Single imputation treats missing data as part of the analysis and applies 

mode, medium, mean, regression or expectation-maximization imputations (Nardo et al., 

2005). However, single imputation may underestimate the variance of the estimates 

(Santeramo, 2015b). Multiple imputations treat missing data as part of the analysis and apply 

the Markov chain Monte Carlo (MCMC) algorithm (OECD, 2008). Generally, single and 

multiple imputations minimise bias in the construction of composite indicators as cases are not 

deleted (Nardo et al., 2005). 

The fourth step in the construction of a composite indicator consists of a multivariate analysis. 

The data set is assessed to identify its suitability and implications on the proceeding 

methodological steps such as weighting and aggregation (OECD, 2008). The grouping and 

analysis can be conducted for individual indicators. To group information on individual 

indicators, an analyst applies statistical tools such as principal component analysis (PCA). PCA 

transforms correlated variables into a set of uncorrelated variables using either a correlation 

matrix or covariance matrix (OECD, 2008). PCA helps explore whether the components of the 

phenomenon being measured are statistically balanced in the composite index. Grouping 

information based on the similarity for various indicators involves the use of cluster analysis 

(CA) (Nardo et al., 2005). CA is a statistical aggregation technique. 

The normalisation of indicators is the fifth step in the construction of a composite indicator. 

Normalisation is the procedure by which the indicators in various scales are transformed to a 
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standard scale that allows comparison (EIU, 2019). Normalisation helps overcome the 

dominance of outliers in a data set (Freudenberg, 2003). Constructors of composite indicator 

may use one of normalisation methods such as minimum-maximum, ranking, standardisation, 

categorical scales, and others. Standardisation and minimum-maximum normalisation methods 

are most frequently used (El Gibari et al., 2019; OECD, 2008). Standardisation converts 

indicators to a common scale with a zero mean and standard deviation of one (OECD, 2008). 

The minimum-maximum method normalises all indicators to an identical range of zero to one 

(OECD, 2008). 

The sixth step in the construction of a composite indicator consists of weighting and 

aggregation of indicators. The weighting of variables according to an agreed-on and clearly-

stated theoretical framework precedes the aggregation process (Santeramo, 2015b). However, 

it is challenging to develop theoretical frameworks for obtaining coherent weighting methods 

(Freudenberg, 2003). Variables may be assigned equal weights mostly for simplicity reasons, 

or they may be allocated varying weights (OECD, 2008). Equal weighting assumes that all 

indicators have equal importance (Nardo et al., 2005). The methodology of any chosen 

weighting method should be made transparent as weights significantly influence the results of 

composite indices (Nardo et al., 2005). Much of the criticisms of composite indicator weighting 

schemes relate to the subjective nature of some weighting methods (Saltelli, 2007). A detailed 

discussion of the weighting of indicators is presented in the next sections of this chapter. 

The weighted indicators (or components) are then combined into a single composite index 

using linear, geometric or multi-criteria approach aggregations (OECD, 2008). Linear 

aggregation is the addition of weighted and normalised indicators such that high scores in some 

indicators compensate (offset) the low scores in other indicators (Nardo et al., 2005). 

Geometric aggregation is the product of weighted indicators such that countries with low scores 

in some indicators require much higher scores on other indicators to improve their ranks 

(Munda, 2012). Finally, a multi-criteria aggregation is useful when there is no possibility of 

compensating poor performance in some indicators by higher performance in other indicators 

(Munda, 2012).  

The seventh step for constructing a composite indicator involves uncertainty and sensitivity 

analyses to test for the robustness of the composite indicator (OECD, 2008). The preceding 

steps involve several judgements regarding the selection of indicators, normalisation, 

weighting and aggregation (OECD, 2008). Uncertainty analysis determines the sources of 
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variability in overall scores, such as the selected weights for indicators (Nardo et al., 2005). 

Sensitivity analysis explores how the normalisation, weighting and aggregation methods of the 

composite index contributed to the overall scores (OECD, 2008). Sensitivity analysis involves 

the application of alternative normalisation, weighting and aggregation methods for indicators. 

The combined use of uncertainty and sensitivity analyses helps improve the structure of a 

composite indicator (Saisana et al., 2005).  

An analyst should address all sources of uncertainty as several judgements made at the various 

steps for creating a composite indicator may reduce the robustness of a composite index 

(OECD, 2008). Uncertainties may be assessed in seven stages (OECD, 2008). First, an analyst 

may include and exclude individual indicators (Nardo et al., 2005). Second, an analyst should 

determine the data error based on the variance estimates. The third stage would involve the 

application of alternative editing methods, such as single and multiple imputations (OECD, 

2008). Fourth, alternative data normalisation methods such as standardisation, minimum-

maximum, rankings and others may be used (OECD, 2008). Fifth, an analyst may apply various 

subjective and objective weighting methods of composite indicators (Nardo et al., 2005). The 

use of alternative aggregation methods such as linear, geometric and multi-criteria approach 

would form the sixth stage (OECD, 2008). Finally, an analyst may apply different plausible 

weights to assess the uncertainties encountered while constructing composite indicators (Nardo 

et al., 2005).  

The eighth step in the construction of composite indicators involves decomposing a composite 

indicator to identify the contribution of individual components to the overall scores (OECD, 

2008). This contribution may be determined using structural equation modelling, path analysis 

and Bayesian networks (OECD, 2008). The developers of the composite index identify the 

primary drivers of a composite indicator score by profiling performance at the indicator level. 

The outcome of each indicator may be illustrated using a spider diagram (OECD, 2008).  

The ninth step of constructing a composite indicator entails testing the explanatory power of 

composite indicators by linking them to other variables and measures (OECD, 2008). For 

example, simple cross-plots may link the Technology Achievement Index (TAI) to the GDP 

per capita to test the explanatory power of the TAI (OECD, 2008). Theoretically, countries 

with a high GDP per capita are expected to have high TAI scores due to the capacity to invest 

in technology (OECD, 2008). Likewise, high technology achievement in these countries may 

lead to higher GDP per capita. 
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The final step of constructing a composite indicator involves the visualisation of the results 

using tables, line or bar charts, four-quadrant model and dashboard (Nardo et al., 2005). Visual 

models indicate what areas require interventions. 

2.2.2 The importance of weights in composite indicators 

As mentioned in the previous section, the sixth step of constructing a composite indicator 

involves the weighting and aggregation of indicators. According to Nardo et al. (2005), weights 

may be allocated to the indicators to reflect their economic significance such as coverage, 

collection costs and reliability. An analyst may assign higher weights to readily available and 

easy to measure base indicators while penalising the indicators that are problematic to locate 

and measure. The data distribution can also significantly influence the ability of the weights to 

reflect the perceived level of importance of the indicators (Becker et al., 2017; Paruolo et al., 

2013). For example, if the data distribution changes, the weights will reflect a new level of 

importance of indicators (Decancq and Lugo, 2013). Finally, weights significantly influence 

the results of composite indicators in a benchmarking context (Nardo et al., 2005). This 

influence is real, especially on an occasion where a higher weight is allocated to indicators with 

low or high scores. Therefore, the impact of weighting on the importance level of indicators 

remains a critical research concern (Lindén, 2018). 

Linear aggregation (the weighted arithmetic average), is one of the most widely used 

aggregation methods for composite indicators (Freudenberg, 2003; Langhans et al., 2014). This 

approach implies that the score of the composite indicator is calculated by the weighted average 

of the scores for individual indicators (EIU, 2019; OECD, 2008). Paruolo et al. (2013), noted 

a common assumption in the weighted arithmetic average process where weights are 

coefficients allocated to reflect the relative importance of each indicator. Albeit intuitively 

appealing, this assumption is not defensible theoretically as weights in this aggregation setting 

represent the marginal rate of substitutability between individual indicators (Lindén, 2018). 

The substitutability of indicators implies that weights show the possibility of compensating for 

a loss in one indicator with an improvement in another indicator (Decancq and Lugo, 2013; 

Munda and Nardo, 2005). The weights are perceived to express trade-off ratios between pairs 

of indicators, inferring a compensatory scheme as opposed to coefficients of relative 

importance (Freudenberg, 2003; Nardo et al., 2005). Therefore, high scores in some indicators 

may offset low scores in other indicators to attain a higher composite index score (Greco et al., 

2019).     
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2.3 The classification of weighting in composite indicators 

The weighting of indicators precedes the aggregation process in the creation of a composite 

index. There are various weighting methods for allocating weights in composite indicators. 

These methods are broadly categorised as subjective, objective and hybrid weighting methods 

(Alemi-Ardakani et al., 2016; Zardari et al., 2015).  

2.3.1 Subjective weighting methods of composite indicators 

Subjective weighting methods rely on the explicit knowledge, opinions and preferences of 

experts (Alemi-Ardakani et al., 2016; OECD, 2008). The experts' experience may be in terms 

of the relative importance and urgency of indicators as well as the substitution rates between 

pairs of indicators (Gan et al., 2017). These experts are also assumed to understand the 

weaknesses, strengths and subtleties of the data (Freudenberg, 2003; Nardo et al., 2005).  

According to Freudenberg (2003), subjective weighting approach proceeds in a dual-stage 

process assuming the possibility of organising related indicators into specific components. 

First, a subjective weighting method allocates weights to the indicators within each component. 

In this stage, each component is defined as a weighted average of the values for the individual 

indicators. The second stage of the subjective weighting scheme involves the allocation of 

weights. The value of the overall index is computed from a weighted average of the scores for 

the components. This dual-stage process helps avoid underestimating and overestimating those 

components for which fewer or more indicators are available (Freudenberg, 2003).  

Apart from the challenge of selecting appropriate experts, subjective weighting techniques 

suffer two main drawbacks. Firstly, subjective weighting methods do not depend on indicators 

data as weights may be allocated before the collection of all data (Chen et al., 2019). The 

indicator weights assigned by the panel of experts may stay the same, albeit the yearly changes 

in data (Decancq and Lugo, 2013). By contrast, the weights derived using a statistical technique 

mostly change with changes in data to give a true reflection of trade-offs between indicators 

(Decancq and Lugo, 2013). Secondly, a subjective weighting process does not apply statistical 

techniques to justify the objectivity and precision of the weight. These weights may subtly 

reflect the relative importance of indicators where weights represented the personal interests of 

the experts (Maricic et al., 2016). Examples of subjective weighting methods are the 

expert/public opinion-based weighting (public opinion, analytic hierarchy process, budget 

allocation process and conjoint analysis) and equal weighting (Decancq and Lugo, 2013; 

OECD, 2008).  
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2.3.2 Objective weighting methods of composite indicators 

Objective weighting methods are not reliant on the preferences and knowledge of experts or 

decision-makers but assign weights based on statistical models and data (Izraelov and Silber, 

2019). According to Kao (2010), objective weights are simply called a posteriori weights as 

they are more convincing than subjective weights.  

It is important to note that the data set's distribution can influence the ability of the weights to 

corroborate with the perceived level of importance of the indicators (Becker et al., 2017; 

Paruolo et al., 2013). For example, if the data distribution changes, the objective weights may 

also change to give a new reflection of the perceived level of importance of indicators (Decancq 

and Lugo, 2013). The main challenge of the objective weighting techniques is that they require 

extensive experience and expertise of the analyst (Alemi-Ardakani et al., 2016). Also, an 

analyst may manipulate data due to the presence of outliers or missing data, thereby affecting 

the overall results (OECD, 2008). Examples of objective weighting methods are principal 

component analysis, factor analysis, the benefit of the doubt approaches, regression analysis 

and unobserved component analysis (Decancq and Lugo, 2013; OECD, 2008). 

2.3.3 Hybrid weighting methods of composite indicators 

Hybrid weighting methods attempt to balance the subjective and objective weighting methods 

(Decancq and Lugo, 2013). Examples of such weighting methods include the stated 

preference weighting and hedonic approaches. 

Stated preference weighting assigns weights to indicators of a composite index based on the 

opinions of individuals who act as representatives in the society (Horsky et al., 2004). This 

approach uses survey-based approaches to derive indicator weights. For example, an item 

(indicator) supported by at least half of the society forms a socially perceived necessity 

(Decancq and Lugo, 2013). Consequently, the proportion of the population that supported the 

indicator as a necessity is used to derive its weight (Decancq and Lugo, 2013).  

A composite indicator, for example, the human well-being index (HWI), may use hedonic 

weighting to retrieve information about individuals' self-reported life satisfaction (Schokkaert, 

2007). In this case, a regression technique is used to derive weights by linearly regressing life 

satisfaction on the indicators within various components of the HWI (Decancq and Lugo, 

2013). The estimated coefficient of each indicator in the regression function forms the indicator 

weight. Table 2.4 presents the benefits and drawbacks of various weighting methods. 
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Table 2.4: Benefits and drawbacks of different weighting methods of composite indicators 

Method Type Examples  Benefits Drawbacks 

Equal weighting 

(EW). 

Subjective 

weighting method 

(equal weighting). 

Genuine Savings Index 

(WorldBank, 1999). 

 

Human Development 

Index (UNDP, 1990). 

Simple, straightforward and replicable. It suffers the problem of double weighting. 

 

Weights do not provide insights into the 

trade-offs between the indicators. 

Budget allocation 

process (BAP).  

Subjective 

weighting method 

(expert/public 

opinion-based). 

Overall Health System 

Attainment (Murray et al., 

2000). 

 

Employment Outlook 

(OECD, 1999). 

 

Eco-indicator 99 

(Goedkoop and 

Spriensma, 2001). 

Reliance on expert opinion prevents technical 

manipulation of weights. 

 

High explicitness and transparency. 

Weighting may measure the urgency for 

intervention as opposed to importance. 

 

Assigned weights could be region-specific 

hence not transferable between regions. 

 

Application to indicators exceeding ten may 

create inconsistencies due to cognitive stress 

felt by the experts. 

Analytic hierarchy 

process (AHP). 

Subjective 

weighting method 

(expert/public 

opinion-based). 

Index of Environmental 

Friendliness (Puolamaa et 

al., 1996). 

 

Composite sustainability 

performance Index 

(Rajesh Kumar Singh et 

al., 2007). 

Applicable to both quantitative and qualitative 

data. 

 

Reliance on expert opinion prevents technical 

manipulation of weights. 

 

Simple and flexible. 

 

High explicitness and transparency. 

 

It captures inconsistencies in the replies of 

respondents. 

High computational costs may be required 

for a high number of pairwise comparisons. 

 

Application on numerous indicators per 

cluster may create inconsistencies due to 

cognitive stress felt by the experts. 

 

Results depend on the experiment's setting 

and the chosen set of evaluators. 

Public opinion (PO). Subjective 

weighting method 

(expert/public 

opinion-based). 

Concern about 

environmental problems 

Index (Parker, 1991). 

Participatory and transparent. 

 

Expression of preference by stakeholders 

ensures consensus necessary for policy action. 

Measures concern as opposed to importance. 

 

Assigned weights could be region-specific 

hence not transferable between regions. 
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Method Type Examples Benefits Drawbacks 

 

Conjoint analysis 

(CA). 

Subjective 

weighting method 

(expert/public 

opinion-based). 

Indicator of quality of life 

in the city of Istanbul 

(Ülengin et al., 2001). 

 

Applicable to both quantitative and qualitative 

data. 

 

Weights do not provide insights into the trade-

offs between the indicators. 

 

Results are useful in making sustainability 

plans. 

 

Weighting considers respondents' values and 

the socio-political phenomenon. 

Weighting involves a complex estimation 

process. 

 

Weighting process requires a large sample of 

the respondents. 

 

Expression of numerous preferences may be 

required of each of the many respondents 

involved.  

Principal component 

analysis/Factor 

analysis (PCA/FA). 

 

 

Objective 

weighting method 

(Statistic/data-

driven). 

Environmental 

Sustainability Index 

(Sands and Podmore, 

2000). 

 

Indicators of product 

market regulation 

(Nicoletti et al., 2000). 

 

The 2005 European 

eBusiness Readiness 

Index (Pennoni et al., 

2006). 

It solves the problem of double weighting. 

 

No manipulation of the weights as realised 

with the restrictions of expert/opinion-based 

approaches. 

 

Only applicable to indicators that are 

correlated. 

 

Assigned weights do change with changes in 

the indicator's data. 

 

In the presence of outliers, data may suffer 

spurious variability. 

 

Statistical identification and interpretation 

may be difficult in the event of a small 

sample and data shortage. 

 

Sensitive to the applied methods for factor 

extraction and rotation. 

Regression analysis 

(RA). 

Objective 

weighting method 

(Statistic/data-

driven). 

National Innovation 

Capacity Index (Porter 

and Stern, 2001). 

 

It can be applied to indicators that are not 

correlated. 

 

No manipulation of the weights as realised 

with the restrictions of expert/opinion-based 

approaches. 

Poor results are obtainable in the presence of 

multi-collinearity (highly correlated 

indicators). 

 

A large amount of data is required to obtain 

statistical estimates. 
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Method Type Examples Benefits Drawbacks 

Data envelopment 

analysis/Benefit of 

the doubt approach 

(DEA/BOD). 

Objective 

weighting method 

(Statistic/data-

driven). 

 Weights are selected to maximise the index 

for each unit. 

 

The endogenously determined weights based 

on observed performances ensure the 

sensibility of indicator to national policy 

priorities. 

 

The assigned weights reflect policy priorities 

making it easy to establish trade-offs. 

Assigned weights are country-specific hence 

not transferable for cross-country 

comparisons. 

 

Manipulation of weights by endogenous 

weighting instead of experts' opinions lose 

the method's transparency. 

 

Any change in the benchmark performance 

also changes the assigned weights. 

Unobserved 

component models 

(UCM). 

Objective 

weighting method 

(Statistic/data-

driven). 

The aggregate governance 

indicators (Kaufmann et 

al., 1999). 

 

No manipulation of the weights as realised 

with the restrictions of expert/opinion-based 

approaches. 

Results obtained from inadequate data are 

less reliable and robust. 

 

Highly correlated indicators may lead to the 

problems of identification. 

 

Sensitive to the presence of outliers. 

Source: Author's compilation based on Hermans et al. (2008), Nardo et al. (2005) and OECD (2008). 
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2.4 Review of the empirical studies on composite indicators 

This section aims to identify the research gap as a rationale for further exploration. The 

following paragraphs point to a review of the empirical studies exploring how weighting 

methods affect the results of composite indicators. 

Nardo et al. (2005), conducted a study on the weighting of indicators in the Technology 

Achievement Index (TAI) using principal component analysis (PCA) and factor analysis (FA). 

The developers of the TAI had assigned equal weights to indicators (Nardo et al., 2005). The 

eight indicators in the TAI included patents, technology exports, royalties, telephones, internet, 

electricity, mean years of schooling and university education. These researchers observed that 

PCA and FA weights were different from the equal weights for the TAI indicators. For 

example, both the PCA and FA assigned a weight of 17% to patents compared to the TAI's 

weight of 13%. The PCA and FA also assigned a weight of six per cent to technology exports 

compared to the TAI's weight of 13%.  

Nardo et al. (2005), noted that twelve out of twenty-three countries maintained their rank, while 

eleven countries slightly shifted their rank upon application of FA. For example, Canada 

dropped from position nine to eleven, whereas Norway improved from position twelve to nine. 

Nardo et al. (2005), attributed these changes to the allocation of higher weights to indicators 

on which some countries obtained low or high scores. Also, Nardo et al. (2005), asserted that 

no consensus on the best weighting method is likely to exist as long as a composite index uses 

reliable data. However, these researchers used descriptive statistics for the analysis and 

overlooked the application of statistical tests to compare their results. Nardo et al. (2005), did 

not compare the scores for the twenty-three countries. 

Nguefack‐Tsague et al. (2011), provided statistical support for the use of equal weighting of 

the three indices in the Human Development Index (HDI). Nguefack‐Tsague et al. (2011), 

applied the correlation matrix version of PCA to obtain new weights for the 1975 to 2005 HDI 

of 177 countries. They then compared the PCA weights with the original weights for the HDI. 

Nguefack‐Tsague et al. (2011), observed that the average normalised PCA weights for the Life 

Expectancy Index (LEI), Education Index (EI) and Gross Domestic Product Index (GDPI) 

components were, respectively, 0.337, 0.333 and 0.333, and very close to the 0.333 of the HDI. 

Kendall's tau rank correlation coefficient ranged from 0.97 to 1.00, indicating that the country 

ranks obtained with the PCA weights and equal (HDI) weights were highly correlated 

(Nguefack‐Tsague et al., 2011). Nevertheless, these researchers recommended the use of equal 
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weighting to ensure consistency as the weights obtained with the PCA model may not be 

constant every year. As with Nardo et al. (2005), Nguefack‐Tsague et al. (2011), neither 

computed statistical tests for the difference between the two sets of weights nor compared the 

PCA scores to the HDI scores. 

Maricic et al. (2016), evaluated the GFSI weights and ranks of countries and concluded that 

the GFSI was based on reliable data sources but biased weights. These researchers proposed 

the use of Composite I-Distance Indicator (CIDI) model to obtain unbiased weights and a 

precise rank of countries. Maricic et al. (2016), applied the proposed CIDI, and the 2015 GFSI 

data set and made two observations. Firstly, the weights assigned to the affordability, 

availability and quality and safety components of the GFSI changed from 40%, 44% and 16% 

to 33%, 31% and 36% respectively (EIU, 2019; Maricic et al., 2016). Secondly, the CIDI model 

changed the country ranks slightly, where 15% of the countries maintained their rank.  

However, Maricic et al. (2016), did not compare the CIDI scores with the GFSI scores. To add, 

these researchers did not conduct statistical tests for the significance of the difference between 

the CIDI and GFSI weights and ranks. Maricic et al. (2016), overlooked the need for these 

comparisons as their (Maricic et al., 2016) focus was on the descriptive statistics of the weights 

obtained using the CIDI and GFSI models.  

The ratio of weights assigned to the indicators in a composite index may inform the statistical 

importance of indicators (Paruolo et al., 2013). Thomas et al. (2017), assessed the statistical 

importance of indicators in the GFSI using the EIU's 2016 data set. Thomas et al. (2017), 

applied the PCA to determine the correlation structure of the index and noted that the GFSI 

had good statistical properties and extensive data coverage. Thomas et al. (2017), then used a 

squared Pearson's correlation coefficient to compute the statistical importance of the 

components of the GFSI. The squared Pearson's correlation coefficient measures the variance 

in a component score that is explained by each indicator within the component (Thomas et al., 

2017). 

Thomas et al. (2017), observed that the statistical importance of the affordability, availability 

and quality and safety components of the GFSI were roughly the same, that is, 95%, 91% and 

91% respectively. By contrast, the EIU experts had assigned different weights to the GFSI's 

affordability, availability and quality and safety components as 40%, 44% and 16% 

respectively (EIU, 2019). The EIU experts had allocated more than twice the weight to the 

affordability and availability components of the GFSI than to the quality and safety component. 
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Thomas et al. (2017), concluded that the GFSI weights were not a reflection of the statistical 

importance of its indicators. However, Thomas et al. (2017), did not compute the scores and 

ranks of countries.  

Chen et al. (2019), attempted to overcome Thomas et al.'s (2017) research shortcomings. Chen 

et al. (2019), used Hierarchical Data Envelopment analysis (H-DEA) to allocate weights to 

indicators in the 2014 GFSI. Chen et al. (2019), asserted that weights might show the 

importance level placed on the components of the GFSI based on the income or region of 

countries. They concluded that the GFSI and H-DEA weighting schemes gave similar ranks 

but slightly different weights and scores. For this reason, they suggested that the designers of 

the GFSI should consider using the H-DEA as it does not rely on experts' opinions. 

According to Chen et al. (2019), the proposed H-DEA allowed an analyst to compare the 

weights allocated for different groups of countries depending on their income levels or region. 

For example, an analyst may compare Europe's H-DEA weights (importance levels) for the 

components of the GFSI to North America's H-DEA weights for the same components. 

Alternatively, an analyst may compare high-income countries' H-DEA weights (importance 

levels) for the components of the GFSI to low-income countries' H-DEA weights for the same 

components. As with the H-DEA weights, the average H-DEA scores for the GFSI were based 

on the income level and origin of countries (Chen et al., 2019). 

Chen et al. (2019), observed that high-income countries placed importance on the GFSI's 

affordability, availability and quality and safety components as 58%, 22% and 20% 

respectively. By taking low-income countries into account, the H-DEA weights assigned to the 

mentioned components of the GFSI were 21%, 60% and 19% respectively. Chen et al. (2019), 

noted that Europe placed importance on the affordability, availability and quality and safety 

components of the GFSI in the order of 57%, 22% and 21 %. The H-DEA weights assigned to 

these components of the GFSI based on Sub-Saharan Africa were 21%, 39% and 19% 

respectively. These H-DEA weights were different from the universal GFSI weights allocated 

to the affordability, availability and quality and safety components of the GFSI as 40%, 44% 

and 16% respectively (EIU, 2019).  

Chen et al. (2019), also observed that North America and Sub-Saharan Africa obtained the 

highest and lowest H-DEA mean scores, respectively. Taking countries by income levels, high-

income countries had the highest H-DEA mean score, while low-income countries achieved 

the lowest H-DEA mean score. Chen et al. (2019), attributed the high mean score for high-
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income countries to the extensive H-DEA weight of 58% for the affordability component of 

the GFSI. Finally, Chen et al. (2019), observed that the H-DEA model changed 90% of the 

country ranks, although most of the changes were minor. Also, the top and bottom twenty-five 

countries (except three countries) retained their top and bottom positions due to the differences 

in income level. 

Furthermore, Chen et al. (2019), observed a Spearman's rank correlation coefficient of 0.983, 

interpreted as a high correlation (similarity) between the GFSI ranks and H-DEA ranks. The 

main strength of Chen et al.'s (2019) study was that the H-DEA weights were based on 

countries' performance to ensure the sensitivity of indicators to trade-offs and national policy 

priorities (OECD, 2008). However, one of the drawbacks of the H-DEA was that the computed 

weights were country-specific, making cross country comparisons difficult (OECD, 2008). The 

H-DEA weight for a particular country may not be the same across all the 113 countries (Chen 

et al., 2019). As with some of the earlier mentioned studies, the research by Chen et al. (2019), 

did not conduct statistical tests for the significance of the difference between the H-DEA and 

GFSI weights and scores. Table 2.5 summarises the reviewed empirical studies. 

Unlike Chen et al. (2019), who studied the applicability of a single weighting method on the 

GFSI, the H-DEA, Izraelov and Silber (2019), applied Data Envelopment Analysis (DEA), 

Principal Component Analysis (PCA) and Lower Convex Hull (LCH) weighting methods to 

assess the 2015 GFSI. Izraelov and Silber (2019), concluded that the GFSI weighting process 

was not significantly statistically biased. While Chen et al. (2019), recommended the adoption 

of the H-DEA weights, Izraelov and Silber (2019), suggested continued use of the GFSI 

weights.  

Izraelov and Silber (2019), observed that whichever weighting method was used, 11 out of 113 

(9.5%) countries maintained their rank and most of the changes in rank were minor. The top 

ten and bottom ten countries retained their top and bottom positions due to the differences in 

economic development. Also, the Spearman's rank correlation coefficients ranged from 0.932 

to 0.980 for all the methods, confirming that the country ranks were strongly correlated 

(Izraelov and Silber, 2019). These findings complemented the observation that was made by 

Chen et al. (2019). The main strength of Izraelov and Silber (2019), was that the GFSI weights 

were validated against a wide range of alternative weighting models. However, the main 

drawback was that the computed indicator weights and country scores were not compared with 

the GFSI weights and scores assigned by the EIU experts. 
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Table 2.5: Summary of the review of the empirical studies on composite indicators 

Author  Population Model type Time horizon/Index Impact on the composite index 

Nardo et al. 

(2005). 

23 

countries. 

Principal 

Component 

Analysis (PCA). 

 

Factor analysis 

(FA). 

 

2000 Technology 

Achievement Index 

(TAI). 

Index based on Equal 

weighting (EW) method. 

The PCA weights and FA weights were different from the TAI weights. 

 

Twelve countries maintained their rank, while eleven countries slightly shifted their rank 

upon application of the FA. 

 

No statistical tests for the difference between indicators weights, scores and rank of 

countries were conducted. 

Nguefack‐

Tsague et al. 

(2011). 

177 

countries. 

Principal 

Component 

Analysis (PCA). 

1975-2005 Human 

Development Index 

(HDI) 

Index based on Equal 

weighting (EW) method. 

The PCA weights and HDI weights were similar but not identical. 

 

A high-rank correlation coefficient ranging from 0.97 to 1.00 was observed. 

 

No statistical test for the difference between the HDI and PCA weights was conducted.  

 

The HDI scores and the PCA scores of countries were not compared. 

Maricic et 

al. (2016). 

20 

countries. 

Composite I-

Distance Indicator 

(CIDI). 

2015 GFSI 

Index based on EIU 

panel of experts (default) 

weighting method. 

The CIDI weights were different from the GFSI weights. 

 

15% of countries maintained their GFSI rank with slight changes in the rank of most 

countries. 

 

No statistical tests for the difference between the GFSI and CIDI weights and rank of 

countries were conducted. 

 

The CIDI scores and GFSI scores of countries were not compared. 

Thomas et 

al. (2017). 

113 

countries. 

Squared Pearson's 

correlation 

coefficient. 

2016 GFSI 

Index based on EIU 

panel of experts (default) 

weighting method. 

Weights obtained by the squared Pearson's correlation coefficient were different from 

GFSI weights. 

 

New scores and ranks were neither generated nor compared. 

Chen et al. 

(2019). 

 110 

countries. 

Hierarchical Data 

Envelopment 

analysis (H-DEA). 

2014 GFSI H-DEA weights were country and region-specific hence different from GFSI weights. 

 

A high-rank correlation coefficient of 0.983 was observed. 
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Author  Population Model type Time horizon/Index Impact on the composite index 

Index based on EIU 

panel of experts (default) 

weighting method. 

  

No statistical tests for the difference between the GFSI and H-DEA weights and scores of 

countries were conducted. 

Izraelov and 

Silber 

(2019). 

105 

countries. 

Data Envelopment 

Analysis (DEA). 

 

Principal 

Component 

Analysis (PCA). 

 

Lower Convex Hull 

(LCH). 

2015 GFSI  

Index based on EIU 

panel of experts (default) 

weighting method. 

9.5% of countries maintained their GFSI rank with slight changes in the rank of most 

countries. 

 

A high-rank correlation coefficient ranging from 0.932 to 0.980 was observed. 

 

Indicators weights and scores of countries were not compared. 

Source: Author's compilation. 
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2.5 Research gap 

Some of the reviewed empirical studies explored the effect of an objective weighting of the 

affordability, availability and quality and safety components of the GFSI on country scores and 

ranks. In 2017, the EIU panel of experts added the NRR component of the GFSI as an 

adjustment factor to capture changes to the overall food security in the context of natural 

resource risks and how countries adapt to these risks (EIU, 2019). Therefore, the NRR 

component of the GFSI was still new to many researchers. 

Most of the reviewed empirical studies did not conduct statistical tests to determine the 

significance of the difference between the results obtained with the original weighting model 

and the proposed weighting models. The policymakers who design food security and natural 

resource policies may require objective GFSI scores and rank of countries to increase their 

confidence in the GFSI results. This study set out to fill the research gap by exploring how an 

objective weighting of the NRR component of the GFSI affected country scores and ranks. 

2.6 Conceptual framework 

As presented in Figure 2.1, the illustrates the hypothesised linkages among variables that were 

considered important in this study. These linkages helped in understanding how a weighting 

method influenced the NRR weights, scores and rank of countries. 

This study conceptualised that the creators of the NRR component of the GFSI had two choices 

between subjective and objective weighting of indicators. The first choice depended on the 

knowledge of experts regarding the importance of each indicator (Alemi-Ardakani et al., 2016). 

The second choice relied on the availability of data and statistical techniques (Alemi-Ardakani 

et al., 2016). However, these weighting methods of the NRR component of the GFSI influence 

the quality of indicators weights such that a subjective weighting scheme may produce biased 

(a priori) weights (Kao, 2010). To the contrary, an objective weighting of indicators may result 

in unbiased (a posteriori) weights (Kao, 2010). To add, a priori (subjective) and a posteriori 

(objective) weights, respectively, may lead to biased and unbiased NRR scores as well as 

imprecise and precise NRR ranks (Maricic et al., 2016). While the subjective weights of 

indicators may negate trust in the country scores and ranks, objective weights may boost the 

confidence of stakeholders in the results. 

This study further conceptualised that conceptual framework the subjectively weighted NRR 

scores may produce biased and imprecise adjusted overall GFSI scores and ranks. By contrast, 
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objectively weighted NRR scores would produce unbiased and precise adjusted overall GFSI 

scores and rank of countries. The next chapter discusses the methodology adopted in the 

construction of the GFSI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1: Conceptual framework 

Source: Author's conceptualisation.   
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Chapter 3: The methodology of the Global Food Security Index 

3.1 Introduction  

The use of composite indicators has continued to rise, especially in the measurement of food 

security at the national level (Santeramo, 2015b). The concept of food security is increasingly 

used in the design, implementation and evaluation of humanitarian and development programs 

(Hendriks, 2015). For this reason, the Economist Intelligence Unit (EIU) developed the GFSI 

to measure the comparative level of food insecurity in countries (EIU, 2019). 

The GFSI is a composite indicator that measures food security environment at the national 

level (EIU, 2018). It is a dynamic qualitative and quantitative benchmarking model sponsored 

by Corteva Agriscience and has produced annual reports since 2012 (EIU, 2019). These reports 

have included analysis for 113 developing and developed countries and portray economic 

significance and regional diversity (EIU, 2019). The initial components of the GFSI included 

the affordability, availability and quality and safety components. Each of these three 

components comprised several indicators that measured a specific food security dimension 

(EIU, 2018). In 2017, the GFSI added a fourth component for natural resources and resilience 

(NRR) as a risk factor to the overall food security (EIU, 2019). This chapter reviews the 

methodological framework adopted in the construction of the GFSI. 

3.2 The methodological framework of the GFSI  

The GFSI was founded on the idea that food security could be analysed within three broad 

components: affordability, availability and quality and safety (EIU, 2019). The theoretical 

framework of the GFSI was based on the internationally accepted definition of food security 

and linked its components and their indicators. The theoretical framework of the GFSI helped 

in the selection and combination of indicators in the GFSI. 

3.3 The selection of indicators and data sources for the GFSI  

The selection of indicators for the various GFSI components was guided by the theoretical 

framework mentioned in section 3.2 above. The indicators of the GFSI required quantitative 

data, qualitative data and proxies when the required data were unavailable. The EIU draws data 

for the quantitative indicators from various national and international databases (EIU, 2019). 

For the quantitative indicators, the EIU uses data from multiple surveys and data sources and 

makes data estimations based on information from government websites and development 
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banks (EIU, 2019). The indicators for the affordability; availability; quality and safety, and 

natural resources and resilience components of the GFSI and their data sources are presented 

in Table 3.1. The following sub-sections discuss the four components of the GFSI. 

Table 3.1: Indicators and data sources of the various components of the 2019 GFSI 
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Source: EIU (2019).   
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3.3.1 The affordability component of the GFSI 

The affordability component of the GFSI assesses the capacity of people in a country to pay 

for food, their vulnerability to food-related shocks and the presence of policies and programmes 

to support consumers in the face of shocks (EIU, 2019). For example, a drastic rise in the cost 

of the average basket of food items may indicate a significant decline in food affordability 

(EIU, 2018). Average income levels of people determine the affordability of food as poverty 

has the potential to lower people's ability to purchase food or food production inputs 

(Gustafson, 2013). Likewise, unfavourable agricultural import tariffs raise the cost of food 

imports and food consumption costs. To the contrary, national government-led food safety net 

programmes have been considered more sustainable and targeted than private sector-led 

programmes in assisting the food insecure (EIU, 2019). Food safety net programmes have 

helped improve the affordability of food among the food insecure. Also, access to financing 

seems to improve farmers' productivity and ability to provide for their families (Haug and 

Hella, 2013). The affordability component of the GFSI includes ten indicators. 

3.3.2 The availability component of the GFSI 

The availability component of the GFSI assesses the factors contributing to the food supply, 

the ease of access to food, the risk of supply disruption, the national capacity to distribute food 

and the research efforts to raise agricultural production (EIU, 2019). For example, the progress 

towards food security must include a sufficient supply of available food (Pérez-Escamilla, 

2017). Investment in agricultural research and development and crop storage facilities ensure 

improved technology and sufficient food supply (EIU, 2019). Likewise, investment in road, 

rail, air, port and irrigation infrastructure supports food transport and consistent food 

production (EIU, 2018).  

By contrast, higher levels of food losses decrease the amount of food available for human 

consumption (Ishangulyyev et al., 2019). Political instability disrupts access to food through 

reduced food aid commitments or transport barriers (EIU, 2018). Inefficiencies in the 

distribution of food and the use of natural resources due to corruption adversely impact food 

availability (EIU, 2019). The availability component of the GFSI includes sixteen indicators. 

3.3.3  The quality and safety component of the GFSI 

The quality and safety component of the GFSI explores the types and nutritional quality of the 

average diets, including food safety in each country (EIU, 2019). For example, the consumption 
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of a higher proportion of non-starchy foods indicates a greater diversity of dietary food groups 

(Pérez-Escamilla, 2017). The presence of sanitary regulations such as clean water supply and 

appropriate food storage helps ensure safe food supply. By contrast, deficiencies in vitamin A, 

iron and zinc cause blindness, anaemia and a weakened immune system, respectively (Pérez-

Escamilla, 2017). The quality and safety component of the GFSI includes fourteen indicators. 

3.3.4 The natural resources and resilience component of the GFSI 

In 2017, the GFSI added a fourth component on natural resources and resilience (NRR) to the 

existing affordability, availability, and quality and safety components (EIU, 2017). The NRR 

component was added as a risk or adjustment factor to capture changes to the overall food 

security in the context of climate-related and natural resource risks and how countries adapt to 

these risks (EIU, 2019). For example, in the 2019 GFSI report, Singapore was ranked position 

one in the overall GFSI but dropped eleven places to the twelfth position in the NRR adjustment 

of the overall GFSI (EIU, 2019). 

The NRR component of the GFSI is a dynamic qualitative and quantitative national-level 

benchmarking model (EIU, 2019). The NRR component of the GFSI includes 21 indicators 

within seven components (as presented in Table 3.1). The NRR indicators measure different 

information depending on the NRR component within which they are included. The various 

information captured by these indicators is converged through weighting and aggregation 

schemes to reflect the status of each NRR component for any country. The weighting and 

aggregation process are discussed in the later steps of the methodological framework adopted 

in the construction of the GFSI. The seven NRR components include exposure to climate 

change risks, water, land, oceans, sensitivity to natural resource risks, adaptive capacity and 

demographic stresses (EIU, 2019).  

Natural resource risks are generally climate-related, cross-cutting and interconnected, posing a 

significant impact on the natural resources that drive food systems (EIU, 2018). These natural 

resource risks affect food systems in six ways. Firstly, climate change risks associated with 

exposure to temperature rise, drought, flood, storm severity and sea-level rise decrease soil 

fertility, crop growth and yield (EIU, 2018; Sova et al., 2019). Secondly, agricultural water 

quantity and quality risks such as the depletion of underground water reduce food production 

(EIU, 2018). Thirdly, land risks such as land degradation, grassland and forest change pose a 

threat to agricultural production (EIU, 2018). Fourthly, ocean risks associated with 

eutrophication and hypoxia, marine protected areas and marine biodiversity threaten the marine 
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ecosystem (Branch et al., 2013; EIU, 2018; FAO, 2018). Fifthly, the level of food import 

dependency and disaster risk management determine countries' sensitivity or susceptibility to 

climate and natural resource risks (West et al., 2009). Finally, while 80% of the world's hungry 

people live in natural disasters prone places (WFP, 2017), rapid population growth and 

urbanisation are likely to raise the demand for food and strain the food systems (FAO, 2017). 

As mentioned above, natural resource risks associated with climate change remain a pressing 

concern for food security and the need for resilience is considered as a matter of urgency (Singh 

and Sharma, 2018). The EIU expert panel conducts the NRR adjustment of the overall GFSI 

scores of countries by considering their resilience mechanisms to natural resource risks. The 

inclusion of the NRR indicators by the EIU expert panel implies that countries should 

undertake six measures to build resilience to climate-related risks and improve food systems. 

Firstly, countries should define and execute mitigation and adaptation plans for natural 

resources and agriculture management in line with the Paris Agreement (UN, 2020). 

Governments can also conduct climate-focused crop research to identify future climate zones 

and adaptable crops, thus enabling farmers to prepare with more resilient seeds and crops. 

Secondly, countries should adopt less water-intensive but high yielding crops, agricultural 

practices and techniques (ICRISAT, 2017). Thirdly, countries may adopt improved crop 

diversification, grazing land and forest management, and rehabilitation of degraded lands 

(Altieri et al., 2015). 

Fourthly, while improved enforcement of marine protected areas boosts fish and shellfish 

populations, countries should also expand the coastal mangroves to curb ocean acidification, 

sea-level rise and severe storms (Roberts et al., 2017). Voluntary and mandatory efforts to limit 

fertilizers, manure and sewerage discharge into oceans can protect marine systems (Kroon et 

al., 2014). Fifthly, countries should establish and co-ordinate effective disaster risk 

management to limit the impact of natural disasters on food systems (Weichselgartner and 

Pigeon, 2015). Finally, governments should be committed to establishing and monitoring early-

warning measures to advise farmers about an impending threat and how to limit their possible 

impacts (EIU, 2018). Also, investing in climate-smart agriculture (CSA) practices may 

improve resilience to climate and natural resource risks (Sova et al., 2019).  

3.4 The imputation of missing data for the GFSI  

The imputation of missing data is one of the methodological steps in the construction of 

composite indicators (OECD, 2008). Apart from drawing data for the quantitative indicators 
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from the national and international databases (EIU, 2017), the EIU also estimate figures for 

missing data (EIU, 2019). The EIU expert panel derives qualitative data by making estimations 

based on information from government websites and development banks (EIU, 2019). Table 

3.1 shows the ten indicators for which EIU made estimations in the 2019 GFSI report.  

3.5 The normalisation and rescaling of data for the GFSI 

The EIU normalises the GFSI data using a minimum-maximum normalisation method (EIU, 

2019). The indicators such as road infrastructure and national agricultural risk management 

system for which a high value implies a favourable situation for food security are normalised 

as specified in Equation 3.1: 

zi = (xi – Min(xi))/(Max(xi) – Min(xi))     Equation 3.1 

where zi is the normalised value of the ith indicator, xi is the actual value of the ith indicator, 

Min(xi) and Max(xi) are, respectively, the lowest and highest values of the ith indicator in the 

113 countries, for all i = 1, 2, …, n. This procedure normalises the values of all indicators to 

an identical range of zero to one. The normalised values are then rescaled from a range of zero 

to one to scores ranging from zero to 100. Consequently, a country with the highest or lowest 

value of the indicator scores 100 or zero (EIU, 2019). 

The indicators such as drought and flooding for which a high value implies an unfavourable 

situation for food security are normalised as specified in Equation 3.2:  

zi = (xi – Max(xi))/(Max(xi) – Min(xi))     Equation 3.2 

where the interpretation of the function is as illustrated in the preceding paragraph (EIU, 2019).  

3.6 The weighting and aggregation of indicators and components of the GFSI 

The EIU panel is composed of twenty renowned experts on food security, agricultural policy, 

climate change and natural resources from international institutions (EIU, 2019). The EIU 

applies either equal weights or peer panel suggested weights to GFSI indicators. The EIU panel 

of experts assigned weights to the indicators of the GFSI by averaging the indicator weights 

suggested by five members of the EIU panel (EIU, 2019). An analyst of the GFSI model has 

the option of using the GFSI weights suggested by the EIU experts or even applying new 

weights (EIU, 2019). However, the EIU panel of experts recommends the suggested weights 

in the GFSI model used to create the annual GFSI report (Table 3.2). 
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Table 3.2: Nominal weights for the indicators of the NRR component of the GFSI 

 

Source: EIU (2019). 

The GFSI uses linear aggregation (the weighted arithmetic average) to compute the scores of 

countries (EIU, 2019). Linear aggregation implies that the score of the overall index (or 

component of the index) is calculated by a weighted average of the scores for individual 

components (or indicators) (EIU, 2019). As with the normalised data for indicators, the GFSI 

scores for countries are stated on a continuous range of zero to 100, where 100 is the most 

favourable score. Linear aggregation method is defined as illustrated in Equation 3.3:  

y = ∑ wizi
n
i=1           Equation 3.3 

where y is the value of the overall index (or component of the index), zi is the normalised value 

of the ith indicator, and wi is the weight allocated to zi, with ∑ wi = 1n
i=1  and 0 ≤ wi ≤ 1, for all i 

= 1, 2, …, n (EIU, 2019; OECD, 2008). 

3.7 The deconstruction of the components of the GFSI  

The EIU disaggregates the components of the GFSI to extend the analysis, shedding light on 
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countries' performance. The EIU analysts document and explain the relative importance of the 

components of the GFSI (EIU, 2019). The main drivers of the GFSI scores are identified by 

profiling countries' performance at the indicator or component level.  

3.8 The visualisation of results of the GFSI 

The EIU uses various tables and scatterplots to visualise the results of GFSI to decision-makers 

and users (EIU, 2019). The GFSI model is available online along with the weights, data and 

methodological documentation (EIU, 2019). The GFSI model allows users to apply alternative 

methods regarding data, weighting, normalisation, and others to replicate sensitivity tests (EIU, 

2019; Nardo et al., 2005). 

3.9 The adjustment of overall GFSI scores for countries 

Since 2017, the overall GFSI scores of 113 countries have been adjusted by the NRR scores as 

specified in Equation 3.4: 

A = x(1-z) + (x z(y/100))       Equation 3.4 

where A is the adjusted overall GFSI score, x is the original overall GFSI score, y is the NRR 

score, and z is the adjustment factor weighting, where the default z is 0.25 = 25% (EIU, 2019).  

Although the methodological framework of GFSI has extensive indicators and data coverage, 

its weighting scheme follows a subjective approach. The EIU panel of experts (default) weights 

may be biased and might not reflect the relative importance of indicators (Maricic et al., 2016; 

Thomas et al., 2017). For this reason, this study set out to explore how an objective weighting 

of the NRR component of the GFSI influenced the scores and rank of countries. The next 

chapter presents the methods and procedures followed in this analysis. 
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Chapter 4: Methods and procedures 

4.1 Introduction 

This study set out to explore how an objective weighting of the NRR component of the GFSI 

affected the scores and rank of countries. The first specific research question addressed whether 

an objective weighting significantly changed the countries' NRR scores and ranks compared to 

the subjective weighting of the NRR component of the GFSI. The second specific research 

question addressed whether the objective NRR adjustment significantly changed the countries' 

adjusted overall GFSI scores and ranks compared to the subjective NRR adjustment of the 

overall GFSI. This chapter discusses the research approach, data sources, data analysis 

techniques and the methodological assumptions and limitations of the study.  

4.2 Research approach 

This study used the GFSI data set of 113 countries compiled in the 2019 database of the 

Economist Intelligence Unit (EIU) responsible for the construction of the GFSI. Table 4.1 

summarises the specific research questions with associated indicators and analytical methods.  

Table 4.1: Summary of the research methodological approach 

Specific research question Data 

source 

Variable/indicator Analytical 

approach 

Specific 

approach 

Did the objective weighting 

significantly change the 

countries' NRR scores and ranks 

compared to the subjective 

weighting of the NRR 

component of the GFSI? 

 

EIU's 2019 

GFSI data 

set 

21 indicators within 

the seven NRR 

components  

  

NRR weights and 

NRR scores 

 

NRR ranks  

Quantitative 

approach 

 

Principal 

component 

analysis (PCA) 

 

Paired t-test 

 

 

Spearman's rank 

correlation test 

 

Descriptive 

statistics 

Did the objective NRR 

adjustment significantly change 

the countries' adjusted overall 

GFSI scores and ranks compared 

to the subjective NRR 

adjustment of the overall GFSI? 

 

EIU's 2019 

GFSI data 

set 

NRR scores, overall 

GFSI scores and 

adjusted overall GFSI 

scores 

 

 

Adjusted overall 

GFSI ranks  

Quantitative 

approach 

 

Paired t-test 

 

 

Descriptive 

statistics 

 

Spearman's rank 

correlation test 

Source: Author's work.  
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4.3 Data analysis techniques 

The researcher extracted the 2019 GFSI data of 113 countries from the EIU database (EIU, 

2019) and proceeded with the analytical methods and procedures. The independent variables 

analysed in this study were drawn from the 21 indicators within seven components of the NRR 

component of the GFSI. Annexure A describes these indicators in details, including their 

definition, construction and rationale. The dependent variables used were the NRR component 

weights, NRR scores and ranks, overall GFSI scores, and adjusted overall GFSI scores and 

ranks from the GFSI model. A principal component analysis (PCA) was used as an objective 

weighting scheme of the NRR component of the GFSI. The GFSI data was loaded onto the 

Stata 15 statistical software and a PCA, paired t-test, and Spearman's rank correlation test 

conducted. The specific methodologies relating to the specific research questions addressed in 

the study are discussed in the following sections. 

4.3.1 Principal component analysis  

PCA is a statistical technique that combines and transforms a set of n correlated variables 

(indicators) z linearly into uncorrelated principal components C, as defined in Equation 4.1:  

Cj = ∑ rijzi
n
i=1           Equation 4.1 

where Cj is the value of the jth principal component, zi is the normalised value of the ith indicator, 

and rij is the component loading on the jth principal component attached to zi with ∑ r2
ij = 1n

i=1  

and 0 ≤ r2
ij ≤ 1, for all i = 1, 2, …, n (Izraelov and Silber, 2019). The rij were then estimated 

using Stata 15 statistical software to derive the component loadings. 

The correlation matrix version of PCA was applied to standardise the original variables to zero 

means, and unit standard deviations (Nardo et al., 2005). This standardisation created an even 

influence of all variables on the principal components (Jolliffe and Cadima, 2016). Also, 

weights derived from the correlation matrix would remain unaffected with linear changes in 

the measurement unit of the original variables (Nguefack‐Tsague et al., 2011). This study 

adopted the following four steps recommended by Nardo et al. (2005) and OECD (2008) to 

derive the weights for the variables objectively. 

 Step 1: Suitability test for principal component analysis 

The Kaiser-Meyer-Olkin (KMO) test (OECD, 2008) and Bartlett's test of sphericity (Parinet et 

al., 2004) were conducted to examine the suitability of the normalised GFSI data for a PCA. 
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The KMO measured the sampling adequacy by determining whether or not the size of the 

partial correlations between all pairs of indicators was small (OECD, 2008). The partial 

correlations denoted the strength of the relationship between any pair of indicators when the 

other indicators were held constant (Watson, 2017). A smaller value of these partial correlation 

coefficients would indicate that the KMO measure was likely to be close to 1.0 (Watson, 2017). 

The data was considered suitable for a PCA if the KMO value was at least 0.5 (Parinet et al., 

2004).  

The Bartlett's test of sphericity tested the null hypothesis that all pairs of indicators in any 

correlation matrix were not correlated (Parinet et al., 2004). A high correlation between a pair 

of indicators would indicate that they were likely to share a common principal component 

(OECD, 2008). The data was considered adequate for a PCA if Bartlett's test of sphericity was 

significant (p-value < 0.05) (Parinet et al., 2004). 

 Step 2: Eigenvalues computation and selection of principal components 

Theoretically, the number of principal components would equal the number of indicators used 

(OECD, 2008). As recommended by Kaiser (1960), a principal component was selected for 

further analytical steps only if it had an Eigenvalue greater than 1.0.  

 Step 3: Rotation of principal components 

The principal components were rotated using the varimax normalised rotation (Nardo et al., 

2005) to ensure high component loadings for a few indicators and low component loadings for 

the rest (OECD, 2008). This procedure entailed a perpendicular rotation of the matrix of 

component loadings until each principal component was maximised (Nardo et al., 2005). As a 

result, a more interpretable and simplified solution was achievable (OECD, 2008). Only the 

rotated component loadings greater than ±0.3 (significant loadings) were kept for the final 

construction step (Kutcher et al., 2013). 

 Step 4: Construction and extraction of weights 

The final rotated component loadings (> ±0.3) were first normalised by obtaining their squares 

(OECD, 2008). These squared component loadings represented the proportion of the total 

variance of a given indicator explained by the associated principal component (Nardo et al., 

2005). The weights for indicators of the NRR component of the GFSI were then constructed, 

as shown in Equation 4.2: 
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wij = 
r2

ij

ej
         Equation 4.2 

where wij was the weight for the ith indicator in the jth principal component, r2
ij was the squared 

component loading attached to the ith indicator, and ej was the Eigenvalue of the jth principal 

component with 0 ≤ wij ≤ 1, for all i = 1, 2, …, n (Gómez-Limón and Riesgo, 2009). Each 

indicator was then assigned to a specific principal component based on the highest wij across 

all principal components (Gómez-Limón and Riesgo, 2009).  

The PCA weights for 21 indicators within the seven components of the NRR component of the 

GFSI were rescaled to unit sum to retain comparability (OECD, 2008). The rescaling involved 

the division of each indicator's weight by the total weights for all indicators within a particular 

NRR component. A linear aggregation (EIU, 2019) procedure was conducted to compute the 

score value of each of the seven NRR components. This procedure involved a weighted 

arithmetic average of indicators' normalised data with the rescaled PCA weights.  

The previously discussed four weighting steps of PCA were again followed to assign a weight 

to each of the seven NRR components. In this procedural stage, the researcher used the newly 

computed score values of the NRR components as the data for the PCA model. Just as the NRR 

indicators' weights were rescaled to unit sum, the same rescaling was done for the weights for 

the seven NRR components. 

4.3.2 NRR scores and ranks based on the objective and subjective weighting models 

The first specific research question addressed whether an objective weighting significantly 

changed the countries' NRR scores and ranks compared to the subjective weighting of the NRR 

component of the GFSI. The PCA described in the preceding section was used to derive 

objective weights for the 21 indicators within the seven components the NRR component of 

the GFSI. These PCA weights were average weighted with the NRR components' score values 

to obtain the overall NRR scores and rank of countries (EIU, 2019). This weighted arithmetic 

average (linear aggregation) approach was described under the methodology of the GFSI (see 

Chapter 3, section 3.6 of this study). The NRR scores were stated on a continuous range of zero 

to 100, where 100 was the most favourable score (EIU, 2019).  

The hypothesis for the research question one assumed that objective weighting significantly 

changed the countries' NRR scores and ranks compared to the subjective weighting of the NRR 

component of the GFSI. This hypothesis was tested as follows. Firstly, a paired t-test was used 

to test for the significance of the difference between PCA (objective) and GFSI (subjective) 
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weights at five per cent significance level. This statistical test technique was most preferred as 

it offered a simple hypothesis test for the significance of the difference between two mean 

values for two groups based on the same variables and data (Stoltzfus, 2015). A paired t-test 

was defined by Equation 4.3:  

t = 
d

s/√n
          Equation 4.3 

where t was the t-test statistic of the paired t-test, d was the mean difference between the paired 

observations or variables, s was the standard deviation of d, n was the sample size and s/√n 

provided the standard error of d (Kim, 2015). 

Secondly, a paired t-test was used to test for the significance of the difference between the 

countries' objective and subjective weighted NRR scores. Finally, a Spearman's rank 

correlation was used to test whether the subjectively and objectively weighted NRR ranks were 

significantly different. This test was conducted at five per cent significance level. A Spearman's 

rank correlation test was specified in Equation 4.4: 

R = 1 - 
6 ∑ d

2

n(n2-n)
          Equation 4.4 

where R was the Spearman's rank correlation coefficient, d was the rank difference between 

the paired countries, and n was the number of paired countries (Gautheir, 2001) (n = 113 

countries). 

4.3.3 Objective and subjective NRR adjustment of the overall GFSI scores and ranks 

The second specific research question addressed whether the objective NRR adjustment of the 

overall GFSI significantly changed the countries' adjusted overall GFSI scores and ranks. The 

countries' NRR scores obtained with the PCA model were used to adjust their overall GFSI 

scores at an adjustment factor weighting of 25% (EIU, 2019). This adjustment procedure was 

explained under the methodology of the GFSI (see Chapter 3, section 3.9 of this study). 

The hypothesis for the research question two assumed that the objective NRR adjustment of 

the overall GFSI significantly changed the countries' adjusted overall GFSI scores and ranks 

compared to the subjective NRR adjustment. This hypothesis was tested as follows. Firstly, a 

paired t-test was used to test for the significance of the difference between countries' adjusted 

overall GFSI scores obtained using an objective and subjective NRR adjustment at five per 

cent significance level. Secondly, a Spearman's rank correlation was used to test whether the 
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countries' adjusted overall GFSI ranks obtained using an objective and subjective NRR 

adjustment were significantly different. This test was conducted at five per cent significance 

level. 

4.4 Limitations of the methodological approach 

Several methodological limitations were identified in this study. Firstly, the 2019 GFSI data 

was sourced from the EIU database made up of data from various sources (EIU, 2019). The 

problems of outdated data could limit the quality of the GFSI data (OECD, 2008). Secondly, 

the study was limited to an objective weighting of the NRR component of the GFSI to derive 

objective adjusted overall GFSI scores and ranks. The EIU weights for the affordability, 

availability, and quality and safety components of the GFSI were held constant. This limitation 

implied a partial understanding of the influence of the objectively weighted NRR scores on the 

countries' adjusted overall GFSI scores and ranks. 

4.5 Assumptions of the methodological approach 

This study identified the following two methodological assumptions. Firstly, the study assumed 

that the 2019 GFSI data set in the EIU database was drawn from reliable data sources and data 

coverage. Secondly, a PCA approach was assumed to be sensitive to the data such that 

additional data for any GFSI reporting year would significantly change the previous year's 

weights for the NRR indicators. 
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Chapter 5: Results and discussion 

5.1 Introduction 

This chapter presents and discusses the findings of the study. The chapter is organised into 

three sections to address the specific research questions. The first and second sections discuss 

the results of the PCA for the NRR indicators and NRR components, respectively. The third 

section addresses the comparative results of the objective and subjective weighting of the NRR 

component of the GFSI. Finally, section four compares the results of objectively and 

subjectively adjusted overall GFSI scores and rank of countries.  

5.2 Principal component analysis results for the NRR indicators 

This study set out to explore how an objective weighting of the NRR component of the GFSI 

influenced the country scores and ranks. The following results were obtained from the four 

steps of the PCA (objective weighting model) performed for the 21 indicators of the NRR 

component of the GFSI.  

5.2.1 Step 1: Results of the suitability test for PCA of the NRR indicators  

As presented in Table 5.1, the KMO value was 0.682, while Bartlett's test of sphericity was 

significant (p-value < 0.05). These results confirmed that the normalised GFSI data set was 

acceptable for conducting a PCA of the NRR indicators (Parinet et al., 2004). 

Table 5.1 Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett's test of 

sphericity (N = 21 NRR indicators) 

Test  Value 

Kaiser-Meyer-Olkin       0.682 

  

Bartlett's test of sphericity 

Chi-square 979.798 

Degrees of freedom        210 

P-value     0.000 

Source: Author's calculations, using Stata 15 statistical software.  

5.2.2 Step 2: Results of Eigenvalues computation and selection of principal components 

Principal component one (Eigenvalue of 4.011) accounted for the maximum variability in the 

original data for all the individual NRR indicators (Table 5.2). Any principal component with 

an Eigenvalue exceeding 1.0 was considered to be significant in a PCA procedure (Kaiser, 

1960; OECD, 2008). The first five principal components with Eigenvalues greater than 1.0, 

cumulatively explaining 0.735 (73.5%) of variability in the original data were selected for 
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further analytical steps. 

Table 5.2: Eigenvalues of the principal components of the NRR indicators 

Principal component   Eigenvalue  Difference  Proportion  Cumulative 

Component 1      4.011     0.548     0.191     0.191 

Component 2      3.464     1.613     0.165     0.356 

Component 3      1.850     0.326     0.088     0.444 

Component 4      1.525     0.252     0.073     0.517 

Component 5      1.272     0.133     0.061     0.577 

Component 6      1.139     0.033     0.054     0.631 

Component 7      1.106     0.044     0.053     0.684 

Component 8      1.062     0.194     0.051     0.735 

Component 9      0.868     0.037     0.041     0.776 

Component 10      0.831     0.225     0.040     0.816 

Component 11      0.605     0.059     0.029     0.845 

Component 12      0.546     0.023     0.026     0.871 

Component 13      0.523     0.059     0.025     0.895 

Component 14      0.464     0.051     0.022     0.917 

Component 15      0.412     0.055     0.020     0.937 

Component 16      0.357     0.054     0.017     0.954 

Component 17      0.303     0.060     0.014     0.969 

Component 18      0.243     0.040     0.012     0.980 

Component 19      0.203     0.053     0.010     0.990 

Component 20      0.151     0.086     0.007     0.997 

Component 21      0.064      0.003     1.000 

Source: Author's calculations, PCA using Stata 15 statistical software. 

As shown in Table 5.3, most of the NRR indicators had significant unrotated component 

loadings (highlighted loadings > ±0.3) (Kutcher et al., 2013). Notably, seven out of 21 

(33.33%) NRR indicators demonstrated significant loadings (±0.3) on more than one principal 

component. For example, the sea level rise indicator had high loadings for principal component 

four, five and seven. The first principal component had large negative associations with 

agricultural water risk – quantity (-0.306) and agricultural water risk – quality (-0.354). This 

principal component also demonstrated significant positive loadings with population growth 

(0.367) and urbanisation (0.397). These observations suggested that the first principal 

component primarily measured the indicators within the NRR components of water and 

demographic stresses. While the grassland indicator was captured by the sixth, seventh and 

eighth principal components, its associate forest change indicator was primarily measured by 

principal component eight.  
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Table 5.3 Unrotated component loadings of indicators of the NRR component of the GFSI 

 Variable/indicator  Component 

1 

Component 

2 

Component 

3 

Component 

4 

Component 

5 

Component 

6 

Component 

7 

Component 

8 

Unexplained 

Temperature rise      0.180     0.269    -0.188    -0.310    -0.035    -0.005     0.282     0.087     0.311 

Drought     -0.052     0.039     0.577     0.096     0.177     0.129    -0.199     0.044     0.250 

Flooding      0.059    -0.332    -0.049    -0.011     0.437     0.043     0.159    -0.118     0.312 

Storm severity     -0.169     0.338     0.165    -0.143    -0.123    -0.165     0.051     0.173     0.323 

Sea level rise     -0.099     0.041     0.071    -0.340     0.387    -0.129     0.455    -0.160     0.305 

Commitment to managing 

exposure 

    0.046     0.383    -0.155     0.298     0.073    -0.175    -0.036    -0.006     0.261 

Agricultural water risk – 

quantity 

   -0.306     0.245     0.188     0.295     0.089     0.132     0.049    -0.103     0.174 

Agricultural water risk – 

quality 

   -0.354     0.209     0.178     0.139     0.191     0.078     0.153    -0.078     0.173 

Land degradation     0.104     0.070    -0.221     0.367     0.406    -0.238    -0.106    -0.058     0.354 

Grassland      0.034    -0.011    -0.112     0.220     0.076     0.368     0.573     0.459     0.150 

Forest change      0.204     0.010    -0.016     0.051     0.114    -0.053    -0.194     0.721     0.215 

Ocean eutrophication    -0.242    -0.110    -0.222     0.110     0.172     0.459    -0.074    -0.023     0.329 

Marine biodiversity     -0.093     0.207    -0.283    -0.257     0.099     0.435    -0.316    -0.109     0.217 

Marine protected areas    -0.194     0.264    -0.324    -0.184     0.019     0.167    -0.188     0.075     0.285 

Food import dependency     0.035     0.352     0.175    -0.321     0.040    -0.024     0.078     0.029     0.341 

Dependence on natural capital      0.374    -0.047     0.032    -0.049    -0.005     0.158    -0.011    -0.224     0.343 

Disaster risk management     0.067     0.049     0.172     0.224    -0.477     0.331     0.189    -0.096     0.379 

Early warning measures/ 

climate-smart agriculture 

    0.131     0.355    -0.143     0.299     0.027    -0.138     0.030    -0.125     0.280 

National agricultural risk 

management system  

    0.298     0.121    -0.181     0.138    -0.143     0.034     0.200    -0.276     0.351 

Population growth (2016-

2021) 

    0.367     0.167     0.270    -0.040     0.245     0.200    -0.106    -0.016     0.091 

Urbanisation (2016-2021)     0.397     0.149     0.151    -0.025     0.168     0.256    -0.086    -0.039     0.127 

Note: Only the principal components with an Eigenvalue greater than 1.0 are shown. Component loadings greater than ±0.3 are highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software.  
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5.2.3 Step 3: Rotated principal components results 

Varimax normalised rotation indicated that all the indicators loaded significantly on at least 

one of the principal components (Table 5.4). Eighteen out of 21 indicators significantly loaded 

on a single principal component while the rest loaded across two components. For example, 

the temperature rise indicator had a significant loading for the third principal component 

(0.407) only. The disaster risk management indicator demonstrated significant loadings across 

principal components six (-0.470) and eight (0.364). Agricultural water risk – quantity and 

agricultural water risk – quality indicators previously associated with the unrotated principal 

component one revealed significant associations with the rotated principal component two.  

The population growth and urbanisation indicators maintained high positive loadings for the 

principal component one despite the rotation procedure. The loadings of these two indicators 

for the unrotated principal component one were respectively 0.367 and 0.397. Likewise, their 

loadings for the rotated principal component one were 0.579 and 0.545 in the order mentioned. 

All the indicators of oceans component of the NRR component of the GFSI had high positive 

loadings for the fifth principal component.  

5.2.4 Step 4: Results of the construction and extraction of weights for the NRR indicators 

Only the significant rotated component loadings exceeding ±0.3 in step three were retained for 

the final construction step (Kutcher et al., 2013). The empty spaces in Table 5.5 indicated that 

the rotated component loadings were insignificant hence assumed in this construction step. 

When looking across the rows of Table 5.5 for each NRR indicator, it was observed that the 

drought, ocean eutrophication and disaster risk management indicators were each allocated 

two different weights. However, only the highest weight in a row was assigned to each of these 

indicators. For example, although drought was weighted with 0.030 (principal component one) 

and 0.052 (principal component two), the latter (0.052) provided its best measure.  

Generally, the assigned weights to the NRR indicators ranged from 0.031-0.658 with grassland 

reaping the highest weight (0.658). This observation showed that the grassland indicator had 

a high importance level compared to the dependence on natural capital (weight 0.031) 

indicator (Nardo et al., 2005). 
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Table 5.4 Rotated component loadings of the NRR indicators  

 Variable/indicator  Component 

1 

Component 

2 

Component 

3 

Component 

4 

Component 

5 

Component 

6 

Component 

7 

Component 

8 

Unexplained 

Temperature rise      0.034    -0.245     0.407     0.061     0.117     0.117     0.226     0.123     0.311 

Drought      0.346     0.425    -0.008    -0.162    -0.157    -0.073    -0.154    -0.235     0.250 

Flooding      0.100    -0.010    -0.291    -0.071    -0.054     0.489     0.078     0.015     0.312 

Storm severity     -0.118     0.139     0.450     0.022    -0.032    -0.110    -0.028    -0.125     0.323 

Sea level rise     -0.021     0.110     0.292    -0.089    -0.071     0.625     0.076     0.150     0.305 

Commitment to managing 

exposure 

   -0.018     0.084     0.078     0.528     0.026    -0.075     0.004    -0.021     0.261 

Agricultural water risk – 

quantity 

   -0.018     0.534    -0.006     0.135     0.035    -0.071     0.038     0.053     0.174 

Agricultural water risk – 

quality 

   -0.068     0.508     0.082     0.058     0.036     0.115     0.061     0.027     0.173 

Land degradation     0.033     0.021    -0.255     0.539    -0.029     0.233    -0.066    -0.137     0.354 

Grassland     -0.005     0.081    -0.030    -0.015    -0.031     0.038     0.853    -0.067     0.150 

Forest change      0.116    -0.223     0.037     0.084    -0.030    -0.137     0.244    -0.683     0.215 

Ocean eutrophication    -0.015     0.194    -0.344    -0.093     0.422     0.046     0.183     0.012     0.329 

Marine biodiversity      0.157    -0.004     0.001    -0.056     0.686    -0.021    -0.080     0.046     0.217 

Marine protected areas    -0.103    -0.022     0.134     0.071     0.523    -0.042    -0.005    -0.074     0.285 

Food import dependency     0.157     0.057     0.479    -0.034     0.059     0.070    -0.038    -0.004     0.341 

Dependence on natural capital      0.353    -0.174    -0.081    -0.026    -0.022     0.002    -0.028     0.239     0.343 

Disaster risk management     0.078     0.135    -0.023    -0.134    -0.118    -0.470     0.243     0.364     0.379 

Early warning measures/ 

climate-smart agriculture 

    0.040     0.051     0.056     0.509    -0.018    -0.074     0.011     0.130     0.280 

National agricultural risk 

management system  

    0.105    -0.159    -0.016     0.244    -0.050    -0.060     0.111     0.422     0.351 

Population growth (2016-

2021) 

    0.579     0.048     0.068     0.032    -0.008     0.042    -0.011    -0.063     0.091 

Urbanisation (2016-2021)     0.545    -0.032     0.022     0.046     0.053    -0.008     0.045     0.018     0.127 

Note: Varimax normalised rotation used. Component loadings greater than ±0.3 are highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software.
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Table 5.5 Weights for indicators of the NRR component of the GFSI 

 Variable/indicator  Component 

1 

Component 

2 

Component 

3 

Component 

4 

Component 

5 

Component 

6 

Component 

7 

Component 

8 

Temperature rise        0.090      

Drought      0.030     0.052       

Flooding           0.210   

Storm severity        0.109      

Sea level rise           0.343   

Commitment to managing 

exposure 

       0.183         

Agricultural water risk – 

quantity 

     0.082       

Agricultural water risk – 

quality 

     0.074       

Land degradation        0.191     

Grassland            0.658  

Forest change             0.440 

Ocean eutrophication       0.064      0.140    

Marine biodiversity          0.371    

Marine protected areas         0.215    

Food import dependency       0.124      

Dependence on natural capital      0.031        

Disaster risk management              0.194      0.125 

Early warning measures/ 

climate-smart agriculture 

       0.170     

National agricultural risk 

management system  

           0.168 

Population growth (2016-

2021) 

    0.083        

Urbanisation (2016-2021)     0.074        

Note: Highest weight assigned to each NRR indicator across all principal components is highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software. 
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5.3 Principal component analysis results for the NRR components 

A weighted arithmetic average of the NRR indicators data with their PCA weights produced 

the score values of the seven NRR components (EIU, 2019). A repeat of the four steps of PCA 

using these NRR components' score values as the data provided the following results. 

5.3.1 Step 1: Suitability test results for PCA of the NRR components 

The value of the KMO was 0.534, and Bartlett's test of sphericity was significant (p-value < 

0.05), as presented in Table 5.6. These results were in line with the suitability requirements for 

conducting a PCA of the NRR components (Parinet et al., 2004). 

Table 5.6 Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett's test of 

sphericity (N = seven NRR components) 

Test  Value 

Kaiser-Meyer-Olkin       0.534 

  

Bartlett's test of sphericity 

Chi-square   94.779 

Degrees of freedom          21 

P-value     0.000 

Source: Author's calculations, using Stata 15 statistical software.  

5.3.2 Step 2: Results based on computed Eigenvalues of principal components 

The results in Table 5.7 revealed the presence of three principal components with Eigenvalues 

greater than 1.0, explaining 26.2%, 23.0%, and 14.6% of the variance. These three principal 

components accounting for 63.7% of the total variance, were extracted for further analysis. 

Table 5.7: Eigenvalues of the NRR components 

Principal component   Eigenvalue  Difference  Proportion  Cumulative 

Component 1      1.832     0.223     0.262     0.262 

Component 2      1.608     0.587     0.230     0.491 

Component 3      1.022     0.214     0.146     0.637 

Component 4      0.807     0.032     0.115     0.753 

Component 5      0.775     0.218     0.111     0.863 

Component 6      0.557     0.158     0.080     0.943 

Component 7      0.399      0.057     1.000 

Source: Author's calculations, PCA using Stata 15 statistical software. 

Table 5.8 shows that all the NRR components had unrotated component loadings exceeding 

±0.3. The results revealed that five out of seven (71.43%) NRR components were captured by 

more than one principal component. The first principal component was significantly associated 

with all the NRR components at the exception of exposure. Further observations indicated that 



47 

 

all the NRR components were positively correlated with the second principal component. Also, 

the third principal component offered a perfect measurement of the sensitivity component of 

the NRR component of the GFSI. 

Table 5.8 Unrotated component loadings of sub-components of the NRR component of 

the GFSI 

 Variable/sub-component  Component 1 Component 2 Component 3  Unexplained 

Exposure      0.015     0.623     0.222     0.326 

Water     -0.371     0.494    -0.169     0.327 

Land      0.361     0.000     0.557     0.444 

Oceans     -0.303     0.393     0.133     0.565 

Sensitivity      0.315     0.152    -0.770     0.176 

Adaptive capacity      0.440     0.425     0.021     0.354 

Demographic stresses      0.590     0.099     0.010     0.347 

Note: Only the principal components with an Eigenvalue greater than 1.0 are shown. 

Component loadings greater than ±0.3 are highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software. 

5.3.3 Step 3: Results of the rotated component loadings of the NRR components 

The rotated component loadings (Table 5.9) showed that the principal components one and two 

were positively correlated with all the NRR components that had significant loadings. Varimax 

normalised rotation minimised the double loading of NRR components across the principal 

components from 71.43% to 42.86% (three out of seven NRR components). The sensitivity 

component demonstrated the most significant component loading (0.780), suggesting that it 

could possess the highest importance level. Component loadings more than ±0.3 were used as 

the cutoff in the construction of weights (Kutcher et al., 2013), although most loadings 

exceeded ±0.5.  

Table 5.9 Rotated component loadings of the NRR components 

 Variable/sub-component  Component 1 Component 2 Component 3  Unexplained 

Exposure      0.319     0.564    -0.134     0.326 

Water     -0.104     0.585     0.240     0.327 

Land      0.349    -0.100    -0.556     0.444 

Oceans     -0.074     0.503    -0.074     0.565 

Sensitivity      0.305    -0.114     0.780     0.176 

Adaptive capacity      0.589     0.165     0.033     0.354 

Demographic stresses      0.566    -0.193    -0.003     0.347 

Note: Varimax normalised rotation used. Component loadings greater than ±0.3 are 

highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software.  
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5.3.4 Step 4: Results of the construction and extraction of weights for the NRR 

components 

The exposure, oceans and sensitivity components were each weighted with two different values 

across the rows in Table 5.10. However, only their highest weights (0.198, 0.302, and 0.596 

respectively); as primarily captured by principal components two and three were considered. 

The weights assigned to the NRR components ranged from 0.158-0.596. As predicted by the 

rotated component loadings in Table 5.9 above, the sensitivity component (weighted 0.596) 

proved to be a major determinant of the NRR component of the GFSI. The indicators of the 

sensitivity component could have had higher importance levels compared to other indicators 

for the NRR component of the GFSI (Paruolo et al., 2013). The sensitivity component measured 

the susceptibility of countries to natural resource risks based on the level of disaster risk 

management and dependence on food import and natural capital (EIU, 2019). This component 

informs countries of the needed improvements to limit the impact of natural disasters on food 

systems (Weichselgartner and Pigeon, 2015).  

Table 5.10 Weights for sub-components of the NRR component of the GFSI 

 Variable/sub-component Component 1 Component 2 Component 3 

Exposure      0.055     0.198  

Water           0.212  

Land      0.067      0.302 

Oceans           0.158  

Sensitivity      0.051      0.596 

Adaptive capacity      0.189   

Demographic stresses      0.175   

Note: Highest weight assigned to each NRR component across all principal components is 

highlighted. 

Source: Author's calculations, PCA using Stata 15 statistical software.  

5.4 Comparative results of the PCA and GFSI models for the NRR scores and ranks 

The first specific research question addressed whether an objective weighting of the NRR 

component of the GFSI significantly changed the countries' NRR scores and ranks compared 

to the subjective weighting approach. A comparison of the weights for the NRR component of 

the GFSI based on the PCA (objective) and GFSI models showed substantial differences (Table 

5.11). The NRR weights changed with the use of the statistical model (PCA) as observed in 

similar studies by Maricic et al. (2016) and Thomas et al. (2017). For example, the GFSI model 

placed demographic stresses (weight 7.27%) and exposure to climate change risks (weight 
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21.82%) as the least and most significant NRR components. Conversely, the PCA model 

weighted the oceans (weight 8.61%) and sensitivity to natural resource risks (weight 32.56%) 

as the least and largest contributors to the NRR component of the GFSI. These results suggested 

that the EIU expert panel simply weighted the exposure component based on the perceived 

economic significance of its indicators (Nardo et al., 2005). 

The sensitivity component went through the most extensive changes among all the seven NRR 

components. The weight assigned to the sensitivity component increased from 10.91% to 

32.56% with PCA weighting. This observation indicated that the countries' level of sensitivity 

to climate and natural resource risks heavily determined their susceptibility to these risks (West 

et al., 2009). The water and land components were each weighted with 14.55% according to 

the GFSI model but assigned different weights (11.61% and 16.53% respectively) with the 

PCA model. This comparison of the GFSI and PCA models showed that water and land 

components did not have the same importance level within the NRR component of the GFSI.  

When looking at the NRR indicators, the sea-level rise indicator within the exposure 

component witnessed the largest weight increase from 19.64% to 34.79% (+15.15%). This 

observation showed that sea-level rise ought to have been considered by the EIU expert panel 

as the most critical indicator within the exposure component only. Notably, even a small rise 

in sea-level can cause flooding, salination, and destruction of crops and fish (Sova et al., 2019). 

The ocean eutrophication and marine biodiversity indicators were assigned the same overall 

weight (5.45%) with the GFSI model but different overall weights (1.66% and 4.40%) with the 

PCA model. Weights were allocated as coefficients that reflect the relative importance of each 

indicator in the determination of the overall index score (Paruolo et al., 2013). These observed 

overall weights with the PCA model showed that marine biodiversity indicator was more 

important than the ocean eutrophication indicator. 

The GFSI model regarded agricultural water risk – quantity (overall weight 11.64%) as the 

most significant indicator of the NRR component of the GFSI. However, the PCA model 

rewarded the disaster risk management indicator with a high overall weight of 18.08%, placing 

it above all other indicators. Nardo et al. (2005), asserted that weights influence the results of 

composite indicators in a benchmarking context. Therefore, the high overall weight for disaster 

risk management from the PCA model suggested that this indicator may have the greatest 

influence in the computation of countries' NRR scores and ranks.   
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Table 5.11: Comparative weights for the NRR component of the GFSI based on the 

GFSI and PCA models  

Note: g = weight of the NRR component, f = weight of indicator within the NRR component. 

Source: Author's calculations, PCA using Stata 15 statistical software and EIU (2019). 

Component/indicator GFSI model PCA model 

 

1. Exposure 

Weight 

within 

NRR (g)  

Weight 

within 

Exposure 

(f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g)  

Weight 

within 

Exposure 

(f) 

Overall 

weight 

(g*f) 

Temperature rise  

 

 

21.82% 

21.43% 4.68%  

 

 

10.80% 

9.10% 0.98% 

Drought 19.64% 4.29% 5.28% 0.57% 

Flooding 17.86% 3.90% 21.26% 2.30% 

Storm severity  7.14% 1.56% 11.08% 1.20% 

Sea level rise 19.64% 4.29% 34.79% 3.76% 

Commitment to managing 

exposure 

14.29% 3.12% 18.50% 2.00% 

 

2. Water 

Weight 

within 

NRR (g)  

Weight 

within 

water (f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within 

water (f) 

Overall 

weight 

(g*f) 

Agricultural water risk – quantity 
14.55% 

80.00% 11.64%  

11.61% 
52.51% 6.10% 

Agricultural water risk – quality 20.00% 2.91% 47.49% 5.51% 

3. Land 

 

Weight 

within 

NRR (g)  

Weight 

within 

land (f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within 

land (f) 

Overall 

weight 

(g*f) 

Land degradation   

14.55% 
60.00% 8.73%  

16.53% 
14.81% 2.45% 

Grassland 20.00% 2.91% 51.06% 8.44% 

Forest change 20.00% 2.91% 34.14% 5.64% 

 

4. Oceans 

Weight 

within 

NRR (g)  

Weight 

within 

oceans (f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within 

oceans (f) 

Overall 

weight 

(g*f) 

Ocean eutrophication  

12.73% 
42.86% 5.45%  

8.61% 
19.30% 1.66% 

Marine biodiversity 42.86% 5.45% 51.05% 4.40% 

Marine protected areas 14.29% 1.82% 29.65% 2.55% 

 

5. Sensitivity 

Weight 

within 

NRR (g)  

Weight 

within 

sensitivity 

(f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within 

sensitivity 

(f) 

Overall 

weight 

(g*f) 

Food import dependency  

10.91% 
30.00% 3.27%  

32.56% 
35.54% 11.57% 

Dependence on natural capital 20.00% 2.18% 8.92% 2.90% 

Disaster risk management 50.00% 5.45% 55.54% 18.08% 

 

6. Adaptive capacity (AC) 

Weight 

within 

NRR (g)  

Weight 

within 

AC (f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within 

AC (f) 

Overall 

weight 

(g*f) 

Early warning measures/ climate-

smart agriculture 

 

18.18% 

50.00% 9.09%  

10.34% 

50.34% 5.20% 

National agricultural risk 

management system 

50.00% 9.09% 49.66% 5.14% 

 

7. Demographic stresses (DS) 

Weight 

within 

NRR (g) 

Weight 

within DS 

(f) 

Overall 

weight 

(g*f) 

Weight 

within 

NRR (g) 

Weight 

within DS 

(f) 

Overall 

weight 

(g*f) 

Population growth (2016-2021)  

7.27% 
75.00% 5.45%  

9.56% 
52.76% 5.04% 

Urbanisation (2016-2021) 25.00% 1.82% 47.25% 4.52% 
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A paired t-test was run on the weights for the NRR component of the GFSI to determine 

whether there was a statistically significant difference between the weights assigned with PCA 

and GFSI models. As presented in Table 5.12, the PCA weights were lower (mean = 0.208 ± 

0.153) compared to the GFSI weights (mean = 1.991 ± 0.912). A statistically significant 

decrease in weights by 1.784 (95% confidence level) and p-value less than 0.05 (p < 0.05) were 

observed among the PCA weights. The hypothesis that objective weighting significantly 

changed the weights compared to the subjective weighting of the NRR component of the GFSI 

was accepted. This finding was in agreement with the assertion made by Maricic et al. (2016) 

that the default GFSI weights were not a reflection of the relative importance of its indicators.  

Table 5.12 Results of paired t-test for the PCA and GFSI weights for the NRR 

component of the GFSI 

Weight Observation  Mean Standard 

error 

Standard 

deviation 

95% confidence interval 

Lower bound        Upper bound 

PCA weight 28  0.208 0.029 0.153  0.148                       0.267 

GFSI weight 28  1.991 0.172 0.912  1.638                       2.345 

Difference  -1.784 0.179 0.950 -2.152                     -1.415 

t-value = -9.938 and p-value = 0.000 at 95% confidence level  

Source: Author's calculations, using Stata 15 statistical software.  

A weighted arithmetic average of the NRR components' score values with their PCA weights 

produced the NRR scores and rank of countries, as presented in Annexure B. When looking at 

the top twenty countries based on the GFSI model, 19 out of 20 countries changed their NRR 

rank with the use of the PCA model. However, these top twenty countries retained their cohort 

at the exception of five countries, namely Sweden, Austria, Poland, Germany and France 

(Figure 5.1). A cohort as used in this section referred to a group of twenty countries with the 

highest or lowest NRR rank (Position 1-20 or position 94-113). The five countries (Sweden, 

Austria, Poland, Germany and France) were displaced to other ranks outside the cohort. For 

example, Sweden moved from position six to 33, whereas France was displaced from position 

19 to 27.  
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Figure 5.1: Comparison of the NRR ranks of the top twenty countries (rank 1-20) based 

on the GFSI and PCA models 

Source: Author's work using GFSI data (EIU, 2019).  

The bottom twenty countries (position 94-113) also experienced changes in their NRR rank. 

Most of the bottom twenty countries kept their cohort except for Vietnam, Sri Lanka, Nepal, 

India and Peru that increased their rank when the PCA weighting model was used (Figure 

5.2). For example, while Vietnam increased its rank from position 94 to 83, Peru improved 

from 102 to 69. These observations were similar to the findings of Chen et al. (2019) and 

Izraelov and Silber (2019), who observed that the top and bottom twenty countries remained 

in their cohort no matter the weighting model used.  
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Figure 5.2: Comparison of the NRR ranks of the bottom twenty countries (rank 94-113) 

based on the GFSI and PCA models 

Source: Author's work using GFSI data (EIU, 2019).  

The Czech Republic remained in position one after the PCA model was used, just as Maricic 

et al. (2016) observed that the United States retained position one, no matter the weighting 

model used. Ukraine was assigned position 53 (score 57.0) with the GFSI weighting model but 

position five (score 72.1) with the PCA model. The NRR score for Ukraine improved by 15.1 

points as a result of its high score on the sensitivity (99.3) and demographic stresses (94.0) 

components. The PCA weighting model had assigned high weights (compared to the GFSI 

weights) to the sensitivity (32.56%) and demographic stresses (9.56%) components on which 

Ukraine performed best. The results suggested that Ukraine's food policymakers should base 

their strategies on sensitivity to natural resource risks and stresses from demographic factors. 

Ecuador advanced the most, moving 68 places (from rank 91 to 23) by improving its score 

from 48.4 to 60.1 with the PCA weighting. This increment was due to the high performance of 

Ecuador on the land (76.0) and demographic stresses (56.8) components which had higher 

PCA weights compared to the GFSI weights. The NRR score for South Africa increased from 

50.4 to 60.6, making it the next improved country by 61 places (from position 82 to 21) after 

Ecuador. As with Ecuador, South Africa had high achievements on the land (PCA model = 
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74.0, GFSI model = 43.8) and demographic stresses (PCA model = 57.5, GFSI model = 55.9) 

components. In contrast, Honduras significantly dropped by 35 places from position 39 to 74. 

This decline resulted from the poor performance of Honduras on the sensitivity (from 50.0 to 

13.7) component. The sensitivity component was assigned a higher PCA weight (32.56%) 

relative to the GFSI weight (10.91%), thereby playing a significant role in the determination 

of countries' NRR scores. A higher weight meant that countries needed to devote more effort 

to improving the associated indicator and obtain a higher NRR score (Chen et al., 2019).  

The PCA weighting model changed the NRR scores for 112 out of 113 (99.12%) countries, 

where 21 countries changed their score by more than ±10.0. In addition, 109 out of 113 (6.46%) 

countries shifted their positions with 52 of them changing their rank by more than ten places. 

Generally, the rank of countries changed slightly with the objective weighting (PCA) model. 

The observed rank changes corroborated with the findings of Chen et al. (2019) and Maricic et 

al. (2016), who also noted slight shifts in countries positions with objective weighting models. 

A paired t-test was applied to determine whether there was a statistically significant difference 

between the countries' NRR scores derived with PCA and GFSI weighting models (Table 5.13). 

Results showed that the countries' NRR scores were lower for the PCA model (mean = 52.177 

± 10.255) relative to the GFSI model (mean = 57.135 ± 9.176). A statistically significant 

decrease in the NRR scores by 4.958 (95% confidence level) points and p-value less than 0.05 

(p < 0.05) were observed. On average, the weights assigned to the NRR component of the GFSI 

by the EIU expert panel (GFSI model) were higher compared to the PCA model. These high 

GFSI weights were reflected on the higher NRR scores for countries. The decrease in the NRR 

scores that were obtained using the PCA model indicated that the amount of the weight 

assigned to the NRR indicators significantly determined the countries' NRR scores. Therefore, 

the postulated hypothesis that objective weighting significantly changed the countries' NRR 

scores compared to the subjective weighting of the NRR component of the GFSI was accepted. 

Table 5.13 Results of paired t-test for the NRR scores of countries based on the PCA 

and GFSI weighting models for 2019 

Score Observation  Mean Standard 

error 

Standard 

deviation 

95% confidence interval 

Lower bound        Upper bound 

PCA score 113 52.177 0.967 10.255 50.260                     54.094 

GFSI score 113 57.135 0.863 9.176 55.425                     58.846 

Difference  -4.958 0.548 5.823 -6.044                      -3.873 

t-value = -9.051 and p-value = 0.000 at 95% confidence level. 

Source: Author's calculations, using Stata 15 statistical software.  
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A Spearman's rank correlation test was used to determine whether the country ranks obtained 

using PCA and GFSI weighting models were significantly different. In Table 5.14, results 

showed a statistically significant rank correlation coefficient (rho = 0.831 at five per cent 

significance level) associated with a p-value less than 0.05 (p < 0.05). The high Spearman's 

rank correlation coefficient suggested that the NRR ranks based on the GFSI and PCA models 

were strongly correlated (closely related). An objective (PCA) weighting changed the country 

ranks, but the changes were not significant. The stated null hypothesis that an objective 

weighting significantly changed the countries' NRR ranks compared to the subjective 

weighting of the NRR component of the GFSI was rejected. This finding suggested that the 

application of subjective (GFSI model) or objective (PCA model) weighting approaches would 

provide similar NRR ranks. These findings were in concurrence with the observations made by 

Chen et al. (2019), and Izraelov and Silber (2019), who noted that objective and subjective 

weighting models gave similar ranks. However, for international comparisons, the use of the 

objective weighting model appeared more useful in attracting the countries' confidence in the 

GFSI reports.  

Table 5.14 Results of Spearman's rank correlation test for the NRR component rank of 

countries based on the PCA and GFSI weighting models for 2019 

 
GFSI rank PCA rank 

GFSI rank 1.000   

PCA rank 0.831*  1.000 

P-value 0.000  

* Significant at the five per cent level, n = 113 countries. 

Source: Author's calculations, using Stata 15 statistical software.  

Results for the first specific research question showed that the PCA weights assigned to the 

NRR component of the GFSI were significantly lower than those from the GFSI model. On 

average, these PCA (objective) weights yielded NRR scores that were lower than those derived 

using the GFSI (subjective) weights. Conversely, the NRR ranks obtained using the mentioned 

two separate weights were closely related. Therefore, the hypothesis that objective weighting 

significantly changed the countries' NRR scores and ranks compared to the subjective 

weighting of the NRR component of the GFSI was accepted but not in totality. The partial 

acceptance of the stated hypothesis was due to the similar NRR ranks but different NRR scores 

for countries derived using GFSI and PCA weighting models. This decision implied that while 

the PCA model significantly changed the NRR weights and scores but not its ranks, the EIU 
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expert panel ranks appeared reasonable. However, the PCA weighting model, which relied on 

a statistical scheme, could provide the NRR weights, scores and ranks free of subjectivity. 

5.5 Results of the objective versus subjective NRR adjustment of the overall GFSI scores 

and ranks  

The second specific research question addressed whether the objective NRR adjustment 

significantly changed the countries' adjusted overall GFSI scores and ranks compared to the 

subjective NRR adjustment of the overall GFSI. The NRR scores derived using the PCA 

weights were used to adjust the overall GFSI scores and ranks objectively. As shown in 

Annexure C, several differences emerged among the countries' adjusted overall GFSI scores 

and ranks obtained with the objective and subjective NRR adjustments. The GFSI model had 

awarded the adjusted overall GFSI scores ranging between 70.5-77.9 to the top twenty 

countries. These countries portrayed the highest levels of economic development, including 

overall food security performance. Seventeen out of twenty countries changed their adjusted 

overall GFSI rank when the PCA model was applied. The top twenty countries also retained 

their adjusted overall GFSI rank cohort (position 1-20) except Portugal, which moved to 

position 21 (Figure 5.3). These countries' adjusted overall GFSI scores decreased from a range 

of 70.5-77.9 to 68.7-77.7 due to a decline in their objectively weighted NRR scores. 

 

Figure 5.3: Comparison of the adjusted overall GFSI ranks of the top twenty countries 

(rank 1-20) based on the GFSI and PCA models 

Source: Author's work using GFSI data (EIU, 2019).  
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According to the GFSI model, the bottom twenty countries with the lowest adjusted overall 

GFSI scores had the lowest overall GFSI scores. These countries, mostly African countries 

except Tajikistan, Haiti, Syria, Yemen and Venezuela, retained their adjusted overall GFSI 

rank cohort (rank 94-113) when PCA model was applied (Figure 5.4). Considering that these 

bottom twenty countries are less developed economically, the choice of the NRR adjustment 

did not substantially influence their adjusted overall GFSI scores and ranks. 

 

Figure 5.4: Comparison of the adjusted overall GFSI ranks of the bottom twenty 

countries (rank 94-113) based on the GFSI and PCA models 

Source: Author's work using GFSI data (EIU, 2019). 
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Conversely, the objective NRR adjustment of the overall GFSI scores for countries improved 

the rank of Singapore by five places from position 12 to seven. Despite the use of objectively 
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overall GFSI scores (84.0 and 82.9) and NRR scores (70.2 and 74.5).  

The subjective adjusted overall GFSI rank of Mexico was position 46, but its rank improved to 

position 37 with the objective NRR adjustment of the GFSI scores. Mexico's high objectively 

weighted NRR score (59.7) led to an increase in its adjusted overall GFSI score by 1.5 points 

and rank by nine places. Ukraine was the most improved country from position 77 to 63, while 

both Russia and Honduras significantly dropped their rank by six places. The adjusted overall 

GFSI rank of Ukraine improved by 2.1 points due to its high NRR score (72.1 compared to 

57.1). Russia had a relatively high score (69.7) for the overall GFSI, but an 8.8 points drop in 

its NRR score resulted in a decline in its adjusted overall GFSI score from 63.6 to 62.1.  

The use of objectively weighted NRR scores to adjust the overall GFSI scores amplified the 

role of indicators' weights in understanding the countries' food security context. The 

observations made hitherto showed that weighting models determined the outcome of the NRR 

scores, which in turn influenced the results of the adjusted overall GFSI scores. For example, 

the PCA results for the NRR indicators revealed five primary drivers of the NRR component 

of the GFSI. These critical NRR indicators included disaster risk management, food import 

dependency, grassland, agricultural water risk – quantity, and forest change in that order. 

Countries required higher performance for these mentioned NRR indicators to achieve higher 

NRR scores and ranks, including adjusted overall GFSI scores and ranks.  

The objective NRR adjustment of the overall GFSI scores changed the adjusted overall GFSI 

scores of 111 out of 113 (98.23%) countries. However, most of these changes in scores were 

minor, and only twelve countries had a 2.0 to 3.0 change in their adjusted overall GFSI score. 

These slight changes in the countries' adjusted overall GFSI scores were not surprising as their 

overall GFSI scores were not derived objectively with the PCA weighting model. Also, 88 out 

of 113 (77.88%) countries shifted their adjusted overall GFSI rank, and only eight countries 

changed positions by more than five places.  

A paired t-test was conducted to determine whether there was a statistically significant 

difference between countries' adjusted overall GFSI scores obtained with the objective and 

subjective NRR adjustment of the overall GFSI scores. Results in Table 5.15 showed a lower 

objective adjusted overall GFSI scores (mean = 52.496 ± 12.912) compared to the subjective 

adjusted overall GFSI scores (mean = 56.258 ± 13.008). Further observations showed a 

statistically significant decrease in the countries' adjusted overall GFSI scores by 0.761 (95% 

confidence level) points and p-value less than 0.05 (p < 0.05). This mean difference was due 
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to the countries' objectively weighted NRR scores which produced a lower adjusted overall 

GFSI scores compared to the subjective weighted NRR scores. Therefore, the hypothesis that 

the objective NRR adjustment of the overall GFSI scores significantly changed the countries' 

adjusted overall GFSI scores compared to the subjective NRR adjustment was accepted. This 

decision implied that objectively weighted NRR scores, free of subjective criticisms could offer 

an alternative approach to understanding global food security development and improvement.  

Table 5.15 Results of paired t-test for the adjusted overall GFSI scores of countries 

based on the PCA and GFSI models for 2019 

Score Observation  Mean Standard 

error 

Standard 

deviation 

95% confidence interval 

Lower bound        Upper bound 

PCA score 113 55.496 1.215 12.912  53.090                    57.903 

GFSI score 113 56.258 1.224 13.008  53.833                    58.682 

Difference  -0.761 0.092  0.974  -0.943                     -0.580 

t-value = -8.309 and p-value = 0.000 at 95% confidence level. 

Source: Author's calculations, using Stata 15 statistical software.  

A Spearman's rank correlation test was applied to determine whether the countries' adjusted 

overall GFSI ranks obtained by the objective and subjective NRR adjustment of the overall 

GFSI ranks were significantly different. Results in Table 5.16 showed a statistically significant 

rank correlation coefficient (rho = 0.995 at five per cent significance level) with a p-value less 

than 0.05 (p < 0.05). This Spearman's rank correlation coefficient (0.995) was close to 1.0, 

signifying that the two separate ranks were closely related. The objective NRR adjustment of 

the overall GFSI ranks changed the countries' adjusted overall GFSI ranks, but the changes 

were minor. That was to say, although the countries' objectively weighted NRR scores 

produced lower adjusted overall GFSI scores than those from the EIU, their ranks were not 

significantly different. Therefore, the null hypothesis that objective NRR adjustment of the 

overall GFSI scores significantly changed the countries' adjusted overall GFSI ranks compared 

to the subjective NRR adjustment was rejected.  

The rejection of the stated null hypothesis based on the similarity of the objective and 

subjective adjusted overall GFSI ranks implied the need to improve the GFSI model. This 

improvement could be achieved by applying a PCA weighting model to minimise the degree 

of subjectivity of the GFSI weighting model in a global food security benchmarking process. 

The objectively weighted NRR scores could provide the end-users (policymakers and 

countries) of the GFSI reports with an unquestionable adjusted food security status of countries.  
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Table 5.16 Results of Spearman's rank correlation test for the adjusted overall GFSI rank of 

countries based on the PCA and GFSI models for 2019 

 
GFSI rank PCA rank 

GFSI rank 1.000   

PCA rank 0.995*  1.000 

P-value 0.000  

* Significant at the five per cent level, n = 113 countries. 

Source: Author's calculations, using Stata 15 statistical software.  

The results for the second specific research question showed that the objective adjusted overall 

GFSI scores were on average lower than the subjective adjusted overall GFSI scores. However, 

both the subjectively and objectively weighted NRR scores produced similar adjusted overall 

GFSI ranks. The hypothesis that the objective NRR adjustment of the overall GFSI scores 

significantly changed the countries' adjusted overall GFSI scores and rank compared to the 

subjective NRR adjustment was partially accepted. The partial acceptance of the postulated 

hypothesis was due to the similar adjusted overall GFSI ranks, but different scores for countries 

obtained using GFSI and PCA weighted NRR scores. This decision implied that the GFSI ranks 

were plausible, but the use of a PCA weighting model could provide an unbiased measure of 

countries' food security situation for international comparisons.    
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Chapter 6: Conclusions and recommendations 

The purpose of this study was to explore how an objective weighting of the NRR component 

of the GFSI affected the scores and rank of countries. The study accomplished this purpose by 

addressing two specific research questions. Firstly, the study determined whether an objective 

weighting significantly changed the countries' NRR scores and ranks compared to the 

subjective weighting of the NRR component of the GFSI. Secondly, the study addressed 

whether the objective NRR adjustment significantly changed the countries' adjusted overall 

GFSI scores and ranks compared to the subjective NRR adjustment of the overall GFSI. 

This study tested two hypotheses: 

i. The objective weighting significantly changed the countries' NRR scores and ranks 

compared to the subjective weighting of the NRR component of the GFSI. 

ii. The objective NRR adjustment of the overall GFSI significantly changed the countries' 

adjusted overall GFSI scores and ranks compared to the subjective NRR adjustment. 

The stated hypothesis that the objective weighting significantly changed the weights for the 

NRR component of the GFSI was accepted. On average, the objective weights derived using 

the PCA model were significantly lower compared to the subjective (GFSI model) weights 

assigned by the EIU. The different sets of NRR weights led to significant effects on the 

countries' NRR scores. The PCA (objective) weights produced the NRR scores for countries 

that were on average lower than the scores derived using the GFSI (subjective) weights. The 

stated hypothesis that the objective weighting significantly changed the countries' NRR scores 

compared to the subjective weighting of the NRR component of the GFSI was accepted. The 

change in the NRR scores was due to the poor performance (low scores) of various countries 

on the NRR indicators on which the PCA model assigned high weights compared to the GFSI 

model.  

However, the findings indicated a high correlation between the objectively and subjectively 

weighted NRR ranks. Therefore, the null hypothesis that the objective weighting significantly 

changed the countries' NRR ranks compared to the subjective weighting of the NRR 

component of the GFSI was rejected.  

On average, the objectively weighted adjusted overall GFSI scores were lower than the 

subjectively weighted scores due to the lower objective (PCA) weight. Thus, the hypothesis 

that the objective NRR adjustment of the overall GFSI significantly changed the countries' 
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adjusted overall GFSI scores and rank compared to the subjective NRR adjustment was 

accepted. Further results indicated that the subjectively weighted adjusted overall GFSI ranks 

of countries were closely related to the objectively weighted ranks. For this reason, the 

postulated null hypothesis that the objective NRR adjustment of the overall GFSI significantly 

changed the countries' adjusted overall GFSI ranks compared to the subjective NRR adjustment 

was rejected.  

Finally, the results of this study corroborated with the findings of Chen et al. (2019), who used 

the Hierarchical Data Envelopment analysis (H-DEA) model on the 2014 GFSI data an 

concluded that the GFSI weighting model was less biased than the H-DEA model. The results 

of the current study also concurred with the findings of Izraelov and Silber (2019), who 

used Data Envelopment Analysis (DEA), Principal Component Analysis (PCA) and Lower 

Convex Hull (LCH) on the 2015 GFSI and concluded that the GFSI weights selected by the 

EIU panel of experts were not biased. However, the results for this study did not concur with 

the findings of Maricic et al. (2016), who applied the Composite I-Distance Indicator (CIDI) 

model and the 2015 GFSI data and asserted that the GFSI weighting model provided biased 

results. 

6.1 Conclusions 

Although the objective and subjective weighting of the NRR component of the GFSI provided 

different importance levels to the indicators, the interpretation of the influence of weights on 

the NRR scores was the same. A high weight assigned to an indicator may indicate a higher 

level of importance of the indicator in a composite index. An indicator with a high importance 

level implies that the indicator has a greater influence on the overall score of the composite 

index. For example, the objective (PCA) weighting model provided the highest importance 

level (weight) to the NRR's sensitivity component. Countries that had a high score in the 

sensitivity component had a higher chance of a more favourable NRR score. By contrast, the 

objective (PCA) weighting model assigned the highest level of importance (weight) to the 

NRR's exposure component. As with the sensitivity component, countries that had a high score 

in the exposure component had a better chance of a more favourable NRR score. Therefore, 

the interpretation of the influence of objective and subjective weights on the NRR scores was 

the same. This conclusion implied that the subjective weighting of the NRR component of the 

GFSI may still be worthwhile pursuing as it provided less biased weights.  

The study concluded that the NRR ranks and the adjusted overall GFSI rank of countries would 
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change slightly if an objective weighting technique was applied to the NRR component of the 

GFSI. The change in rank of countries may urge the governments to take measures that would 

improve their position.  However, the subjectively (GFSI model) and objectively (PCA model) 

weighted NRR ranks were highly correlated, indicating that the subjectively weighted GFSI 

model was not strongly statistically biased. The findings implied that the subjective weighting 

of the NRR component of the GFSI may still provide relatively fair country scores and ranks 

for comparison purposes.  

The policy implications of this study were that the application of a particular weighting process 

for indicators may alter the food security and climate-related performance scores and ranks of 

countries. Both national food security and climate-related performance scores are politically 

sensitive for governments. Both are essential for incentivising progress towards global targets. 

Also, the policymakers are seeking a working guide to improving their targeting and 

monitoring efforts for food security. While the GFSI methodology and data are both published 

and available for scrutiny, the subjective assessment of sensitive indicators may negate trust 

among governments and policymakers in the dimensions and overall score and ranks. An 

objective weighting of the NRR component could overcome the subjectivity of EIU's weighting 

approach, improving the reliability of the NRR component of the GFSI and building greater 

trust. Governments may then confidently understand their food security implications, including 

the need for improvements.  

Finally, while the results of this study corroborated with the findings of Chen et al. (2019) 

and Izraelov and Silber (2019), who concluded that the GFSI weights selected by the EIU panel 

of experts were not biased for earlier data sets, the results did not concur with the findings 

of Maricic et al. (2016), who asserted that the GFSI weighting model provided biased results 

for the other dimensions of the GFSI.  

6.2 Recommendations 

There is a need for the developers of the GFSI to apply an objective weighting model to boost 

the confidence of governments and policymakers in the GFSI results. The use of actual data to 

derive the indicator weights, scores and ranks of countries may motivate governments to invest 

in data collection, management and publication for access by the EIU experts. 

6.3 The contribution of the study to global knowledge 

This research has provided an evidence-based understanding of the objective weighting 
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scheme's influence on NRR weights, scores, and ranks. No study of this nature has been 

published since the inclusion of the NRR component of the GFSI in 2017. The EIU panel of 

experts may use the findings of this study as a guide to improving the design of the efforts for 

food security. The results of this study revealed that there was a high correlation between the 

subjectively and objectively weighted NRR ranks, indicating that the GFSI results were not 

statistically biased. However, the research's empirical evidence may help boost governments' 

confidence in the annual GFSI results.  

6.4 Recommendations for improvement of the study 

The objective weighting of indicators could have included the other three components of the 

GFSI (the affordability, availability and quality and safety components) instead of only the 

NRR component. Consequently, governments and policymakers will clearly understand the 

implications for food security improvement and development. That is to say, the objective and 

subjective weights for the GFSI components may provide a comparative importance level of 

indicators and help identify what areas need intervention for food security improvement.  

The use of only one methodological weighting approach, principal component analysis, may 

have narrowed the scope of objective weighting. An application of more objective weighting 

models will broaden the comparison of methods across a subjective to objective spectrum. The 

wide range of objective weighting processes will also ensure that one weighting scheme's 

limitation is complemented by the other for improved comparative results. 

6.5 Recommendations for further research 

Similar research could be conducted across income levels and regional groups to compare and 

identify where significant improvements in natural resources management are most needed. 

For example, a researcher may draw comparative analyses along high-income versus low-

income countries or sub-Saharan African versus European countries. These analyses will assist 

in developing a country to regional level top policy priorities concerning natural resources, 

resilience and food security.  

Finally, additional research was recommended to compare the indicators of the NRR 

component of the GFSI with the indicators of other indices. For example, a study may compare 

the ranking of countries by the NRR component of the GFSI and the Environmental 

Sustainability Index (Saisana et al., 2005). This comparison will help determine the sensitivity 

of the country ranks to the list of indicators selected.  
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Annexure A: Indicators of the NRR component of the GFSI in the 2019 GFSI report 
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Annexure B: A comparison of the NRR component scores and ranks of countries based 

on the PCA and GFSI weighting models for 2019 

Country GFSI model  PCA model  Score 

difference 

Rank 

difference  Score Rank  Score Rank  

Czech Republic 75.5 1  80.0 1  4.5 0 

Finland 74.0 2  74.5 3  0.5 -1 

Denmark 73.9 3  61.4 18  -12.5 -15 

New Zealand 73.9 3  74.4 4  0.5 -1 

Slovakia 73.1 5  64.7 14  -8.4 -9 

Sweden 72.1 6  58.3 33  -13.8 -27 

Switzerland 72.1 6  67.2 13  -4.9 -7 

Uruguay 71.6 8  76.1 2  4.5 6 

Ireland 71.0 9  70.2 7  -0.8 2 

Austria 69.6 10  58.7 31  -10.9 -21 

Poland 69.6 10  60.0 25  -9.6 -15 

Hungary 69.5 12  63.9 15  -5.6 -3 

Norway 69.0 13  69.7 9  0.7 4 

Malawi 68.7 14  63.2 16  -5.5 -2 

Japan 68.5 15  70.5 6  2.0 9 

Myanmar 68.5 15  69.3 10  0.8 5 

Niger 68.5 15  68.6 11  0.1 4 

Germany 68.4 18  57.6 34  -10.8 -16 

France 68.3 19  59.8 27  -8.5 -8 

Netherlands 67.4 20  67.8 12  0.4 8 

Cote d'Ivoire 67.1 21  54.2 44  -12.9 -23 

Spain 66.3 22  54.6 43  -11.7 -21 

Romania 66.2 23  58.8 29  -7.4 -6 

Bulgaria 65.3 24  60.1 23  -5.2 1 

Canada 65.3 24  57.1 37  -8.2 -13 

Russia 65.1 26  56.3 39  -8.8 -13 

Uganda 65.0 27  55.2 41  -9.8 -14 

Greece 64.8 28  54.9 42  -9.9 -14 

Portugal 64.8 28  52.6 51  -12.2 -23 

Italy 64.5 30  53.8 46  -10.7 -16 

Burundi 64.2 31  60.8 19  -3.4 12 

United Kingdom 63.8 32  53.7 48  -10.1 -16 

Belgium 62.9 33  51.6 55  -11.3 -22 

Kazakhstan 62.9 33  70.1 8  7.2 25 

Burkina Faso 62.6 35  50.7 58  -11.9 -23 

Rwanda 62.6 35  53.8 46  -8.8 -11 

Serbia 62.2 37  58.5 32  -3.7 5 

Laos 62.1 38  53.5 49  -8.6 -11 

Honduras 61.5 39  47.0 74  -14.5 -35 

United States 61.4 40  49.7 62  -11.7 -22 

Venezuela 61.2 41  51.3 57  -9.9 -16 

Mali 61.0 42  51.5 56  -9.5 -14 

Zambia 61.0 42  48.8 64  -12.2 -22 



76 

 

Country GFSI model  PCA model  Score 

difference 

Rank 

difference  Score Rank  Score Rank  

Chile 60.1 44  58.8 29  -1.3 15 

Turkey 60.0 45  50.0 61  -10.0 -16 

Thailand 59.0 46  57.4 35  -1.6 11 

Egypt 58.9 47  54.1 45  -4.8 2 

Costa Rica 58.5 48  62.2 17  3.7 31 

Botswana 58.3 49  52.3 52  -6.0 -3 

Paraguay 58.3 49  52.8 50  -5.5 -1 

Tanzania 57.7 51  48.6 66  -9.1 -15 

Nicaragua 57.5 52  47.3 71  -10.2 -19 

Pakistan 57.0 53  47.3 71  -9.7 -18 

Ukraine 57.0 53  72.1 5  15.1 48 

Uzbekistan 57.0 53  48.8 64  -8.2 -11 

El Salvador 56.9 56  46.9 75  -10.0 -19 

Colombia 56.4 57  60.6 21  4.2 36 

Madagascar 56.3 58  45.3 81  -11.0 -23 

Belarus 56.0 59  52.0 53  -4.0 6 

Togo 56.0 59  47.3 71  -8.7 -12 

South Korea 55.8 61  60.8 19  5.0 42 

Bolivia 55.6 62  49.7 62  -5.9 0 

Brazil 55.6 62  50.2 60  -5.4 2 

Argentina 55.5 64  51.8 54  -3.7 10 

Australia 55.5 64  57.1 37  1.6 27 

Nigeria 55.2 66  48.3 67  -6.9 -1 

Senegal 55.0 67  46.6 76  -8.4 -9 

Jordan 54.9 68  46.2 79  -8.7 -11 

China 54.5 69  47.4 69  -7.1 0 

Cambodia 53.3 70  44.7 84  -8.6 -14 

Haiti 53.2 71  43.9 88  -9.3 -17 

Ghana 53.0 72  46.5 77  -6.5 -5 

Chad 52.9 73  47.6 68  -5.3 5 

Malaysia 52.8 74  60.0 25  7.2 49 

Angola 52.1 75  50.3 59  -1.8 16 

Sudan 52.1 75  44.0 87  -8.1 -12 

Cameroon 52.0 77  45.0 82  -7.0 -5 

Kuwait 51.5 78  57.3 36  5.8 42 

Ethiopia 51.2 79  46.3 78  -4.9 1 

Mexico 50.8 80  59.7 28  8.9 52 

Kenya 50.6 81  44.6 85  -6.0 -4 

South Africa 50.4 82  60.6 21  10.2 61 

Bangladesh 50.2 83  44.4 86  -5.8 -3 

Sierra Leone 50.2 83  42.9 91  -7.3 -8 

Azerbaijan 49.9 85  43.9 88  -6.0 -3 

Guatemala 49.7 86  42.3 95  -7.4 -9 

Tunisia 49.5 87  42.5 94  -7.0 -7 

Mozambique 49.0 88  55.6 40  6.6 48 

Panama 49.0 88  42.7 93  -6.3 -5 
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Country GFSI model  PCA model  Score 

difference 

Rank 

difference  Score Rank  Score Rank  

Qatar 48.7 90  38.3 105  -10.4 -15 

Ecuador 48.4 91  60.1 23  11.7 68 

Algeria 48.3 92  40.3 103  -8.0 -11 

Guinea 48.3 92  41.7 96  -6.6 -4 

Vietnam 48.2 94  44.9 83  -3.3 11 

Morocco 47.9 95  41.6 97  -6.3 -2 

Sri Lanka 47.7 96  43.5 90  -4.2 6 

Nepal 47.5 97  45.9 80  -1.6 17 

India 46.7 98  42.9 91  -3.8 7 

Congo (Dem. Rep.) 45.4 99  40.6 101  -4.8 -2 

Syria 45.2 100  41.5 98  -3.7 2 

Israel 44.8 101  37.5 108  -7.3 -7 

Peru 44.4 102  47.4 69  3.0 33 

Saudi Arabia 44.4 102  38.2 106  -6.2 -4 

Dominican Republic 44.2 104  40.9 99  -3.3 5 

Benin 44.1 105  40.8 100  -3.3 5 

United Arab Emirates 43.9 106  37.3 109  -6.6 -3 

Oman 43.8 107  36.0 110  -7.8 -3 

Philippines 42.5 108  39.5 104  -3.0 4 

Singapore 42.4 109  37.8 107  -4.6 2 

Indonesia 40.7 110  32.9 112  -7.8 -2 

Tajikistan 40.5 111  40.5 102  0.0 9 

Yemen 40.4 112  34.5 111  -5.9 1 

Bahrain 39.0 113  30.2 113  -8.8 0 

Note: Rank 1 = best, the score ranges 0-100 where 100 = best 

Source: Author's calculations and EIU (2019). 
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Annexure C: Countries' adjusted overall GFSI scores and ranks according to the PCA 

and GFSI adjustment models for 2019 

Country GFSI model   PCA model  Difference 

 

Overall 

GFSI 

score 

NRR 

score 

Adjusted 

overall 

GFSI 

score 

Adjusted 

overall 

GFSI 

rank 

NRR 

score 

Adjusted 

overall 

GFSI 

score  

Adjusted 

overall 

GFSI 

rank 

Score Rank 

Ireland 84.0 71.0 77.9 1 70.2 77.7 1 -0.2 0 

Finland 82.9 74.0 77.5 2 74.5 77.6 2 0.1 0 

Switzerland 83.1 72.1 77.3 3 67.2 76.3 4 -1.0 -1 

Sweden 82.7 72.1 76.9 4 58.3 74.1 6 -2.8 -2 

Norway 82.9 69.0 76.5 5 69.7 76.6 3 0.1 2 

Denmark 81.0 73.9 75.7 6 61.4 73.2 11 -2.5 -5 

United States 83.7 61.4 75.6 7 49.7 73.2 11 -2.4 -4 

Austria 81.7 69.6 75.5 8 58.7 73.3 10 -2.2 -2 

Canada 82.4 65.3 75.3 9 57.1 73.6 9 -1.7 0 

Netherlands 82.0 67.4 75.3 9 67.8 75.4 5 0.1 4 

Germany 81.5 68.4 75.1 11 57.6 72.9 13 -2.2 -2 

Singapore 87.4 42.4 74.8 12 37.8 73.8 7 -1.0 5 

France 80.4 68.3 74.0 13 59.8 72.3 15 -1.7 -2 

New Zealand 78.8 73.9 73.7 14 74.4 73.8 7 0.1 7 

Belgium 80.7 62.9 73.2 15 51.6 70.9 16 -2.3 -1 

Australia 81.4 55.5 72.3 16 57.1 72.7 14 0.4 2 

United 

Kingdom 
79.1 63.8 71.9 17 53.7 69.9 18 -2.0 -1 

Portugal 77.8 64.8 71.0 18 52.6 68.6 21 -2.4 -3 

Qatar 81.2 48.7 70.8 19 38.3 68.7 20 -2.1 -1 

Japan 76.5 68.5 70.5 20 70.5 70.9 16 0.4 4 

Poland 75.6 69.6 69.9 21 60.0 68.0 23 -1.9 -2 

Italy 75.8 64.5 69.1 22 53.8 67.0 25 -2.1 -3 

Spain 75.5 66.3 69.1 22 54.6 66.9 26 -2.2 -4 

Czech Republic 73.1 75.5 68.6 24 80.0 69.4 19 0.8 5 

Israel 79.0 44.8 68.1 25 37.5 66.7 28 -1.4 -3 

Chile 75.5 60.1 68.0 26 58.8 67.7 24 -0.3 2 

Uruguay 72.8 71.6 67.6 27 76.1 68.5 22 0.9 5 

Hungary 72.7 69.5 67.2 28 63.9 66.1 31 -1.1 -3 

Greece 73.4 64.8 66.9 29 54.9 65.1 32 -1.8 -3 

United Arab 

Emirates 
76.5 43.9 65.8 30 37.3 64.5 33 -1.3 -3 

Kuwait 74.8 51.5 65.7 31 57.3 66.8 27 1.1 4 

South Korea 73.6 55.8 65.5 32 60.8 66.4 29 0.9 3 

Malaysia 73.8 52.8 65.1 33 60.0 66.4 29 1.3 4 

Romania 70.2 66.2 64.3 34 58.8 63.0 35 -1.3 -1 

Slovakia 68.3 73.1 63.7 35 64.7 62.3 39 -1.4 -4 

Russia 69.7 65.1 63.6 36 56.3 62.1 42 -1.5 -6 

Saudi Arabia 73.5 44.4 63.3 37 38.2 62.1 42 -1.2 -5 

Belarus 70.9 56.0 63.1 38 52.0 62.4 37 -0.7  1 

Argentina 70.8 55.5 62.9 39 51.8 62.3 39 -0.6 0 
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Country GFSI model   PCA model  Difference 

 

Overall 

GFSI 

score 

NRR 

score 

Adjusted 

overall 

GFSI 

score 

Adjusted 

overall 

GFSI 

rank 

NRR 

score 

Adjusted 

overall 

GFSI 

score  

Adjusted 

overall 

GFSI 

rank 

Score Rank 

China 71.0 54.5 62.9 39 47.4 61.7 44 -1.2 -5 

Costa Rica 70.1 58.5 62.8 41 62.2 63.5 34 0.7 7 

Turkey 69.8 60.0 62.8 41 50.0 61.1 46 -1.7 -5 

Brazil 70.1 55.6 62.3 43 50.2 61.4 45 -0.9 -2 

Colombia 69.4 56.4 61.8 44 60.6 62.6 36 0.8 8 

Kazakhstan 67.3 62.9 61.1 45 70.1 62.3 39 1.2 6 

Mexico 69.4 50.8 60.9 46 59.7 62.4 37 1.5 9 

Bulgaria 66.2 65.3 60.5 47 60.1 59.6 48 -0.9 -1 

Panama 68.8 49.0 60.0 48 42.7 58.9 49 -1.1 -1 

South Africa 67.3 50.4 59.0 49 60.6 60.7 47 1.7 2 

Oman 68.4 43.8 58.8 50 36.0 57.5 51 -1.3 -1 

Thailand 65.1 59.0 58.4 51 57.4 58.2 50 -0.2 1 

Egypt 64.5 58.9 57.9 52 54.1 57.1 52 -0.8 0 

Botswana 63.8 58.3 57.1 53 52.3 56.2 54 -0.9 -1 

Serbia 62.8 62.2 56.9 54 58.5 56.3 53 -0.6 1 

Azerbaijan 64.8 49.9 56.7 55 43.9 55.7 55 -1.0 0 

Bahrain 66.6 39.0 56.4 56 30.2 55.0 58 -1.4 -2 

Vietnam 64.6 48.2 56.2 57 44.9 55.7 55 -0.5 2 

Ghana 62.8 53.0 55.4 58 46.5 54.4 61 -1.0 -3 

Dominican 

Republic 
64.2 44.2 55.2 59 40.9 54.7 60 -0.5 -1 

Morocco 62.8 47.9 54.6 60 41.6 53.6 62 -1.0 -2 

Peru 63.3 44.4 54.5 61 47.4 55.0 58 0.5 3 

El Salvador 60.7 56.9 54.2 62 46.9 52.6 65 -1.6 -3 

Jordan 61.0 54.9 54.1 63 46.2 52.8 64 -1.3 -1 

Ecuador 61.8 48.4 53.8 64 60.1 55.6 57 1.8 7 

Indonesia 62.6 40.7 53.3 65 32.9 52.1 68 -1.2 -3 

Guatemala 60.6 49.7 53.0 66 42.3 51.9 69 -1.1 -3 

Sri Lanka 60.8 47.7 52.9 67 43.5 52.2 67 -0.7 0 

Uzbekistan 59.0 57.0 52.7 68 48.8 51.4 72 -1.3 -4 

Myanmar 57.0 68.5 52.5 69 69.3 52.6 65 0.1 4 

Tunisia 60.1 49.5 52.5 69 42.5 51.5 71 -1.0 -2 

Honduras 58.0 61.5 52.4 71 47.0 50.3 77 -2.1 -6 

Philippines 61.0 42.5 52.2 72 39.5 51.8 70 -0.4 2 

Algeria 59.8 48.3 52.1 73 40.3 50.9 74 -1.2 -1 

Paraguay 57.9 58.3 51.9 74 52.8 51.1 73 -0.8 1 

Bolivia 57.7 55.6 51.3 75 49.7 50.4 76 -0.9 -1 

India 58.9 46.7 51.1 76 42.9 50.5 75 -0.6 1 

Ukraine 57.1 57.0 51.0 77 72.1 53.1 63 2.1 14 

Pakistan 56.8 57.0 50.7 78 47.3 49.3 78 -1.4 0 

Mali 54.4 61.0 49.1 79 51.5 47.8 80 -1.3 -1 

Nepal 56.4 47.5 49.0 80 45.9 48.8 79 -0.2 1 

Nicaragua 54.2 57.5 48.4 81 47.3 47.1 81 -1.3 0 

Senegal 54.3 55.0 48.2 82 46.6 47.1 81 -1.1 1 
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Country GFSI model   PCA model  Difference 

 

Overall 

GFSI 

score 

NRR 

score 

Adjusted 

overall 

GFSI 

score 

Adjusted 

overall 

GFSI 

rank 

NRR 

score 

Adjusted 

overall 

GFSI 

score  

Adjusted 

overall 

GFSI 

rank 

Score Rank 

Cote d'Ivoire 52.3 67.1 48.0 83 54.2 46.3 83 -1.7 0 

Bangladesh 53.2 50.2 46.6 84 44.4 45.8 84 -0.8 0 

Niger 49.6 68.5 45.7 85 68.6 45.7 85 0.0 0 

Burkina Faso 50.1 62.6 45.4 86 50.7 43.9 86 -1.5 0 

Kenya 50.7 50.6 44.4 87 44.6 43.7 87 -0.7 0 

Laos 49.1 62.1 44.4 87 53.5 43.4 89 -1.0 -2 

Benin 51.0 44.1 43.9 89 40.8 43.5 88 -0.4 1 

Cameroon 49.9 52.0 43.9 89 45.0 43.0 90 -0.9 -1 

Rwanda 48.2 62.6 43.7 91 53.8 42.6 91 -1.1 0 

Cambodia 49.4 53.3 43.6 92 44.7 42.6 91 -1.0 1 

Ethiopia 49.2 51.2 43.2 93 46.3 42.6 91 -0.6 2 

Nigeria 48.4 55.2 43.0 94 48.3 42.1 94 -0.9 0 

Tanzania 47.6 57.7 42.6 95 48.6 41.5 96 -1.1 -1 

Uganda 46.2 65.0 42.2 96 55.2 41.0 97 -1.2 -1 

Tajikistan 49.0 40.5 41.7 97 40.5 41.7 95 0.0 2 

Guinea 46.7 48.3 40.7 98 41.7 39.9 98 -0.8 0 

Sudan 45.7 52.1 40.2 99 44.0 39.3 100 -0.9 -1 

Angola 45.5 52.1 40.1 100 50.3 39.8 99 -0.3 1 

Zambia 44.4 61.0 40.1 100 48.8 38.7 101 -1.4 -1 

Malawi 42.5 68.7 39.2 102 63.2 38.6 102 -0.6 0 

Togo 44.0 56.0 39.2 102 47.3 38.2 103 -1.0 -1 

Haiti 43.3 53.2 38.2 104 43.9 37.2 104 -1.0 0 

Mozambique 41.4 49.0 36.1 105 55.6 36.8 105 0.7 0 

Sierra Leone 39.0 50.2 34.1 106 42.9 33.4 106 -0.7 0 

Madagascar 37.9 56.3 33.8 107 45.3 32.7 108 -1.1 -1 

Syria 38.4 45.2 33.1 108 41.5 32.8 107 -0.3 1 

Chad 36.9 52.9 32.6 109 47.6 32.1 109 -0.5 0 

Burundi 34.3 64.2 31.2 110 60.8 30.9 110 -0.3 0 

Congo (Dem. 

Rep.) 
35.7 45.4 30.8 111 40.6 30.4 111 -0.4 0 

Yemen 35.6 40.4 30.3 112 34.5 29.8 112 -0.5 0 

Venezuela 31.2 61.2 28.2 113 51.3 27.4 113 -0.8 0 

Note: Rank 1 = best, the score ranges 0-100 where 100 = best 

Source: Author's calculations and EIU (2019). 


